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THESIS SUMMARY

The prevalence of foot deformity is globally high affecting populations
across the lifespan. Foot deformity can be present from birth (such as
clubfoot), emerge during growth/ present over-time (flat foot, hallux
valgus), or occur following an injury or neurological event (cerebral palsy,
stroke). A person with a foot deformity has altered foot structure and
potentially foot function. This in turn may limit their activities in daily life
due to long-lasting pain and diminished walking capacity. Despite the
common clinical presentation of foot deformity altering an individual’s
function, the correlation between the amount of structural deformity and
its effects on quality of life remains unclear. The challenge for health
professionals is to identify a clinically meaningful level of deformity that

warrants intervention to maximise an individual’s participation in society.

The available assessments of foot deformity in the literature are largely
static measures despite previous studies showing significant differences
between static structure and dynamic foot function. Optimal assessment
of abnormal foot structure could be achieved through assessment in
three dimensions during gait and function. Three-dimensional gait
analysis is an assessment tool which measures dynamic deformity in the
lower limbs. More recently, three-dimensional multi-segment foot
models have been developed to improve our understanding of foot
motion during gait, such as the Oxford Foot Model (OFM). The OFM was

developed to measure tibia, hindfoot, forefoot and hallux motion in a



clinical setting. As a relatively recent development in the assessment of
dynamic foot motion, rigorous clinimetric testing of the OFM is still
lacking, limiting its full potential for clinical applications and research
utility. Therefore the general aim of this thesis was to establish the
clinical role of the Oxford Foot Model to assess foot function during gait

in the presence of deformity.

Chapter | is the introduction of the thesis detailing the prevalence of foot
deformity and the lack of dynamic foot assessments available in the
literature. Gait, gait analysis and foot kinematics are discussed, leading to
the clear gap in the literature providing the basis of the research aim.
Chapter Il is a repeatability study to justify the use of the OFM in
populations with known foot deformity. Previously the repeatability of the
OFM had been assessed in adults and children healthy populations. The
OFM was designed to be adaptable in its application to measure different
types of foot deformity therefore, it is important to know its repeatability
in pathological conditions. This study assessed the intra and inter-rater
repeatability of marker placement in children with clubfoot and in
children with hemiplegic cerebral palsy compared to a typically
developing population. The results of this study show that the OFM
provides repeatable results in healthy children, as well as in children with

either congenital or acquired foot deformity.

Chapter Ill builds on previous research completed in Oxford evaluating

the repeatability of the hindfoot marker in the OFM suggesting that the



axes of the hindfoot are most sensitive to marker placement on the
posterior aspect of the heel. Since other multi-segment foot models also
use a similar marker, it is important to find methods to place this as
accurately as possible. The aim of this pilot study was to test two
different ‘jigs’ (anatomical alignment devices) against the eyeball marker
placement method to improve reliability of heel marker placement and
calculation of hindfoot angles. Two gait analysts (one beginner and one
experienced with the foot model) completed this repeatability study on 10
healthy adult subjects using a ratio caliper and heel mould, both designed
by three-dimensional printing, against eyeball marker placement. The
intra-tester and inter-tester repeatability of hindfoot marker placement
were assessed for 5 clinically relevant variables of the OFM. Overall the
results showed there was low intra-tester and inter-tester variability
suggesting good sensitivity of the OFM to detect meaningful clinical
differences. The use of the ratio caliper may improve intra-tester
variability, but did not seem superior to the eyeball method of marker
placement for inter-tester variability. The use of a heel mould was

discouraged.

Chapter IV addresses the lack of available dynamic assessment tools of
foot function in the literature. To summarise the quality of foot motion
over the gait cycle, the Foot Profile Score (FPS) was defined as a single
score based on the OFM kinematics expressing the overall deviation of
foot function relative to the norm. The aim of this study was to define and

validate the FPS by studying its properties and design, and analyse it



against a clinical assessment of foot deformity. Concurrent validity was
established for the FPS analysing the relationship with Clinical Foot
Deformity Score (CFDS) in 60 subjects with a condition affecting the lower
limbs. Content validity was established for the six Foot Variable Scores
(FVS) that make up the FPS using a multiple regression of the CFDS on the
6 FVS in the 60 subjects. Predictive validity was established analysing the
relationship of the FPS and GPS comparing 60 lower limb involvement
subjects with 60 subjects with isolated foot deformity. The FPS has

become the first validated score of dynamic foot motion.

Chapter V analyses the responsiveness of the FPS in a clinical population.
The FPS enables clinicians and researchers to quantify deviations of foot
motion during gait, to monitor change in foot/ankle motion over time,
and to measure the outcome of intervention. With the creation of a new
outcome measure, it is important to test its responsiveness to
intervention in a clinical population. Firstly, we defined the minimal
clinically important difference (MCID) for the FPS based on the regression
of the FPS on the Clinical Foot Deformity Scale (CFDS) presented in
Chapter IV. Using the MCID, we applied it to a clinical population of 37
children with cerebral palsy, spastic hemiplegia, comparing their FPS
before and after isolated foot and ankle surgery. A regression analysis
looked at potential relationships between the change in FPS and their
pre-operative FPS, age at surgery, and time since surgery. An MCID of 2.4
degrees for the FPS indicated a clinically meaningful improvement in foot

function, which was evident in 76% of children with hemiplegia post
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isolated foot/ankle surgery. Moreover, the FPS responded with larger
improvements for more deformed feet. These findings suggest the FPS is
sufficiently responsive in a clinical population and should be considered

when indicating and evaluating foot surgery.

Chapter VI investigates if older symptomatic children with clubfoot
deformity differ in perceived disability and foot function during gait,
depending on initial treatment with Ponseti or surgery, compared to a
control group. The second aim was to investigate correlations between
foot function during gait and perceived disability in this population. Foot
function was assessed by the OFM kinematics and plantar pressure and
correlated with parent-reported outcome measures including the Oxford
Ankle Foot Questionnaire, the Disease Specific Index for clubfoot and the
Pediatric Quality of Life Inventory 4.0. Our findings suggest that
symptomatic children with clubfoot deformity present with similar
degrees of gait deviations and perceived disability regardless of whether
they had previously been treated with the Ponseti Method or surgery. The
presence of sagittal and coronal plane hindfoot deformity and coronal
plane forefoot deformity were associated with higher levels of perceived
disability, regardless of their initial treatment. This was the first study to
compare outcomes between Ponseti and surgery in a symptomatic older
clubfoot population seeking further treatment. In addition, it was the first
paper to correlate foot function during gait and perceived disability to

establish a link between deformity and subjective outcomes.
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In Chapter VII, the main findings of the presented studies were critically
discussed, leading to clinical implications and ideas for future research.
To summarise, this thesis was able to establish the Oxford Foot Model
(OFM) and its summary score, the Foot Profile Score (FPS), provide
clinically meaningful information for treatment indication and evaluation

of dynamic foot deformity during gait in the presence of foot deformity.
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The human foot is a complex structure comprising of 26 bones, 33 joints,
and more than a hundred muscles, tendons and ligaments (1). It can be
subdivided into the hindfoot (talus and calcaneus), the midfoot (five tarsal
bones) and the forefoot (five metatarsals and 14 phalanges or toes) (1).
The adaptability of the foot is essential to normal human walking to
provide shock absorption as the heel contacts the ground through to a
rigid lever for propulsion as the foot leaves the floor. Any injury or
deformity of the foot can alter its natural biomechanics and ability to
generate intrinsic forces, which can lead to long-term pain, walking

difficulties and disability.

Picture of newborn feet: Alfred James McDonnell born 12.07.2016

INCIDENCE OF FOOT DEFORMITY

Foot deformity can be present from birth (such as clubfoot), emerge
during growth/ present over-time (flat foot, hallux valgus), or occur
following an injury or neurological event (cerebral palsy, stroke). The
incidence of foot deformities present at birth has been reported as high

as 4.2% (2) and can include clubfoot, metatarsus adductus,
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calcaneovalgus, and vertical talus. Flexible flat feet are common in young
children with an incidence reported between 2.7% and 18.1% (3,4), and
this often spontaneously corrects as their foot posture continues to
mature until the age 8 years (5). Some children however maintain their
flat foot postures, especially if they are genetically pre-disposed (1).
Adults can acquire a flat foot posture with reported rates >3% in women
over the age of 40 and >10% in adults over the age of 65 years (6,7). The
incidence of acquired foot deformity following a neurological injury is
high in children and adults (>80%) due to progressive abnormal forces

(spasticity and weakness) across their foot and ankle joints (8).

THE IMPACT OF FOOT DEFORMITY ON AN INDIVIDUAL AND SOCIETY
The International Classification of Functioning, Disability and Health
(WHO, 2002) highlights the interactive relationship between human

functioning and disability (Figure 1).
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Figure 1: The International Classification of Functioning, Disability and Health
(ICF). Source: World Health Organisation Geneva 2002, ‘Towards a Common
Language for Functioning, Disability and Health: ICF’.

A person with a foot deformity has altered foot structure and potentially
foot function. This in turn may limit their activities in daily life due to
long-standing pain and diminished walking capacity, thus reducing their
participation within society. There is strong evidence in the literature that
foot deformities can significantly negatively impact a person’s quality of
life (9-12). In individuals with flat foot, there is evidence suggesting their
altered foot postures lead to abnormal movement patterns and forces in
more proximal lower limb joints contributing to knee pain (13-16), hip

pain (14) and back pain (15-19).

Despite the common clinical presentation of foot deformity altering an
individual’s function, the correlation between the severity of structural

deformity and its effects on quality of life is not clear (11). The challenge
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for health professionals is to identify a clinically meaningful level of
deformity that may warrant intervention to maximise an individual’s
participation in society (20). The difficulty in defining this is that often the
severity of foot deformity does not correlate directly with foot function or
subjective reports of quality of life (11). Seemingly the same amount of
deformity in two people can lead to very different outcomes: for example,
one is painful, and one is not. So, the questions remain: How can we
improve our measurement of foot function to better inform treatment
decisions that target foot deformities which lead to functional deficits and
disability? What is the relationship between foot structure, dynamic foot

function and perceived disability?

STANDARD MEASUREMENTS OF FOOT DEFORMITY

A recent systematic review by Banwell and colleagues (201 8) investigated
how paediatric foot posture is defined and measured in the literature
(20). In the 27 studies reviewed, the authors found 40 definitions of
paediatric flat foot indicating little consensus for the amount of deformity
that is considered atypical. They defined four groupings of available
assessments for foot related deformity: plain film radiographs, foot print
indices, static foot measures, and plantar pressure analysis (20). All these
available assessments are based on static measurements despite previous
studies showing significant differences between static structure and
dynamic foot function (20,21). This highlights a need for dynamic

assessment of foot function (20), which may be more clinically relevant
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providing a better relationship between atypical foot function and

perceived disability.

Hijji and colleagues (2020) recently completed a systematic review of the
adult foot and ankle literature with the aim to consolidate the outcome

measures used in foot and ankle medicine (22). The authors summarised:

‘It is well established that evidence-based practice and patient-centred
outcomes are essential in health care.
The ideal outcome measurement tool should be relevant, reliable, valid,
and responsive to a given pathology. Additionally, it should be able to
detect a clinically meaningful difference in varying disease states, thus
enabling comparisons between studies and permitting accurate
assessments of different treatment modalities.”

[Hijji et al 2020]

The outcome measures from 541 studies were grouped into three
categories: generic (eg. Visual Analogue Scale), foot and ankle specific
(eg. American Orthopaedic Foot and Ankle Society Scale), and disease-
specific (eg. Ankle Osteoarthritis Scale) (22). Their review of the literature
suggested a higher level of evidence was associated with studies who
used a disease-specific outcome measure in combination with a generic
outcome measure (such as Harlaar and colleagues (23)), whereas the use
of foot and ankle specific measure alone was associated with lower level

of evidence (22). In addition, the authors concluded that patient reported

20



outcome measures have become increasingly prevalent in the published
foot and ankle literature, however substantial variability exists among

reported outcome measurement tools (22).

MEASURING HUMAN GAIT

Research suggests that static measurement of the foot shape does not
correlate to how a foot will function during walking (20,21). Human
walking is a complex synergy of the lower limbs with the foot and ankle
an integral component. Saunders, Inman and Eberhart in 1953 (24)

described gait as the following:

‘Human locomotion is a phenomenon of the most extraordinary
complexity in which so great are the multitude of individual motions
occurring simultaneously in the three planes of space ... locomotion is the
translation of the center of gravity through space along a pathway

requiring the least expenditure of energy”

Figure 2 depicts a complete gait cycle for the right leg. The gait cycle
consists of a stance and a swing phase, with single and double support
times. The gait cycle begins with initial contact on the floor with one foot

and ends with the same foot contacting the floor again.
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Figure 2: A complete gait cycle for the right leg
Reference: Perry, J. and Burnfield, J. (1992) Gait Analysis: Normal and
Pathological Function. SLACK Incorporated, New Jersey.

The term gait analysis can be used for:

1. Observational gait analysis— watching someone walk in clinic with

the naked eye

2. Video gait analysis- recording someone walking so it can be

replayed in front view (coronal plane) and side view (sagittal plane)

3. Three-dimensional gait analysis (3DGA)- using specialised 3D

cameras, force plates and anatomical markers. This offers the most

accurate assessment giving objective kinematic, kinetic and

temporal spatial data in the three anatomical planes at the same

time.

Observational and video analyses are unable to capture detailed

movement patterns within the foot due to its complex anatomical

structure. Three-dimensional gait analysis offers potential to quantify

foot and ankle movement patterns more accurately.
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3-DIMENSIONAL GAIT ANALYSIS AND FOOT MODELLING

Three-dimensional gait analysis (3DGA) has been used widely to identify

deformity in a variety of conditions including osteoarthritis (25), clubfoot

(26), and cerebral palsy (27) through defining atypical movement patterns

and assisting in management planning. However, the traditional lower
limb kinematic models used in 3DGA represent the foot as a single rigid
segment with just two degrees of freedom (Figure 3). This allows for
measurement of whole foot dorsiflexion relative to the tibia and whole
foot adduction relative to the tibia. Foot progression measures the

position of the foot (internal/ external) relative to the gait laboratory.

Flex|

Flex|

Dors|

Plan

N Pelvic Tilt 15 Pelvic Obliquity N Pelvic Rotation
Up| Int|
d £
Dwen Extl
T -15 n A n s
N Hip Flexion 15 Hip Adduction : Thigh Rotation
Add Int
d t d 4
Exd Abd Exd
-15’ B
Knee Flexion N Knee Varus : Knee Rotation
War| Int|
g
Exd Vall Exd
Foot Dorsiflexion _42 Foot Adduction
Add
Abd
_ag -
45 Foot Progression
Int]
deg
Exd

Figure 3: An example of normative lower limb kinematic data using a
modification of the Helen Hayes (28) marker set obtained from the Oxford Gait

Laboratory.
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This two-dimensional analysis of the foot cannot measure the complex
movement patterns of the foot and ankle that assist with shock
absorption at initial contact, propulsion in terminal stance, and ground

clearance during swing.

More recently, 3D multi-segment foot models have been developed to
better reflect the complexity of foot motion during gait. The Oxford Foot
Model (OFM) is a multi-segment, three-dimensional kinematic model that
assesses dynamic motion of the foot (29). It was developed to measure

tibia, hindfoot, forefoot and hallux motion in a clinical setting (Figure 4).

