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ABSTRACT

Autonomous vehicles require a human-machine interaction (HMI)
system for safe control transition during takeover requests (TORs).
Vital to the HMI system is real-time monitoring of drivers’ situa-
tional awareness, across diverse scenarios, without pre-calibration.
This paper reviews situational awareness metrics, and considers
sensor and computational model limitations, highlighting current
gaps. We present a classification model categorizing awareness
measurement methods—session-specific, online, offline—suitable
for various applications, aiding researchers in choosing appropriate
models.
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1 INTRODUCTION

Situational awareness (SA) pertains to perceiving and understand-
ing one’s environment, crucial in safety-critical contexts like driv-
ing. To prevent errors, monitoring systems generate alerts for inad-
equate SA levels during tasks [17]. Endsley’s model categorizes SA
into 3 levels: environmental perception (Level 1), comprehension
(Level 2), and future projection (Level 3) [17].

SA influences performance and mental workload, where higher
workload often diminishes SA and degrades performance [18, 36].
Thus, this review considers workload experiments alongside SA
measurement methods.

SA assessment methods in literature are subjective and objective.
Subjective methods employ self-reported questionnaires, yielding
scores for SA levels [16, 24, 26, 37, 48, 51]. Objective methods include
physiological and real-time performance measures.

Notable subjective SA measures include: i) SA General Assess-
ment Test (SAGAT) [53]; ii) Situation Present Assessment Method
(SPAM); and iii) Subjective SA Test (SART) [9, 61]. Administered
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post-trial, they risk summative responses with potential inaccura-
cies [44], or during trials, impacting real-world use.

Objective SA can utilize physiological measures like electro-
cardiogram (ECG) [5, 12], electroencephalogram (EEG) [5, 12, 34],
functional near-infrared spectroscopy (fNIRS) [5], galvanic skin
response [12], gaze [34, 60], and eyelid closure (PERCLOS) [32].
Although used for cognitive load [6, 7, 25], these aren’t widely
adopted for SA due to equipment attachment challenges.

Indirect objective assessment involves task accuracy, time [19,
30], reflecting SA level. Driver speed, brake reaction, lateral position
are indicators. Despite SA monitoring efforts, current methods lack
real-world suitability due to equipment, calibration, and universal
application limitations.

Recent interest in driving SA assessment introduced various
methods. Evers et al. [10] contrasted self-report, physiological, and
performance-based methods, favoring reliable hazard perception
and reaction time over self-report. Lee et al. [28] explored eye-
tracking, correlating metrics with SA. Multi-method SA assessment,
including physiological and eye-tracking measures, emerges as
valuable for driving evaluation.

1.1 Purpose of the study

The purpose of this literature review is to identify the different
methods used to objectively measure SA with a focus on automated
driving, illustrate the currently known limitations for the different
measurement methods.

A special focus to identify the gaze tracking methods is also
presented, showing the gap in the literature of identifying a suitable
gaze tracking method that can measure SA in driving. And conclude
by highlighting future possibilities for measuring SA.

As far as the author knows this is the only review on SA that
investigates the different computational methods and their accura-
cies. And the different eye gaze measurement models that can be
used and their limitations.

Following we also present the state-of-the-art computational
methods that are applied to physiological data that can produce
highly accurate measurements of SA that can be applied in real-
world driving.

2 METHOD

A panoramic review covered ISI Web of Science, IEEE Xplore, and
Google Scholar using keywords like “EEG,” “ECG,” “gaze tracking,’
“multi-modal feature extraction,” “situational awareness,” and “driv-
ing” within 2006-2022. Only 13 unique papers assessing Driving SA
were found and reviewed.

Another search explored behavior linked to situational aware-
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To evaluate computational methods analyzing physiological mea-
sures applicable to SA, a separate search sought "EEG," "ECG,'
"gaze tracking," "multi-modal feature extraction,’ and "computa-
tional methods." While 99 papers addressing cognitive distractions

were identified, they didn’t strictly classify SA.

2.1 Main themes identified

The literature identifies SA classification using ECG heart rate, EEG,
and gaze tracking. However, accuracy remains low for distinguish-
ing specific SA levels, like Level 1.

Given limited SA-focused studies, additional papers on cognitive
load were examined. The cognitive load’s connection to SA and the
search for suitable computational methods prompted this review.

