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Emotion recognition has become increasingly significant in artificial intelligence; however, the impact of
body movements on emotion interpretation remains under-explored. This paper presents a novel Hybrid
Bayesian Pre-trained Long Short-Term Memory (HBP-LSTM) framework that combines low-level pose data
with high-level kinematic features, utilising Bayesian inference to enhance the accuracy and robustness of
emotion recognition. The proposed model is trained on high-quality laboratory data to capture the fundamental
patterns of emotional expression through body movements. We introduce noise and employ adversarial attack
methods such as the Fast Gradient Sign Method (FGSM) to evaluate the model’s robustness during testing. This
approach assesses the HBP-LSTM’s ability to maintain performance under data degradation and adversarial
conditions, common challenges in real-world scenarios. We validated the HBP-LSTM on two public datasets,
EGBM and KDAEE, demonstrating that the model exhibits high robustness against noise and adversarial
perturbations, outperforming traditional models. The HBP-LSTM accurately identifies seven basic emotions
(happiness, sadness, surprise, fear, anger, disgust, and neutrality) with accuracies of 98% and 88% on the EGBM
and KDAEE datasets, respectively. HBP-LSTM 1is a noise-resistant model with a reliable emotion recognition
framework, which lays the foundation for future applications of emotion recognition technology in more
challenging real-world environments.

1. Introduction be apparent; thus, physical movement presents a viable method for

emotion recognition (Oguz and Ertugrul, 2024).

In the current literature, facial expressions (Canal et al., 2022),
body language (Oguz and Ertugrul, 2024), voice (Zhang et al., 2023),
and physiological changes (Tang et al., 2024) are the primary methods
utilised to analyse people’s expression of feelings. Also, there are efforts
to interpret facial expressions in connection with the voice (Zambeli
et al.,, 2024). According to Ekman (1984), humans are prone to ac-
knowledge facial expressions and disregard body language to empathise
with others. Nevertheless, non-verbal communication cannot be under-
scored enough in conveying emotions and body language and posture
contribute to accurately communicating one’s intentions and feelings
to another person (Ahmed et al.,, 2019). There is a growing interest
in utilising bodily movement, posture, and gesture to comprehend
emotions. Multiple fundamental factors underpin this trend. Recent
developments in motion capture technology and its enhanced accuracy
have resulted in a surge in the volume and quality of data valuable
for the automatic recognition of expressive movements (Elansary et al.,
2024; Khare et al., 2023). At a distance, facial expressions might not

Recent research has focused on creating systems that autonomously
identify emotions by examining cues from body posture and forecast
emotions by reviewing an individual’s body language (Geetha et al.,
2024). These advancements seek to optimise and enhance communi-
cation effectiveness between humans and robots. However, despite the
increased interest, the significance of body language in the automated
analysis of emotions is still not yet fully acknowledged (Ebdali Takalloo
et al., 2022). A lot of the current research work identifies emotions
through several modalities, such as facial expressions, head movements,
and hand gestures (Ebdali Takalloo et al., 2022). Yet, movements are
also crucial in emotional expression and recognition. For example, we
open our arms while experiencing positive emotions like joy, anger, or
surprise (Shaarani and Romano, 2007). Faster bodily reactions related
to fear, joy, anger, or surprise, and slow movements and responses fall
under the category of sadness (De Meijer, 1989).

Laban Movement Analysis (LMA) has been employed to date pri-
marily to analyse physical activity (Wang et al., 2024b; Shafir, 2023).
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LMA is a comprehensive system for observing and notating movement
which offers nuanced insights into human behaviour through the cat-
egorisation of movements based on body parts, movement dynamics,
and spatial pathways (Shafir, 2023). Previous research has frequently
restricted their examination to only a small range of characteristics
amongst the possible extensive set of measurable qualities connected
with a physical activity, failing to consider the correlation and hi-
erarchical significance of other measurable elements (Sapinski et al.,
2019a). Moreover, occlusion (objects or people blocking parts of the
subject from view) presents a significant challenge (Surace et al.,,
2017).

We advocate a holistic approach to automatic emotion recognition
that includes not just individual gestures or facial expressions but also
investigating the whole bodily apparatus’s contribution and movement
to the communication of emotional states. While there are some early
attempts to explore the entire body’s emotional experience automati-
cally (Wang et al., 2024b; Ahmed et al., 2019; Wang et al., 2015), this
is still an under-researched area.

All the above described challenges highlight the need to for a
robust approach, and a machine-learning algorithm, that can reliably
detecting and predicting human emotions only from bodily movement,
particularly in cases where the data are partially occluded or missing.

This publication makes the following contribution to knowledge:

+ A novel framework for structuring bodily motion into low-level
and high-level features based on Laban Movement Analysis
(LMA);

The Hybrid Bayesian Pre-Learned Long Short-Term Memory
(HBP-LSTM) architecture, a pioneering approach for emotion
recognition from body movements that integrates Bayesian meth-
ods with Long Short-Term Memory neural networks; and
Extensive experiments and their results to validate the robustness
and accuracy of the proposed HBP-LSTM model against estab-
lished models using two benchmark laboratory datasets, MDESVG
and KDAEE, focusing on its performance under various simulated
noise conditions and adversarial attacks.

2. Related work
2.1. Automatic emotion recognition from gross body movement

Gross body movements (movements involving the whole body)
are the primary vehicle for expressing emotion (De Meijer, 1989).
Body language, such as changes in posture, movements, the manner
of walking (or gait), and more, can transfer realistic and substantial
emotional information that can hardly be read in the musculature of the
face or even materialised by words (YuMeng et al., 2024), highlighting
the importance of the body in emotion communication (Reed et al.,
2020).

Recent studies have explored various approaches to automatic emo-
tion recognition from body movements, mainly focusing on low-level
or high-level features. Sapinski et al. (2019a) introduced an algorithm
for emotion recognition utilising the low-level characteristics obtained
from the spatial arrangement and orientation of the joints in the
complete skeletal structure. However, the authors did not fully explore
how to integrate dynamic motor features with high-level kinematic fea-
tures that could enhance the fine-grained understanding of emotional
expression. YuMeng et al. (2024) proposed the Affective-Pose Gait
Network (APGN), a novel approach for analysing emotions from gait.
APGN employs a Spatio-Temporal Graph Convolutional Network (ST-
GCN) to draw out a pose’s features and a Convolutional Neural Network
(CNN) to extract the affective features, emphasising the necessity of
integrating both pose and affective data for more accurate emotion
recognition from body movements. However, their model did not fully
address the challenges posed by noisy or adversarial data, which can
affect the robustness of emotion recognition systems.

184

AI Open 6 (2025) 183-203

2.2. Laban movement analysis

Human symbolic representation systems provide an effective
method for analysing and interpreting body movements. In psychology,
such coding techniques help to recognise emotional states such as
boredom or interest (Wang et al.,, 2024b) by categorising different
body postures and gestures, such as proximity, upper body posture, and
hand movements. Laban Movement Analysis (LMA) is a widely used
system of movement notation created by choreographer and theorist
Rudolf Laban. LMA emphasises the relationship between internal states,
intention and attention, and human movement forms, and it can
provide insight into the expressive characteristics of movement. LMA
has been used effectively in the analysis of emotional and behavioural
patterns. High-level movement analysis based on LMA (Laban and
Ullmann, 1971) has been employed in several studies to gain nuanced
insights into human behaviour. LMA offers a comprehensive system
for observing and notating movement, categorising it based on factors
such as body parts, dynamics, and spatial pathways. Bartenieff and
Lewis (2013) and other researchers compiled and expanded LMA to
enhance its comprehensiveness and intricacy. Table 1 summarises the
main categories of LMA.

Laban Movement Analysis (LMA) provides a rich body of terminol-
ogy for understanding body movement as an expression of an individ-
ual’s feelings and emotional reflections. The categories in its framework
play a key role in this understanding (Melzer et al., 2019):

Body: By observing “what is in motion”, one can infer emotional
states. For instance, a slouched posture might indicate sadness or
defeat, while an erect posture could signify confidence.

Space: The “where the body moves” can signify an individual’s
intent or emotional relation to their environment. Retreating actions
may suggest fear or evasion, whilst advancing actions could denote
hostility or eagerness.

Shape: Changes in the body’s shape can provide insight into a per-
son’s emotional response to their surroundings. Contraction or shrink-
age may indicate fear or introspection, while expansion indicates open-
ness or joy.

Effort: This category is particularly relevant to emotions. Intrinsic
attitudes towards exercise can provide direct clues about emotional
states:

Weight: Heavy movements may be firm or aggressive, while light
movements may be tentative or gentle.

Space: Direct movements can indicate decisiveness or focus, while
indirect ones may suggest distraction or uncertainty.

Time: Sudden movements often correlate with impulsiveness or
surprise, and sustained motions with deliberation or calmness.
Flow: Bound flow may be associated with control or tension, while
free flow may suggest relaxation or spontaneity.

2.3. Automatic gross body emotion recognition from Laban movement anal-
ysis

Ahmed et al. (2019) employed a genetic algorithm for feature
selection and presented a two-layer framework that executed feature
selection computationally considering the human action descriptors,
including from LMA, which was relevant in identifying significant
emotional aspects. Wang et al. (2024b) proposed an LMA-based emo-
tion recognition method for dance movements. The method accurately
captures the emotional expression in dance by analysing the body’s
spatial distribution, structural features and movement patterns. They
achieved recognition accuracy of 79.74% using deep neural networks
(DNN). These studies demonstrate the potential application of LMA in
gross body emotion recognition. However, the methods in the literature
usually rely on high-quality datasets and do not adequately consider the
impact of noise or adversarial perturbations on model performance.
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Table 1
Laban movement analysis components.
Component Description
Body Neuromuscular patterns, Movement initiation, Movement sequence
Space Kinesphere, Geometry, Spatial intention
Shape Connection of body parts, Shape forms, Shape change, Shape flow support
Effort Qualities of motion including Flow, Weight, Time, and Space

Despite the progress described above in automatic body movement
emotion recognition, the robustness of the models still faces serious
challenges when dealing with noisy data and adversarial attacks. Data
in real environments are often interfered with by various factors such as
sensor noise, occlusion, and deliberate perturbation that seriously affect
the model’s actual performance. Some studies have started addressing
some of these problems in other domains. For instance, Goodfellow
(2016) came up with the Fast Gradient Sign Method (FGSM) as a way
of developing adversarial examples that trick neural networks, which
highlights the importance of constructing robust models that can with-
stand such attacks. However, in the context of emotion recognition, few
studies have systematically evaluated the robustness of the model under
noisy or adversarial conditions, and there is a gap in research focusing
on developing and testing models that maintain high performance
when subjected to data degradation or adversarial perturbations.

3. Novelty

This publication presents the Hybrid Bayesian Pre-trained LSTM
(HBP-LSTM) framework that automatically recognises emotion from
gross body movements based on LMA, ameliorating the reliability and
precision of the current automatic emotion recognition models trained
on high-quality data. The use of Bayesian inference with the LSTM
was purposely incorporated to emphasise the uncertainty and develop
a more robust model than the one presented in the literature.