Tibia

Forefoot
LB,

Hindfoot Hallux

Figure 4: Oxford Foot Model (29) with markers and segment identification.
Image used with permission of the author.
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Figure 5: An example of normative kinematic data of the Oxford Foot Model
obtained from the Oxford Gait Laboratory.

Figure 5 shows the kinematic output of the OFM including 12 kinematic
analyses of movement patterns of the foot: the hindfoot relative to the
forefoot in 3 planes, the forefoot relative to the tibia in 3 planes, and the

hallux relative to the forefoot in 2 planes, and an arch height calculation.

Since the initial publication of the OFM by Carson and colleagues in 2001
(30), it has been utilised in clinical settings and research studies world-
wide (cited 597 times in PubMed- online search 8.10.2021). Since its
original publication in 2001, the OFM has undergone a second version
(29) and had repeatability testing in healthy adult populations by groups
outside of Oxford (31,32). Despite its popularity within the gait analysis

industry, as a relatively recent development in the assessment of dynamic
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foot motion, rigorous clinimetric testing of the OFM is still lacking. This

would further improve its clinical applications and research utility.

AIM of THESIS

The primary aim of this thesis was to establish the clinical role of the
Oxford Foot Model to assess foot deformity during gait. To achieve this,
we evaluated the OFM’s clinimetric properties and created and tested a
new outcome measure based on the OFM kinematics: the Foot Profile
Score. A secondary aim was to explore a potential relationship between
altered foot structure/ function during gait and perceived disability in a

clinical population.

CHAPTER OUTLINES
The following chapters culminate to address the overall aims of this

thesis.

Chapter Il is a repeatability study to justify the use of the OFM in
populations with known foot deformity. Intra and inter-rater repeatability
of marker placement was assessed in children with clubfoot and in
children with hemiplegia cerebral palsy and compared to a typically
developing population. This study was completed at the Oxford Gait

Laboratory in Oxford, UK.

Chapter Ill builds on previous research completed in Oxford evaluating

the repeatability of the hindfoot marker in the OFM. Two jigs were created
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to improve the repeatability of the heel marker placement. Two gait
analysts (one beginner and one experienced with the foot model)
completed this repeatability study comparing the two jigs to the
traditional method of eyeballing marker placement on 10 healthy adult
subjects. This study was completed at VU Medical Centre in Amsterdam,

Netherlands.

Chapter IV is a validation study of a new summary score of dynamic foot
motion during gait based on the OFM kinematics- the Foot Profile Score
(FPS). THE FPS was defined, then studied for its properties and design,

and analysed against a clinical assessment of foot deformity. This study

was completed at the Oxford Gait Laboratory in Oxford, UK.

Chapter V defines a minimal clinically important difference (MCID) for the
Foot Profile Score based on the regression of the FPS on the Clinical Foot
Deformity Scale (CFDS) presented in Chapter IV. The FPS was then
assessed for its responsiveness in children with hemiplegia, cerebral
palsy who underwent gait analysis pre-and post-surgery for correction of

their foot deformities.

Chapter VI utilises the FPS to analyse recurrent foot deformities in
children previously treated for clubfoot deformity, presenting at the
Oxford Gait Laboratory for consideration of further treatment due to
ongoing symptoms. Foot function was assessed by the OFM kinematics

and plantar pressure and correlated with parent-reported outcome
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measures including the Oxford Ankle Foot Questionnaire, the Disease

Specific Index for clubfoot and the Pediatric Quality of Life Inventory 4.0.

Chapter VIl discusses the overall aim of this thesis and considerations for

future research are given.
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ABSTRACT

INTRODUCTION: The Oxford Foot Model (OFM) is a multi-segment,
kinematic model developed to assess foot motion. It has previously been
assessed for repeatability in healthy populations. To determine the OFM’s
reliability for detecting foot deformity, it is important to know
repeatability in pathological conditions. The aim of the study was to

assess the repeatability of the OFM in children with foot deformity.

METHODS: Intra-tester repeatability was assessed for 45 children (15
typically developing, 15 hemiplegic, 15 clubfoot). Inter-tester
repeatability was assessed in the clubfoot population. The mean absolute
differences between testers (clubfoot) and sessions (clubfoot and
hemiplegic) were calculated for each of 15 clinically relevant, kinematic

variables and compared to typically developing children.

RESULTS: Children with clubfoot showed a mean difference between visits
of 2.9° and a mean difference between raters of 3.6° Mean absolute
differences were within one degree for the intra and inter-rater reliability
in 12/15 variables. Hindfoot rotation, forefoot /tibia abduction and
forefoot supination were the most variable between testers. Overall the

clubfoot data were less variable than the typically developing population.

Children with hemiplegia demonstrated slightly higher differences
between sessions (mean 4.1°), with the most reliable data in the sagittal

plane, and largest differences in the transverse plane.

CONCLUSIONS: The OFM was designed to measure different types of foot
deformity. The results of this study show that it provides repeatable
results in children with foot deformity. To be distinguished from
measurement artifact, changes in foot kinematics as a result of
intervention or natural progression over time must be greater than the

repeatability reported here.
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INTRODUCTION

Foot deformities are prevalent in children and can be either congenital or
acquired. Clubfoot is the most common congenital musculoskeletal
deformity in children occurring in 1-2 out of 1000 live births [1]. It can
result in foot and ankle stiffness, pain and arthritis which tend to increase
over the lifespan [2]. Other examples of congenital foot deformities
include vertical talus, cavus and metatarsus adductus. Flat foot deformity
can be acquired, first becoming obvious as a child begins to walk. In
general it is noted that the majority of toddlers have flat feet [3,4] which
improves as they mature such that the adult prevalence is nearer 20% [5].
Acquired foot deformity is also very common in children with neurological
problems such as cerebral palsy. Cerebral palsy (CP) is the most common
motor disability in childhood with international prevalence estimates
ranging from 1.5 to more than 4 per 1,000 live births [6]. At birth CP
children’s feet have normal postures, but over time the effects of their

abnormal neurology leads to increasing lower limb deformity [7].

Three-dimensional gait analysis is an assessment tool to measure
dynamic deformity in the lower limbs. It is widely used to identify lower
limb deformity in children with clubfoot [8-14] and cerebral palsy [15,16]
to assist in treatment planning. Traditionally the foot has been measured
as a single rigid segment in a two-dimensional kinematic model. More
recently, three-dimensional multi-segment foot models have been
developed to improve our understanding of foot motion during gait.

Fifteen foot models have been reported in the literature [17] with up to 9
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segments being proposed [18]. Baker [18] reports 3 or 4 segment foot
models are gaining preference for use in clinical gait analysis. Despite
numerous foot models being available in the literature, very few are being

used in centres outside of where they were developed [18].

The Oxford Foot Model (OFM) is a multi-segment, three-dimensional
kinematic model that assesses dynamic motion of the foot [19]. It was
developed to measure tibia, hindfoot, forefoot and hallux motion in a
clinical setting. It can identify the presence of dynamic deformity
compared to a healthy population, monitor change of an individual’s foot
posture over time, and measure change in foot motion before and after
intervention. Published literature confirms the OFM is being used world-
wide to evaluate various populations with foot deformity such as flat foot
[20,21,22] clubfoot [23] and calcaneal fractures [24]. The OFM has
already been shown to be repeatable in healthy populations (adults and
children) for both intra-tester and inter- tester repeatability
[19,25,26,27]; however, to date there is no published literature of its

repeatability in pathological conditions.

The aim of this study was to assess the repeatability of the OFM in
children with hemiplegic cerebral palsy and in children previously treated
for clubfoot deformity, and compare it to a healthy population. Our
hypothesis is that the repeatability of the OFM in children with foot
deformity will be similar to previously reported values of the OFM’s

repeatability in healthy populations in the literature. For the purpose of
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this study, repeatability is defined as the difference between two

repetitions of testing.

METHODS

Subjects- Typically Developing Fifteen typically developing children (mean
age 9.5 years, range 6-14 years; 10 female and 5 male) were assessed
with the OFM during level walking at self- selected velocity using a 12
camera Vicon 612 system (sampling at 100Hz) and 14mm passive
markers. Each child was measured on two occasions by the same tester
with the visits spaced between two and four weeks apart. The typically
developing children were recruited from friends and colleagues of the

Oxford Gait Laboratory.

Hemiplegia

Fifteen children with hemiplegic CP (mean age 10.2 years, range 6-15
years; 9 male, 6 female; 8 left side and 7 right side affected) were
assessed with the OFM during level walking at self-selected velocity using
a 12 camera Vicon 612 system (sampling at T00Hz) and 14mm passive
markers. This was a convenience sample and we did not exclude any
subjects on the basis of severity of foot deformity. The data was collected
from routine clinical referrals- children referred to the gait laboratory for
consideration of further management. The referrals were asking for
clarification on orthotic management as well as potential surgical
management for both populations- indicating a range of severity.

Inclusion criteria were a confirmed diagnosis of hemiplegic cerebral palsy,
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presence of foot deformity on the affected side, appropriate level of co-
operation and behaviour with no subjective reported deterioration or
botulinum toxin/ surgery between visits. Each child was measured on two
occasions by the same tester with visits spaced no more than six months
apart as a part of their clinical pathway. Written, informed consent was
obtained from subjects agreeing to participate in the project on the day

of their first appointment in the gait laboratory.

Clubfoot

Fifteen children with clubfoot were assessed (mean age 8.8 years, range
4-14 years; 8 male, 7 female; 9 bilateral, 2 left, 4 right side affected). For
the bilateral subjects- 1 side was randomly chosen resulting in 8 left and
7 right feet for analysis. OFM data were collected during level walking at
self-selected velocity using a 16 camera Vicon MX/T-series system and
9.5mm passive markers. The subjects were chosen from consecutive
routine clinical referrals- children referred to the gait laboratory for
consideration of further management. The referrals were asking for
clarification on orthotic management as well as potential surgical
management indicating a range of foot deformity. We did not exclude any
subjects on the basis of severity of foot deformity. Inclusion criteria were
a confirmed structural idiopathic clubfoot deformity diagnosed at birth,
no other musculoskeletal or neurological diagnoses, and the children and

parents reported no change in symptoms between gait analysis visits.
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Each child was measured on two occasions by the same tester, and once
by a second tester. Written, informed consent was obtained prior to
placing markers during their clinical visit to the gait laboratory. After
clinical data collection was complete and the markers were removed by
the primary marker placer, they had the markers replaced by the
secondary placer for inter-rater repeatability with 6 new walking trials
recorded. On a separate occasion, the child revisited the gait lab to
complete 6 walks again with the primary marker placer (intra-rater data).
On average the visits were 2.5 months a part (SD 1.9). Written, informed
consent was obtained from subjects agreeing to participate in the project

on the day of their first appointment in the gait laboratory.

Data Collection

The typically developing and hemiplegic groups were collected at the time
when the Oxford Foot Model was being initially validated in 2002-2003
by a single tester with approximately 1 year of experience in placing OFM
markers (JS). The clubfoot group was collected more recently (2013 -
2015) by someone with 7+ years experience with the OFM (JM) as the
primary marker placer who put the markers on twice for each subject
(intra-rater), and a third tester (JL) (3+ years experience with the OFM),

who placed the markers once on each subject (inter-rater).

Data Processing
All data were processed for all populations by one of the authors (JS) who

was also the tester during the initial phase of data collection (CP and TD
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groups). Three representative trials were chosen for analysis for each
subject as the trials closest to the mean for that subject (ie with the
lowest root mean square difference to the mean trace). The intra-tester
repeatability was analysed for the hemiplegia, clubfoot and healthy
populations, and the inter-tester repeatability was analysed for the
clubfoot population. The data from both the hemiplegia and clubfoot
populations were compared to the data of the typically developing

children.

Fifteen clinically relevant kinematic variables (Table 1) were calculated
and then averaged across the three trials. The mean absolute differences
between sessions were calculated for each variable for all three
populations, and as well as the mean absolute differences between raters

for each variable for the clubfoot population.

We chose to report 15 kinematic variables which we deem to be clinically
relevant when interpreting the Oxford Foot Model, and are consistent with
the variables reported in Stebbins et al (2006). These incorporate all three
anatomical planes and report on five variables each for hindfoot motion
relative to the tibia, forefoot motion relative to the hindfoot, and forefoot
motion relative to the tibia. In the sagittal plane we reported on range of
dorsiflexion as well as maximum dorsiflexion achieved in stance and in
swing. In the coronal and transverse planes we reported on average

positioning of the segments due to less overall foot motion expected in
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these planes- with the position (ie. supinated/ abducted) being more

clinically relevant.

RESULTS

Children with hemiplegic cerebral palsy were assessed for intra-rater
repeatability across two sessions. The mean difference across all variables
was 4.1° (Table 1). The largest difference was in hindfoot rotation (6.0°)

and the smallest differences were seen in the sagittal plane.

Children previously treated for clubfoot deformity were tested for intra-
rater repeatability with a mean difference between visits of 2.9°, with a
range between 1.8 to 3.5° for the fifteen kinematic variables (Figure 1).
There was no difference in variability between the sagittal, coronal and

transverse planes for intra-rater repeatability.

Inter-rater repeatability in children previously treated for clubfoot
deformity had a mean difference between raters of 3.6 degrees, with a
range of 2.1 to 7.6 degrees for the 15 kinematic variables (Figure 1).
Three outliers were above 4 degrees including average hindfoot rotation
(transverse plane), forefoot /tibia abduction (transverse plane) and

forefoot supination (coronal plane).

The mean absolute differences were within one degree for the intra and
inter-rater reliability in 12/15 variables. Overall the clubfoot data was

less variable than the healthy data.
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TD - (intra) 4.8 (2.2)
Hemiplegia — (Intra) | 4.1 (2.2)
Clubfoot- (Intra) 2.9 (1.2)
Clubfoot - (Inter) 3.6 (2.0)

Table 1: Mean absolute differences in degrees averaged across all the fifteen kinematic

variables and their standard deviations.
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DISCUSSION

This study shows the OFM has good intra-tester repeatability in typically
developing children, as well as in children with cerebral palsy (hemiplegia)
and in children with clubfoot deformity. The mean absolute difference in
typically developing children was 4.8°, which improved to 4.1° in children
with hemiplegia, and further improved to 2.9° in children with clubfoot.
Overall the intra-tester variability of the clubfoot population was less than
the hemiplegic and typically developing populations. Numerous factors
could influence this including the clubfoot data being collected more
recently, with a newer camera system including more cameras (16 instead
of 12), and with smaller markers (9.5mm as opposed to 14mm). In
addition, the experience of the marker placer may have contributed as the
clubfoot population markers placed by the clinician with the most
experience (ten years, compared to less than one year in the typically

developing and CP populations).

In the clubfoot population, the inter-tester mean absolute differences
across all fifteen kinematic variables was all less than 4°, with some
variables being better than the intra-tester results; however there were
three outliers from this trend. The first outlier was average hindfoot
rotation. This measurement is dependent on the position of the heel
marker which has been shown to have the most variability of the hindfoot
markers [28]. Average forefoot relative to tibia abduction is directly
affected by this measurement as it is the forefoot relative to the tibia in

the transverse plane. The third outlier, average forefoot supination, is
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interesting for clubfoot as this is dependent on the placement of the
distal first metatarsal marker which can be difficult in the presence of
foot deformity when the forefoot cannot achieve a neutral position. Often
residual clubfoot deformity does not allow the forefoot to rest flat on the
floor during marker placement, either because of excessive supination or
over-pronation. However it is worth noting that the intra-tester results
were still very good for these three outliers which indicates that training,
or the use of an aid to standardise marker placement, may improve these

measurements further.

