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 A B S T R A C T

Emotion recognition has become increasingly significant in artificial intelligence; however, the impact of 
body movements on emotion interpretation remains under-explored. This paper presents a novel Hybrid 
Bayesian Pre-trained Long Short-Term Memory (HBP-LSTM) framework that combines low-level pose data 
with high-level kinematic features, utilising Bayesian inference to enhance the accuracy and robustness of 
emotion recognition. The proposed model is trained on high-quality laboratory data to capture the fundamental 
patterns of emotional expression through body movements. We introduce noise and employ adversarial attack 
methods such as the Fast Gradient Sign Method (FGSM) to evaluate the model’s robustness during testing. This 
approach assesses the HBP-LSTM’s ability to maintain performance under data degradation and adversarial 
conditions, common challenges in real-world scenarios. We validated the HBP-LSTM on two public datasets, 
EGBM and KDAEE, demonstrating that the model exhibits high robustness against noise and adversarial 
perturbations, outperforming traditional models. The HBP-LSTM accurately identifies seven basic emotions 
(happiness, sadness, surprise, fear, anger, disgust, and neutrality) with accuracies of 98% and 88% on the EGBM 
and KDAEE datasets, respectively. HBP-LSTM is a noise-resistant model with a reliable emotion recognition 
framework, which lays the foundation for future applications of emotion recognition technology in more 
challenging real-world environments.
1. Introduction

In the current literature, facial expressions (Canal et al., 2022), 
body language (Oğuz and Ertuğrul, 2024), voice (Zhang et al., 2023), 
and physiological changes (Tang et al., 2024) are the primary methods 
utilised to analyse people’s expression of feelings. Also, there are efforts 
to interpret facial expressions in connection with the voice (Zambeli 
et al., 2024). According to Ekman (1984), humans are prone to ac-
knowledge facial expressions and disregard body language to empathise 
with others. Nevertheless, non-verbal communication cannot be under-
scored enough in conveying emotions and body language and posture 
contribute to accurately communicating one’s intentions and feelings 
to another person (Ahmed et al., 2019). There is a growing interest 
in utilising bodily movement, posture, and gesture to comprehend 
emotions. Multiple fundamental factors underpin this trend. Recent 
developments in motion capture technology and its enhanced accuracy 
have resulted in a surge in the volume and quality of data valuable 
for the automatic recognition of expressive movements (Elansary et al., 
2024; Khare et al., 2023). At a distance, facial expressions might not 
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be apparent; thus, physical movement presents a viable method for 
emotion recognition (Oğuz and Ertuğrul, 2024).

Recent research has focused on creating systems that autonomously 
identify emotions by examining cues from body posture and forecast 
emotions by reviewing an individual’s body language (Geetha et al., 
2024). These advancements seek to optimise and enhance communi-
cation effectiveness between humans and robots. However, despite the 
increased interest, the significance of body language in the automated 
analysis of emotions is still not yet fully acknowledged (Ebdali Takalloo 
et al., 2022). A lot of the current research work identifies emotions 
through several modalities, such as facial expressions, head movements, 
and hand gestures (Ebdali Takalloo et al., 2022). Yet, movements are 
also crucial in emotional expression and recognition. For example, we 
open our arms while experiencing positive emotions like joy, anger, or 
surprise (Shaarani and Romano, 2007). Faster bodily reactions related 
to fear, joy, anger, or surprise, and slow movements and responses fall 
under the category of sadness (De Meijer, 1989).

Laban Movement Analysis (LMA) has been employed to date pri-
marily to analyse physical activity (Wang et al., 2024b; Shafir, 2023). 
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LMA is a comprehensive system for observing and notating movement 
which offers nuanced insights into human behaviour through the cat-
egorisation of movements based on body parts, movement dynamics, 
and spatial pathways (Shafir, 2023). Previous research has frequently 
restricted their examination to only a small range of characteristics 
amongst the possible extensive set of measurable qualities connected 
with a physical activity, failing to consider the correlation and hi-
erarchical significance of other measurable elements (Sapiński et al., 
2019a). Moreover, occlusion (objects or people blocking parts of the 
subject from view) presents a significant challenge  (Surace et al., 
2017).

We advocate a holistic approach to automatic emotion recognition 
that includes not just individual gestures or facial expressions but also 
investigating the whole bodily apparatus’s contribution and movement 
to the communication of emotional states. While there are some early 
attempts to explore the entire body’s emotional experience automati-
cally (Wang et al., 2024b; Ahmed et al., 2019; Wang et al., 2015), this 
is still an under-researched area.

All the above described challenges highlight the need to for a 
robust approach, and a machine-learning algorithm, that can reliably 
detecting and predicting human emotions only from bodily movement, 
particularly in cases where the data are partially occluded or missing.

This publication makes the following contribution to knowledge:

• A novel framework for structuring bodily motion into low-level 
and high-level features based on Laban Movement Analysis
(LMA);

• The Hybrid Bayesian Pre-Learned Long Short-Term Memory
(HBP-LSTM) architecture, a pioneering approach for emotion 
recognition from body movements that integrates Bayesian meth-
ods with Long Short-Term Memory neural networks; and

• Extensive experiments and their results to validate the robustness 
and accuracy of the proposed HBP-LSTM model against estab-
lished models using two benchmark laboratory datasets, MDESVG 
and KDAEE, focusing on its performance under various simulated 
noise conditions and adversarial attacks.

2. Related work

2.1. Automatic emotion recognition from gross body movement

Gross body movements (movements involving the whole body) 
are the primary vehicle for expressing emotion (De Meijer, 1989). 
Body language, such as changes in posture, movements, the manner 
of walking (or gait), and more, can transfer realistic and substantial 
emotional information that can hardly be read in the musculature of the 
face or even materialised by words (YuMeng et al., 2024), highlighting 
the importance of the body in emotion communication (Reed et al., 
2020).