3 RESULTS

3.1 Heart rate measurements

Heart rate variability can be caused by effort, external stress, or
medications, and electrocardiograms (ECG) are often utilised to
evaluate stress [14]. ECG has also been correlated to SA in driv-
ing experiments [2, 3]. In Agrawal et al. [3] 134 participants were
involved in a Level 3 automation study, and their heart rate was
recorded at a frequency of 256 Hz. Since heart rate (HR) differs for
everyone, the signal was normalized for each participant, requiring
processing HR offline. They found that HR measurements were
higher at the earlier runs in the simulator as drivers were tense,
affecting the results. Also, Petersen et al. [43] measured the heart
rate in a driving simulator experiment while also measuring the
SA. The heart rate at a high level of SA was found to be around
120 BPM compared to 110 BPM at low SA. This conveys there is
a slight difference in the heart rate at different SA levels, which
could potentially be used as a measurement for SA in the real world.
However, limited research has been conducted to investigate the
ECG measurement’s relation to SA.

The current limitations are that the measurements are subject-
specific, include noise, and are currently processed offline. There are
difficulties in pattern recognition of ECG data due to noise caused
by heart rate variability. ECG has a relationship with both stress
and SA which would have to be disentangled. To be usable in the
real world, the measuring equipment might need to be attached to
the driver (e.g. watch), or embedded in the car (e.g. steering wheel),
and the signal processing computations performed in real-time.
Also, ECG measurements can’t be used to classify if the subject has
a high level 1, 2, or 3 level of SA.

3.2 EEG measures

Brain activity can be measured in real-time for example, using time-
locked signals of EEG activity, referred to as event-related brain
potentials [50]. Jan et. al [33] had shown that there is a correlation
between the frequency bands of § (12-30Hz) and y (30-45Hz) and
SA. And neurons in the left and right hemispheres of the parietal
and temporal lobe were activated at a high SA. As these regions are
responsible for the visuospatial ability and memory and reasoning
tasks [33]. Three other studies also used EEG measurements to
measure the SA [8, 11, 20]. As for ECG, EEG signals are subject-
specific, include noise, and need to be processed in real-time to be
usable in a real-world scenario. When the EEG measurements are
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processed in real time the accuracy decreases considerably. And,
again the equipment must be attached to the driver.

3.2.1 EEG Computations. In Jan et. al [33] samples are first labeled
in an experiment from their performance results as either having a
high or low SA. EEG data is then timestamped with the SA test data.
Data must be cleaned from outliers as the machine learning models
used for classification would be very sensitive to outliers. A random
forest classifier is used which fits several decision tree classifiers
and uses averaging to control over-fitting [40], achieving 67% in
Jan et. al [33]. In Fernandez et al. [20] subjective scores were taken
from the subjects to measure their SA and EEG was then used and
achieved 61.5 % accuracy. Catherine et al. [11] SA was measured
qualitatively from the performance in a visual search experiment.
It was proven that EEG brain activity is directly linked with loss
of SA in the experiments. In both experiments the level of SA was
measured as either high or low.

Although EEG measurements have shown some success in being
linked to two levels of SA however, more computational investi-
gations are needed especially with the wealth of studies in the
literature linking EEG measurements with the mental workload
[13]. EEG measurements were able to measure high and low mental
workload in Hogervorst et al. [29] reaching 90% and in Murata et al.
[38] reaching 95% accuracy. This indicates that much higher accu-
racies could be achieved by EEG measurements in SA classification.
These computations were session-specific and taken offline and
were classifying two levels of mental workload. When the workload
increased to three levels in Zhao et al. [62] and used support vector
machine SVM, an accuracy of 81.64 % was achieved.

3.3 Gaze tracking models

Gaze tracking models can be clustered into two types; appearance-
based models and featured-based models. Feature-based models
either depend on geometric eye models or features obtained from
facial landmarks and head orientation, while appearance models
are based on the intensities of the eye. Gaze tracking measures have
been used in several investigations to measure SA [3, 43]. There
are several gaze metrics that can be used in classifying the level of
SA of subjects. Gaze fixation is defined by Abbasi et al. [1] as the
fixation time on an area of interest for a period between 100 ms
and 2000 ms. Remote eye tracker manufacturers such as SmartEye
Pro and Tobii consider 200 ms to be the minimum gaze time for a
valid fixation. The table 1 shows the definitions of different gaze
metrics used in the literature.