McGinley et al [29] offered guidelines for acceptable error of
measurement following a systematic review of lower limb reliability
studies in three-dimensional gait analysis. They state that when
interpreting clinical gait analysis, error under two degrees is acceptable,
error between two and five degrees is reasonable, and error over five
degrees is concerning [29]. Based on these guidelines, this study has
shown that the OFM has acceptable to reasonable reliability in typically
developing children, as well as children with foot deformity. McGinley and
colleagues [29] also identified that the highest reliability of lower limb
kinematics was in the sagittal plane, and the lowest was in the transverse
plane. This trend was not totally supported in our multi- segment foot
kinematic data. In the clubfoot population, the heel marker placement
contributed to lowest repeatability, but forefoot adduction/ abduction

had reasonable repeatability.
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The results of this study are comparable to other OFM repeatability
studies in children in the published literature. Curtis et al [30] studied the
repeatability of typically developing children with the OFM at discrete
points in the gait cycle and found the typical errors of measurement
ranged from 0.93-8.56 degrees for maximal, minimal and mean joint
angles. Mahaffey et al [26] evaluated three different foot models
concurrently, including the OFM, in typically developing children. The
authors found the OFM demonstrated acceptable mean error over
repeated sessions with a standard error of measurement of 4.61 +/-2.86
degrees [26]. This compared to 3DFoot [31] with a standard error of
measurement of 3.88 +/-2.18 degrees [24]. However Kinfoot [32] had a
higher standard error of measurement of 5.08 +/-1.53 degrees [26].
Deschamps et al [33] studied the repeatability of the model by Leardini et
al [31] in adults with foot deformity. Their study showed the intra-rater
variability was higher in the deformity population than the healthy
population [33]. The authors attributed this to the subjective complaint of

pain or fatigue during the testing sessions of the deformity population.

Our hypothesis was correct that our repeatability values for the typically
developing population were similar to previously reported values [19, 25,
26, 27] however our study found that both the deformity populations
(hemiplegia and clubfoot) had less variability than the typically developing
population. Of particular note is the inter-tester repeatability in the
clubfoot population was better than both the intra-tester repeatability in

the TD and hemiplegic populations. This is reassuring as in a clinical gait
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analysis setting children often attend for comparison analysis with a

different member of the team assessing them at each visit.

STUDY LIMITATIONS

As stated in the discussion, the main limitations of the study include a
more experienced marker placer for the clubfoot data and the clubfoot
data was collected more recently with an upgraded VICON system with
more cameras and smaller markers. Both improved technology and
clinician experience play an important role in improving repeatability.
This is why the clubfoot data has the best reported repeatability, even
better than the typically developing population. A third limitation is the
potential for bias with the TD and hemiplegic populations being collected
and processed by a single person (JS), during the course of development
of the OFM. A final limitation to note is the difference between testing
sessions for all three populations. This was due to assessing children in
accordance with their clinical pathway or routine hospital visits— the
authors ensured the inclusion criteria of no subjective or obvious clinical

deterioration in symptoms was adhered to.

CONCLUSIONS

Three-dimensional gait analysis is widely used to guide the management
of older children with congenital foot deformities such as clubfoot, and in
children with acquired foot deformities such as flat foot and cerebral
palsy. In order to measure the dynamic foot motion in detail, a multi-

segment foot model must be used. The Oxford Foot Model was designed
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to be adaptable in its application to measure different types of foot
deformity. In order to determine the reliability of the model for detecting
foot deformity, it is important to know repeatability in pathological
conditions. The results of this study show that the OFM provides
repeatable results in healthy children, as well as in children with either
congenital or acquired foot deformity. To be distinguished from
measurement artifact, changes in foot kinematics as a result of
intervention or as natural progression over time must be greater than the

repeatability reported here.
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ABSTRACT
INTRODUCTION: In three-dimensional gait analysis, anatomical axes are
defined by and therefore sensitive to marker placement. Previous analysis
of the Oxford Foot Model (OFM) has suggested that the axes of the
hindfoot are most sensitive to marker placement on the posterior aspect
of the heel. Since other multi-segment foot models also use a similar
marker, it is important to find methods to place this as accurately as

possible.

The aim of this pilot study was to test two different ‘jigs’ (anatomical
alignment devices) against eyeball marker placement to improve reliability
of heel marker placement and calculation of hindfoot angles using the
OFM.

METHODS: Two jigs were designed using three-dimensional printing: a
ratio caliper and heel mould. OFM kinematics were collected for ten
healthy adults; intra-tester and inter-tester repeatability of hindfoot
marker placement were assessed using both an experienced and
inexperienced gait analyst for 5 clinically relevant variables.

RESULTS: For 3 out of 5 variables the intra-tester and inter-tester
variability was below 2 degrees for all methods of marker placement. The
ratio caliper had the lowest intra-tester variability for the experienced
gait analyst in all 5 variables and for the inexperienced gait analyst in 4
out of 5 variables. However for inter-tester variability, the ratio caliper
was only lower than the eyeball method in 2 out of the 5 variables. The

mould produced the worst results for 3 of the 5 variables, and was
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particularly prone to variability when assessing average hindfoot rotation,

making it the least reliable method overall.

CONCLUSIONS : Overall there was low intra-tester and inter-tester
variability suggesting good sensitivity of the OFM to detect meaningful
clinical differences. The use of the ratio caliper may improve intra-tester
variability, but does not seem superior to the eyeball method of marker
placement for inter-tester variability. The use of a heel mould is

discouraged.
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INTRODUCTION

In three-dimensional gait analysis, anatomical axes are defined by and
therefore sensitive to marker placement (1). In most kinematic multi-
segment foot models, the posterior heel marker is used to help define the
hindfoot segment by placing the marker centrally on the posterior aspect
of the calcaneus. For the Oxford Foot Model (OFM) hindfoot segment, the
heel (HEE), proximal heel (PCA), lateral calcaneus (LCA) and
sustentaculum tali (STL) markers are used to define the axes of the

calcaneus (2).

Previous research has shown that misplacement of the calcaneal markers
has a profound effect on the kinematic output (3-5). Paik and colleagues
used radiopague monitoring electrodes placed on the feet at the locations
specified by the OFM and CT images to investigate how changes in
marker placement affect the orientation of the OFM hindfoot segment
axes (5). Their results suggest changing the anterio-posterior position of
either the LCA or the STL marker by Tmm induced 0.2° of change in the
anterior-posterior (A-P) axis. Whereas, when the HEE marker position was
moved in mediolateral direction by Tmm, it induced 4° of change in the
orientation of the A-P axis (5). Since the orientation of the A-P axis is
more sensitive to the location of the HEE marker than to the locations of
the LCA and STL markers, it is essential to ensure that the HEE marker is

placed accurately.
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Intra-tester and inter-tester repeatability of hindfoot marker placement
has been shown to be improved when using an alignment device or jig to
assist in marker placement, compared to using a manual palpation/
eyeball method; however both jigs were designed to align the medial and

lateral calcaneal markers, and not the central heel marker (4,6).

After reviewing the available alignment devices in the literature, and using
the authors’ expert experience with foot anatomy and the OFM, we
designed two jigs that could potentially improve the repeatability of HEE
marker placement: a ratio caliper and mould. The aim of this pilot study
was to test these two jigs against the conventional method of eyeball
marker placement to improve marker placement repeatability of the HEE
marker when using the OFM. We hypothesized that the ratio caliper and
mould would not improve an experienced gait analyst’s repeatability, but
that they would improve an inexperienced gait analyst’s repeatability as

well as the inter-tester error.

METHODS
2.1 Specifications of two jigs
Two jigs were constructed using three-dimensional printing to
specifications designed by the authors.
a) Ratio caliper: The longer fixed arm was placed on the lateral border
of the foot to the base of the 5th metatarsal- while the shorter
moving arm was brought in to the medial hindfoot. A mid-point at

50% between the 2 arms determined the midline of the calcaneus

59



b)

where the HEE marker was placed. The caliper was used with the
subject in weight bearing. (Picture 1a).

Heel mould: The foot shape for the mould was determined by a 3D
light scan of the skin surface of a female with asymptomatic feet
and an EU shoe size of 36. The mould was scaled to three different
sizes to accommodate different shoe size ranges (small, medium,
large) and 3D printed. The mould had a central hole in the middle
of the calcaneus to mark with pen so the heel marker could be
placed over the mark upon removal of the mould. It also had holes
for the LCA and STL markers to be placed over as well. The mould

was placed on the foot with the subject in a seated position (Picture

1b).
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Picture 1: a) ratio caliper b) heel mould

2.2 Definition of eyeball method

Heel marker placement for the OFM uses an eyeball technique with
manual palpation to place the heel marker in the middle of the calcaneus
at the same height above the plantar surface of the foot as the TOE

marker (between the heads of the 2nd and 3rd metatarsals).

2.3 Repeatability testing
Ten healthy adult subjects (6 female, age: 26.8 (SD 2.6) years, height:

176.4 (8.1), weight: 67.2 (8.5) with a normal foot posture index (2.4 (1.4))
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were recruited for this study (7). The subjects did not have any foot or
ankle complaints, did not wear insoles, and did not have any concerns
that would affect their gait pattern. Informed consent was obtained for all
subjects and ethical approval was provided by the local ethics committee.
All subjects were assessed during level walking at self-selected velocity
using a 12 camera motion capture system (Vicon Motion Systems Ltd.,
Oxford, UK) (sampling at 100Hz) and 9.5mm passive markers with 9.5
mm diameter bases were placed by two different gait analysts for OFM
kinematics: an experienced analyst (over 10 years) and an inexperienced

analyst (less than 6 months) experience with the OFM.

Each subject attended the gait laboratory for one visit. The experienced
gait analyst put all the lower limb and OFM markers on initially using the
eyeball method. All markers except for the calcaneal (hindfoot) markers
stayed in place for the rest of the session. In order to not bias the
placement of the HEE marker, all of the calcaneal markers were replaced
each session. The HEE, CPG, PCA, STL, LCA markers (2) were replaced for
the additional walking trials so both gait analysts used the eyeball, the
ratio caliper, and the mould methods of marker placement for two
walking sessions each (12 sessions for each subject in total). Within each
session, five walking trials were recorded, and three walks (three strides)

were averaged for data analysis.

All data were processed by the same person with the OFM pipeline

implemented in Vicon Nexus (v2.9.3), in which the hindfoot flat option
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was not checked. The data were analysed using five clinically relevant
variables of hindfoot motion during the gait cycle: maximum hindfoot
dorsiflexion in stance, maximum hindfoot dorsiflexion in swing, range of
hindfoot motion in the sagittal plane, average hindfoot varus, and
average hindfoot rotation. Inter-tester repeatability was taken from the

first marker application for both the gait analysts.

Initially, statistical parametric mapping was used to demonstrate an
absence of significant order effects within raters and an absence of a
systematic difference between testers, evaluated over the full gait cycle.
Subsequent analysis was applied to each of the five derived variables, in
combination with each of the three methods of marker placement. A
series of Bland-Altman plots were produced, one for each tester and for
between the first of the tester assessments, none of which showed that
differences varied with the magnitude of the observations. The standard
deviations (SDs) for within tester differences and between tester
differences were calculated from the root mean square of the differences=
We also report variance components for each intra-tester component and
inter-tester component for all combinations of variable and marker
method, as suggested by Chia and Sangeux (8) using restricted
maximum likelihood. A pooled estimate of the intra- and inter-tester
components for each of the three marker methods was obtained using

the mean of the five separate estimates.
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RESULTS

The SDs from the intra- and inter-tester differences are shown in Figure
1. These show similar, low intra-tester differences for both gait analysts
and inter-tester differences in the sagittal plane variables for all three
methods of marker placement with the majority of differences under 2.0

degrees, and all differences under 2.5 degrees.

7.00

6.00

5.00

4.00

3.00

B Experienced - intra
2.00

M Inexperienced - intra

1.00 - Inter- tester

Standard Deviation (degrees)

0.00 -

ratio caliper
ratio caliper
ratio caliper
ratio caliper
ratio caliper

max HF df max HF df | range HF df | avg HF varus avg HF
stance swing rotation

Figure 1: Standard deviations (N=10) in degrees of both intra-tester
(experienced and inexperienced gait analysts) and inter-tester differences
max= maximum, HF=hindfoot, df=dorsiflexion, avg=average

Compared to the eyeball method, the ratio caliper and the mould reduced
intra-tester variability for both gait analysts for average hindfoot varus.
However the mould had the highest inter-tester variability in the coronal
plane compared to the other clinical variables. Average hindfoot rotation

showed the highest intra-tester variability for both gait analysts, and the
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second highest inter-tester variability when using the mould compared to
the other two methods. These findings were reinforced by the variance
components, shown in Supplementary Material: Table 1. For five of the 15
combinations of variable and method, the estimate of the inter-rater

component was zero.

DISCUSSION

Overall our results show that in a healthy population, the ratio caliper
method of marker placement produced the lowest intra-tester variability
for the experienced gait analyst in all five variables and for the
inexperienced gait analyst in four out of five variables (all but the
transverse plane). However for inter-tester variability, the ratio caliper
was only lower than the eyeball method in two out of the five variables.
The mould produced the worst results for 3 of the 5 variables, and was
particularly prone to variability when assessing average hindfoot rotation,
making it the least reliable method overall. Therefore we can only partly

accept our hypotheses.

The concept behind the heel mould was that it serves as a morphological
template of the hindfoot. It’s relatively poor results might be due to its
maneuverability on the subject’s foot. Despite having it available in three
different sizes, there was medial/lateral play of the mould on the hindfoot
when placing it on the subject in non-weight bearing which would have
affected its repeatability. This was evident from outliers in the raw data

using this method of marker placement causing occasional very wide
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deviations which affects the estimates of reliability. These outliers were
examined and found to be true values for both gait analysts. However,
even without these outlying observations, variability was still greater with

this method.

Our analysis showed zero inter-rater variance components for 5 of the
15 combinations of variable and method. When these components are
zero or very small, chance variation can result in inter-tester reliability
being paradoxically better than intra-tester variability, as we saw in
Figure 1. Although surprising, we have also found this trend when
analyzing the inter-tester repeatability of OFM marker placement in
children with clubfoot, using an experienced and inexperienced gait

analyst as well (9).

It is common practice to place the OFM using the eyeball method with
palpation for marker placement for all segments. The Heidelberg foot
measurement model uses a heel alignment device to place the medial and
lateral calcaneal markers (6). The authors describe its use in a non-weight
bearing position with the main axis extending from the heel to the toe
marker and the secondary axis aligned with the Achilles tendon. This
may be appropriate in healthy populations, but in foot deformity the
Achilles tendon is often mal-aligned in relation to the calcaneus; a
common clinical picture of ‘escape valgus’. Like Deschamps and
colleagues (4), we believe the hindfoot markers should be placed in

weight bearing, therefore using devices such as the mould or the
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Heidelberg heel alignment device in non-weight bearing, may negatively
affect the marker placement and therefore axis definition of a three-
dimensional foot model. Since the ratio caliper is used in weight-bearing
and seems useful in improving repeatability of the central HEE marker

placement in this study, the use of this jig warrants further testing.