Recent studies have explored various approaches to automatic emo-
tion recognition from body movements, mainly focusing on low-level 
or high-level features. Sapiński et al. (2019a) introduced an algorithm 
for emotion recognition utilising the low-level characteristics obtained 
from the spatial arrangement and orientation of the joints in the 
complete skeletal structure. However, the authors did not fully explore 
how to integrate dynamic motor features with high-level kinematic fea-
tures that could enhance the fine-grained understanding of emotional 
expression.  YuMeng et al. (2024) proposed the Affective-Pose Gait 
Network (APGN), a novel approach for analysing emotions from gait. 
APGN employs a Spatio-Temporal Graph Convolutional Network (ST-
GCN) to draw out a pose’s features and a Convolutional Neural Network 
(CNN) to extract the affective features, emphasising the necessity of 
integrating both pose and affective data for more accurate emotion 
recognition from body movements. However, their model did not fully 
address the challenges posed by noisy or adversarial data, which can 
affect the robustness of emotion recognition systems.
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2.2. Laban movement analysis

Human symbolic representation systems provide an effective
method for analysing and interpreting body movements. In psychology, 
such coding techniques help to recognise emotional states such as 
boredom or interest  (Wang et al., 2024b) by categorising different 
body postures and gestures, such as proximity, upper body posture, and 
hand movements. Laban Movement Analysis (LMA) is a widely used 
system of movement notation created by choreographer and theorist 
Rudolf Laban. LMA emphasises the relationship between internal states, 
intention and attention, and human movement forms, and it can 
provide insight into the expressive characteristics of movement. LMA 
has been used effectively in the analysis of emotional and behavioural 
patterns. High-level movement analysis based on LMA (Laban and 
Ullmann, 1971) has been employed in several studies to gain nuanced 
insights into human behaviour. LMA offers a comprehensive system 
for observing and notating movement, categorising it based on factors 
such as body parts, dynamics, and spatial pathways.  Bartenieff and 
Lewis (2013) and other researchers compiled and expanded LMA to 
enhance its comprehensiveness and intricacy. Table  1 summarises the 
main categories of LMA.

Laban Movement Analysis (LMA) provides a rich body of terminol-
ogy for understanding body movement as an expression of an individ-
ual’s feelings and emotional reflections. The categories in its framework 
play a key role in this understanding (Melzer et al., 2019):

Body: By observing ‘‘what is in motion’’, one can infer emotional 
states. For instance, a slouched posture might indicate sadness or 
defeat, while an erect posture could signify confidence.

Space: The ‘‘where the body moves’’ can signify an individual’s 
intent or emotional relation to their environment. Retreating actions 
may suggest fear or evasion, whilst advancing actions could denote 
hostility or eagerness.

Shape: Changes in the body’s shape can provide insight into a per-
son’s emotional response to their surroundings. Contraction or shrink-
age may indicate fear or introspection, while expansion indicates open-
ness or joy.

Effort: This category is particularly relevant to emotions. Intrinsic 
attitudes towards exercise can provide direct clues about emotional 
states:

• Weight : Heavy movements may be firm or aggressive, while light 
movements may be tentative or gentle.

• Space: Direct movements can indicate decisiveness or focus, while 
indirect ones may suggest distraction or uncertainty.

• Time: Sudden movements often correlate with impulsiveness or 
surprise, and sustained motions with deliberation or calmness.

• Flow: Bound flow may be associated with control or tension, while 
free flow may suggest relaxation or spontaneity.

2.3. Automatic gross body emotion recognition from Laban movement anal-
ysis

Ahmed et al. (2019) employed a genetic algorithm for feature 
selection and presented a two-layer framework that executed feature 
selection computationally considering the human action descriptors, 
including from LMA, which was relevant in identifying significant 
emotional aspects. Wang et al. (2024b) proposed an LMA-based emo-
tion recognition method for dance movements. The method accurately 
captures the emotional expression in dance by analysing the body’s 
spatial distribution, structural features and movement patterns. They 
achieved recognition accuracy of 79.74% using deep neural networks 
(DNN). These studies demonstrate the potential application of LMA in 
gross body emotion recognition. However, the methods in the literature 
usually rely on high-quality datasets and do not adequately consider the 
impact of noise or adversarial perturbations on model performance.
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Table 1
Laban movement analysis components.
 Component Description  
 Body Neuromuscular patterns, Movement initiation, Movement sequence  
 Space Kinesphere, Geometry, Spatial intention  
 Shape Connection of body parts, Shape forms, Shape change, Shape flow support 
 Effort Qualities of motion including Flow, Weight, Time, and Space  
Despite the progress described above in automatic body movement 
emotion recognition, the robustness of the models still faces serious 
challenges when dealing with noisy data and adversarial attacks. Data 
in real environments are often interfered with by various factors such as 
sensor noise, occlusion, and deliberate perturbation that seriously affect 
the model’s actual performance. Some studies have started addressing 
some of these problems in other domains. For instance, Goodfellow 
(2016) came up with the Fast Gradient Sign Method (FGSM) as a way 
of developing adversarial examples that trick neural networks, which 
highlights the importance of constructing robust models that can with-
stand such attacks. However, in the context of emotion recognition, few 
studies have systematically evaluated the robustness of the model under 
noisy or adversarial conditions, and there is a gap in research focusing 
on developing and testing models that maintain high performance 
when subjected to data degradation or adversarial perturbations.

3. Novelty

This publication presents the Hybrid Bayesian Pre-trained LSTM 
(HBP-LSTM) framework that automatically recognises emotion from 
gross body movements based on LMA, ameliorating the reliability and 
precision of the current automatic emotion recognition models trained 
on high-quality data. The use of Bayesian inference with the LSTM 
was purposely incorporated to emphasise the uncertainty and develop 
a more robust model than the one presented in the literature.