Based on Laban Movement Analysis (LMA) (Bernardet et al., 2019),
we segment body movements as low and high-level features. Low-level
features are angular and linear distances that display the general body
configuration and volume data obtained from bounding boxes (Lar-
boulette and Gibet, 2015). High-level features comprise aspects like
speed, acceleration, and jerk (the difference between the acceleration
of an object and the rate of change of its acceleration), depending
on various body parts. Furthermore, high-level characteristics are also
unobservable, e.g., timing, weight (effort), spatial orientation, mov-
ing in symmetry, and the trunk being perpendicular to the ground
plane (Larboulette and Gibet, 2015). These advanced characteristics
offer a detailed comprehension of motion, showcasing the intricate and
delicate nature of human emotions expressed through body language.
In addition, we provide a deep analysis of the model performances
under different simulated noise conditions and adversarial attacks such
as FGSM, showing that the HBP-LSTM surpasses the other models in
terms of robustness.

The proposed framework, named hybrid Bayesian pre-trained long
short-term memory (HBP-LSTM) architecture, aims to reinforce the
emotion detection model’s robustness. The model utilises a Pre-trained
Bayesian LSTM to process low-level features, capturing temporal dy-
namics and modelling uncertainty through Bayesian inference. Also, to
stress the temporal features that are the most important for sentiment
recognition, an attention mechanism is utilised on the Pre-trained
Bayesian LSTM output. The considered high-level features are pro-
cessed through an adapter architecture, which changes the high-level
features to be related via the output of the attention layer. The in-
duction of the combined outputs of both the low-level and high-level
feature handling is followed by inputting them into a Post-fusion
Bayesian LSTM layer, which still learns temporal relations in the fused
space and deals with uncertainties, also using probabilistic modelling.
This approach enables a more nuanced and reliable analysis of complex
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affective cues, enhancing the robustness of affective detection in the
presence of data uncertainty.

To check the robustness of the HBP-LSTM model, we added noise
and used the Fast Gradient Sign Method (FGSM) as an adversarial at-
tack during the testing phase. This particular evaluation strategy gauges
the model’s performance in the presence of degraded data conditions,
which are, hence, a common challenge in real-world applications.
While the current study is conducted using laboratory datasets, the
framework is designed with the potential to handle challenges that may
arise in more variable settings.

4. Methodology
4.1. Overview

In human movement analysis, discerning the emotional intent be-
hind various movements is a complex challenge.

The automatic gross body emotion recognition presented in this
paper is based on LMA. By integrating the four core dimensions of
LMA (Shape, Effort, Body, and Space), the model can identify subtle
differences in emotional expression more accurately.

The Shape dimension of LMA was quantified by analysing changes
in the body structure and spatial relationships between body parts as
in Wang et al. (2024b). Specifically, this included extracting high-level
features such as height, width and depth measurements of the torso
boundary volume, which are the core elements of the shape dimension.

The Effort dimension of LMA focuses on the dynamic characteristics
of the movement in terms of time, weight, space and flow. We quantify
changes in these dynamic features through metrics such as velocity,
acceleration, and body part jerking. These effort-related features reflect
the intensity and style of movement and play a key role in emotion
recognition.

The Body dimension captures the low-level features in neuromus-
cular patterns and movement sequences by quantifying the spatial
relationships between body parts, while the Space dimension focuses
on the spatial intent and geometric properties of movements, revealing
how individuals interact with their environment.

Our proposed solution, the Hybrid Bayesian Pre-Learned LSTM
(HBP-LSTM) framework, innovatively combines Bayesian neural net-
works with Pre-trained feature encodings to enhance emotion recog-
nition from body movement data. HBP-LSTM adopts a novel structure:
a Pre-trained Bayesian LSTM processes low-level bodily features, and a
subsequent Bayesian LSTM handles the fused features alongside high-
level LMA features. This approach is geared towards capturing the
intricacies inherent in human emotions and ensuring robustness in the
face of data uncertainties by modelling uncertainty through Bayesian
methods. A comprehensive discussion of the HBP-LSTM framework and
its resilience in handling uncertain data is presented in Section 5. Fig.
1 provides a conceptual overview of the entire HBP-LSTM process for
emotion recognition, from data preprocessing to emotion type output.

4.2. Feature extraction

Wallbott (1998) underscored the pivotal role of hand and arm
movements in conveying emotions, suggesting that such upper body
movements are fundamental, rather than merely supplementary, in
embodying emotional states through bodily expressions. Based on this,
Wang et al. (2015) proposed an approach that combines low-level
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Fig. 1. Conceptual overview of the HBP-LSTM for emotional recognition.

gesture features with high-level movement features, paying special
attention to the evolution of these features in the time dimension to
capture the dynamic nature of emotional expression. On this basis,
Ahmed et al. (2019) further extends the analytical framework by subdi-
viding body movements into ten different categories. These categories
aim to reveal the complexity and overlapping features of emotions
reflected in body movements. The categorisation lays the foundation
for a deeper understanding of the physical expression of emotions and
marks an important advance in emotion recognition research.

Drawing inspiration from these groundbreaking studies, the current
methodology merges low-level postural features with comprehensive
high-level kinematic and geometric features of the body. The fea-
tures extracted are computationally derived from individual frames
or sequences of frames, enabling a detailed depiction of the body’s
movements. This approach aims to provide a multifaceted analysis of
how emotions are manifested through bodily gestures and postures,
leveraging both static and dynamic aspects of human movement to
achieve a deeper understanding of emotional expression.

4.2.1. Low-level feature

In our study, we represent body postural patterns by computing
low-level, context-independent features. Specifically, for the body’s
three-dimensional skeletal model, we calculate the spatial distances
between the hands, elbows, and feet relative to each other and the
shoulders. This includes measuring Euclidean distances from each hand
to the opposite shoulder, elbow, foot, and between the feet. We also
measure the distances from each elbow to the opposite hand and foot
and from the head to each hand. All these lead to 41 postural features
calculated on a per-frame basis as detailed in Table 2.

4.2.2. High-level feature

In high-level feature extraction, we extracted dynamic and qualita-
tive movement features related to emotional expression based on LMA.
These features cover the four main dimensions of LMA: Body, Effort,
Shape, and Space.

Velocity, Acceleration, and Jerk: This set of features represents the
dynamics of movement in motion sequence, as indicated by Larboulette
~(Larboulette and Gibet, 2015), consider a motion sequence X, which
is represented by a series of n sequential postures {x(), x(,), x(t3), ...,
x(t,)}. The velocity of this sequence is given by Eq. (1), and the
magnitude of velocity is defined in Eq. (2). The temporal evolution
of X through these postures determines the motion’s velocity profile.
Specifically, the velocity for the kth joint at time ¢, is denoted as v¥(z,),
and its x-component is expressed as vf((t,-). The term 6t signifies the
infinitesimally small time interval between successive frames. For the
experiments, we utilised two datasets: one acquired with Kinect V2 at
a frame rate of 30 fps, and the other with a frame rate of 125 fps.
Therefore, 6t is set to the time interval corresponding to a single frame,
approximately % s and s, respectively.

1
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Bounding Volume: We extended this set of features to analyse body
motion using a 3D bounding volume approach, where the space utili-
sation of the human body can be estimated from the bounding volumes
of each part of the body defined over time (Hachimura et al., 2005).
We structure the human body into a hierarchical model that allows for
a detailed investigation of movement throughout distinct body regions,
as depicted in Fig. 2. Our segmentation subdivides the body into four
primary regions, enabling us to evaluate the spatial dynamics of human
motion systematically. This segmentation is visually summarised in
Figs. 2 and 3. Fig. 2 presents a hierarchical representation of the human
body, delineating the main divisions, such as the upper and lower body,
as well as the right and left sides. The lower body is further categorised
into the right and left legs. In contrast, the upper body is bifurcated
into the right and left arms, each with their respective subdivisions,
including the shoulder, elbow, wrist, and hand for the arms, and hip,
knee, ankle, and foot for the legs.

Fig. 3 illustrates the lateral segmentation in detail, specifying the
key joints that make up the left and right sides of the body. The left
side joints include the left side of the shoulder, left side of the elbow,
left side of the wrist, left side of the hand, left side of the hip, left
side of the knee, left side of the ankle, and left side of the foot; the
right side joints correspond. This transversal perspective is important
for analysing asymmetries in unilateral movements or gestures and
different ways of using body space. Based on the equations (Ahmed
et al.,, 2019) in Egs. (3) and (4), we computed the boundary volumes
of the four specified body regions on a frame-by-frame basis in order
to quantify the performance characteristics of these regions in motion.

dx = max (x;)— min ;
x jeJoints(xj) jeJoints(xj)
dy= max (y;)— min (y;
Y jeJoints(yj) jEJOintS(yj)
dz= max (z;)— min (z)) 3)
j€Joints Jj€Joints
BoundingVolume(BV)=dx-dy-dz “4)

Time, Weight, Space, Flow: This set of features reinforces the Ef-
fort component by characterising the motion’s dynamics, energy, and
expressiveness, with intensity levels that vary continuously across a
spectrum of opposing characteristics (Larboulette and Gibet, 2015).
As expounded in Section 2.2, the temporal subcategory within the
Effort component captures the urgency of the movement, ranging from
sudden to sustained. Quantitatively, this aspect is gauged by the ac-
celerations of body parts, with smaller summative values over the
sequence indicating greater movement stability.

Reflecting the body’s hierarchical segmentation illustrated in Figs.
2 and 3, we calculate the temporal feature for each body segment as
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Table 2
The Definition of the 41 low-level features.
Source: Adapted from Weiyi Wang (Wang et al., 2015).

ID Meaning ID Meaning

1 Euclidean Distance of Two Feet 22 Right Hand - Left Feet in Y

2 Euclidean Distance of Two Hands 23 Right Hand - Left Feet in Z

3 Euclidean Distance of Two Elbows 24 Left Hand - Right Shoulder in X
4 Euclidean Distance of Left Hand and Head 25 Left Hand - Right Shoulder in Y
5 Euclidean Distance of Right Hand and Head 26 Left Hand - Right Shoulder in Z
6 Right Hand - Right Shoulder in X 27 Left Hand - Right Elbow in X

7 Right Hand - Right Shoulder in Y 28 Left Hand - Right Elbow in Y

8 Right Hand - Right Shoulder in Z 29 Left Hand - Right Elbow in Z

9 Right Hand - Right Elbow in X 30 Left Hand - Right Feet in X

10 Right Hand - Right Elbow in Y 31 Left Hand - Right Feet in Y

11 Right Hand - Right Elbow in Z 32 Left Hand - Right Feet in Z

12 Right Hand - Right Feet in X 33 Left Hand - Left Shoulder in X
13 Right Hand - Right Feet in Y 34 Left Hand - Left Shoulder in Y
14 Right Hand - Right Feet in Z 35 Left Hand - Left Shoulder in Z
15 Right Hand - Left Shoulder in X 36 Left Hand - Left Elbow in X

16 Right Hand - Left Shoulder in Y 37 Left Hand - Left Elbow in Y

17 Right Hand - Left Shoulder in Z 38 Left Hand - Left Elbow in Z

18 Right Hand - Left Elbow in X 39 Left Hand - Left Feet in X

19 Right Hand - Left Elbow in Y 40 Left Hand - Left Feet in Y

20 Right Hand - Left Elbow in Z 41 Left Hand - Left Feet in Z

21 Right Hand - Left Feet in X

Lower Body Upper Body

Right Leg Left Leg Shoulder Spine Right Arm Hnad Left Arm

Right Right
Upper Leg Lower Leg

Left Upper Left Lower

Right Foot Left Hand Arm Arm

Fig. 2. Hierarchical segmentation of the human body for movement analysis.