The inexperienced analyst was generally less repeatable compared to the
experienced analyst for hindfoot varus and rotation. This could be due to
reduced knowledge of anatomy during marker placement of the HEE and
PCA markers. It was surprising to the authors that the inexperienced gait
analyst was the most repeatable with the eyeball method. This does
reinforce its original design for marker placement and suggest the eyeball
method can be used reliably with only six months of experience. Our data
also suggests that a jig may not improve the repeatability for an
inexperienced analyst. Maybe the task of placing a jig on a foot further

complicates the task of marker placement for inexperienced analysts.

We recognise this study only included a healthy adult population, a small
sample size and only two raters. We would recommend this study be
repeated comparing the eyeball method to the ratio caliper, with more
gait analysts placing markers, a larger sample size including adults and
children, with a range of foot postures. A population with foot deformity
may yield different results due to difficulties with marker placement in

abnormal standing anatomical alignment (9).
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Despite it not being an aim of our study, the authors feel it’s important to
note our intra-tester and inter-tester variability was quite low (mostly
under 3 degrees for all methods tested) suggesting good sensitivity to
detect clinically meaningful differences, and lower than other published

studies (10).

CONCLUSIONS

In a healthy adult population, the ratio caliper improved the intra-tester
repeatability of hindfoot marker placement for an experienced and an
inexperienced gait analyst. However, both ratio caliper and eyeballing

yielded good inter-tester repeatability.
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SUPPLEMENTARY MATERIAL

Variable

Method Intra-experienced Intra-inexperienced Inter-tester
(degrees) (degrees) (degrees)
Max HF df stance Eyeball 1.17 0.54 o’
Ratio Caliper 1.44 0.33 0.30
Mould 1.73 0.86 o'
Max HF df swing Eyeball 0.82 0.54 0.01
Ratio Caliper 0.63 0.33 0.24
Mould 0.95 0.98 o"
Range HF df Eyeball 2.16 1.32 ot
Ratio Caliper 1.67 1.84 1.13
Mould 1.48 0.59 0.36
Avg HF varus Eyeball 3.97 6.06 0.68
Ratio Caliper 1.99 4.07 0.98
Mould 3.27 4.59 0.99
Avg HF rotation Eyeball 2.43 1.72 4.79
Ratio Caliper 2.43 4.65 0.03
Mould 9.8 15.53 o"
Pooled* Eyeball 2.32 2.10 1.48
Ratio Caliper 1.63 2.24 0.54
Mould 3.95 5.68 o*

Table 1: Variance component estimates by variable and marker placement method

max= maximum, HF=hindfoot, df=dorsiflexion, avg=average

* Pooled estimates were obtained allowing individual negative variances and so do not

agree exactly with the means of the individual estimates in the table.

* Negative estimate constrained to be zero.
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ABSTRACT

BACKGROUND: There are numerous static measures of foot posture but
there is no published score of dynamic foot motion. Three-dimensional
gait analysis can include a multi-segment foot model like the Oxford Foot
Model (OFM) to comprehensively quantify foot kinematic deviations
across the gait cycle but it lacks an overall score, like the Gait Profile
score (GPS), used to summarize the quality of lower extremity motion.
RESEARCH QUESTION: This paper introduces the Foot Profile Score (FPS), a
single number, analogous to the GPS based on kinematic data of the OFM.
The aim of this study is to validate the FPS by studying its properties and
design, and analyse it against a clinical assessment of foot deformity.
METHODS: Concurrent validity was established for the FPS analysing the
relationship with Clinical Foot Deformity Score (CFDS) in 60 subjects with
a condition affecting the lower limbs globally. Content validity was
established for the six Foot Variable Scores (FVS) that make up the FPS
using a multiple regression of the CFDS on the 6 FVS in the 60 subjects.
Predictive validity was established analysing the relationship of the FPS
and GPS comparing 60 global involvement subjects with 60 subjects with
isolated foot deformity.

RESULTS: Pearson correlation between the FPS and CFDS was significant at
0.62 (p < 0.001). Each element of FVS contributes positively to predicting
the CFDS with R2=0.456 (p < 0.001). FPS contributed independently to
the prediction of CFDS (t=3.9, p < 0.001). The correlation between the
GPS and FPS in the global involvement group was significant at r=0.64 (p
< 0.001), while there was no correlation found with r=0.08 (p=0.54) in
the foot deformity group.

SIGNIFICANCE: The FPS is the first validated score of dynamic foot motion.

74



1. INTRODUCTION

Measuring foot deformity in a clinical or research setting has always
been challenging due to numerous factors. Some available measures are
condition specific, such as the Pirani Score for clubfoot [1] or measure
only one element of a deformity, such as the Arch Height Index [2] or
hindfoot valgus. A recent systematic review of the measurement of
paediatric flat foot by Banwell and colleagues found four groupings of
available assessments- plain film radiographs, foot-print indices, static
foot measures, and plantar pressure analysis [3]. The authors found that
all groups were based on static analysis of foot postures. The authors
concluded that dynamic measurement of foot motion is needed to

improve our understanding of foot structure [3].

Three-dimensional (3D) gait analysis is a tool to measure dynamic
motion in the lower limbs. It is widely used to identify deformity in a
variety of conditions including osteoarthritis [4], clubfoot [5] and
cerebral palsy [6] to assist in treatment planning. Traditionally the foot
has been represented as a single rigid segment with just two degrees of
freedom. More recently, 3D multi-segment foot models have been

developed to improve our understanding of foot motion during gait.

The Oxford Foot Model (OFM) was developed as a multi-segment,
3D kinematic model that assesses dynamic motion of the foot [7]. It was
developed to measure tibia, hindfoot, forefoot, and hallux motion in a

clinical setting. It can identify the presence of deformity compared to a
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healthy population, monitor change of foot posture over time, and
measure change in ankle and foot motion before and after intervention
[7]. Published literature confirms the OFM is being used clinically and
in research settings world-wide to evaluate populations with foot
deformity [8-11]. The OFM has been shown to be repeatable in healthy
populations (adults and children) for both intra-tester and inter-tester
repeatability [7,12,13]; and children with foot deformity including
clubfoot and cerebral palsy [14]. The OFM is a comprehensive measure of
foot/ ankle motion with each segment being measured in 3D. With the
large amount of data available, it can be difficult to quantify as an
outcome measure. Therefore, an overall score of foot motion using the

kinematic data from the OFM would be beneficial.

The Gait Profile Score (GPS) was developed to provide a single
measurement of the quality of an individual’s gait pattern based on lower
limb kinematics [15]. The GPS is calculated as the root mean square
average of 9 key kinematic variable scores (Gait Variable Scores- GVS),
each calculated as the root mean square difference between a patient’s
data and normative data for both legs [15]. Since its creation, the GPS has
been widely used in clinical and research settings. However, the GPS
includes the traditional measurement of the foot as a single segment. An
additional score representing detailed foot and ankle motion may
therefore be beneficial, particularly in patients with foot deformity as the

predominant pathology.
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This paper introduces the Foot Profile Score (FPS), a single measurement
of dynamic foot motion, constructed similarly to the GPS, but based on

OFM kinematics. The aim of this study is to validate the FPS by evaluating
its inherent properties and design, and analyse it against a global clinical

assessment of foot deformity.

2. METHODS

2.1. Construction of the foot variable scores, the foot profile score, and
the foot movement analysis profile

The Foot Variable Scores (FVS), the Foot Profile Score (FPS), and the

Foot Movement Analysis Profile (F-MAP) were calculated using the

same formula as the construction of the GPS [15] but using 6 key
kinematic variables from the Oxford Foot Model for both the right and left

legs.
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Thus if x; , is the value of foot variable i calculated at a specific point
in the gait cycle t, and ff’:ﬁf is the mean value of that variable at the same
point in the gait cycle for the reference population then the it foot
variable score (FVS) is given by:

' T
1
FVS: = |—E (x- —'_.mf)z
1 \ll Tt:l It it

where T is the number of instants into which the gait cycle has been
divided. The FPS is then the RMS average of the FVS variables:

h"
'1
FPS = |— ) FVS:?

where N is the number of FVS variables used, in this case 6 (hind foot
dorsiflexion, forefoot dorsiflexion, hind foot inversion, forefoot supi-
nation, hind foot rotation, forefoot adduction)

The 6 FVS represent the motion of the hindfoot relative to the tibia in the
sagittal, coronal and transverse planes, as well as the motion of the
forefoot relative to the hindfoot in the sagittal, coronal and transverse
planes. The more the foot deviates from the reference data, the higher
the FPS. The FVS and the FPS do not reflect the direction of the deviation
(e.g. plantarflexion or dorsiflexion). The F-MAP is a bar chart of the 6 FVS
for each foot and the FPS to provide a visual representation of where a

subject deviates from the normative data (Figure 1).
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Foot Specific Movement Analysis Profile: Current visit (R880A)
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Figure 1: An example of a Foot Movement Analysis Profile (F-MAP)

2.2 Validation of the Foot Profile Score

As with the GPS, the FPS already has high face validity as it is based on
the kinematic data of the OFM. The repeatability of the FPS is also
inherent as the marker placement of the OFM has been extensively
studied with good results [7,12, 13,14]. Therefore, the formal validation
process included analysing concurrent validity, content validity, and

predictive validity.

Concurrent validity

There is no published dynamic foot deformity scale to which it is
appropriate to correlate the FPS [3]. In the absence of this- we created a
clinical rating scale of foot deformity to use in the validation process. We
sent sagittal and coronal close-up foot videos of 60 subjects to 10 gait
analysts affiliated with a 3D gait laboratory from 4 countries (5

physiotherapists, 2 orthopaedic surgeons, 2 clinical scientists/ engineers
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and 1 paediatric physiatrist). Each subject was scored by 5 gait analysts.
The subjects included a range of demographics and severity of foot
deformity. We made sure to represent the full range of deformities,
varying from planovalgus to cavo-varus foot deformities. There were 30
children and 30 adults; 36 males and 24 females. 23 Subjects had
orthopaedic diagnoses, 21 had cerebral palsy and 16 had neurological
diagnoses. For each of the 60 subjects, the gait analysts scored both feet
separately. We used right leg data in 31 subjects/ and left leg data in 29
subjects. There were no markers on the feet in the videos. We asked the
gait analysts to rate the overall appearance of the foot using a scale from
0-3, which we termed the Clinical Foot Deformity Scale (CFDS: O=normal,
1=mild, 2=moderate, 3=severe foot deformity) with no further
instructions. All 60 subjects had OFM kinematics [7] collected using a
Vicon T-series motion capture system (Vicon Motion Systems Ltd.)
including 16 cameras collecting at 100Hz. Subjects walked at self-
selected speed over level ground for both the video and motion capture

trials.

The CFDS was taken as the mean of all 5 gait analysts’ ratings for each
subject. The FPS was calculated by the average root mean square
difference between a patient’s data and normative data taken over 6 key
kinematic graphs for the same leg as used for the CFDS scoring for each
subject. Pearson correlation coefficient was used to analyse the

relationship between FPS and CFDS as a measure of concurrent validity.
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We hypothesised that FPS would correlate moderately with CFDS as FPS
also contains transverse plane information not easily visible in a clinical

assessment.

Content validity

To analyse the FVS (sagittal plane- hindfoot dorsiflexion and forefoot
dorsiflexion; coronal plane- hindfoot inversion and forefoot supination;
transverse plane- hindfoot internal rotation and forefoot adduction) - we
looked at a multiple regression of the CFDS on the 6 FVS for the above

mentioned 60 subjects.

We hypothesised that the 6 FVS chosen would contribute positively to

CFDS.

Predictive validity

We analysed the relationship between FPS and GPS to evaluate if the
measurement of foot deviation during gait provides additional
information to the measurement of the overall gait pattern. We collected
2 groups for the analysis: the above mentioned 60 subjects who had
predominantly global involvement (deviations at more than one joint
including proximal involvement) and a group with isolated foot deformity.
The foot deformity group consisted of children with clubfoot aged 5-16
(mean 10 years), with 45 males/ 15 females and 39 right legs/ 21 left
legs analysed. For children with bilateral clubfoot we analysed their more

involved foot (the foot with the higher FPS). All subjects had a
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conventional lower limb model [28] and OFM kinematics collected using a
16 camera Vicon T-series motion capture system (Vicon Motion Systems
Ltd.). GPS and FPS were calculated for both groups. Pearson correlation
coefficient was used to analyse the relationship between bilateral GPS and

unilateral FPS.

Additionally, to consider the correlation coefficients in the groups, we
also report the ratio of the variances for FPS and GPS. As GPS and FPS are
likely to be correlated, 95% confidence intervals for the ratio in each
population can be calculated using a method based on the Pitman-

Morgan test [16,17] illustrated by Snedecor and Cochran [18].

We hypothesised that FPS will give new information not offered by GPS

and therefore the correlation of GPS and FPS will be higher in the global
involvement group than the foot deformity group. Additionally, the ratio
of variances (FPS:GPS) should be higher in the foot deformity group than

the global involvement group.

RESULTS

Concurrent validity

The mean CFDS scores for each pathological group were cerebral palsy
1.5 (SD 1.0), orthopaedic 1.1 (SD 1.1) and neurological 1.9 (SD 1.0)
indicating a range of deformity within each group, and the amount of
deformity was consistent across groups. The mean FPS score for all 60

subjects was 8.6 degrees (SD 3.0) indicating a range of deformity within
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the group (normal FPS is 4.1 degrees (SD 0.8). The Pearson correlation

between FPS and CFDS was significant at 0.66 with p<0.001 (Figure 2).

20

@ . . ®
S b . .
o
w L . —®
[ . ] ~o *
2 . .
FRL . e L .
2 ] _— .
o . ] 5 $
- 'Y T L4
=] . | . ™
=] [ [ ] "
w | 2 o

't = [ . . H

5 L [ ]
. ] .

o A 1.0 15 20 25 30

Clinical Foot Deformity Score

Figure 2- Scatterplot of the Foot Profile Score and the Clinical Foot
Deformity Score

Content validity

Table 1 shows the multiple regression of CFDS on the 6 component
scores of the FPS. For comparison, the corresponding regression with FPS
as predictor yields identical coefficients for each component of 0.033
with standard errors of 0.005. Thus, although they differ in individual
statistical significance, we see that the regression coefficients in Table 1
are all within one standard error of the combined regression coefficient.
Furthermore, the residual standard deviation is marginally smaller when
fitting with FPS as predictor (0.69) than using the 6 independent terms

(0.71). This is confirmed using analysis of variance where the reduction in
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the sum of squares from fitting 5 additional coefficients is non-

significant (F(5,53)=0.34, p=0.89).

This confirms that the FPS, which assigns equal weight to each
constituent component, performs better than a model with separate
weights for each component and that each component is contributing

positively to predicting the clinical scores.