3.3.1 Gaze measurements correlation to SA. Louie et al. [35] mea-
sured head pose estimation module, pupil tracking module, head
movement rate module, and visual focus of attention accurately in
a driving context using a 2D camera, however, each of these mea-
surements needs to be correlated to SA which was not completed.

There were earlier studies in the literature that linked SA to gaze
metrics in an autonomous vehicle experiment such as Peterson et
al. [43] that showed the percentage of time the driver looked at the
road had no correlation with a SA. Although, [59] indicated that
the lower percentage of time drivers fixated on the road, the higher
level of cognitive distraction, which is linked with SA.
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Table 1: Eye gaze definitions

Eye gaze metric

Area of interest (AOI)

‘ Definition

The area in each task were the sub-
ject needs to focus on to preform
the task

Number of fixations per minute,
with a fixation categorized as less
than 1° on AOI for 150 msec [49]
Time between fixations on the same
Aol added to Total fixation time on
an Aol [52]

Randomness of visual scanning be-
havior [52]

Percentage of gaze fixations falling
in the center of the road [58]

Eyes are in motion tracking a mov-
ing target while [4]

A time slot where the eyes are com-
pensating for head motion and sta-
bilising the foveated area [4]
Sawtooth-like eyemovement pat-|
terns [4]

Pursuit of a moving target using
head motion [4]

Fixation rate

Dwell time

Nearest neighbor index

Percent road Center (PRC)

Smooth pursuits

Vestibulo-ocular  reflex

(VOR)

Optoki-netic nystagmus
(OKN)
Head pursuit

Gao el al. [23] used Tobii Pro Glasses 3 to track human gaze
fixation and used the SAGAT level 1 questionnaire, that focus on
perception, in the experiment to measure the level of SA, and the
results indicated a weak Pearson correlation coefficient of 0.12 be-
tween SA and the fixation time. However, the fixation time was
chosen for all cars and pedestrians at the times studied in the ex-
periment, while the area of interest in the situation is the area that
needed to be investigated. These results convey there is no con-
sensus in the literature on whether gaze metrics can measure SA
in driving or not, as a suitable model of measuring gaze metrics
while driving has not been developed yet. The reason there is no
consensus in the literature on this topic is due to different gaze
patterns in different automation levels not being investigated.

In manual driving, the proportion of looking on the road would
be the same at high and low SA, and the proportion of time looking
on the road would decrease as the automation level increases, which
would affect the relationship between this metric and SA. Rangesh
et al. [46] examined the correlation between gaze fixation to differ-
ent defined regions in automated driving, such as the speedometer,
radio, rear mirrors, and the road. In this driving scenario, the right
driving mirror was the highest correlated to the observable situa-
tional awareness, which is completed by observers watching the
drivers.

Zhou et al. [63] conducted the most detailed automated driving
experiment as several predictor variables were used including gaze
metrics and SA was classified as high and low. The gaze metrics
used included fixation on the sky, road, and different mirrors. The
gaze metric variables achieved a root mean square error in relation
to SA of 0.121 using the lightGBM classifier which is a decision tree
classifier.
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Zhou et al. [64] used gaze fixation on defined features on the road,
while taking into consideration the foveated region, and also took
into consideration short term memory of the number of objects that
can be remembered by the driver. This data was then processed
using SVM achieving a 72.4% accuracy in predicting the SA of
the driver which is the highest prediction of SA of a driver in the
literature review.

Hofbauer et al. [28] measured the region of interest in driving us-
ing the machine learning networks as shown in [27]. Following the
identification of the region of interest, it is defined as either unde-
tected, detected, or comprehended in a manual driving experiment.
The optimal SA is measured as the weighted sum of situational
elements multiplied by their perception level. The perception level
was taken as 0 for an undetected situational element, 0.5 for a de-
tected situational element, and 1 for a comprehended situational
element. Although this experiment concludes that eye gaze fixation
on an ROl is a good indication of the level of SA, however, there
was no SAGAT measurement taken in this experiment to validate
the results.