Left Side Right Side

ShoulderLeft ElbowLeft HandLeft ShoulderRight ElbowRight HandRight
KneelLeft FootLeft WristLeft KneeRight FootRight WristRight
AnkleLeft HipLeft AnkleRight HipRight

Fig. 3. Body joints distribution for left and right side analysis.

detailed by Eq. (5) (Larboulette and Gibet, 2015). In this equation, steadiness.
a*(t;) represents the acceleration of the kth joint at the ith time frame,
across a sequence of T frames. The resulting computed value serves as
an index of movement stability, with lower scores signifying increased

T
Time*(t;) = % Z d@t) (5)

i=1
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The concept of “Weight” characterises the physical attributes of
movement, delineating the action’s force, with “light” and “strong” as
its polar dimensions. It is quantitatively assessed by aggregating the
kinetic energy of body parts over a specified duration. Egs. (6) and
(7) facilitate the computation of kinetic energy, denoted as E(z;), for
designated body segments at the moment #; (Larboulette and Gibet,
2015). Within the confines of this experiment, which analyses four
distinct body regions, a; signifies the normalised weights assigned to
each joint k, uniformly set to 1 to simplify the analysis. As per Eq.
(7), with T indicating the time window, the method entails pinpointing
the peak kinetic energy within this timeframe. Such calculations are
meticulously executed for each frame throughout the experimental
procedure.

E(t) =Y, Et) =) e (1)’ 6)
kekK keK
Weight(t;)) = max E(t;), i=1,2,3,....,N 7)
i€[1,T]

Space describes whether the motion intake is related to its sur-
roundings, whether it is direct (focused) or indirect (multi-focused).
A lower value would suggest a more direct path (less space is used),
while a higher value indicates a more indirect path (more space is
used) (Larboulette and Gibet, 2015). This feature can be calculated
according to Eq. (8).

T I ) = @)l
llxk(27) = xk (@l
Fluency characterises the degree of continuity in an action, distin-

guishing between the dimensions of freedom and constraint. Actions

that demonstrate greater freedom typically exhibit smoother, more
fluid motion, as indicated by lower computed jerk values. Conversely,
actions marked by constraint tend to have higher jerk values, reflecting

less smooth motion (Laban and Ullmann, 1971). The total jerk for a

joint, accumulated over time, allows us to assess the action’s continuity.

This cumulative measure is formalised in Eq. (9) (Larboulette and

Gibet, 2015). In Eq. (9), j*(t;) denotes the jerk of the kth joint at time ¢,

and T represents the total number of frames in the observed sequence.

Spacek(l,-) = (€3]

T
Kooy 1 &
Flow'(t) = — ;J ) ©)
The calculations for the Effort features are based on the segmenta-
tion of the body into four parts as depicted in Figs. 2 and 3, with the
analysis conducted for each frame in the sequence.

4.3. Statistical feature

Torso Height, Torso Width, Torso Depth: This set of features describes
changes in the trunk of the body and can indicate body rotation,
and body orientation. Torso width, height, and depth give an idea of
space use and can be calculated for each frame in a sequence as per
Egs. (10), (11), and (12).

(10)

W= ‘xShoulderRight — XShoulderLeft

Here, Xghoulderright @A Xghoulderrefe T€PTesent the x-coordinates of
the right and left shoulder joints, respectively. The absolute difference
between these coordinates gives the width of the torso at that frame.

(1)

In this equation, zgyinemid @nd Zgpinease d€note the z-coordinates of
the mid-spine and base-spine joints, respectively. The absolute differ-
ence provides the depth of the torso along the z-axis.

D= ‘ZSpineMid ~ ZgpineBase

(12)

H = ‘yNeck ~ YSpineBase

Here, yneck and yspinepase are the y-coordinates of the neck and base-
spine joints, respectively. The absolute difference calculates the height
of the torso from the base of the spine to the neck.
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We can track dynamic changes in torso dimensions over time by
analysing these measurements for each frame. Such changes may re-
flect movement characteristics such as bending, leaning or twisting.
These movements are closely related to specific emotional states, thus
supporting more accurate emotion recognition.

5. Model design
5.1. Architectural synthesis of HBP-LSTM

Decoding emotional intent from limb movements requires an ad-
vanced analysis method that captures the inherent time dependence
and uncertainty in motion data. To this end, we propose a HBP-
LSTM framework that combines a Bayesian neural network with a long
short-term memory (LSTM) network to enhance emotion recognition
performance from limb movement data. Fig. 4 illustrates the spe-
cific architecture of the HBP-LSTM framework, focusing on describing
the interactions between the Bayesian LSTM modules and the fusion
process of low-level and high-level features.

The HBP-LSTM framework uses a dual Bayesian LSTM network
architecture for processing and fusing low-level body features with
high-level LMA features. Firstly, an initial Pre-trained Bayesian LSTM
is used to process the low-level kinematic data sequences to capture
the body movements’ temporal dynamic features while modelling the
parameters’ uncertainty through Bayesian inference. Subsequently, a
four-headed multi-attention mechanism is applied to this Pre-trained
Bayesian LSTM output to highlight key temporal features. This config-
uration enables the model to focus on different temporal dimensions
of the sequence and capture complex temporal relationships while
effectively mitigating the impact of noise or missing values in the data
on model performance.

Meanwhile, high-level LMA features are processed through an
adapter module consisting of a linear layer, ReLU activation and
Dropout. The role of the adapter module is to convert the high-level
features into a representation compatible with the output of the multi-
head attention mechanism, thus enabling seamless fusion with the
low-level feature representation.

Subsequently, the output of the multi-attention mechanism is con-
catenated with the output of the adapter module in order to generate a
fused feature vector. The fused feature vector is then fed into the fused
Bayesian LSTM layer, which is used to model temporal dependencies
further and quantify uncertainty in the combined feature space. The
Bayesian LSTM can effectively capture the intricate interactions be-
tween low-level and high-level features while quantifying uncertainty
in the joint feature space, thereby markedly enhancing the robustness
of the model. The classification task is then completed by the standard
fully connected layer, which outputs the predicted sentiment labels.

By modelling the parameters of the LSTM layer as probability distri-
butions rather than fixed values, the HBP-LSTM framework can express
confidence in predictions and deal with the inherent uncertainty in
motion data. This probabilistic approach is particularly effective in the
presence of imperfect data quality, enabling robust emotion recognition
in the presence of occluded or missing data. The Bayesian LSTM layer
is trained by variational inference, employing an optimised Evidence
Lower Bound (ELBO) as the loss function, thus efficiently learning from
the data while capturing uncertainty. This design significantly improves
the model’s performance in complex contexts.

5.2. Detailed configuration and training paradigm

Low-level feature processing. The initial kinematic data sequence
consisted of 41 low-level features and was processed through a Pre-
trained Bayesian LSTM model. The model models the network weights
as probability distributions and effectively captures the temporal dy-
namics inherent in body movements while modelling uncertainty. Dur-
ing training, a Dropout Rate (DR) of 0.5 was used to prevent overfitting.
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Fig. 4. Detailed architecture of the HBP-LSTM framework.

Upon training completion, the Pre-trained Bayesian LSTM parameters
were frozen to preserve their learned representations. To enhance the
model’s ability to attend to critical temporal features in emotion recog-
nition, we applied a multi-head attention mechanism to the output of
the Pre-trained Bayesian LSTM, which contains four attention heads.
The choice of four attentional heads is designed to help the model
learn the complex relationships between different temporal steps in a
human movement sequence while striking a balance between capturing
temporal dependencies and maintaining computational efficiency. In
addition, the multi-head attention mechanism allows the model to focus
on multiple information dimensions in the sequence, thus effectively
mitigating the effects of data noise or missing values.

High-level feature processing. The high-level LMA features (13 622
dimensions) are first passed through an adapter — implemented as
a fully connected layer — that projects them to a 64-dimensional
space, i.e. 13622 — 64 parameters plus bias. A ReLU activation and
a dropout layer (p = 0.5) follows this linear projection. This adapter
maps the advanced features into a representation that is dimensionally
compatible with the output of the multi-head attention mechanism,
enabling seamless fusion with the low-level features.

Feature fusion and post-fusion processing. The outputs of the
attention mechanism (4 x 64 channels) and the adapter module (64
channels) are concatenated, yielding a fused feature vector of length
4 x 64 + 64 320. This 320-dimensional vector is fed into a post-
fusion Bayesian LSTM layer with 256 hidden units, a standard normal
prior N'(0, 1), and recurrent dropout of 0.1. The Bayesian LSTM further
captures temporal dependencies and propagates uncertainty within the
fused feature space, enabling the model to exploit the complementary
information carried by low-level and high-level features.

Classification Layer. Following the post-fusion Bayesian LSTM, a
standard fully connected layer is used for classification, outputting the
predicted emotion labels. Unlike the Bayesian LSTM layers, this fully
connected layer uses fixed weights, providing a deterministic mapping
from the learned representations to the output classes. The layer takes
the output from the post-fusion Bayesian LSTM, which has a size of 256
and maps it to the number of emotion classes.

Training methodology. The HBP-LSTM model employs variational
inference to approximate the posterior distributions of the weights in
the Bayesian LSTM layers. The network is optimised with the Evi-
dence Lower Bound (ELBO), which combines a likelihood term with
a Kullback-Leibler (KL) regularisation term (Papatheodorou, 2024).
Following common practice, the weight of the KL term is linearly
annealed from O to 1 during the first 30% of epochs. Each mini-batch
is evaluated with sample_nbr=3 forward Monte-Carlo samples, and
the KL coefficient is set to Ag;, = 1/|D|, where |D| denotes the number
of training sequences. Gradient norms are clipped to 5.0 to prevent
exploding gradients.

Training uses the Adam optimiser with a learning rate of 1 x
1073, for 50 epochs and a batch size of 64. All experiments were
conducted on an NVIDIA RTX 4090 GPU (PyTorch 2.1 + Blitz-Bayesian-
DeepLearning 0.4.0, Python 3.10). Random seeds are fixed to 42 and
the best model checkpoint is selected according to validation ELBO,
ensuring reproducibility. Dropout and layer normalisation are applied
to further improve robustness to distributional shifts.
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6. Experiment
6.1. Dataset

This research utilises two databases, each containing diverse emo-
tional data, to evaluate the effectiveness of the HBP-LSTM method for
recognising emotion from whole-body movements.

EGBM. The EGBM dataset based on the multimodal database intro-
duced by Sapinski et al. (2019b), comprises emotional speech, video,
and gestural data captured using the Kinect v2 sensor. This database
contains both video and motion-capture data, recorded using the Kinect
v2 sensor, from professional actors simulating seven different emotional
states. A total of 16 participants — equal numbers of males and females
ranging in age from 25 to 64 — contributed to the dataset. The actors
were instructed to enact the emotions sequentially: starting with neu-
tral, followed by sadness, surprise, fear, disgust, anger, and happiness.
Each emotion was repeated five times, with the actors bringing their
own interpretation to the expression of each emotional state without
specific guidelines. The dataset comprises 560 instances, evenly dis-
tributed, with 80 samples for each emotional state. The Kinect v2 sensor
ensured comprehensive capture of the actors’ movements, including the
legs, as depicted in Fig. 5 (Sapinski et al., 2019b).