Regression Coefficient Standard Error p

(Constant) -0.099 0.301

Hindfoot sagittal 0.040 0.016 0.014
Forefoot sagittal 0.033 0.029 0.255
Hindfoot coronal 0.052 0.021 0.019
Forefoot coronal 0.019 0.026 0.462
Hindfoot transverse 0.019 0.021 0.377
Forefoot Transverse 0.024 0.014 0.095

Table 1- Regression of the CFDS on the 6 component scores of the FPS
(R2 = 0.456 (p<0.001))

We have already shown the significant correlation between CFDS and FPS,
but due to the way the GPS is constructed, we note there is also a
significant correlation of CFDS with GPS (r=0.63, p<0.001). It is therefore
necessary to show that the association between FPS and CFDS is not a
simple consequence of the mutual association with GPS. Table 2 shows

that when analyzing the regression of the CFDS on the GPS and FPS, the
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FPS is contributing independently to the prediction of the CFDS, (t=4.3,

p<0.00T1).
Regression Coefficient Standard Error t p
(Constant) -0.686 0.277
GPS 0.120 0.033 3.6 0.001
FPS 0.138 0.032 4.3 <0.001

Table 2- Regression of the CFDS on the FPS and GPS

Predictive validity

The global involvement group had a mean GPS of 8.3 degrees (SD 2.9)
and a mean FPS of 8.6 degrees (SD 3.0) indicating that at group level both
distal and proximal joints contributed to gait abnormalities. The foot
deformity group had a mean GPS of 5.7 (SD 1.3) and a mean FPS of 8.0
(SD 2.9) indicating foot specific problems in this group. The Pearson
correlation between GPS and FPS in the global involvement group was
significant at r = 0.68 with p<0.001 (Figure 3). The correlation between
GPS and FPS in the foot deformity group was much lower at r = 0.27 with

p=0.04 (Figure 4).

The ratio of the variances for FPS and GPS in the global involvement group
was 1.07 (95% Cl 0.69, 1.67), while in the foot deformity group it was
4.91 (95% Cl 2.97, 8.10). With a wide difference between their confidence

intervals, predictive validity of the FPS was established.
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Figure 4: Foot deformity group: scatterplot of GPS (bilateral) and FPS (unilateral)
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DISCUSSION

This paper introduces the Foot Profile Score- a measurement tool aiming
to represent dynamic foot motion as a single meaningful numerical value.
Through our validation process we have proven our stated hypotheses
were true. The FPS showed good correlation with CFDS and all of the 6
FVS contributed positively to the prediction of CFDS. The FPS does offer
different information than GPS, especially in populations where foot

deformity is dominant.

Due to the lack of an available dynamic measure to validate the FPS
against, we created the Clinical Foot Deformity Score. The CFDS expresses
expert opinion and is based on a visual impression of foot deformity that
clinicians use in their daily practice. It is encouraging the FPS correlates
well with the mean CFDS, scored by 5 experts. We wouldn’t expect a
perfect correlation as the FPS gives quantitative information on all three
planes of movement; in particular the transverse plane which is difficult

to evaluate clinically or with 2D video.

The regression of CDFS on the 6 FVS shows that each of the score
components contributes positively to predicting the clinical scores. It also
reaffirms that all 6 kinematic variables are appropriate to include in the
FPS, with equal weights. Due to the limited sample size and high levels of
correlation of the individual components of the FPS, it is unsurprising that
several of the FVS did not reach statistical significance. However, the FPS

produced a better fit to the CFDS than the model with separate
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components. The positive and substantial contribution of FVS in

predicting the CFDS is indicative of the content validity of FPS.

The fact that GPS also correlates to CFDS isn’t surprising as GPS does
model the foot crudely as a single rigid segment calculating ankle
dorsiflexion, foot adduction and foot progression. In addition, if severe
foot deformity is present, this can induce compensations at more
proximal joints (hip and knee) which will influence the GPS. This is why
we felt it important to include the regression of the CFDS on GPS and FPS
(Table 2) proving FPS contributed independently of the GPS to the

prediction of the CFDS.

A strong case for FPS validity is that the correlation between FPS and GPS
was different when comparing the foot deformity and global involvement
groups. The difference in correlations between these groups indicates
that whilst FPS represents gait deviations not reflected by GPS in both
groups, this is particularly evident in individuals where foot deformity is
dominant. We also reported a more powerful approach to analyzing
predictive validity of FPS that we believe to be new. When considering the
ratio of the variances for FPS and GPS, we found the ratio to be increased
in the foot deformity group compared to the global involvement group.
This is because FPS should be sensitive in identifying differences between
patients whose underlying problem is related directly to their feet,

compared to differences in their GPS.
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In patients with an isolated foot condition with little effect on proximal
joints the GPS would be relatively unaffected. This reinforces the need for
a separate foot specific outcome measure. A combination of GPS and FPS
may be appropriate to report in these situations to more meaningfully
describe an individual’s gait pattern. A future consideration could be to
remove the conventional lower limb model ankle kinematics from the GPS

calculation when GPS and FPS are reported together.

Since its introduction in 2009, the Gait Profile Score has been used in
clinical practice world-wide, particularly in children with cerebral palsy to
improve understanding of their complex gait patterns [19], evaluate the
use of Botulinum toxin [20] and evaluate surgical outcomes [21]. In
addition to cerebral palsy, there is published research using GPS in other
populations such as Charcot-Marie Tooth [22], Hereditary Spastic
Paraplegia [23], Multiple Sclerosis [24], Parkinson’s Disease [25] , and
amputees [26]. The GPS has also been used to create or validate other

outcome measures [27,28].

We envision the Foot Profile Score will be used similarly to GPS, to
quantify foot specific deformity during gait in a wide range of
populations, and demonstrate the outcome of intervention strategies.
These may include conditions with global involvement and progressive
foot deformity, such as cerebral palsy and stroke. Moreover, the FPS

would be a useful clinical and research outcome measure in foot-specific
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conditions that affect dynamic foot motion and gait, such as pes cavus or

flat foot.

STUDY LIMITATIONS

A limitation of this study is that we have only considered the OFM to
create the FPS. It is unclear how it would work with other foot models, but
theoretically it could be applied in a similar way. As with any summary
gait index, there is a trade-off between simplicity and information
content, therefore we still recommend the FPS is used in conjunction with

the full kinematic data.

Hallux motion is not included in the FPS due to numerous factors. The
hallux is a short segment measured with 2 markers in 2D. During a
clinical session of 3D gait analysis it also has a high tendency to get
knocked and replaced during pathological gait, making it less reliable
than the other segments. Further study into how the addition of the

hallux influences the overall FPS would be beneficial.

A second consideration for future work is to represent the FVS as a
positive or negative value depending on the direction of deviation from
the normative data. This may be particularly interesting when analysing
foot motion over time or pre/post a surgical intervention as it is possible
for an overall FPS to remain abnormal- but the foot posture to have
changed (for example from equino-varus to excessive dorsiflexion with

hindfoot valgus).

90



The FPS was specifically designed to offer a dynamic score of foot motion.
Our previous work has shown that standing foot posture does not
necessarily correlate to dynamic foot movement [29], therefore further
work could be done to understand the differences of static foot mal-
alignment versus abnormal dynamic foot motion. A method that could be

applied to evaluate this has recently been suggested [30].

CONCLUSIONS
This study successfully validated the Foot Profile Score by studying its
inherent properties and design, and by analysing it against a global

clinical assessment of foot deformity.

The FPS is the first validated outcome measure of dynamic foot motion. It
is a single measurement based on OFM kinematics. The FPS gives
additional information to GPS and should be presented alongside other

gait data to offer a better understanding of an individual’s gait deviations.

The FPS has the potential to assist clinicians and researchers in

qguantifying foot abnormalities during gait, to monitor change over time,

and to measure the outcome of intervention.
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ABSTRACT

BACKGROUND: The Foot Profile Score (FPS) is a single score that
summarises foot posture and dynamic foot motion during the gait cycle
based on the kinematic data of the Oxford Foot Model. The FPS enables
clinicians and researchers to quantify foot abnormalities during gait, to
monitor change in foot/ankle motion over time, and to measure the
outcome of intervention. With the creation of a new outcome measure, it
is important to test its responsiveness in a clinical population for whom it
may be sensitive to change.

AIM: To evaluate the responsiveness of the FPS in a clinical population
following isolated foot and ankle surgery.

METHODS : Using previous work completed to validate the FPS, we defined
the minimal clinically important difference (MCID) for the FPS. Using this
MCID, we applied it to a clinical population of 37 children with cerebral
palsy, spastic hemiplegia, comparing their FPS before and after foot and
ankle surgery. A regression analysis looked at potential relationships
between the change in FPS and their pre-operative FPS, age at surgery,
and time since surgery.

RESULTS. An MCID of 2.4 degrees was calculated through regression
analysis. The mean change from the pre-operative FPS to the post-
operative FPS was 4.6 (SD 3.7 with a range from -0.1 to 13.4). Twenty-
eight children (76%) had a change in their FPS greater than the MCID. A
regression analyses only showed a clear regression between pre-

operative FPS and change in FPS (R2 = 0.58 p<0.01).
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INTRODUCTION

The Foot Profile Score was created and validated in 2019 as a single score
of foot posture and dynamic foot motion during gait (1) based on the
kinematics of the Oxford Foot Model (2). The FPS is calculated as the root
mean square average of 6 key kinematic variable scores (Foot Variable
Scores- FVS), each calculated as the root mean square difference over the
gait cycle between a patient’s data and normative data individually for
right and left legs (1). The 6 variables included in the FPS represent the
motion of the hindfoot relative to the tibia in the sagittal, coronal, and
transverse planes, as well as the motion of the forefoot relative to the

hindfoot in the sagittal, coronal and transverse planes (1).

Hijji and colleagues state that an ideal outcome measurement tool should
be ‘relevant, reliable, valid, and responsive to a given pathology’ (3). In
addition, the FPS should be able to detect a clinically meaningful
difference when analysing a progression in dynamic foot deformity over
time, or a change in foot motion following an intervention (3). The Oxford
Foot Model has been shown to be repeatable in both adult and child
healthy populations (2,4-6), as well as in children with foot deformity (7).
The FPS has been shown to be relevant and valid, particularly in
populations where foot deformity is the predominant contributor to an
altered overall gait pattern (1). What hasn’t yet been demonstrated is the
responsiveness of the FPS to detect changes within individuals following

an intervention.
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Children with cerebral palsy who experience walking problems are
commonly referred for three-dimensional gait analysis (8,9). It is well
documented that children with cerebral palsy develop musculoskeletal
problems over time (9,10) often including progressive foot deformities
requiring surgical intervention (11). For example, children with spastic
hemiplegia can present with a variety of foot deformities including
equinus, cavo-varus and planovalgus and often benefit from isolated foot
correction (11,12). For this reason, the FPS is a relevant outcome measure

for this population.

The aim of this study is to analyse the responsiveness of the FPS
following isolated foot and ankle surgery in children with cerebral palsy,

spastic hemiplegia.

METHODS

Defining the MCID for the FPS

The dataset previously reported by McCahill et al (1) in the original
validation of the FPS was used to define the minimal clinically important
difference (MCID). The Clinical Foot Deformity Scale (CFDS) was created
by the authors to validate the FPS in the absence of another published
dynamic foot deformity scale as described in McCahill and colleagues (1).
Foot videos of 60 subjects were sent to 10 gait analysts affiliated with a
3D gait laboratory from 4 countries (5 physiotherapists, 2 orthopaedic

surgeons, 2 clinical scientists/ engineers and 1 paediatric physiatrist).
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Each subject was scored by 5 gait analysts. The subjects (30 adults and
30 children) included a range of demographics and severity of foot
deformity ranging from planovalgus to cavovarus. 23 Subjects had
orthopaedic diagnoses, 21 had cerebral palsy and 16 had neurological
diagnoses. The gait analysts rated the overall appearance of the foot
using a scale from 0 to 3, which was termed the Clinical Foot Deformity
Scale (CFDS: O=normal, 1=mild, 2=moderate, 3=severe foot deformity)
with no further instructions. The CFDS was taken as the mean of all 5 gait
analysts’ ratings for each subject. The FPS was calculated for the same leg
as used for the CFDS scoring for each subject (1). The MCID for the FPS
was defined through linear regression of the FPS on the CFDS,
corresponding to the change in FPS associated with a one unit change in

the CFDS.

Responsiveness of the FPS pre-post intervention

A separate group of thirty-seven children with cerebral palsy, spastic
hemiplegia was included for this study (mean age 11.9 years, SD 3.03,
age range 7-17 years; 21 females/ 16 males; 18 left, 19 right side
affected). All children had a pre-op and post-op gait analysis with OFM
kinematics (2) collected using a Vicon MX/T-series motion capture
system (Vicon Motion Systems Ltd.) including 16 cameras collecting at
100 Hz. Subjects walked at self-selected speed over level ground. The
predominant foot deformities (as defined by the gait kinematics)
requiring surgical correction included pure equinus (12 children),

planovalgus (8 children) and cavovarus (17 children). Surgeries included
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only procedures below the knee: muscle and tendon lengthenings, tendon
transfers, bony osteotomies, and supra-malleolar tibial de-rotations
(Supplementary Information). The post-op analyses were completed on
average 7.7 months following surgical intervention (range 6-15 months)

for all 37 subjects.

For the purposes of this study, the definition of responsiveness is - the
percentage of subjects where the change in FPS exceeds the MCID
following surgery. This would indicate what percentage of subjects had a
clinically meaningful change in their dynamic foot function post-surgery.
All 37 subjects were analysed for their pre- post-surgical differences in
their FPS. The change in FPS was also regressed on the subjects’ age at

surgery, time since surgery, and on their pre-operative FPS.

All analyses were completed using SPSS version 25, IBM, Chicago.

Significance level was set at p<0.05.

RESULTS

Defining the MCID for the FPS

The MCID for the FPS was defined at 2.4 degrees with a significance of
p<0.001 (Figure 1) as the regression coefficient, corresponding to a one

unit change in the CFDS.
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Figure 1: Regression of the Foot Profile Score on the Clinical Foot
Deformity Score (Reprinted with permission from McCabhill et al 2019).

Responsiveness of the FPS pre-post intervention

The mean change from the pre-operative FPS to the post-operative FPS
was 4.6 degrees (SD 3.7 with a range from -0.1 to 13.4 degrees). Nine
children (24%) did not reach the MCID of 2.4 degrees, one of whom
worsened in their FPS by 0.1 degree. For the 9 children who did not reach
the MCID, their pre-operative FPS ranged from 5.2 to 13.5 degrees and
their pre-operative foot postures were: 3 cavovarus (18% of cavovarus
feet), 3 planovalgus (38% of planovalgus feet), 3 equinus (25% of equinus
feet) (Figure 2). The mean change for all children treated for cavovarus
foot deformities was 5.2 degrees (SD 3.9 with a range from -0.1 to 13.4),
equinus was 4.9 degrees (SD 4.3 with a range from 0.2 to 12.6) and

planovalgus was 3 degrees (SD 1.5 with a range from 1.3 to 5.1).
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Figure 2: The difference in the FPS for all subjects, grouped into
cavovarus, equinus and planovalgus pre-operative foot deformities.

Regressing the change in FPS on the pre-operative value of the FPS
yielded a significant result with B=0.67 (SE 0.10) at p<0.01, and R2=0.58,
indicating 58% of the variance in the FPS difference can be explained by
the pre-operative value of the FPS (Figure 3). Regressing the change in
FPS on the subjects’ age at surgery suggested a trend towards
significance with B=-0.362 (SE 0.197) at p=0.074. Regression of the
change in FPS on the time since surgery was not significant, B= -0.048

(SE 0.271) p=0.86.
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Figure 3: Regression of the difference in the Foot Profile Score on the pre-
operative Foot Profile Score in degrees.

DISCUSSION

Children with cerebral palsy, spastic hemiplegia commonly have isolated
surgery to the foot/ ankle and are therefore an appropriate population to
determine the responsiveness of the FPS without the confusing factor of
additional surgeries. The results showed in our cohort of 37 children with
spastic hemiplegia that 28 children (76%) met or exceeded the MCID of
the FPS indicating a clinically meaningful improvement in the dynamic

function of their feet following isolated foot and ankle surgery.