Based on Laban Movement Analysis (LMA) (Bernardet et al., 2019), 
we segment body movements as low and high-level features. Low-level 
features are angular and linear distances that display the general body 
configuration and volume data obtained from bounding boxes (Lar-
boulette and Gibet, 2015). High-level features comprise aspects like 
speed, acceleration, and jerk (the difference between the acceleration 
of an object and the rate of change of its acceleration), depending 
on various body parts. Furthermore, high-level characteristics are also 
unobservable, e.g., timing, weight (effort), spatial orientation, mov-
ing in symmetry, and the trunk being perpendicular to the ground 
plane (Larboulette and Gibet, 2015). These advanced characteristics 
offer a detailed comprehension of motion, showcasing the intricate and 
delicate nature of human emotions expressed through body language. 
In addition, we provide a deep analysis of the model performances 
under different simulated noise conditions and adversarial attacks such 
as FGSM, showing that the HBP-LSTM surpasses the other models in 
terms of robustness.

The proposed framework, named hybrid Bayesian pre-trained long 
short-term memory (HBP-LSTM) architecture, aims to reinforce the 
emotion detection model’s robustness. The model utilises a Pre-trained 
Bayesian LSTM to process low-level features, capturing temporal dy-
namics and modelling uncertainty through Bayesian inference. Also, to 
stress the temporal features that are the most important for sentiment 
recognition, an attention mechanism is utilised on the Pre-trained 
Bayesian LSTM output. The considered high-level features are pro-
cessed through an adapter architecture, which changes the high-level 
features to be related via the output of the attention layer. The in-
duction of the combined outputs of both the low-level and high-level 
feature handling is followed by inputting them into a Post-fusion 
Bayesian LSTM layer, which still learns temporal relations in the fused 
space and deals with uncertainties, also using probabilistic modelling. 
This approach enables a more nuanced and reliable analysis of complex 
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affective cues, enhancing the robustness of affective detection in the 
presence of data uncertainty.

To check the robustness of the HBP-LSTM model, we added noise 
and used the Fast Gradient Sign Method (FGSM) as an adversarial at-
tack during the testing phase. This particular evaluation strategy gauges 
the model’s performance in the presence of degraded data conditions, 
which are, hence, a common challenge in real-world applications. 
While the current study is conducted using laboratory datasets, the 
framework is designed with the potential to handle challenges that may 
arise in more variable settings.

4. Methodology

4.1. Overview

In human movement analysis, discerning the emotional intent be-
hind various movements is a complex challenge.

The automatic gross body emotion recognition presented in this 
paper is based on LMA. By integrating the four core dimensions of 
LMA (Shape, Effort, Body, and Space), the model can identify subtle 
differences in emotional expression more accurately.

The Shape dimension of LMA was quantified by analysing changes 
in the body structure and spatial relationships between body parts as 
in  Wang et al. (2024b). Specifically, this included extracting high-level 
features such as height, width and depth measurements of the torso 
boundary volume, which are the core elements of the shape dimension.

The Effort dimension of LMA focuses on the dynamic characteristics 
of the movement in terms of time, weight, space and flow. We quantify 
changes in these dynamic features through metrics such as velocity, 
acceleration, and body part jerking. These effort-related features reflect 
the intensity and style of movement and play a key role in emotion 
recognition.

The Body dimension captures the low-level features in neuromus-
cular patterns and movement sequences by quantifying the spatial 
relationships between body parts, while the Space dimension focuses 
on the spatial intent and geometric properties of movements, revealing 
how individuals interact with their environment.

Our proposed solution, the Hybrid Bayesian Pre-Learned LSTM 
(HBP-LSTM) framework, innovatively combines Bayesian neural net-
works with Pre-trained feature encodings to enhance emotion recog-
nition from body movement data. HBP-LSTM adopts a novel structure: 
a Pre-trained Bayesian LSTM processes low-level bodily features, and a 
subsequent Bayesian LSTM handles the fused features alongside high-
level LMA features. This approach is geared towards capturing the 
intricacies inherent in human emotions and ensuring robustness in the 
face of data uncertainties by modelling uncertainty through Bayesian 
methods. A comprehensive discussion of the HBP-LSTM framework and 
its resilience in handling uncertain data is presented in Section 5. Fig. 
1 provides a conceptual overview of the entire HBP-LSTM process for 
emotion recognition, from data preprocessing to emotion type output.

4.2. Feature extraction

Wallbott (1998) underscored the pivotal role of hand and arm 
movements in conveying emotions, suggesting that such upper body 
movements are fundamental, rather than merely supplementary, in 
embodying emotional states through bodily expressions. Based on this, 
Wang et al. (2015) proposed an approach that combines low-level 
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Fig. 1. Conceptual overview of the HBP-LSTM for emotional recognition.
gesture features with high-level movement features, paying special 
attention to the evolution of these features in the time dimension to 
capture the dynamic nature of emotional expression. On this basis, 
Ahmed et al. (2019) further extends the analytical framework by subdi-
viding body movements into ten different categories. These categories 
aim to reveal the complexity and overlapping features of emotions 
reflected in body movements. The categorisation lays the foundation 
for a deeper understanding of the physical expression of emotions and 
marks an important advance in emotion recognition research.

Drawing inspiration from these groundbreaking studies, the current 
methodology merges low-level postural features with comprehensive 
high-level kinematic and geometric features of the body. The fea-
tures extracted are computationally derived from individual frames 
or sequences of frames, enabling a detailed depiction of the body’s 
movements. This approach aims to provide a multifaceted analysis of 
how emotions are manifested through bodily gestures and postures, 
leveraging both static and dynamic aspects of human movement to 
achieve a deeper understanding of emotional expression.