KDAEE. The KDAEE (Zhang et al., 2020) is a kinematic dataset that
has a total 1402 recordings from 22 college students performing seven
emotion states(happiness, sadness, anger, fear, disgust, surprise, and
neutral), gathered using motion capture data 125 Hz and full body
kinematic data through 17 sensors placed on the actor’s key anatomical
points, such as arms, legs, spine, and head. Actors were completed two
types of movements: spontaneous (based on actors’ understanding of
emotional expression) and within-a-scenario movements(using prede-
fined scenarios created by the dataset developers). Each performance
lasted six seconds and was repeated as needed to ensure high data
quality. This dataset only provides raw kinematic data consisting of 72
anatomical nodes as shown in Fig. 6.

6.2. Data preprocessing

6.2.1. Normalisation

For the EGBM dataset, collected using the Kinect V2 sensor, the raw
data comprises 3D positions and orientations of the joints relative to
the sensor’s coordinate system, specified as [x, y, z]. Variability in the
distance between the actor and the sensor during the recording sessions
may affect the data quality. Consequently, remapping the skeletal
coordinates from the sensor-defined space to a body-centric coordinate
system denoted as [u, v, w], is crucial. This remapping anchors the local
coordinate system at the SpineBase joint within the Kinect skeletal
model, aligning the u-axis to the left, the v-axis upward, and the w-
axis forward about the SpineBase joint. Fig. 7 displays the 25 joints
that the Kinect v2 tracks. This reorientation process generates a vector
that encapsulates the relative positions and orientations of all joints
concerning this central joint for each frame. For the 16 individuals
represented in the dataset, the reference state for each person’s move-
ments is established by the first frame of each emotional state, setting
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Fig. 6. Illustration of the 72 anatomical nodes used in KDAEE for full-body motion capture (Zhang et al., 2020).

a consistent baseline for subsequent frames. This approach ensures a
personalised and uniform reference for movement comparison across
the various emotions and subjects.

In contrast, the KDAEE dataset was retained in its original coordi-
nate system due to its use of a different motion capture system, which
captures a more extensive set of 72 anatomical nodes compared to the
25 tracked by Kinect V2 in EGBM. For feature extraction, we selected
the same set of nodes as used in EGBM, focusing on those involved
in low-level and high-level feature calculations. For further details on
feature extraction, see Section 4.2.

6.2.2. Downsampling and interpolation

To solve the problem of inconsistent sequence lengths under dif-
ferent emotional states, we normalised the data to obtain uniform
sequence lengths for effective analysis. Table 3 shows the average
length of processed sequences for each emotion state in both datasets.
Sequences exceeding the target length are downsampled to reduce
redundancy, thus optimising computational efficiency while preserving
core motion features. Conversely, shorter sequences are expanded by
linear interpolation to ensure consistency across emotional states.

For EGBM, collected at 30 fps, downsampling is applied minimally
to retain smooth motion transitions, while linear interpolation is used
sparingly for consistency in sequence length. In the KDAEE dataset,
captured at 125 fps with more anatomical nodes, downsampling con-
tributes significantly to noise reduction, helping clarify body movement
data without losing crucial details. The interpolation applied here fur-
ther ensures that subtle body movements are retained, enabling smooth
transitions across frames.
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Fig. 7. The 25 skeleton joints tracked by the Kinect v2 Sensor (Cao et al.,
2019).

The combination of downsampling and linear interpolation main-
tains the integrity of the motion data and allows for a consistent
representation of the sequence across actors and emotional states,
resulting in robust emotion recognition.
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Table 3
The average number of frames and their equivalent duration in seconds for
each emotional state, based on a 30 fps rate for EGBM and a 125 fps rate for
KDAEE.

Emotion EGBM (30 fps) KDAEE (125 fps)

Frames Seconds Frames Seconds
Anger 107 3.6 891.2 7.31
Disgust 140 4.7 924.9 7.39
Fear 115 3.8 855.7 6.84
Happiness 111 3.7 836.1 6.68
Neutral 93 3.1 90.3.7 7.23
Sadness 110 3.7 1064.5 8.51
Surprise 117 3.9 849.4 6.79

Table 4
Top 10 Features (Mean + SD) and Levels.

Feature Mean SD Level
Right_Side_Flow 0.309 0.108 High-level
Left_Side_Flow 0.272 0.134 High-level
Lower_Body_Flow 0.198 0.061 High-level
Upper_Body_Flow 0.145 0.069 High-level
Distance_RightHandHead 0.132 0.097 Low-level
Distance_LeftHandHead 0.124 0.105 Low-level
Right_Side_BV 0.108 0.071 High-level
Lower_Body_BV 0.102 0.029 High-level
Left_Side_BV 0.098 0.078 High-level
HandLeft_FootRight_Distance_X 0.089 0.015 Low-level

6.3. Feature analysis

In this section, we comprehensively analyse the selected features for
emotion recognition. We evaluate their overall importance, compare
high-level and low-level features, analyse contributions from different
body parts, and examine their significance across various emotional
categories.

We employed a Random Forest classifier with 100 estimators to
assess feature importance. Prior to training, features were normalised
using Scikit-learn’s StandardScaler for consistent scaling. We formu-
lated a binary classification task for each emotion by labelling the target
emotion as 1 and others as 0. The dataset was split into training and
testing sets using an 80/20 ratio. The Random Forest algorithm was
chosen for its robustness with high-dimensional data and its ability to
provide intrinsic measures of feature importance.

The importance of each feature was computed based on its contri-
bution to the reduction of Gini impurity across all trees in the forest.
Specifically, a feature’s importance score reflects the total decrease
in impurity it provides, aggregated over all trees. These scores were
normalised so that the sum of all feature importances equals one.

After training the model for each emotion, we extracted the fea-
ture importance scores. To summarise their overall contributions, we
calculated the mean and standard deviation of these scores across all
emotions. The mean importance indicates a feature’s average contri-
bution, while the standard deviation highlights the variability of its
importance across different emotional states.

6.3.1. Overall feature importance analysis

We have ranked the selection features for emotion recognition based
on their mean importance scores across all emotions. The top 10
features are shown in Fig. 8, with corresponding statistics summarised
in Table 4. The black bars represent standard deviations, highlighting
the variability in the importance of each feature.

Dynamic features related to overall body movements (such as
Right_Side_Flow, Left_Side_Flow, and Lower_Body_Flow)
are consistently the most informative. These features reflect how
smoothly and extensively different body regions move during emo-
tional expressions, underscoring the importance of capturing dynamic
information rather than static positions alone. Conversely, features
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based on distances between body parts (e.g., Distance
_RightHandHead and HandLeft_FootRight_Distance_X) are
still helpful but generally exhibit lower average importance and smaller
variances. This indicates that while distance metrics provide reliable
and stable spatial cues, their discriminative power for distinguishing
emotional states is limited compared to dynamic movement features.

To further explore why certain selection features exhibit a high
standard deviation, we conducted a detailed, emotion-specific analy-
sis of feature importance. Fig. 9 presents the top five most influen-
tial features separately for each emotional category. The correspond-
ing detailed rankings and statistics per emotion are presented in Ta-
ble 5, which reveal consistent dominance of dynamic features across
most emotions. Dynamic flow features consistently dominate across
emotions, especially for Anger, Fear, Happy, and Sad, explaining their
high global variability noted previously. These dynamic features show
pronounced emotional specificity, suggesting that particular emotions
manifest uniquely through certain body parts or movement intensities.
For example, Right_Side_Flow prominently appears across multi-
ple emotions, highlighting the dominant role of right-side movement
dynamics in conveying affective states.

In contrast, distance-based features like HandLeft-FootRight
_Distance_X demonstrate smaller but more consistent contributions
across several emotions, notably in Neutral and Surprise. This indicates
that distance features primarily encode general spatial configurations of
the body rather than emotion-specific nuances, contributing to baseline
or common emotional information. To summarise the relationships
among emotions based on feature-importance patterns, we performed
Ward hierarchical clustering using the z-scored importance vectors. The
dendrogram in Fig. 10 visualises the resulting structure.

As it can be seen in Fig. 10 emotions are divided into two primary
clusters:

« First cluster - Neutral and Happy form one cluster characterised by
significant reliance on dynamic flow features and relatively low
reliance on distance metrics. This grouping suggests similarities
in the movement patterns associated with positive and neutral
emotional expressions.

Second cluster - encompasses predominantly negative emotions
(Anger, Disgust, Fear, Sad, and Surprise). Within this negative
cluster, emotions such as Sad and Surprise care closely aligned,
reflecting a common reliance on spatial distance cues, particularly
those involving head-hand configurations.

This clustering provides deeper insights into how emotional expres-
sions share or differ in their underlying body language. It highlights
how specific dynamic and spatial cues are selectively utilised across
affective categories. Such insights can inform targeted improvements
in computational models for emotion recognition, enhancing their sen-
sitivity to both universal and emotion-specific movement patterns.

To further validate the observations above, we compared global
feature-importance scores across the three categories: Flow, BV, and
Distance, using the non-parametric Kruskal-Wallis test (Fig. 11;
Table 6).

A Kruskal-Wallis H test indicated a statistically significant differ-
ence in feature importance across the three groups, H(2) = 218.62,
p < .001, 5? = .16 (medium effect). Post-hoc pairwise comparisons using
Mann-Whitney U tests showed that Flow features had significantly
higher importance than both BV features (U = 2717, p < .001) and
Distance features (U = 70387, p < .001). Additionally, BV features were
rated as more important than Distance features (U = 58792, p < .001),
as illustrated in Fig. 11.

These findings underscore the superior value of movement dynamics
over static positional information in affective-computing applications.
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Fig. 8. Top 10 features ranked by average importance in emotion recognition.

Table 5
Top-5 important features for each emotion (mean + SD).

Emotion Rank Feature Category Mean SD

Anger 1 Right_Side_Flow Flow 0.306 0.172
2 Left_Side_Flow Flow 0.246 0.206
3 Lower_Body_Flow Flow 0.173 0.060
4 Upper_Body_Flow Flow 0.122 0.080
5 Distance_LeftHandHead Distance/Other 0.115 0.119

Disgust 1 Right_Side_Flow Flow 0.290 0.193
2 Left_Side_Flow Flow 0.275 0.221
3 Lower_Body_Flow Flow 0.204 0.062
4 Distance_RightHandHead Distance/Other 0.118 0.105
5 Lower_Body_BV BV 0.114 0.042

Fear 1 Right_Side_Flow Flow 0.305 0.143
2 Left_Side_Flow Flow 0.270 0.184
3 Lower_Body_Flow Flow 0.229 0.109
4 Distance_RightHandHead Distance/Other 0.140 0.144
5 Distance_LeftHandHead Distance/Other 0.130 0.151

Happy 1 Right_Side_Flow Flow 0.353 0.068
2 Left_Side_Flow Flow 0.296 0.077
3 Upper_Body_Flow Flow 0.221 0.129
4 Lower_Body_Flow Flow 0.197 0.064
5 HandRight_FootLeft_Distance_X Distance/Other 0.116 0.021

Neutral 1 Right_Side_Flow Flow 0.300 0.100
2 Left_Side_Flow Flow 0.271 0.098
3 Lower_Body_Flow Flow 0.206 0.116
4 Upper_Body_Flow Flow 0.175 0.105
5 Distance_RightHandHead Distance/Other 0.158 0.165

Sad 1 Right_Side_Flow Flow 0.318 0.126
2 Left_Side_Flow Flow 0.282 0.197
3 Lower_Body_Flow Flow 0.191 0.078
4 Distance_RightHandHead Distance/Other 0.143 0.139
5 Upper_Body_Flow Flow 0.140 0.055

Surprise 1 Right_Side_Flow Flow 0.287 0.163
2 Left_Side_Flow Flow 0.264 0.223
3 Lower_Body_Flow Flow 0.186 0.043
4 Distance_RightHandHead Distance/Other 0.142 0.139
5 Distance_LeftHandHead Distance/Other 0.131 0.147

6.3.2. Comparison of high-level and low-level features

Building upon the overall feature-importance analysis, we com-
pared the relative significance of high-level (dynamic movement) and
low-level (static spatial) features in predicting emotional states.