Our data shows, when regressing the change in FPS on the pre-operative
FPS, the FPS fits with an established trend found by Rutz et al when
analysing the change in Gait Profile Score in children with cerebral palsy

post multi-level surgery (13). As well as an expected regression to the
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mean effect, a greater degree of abnormality in the FPS prior to surgery
means a greater scope for improvement following surgery. This
strengthens the confidence that the FPS is a responsive outcome
measure. It also suggests a potential floor effect, as once the kinematics
near the normal range, further improvements become less detectable.
This raises an interesting dilemma about an MCID in general as the
clinically important change in an outcome measure may be proportional
to the original degree of deviation from norm, therefore those with minor

deviations prior to surgery may not be expected to exceed a fixed MCID.

It is important to highlight that that although the FPS offers an objective
assessment of foot shape and dynamic motion during gait, it does not
capture other aspects such as pain. There are other factors that influence
the subjective success of a procedure; therefore, the FPS should always be
considered in combination with other outcome measures as a part of

pre/post-surgical assessment.

Interestingly our results suggest that two factors may have a role in the
outcomes following foot corrective surgery in children with hemiplegia,
which require further investigation. Firstly, we will consider the type of
pre-operative deformity: cavovarus, equinus, planovalgus. Sees and Miller
(11) state that foot deformity is the most common orthopaedic problem
in children with cerebral palsy. Many authors suggest that equinus and
cavovarus deformities are the most common in hemiplegia (11,14), and

our convenience sampling supports this. However, a natural tendency to
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planovalgus does exist in this population, and it can also occur due to
over-correction of an equinus or cavovarus foot posture (15).
Interestingly, no published study seems to compare the results of foot
deformity correction based on the initial deformity. Further long-term
follow up research is therefore justified to consider if one type of foot
deformity in cerebral palsy is easier than the other to correct and

maintain its correction.

The second factor which may influence the results of surgery is the age of
the child at the time of surgery. Our results suggest that the younger
children in our cohort (age range 7-17 years), had a greater difference in
their FPS post-surgery then our older children, without this achieving
statistical significance at the conventional 5% level. The FPS does not
directly measure how well the foot was corrected but how well it is
moving dynamically after treatment. Surgery in older children can be
more extensive due to fixed deformity and stiffness. Therefore, surgery
may improve the overall alignment of the foot, but not improve joint
range of motion, or even come at the cost of that. This is particularly true
if the surgery is more extensive (leading to more scarring) and/or if it

includes bony surgery including joint fusions.

Contrary to this, minor soft tissue surgery in younger children will often
correct the foot shape but also improve range of joint motion. Two recent
review papers have looked at longer term results of foot surgery in
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cerebral palsy. Review papers by both Koman et al (16) and Shore et al
(15) concluded that age at first surgery is the greatest predictor of
recurrent equinus deformity in children with CP, and therefore
conservative methods of management should precede any surgical
intervention. Both of their review papers included children with spastic
diplegia and spastic hemiplegia and both sets of authors acknowledge
this makes it very difficult to make recommendations on individual
cerebral palsy subtypes (15,16). In addition, the age at surgery for our
included cohort is older than the majority of the reviewed papers
indicating conservative management was likely employed prior to

embarking on surgical intervention.

A limitation of this paper could be the MCID based on the association
with the CFDS created to validate the FPS in a previous paper (1). We
chose to base the MCID on a full unit in the CFDS, corresponding to a
difference in grade that was agreed by all five assessors. It might be
argued that if four of five assessors were assessing at a higher grade, this
is indicating a difference that is of clinical importance, and an MCID might
be set at 2 degrees or lower. Therefore, the value of the MCID warrants
further investigation to rigorously evaluate the change in FPS required to
make a clinically meaningful difference in a large cohort of subjects. In
addition, the repeatability of the FPS is assumed to be good as the
repeatability of the OFM has been shown to be good; however, a follow

up study of the test-retest repeatability of the FPS would be beneficial.
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Lastly, we have only assessed the responsiveness of the FPS in one clinical
population, therefore we would recommend repeating this study in other

populations.

CONCLUSIONS

An MCID of 2.4 degrees for the FPS indicated a clinically meaningful
improvement in 76% of children with hemiplegia post isolated foot/ankle
surgery. Moreover, the FPS responded with larger improvements for more
deformed feet. These findings suggest the FPS is sufficiently responsive in
a clinical population and should be considered when indicating and
evaluating foot surgery. Further testing of the MCID is suggested, as a

lower value may still be indicative of clinically meaningful improvement.
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ABSTRACT
AIMS: To assess if older symptomatic children with clubfoot deformity differ
in perceived disability and foot function during gait, depending on initial
treatment with Ponseti or surgery, compared to a control group. Second aim
was to investigate correlations between foot function during gait and
perceived disability in this population.
PATIENTS AND METHODS: Seventy-three children with idiopathic clubfoot
were included: 31 children treated with the Ponseti method (mean age 8.3
years; 24 male; 20 bilaterally affected, 13 left and 18 right sides analysed)
and 42 treated with primary surgical correction (mean age 11.6 years; 28
male; 23 bilaterally affected, 18 left and 24 right sides analysed).
Foot function data was collected during walking gait and included Oxford
Foot Model kinematics (Foot Profile Score and the range of motion and
average position of each part of the foot) and plantar pressure (peak
pressure in five areas of the foot). Oxford Ankle Foot Questionnaire, Disease
Specific Index for clubfoot, Pediatric Quality of Life Inventory 4.0 were also
collected. The gait data were compared between the two clubfoot groups
and compared to control data. The gait data were also correlated with the
data extracted from the questionnaires.
RESULTS AND CONCLUSIONS: Our findings suggest that symptomatic
children with clubfoot deformity present with similar degrees of gait
deviations and perceived disability regardless of whether they had previously
been treated with the Ponseti Method or surgery. The presence of sagittal

and coronal plane hindfoot deformity and coronal plane forefoot deformity
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were associated with higher levels of perceived disability, regardless of their
initial treatment.
e First paper to compare outcomes between Ponseti and surgery in a
symptomatic older clubfoot population seeking further treatment
e First paper to correlate foot function during gait and perceived
disability to establish a link between deformity and subjective

outcomes
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INTRODUCTION

Children treated in infancy for idiopathic clubfoot can present with residual,
relapsed, or over-corrected foot deformity. Follow-up at 11 years post initial
surgery has shown 56% required at least one additional procedure at a mean
of four years following the initial surgery (1). In a prospective study
comparing surgical versus Ponseti results, 38% of Ponseti and 30% of
surgical subjects required additional procedures after three years of follow-
up (2). The results also showed the severity of recurrent deformity in the
surgical group was higher than the Ponseti group; resulting in the surgery
group requiring more corrective procedures to treat the persistent
deformities (2). More recently Hayes et al, reported a risk of over-correction

following the Ponseti method of 12% after at least 8 years of follow-up (3).

Due to a lack of evidence to guide clinical decision making, current practices
managing older children vary. How does a clinician decide who should
receive additional surgical or conservative management, and who can be left
untreated? There is a known association between the number of surgical
interventions and level of perceived disability, however, the deformity may

continue to progress if left untreated, causing disability into adulthood (4,5).

To date, outcome studies in older children with clubfoot have focused on
comparing different types of treatment using pedobarography (6-9), lower
limb kinematics and kinetics (1,10-16), multi-segment foot kinematics
(16,17), and subjective questionnaires (15-18). However, these have focused

on children who are doing well. No published literature exists analysing a
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symptomatic population of children previously treated for clubfoot
deformity. We don’t know if ‘failed’ Ponseti presents similarly to ‘failed’
surgery. In addition, no previous study has investigated the relationship
between foot function (assessed by foot kinematics and plantar pressure)
and patient reported outcome measures. Therefore our study hypotheses
were:

1. There will be a difference in foot function during gait in older
symptomatic children with clubfoot between those who have been
previously treated by Ponseti compared to surgery; and that both will
be different to a control group.

2. There will be a difference in perceived disability in older symptomatic
children with clubfoot between those who have been previously

treated by Ponseti compared to surgery.

If a correlation between foot function during gait and perceived disability
could be established, it would give insight into the specific elements of foot
deformity that are associated with poor subjective outcomes. This would
enable treatment to target specific elements of the foot deformity, or else
give evidence to reassure a family that no further treatment is indicated.
Such correlations have not been established, and would need large numbers.
Therefore, our third research question was more exploratory, with an aim to
generate hypotheses for future studies:
3. What are the associations between foot function during gait and
perceived disability in older symptomatic children with clubfoot who

have been previously treated by Ponseti or surgery?
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METHODS

Subjects

Seventy-three children with idiopathic clubfoot were included (mean age
10.2 years, range 5-16 years; 51 male; 43 bilateral, 12 left, 18 right side
affected). For bilateral subjects, the worst-affected foot as assessed by the
Foot Profile Score (19) was included, resulting in 42 right and 31 left feet
being analysed. The sample included routine referrals- children referred to
the clinical service for consideration of further management due to residual
deformity, pain or reduced function. The gait laboratory is part of a tertiary
hospital receiving referrals from multiple centres requiring this specialist
service. The reasons for referral were to clarify residual foot abnormalities,
advice on orthotic management, as well as potential surgical management.
This indicates that a range of foot deformity were included in the sample.
Inclusion criteria were subjects between the ages of 5 and 16 years old with
a confirmed structural idiopathic clubfoot deformity diagnosed at birth, and

no other musculoskeletal or neurological diagnoses.

Of the 73 children, 31 were previously treated with the Ponseti method with
the treatment starting within the first 4 months following birth. 83% of the
Ponseti group had an Achilles tenotomy (26 children) and 32% subsequently
had an anterior tibialis tendon transfer (ATTT) (10 children). One of the
children, who did not undergo a tenotomy following the initial casting, had a
limited Achilles tendon lengthening at 2 years old. The Ponseti group had a
mean age 8.3 years (range 5-16 years); 24 male; 20 bilaterally affected, with

a total of 13 left and 18 right sides analysed.
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The surgery group had 42 children treated with primary surgery before the
age of 1 year old, following either strapping or below-knee casting. 24
children underwent postero-medial releases, 17 children had posterior
releases, and 1 child had an Achilles tenotomy combined with a medial
release. 19 of these children underwent subsequent surgery; 2 ATTT in
isolation, 10 with an ATTT in combination with more extensive soft tissue
release, capsular release, and tibial de-rotation osteotomies. The surgery
group had a mean age 11.6 years (range 5-16 years); 28 male; 23 bilaterally

affected, with a total of 18 left and 24 right sides analysed.

Two control groups were used in the assessment of foot function selected
from the gait laboratory’s normal databases. The kinematic data control
group consisted of 30 children, mean age 10.7 years (range 5-16 years). The
plantar pressure control group consisted of 30 children, mean age 10.6
years (range 5-16 years). For both control groups, the participants included
healthy children with no known diagnoses or orthopaedic conditions. In
order to match the gender and age distribution of the clubfoot group, 9
female and 21 male controls were selected for each group, using a stratified

random sample (15 right and 15 left legs randomly selected).

Data Collection

1. Foot function during gait

Foot kinematic data

All 73 children had multi-segment foot kinematic data collected using the

Oxford Foot Model (OFM) (20) during level walking at self-selected speed
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using a 16 camera Vicon T-series system (Vicon Motion Systems Ltd, Oxford,
United Kingdom) sampling at 100Hz with 9.5mm passive markers.
The Foot Profile Score (FPS) and 6 Foot Variable Scores were then calculated

from the kinematic data of the OFM (19).

Since the FVS and FPS are absolute deviations from normal, we also
calculated the average position of each segment during the gait cycle in each
plane, which additionally gave the direction of deviation.

We also computed the overall flexibility of each inter-segment joint by

calculating the range of motion in each plane.

Plantar pressure data

Plantar pressure data were collected using an EMED-M pressure plate (Novel,
Munich, Germany) sampling at 50Hz. Total peak pressure and force-time
integral were collected in 70 subjects. Due to technical difficulties, plantar
pressure data from three subjects were not collected. Peak pressure in five
areas of the plantar surface of the foot, defined by the kinematic markers:
were measured in 59 subjects: medial and lateral hindfoot, midfoot, medial
and lateral forefoot (21). Due to technical difficulties we could not calculate
pressure variables for sub-areas of the foot in 11 children, resulting in data

from 28 Ponseti and 31 surgical subjects.

2. Perceived disability
Oxford Ankle Foot Questionnaire (OxXAFQ) (22) was collected in all 73

subjects. The OXAFQ comprises three domain scores (physical, school &
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play, emotional). Roye’s Disease Specific Index for clubfoot (DSI) (23) was
collected in 38 subjects. This score measures the outcome of treatment of
clubfoot and is comprised of a satisfaction subscale and function subscale.
In addition, the Pediatric Quality of Life Inventory 4.0 SF15 Generic Core
Scales (PedsQL) (24) was collected in 34 subjects, comprising a psychosocial

health summary score, physical health summary score and a total score.

Data Analysis

1. Foot function during gait
The FPS, FVS, average position of each segment, flexibility of each segment,
peak plantar pressure and force time integral data were compared between
all three groups (the two clubfoot groups and the control group) using
Welch’s Analysis of Variance. Where significant differences were found, post
hoc independent t-tests were used with unequal variances assumed. Log
transformation was performed prior to the analysis for the FPS, FVS,
flexibility score of each segment and plantar pressure data, because of
marked positive skewness in these variables.

2. Perceived disability
An independent t-test was used to compare the means of the two clubfoot
groups for each of the three subjective outcome measures with equal
variances not assumed.

3. Association of foot function and perceived disability
For convenience in examining a large number of associations, Pearson
Correlation Coefficients were used to explore the association between the

independent variables (FPS, FVS, RoM of each foot joint in each plane, and
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plantar pressure) and the dependent variables extracted from the parent-
reported questionnaires. They yield the same p-values as a corresponding
linear regression and provide a convenient measure of effect size. Due to the
exploratory nature of this research question, we identified a priori the
following components of foot deformity which we hypothesised would be
associated with the dependent variables: hindfoot equinus, hindfoot varus,
forefoot supination, forefoot adduction and increased midfoot pressure.
When interpreting the data we took into account any outliers that affected
the associations and checked scatter diagrams for non-linearity.

All analyses were completed using SPSS version 25, IBM, Chicago.

Significance levels were set at p<0.05.

RESULTS

1. Foot function during gait
ANOVA results revealed a significant difference between the FPS and all six
FVS (Table 1). Post hoc t-tests showed a significant difference for all
variables between the surgical and control groups, as well as between the
Ponseti and control groups, with the only exception being the forefoot in the
coronal plane. When comparing the Ponseti and surgical groups, there were

no statistically significant differences.
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Welch
Mean and range ANOVA Independent t-tests (p values)
(pwvalues)
Control Ponseti Surgery
Ponsetivs | Surgery vs | Ponseti vs
n=30 n=31 n=42 3 groups Control Control Surgery
Foot Profile 4.8 8.3 5.3
Score (%) (2.3-7.3) | (3.3-18.1) | [4.0-18.3) | <0.001* | <0.001* | <D.0O1* 0.11
Hindfoot 3.7 4.9 5.9
sagittal (°) (2.1-7.9) | (2.0-10.9) | (2.5-21.5) 0.006* 0.03* 0.003* 0.50
Forefoot 3.4 5.3 4.8
sagittal (°) (2.08.8) | (1.7-12.0) | (2.1-17.1) | 0.001% 0.001* 0.002* 0.47
Hindfoot 3.7 8.0 7.3
coronal (°) (1.2-8.7) | (2.2-15.4) | (1.7-18.3) | <0.001* | <0.001* | <0.001% 0.49
Forefoot 4.9 0.9 5.1
coronal (°) (1.39.9) | (2.1-19.2) | (2.1-33.4) 0.001* 0.07 <0.001% 0.07
Hindfoot 5.8 9.7 10.8
transverse (%) | (2.5-15.5) | (2.7-20.8) | (3.4-23.7) | <0.001% 0.001* <0.001% 0.39
Forefoot 5.0 9.1 10.6
transverse (°) | (1.1-11.0) | {1.5-20.5) | (1.4-26.2) 0.001* 0.02* =0.001* 0.26

Table 1: The mean and range of the Foot Profile Score and the six Foot Variable Scores for all
three groups (prior to log transformation). Welch ANOVA for all 3 groups and independent t-test
{unequal variances assumed) between groups following log transformation (* =p<0.05). A higher
number indicates greater deformity.