4.2.1. Low-level feature
In our study, we represent body postural patterns by computing 

low-level, context-independent features. Specifically, for the body’s 
three-dimensional skeletal model, we calculate the spatial distances 
between the hands, elbows, and feet relative to each other and the 
shoulders. This includes measuring Euclidean distances from each hand 
to the opposite shoulder, elbow, foot, and between the feet. We also 
measure the distances from each elbow to the opposite hand and foot 
and from the head to each hand. All these lead to 41 postural features 
calculated on a per-frame basis as detailed in Table  2.

4.2.2. High-level feature
In high-level feature extraction, we extracted dynamic and qualita-

tive movement features related to emotional expression based on LMA. 
These features cover the four main dimensions of LMA: Body, Effort, 
Shape, and Space.

Velocity, Acceleration, and Jerk: This set of features represents the 
dynamics of movement in motion sequence, as indicated by Larboulette 
∼(Larboulette and Gibet, 2015), consider a motion sequence 𝑋, which 
is represented by a series of 𝑛 sequential postures {𝑥(𝑡1), 𝑥(𝑡2), 𝑥(𝑡3),… ,
𝑥(𝑡𝑛)}. The velocity of this sequence is given by Eq.  (1), and the 
magnitude of velocity is defined in Eq.  (2). The temporal evolution 
of 𝑋 through these postures determines the motion’s velocity profile. 
Specifically, the velocity for the 𝑘th joint at time 𝑡𝑖 is denoted as 𝑣𝑘(𝑡𝑖), 
and its x-component is expressed as 𝑣𝑘𝑥(𝑡𝑖). The term 𝛿𝑡 signifies the 
infinitesimally small time interval between successive frames. For the 
experiments, we utilised two datasets: one acquired with Kinect V2 at 
a frame rate of 30 fps, and the other with a frame rate of 125 fps. 
Therefore, 𝛿𝑡 is set to the time interval corresponding to a single frame, 
approximately 1

30  s and 
1

125  s, respectively. 

𝑣𝑘(𝑡 ) =
𝑥𝑘(𝑡𝑖+1) − 𝑥𝑘(𝑡𝑖−1) (1)
𝑖 2𝛿𝑡
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‖𝑣𝑘(𝑡𝑖)‖ =
√

𝑣𝑘𝑥(𝑡𝑖)2 + 𝑣𝑘𝑦(𝑡𝑖)2 + 𝑣𝑘𝑧(𝑡𝑖)2 (2)

Bounding Volume: We extended this set of features to analyse body 
motion using a 3D bounding volume approach, where the space utili-
sation of the human body can be estimated from the bounding volumes 
of each part of the body defined over time (Hachimura et al., 2005). 
We structure the human body into a hierarchical model that allows for 
a detailed investigation of movement throughout distinct body regions, 
as depicted in Fig.  2. Our segmentation subdivides the body into four 
primary regions, enabling us to evaluate the spatial dynamics of human 
motion systematically. This segmentation is visually summarised in 
Figs.  2 and 3. Fig.  2 presents a hierarchical representation of the human 
body, delineating the main divisions, such as the upper and lower body, 
as well as the right and left sides. The lower body is further categorised 
into the right and left legs. In contrast, the upper body is bifurcated 
into the right and left arms, each with their respective subdivisions, 
including the shoulder, elbow, wrist, and hand for the arms, and hip, 
knee, ankle, and foot for the legs.

Fig.  3 illustrates the lateral segmentation in detail, specifying the 
key joints that make up the left and right sides of the body. The left 
side joints include the left side of the shoulder, left side of the elbow, 
left side of the wrist, left side of the hand, left side of the hip, left 
side of the knee, left side of the ankle, and left side of the foot; the 
right side joints correspond. This transversal perspective is important 
for analysing asymmetries in unilateral movements or gestures and 
different ways of using body space. Based on the equations (Ahmed 
et al., 2019) in Eqs. (3) and (4), we computed the boundary volumes 
of the four specified body regions on a frame-by-frame basis in order 
to quantify the performance characteristics of these regions in motion.
𝑑𝑥 = max

𝑗∈Joints
(𝑥𝑗 ) − min

𝑗∈Joints
(𝑥𝑗 )

𝑑𝑦 = max
𝑗∈Joints

(𝑦𝑗 ) − min
𝑗∈Joints

(𝑦𝑗 )

𝑑𝑧 = max
𝑗∈Joints

(𝑧𝑗 ) − min
𝑗∈Joints

(𝑧𝑗 ) (3)

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑉 𝑜𝑙𝑢𝑚𝑒(𝐵𝑉 ) = 𝑑𝑥 ⋅ 𝑑𝑦 ⋅ 𝑑𝑧 (4)

Time, Weight, Space, Flow: This set of features reinforces the Ef-
fort component by characterising the motion’s dynamics, energy, and 
expressiveness, with intensity levels that vary continuously across a 
spectrum of opposing characteristics (Larboulette and Gibet, 2015). 
As expounded in Section 2.2, the temporal subcategory within the 
Effort component captures the urgency of the movement, ranging from 
sudden to sustained. Quantitatively, this aspect is gauged by the ac-
celerations of body parts, with smaller summative values over the 
sequence indicating greater movement stability.