A Mann-Whitney U test revealed that high-level features were
significantly more important than low-level features, U = 73638, p <
.001 (see Fig. 12).
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This substantial difference, accounting for approximately 17% of
the variance, highlights the superior predictive value of dynamic move-
ment characteristics over static spatial measurements.

Further investigation of emotion-specific patterns (Fig. 13) demon-
strated consistent dominance of high-level features across all emotional
categories: Anger (U = 2653, p < .001), Disgust (U = 2665, p < .001),
Fear (U = 2599, p < .001), Happy (U = 2593, p < .001), Neutral
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Fig. 9. Top-5 ranked features for each emotion.

w 2681, p < .001), Sad (U 2644, p < .001), and Surprise
(U =2647, p < .001). These consistently significant results underscore
the robustness of high-level features in capturing dynamic emotional
expressions across the full affective spectrum.

These combined results underline a fundamental insight: high-level
features effectively encapsulate dynamic and holistic characteristics of
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emotional body movements, such as fluidity, expansiveness, and move-
ment coherence. They significantly outperform low-level distance met-
rics, which predominantly capture static spatial relationships between
specific body parts. Low-level features, though useful, consistently
exhibit lower importance, likely due to their inherent limitations in
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Mann-Whitney U = 73638, z=-5.00, r=.17, p <.001.
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Table 6
Descriptive statistics of feature importance by category (mean + SD).

Category Mean SD Feature count
Flow 0.231 0.114 56
Distance/Other 0.030 0.027 1267
BV 0.085 0.061 56
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Fig. 13. High-level vs. Low-level feature importance per emotion (mean +

95% CI). All Mann-Whitney U tests: p < 0.001.

accounting for individual variability in physical structure and habitual
posture.

These findings advocate the prioritisation of high-level dynamic
features in future computational models for emotion recognition, sig-
nificantly enhancing their sensitivity, accuracy, and robustness. Such
models can more effectively accommodate variability in emotional ex-
pression, thus improving their reliability and applicability in real-world
human-computer interaction scenarios.

6.3.3. Feature analysis by body part

To gain deeper insights into the role of different body regions
in emotional expression, we categorised body movements into four
distinct regions: left side, right side, lower body, and upper body (Figs.
2 and 3). This analysis builds on previous findings emphasising the
superior importance of dynamic and coordinated features over static
spatial metrics.

Fig. 14 presents the average feature importance across four body
regions. A Kruskal-Wallis test revealed significant differences among
regions, H(3) = 172.26, p < .001. Pairwise Mann-Whitney U tests
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Fig. 15. Top 3 features in each body part.

showed that the left side had significantly lower importance than the
lower body (U = 12682, p < .001), the right side (U = 14458, p < .001),
and the upper body (U = 15219, p < .001). No significant differences
were found between lower body versus right side (p = 1.00), lower
body versus upper body (p = 1.00), and right side versus upper body
(p = 1.00).

These findings underscore the crucial role of expressive movements
associated with the lower body (e.g., stepping, stomping, weight shift-
ing) and dynamic gestures involving the dominant limb (right side),
both of which showed significantly higher importance than the left
side. The lack of significant differences among lower body, right side,
and upper body suggests these regions contribute similarly to emotion
recognition when considering their most important features.
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Fig. 15 further clarifies this pattern by identifying the top three
features per body part. Consistent with earlier results, dynamic flow-
related features, notably Lower_Body_Flow and Right_Side_
Flow, dominate feature importance rankings, reinforcing the necessity
of capturing motion fluidity and continuity. In contrast, static features
such as inter-limb distances (LeftHand_RightFoot_Distance)
show comparatively lower relevance, highlighting limitations of purely
spatial information for robust emotional classification.

Taken together, these analyses suggest a clear prioritisation strategy
for future model development. Emphasising dynamic and coordinated
movements, particularly those originating from the lower body and
dominant side, promises the greatest improvement in emotional recog-
nition accuracy. By targeting these informative body parts and move-
ment types, computational models can achieve finer sensitivity to subtle
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Table 7
Model accuracy comparison between two datasets.
Model EGBM accuracy KDAEE accuracy
Low-Level LSTM 0.89 0.79
High-Level LSTM 0.93 0.85
Low-Level Bayesian LSTM 0.91 0.82
High-Level Bayesian LSTM 0.93 0.87
All-Level LSTM 0.96 0.87
HBP-LSTM 0.98 0.88

All accuracy values are reported in decimal format (e.g., 0.88 = 88%).

emotional nuances, ultimately enhancing their real-world applicability
and effectiveness in human—computer interaction scenarios.

7. Results

Several models are constructed for comparative analysis to validate
the robustness of the HBP-LSTM framework. The distinctive aspects of
each model are summarised as follows:

» Low-Level LSTM: Utilises 41 low-level kinematic features.

* High-Level LSTM: Incorporates 80 high-level features derived
from LMA (Laban Movement Analysis) to capture the emotional
essence in body dynamics.

Low-Level Bayesian LSTM: Extends the Low-Level LSTM by inte-
grating Bayesian inference into the LSTM layers.

High-Level Bayesian LSTM: Enhances the High-Level LSTM with
Bayesian LSTM layers for probabilistic modelling.

All-Level LSTM: Combines both low and high-level features in a
non-Bayesian LSTM framework, serving as a baseline for compar-
ison.

HBP-LSTM: The proposed framework that synergises LSTM and
Bayesian inference across all feature levels for enhanced emotion
recognition.

For each model, we used the leave-one-subject-out cross-validation
method, in which we systematically removed one participant from the
dataset in each round of training and evaluation. This measure assesses
the generalisability of the model to participants not included in the
training data. All models were trained on a high-performance machine
equipped with an NVIDIA RTX 4090 GPU, utilising CUDA acceleration
for optimised computation.

As shown in Table 7, after examining the performance on both the
EGBM and KDAEE datasets, most models achieve high accuracy levels
in emotion recognition, with the exception of the Low-Level LSTM on
the KDAEE dataset, which has an accuracy of 79%. This highlights the
importance of high-level features for sentiment recognition. The All-
Level LSTM, which pools both high and low-level data, achieved 96%
accuracy on EGBM and 87% accuracy on KDAEE, demonstrating the
impact of integrated data quality on model performance.

The accuracy of the models remained high after adding the Bayesian
layer. The accuracy of the low-level LSTM model increased by 2 per-
centage points on both datasets, indicating the effectiveness of Bayesian
inference in enhancing the performance of low-dimensional data pro-
cessing. In contrast, the HBP-LSTM model achieves an accuracy of 98%
on the EGBM dataset and 88% on the KDAEE dataset, which is an
improvement of 2 percentage points and 1 percentage point over the
All-Level LSTM, respectively. This indicates that the combination of
Bayesian inference and LSTM has significant advantages in interpreting
complex emotional states and adapting to different datasets.

To assess the robustness of the model, we adopt a multidimensional
approach that simulates the challenges associated with data quality
and integrity in a real-world environment by introducing multiple
perturbations in the data. Specifically, we design and implement three
complementary strategies to comprehensively assess the ability of the
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model to maintain performance in the face of different unpredictable
conditions.

Introducing Controlled Noise: We introduced additive Gaussian
noise into the data with zero mean and standard deviations varying
over the ranges [0, 1], [-5, 5] and [-10, 10], respectively. These
ranges correspond to different noise intensities and are intended to
simulate signal attenuation and distortion encountered in real-world
data acquisition. By evaluating the model’s performance under these
controlled perturbation conditions, we further analysed its adaptability
and robustness to moderate noise environments common in real-world
applications.

Unrestricted Noise Introduction: We introduced additive Gaus-
sian noise with zero mean and large variance (e.g., variance > 100)
across the feature set and did not set a priori limits on the noise
intensity. This high-intensity noise is intended to simulate severe data
corruption or extreme environmental changes to fully assess the ro-
bustness of the model under highly unpredictable conditions. With this
strategy, we can test whether the model is effective in maintaining its
performance despite significant degradation in the quality of the input
data.

FGSM Adversarial Testing: To assess the vulnerability of the
model to adversarial attacks, we use the Fast Gradient Sign Method
(FGSM) (Nagqvi et al., 2023). FGSM works by calculating the gradient of
the loss function for the input features and adding small perturbations
in the direction that increases the loss (scaled by the coefficient ¢)
to generate adversarial samples. In our experiments, we selected ¢ =
0.01 and € 0.1 as two perturbation strengths to simulate how
minor but intentional input modifications can significantly affect model
performance. Through this test, we can deeply analyse the model’s
robustness in the face of malicious attacks and small input changes.

Together, these three strategies constitute a rigorous test of the
model, designed to simulate a variety of challenges that may be en-
countered in real-world emotion recognition scenarios. These strategies
not only cover the issue of data corruption due to noise, but also test
against deliberate adversarial manipulation. In practice, data quality
may be affected by a wide range of factors, and therefore, evaluating
the performance of the models under these conditions is essential
to verify their adaptability, robustness and reliability. The following
section describes each robustness testing strategy in detail, and their
specific impact on model performance is analysed.

7.1. Comparison with standard machine learning approaches

Both datasets (EGBM and KDAEE) use the same seven emotion
categories: anger, disgust, fear, happiness, neutral, sadness, and sur-
prise, framing the task as a 7-way classification problem. We employ
Leave-One-Participant-Out (LOPO) cross-validation, where for a dataset
with § participants, each fold reserves one participant for testing and
uses the remaining S — 1 for training/validation. This yields Sggpy=16
folds for EGBM and Sipapg=22 folds for KDAEE. The random-chance
accuracy is % 0.143 under uniform class distribution. All results
report macro-averaged accuracy per fold, presented as mean + standard
deviation values across all dataset folds.

We used two datasets (EGBM and KDAEE) to compare the per-
formance of the HBP-LSTM model with traditional machine learning
algorithms including Random Forests (RF) (Wu and Chang, 2024),
K-Nearest Neighbours (KNN), Support Vector Machines (SVM) (Khan
et al., 2024), and Multi-Layer Perceptrons (MLPs). For these tradi-
tional algorithms, we extracted six statistical features from the body
movement data: minimum, maximum, standard deviation, variance,
skewness and kurtosis. These features are based on the descriptions
in Figs. 2 and 3, and are computed for different body parts such as
upper body, lower body, left side, right side, and torso, using velocity
and acceleration data collected during the experiment. The extracted
features provide a comprehensive characterisation of the movement

~
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Table 8

Emotion recognition performance on the EGBM dataset (LOPO; mean + SD).
Algorithm Anger Disgust Fear Happiness Neutral Sadness Surprise Mean + SD
SVM 0.5250 0.4267 0.3750 0.5823 0.5467 0.3784 0.2875 0.4457 + 0.041
MLP 0.5000 0.4533 0.4000 0.5570 0.5733 0.3784 0.4125 0.4678 + 0.038
KNN 0.3250 0.3067 0.2625 0.5696 0.6800 0.3649 0.2000 0.3849 + 0.052
RF 0.3250 0.4133 0.4625 0.6329 0.7733 0.2703 0.3500 0.4604 + 0.049
HBP-LSTM 0.9850 0.9800 0.9750 0.9900 0.9950 0.9750 0.9600 0.9817 + 0.006

SD is the sample standard deviation across all LOPO folds (16 folds for EGBM).