The comparison of the average position of each segment throughout the gait
cycle between the clubfoot groups and control group (Appendix 1-Figure 1;
Table 2) showed the surgery group had significantly increased forefoot
supination relative to the tibia compared to the control group (p=0.008).
Both the Ponseti and the surgery groups had increased hindfoot internal

rotation compared to the control group (p<0.001). The Ponseti group had
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significantly increased forefoot adduction relative to the tibia compared to

the control group (p=0.001) and compared to the surgery group (p=0.04).

Welch
Mean and range ANOVA Independent t-tests (p values)
(p values)
Control Ponseti surgery
Ponsetivs | Surgery vs | Ponseti vs
n=30 n=31 n=42 3 groups Control Control surgery
2.1 0.6 1.4
Hindfoot dorsiflexion () | (-4.5-8.1) | [-10.3-13.6) | (-19.5-12.4) 0.254
-1.2 -1.0 -2.8
Forefoot dorsiflexion () [-6.5-7.5) -13.1-5.3) | (-11.5-14.1) 0.159
Forefoot/ Tibia 1.0 1.4 0.0
dorsiflexion [°) [-5.7-10.7) | (-15.3-8.2) | (-31.0-7.6) 0.540
-3.3 0.7 -1.6
Hindfoot varus (%) (-10.6-5.4) | [-18.0-17.0) | {-16.1-15.8) 0.055
6.6 4.5 8.6
Forefoot supination () -2.4-14.7) | (-12.4-25.0) | (-5.4-36.4) 0.142
Forefoot/Tibia supination 3.3 2.5 6.8
() (-1.8-9.8) |(-10.4-14.9) | (-7.0-32.5) 0.012* 0.071 0.008* 0.427
Hindfoot internal rotation 2.4 5.0 8.6
] [-6.6-15.8) | (-2.9-24.0) | [-6.0-26.5) | <0.001*% <0.001% | <0.001% 0.759
1.3 4.7 -1.6
Forefoot adduction (°) (-7.7-13.5) | [-18.1-35.5) | (-26.5-28.2) 0.055
Forefoot/Tibia adduction 3.7 13.5 6.7
] [-5.1-13.1) | [-17.8-45.1) | (-29.3-34.4) | 0.002* 0.001% 0.206 0.040%

Table 2: The mean and range of the average position of each segment in the gait cycle for all
three groups. Welch ANOVA for all 3 groups and independent t-test (unequal variances assumed)

between groups (* =p<0.05). Positive numbers= dorsiflexion, varus, supination, internal

rotation, adduction. Negative numbers= plantarflexion, valgus, pronation, external rotation,

abduction.

There were no significant differences in range of forefoot motion between

the groups in all three planes (Table 3). The hindfoot in the surgery group
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had significantly reduced RoM compared to the control group in the sagittal

and coronal planes (p=0.004 and p=0.012 respectively). Interestingly, the

hindfoot in the transverse plane showed increased range of motion in both

the Ponseti and surgery groups compared to controls (p=0.003 and p<0.001

respectively). In no instance was there a statistically significant difference

between the Ponseti and surgery groups.

Welch
Mean and range ANOVA Independent t-tests (p values)
(pvalues)
Control Ponseti Surgery
Ponsetivs | Surgeryvs | Ponsetivs
n=30 n=31 n=42 3 groups Control Control Surgery
Hindfoot 22.7 21.0 15.7
sagittal [°) (14.8-34.4) | (12.3-30.8) | (13.7-33.1) | 0.014* 0.135 0.004* 0.170
Forefoot 16.1 15.7 15.1
sagittal (°) (10.9-23.0) | (6.9-26.7) | (7.6-26.3) 0.299
Hindfoot 10.5 10.8 9.1
coronal (°) (7.2-17.3) (4.3-24.2) | (3.8-16.8) 0.036* 0.864 0.012* 0.069
Forefoot g1 8.6 5.9
coronal (®) (4.2-13.2) (3.7-15.3) | (3.8-21.9) 0.218
Hindfoot 16.0 20.4 23.3
transverse (°) | (6.6-25.8) | (10.3-24.7) | (11.5-60.9) | <0.001* 0.003* <0.001* 0.084
Forefoot 5.1 8.6 8.7
transverse (°) (4.5-16.6) (4.2-25.6) (2.3-24.7) 0.329

Table 3: The mean and range of the flexibility (range of motion) of each inter-segment angle
during the gait cycle for all three groups (prior to log transformation). Welch ANOVA for all 3

groups and independent t-test (unequal variances assumed) between groups following log

transformation (* =p<0.05).
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Significant differences were found across the three groups for all pressure
measures except lateral forefoot pressure (Table 4). Both the medial and
lateral hindfoot pressures were reduced for the Ponseti compared to the
control group (p<0.001 for both) and the surgery compared to the control
group (p=0.017 and p<0.001 respectively). Midfoot pressures were
significantly increased in both Ponseti and surgery groups compared to the
control group (p<0.001). Medial forefoot pressure was reduced in the
Ponseti group compared to the control group (p=0.008) and compared to
the surgery group (p=0.008). Total peak pressure was reduced in the Ponseti
group compared to the control group (p<0.001) and compared to the
surgery group (p=0.005). Force time integral was increased in the surgery
group compared to control group (p=0.002) and compared to the Ponseti

group (p=0.013).

126



Welch

Mean and range ANOVA Independent t-tests (pvalues)
(pvalues)
Control Ponseti Surgery
Ponsetivs | Surgeryvs | Ponsetivs

n=30 n=28 n=31 3 groups Control Control Surgery
Medial Hindfoot 394.5 231.0 336.4
(kPa) (175-805) | (88-402) (53-998) | <0.001* <0.001* 0.017* 0.053
Lateral Hindfoot 348.7 198.9 2311
(kPa) (200-585) | [88-333) {111-471) | <0.001* <0.001%* <0.001% 0.109

38.7 118.7 132.0
Midfoot (kPa) (0-130) (10-358) (67-313) | <0.001* <0.001% <0.001* 0.348
Medial 3877 250.0 428.6 75% 68%
Forefoot (kPa) | (155-40} | (115555} | (100-1151) | 0.010% 0.008% 0.761 0.008*
Lateral 260.0 246.3 319.7
Forefoot (kPa) | (140-750) | (143-527) | (133-980) 0.136
Total Peak 4217 357.4 453.3
Pressure (kPa) | (290-340) | (195-1067) | (230-1151) | o0.001* <0.001* 0.637 0.005*
Force time 124.0 155.6 231.7
integral [kPa,s) (73-405) | (103-408) (66-433) 0.004* 0.244 0.002* 0.013%

Table 4: The mean and range of the plantar pressure measurements of all 3 groups (prior to
log transformation). Welch ANOVA for all 3 groups and independent t-test (unequal variances

assumed) between groups following log transformation (* =p<0.05).

2. Perceived disability

Overall, the surgery group scored lower than the Ponseti group in the DSI

and the OxAFQ, but the only statistically significant differences between

the groups were in the Satisfaction subscale of the DSI (p=0.031) and the

Emotional domain of the OxAFQ (p=0.016) (Table 5).
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Mean (range)

Ponseti Surgery P-value
PedsQL PhysHealth 77.0 (47-100) 75.7 (31-100) 0.852
Ponseti n=22 PsychSoc 75.1(16-100) 82.9 (61-100) 0.228
Surgery n=13 Total Score 75.5(31-57) 80.4 (54-100) 0.418
DSl Satisfaction 65.6 (40-100) 54.4 (26-80) 0.031%
Ponseti n=25 Function 62.1(20-100) 56.9 (6-100) 0.394
Surgery n=13 Total Score 65.1(37-50) 55.6 (33-50) 0.107
OXAFQ, Physical 64.1(12.5-100) | 58.2(12.5-100) 0.323
Ponseti n=31 school & Play 80.0 (19-100) 78.4 (25-100) 0.771
Surgery n=42 Emotional 83.1(19-100) 69.7 (12.5-100) 0.016*

Table 5: The mean and range of the Pediatric Quality of Life Questionnaire (PedsQL), Disease
Specific Index (DSI) and Oxford Ankle Foot Questionnaire (OxAFQ) for the Ponseti and surgical
groups. Independent t-test (unequal variances assumed) between groups (* =p<0.05).

3. Association of foot function and perceived disability
The correlations of the gait data with subjective outcome measures are
presented in Tables 6, 7 and 8 in Appendix 2. We were particularly
interested in the associations with foot function variables that we identified a
priori in our hypotheses. The variables representing hindfoot equinus (RoM
in the sagittal plane, hindfoot sagittal FVS, and reduced pressure in the heel
regions) all demonstrated significant associations with each of the subjective
guestionnaire scores, although these differed according to clubfoot group

and gait variable being considered. This was similarly the case for variables
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representing hindfoot varus (coronal hindfoot RoM and peak pressure under
the medial aspect of the foot compared to the lateral), forefoot supination
(coronal forefoot FVS and RoM), forefoot adduction (transverse forefoot FVS
and RoM), and midfoot pressure. Results overall indicated that the foot
function variables we identified were associated with poorer subjective

outcomes.

DISCUSSION

Our findings suggest that children with symptomatic clubfoot deformity,
whether treated by Ponseti or surgery, present with similar degree of deficits
in foot function during gait as well as a similar level of perceived disability.
Therefore we accept the hypothesis that both clubfoot treatment groups are
different to controls. However, we cannot conclude that the two clubfoot
groups are different to each other with respect to foot function or subjective

outcomes.

This is the first study to investigate children who are symptomatic following
their initial clubfoot correction- regardless of whether they were treated with
the Ponseti method or surgery. The uniqueness of our cohort is confirmed by

our lower DSI scores compared to the literature (25, 21).

Both clubfoot groups had increased FPS and FVS compared to normal, which
indicates impaired foot function during walking. However, they were not
statistically significantly different to each other. The position of the forefoot

and hindfoot showed that under-correction or over-correction occurred in
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both clubfoot groups. The only statistically significant difference between
the groups was increased forefoot adduction relative to the tibia in the

Ponseti group compared to both the surgical and the control groups. Both
clubfoot groups showed significantly reduced peak hindfoot pressure and
increased midfoot pressure compared to controls. The Ponseti group had
reduced medial forefoot pressure compared to both surgery and controls

groups.

Other clubfoot studies have reported stiffness in the sagittal hindfoot using
the OFM in a surgical population compared to a Ponseti population (17), and
Mindler et al (16) found this in a Ponseti population compared to controls.
Jeans et al (9) investigated a Ponseti population and found compared to
controls, similar to our results, they had reduced plantar pressure in the
hindfoot and increased pressure in the midfoot. Converse to our results,
Salazar et al (8) compared Ponseti and surgery groups using plantar pressure
and found the Ponseti group had reduced peak hindfoot pressure and
increased midfoot pressure compared to their surgical population.

Differences are likely due to the populations studied.

This is the first study to correlate gait data with perceived disability in
children treated for clubfoot. Multiple exploratory correlations were assessed
to identify relationships between the gait data and subjective questionnaires.
It is important to note that the OXAFQ had the most responses and therefore
the most emphasis should be put on associations found using this outcome

measure. Despite the similarities in gait and subjective outcomes between
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the clubfoot groups, the Ponseti and surgery groups behaved differently in
how their gait deviations related to subjective outcomes.

In the Ponseti group perceived disability was associated with hindfoot
equinus, increased peak midfoot pressures, reduced peak medial forefoot
pressures, and reduced RoM of the hindfoot in the coronal plane. This
suggests that children who have these residual deformities are more likely to
have poor subjective outcomes. Therefore good initial correction of hindfoot
equinus with a tenotomy, as well as full subtalar correction in the casting

phase may be important in this population.

In the surgical group perceived disability was associated with coronal
forefoot deformity, reduced RoM of the forefoot in the sagittal plane and of
the hindfoot in the sagittal and coronal planes. This suggests that post-
surgical correction, children who have residual forefoot supination or
residual stiffness of the forefoot and hindfoot in the sagittal plane, or
stiffness of the hindfoot in the coronal plane are likely to have poor

subjective outcomes.

It is important to acknowledge the large inter-individual variation within the
clubfoot subjects (Figure 1). It is therefore difficult to make generalisations
and recommendations based on a child’s previous treatment (Ponseti or
surgery) as both contain the entire spectrum of deformity with no specific
pattern. This supports the view that each child should receive an

individualized approach when seeking further management.
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An interesting outcome of our study was that the three subjective outcome
measures showed very little agreement in correlations with the gait data.
This might be expected with a generic health measure like the PedsQL, but
the DSI was designed for use in clubfoot (23), and the OxAFQ was validated
using clubfoot as one of its populations (22). One possibility is that these
measures are not sensitive enough to correlate with foot function defined by
3D gait analysis. The link between body function, participation and quality of
life has not yet been well defined for this population, which justifies future

research in this area.

STUDY LIMITATIONS

Specific details of severity of the original deformity, such as the Pirani Score,
and initial success of the Ponseti method or surgery were unknown due to
the nature of tertiary referral. We recognise the many correlations examined
may bring up false positive associations. Therefore, we only put emphasis on
those we had hypothesised a priori. A larger study would be needed to
further explore our preliminary findings. Lastly, due to subdividing the
clubfoot subjects into two groups and only having a subset of data for the
PedsQL and DSI, some of the associations were more prone to outliers. We
did our best to acknowledge when outliers were affecting statistically

significant associations.

CONCLUSIONS
Our findings suggest that children with symptomatic clubfoot deformity

present with a similar amount of gait deviations and perceived disability
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whether treated by the Ponseti method or surgery. Hindfoot deformity in the
sagittal plane and forefoot and hindfoot deformity in the coronal plane were
associated with perceived disability, regardless of whether they had received

the Ponseti method or surgery.

We would like to acknowledge funding of this research from Newlife the

Charity for Disabled Children.

133



Appendix 1- Figure 1- Scatterplots of the average position of the forefoot and

hindfoot throughout the gait cycle in the sagittal, coronal and transverse planes

Sagittal plane:
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Coronal plane:
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OxAFQ Physical Domain

OxAFQ Physical Domain

Transverse plane:
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Appendix 2-
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SUMMARY OF AIM

Foot deformity affects a high percentage of the population at some point in
their lifetime. It is the most prevalent musculoskeletal problem at birth (1), it
has a high incidence following a neurological insult (2), and it is known to be
prevalent in the natural aging process from childhood into adulthood (3-5).
Recent systematic reviews of the foot and ankle literature agree we are
limited in functional ways to assess foot deformity (6) and we lack consensus
on the best way to measure foot deformity for meaningful outcome analysis
(7-9). In addition to this, we also lack understanding of how the structural
deformity correlates to aberrant foot motion and an individual’s subjective

perspective on foot function and perceived disability.