Reflecting the body’s hierarchical segmentation illustrated in Figs. 
2 and 3, we calculate the temporal feature for each body segment as 
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Table 2
The Definition of the 41 low-level features.
Source: Adapted from Weiyi Wang (Wang et al., 2015).
 ID Meaning ID Meaning  
 1 Euclidean Distance of Two Feet 22 Right Hand - Left Feet in Y  
 2 Euclidean Distance of Two Hands 23 Right Hand - Left Feet in Z  
 3 Euclidean Distance of Two Elbows 24 Left Hand - Right Shoulder in X 
 4 Euclidean Distance of Left Hand and Head 25 Left Hand - Right Shoulder in Y 
 5 Euclidean Distance of Right Hand and Head 26 Left Hand - Right Shoulder in Z 
 6 Right Hand - Right Shoulder in X 27 Left Hand - Right Elbow in X  
 7 Right Hand - Right Shoulder in Y 28 Left Hand - Right Elbow in Y  
 8 Right Hand - Right Shoulder in Z 29 Left Hand - Right Elbow in Z  
 9 Right Hand - Right Elbow in X 30 Left Hand - Right Feet in X  
 10 Right Hand - Right Elbow in Y 31 Left Hand - Right Feet in Y  
 11 Right Hand - Right Elbow in Z 32 Left Hand - Right Feet in Z  
 12 Right Hand - Right Feet in X 33 Left Hand - Left Shoulder in X  
 13 Right Hand - Right Feet in Y 34 Left Hand - Left Shoulder in Y  
 14 Right Hand - Right Feet in Z 35 Left Hand - Left Shoulder in Z  
 15 Right Hand - Left Shoulder in X 36 Left Hand - Left Elbow in X  
 16 Right Hand - Left Shoulder in Y 37 Left Hand - Left Elbow in Y  
 17 Right Hand - Left Shoulder in Z 38 Left Hand - Left Elbow in Z  
 18 Right Hand - Left Elbow in X 39 Left Hand - Left Feet in X  
 19 Right Hand - Left Elbow in Y 40 Left Hand - Left Feet in Y  
 20 Right Hand - Left Elbow in Z 41 Left Hand - Left Feet in Z  
 21 Right Hand - Left Feet in X  
Fig. 2. Hierarchical segmentation of the human body for movement analysis.
Fig. 3. Body joints distribution for left and right side analysis.
detailed by Eq.  (5) (Larboulette and Gibet, 2015). In this equation, 
𝑎𝑘(𝑡𝑖) represents the acceleration of the 𝑘th joint at the 𝑖th time frame, 
across a sequence of 𝑇  frames. The resulting computed value serves as 
an index of movement stability, with lower scores signifying increased 
187 
steadiness. 

𝑇 𝑖𝑚𝑒𝑘(𝑡𝑖) =
1

𝑇
∑

𝑎𝑘(𝑡𝑖) (5)

𝑇 𝑖=1
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The concept of ‘‘Weight’’ characterises the physical attributes of 
movement, delineating the action’s force, with ‘‘light’’ and ‘‘strong’’ as 
its polar dimensions. It is quantitatively assessed by aggregating the 
kinetic energy of body parts over a specified duration. Eqs.  (6) and 
(7) facilitate the computation of kinetic energy, denoted as 𝐸(𝑡𝑖), for 
designated body segments at the moment 𝑡𝑖 (Larboulette and Gibet, 
2015). Within the confines of this experiment, which analyses four 
distinct body regions, 𝛼𝑘 signifies the normalised weights assigned to 
each joint 𝑘, uniformly set to 1 to simplify the analysis. As per Eq. 
(7), with 𝑇  indicating the time window, the method entails pinpointing 
the peak kinetic energy within this timeframe. Such calculations are 
meticulously executed for each frame throughout the experimental 
procedure.

𝐸(𝑡𝑖) =
∑

𝑘∈𝐾
𝐸𝑘(𝑡𝑖) =

∑

𝑘∈𝐾
𝛼𝑘𝑣

𝑘(𝑡𝑖)2 (6)

𝑊 𝑒𝑖𝑔ℎ𝑡(𝑡𝑖) = max
𝑖∈[1,𝑇 ]

𝐸(𝑡𝑖), 𝑖 = 1, 2, 3,… ., 𝑁 (7)

Space describes whether the motion intake is related to its sur-
roundings, whether it is direct (focused) or indirect (multi-focused). 
A lower value would suggest a more direct path (less space is used), 
while a higher value indicates a more indirect path (more space is 
used) (Larboulette and Gibet, 2015). This feature can be calculated 
according to Eq.  (8). 

𝑆𝑝𝑎𝑐𝑒𝑘(𝑡𝑖) =
∑𝑇−1

𝑖=1 ‖𝑥𝑘(𝑡𝑖+1) − 𝑥𝑘(𝑡𝑖)‖
‖𝑥𝑘(𝑡𝑇 ) − 𝑥𝑘(𝑡𝑖)‖

(8)

Fluency characterises the degree of continuity in an action, distin-
guishing between the dimensions of freedom and constraint. Actions 
that demonstrate greater freedom typically exhibit smoother, more 
fluid motion, as indicated by lower computed jerk values. Conversely, 
actions marked by constraint tend to have higher jerk values, reflecting 
less smooth motion (Laban and Ullmann, 1971). The total jerk for a 
joint, accumulated over time, allows us to assess the action’s continuity. 
This cumulative measure is formalised in Eq.  (9) (Larboulette and 
Gibet, 2015). In Eq.  (9), 𝑗𝑘(𝑡𝑖) denotes the jerk of the 𝑘th joint at time 𝑡𝑖, 
and 𝑇  represents the total number of frames in the observed sequence. 

𝐹 𝑙𝑜𝑤𝑘(𝑡𝑖) =
1
𝑇

𝑇
∑

𝑖=1
𝑗𝑘(𝑡𝑖) (9)

The calculations for the Effort features are based on the segmenta-
tion of the body into four parts as depicted in Figs.  2 and 3, with the 
analysis conducted for each frame in the sequence.