Table 9

Emotion recognition performance on the KDAEE dataset (LOPO; mean + SD).
Algorithm Anger Disgust Fear Happiness Neutral Sadness Surprise Mean + SD
SVM 0.4100 0.4350 0.3850 0.4550 0.4250 0.4200 0.4660 0.4230 + 0.035
MLP 0.4150 0.4300 0.4000 0.4400 0.4250 0.4325 0.4140 0.4220 + 0.036
KNN 0.3400 0.3600 0.3300 0.3550 0.3700 0.3450 0.3535 0.3505 + 0.045
RF 0.4600 0.4800 0.4750 0.4500 0.4850 0.4700 0.4700 0.4700 + 0.039
HBP-LSTM 0.8750 0.8800 0.8650 0.9000 0.8850 0.8700 0.8900 0.8807 + 0.008

SD is the sample standard deviation across all LOPO folds (22 for KDAEE).

patterns and are used to train machine learning models for emotion
recognition on both datasets.

The performance of the models for emotion recognition is shown
in Tables 8 and 9. For both datasets, all algorithms perform better
than chance level (% ~ 0.143), although true positive rates are con-
sistently lower for emotions like sadness and surprise. This aligns with
previous research (Castellano et al., 2007; Visi et al., 2017; Kleinsmith
and Bianchi-Berthouze, 2013) that suggests that sadness and surprise
have less distinctive motion patterns, leading to lower classification
accuracy.

In both datasets, the KNN algorithm generally shows lower accuracy
across most emotion classifications, except for neutral emotion. The
SVM model demonstrates reasonable performance for most emotions
but struggles with low-energy emotions such as sadness and high-
energy emotions like surprise. The MLP model offers slightly better
accuracy for happiness and neutral emotions but faces challenges with
less distinctive emotions.

Across both datasets, none of the four traditional algorithms com-
pares favourably to the HBP-LSTM in terms of accuracy. The HBP-LSTM
achieves significantly higher accuracy levels — over 98% mean accu-
racy on the EGBM dataset and 88% on the KDAEE dataset — highlight-
ing the importance of temporal information for emotion recognition.
By leveraging the sequential nature of LSTM networks, HBP-LSTM
effectively models the temporal dynamics of emotions, capturing subtle
changes and patterns in body movements over time that traditional
algorithms may miss.

Comparing the experimental results on the two datasets, we find
that HBP-LSTM consistently outperforms traditional machine learn-
ing algorithms. The performance of the KDAEE dataset is degraded,
which can be attributed to differences in data characteristics, such
as the diversity of participants or variations in recording conditions.
In contrast, the traditional algorithms showed greater fluctuations in
performance between the two datasets, suggesting that they are more
sensitive to dataset-specific features and, thus, less able to generalise
across different populations or recording conditions.

Overall, the HBP-LSTM model significantly outperforms both
dataset’s traditional machine-learning methods for emotion recogni-
tion. These results highlight the importance of combining time series
and probabilistic modelling techniques in developing emotion recogni-
tion systems, providing strong support for improving model robustness
and adaptability.

7.2. Comparison with other state-of-the-art methods

In this section, we compare our results with existing state-of-the-art
methods on two datasets. To ensure the fairness of the comparison, we
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strictly follow the cross-validation strategies set out in the literature
for each dataset. For both datasets, we used 10-fold cross-validation
and a ‘Leave-One-Participant-Out’ (LOPO) protocol. The following is a
specific description of the methods used in the comparison:

(1) EGBM Dataset: Sapinski et al. (2019a) proposed an approach
based on body joint analysis using sequential models to capture effec-
tive movement for emotion recognition. Zhang et al. (2021) developed
an attention-based LSTM network that improves accuracy by focusing
on key joint movements. Wang et al. (2024a) introduced a framework
using a body expression energy model and a multi-input symmet-
ric positive definite matrix network to extract temporal and spatial
features.

(2) KDAEE Dataset: Avola et al. (2022) proposed a pipeline utilising
multi-view representation learning (MVRL) for affective action recogni-
tion. Ghaleb et al. (2021) represented posture sequences as graphs and
employed spatio-temporal graph convolutional networks (ST-GCNs) for
emotion recognition.

Our proposed Hybrid Bayesian Pre-trained LSTM (HBP-LSTM)
model is compared with the above methods on the respective datasets.
Table 10 summarises the comparison results.

As shown in Table 10, our proposed HBP-LSTM model achieves
superior performance on both datasets. Specifically, on the EGBM
dataset, our method achieves an accuracy of 98.17%, surpassing the
previous best result of 97.43% by Wang et al. On the KDAEE dataset,
our model attains an accuracy of 88.07%, significantly outperforming
the methods by Avola et al. and Ghaleb et al.

In contrast, previous methods, such as those by Sapiriski et al. and
Zhang et al. primarily relied on low-level joint data without incor-
porating high-level movement analysis, which may limit their ability
to capture the full spectrum of emotional expressions. While Wang
et al.’s method achieved high accuracy by using energy models and
SPD networks, it may not effectively model uncertainty or handle noisy
data.

On the KDAEE dataset, the methods by Avola et al. and Ghaleb
et al. employed multi-view learning and graph convolutional networks,
respectively, but they may not fully capture the temporal dynamics and
uncertainty modelling provided by our HBP-LSTM. Our method’s supe-
rior performance on KDAEE demonstrates its effectiveness in general-
ising across different datasets and handling variations in data quality.

Overall, our HBP-LSTM enhances emotion recognition accuracy
and robustness by combining multi-level feature integration, Bayesian
inference, and attention mechanisms.

7.3. Component contribution via ablation study

To quantify the contribution of each architectural block in HBP-
LSTM, we conduct a controlled ablation on the EGBM seven-class
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Table 10
Comparison of methods on EGBM and KDAEE Datasets.
Research Dataset Methodology Recognition performance
Sapinski et al. (2019a) EGBM RNN-LSTM 0.6900
Zhang et al. (2021) EGBM AS-LSTM* 0.7410
Wang et al. (2024a) EGBM BEEM* + SPDnet* 0.9743
Avola et al. (2022) KDAEE MVRL* 0.6410
Ghaleb et al. (2021) KDAEE ST-GCN* 0.6500
Our Method EGBM, KDAEE HBP-LSTM* EGBM: 0.9817; KDAEE: 0.8807

* Abbreviations: AS-LSTM: LSTM network based on attention, GCN: Graph Convolution Network, HMM: Hidden Markov Model, L-GrIN: Learnable
Graph Inception Network, LMA: Laban Movement Analysis, LSTM: Long Short-Term Memory, MVRL: Multi-View Representation Learning, Pos:
Position, RegNetY-800MF: Regular Network Y-800 MegaFLOPs, RF: Random Forest, RNN: Recurrent Neural Network, Rot: Rotation, ST-GCNs:
Spatio-Temporal Graph Convolutional Networks, SVM: Support Vector Machine.

Table 11

Ablation on the EGBM seven-class dataset (LOPO, n=8 folds).
Variant Accuracy AAcc Sig.
LSTM-Base 0.2749 +0.0423 —0.3875 x
Bayes-LSTM-1 0.2674 +0.0581 —0.3950 ¥
Bayes-LSTM-1 + Attn (no Adapter) 0.3069 + 0.1075 —0.3555 I
HBP-LSTM (full) 0.6624 + 0.1144 Ref. -
HBP-LSTM (- SecondBayes) 0.6171 +£0.1132 —0.0453 T
HBP-LSTM (- FirstBayes) 0.6270 + 0.0889 —-0.0354 n.s.

Notes. AAcc = variant — full; Sig.: Holm—Bonferroni corrected paired t-tests (ip < 0.05,
$p < 0.01; n.s.: not significant).

Variant definitions: LSTM-Base deterministic 2-layer LSTM (no Bayesian/atten-
tion/adapter); Bayes-LSTM-1 Bayesian weights in the first LSTM only; Bayes—
LSTM-1 + Attn (no Adapter) adds multi-head temporal attention, adapter removed;
HBP-LSTM (full) first Bayesian LSTM + attention + adapter + second Bayesian LSTM;
(- SecondBayes)/(- FirstBayes) replace the corresponding Bayesian LSTM with a
deterministic one.

task under the same Leave-One-Participant-Out (LOPO) protocol (8
folds), preprocessing, and optimiser as in Section 6. All variants use a
lightweight configuration of 25 training epochs and hidden size H=64;
absolute accuracies are therefore lower than Table 7 but comparable
across variants. We report meanzstd over folds and assess significance
via paired two-tailed t-tests with Holm-Bonferroni correction. For
clarity, we also report the marginal difference

AAcc = ACCygriane — ACCq,

where the “full” model is the complete HBP-LSTM.

Table 11 yields four observations. (1) Post-fusion Bayesian infer-
ence is crucial: removing the second Bayesian LSTM reduces accuracy
by 4.53pp (}), indicating that modelling uncertainty after low-high
feature fusion is key for cross-participant generalisation. (2) Early
Bayesian uncertainty is secondary: replacing the first Bayesian LSTM
causes a smaller, non-significant drop (3.54 pp), suggesting that under
a lightweight setting (25 epochs, H=64) early Bayesian modelling
is less influential than later-stage inference. (3) Attention helps even
without the adapter: adding multi-head attention to a single-Bayesian
model improves accuracy by 3.95 pp; the adapter remains necessary for
peak performance. (4) Synergy is indispensable: removing all advanced
modules (LSTM-Base) leads to a 38.75pp loss (&), confirming that
robustness stems from the combination of Bayesian inference, attention,
and adapter rather than any single component.

7.4. Noise tolerance test

7.4.1. Model performance under fixed noise ranges

In this approach, noise was generated by sampling from a uni-
form distribution within specified ranges, such as U(0,1), U(-5,5), and
U(-10,10), and then added to the original feature values. This ensures
that the noise has different magnitudes, enabling us to test the model
under varying degrees of data corruption.

The generated noise was independently applied to each feature
across the entire dataset. In other words, for each data point, all feature
values were adjusted by adding a randomly selected noise value from

198

the corresponding distribution. This process was repeated for each
noise intensity level, creating multiple noisy versions of the dataset.

The choice of different noise intensity ranges was made to sim-
ulate various levels of signal degradation that might occur in real-
world scenarios. For example, noise within the [0,1] simulates minor
fluctuations, such as those caused by sensor precision limitations or
environmental factors, leading to minor data collection errors. Noise
in the [-5,5] represents moderate degradation, possibly due to tran-
sient hardware issues or temporary environmental disturbances. Noise
in the [-10,10] range introduces severe noise, analogous to sensor
malfunctions or widespread environmental interference.