3.3.2 Gaze measurements assessing cognitive distraction. Strayer
et al. [50] assessed the cognitive distraction in vehicles while dri-
vers were engaged in secondary tasks. Glance data was collected
in manual driving and while drivers were engaged in secondary
distracting tasks conveying that those glances to the right and left
decreased as the cognitive workload increased in a manual driv-
ing condition. This is contrary to the results in Yang et al. [59],
indicating the differences that occur in the relation of glances and
cognitive distraction in manual and autonomous driving.

3.3.3  Gaze measurements computational methods. As mentioned,
both features based and appearance-based models can be used for
gaze tracking measures. Feature based models have been used suc-
cessfully in [15, 21, 22, 31, 41, 47, 55], the performance of the feature
based models was assessed in terms of the accuracy reached, the
regions of interest involved, and whether the model is user specific
or a global model that can be used with different subjects. Gaze
tracking was done using head pose estimation where a regression
model is used for each Euler angle producing a mean average error
of 5.324 Ruiz et al.[47]. In Fridman, Lee, et al.[22] the feature based
model used images from a camera attached to the dashboard of
the vehicle achieving an accuracy of 94.6% while taking only confi-
dent estimations, and when cross validation is used the accuracy
decreased to 65%. The latest feature based model used was in Dari
et al., [15] outperforming earlier landmark based gaze estimation
techniques by producing an accuracy of 92.3% on 75 video snippets
with 20 subjects and 7 region of interest involved. Although, feature
based models have been proved to produce great accuracies, how-
ever, calibration is always required which is the main drawback for
feature-based models and the reason they are not chosen in this
research. Appearance based models do not require calibration, the
paper Fridman, Langhans, et al.[21] used a random forest classifier
to achieve 44% accuracy for 6 classes when used as a global model,
and a user based model achieved 91%. In the model used by Fridman,
Langhans, et al.[21] a camera was positioned on the dashboard and
50 subjects were involved in driving through a local interstate high
way. An infrared camera was used in Naqvi et al.[39] and an Alex
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net neural network was able to achieve 96.3% accuracy in 17 re-
gions of interest, but the problem with infrared cameras that would
be effective in detecting the glint of the eye is that they would be
affected by differences that happen in illumination. Park et al.[42]
used an appearance model that used a VGG-16 neural network that
achieved accuracy within 3.18 degrees. The highest accuracy found
in the literature for an appearance based model was in Vora et al.
[54] were the camera was attached behind the rear view mirror and
the model was trained on 11 drivers achieving an accuracy of 95.2%.
for 6 regions of interest. The best gaze tracking model that can be
deployed for measuring SA in a driving task would need to achieve
high accuracy with at least six regions of interest, require no cal-
ibration, and be transferable between different sessions, subjects,
and scenarios.

3.3.4 Conclusion section of eye gaze. Yu et al. [60] conveyed scan
patterns for subjects in a flight simulation towards defined areas
of interest (AOI) were directly linked to their level of SA. This
conveys that if the AOI in a driving scenario is identified then the
first level of SA (perception) can be classified using gaze metrics.
The gaze patterns of drivers differ at different automation levels,
which would affect the SA measurements. As in manual driving the
driver is most of the time focused on the road and the percentage
of time the driver focuses on the road decreases as the automation
level increases. An experiment is needed to evaluate gaze metrics
measuring SA at different automation levels.

3.4 Multimodal feature extraction

Multimodal feature extraction has been applied in several experi-
ments to measure driver’s cognitive load. In Yang et al. [57] ECG,
and EEG measurements are taken, and the experimental results
show their effectiveness in measuring the driver’s fatigue.

Lobo et al. [34] used both EEG data and gaze tracking data to
identify the level of cognitive distraction. For the EEG data, the
alpha power and theta power are the features extracted, while
for the gaze data, the percentage of eyelid closure and the pupil
diameter are the features collected. The data is first labeled into
the high workload, medium workload, and low workload. The best
classification model used was the K-Nearest Neighbor achieving 99%
accuracy, however, this approach did not allow transfer learning
between different sessions and subjects. Functional near-infrared
spectroscopy (fNIRS) conveys the level of oxygen in the blood
when brain regions are active [45] and Ahn et al. [5] used EEG,
ECG, and {NIRS data to determine mental fatigue. Although, the
combined features were not related linearly to the fatigue level,
each modality affected the fatigue level and in one subject the
multimodal features improved the accuracy 30% compared to EEG
only. Chen et al. [12] used a combination of electrocardiogram,
galvanic skin response and respiration measurements to detect
driver’s stress. Data was preprocessed then support vector machine
(SVM) and Extreme Learning Machine (ELM) were used to classify
the stress level in drivers, with stress representing. The receiver
operating characteristic (ROC) curve was used to assess the models
used and SVM produced the highest accuracy of 99%.