4.3. Statistical feature

Torso Height, Torso Width, Torso Depth: This set of features describes 
changes in the trunk of the body and can indicate body rotation, 
and body orientation. Torso width, height, and depth give an idea of 
space use and can be calculated for each frame in a sequence as per 
Eqs. (10), (11), and (12). 
𝑊 = |

|

|

𝑥ShoulderRight − 𝑥ShoulderLeft
|

|

|

(10)

Here, 𝑥ShoulderRight and 𝑥ShoulderLeft represent the x-coordinates of 
the right and left shoulder joints, respectively. The absolute difference 
between these coordinates gives the width of the torso at that frame. 
𝐷 = |

|

|

𝑧SpineMid − 𝑧SpineBase
|

|

|

(11)

In this equation, 𝑧SpineMid and 𝑧SpineBase denote the z-coordinates of 
the mid-spine and base-spine joints, respectively. The absolute differ-
ence provides the depth of the torso along the 𝑧-axis. 
𝐻 = |

|

|

𝑦Neck − 𝑦SpineBase
|

|

|

(12)

Here, 𝑦Neck and 𝑦SpineBase are the y-coordinates of the neck and base-
spine joints, respectively. The absolute difference calculates the height 
of the torso from the base of the spine to the neck.
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We can track dynamic changes in torso dimensions over time by 
analysing these measurements for each frame. Such changes may re-
flect movement characteristics such as bending, leaning or twisting. 
These movements are closely related to specific emotional states, thus 
supporting more accurate emotion recognition.

5. Model design

5.1. Architectural synthesis of HBP-LSTM

Decoding emotional intent from limb movements requires an ad-
vanced analysis method that captures the inherent time dependence 
and uncertainty in motion data. To this end, we propose a HBP-
LSTM framework that combines a Bayesian neural network with a long 
short-term memory (LSTM) network to enhance emotion recognition 
performance from limb movement data. Fig.  4 illustrates the spe-
cific architecture of the HBP-LSTM framework, focusing on describing 
the interactions between the Bayesian LSTM modules and the fusion 
process of low-level and high-level features.

The HBP-LSTM framework uses a dual Bayesian LSTM network 
architecture for processing and fusing low-level body features with 
high-level LMA features. Firstly, an initial Pre-trained Bayesian LSTM 
is used to process the low-level kinematic data sequences to capture 
the body movements’ temporal dynamic features while modelling the 
parameters’ uncertainty through Bayesian inference. Subsequently, a 
four-headed multi-attention mechanism is applied to this Pre-trained 
Bayesian LSTM output to highlight key temporal features. This config-
uration enables the model to focus on different temporal dimensions 
of the sequence and capture complex temporal relationships while 
effectively mitigating the impact of noise or missing values in the data 
on model performance.

Meanwhile, high-level LMA features are processed through an
adapter module consisting of a linear layer, ReLU activation and 
Dropout. The role of the adapter module is to convert the high-level 
features into a representation compatible with the output of the multi-
head attention mechanism, thus enabling seamless fusion with the 
low-level feature representation.

Subsequently, the output of the multi-attention mechanism is con-
catenated with the output of the adapter module in order to generate a 
fused feature vector. The fused feature vector is then fed into the fused 
Bayesian LSTM layer, which is used to model temporal dependencies 
further and quantify uncertainty in the combined feature space. The 
Bayesian LSTM can effectively capture the intricate interactions be-
tween low-level and high-level features while quantifying uncertainty 
in the joint feature space, thereby markedly enhancing the robustness 
of the model. The classification task is then completed by the standard 
fully connected layer, which outputs the predicted sentiment labels.

By modelling the parameters of the LSTM layer as probability distri-
butions rather than fixed values, the HBP-LSTM framework can express 
confidence in predictions and deal with the inherent uncertainty in 
motion data. This probabilistic approach is particularly effective in the 
presence of imperfect data quality, enabling robust emotion recognition 
in the presence of occluded or missing data. The Bayesian LSTM layer 
is trained by variational inference, employing an optimised Evidence 
Lower Bound (ELBO) as the loss function, thus efficiently learning from 
the data while capturing uncertainty. This design significantly improves 
the model’s performance in complex contexts.

5.2. Detailed configuration and training paradigm

Low-level feature processing. The initial kinematic data sequence 
consisted of 41 low-level features and was processed through a Pre-
trained Bayesian LSTM model. The model models the network weights 
as probability distributions and effectively captures the temporal dy-
namics inherent in body movements while modelling uncertainty. Dur-
ing training, a Dropout Rate (DR) of 0.5 was used to prevent overfitting. 
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Fig. 4. Detailed architecture of the HBP-LSTM framework.
Upon training completion, the Pre-trained Bayesian LSTM parameters 
were frozen to preserve their learned representations. To enhance the 
model’s ability to attend to critical temporal features in emotion recog-
nition, we applied a multi-head attention mechanism to the output of 
the Pre-trained Bayesian LSTM, which contains four attention heads. 
The choice of four attentional heads is designed to help the model 
learn the complex relationships between different temporal steps in a 
human movement sequence while striking a balance between capturing 
temporal dependencies and maintaining computational efficiency. In 
addition, the multi-head attention mechanism allows the model to focus 
on multiple information dimensions in the sequence, thus effectively 
mitigating the effects of data noise or missing values.

High-level feature processing. The high-level LMA features (13 622
dimensions) are first passed through an adapter — implemented as 
a fully connected layer — that projects them to a 64-dimensional 
space, i.e. 13 622 → 64 parameters plus bias. A ReLU activation and 
a dropout layer (𝑝 = 0.5) follows this linear projection. This adapter 
maps the advanced features into a representation that is dimensionally 
compatible with the output of the multi-head attention mechanism, 
enabling seamless fusion with the low-level features.

Feature fusion and post-fusion processing. The outputs of the 
attention mechanism (4 × 64 channels) and the adapter module (64 
channels) are concatenated, yielding a fused feature vector of length 
4 × 64 + 64 = 320. This 320-dimensional vector is fed into a post-
fusion Bayesian LSTM layer with 256 hidden units, a standard normal 
prior  (0, 1), and recurrent dropout of 0.1. The Bayesian LSTM further 
captures temporal dependencies and propagates uncertainty within the 
fused feature space, enabling the model to exploit the complementary 
information carried by low-level and high-level features.