The initial trial employed a noise range of 0 to 1, corresponding
to a relatively mild level of distortion. As illustrated in Table 12, at a
10% noise level, the Low-Level (LL) LSTM model achieved accuracies
of 89.63% on the EGBM dataset and 79.03% on the KDAEE dataset.
In comparison, the High-Level (HL) LSTM model attained accuracies
of 86.00% on EGBM and 85.00% on KDAEE. These results indicate
that the LL LSTM exhibits greater robustness to low-intensity noise
than the HL LSTM. However, the performance of the HL LSTM model
demonstrated a higher dependency on data quality. As the noise level
increased to 70%, both LL and HL. LSTM models experienced declines in
accuracy across both datasets. Specifically, at 70% noise, the LL LSTM
maintained accuracies of 74.71% on EGBM and 69.05% on KDAEE,
whereas the HL. LSTM’s accuracies decreased to 42.73% on EGBM and
45.73% on KDAEE. These findings underscore the superior resilience of
the LL LSTM model under severe noise conditions compared to the HL
LSTM model.

To further clarify which part of our model contributes most to noise
robustness, we performed a targeted comparison in which Gaussian
noise was added exclusively to the low-level branch (41-dimensional
kinematic inputs) or exclusively to the high-level branch (LMA-derived
features). The results, see Table 12, show that when only the low-
level inputs are corrupted, the drop in accuracy for the deterministic
LL-LSTM (e.g. from 89.6%—83.7% on EGBM at 30% noise) is only
slightly larger than for the Bayesian LL-LSTM (from 92.3%—84.7%),
indicating a modest gain. By contrast, when only the high-level inputs
are corrupted, the deterministic HL-LSTM’s accuracy falls much more
steeply (e.g. 86.0%—72.6% on EGBM) than the Bayesian HL-LSTM
(93.8%—84.8%). In other words, introducing Bayesian inference brings
a substantially larger robustness benefit to the high-level branch. This
occurs because high-level LMA features are aggregated statistics; thus
noise perturbs them, and the network can only recover by leveraging
weight uncertainty. Low-level kinematic sequences, however, already
contain strong temporal redundancy, so even a deterministic LSTM
can partially “average out” the frame-wise noise. Hence, the Bayesian
HL-LSTM (together with its Adapter+Attention+second-stage Bayesian
LSTM) is the key driver of robustness when noise exceeds 30%.

Incorporating Bayesian inference into the LSTM models (LL Bayesian
LSTM and HL Bayesian LSTM) results in a consistent performance
improvement across most noise levels for both the EGBM and KDAEE
datasets. At a 30% noise level, the LL Bayesian LSTM outperforms
the standard LL LSTM by approximately 1.0% on EGBM (84.71% vs.
83.74%) and by 1.8% on KDAEE (72.01% vs. 70.23%). Similarly,
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Table 12
Testing results for various models with noise range 0-1.
Model* 10% noise 30% noise 50% noise 70% noise
EGBM KDAEE EGBM KDAEE EGBM KDAEE EGBM KDAEE
LL LSTM 0.8963 0.7903 0.8374 0.7023 0.8073 0.7532 0.7471 0.6905
HL LSTM 0.8600 0.8500 0.7256 0.7250 0.6483 0.6034 0.4273 0.4573
LL Bayesian LSTM 0.9227 0.8223 0.8471 0.7201 0.8398 0.7622 0.6961 0.7010
HL Bayesian LSTM 0.9380 0.8733 0.8485 0.7402 0.6754 0.7011 0.6036 0.6505
All-Level LSTM 0.9663 0.8734 0.8600 0.7701 0.7661 0.7400 0.5783 0.6300
HBP-LSTM 0.9863 0.8304 0.8637 0.7536 0.8619 0.7323 0.8619 0.7136
* LL LSTM = Low-Level LSTM, HL LSTM = High-Level LSTM, etc.
Table 13
Testing results for various models with noise range —5-5.
Model* 10% noise 30% noise 50% noise 70% noise
EGBM KDAEE EGBM KDAEE EGBM KDAEE EGBM KDAEE
LL LSTM 0.6519 0.6012 0.2947 0.2021 0.2431 0.1941 0.2118 0.1941
HL LSTM 0.8729 0.7301 0.4751 0.3243 0.3370 0.2341 0.2947 0.2240
LL Bayesian LSTM 0.8416 0.7322 0.4052 0.3543 0.2449 0.2351 0.2063 0.1963
HL Bayesian LSTM 0.8802 0.7652 0.5046 0.5123 0.3966 0.3542 0.3016 0.2502
All-Level LSTM 0.9024 0.7833 0.5930 0.5520 0.4254 0.3970 0.4070 0.3540
HBP-LSTM 0.9466 0.8133 0.7974 0.7236 0.7422 0.6543 0.6262 0.6132
* LL LSTM = Low-Level LSTM, HL LSTM = High-Level LSTM, etc.
Table 14
Testing results for various models with noise range —10 to 10.
Model* 10% noise 30% noise 50% noise 70% noise
EGBM KDAEE EGBM KDAEE EGBM KDAEE EGBM KDAEE
LL LSTM 0.3591 0.3233 0.2118 0.2013 0.2173 0.1941 0.1860 0.1531
HL LSTM 0.5064 0.4563 0.2910 0.02510 0.2615 0.1942 0.2357 0.1831
LL Bayesian LSTM 0.5801 0.5501 0.3131 0.2812 0.2560 0.2341 0.2449 0.1832
HL Bayesian LSTM 0.6072 0.5814 0.3324 0.3021 0.2816 0.2513 0.2672 0.1941
All-Level LSTM 0.6538 0.6516 0.4088 0.3875 0.3757 0.2316 0.3407 0.1941
HBP-LSTM 0.8122 0.7532 0.6372 0.7032 0.5304 0.5103 0.4088 0.3980

* LL LSTM = Low-Level LSTM, HL LSTM = High-Level LSTM, etc.

the HL Bayesian LSTM achieves a 12.3% accuracy improvement over
the standard HL LSTM on EGBM (84.85% vs. 72.56%) and a 1.5%
improvement on KDAEE (74.02% vs. 72.50%) at the same noise level,
indicating the robustness of the Bayesian approach in mitigating the
impact of noise.

In the comparative analyses, the HBP-LSTM model demonstrates
excellent adaptability with Bayesian inference and multi-level feature
integration. Even at a high noise level of 70%, the model still achieves
robust accuracies of 86.19% and 76.61% on the KDAEE dataset and the
EGBM dataset, respectively, which demonstrate the model’s excellent
robustness under data distortion conditions and highlight its stable
performance in challenging environments.

When the noise range is extended to [-5, 5], as presented in
Table 13, the performance trajectories of the low-level (LL) and high-
level (HL) LSTM models exhibit significant differences. Initially, at
lower noise levels, the LL. LSTM demonstrates robustness; however, at
a 70% noise level, its accuracy sharply declines to 20.63% (EGBM)
and 19.63% (KDAEE). In contrast, the HL LSTM exhibits greater noise
robustness, with a more gradual decrease in accuracy under the same
noise intensity. Notably, in lower-noise environments, the LL model
appears to be as fault-tolerant as, or even more fault-tolerant than, the
HL model, as shown in Table 12. This robustness may be attributed to
the effectiveness of direct low-level features in capturing essential af-
fective information when the data is relatively clean. However, as noise
levels increase, the advantages of high-level features become more
pronounced. High-level features provide a broader context and intrinsic
connections, which are crucial for extracting meaningful patterns from
complex and noisy data. This shift underscores the importance of
integrating low- and high-level features to enhance model resilience
and interpretability under varying noise conditions.

Taking the All-level LSTM as an example, it generally outperforms
single-layer models (LL and HL), particularly under moderate noise
conditions. Within the noise range of [-5, 5], at a noise level of
30%, the All-level LSTM maintains relatively high accuracies of 79.74%
(EGBM) and 72.63% (KDAEE), indicating its superior ability to mitigate
noise by leveraging a more comprehensive perspective of the data.
However, as shown in Table 14, under the most extreme noise condition
of [-10, 10], the full-layer LSTM, while still outperforming single-layer
models, experiences a significant performance decline, with accuracy
dropping to approximately 40% at a noise level of 70%.

Fig. 16 compares the normalised confusion matrices of the All-
Level LSTM and HBP-LSTM models at different noise levels across the
EGBM and KDAEE databases. Fig. 16(a) shows the confusion matrix
for the All-Level LSTM model on the EGBM database at a 70% noise
level. The model achieves a high accuracy of 97.33% in recognising
the “Disgust” emotion. However, the model exhibits significant con-
fusion in distinguishing “Happiness” from “Surprise” and “Fear” from
“Sadness”, leading to higher misclassification rates. This indicates that,
despite its overall good performance, the All-Level LSTM struggles
to distinguish between emotions with similar expressive patterns in
high-noise environments.

In contrast, Fig. 16(b) shows that the HBP-LSTM model exhibits
greater robustness at the same database and noise level. The model
achieves over 88% accuracy in recognising “Disgust” and significantly
reduces the confusion rates between “Happiness” and “Surprise” as
well as “Fear” and “Sadness”. This suggests that HBP-LSTM has a better
discriminatory ability in handling noisy data and is more effective at
parsing complex emotional expressions.

Fig. 16(c) shows the confusion matrix for the All-Level LSTM model
on the KDAEE database at a 50% noise level. The model achieves
recognition accuracies of 0.0% for “Anger” and 17.6% for “Disgust”,
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Fig. 16. Comparison of normalised confusion matrices for all-level LSTM and HBP-LSTM models on EGBM and KDAEE datasets at different noise levels.

with 45.5% and 42.9% accuracy for “Fear” and ‘“Happiness”, respec-
tively. Notably, “Neutral” and “Sadness” are recognised with moderate
accuracies of 50.0% and 40.0%. However, “Surprise” is accurately
identified only 37.5% of the time. The All-Level LSTM model ex-
hibits significant challenges in accurately recognising ‘“Anger”, which
is wholly misclassified, and shows overlaps between “Disgust”, “Fear”,
and other emotions like “Neutral” and “Sadness”. Additionally, there
is confusion between “Happiness” and “Surprise”, indicating that the
All-Level LSTM struggles to distinguish nuanced emotional states within
the KDAEE dataset under high-noise conditions.

Fig. 16(d) illustrates the confusion matrix for the HBP-LSTM model
on the KDAEE database at the same 50% noise level. The HBP-LSTM
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model demonstrates improved recognition accuracies across most emo-
tion categories, achieving 50.0% for “Anger”, 52.9% for “Disgust”,
54.5% for “Fear”, and 57.1% for “Happiness”. “Neutral” and “Sadness”
are recognised with high accuracies of 83.3% and 73.3%, respectively,
while “Surprise” is accurately identified 56.2% of the time. Although
“Anger” remains a challenging category, the HBP-LSTM model signifi-
cantly reduces misclassification rates for “Disgust” and “Surprise”, min-
imising confusion with other emotions. These improvements suggest
that the HBP-LSTM model offers better resilience and discriminatory
power in handling noisy data, leading to more accurate emotional
recognition in the KDAEE database. However, further optimisation is
needed to enhance the recognition of “Anger” and “Surprise”.
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Table 15
Model performance evaluation under unrestricted random noise conditions for EGBM and KDAEE Datasets.
Model/noise level* EGBM KDAEE
3% 5% 7% 10% 3% 5% 7% 10%
All-Level LSTM 0.3757 0.3462 0.3278 0.2910 0.3625 0.3401 0.3155 0.2882
HBP-LSTM 0.4880 0.4346 0.4144 0.3554 0.4752 0.4298 0.3981 0.3491

* Noise levels are simulated with completely random values, without fixed range constraints, to evaluate model resilience in unpredictable
conditions. Performance is shown separately for EGBM and KDAEE datasets.