More recently, instrumented gait analysis including a three-dimensional foot
model has allowed dynamic analysis of foot posture and motion. The Oxford
Foot Model (OFM) (10) is a multi-segment kinematic foot model that has
been used widely in clinical and research applications, including outside of
the institution it was developed (11). The primary aim of this thesis was to
establish the clinical role of the Oxford Foot Model to assess foot deformity
during gait. A secondary aim was to explore a potential relationship
between altered foot structure/ function during gait and perceived quality of

life in a clinical population.

To address the primary aim, first we investigated if the OFM was repeatable
in children with foot deformity. Secondly, we built upon previous published

work and investigated options to improve the marker placement repeatability
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of the heel marker on the calcaneus. Thirdly we created and validated a
single score of dynamic foot function based on the OFM kinematics, the Foot
Profile Score (FPS), offering a clinically meaningful interpretation of foot
function relative to healthy controls, and to measure the decline or
improvement in foot function over time or following intervention. For the
primary aim we finally investigated the responsiveness of the FPS in children
with cerebral palsy, hemiplegia, before and after foot corrective surgery. Our
final study addressed both the primary and secondary aim. Based on the
foundation of our previous four studies, we were able to compare the
dynamic foot motion of children previously treated for clubfoot who were
symptomatic and considering further management, to a control population.
These children had a range of initial treatment including both conservative
(Ponseti method) and surgery. In addition, we began to explore a potential
relationship between dynamic foot function (FPS and plantar pressure) and

perceived quality of life in children with residual clubfoot deformity.

In this final chapter the main findings of the presented studies are critically
discussed and the clinical implications and ideas for future research are

considered.

MAIN FINDINGS

Clinimetric testing of the Oxford Foot Model

In chapter Il and chapter Ill, we conducted two repeatability studies for the
OFM that were lacking in the literature and important to validate our

methodologies for our other chapters.
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Firstly, the repeatability of the OFM in clinical populations with foot
deformity was compared to a typically developing population. The OFM has
published repeatability in healthy adults and children but had limited testing
in a population with deformity (10,12-14). Our results showed good intra-
tester repeatability with the mean absolute difference in typically developing
children at 4.8°, which improved to 4.1° in children with hemiplegia, and
further improved to 2.9° in children with clubfoot. Inter-rater repeatability in
children previously treated for clubfoot deformity had a mean difference
between raters of 3.6 degrees. The mean absolute differences were within
one degree for the intra and inter-rater reliability in 12/15 variables for the
clubfoot data. Our results fall within the acceptable error of measurement
suggested by McGinley et al (15) in three-dimensional gait analysis and are
comparable to other published studies (13,16). Overall, the clubfoot data
was the least variable which we attributed to a more experienced marker

placer for the clubfoot data as well as improved technology.

Secondly, chapter lll investigates the repeatability of placing the heel (HEE)
marker when using the OFM. This study followed on from previous work
investigating the hindfoot segment of the OFM. Paik and colleagues (17)
showed the misplacement of the HEE marker induced the most change in the
orientation of the anterior-posterior axis when compared to the other
calcaneal markers, indicating the importance of ensuring the HEE marker is
placed accurately. Two alignment devices (jigs) were created to optimise
marker placement: a mould and a ratio caliper. The aim of this pilot study

was to test these two jigs against the conventional method of eyeball marker
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placement, to improve marker placement repeatability of the HEE marker
when using the OFM in 10 healthy adult subjects. We hypothesized that the
ratio caliper and mould would not improve an experienced gait analyst’s
repeatability (as experience generally improves repeatability), but that they
would improve an inexperienced gait analyst’s repeatability as well as the

inter-tester error.

Overall, the results were surprising and did not fully align with our
hypotheses and discussion from chapter Il. The ratio caliper produced the
lowest intra-tester variability for both the experienced and inexperienced
gait analyst. However, both ratio caliper and eyeballing yielded good inter-
tester repeatability. The mould was the most variable for both analysts. We
were surprised our results suggested the common practice of the eyeball
method with palpation of bony landmarks for marker placement of the OFM
was not improved significantly by using a jig, especially for the
inexperienced gait analyst as hypothesised. The fact that we investigated a
healthy control population instead of a population with foot deformity may

have influenced the repeatability results of the gait analysts.

A recent study by Reay and colleagues (18) investigated marker placement
repeatability of the OFM in 10 healthy adults, applied by three assessors not
native to Oxford (physiotherapist, mechanical engineer training to be a
clinical scientist, and Master of biomedical kinesiology), with no practical
experience of the OFM (18). The authors agreed with our results- that

despite varying experience with anatomy and marker placement, the OFM is

149



repeatable in an adult healthy population (18). This strengthens the clinical
utility of the OFM and supports its original design to be used with the eyeball
method of marker placement. The authors do comment on a common trend
where the transverse plane remains the least repeatable for all groups
testing repeatability (10,12,18,19), likely due to the placement of the heel
marker (16,18). This suggests that since the caliper did not significantly
improve marker placement, and the mould actually worsened it, it may be
worth considering further ways to improve the marker placement of the heel

marker that haven’t been considered as yet (17,18,20,21).

Development and responsiveness of the Foot Profile Score

In chapter IV, we introduced the FPS, a new summary score of dynamic foot
motion during gait based on the Oxford Foot Model kinematics (10,22). The
FPS was constructed similarly to the Gait Profile Score (GPS), a single
measurement of the quality of an individual’s overall gait pattern based on
lower limb kinematics (23). The FPS was defined, then studied for its
properties and design, and analysed against a clinical assessment of foot
deformity during gait (clinical foot deformity score- CFDS). Our results
showed a significant correlation between the FPS and CFDS with all 6 Foot
Variable Scores contributing positively and independently to the prediction
of the CFDS. Correlation between the FPS and the GPS was then investigated
in both a total lower limb involvement population (neurological diagnoses
such as cerebral palsy), and an isolated foot deformity population (clubfoot).
This revealed a moderate correlation between the FPS and GPS in the lower

limb involvement population, but no correlation was found in the group with
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isolated structural and dynamic foot deformity. This indicates the FPS
represents new information that the GPS does not capture, especially in

populations with isolated foot deformity.

As a single summary score, the FPS is more intuitive to clinicians who are not
trained in interpreting three-dimensional kinematic graphs. As a single
number, the FPS is a clinically meaningful outcome measure to identify the
presence of deformity during gait, monitor change in foot function over

time, and measure change following an intervention.

Following the validation process of the FPS, chapter V investigates the
responsiveness of the FPS in a clinical population: children with cerebral
palsy, spastic hemiplegia, before and after surgical correction of their foot
deformity. The minimal clinically important difference (MCID) of the FPS was
calculated from the regression of the FPS on the CFDS from chapter IV and
defined as no more than 2.4 degrees. The difference in the FPS was then
analysed using this MCID to indicate the success of surgical outcome. We
also looked at potential relationships between the change in FPS and their
pre-operative FPS, age at surgery, and time since surgery. Seventy-six
percent of children had a change in their FPS greater than the MCID. A
regression analyses only showed a clear relationship between pre-operative
FPS and change in FPS indicating a greater degree of abnormality in the FPS
prior to surgery means a greater scope of improvement following surgery.

This confirms the FPS is a responsive outcome measure.
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Foot function and perceived outcomes

The final study of this thesis is presented in chapter VI. This study aims to
define the residual dynamic deformity in symptomatic children following
initial correction of their clubfoot deformity compared to a healthy control
population. The study group is further subdivided into children previously
treated with the Ponseti method (conservatively) or with surgery. Foot
function was assessed by the OFM kinematics, FPS, and plantar pressure and
then correlated with parent-reported outcome measures to identify if there
was a relationship between foot function and perceived disability. The
subjective outcome measures included the Oxford Ankle Foot Questionnaire,
the Disease Specific Index for clubfoot and the Pediatric Quality of Life
Inventory 4.0. A secondary aim of this study was to investigate correlations
between foot function during gait and perceived disability in this population.
Interestingly, our findings suggest that older, symptomatic children
following clubfoot treatment present with similar degrees of gait deviations
and perceived disability regardless of whether they were treated with the
Ponseti Method or surgery. The presence of sagittal and coronal plane
hindfoot deformity (equinus and varus respectively) and coronal plane
forefoot deformity (supination) were associated with higher levels of

perceived disability, regardless of their initial treatment.

Reflecting on the findings of this final study, the gait deformities most linked
with poor perceived outcomes are not unsurprising as they are a component
of the original structural deformity. It is well accepted that recurrence rates

are high even following a good initial correction, and can be as high as 40%
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(24). In addition, when treating this population, an atypical or resistant
clubfoot deformity can be present from birth, or it can be created if
abduction of the foot is initiated before the cavus element of the deformity is
fully corrected (25). These complex clubfeet are known to have high
recurrence rates regardless of treatment type, leading to poor outcomes
(25). Since publishing this paper, Grin and colleagues (26) have agreed with
our findings. The authors investigated kinematic data during gait in children
with relapsed clubfoot using the OFM and showed that forefoot adduction
and forefoot supination were the kinematic biomarkers for relapsed feet (26)

however they did not link their gait findings with perceived outcomes.

| am left with 2 questions. The first is: ‘Why didn’t the Ponseti cohort do
better than surgery?’ | do believe the answer to this question could be
achieved by a larger international cohort study investigating older children
with the full spectrum of outcomes, including fully corrected through to
significant residual deformity, and asymptomatic through to symptomatic
cases, using the same research methodology as used in our study. This
would analyse the full breadth of deformity correction and what is achievable

from a deformity correction and satisfaction stand-point.

The second question is trickier: ‘Why were the subjective outcome measures
used in our study NOT better correlated with each other, and with foot
function during gait?’. This is despite two out of the three subjective
measures used being created and validated in the clubfoot population. Does

this bring in doubt the validity of the measures? Or (more likely) does this
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reflect the difficulty of relating the three domains of the ICF- body and
structure to activity and participation? Foot structure may affect foot function
and therefore walking capacity (amongst many other factors) ... and walking
capacity may affect quality of life (amongst many other factors) ....
Therefore, much deeper insight into this dilemma is needed to be able to
link structure, function and perception if we are hoping to improve

subjective outcomes in our clinical populations.

METHODOLOGICAL CONSIDERATIONS

Study populations

A strong element to our methodology of four of the five studies in this thesis
was the use of a wide age range (adults and children) as well as a variety of
clinical populations including a congenital, idiopathic foot deformity
(clubfoot) as well as foot deformities that develop over-time due to a
neurological insult (cerebral palsy and acquired head injury). Chapter Il
would benefit from being repeated in a clinical population. Investigating the
repeatability of marker placement using experienced and less-experienced
gait analysts may be better illuminated when foot deformity is present. A
neutral hindfoot in a healthy population could inherently improve intra-rater
and inter-rater repeatability and likely masks the advantage of the superior
knowledge of foot deformity that comes with experience in both clinical

assessment of feet and marker-placement experience.
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Modelling

Despite repeatability testing and validating kinematic outcome measures,
our study results are only as good as the kinematic models in their current
form. Constant improvement in technology and development of the models
themselves are improving our ability to replicate and interpret human
motion. One example of this may be markerless kinematic models- where
we are no longer limited by placing markers on the skin over bony
landmarks (27,28). The ISB (International Society of Biomechanics)
recommendations have recently cited: ‘Bi-planar video fluoroscopy methods
either with invasively inserted intracortical markers or using marker-less
tracking have shown great potential ... but are at present limited by the
radiation exposure, equipment and personnel costs, and tracking volumes.’

(29).

Study design

As stated earlier, our study populations are widely representative of those
who commonly access a three-dimensional gait laboratory for clinical
management decisions. However, our studies all included convenience
sampling, as opposed to being representative of those who are living in
society with varying levels of foot deformity. Chapter IV was the first study in
the literature to investigate children with ongoing, symptomatic clubfoot
deformity. Following the results of this paper, the findings may be
strengthened by looking at the full range of children post clubfoot
treatment, including those who have good functional results and are

subjectively pleased with their outcomes. This may provide thresholds of
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deformity that are problematic/ or not problematic, especially in the longer
term. The knowledge of when not to treat can be just as important as
knowing when to treat; especially in populations we know can have

disastrous long-term results due to stiff and painful feet.

CLINICAL IMPLICATIONS

The Oxford Foot Model (OFM) was originally designed to measure dynamic
motion of the tibia, hindfoot and forefoot in three-dimensions in a clinical
setting where anatomical abnormalities of the foot structure is common
(10,12). The primary aim of this thesis was to establish the clinical
meaningfulness of the OFM to assess foot deformity during gait. Through
the course of this thesis, we have proven the OFM is repeatable in
populations with known foot deformity; whether the foot deformity was
congenital, acquired, or secondary to abnormal neurology. We have
established the eyeball method of marker application is the most repeatable
over available anatomical alignment devices, for both experienced and
inexperienced marker placers. The Foot Profile Score (FPS) - a single
summary score of the OFM kinematic data- was defined and validated as an
outcome measure of foot structure and dynamic function. The FPS was then
tested for its responsiveness in a clinical population with a convincing result.
Finally, the OFM was key in determining differences in foot function between
children with clubfoot treated initially with the Ponseti Method or surgery,
compared to a healthy population. Our secondary aim was to then correlate

these gait findings with perceived outcomes, highlighting which residual
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deformities are more likely to be associated with poor outcomes in this

population.

Over the span of the thesis, the included published work has been cited
numerous times. The clinimetric testing has been cited in review papers of
foot modelling (30), the development of new outcome measures for clubfoot
deformity (31), further repeatability studies (18,32) and ISB
recommendations for skin-marker-based multi-segment foot kinematics
(29), which also cited the FPS validation study. The FPS validation paper has
been further cited in outcome-based studies (26,33) and in a systematic
review of assessing foot-types (34). The study analysing foot function and
perceived outcomes in symptomatic clubfoot has been cited in review papers

of clubfoot management (35,36) and outcome-based studies (26,37).

FUTURE RESEARCH
The aims of the overall thesis span many disciplines from engineering to
orthopaedics to social-based medicine. Therefore, the potential future

research recommendations are wide and exciting:

e Improving the modelling of the foot during three-dimensional gait
analysis. We have proven the OFM /s repeatable and clinically
meaningful in analysing foot function during gait, including pre-post
surgical intervention. However, as technology improves, so must our
modelling techniques. Therefore, it is likely improvements can and will

be made to the OFM over time.
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A rigorous investigation of the minimal clinically important difference
(MCID) for the Foot Profile Score (FPS). In Chapter V, an MCID of no
more than 2.4 degrees was calculated based on the validation results.
However, a prospective trial to rigorously test the MCID is warranted as
a lower value may be indicative of a clinically meaningful

improvement.

A larger, international, multi-centre clubfoot study based on the same
methodology as Chapter VI; to further investigate what element of the
clubfoot deformity correlates to poor perceived outcomes. To
understand thresholds of Aow much deformity leads to poor
outcomes, a wider clubfoot population is needed - those with good
results through to very poor results. This may be the only way to
understand which residual deformities are best to target with further

treatment, and which ones are better left alone.
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“It’s worth remembering thatit is
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lasting change.”

178