Classification Layer. Following the post-fusion Bayesian LSTM, a 
standard fully connected layer is used for classification, outputting the 
predicted emotion labels. Unlike the Bayesian LSTM layers, this fully 
connected layer uses fixed weights, providing a deterministic mapping 
from the learned representations to the output classes. The layer takes 
the output from the post-fusion Bayesian LSTM, which has a size of 256 
and maps it to the number of emotion classes.

Training methodology. The HBP-LSTM model employs variational 
inference to approximate the posterior distributions of the weights in 
the Bayesian LSTM layers. The network is optimised with the Evi-
dence Lower Bound (ELBO), which combines a likelihood term with 
a Kullback–Leibler (KL) regularisation term (Papatheodorou, 2024). 
Following common practice, the weight of the KL term is linearly 
annealed from 0 to 1 during the first 30% of epochs. Each mini-batch 
is evaluated with sample_nbr=3 forward Monte-Carlo samples, and 
the KL coefficient is set to 𝜆KL = 1∕|𝐷|, where |𝐷| denotes the number 
of training sequences. Gradient norms are clipped to 5.0 to prevent 
exploding gradients.

Training uses the Adam optimiser with a learning rate of 1 ×
10−3, for 50 epochs and a batch size of 64. All experiments were 
conducted on an NVIDIA RTX 4090 GPU (PyTorch 2.1+Blitz-Bayesian-
DeepLearning 0.4.0, Python 3.10). Random seeds are fixed to 42 and 
the best model checkpoint is selected according to validation ELBO, 
ensuring reproducibility. Dropout and layer normalisation are applied 
to further improve robustness to distributional shifts.
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6. Experiment

6.1. Dataset

This research utilises two databases, each containing diverse emo-
tional data, to evaluate the effectiveness of the HBP-LSTM method for 
recognising emotion from whole-body movements.

EGBM. The EGBM dataset based on the multimodal database intro-
duced by Sapiński et al. (2019b), comprises emotional speech, video, 
and gestural data captured using the Kinect v2 sensor. This database 
contains both video and motion-capture data, recorded using the Kinect 
v2 sensor, from professional actors simulating seven different emotional 
states. A total of 16 participants — equal numbers of males and females 
ranging in age from 25 to 64 — contributed to the dataset. The actors 
were instructed to enact the emotions sequentially: starting with neu-
tral, followed by sadness, surprise, fear, disgust, anger, and happiness. 
Each emotion was repeated five times, with the actors bringing their 
own interpretation to the expression of each emotional state without 
specific guidelines. The dataset comprises 560 instances, evenly dis-
tributed, with 80 samples for each emotional state. The Kinect v2 sensor 
ensured comprehensive capture of the actors’ movements, including the 
legs, as depicted in Fig.  5 (Sapiński et al., 2019b).

KDAEE. The KDAEE (Zhang et al., 2020) is a kinematic dataset that 
has a total 1402 recordings from 22 college students performing seven 
emotion states(happiness, sadness, anger, fear, disgust, surprise, and 
neutral), gathered using motion capture data 125 Hz and full body 
kinematic data through 17 sensors placed on the actor’s key anatomical 
points, such as arms, legs, spine, and head. Actors were completed two 
types of movements: spontaneous (based on actors’ understanding of 
emotional expression) and within-a-scenario movements(using prede-
fined scenarios created by the dataset developers). Each performance 
lasted six seconds and was repeated as needed to ensure high data 
quality. This dataset only provides raw kinematic data consisting of 72 
anatomical nodes as shown in Fig.  6.

6.2. Data preprocessing

6.2.1. Normalisation
For the EGBM dataset, collected using the Kinect V2 sensor, the raw 

data comprises 3D positions and orientations of the joints relative to 
the sensor’s coordinate system, specified as [𝑥, 𝑦, 𝑧]. Variability in the 
distance between the actor and the sensor during the recording sessions 
may affect the data quality. Consequently, remapping the skeletal 
coordinates from the sensor-defined space to a body-centric coordinate 
system denoted as [𝑢, 𝑣,𝑤], is crucial. This remapping anchors the local 
coordinate system at the SpineBase joint within the Kinect skeletal 
model, aligning the 𝑢-axis to the left, the 𝑣-axis upward, and the 𝑤-
axis forward about the SpineBase joint. Fig.  7 displays the 25 joints 
that the Kinect v2 tracks. This reorientation process generates a vector 
that encapsulates the relative positions and orientations of all joints 
concerning this central joint for each frame. For the 16 individuals 
represented in the dataset, the reference state for each person’s move-
ments is established by the first frame of each emotional state, setting 
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Fig. 5. Illustrative poses of actors expressing the six basic emotions: fear, surprise, anger, sadness, happiness, and disgust. (Sapiński et al., 2019b).
Fig. 6. Illustration of the 72 anatomical nodes used in KDAEE for full-body motion capture (Zhang et al., 2020).
a consistent baseline for subsequent frames. This approach ensures a 
personalised and uniform reference for movement comparison across 
the various emotions and subjects.

In contrast, the KDAEE dataset was retained in its original coordi-
nate system due to its use of a different motion capture system, which 
captures a more extensive set of 72 anatomical nodes compared to the 
25 tracked by Kinect V2 in EGBM. For feature extraction, we selected 
the same set of nodes as used in EGBM, focusing on those involved 
in low-level and high-level feature calculations. For further details on 
feature extraction, see Section 4.2.

6.2.2. Downsampling and interpolation
To solve the problem of inconsistent sequence lengths under dif-

ferent emotional states, we normalised the data to obtain uniform 
sequence lengths for effective analysis. Table  3 shows the average 
length of processed sequences for each emotion state in both datasets. 
Sequences exceeding the target length are downsampled to reduce 
redundancy, thus optimising computational efficiency while preserving 
core motion features. Conversely, shorter sequences are expanded by 
linear interpolation to ensure consistency across emotional states.