7.4.2. Model robustness under unrestricted noise conditions

To assess the model’s robustness under extreme and unpredictable
conditions, we introduce noise with no predefined limits. This noise is
randomly generated and imposed on the entire feature set and designed
to simulate real-world scenarios such as sensor failures, system errors,
or extreme environmental disturbances.

In contrast to the first strategy, this method’s noise intensity is not
systematically controlled but randomly sampled from a broad spectrum
that may contain outliers and extreme values. The high noise size and
direction variability pose a more significant challenge for the model.

Applying noise indiscriminately across the entire feature set means
that each feature may be disturbed to varying degrees in magnitude
and type. This setup simulates a realistic situation in which some data
streams may have severe errors while others remain stable, thus pro-
viding a severe test of the model’s ability to process under chaotic and
unexpected input conditions. We aim to examine the model’s ability
to generalise and maintain performance under the most challenging
conditions by introducing noise without predetermined limits. Such
tests provide an essential basis for understanding the robustness and
adaptability of the model in real-world applications.

This subsection explores the model’s performance under
unrestricted random noise conditions, reflecting the unpredictable data
corruption encountered in real-world scenarios. Observing the model’s
performance decline in such a challenging environment provides valu-
able insights into its robustness.

Table 15 presents the results from this rigorous testing, showcasing
how each model variant contends with a spectrum of noise levels from
mild (3%) to significant (10%).

The results highlight the challenge that unrestricted noise poses
to model robustness. At a noise level of 10%, HBP-LSTM demon-
strates a stronger adaptive capability with an accuracy of 35.54%
(EGBM dataset) and 34.91% (KDAEE dataset), compared to 29.10%
and 28.82% for All-Level LSTM. This result demonstrates the superior
performance of HBP-LSTM in dealing with unstructured noise.

Despite the performance degradation observed, the relative stability
of the HBP-LSTM in adverse conditions is promising. It accentuates
the model’s applicability in emotion recognition within complex and
unpredictable environments. Future endeavours may concentrate on
refining the model’s architecture, potentially through optimising its
Bayesian elements or adopting advanced regularisation techniques to
further attenuate the noise impacts. Such enhancements are pivotal for
bolstering the model’s resilience and ensuring the reliability of emotion
recognition applications.

The above analysis shows that the HBP-LSTM model maintains a sig-
nificant advantage in different noise levels, consistently delivering high
emotion recognition rates. This consistent performance across various
noise levels, especially when data integrity is at stake, speaks volumes
about the model’s potential for application in different environments.
The superiority of the HBP-LSTM is most evident when compared to
the All-Level LSTM, which is significantly less sensitive to accuracy
degradation.

Furthermore, these results reaffirm the importance of robust model
design in the field of emotion recognition. As the technique is inte-
grated with dynamic, real-world environments, the ability to maintain
high recognition rates in the presence of imperfect data will be critical.
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7.5. FGSM adversarial testing

Adversarial attacks were conducted using FGSM with perturbation
magnitudes ¢ = 0.01 (minor) and ¢ = 0.10 (significant). This setup
aimed to evaluate how each model withstands varying levels of adver-
sarial noise, simulating scenarios where inputs are subtly or heavily
manipulated to degrade performance.

Figs. 17(a) and 17(b) illustrate the models’ accuracies under FGSM
attacks on the EGBM and KDAEE datasets, respectively. The HBP-LSTM
(blue solid line) consistently outperforms the Normal LSTM (red dashed
line) at lower perturbation levels (e 0.01 and 0.05), indicating
superior resilience to mild adversarial noise. However, at the higher
perturbation level (¢ = 0.10), the Normal LSTM achieves higher accu-
racy — approximately 22% for EGBM and similar trends for KDAEE —
compared to the HBP-LSTM’s 15%. This suggests that while HBP-LSTM
excels under moderate adversarial conditions, the simpler architecture
of the Normal LSTM may better handle extreme, generalised noise. Fig.
17 provides a comparative overview across both datasets. It highlights
that the HBP-LSTM maintains higher accuracy at lower ¢ values but
is outperformed by the Normal LSTM when perturbations are severe.
This outcome underscores a trade-off between model complexity and
generalisation capabilities.

In the previous noise test (see Section 7.4), HBP-LSTM outper-
formed ordinary LSTM at all noise levels, demonstrating its superior
ability to handle random and unstructured noise. However, in the
FGSM adversarial test, although the HBP-LSTM still performed well at
low to medium perturbation strengths, it was no match for the ordi-
nary LSTM at high perturbation strengths. This phenomenon indicates
that the complex architecture of the HBP-LSTM may have limitations
when dealing with intentional perturbations in the gradient direction,
especially at high perturbation strengths, where the model may be
more susceptible to severe interference due to its complexity. The
Normal LSTM performs better under FGSM high perturbation strength,
possibly due to its simple structure reducing the risk of overfitting,
giving it better generalisation ability under extreme noise conditions.
This comparison highlights the impact of different noise types on
model robustness and emphasises the need to trade off complexity and
generalisation ability in model design for various application scenarios.

8. Discussion

The research presented explores the use of body movements for
emotion recognition, a rapidly growing area within affective com-
puting. Our proposed Hybrid Bayesian Pre-trained LSTM (HBP-LSTM)
framework significantly enhances emotion recognition accuracy and
robustness by integrating low-level pose features with high-level kine-
matic features and incorporating Bayesian inference.

Our experimental results demonstrate that the HBP-LSTM model
achieves accuracies of 98.17% on the EGBM dataset and 88.07% on the
KDAEE dataset, outperforming existing state-of-the-art methods. These
results validate the effectiveness of our approach in handling noisy and
uncertain data, and its superior performance in emotion recognition
tasks.

The high accuracy achieved by the HBP-LSTM model underscores
the importance of integrating both low-level and high-level features for
comprehensive emotion recognition. By leveraging Bayesian inference,
our model effectively manages data uncertainty and noise, which are
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Fig. 17. Comparison of model performance under FGSM adversarial attacks.

prevalent in real-world scenarios. This robustness makes our framework
highly suitable for practical applications where data quality cannot
always be controlled.

Unlike previous approaches focusing solely on low-level joint data
or incorporating attention mechanisms without addressing uncertainty,
our model’s combination of multi-level feature integration and Bayesian
inference provides a more nuanced and reliable emotion recogni-
tion system. This dual-level feature approach captures both the de-
tailed movements and the overarching kinematic patterns that convey
emotional states. Incorporating Bayesian inference within the LSTM
framework enhances the model’s ability to handle variability and
unpredictability in movement data. This adaptability is crucial for de-
ploying emotion recognition systems in dynamic environments where
data can be highly variable and subject to noise.

The success of the HBP-LSTM model paves the way for deploying
emotion recognition systems in real-world applications, particularly in
scenarios where data quality cannot be guaranteed. Applications in-
clude real-time monitoring, human—computer interaction, and assistive
technologies. Our model can contribute to more reliable and effective
emotion-aware systems in these domains by ensuring high accuracy and
robustness.

Through comprehensive feature analysis using a Random Forest
classifier, we evaluated the importance of various features, compared
high-level and low-level features, and analysed contributions from
different body parts across emotional categories. The results revealed
that certain body parts and features play a more significant role in ac-
curately conveying emotional states. Specifically, high-level kinematic
features related to the upper body and hands were particularly influen-
tial. This analysis enhances our understanding of emotion recognition
mechanisms and provides valuable insights for further refining our
model.

8.1. Limitations

Although the HBP-LSTM model exhibits excellent noise immunity
and high accuracy in sentiment recognition, it still has some limitations
that need to be further explored:

First, the model’s performance in the face of severe or uncontrolled
random noise suggests that there is still room for improvement in
dealing with extreme data corruption. This implies that more ad-
vanced noise filtering techniques or more robust model architectures
are needed to ensure that relevant features can be effectively extracted
despite severe data distortion.

Second, this study relies on a specific dataset for training and
validation, which may limit the model’s ability to generalise to different
real-world scenarios. The existing dataset may not be able to cover
all emotional expressions and environmental changes encountered in
real-world applications. Therefore, future research should consider in-
corporating a wider range of datasets that cover different cultural

202

backgrounds, emotional nuances, and diverse environmental conditions
to enhance the model’s adaptability and robustness.

In addition, although Bayesian methods help to enhance model
robustness and uncertainty management, they have high computational
complexity and consume a large amount of computational resources.
This somewhat limits the feasibility of the model in real-time applica-
tions and large-scale deployment. Therefore, exploring more efficient
Bayesian inference techniques or developing lightweight model archi-
tectures would help alleviate this problem and make the approach more
practical in resource-constrained environments.

Finally, although the present model performs well in controlled
experimental environments, its performance in real-world applications
still needs to be thoroughly evaluated. In real-world applications, data
may be affected by various unforeseen perturbations and complexities,
so extensive field testing and user studies will provide valuable insights
into understanding the model’s real-world effectiveness and point the
way to further improvements.

8.2. Responsible Al development

This study develops the Hybrid Bayesian Pre-trained LSTM (HBP-
LSTM) framework, a unique technology that involves both low-level
posture characteristics and high-level kinematic features and includes
Bayesian inference. Our way brings about considerably improved body
movement-based emotion recognition, especially in the presence of
serious noise. The results present the model’s resistance and flexibility
in uncertain, noisy data ecosystems, demonstrating its potential for
real-world applications where data integrity may vary.

Through comprehensive feature analysis using a Random Forest
classifier, we evaluated the importance of various features, compared
high-level and low-level features, and analysed contributions from dif-
ferent body parts across emotional categories. The outcomes unveiled
that certain body parts are the most critical body features accurately
reflecting emotions. Specifically, the upper body and hands have been
mentioned as higher-level kinematic features that contribute mainly to
this end. This analysis enhances our understanding of emotion recog-
nition mechanisms and provides valuable insights for further refining
our model.

Regarding the findings from the feature analysis, further research
will concentrate on the most influential features and body sections to
optimise the HBP-LSTM model. By concentrating on the most influen-
tial features, we aim to develop a more efficient model with reduced
computational complexity without compromising performance.

Further, we want to explore more advanced deep learning algo-
rithms to deal and analyse data more comprehensively. This might
involve employing convolutional neural networks (CNNs) to find and
extract local information or transformer to bottle the links between dis-
tant processes in motion sequences. These enhancements may provide
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deeper insights into the nuances of the data’s features and contribute
to a more sophisticated understanding of emotion recognition.

Moreover, we recognise the importance of evaluating our model in
real-world settings. Future work will involve deploying the HBP-LSTM
model in practical applications, such as real-time emotion recognition
systems, to validate its generalisation capabilities and robustness in
diverse environments. Lastly, considering the computational demands
of Bayesian methods, we will investigate efficient inference techniques
or develop lightweight model architectures to facilitate real-time appli-
cations. This will make the approach more practical for deployment in
resource-constrained environments.
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