Heart rate (HR), respiration and eye movement and EEG mea-
sures were used to classify the operators state in the form of high
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and low [56]. An ANN was used achieving 98.5% offline and 82%
online.

No studies have yet investigated the use of multi modal feature
extraction in driving to assess the SA of drivers. However, mul-
timodal, measurements have shown a higher accuracy and could
present a possibility to measure SA with higher accuracies in driv-
ing. Table 2 shows cognitive classification achieved using different
models and the accuracy to correlating if such relation was investi-
gated.

Table 2: Classification models using EEG and Gaze tracking
measurements

Paper |measurement |online |offline |number|model |accuracy
of
classes
[33] |EEG X 2 random |67%
forest
classi-
fier
[20] |EEG X 2 61.5%
[11] |EEG X 2
[43] |Fixation time |X 2 not corre-
lated to
SA
[23] |Fixation time |X 2 0.12 pear-|
son corre-
lation
[63] |Gaze metrics |X 2 Light 0.121
GBM RMSE
[64] |Fixation time |X 2 SVM 72.4%
[3] Percentage on
the road gaze
fixation
[28] |Gaze fixation|X 3
on  defined
ROI

4 DISCUSSION

This literature review focused on experiments measuring the sit-
uational awareness of drivers in vehicles. Different physiological
measurements in the literature were evaluated such as EEG, eye
gaze, ECG, and multi modal measurements.

EEG measurements have been used in [11, 20, 33] but neither of
these studies was conducted in a driving simulator, and required
post processing of the data, therefore can’t be conducted online.
EEG achieved the highest accuracy of 67% [33].

ECG has been used to measure SA in driving experiments in
[2, 3, 43], however, the presence of noise and post processing makes
ECG an unattractive option to measure SA. The most common
method used in the literature to measure SA are eye tracking meth-
ods. However, the most common gaze tracking method used in
driving experiments in the literature is the road monitoring ratio
[43] which monitors the percentage of time the driver’s gaze fixa-
tion is on the road in the journey. This metric is found to be effective
in automated vehicles, as an increase in this percentage would be
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linked to a high SA level. However, in manual driving this metric
is not effective in measuring SA as the driver would be looking
to the road most of the time. Hofbauer et al. [28] conducted the
only experiment that investigated gaze tracking on several regions
of interest in a driving scene, and the results showed promise to
using gaze tracking to measure driver’s situational awareness at
real time. However, Hofbauer’s method included all the situational
elements in the driver’s surrounding which would be important
in a driving situation for the driver to gain SA and comprehend
his/her surroundings however there is an area of interest that the
driver looks at in every scenario that has not been investigated and
would further improve Hofbauer’s method. And although, multi-
modal measurements have shown success in measuring the driver’s
cognitive status they have not yet been used to measure SA which
could further improve the results. The highest recorded SA in a
driving experiment using physiological measures was using gaze
metrics in Zhu et al. [64] reaching 72.4% accuracy.

With the research trend seen in the literature moving towards
using gaze tracking to measure SA in driving, which is the right
direction. However, the correct AOI is needed to be identified to
be able to use the advances in gaze tracking technology to the
advantage of measuring SA in driving. And special focus is needed
to identify the changes in the gaze patterns in different automation
levels.

5 CONCLUSION

In conclusion, SA measurement in driving situations in the litera-
ture has been examined through physiological measures. And from
the review of the results and the different computational methods
used with each physiological measurement, gaze tracking is the
most suited to be applied in different situations, subjects, and com-
putations can be done at real time with only a camera as shown
in [54] achieving a 95.2% accuracy for 6 regions of interest. Zhu et
al. [64] classified SA using gaze metrics using SVM reaching 72.4%
accuracy, which is the highest in the literature.

However, further analysis is required to identify the AOI in
driving and use that with the gaze fixation measurement to identify
the level of SA of drivers in different automation levels, which could
lead to a higher accuracy in classifying SA.
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