For EGBM, collected at 30 fps, downsampling is applied minimally 
to retain smooth motion transitions, while linear interpolation is used 
sparingly for consistency in sequence length. In the KDAEE dataset, 
captured at 125 fps with more anatomical nodes, downsampling con-
tributes significantly to noise reduction, helping clarify body movement 
data without losing crucial details. The interpolation applied here fur-
ther ensures that subtle body movements are retained, enabling smooth 
transitions across frames.
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Fig. 7. The 25 skeleton joints tracked by the Kinect v2 Sensor (Cao et al., 
2019).

The combination of downsampling and linear interpolation main-
tains the integrity of the motion data and allows for a consistent 
representation of the sequence across actors and emotional states, 
resulting in robust emotion recognition.
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Table 3
The average number of frames and their equivalent duration in seconds for 
each emotional state, based on a 30 fps rate for EGBM and a 125 fps rate for 
KDAEE.
 Emotion EGBM (30 fps) KDAEE (125 fps)
 Frames Seconds Frames Seconds  
 Anger 107 3.6 891.2 7.31  
 Disgust 140 4.7 924.9 7.39  
 Fear 115 3.8 855.7 6.84  
 Happiness 111 3.7 836.1 6.68  
 Neutral 93 3.1 90.3.7 7.23  
 Sadness 110 3.7 1064.5 8.51  
 Surprise 117 3.9 849.4 6.79  

Table 4
Top 10 Features (Mean ± SD) and Levels.
 Feature Mean SD Level  
 Right_Side_Flow 0.309 0.108 High-level 
 Left_Side_Flow 0.272 0.134 High-level 
 Lower_Body_Flow 0.198 0.061 High-level 
 Upper_Body_Flow 0.145 0.069 High-level 
 Distance_RightHandHead 0.132 0.097 Low-level  
 Distance_LeftHandHead 0.124 0.105 Low-level  
 Right_Side_BV 0.108 0.071 High-level 
 Lower_Body_BV 0.102 0.029 High-level 
 Left_Side_BV 0.098 0.078 High-level 
 HandLeft_FootRight_Distance_X 0.089 0.015 Low-level  

6.3. Feature analysis

In this section, we comprehensively analyse the selected features for 
emotion recognition. We evaluate their overall importance, compare 
high-level and low-level features, analyse contributions from different 
body parts, and examine their significance across various emotional 
categories.

We employed a Random Forest classifier with 100 estimators to 
assess feature importance. Prior to training, features were normalised 
using Scikit-learn’s StandardScaler for consistent scaling. We formu-
lated a binary classification task for each emotion by labelling the target 
emotion as 1 and others as 0. The dataset was split into training and 
testing sets using an 80/20 ratio. The Random Forest algorithm was 
chosen for its robustness with high-dimensional data and its ability to 
provide intrinsic measures of feature importance.

The importance of each feature was computed based on its contri-
bution to the reduction of Gini impurity across all trees in the forest. 
Specifically, a feature’s importance score reflects the total decrease 
in impurity it provides, aggregated over all trees. These scores were 
normalised so that the sum of all feature importances equals one.

After training the model for each emotion, we extracted the fea-
ture importance scores. To summarise their overall contributions, we 
calculated the mean and standard deviation of these scores across all 
emotions. The mean importance indicates a feature’s average contri-
bution, while the standard deviation highlights the variability of its 
importance across different emotional states.

6.3.1. Overall feature importance analysis
We have ranked the selection features for emotion recognition based 

on their mean importance scores across all emotions. The top 10 
features are shown in Fig.  8, with corresponding statistics summarised 
in Table  4. The black bars represent standard deviations, highlighting 
the variability in the importance of each feature.

Dynamic features related to overall body movements (such as
Right_Side_Flow, Left_Side_Flow, and Lower_Body_Flow) 
are consistently the most informative. These features reflect how
smoothly and extensively different body regions move during emo-
tional expressions, underscoring the importance of capturing dynamic 
information rather than static positions alone. Conversely, features 
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based on distances between body parts (e.g., Distance
_RightHandHead and HandLeft_FootRight_Distance_X) are 
still helpful but generally exhibit lower average importance and smaller 
variances. This indicates that while distance metrics provide reliable 
and stable spatial cues, their discriminative power for distinguishing 
emotional states is limited compared to dynamic movement features.

To further explore why certain selection features exhibit a high 
standard deviation, we conducted a detailed, emotion-specific analy-
sis of feature importance. Fig.  9 presents the top five most influen-
tial features separately for each emotional category. The correspond-
ing detailed rankings and statistics per emotion are presented in Ta-
ble  5, which reveal consistent dominance of dynamic features across 
most emotions. Dynamic flow features consistently dominate across 
emotions, especially for Anger, Fear, Happy, and Sad, explaining their 
high global variability noted previously. These dynamic features show 
pronounced emotional specificity, suggesting that particular emotions 
manifest uniquely through certain body parts or movement intensities. 
For example, Right_Side_Flow prominently appears across multi-
ple emotions, highlighting the dominant role of right-side movement 
dynamics in conveying affective states.

In contrast, distance-based features like HandLeft–FootRight
_Distance_X demonstrate smaller but more consistent contributions 
across several emotions, notably in Neutral and Surprise. This indicates 
that distance features primarily encode general spatial configurations of 
the body rather than emotion-specific nuances, contributing to baseline 
or common emotional information. To summarise the relationships 
among emotions based on feature-importance patterns, we performed 
Ward hierarchical clustering using the z-scored importance vectors. The 
dendrogram in Fig.  10 visualises the resulting structure.

As it can be seen in Fig.  10 emotions are divided into two primary 
clusters:

• First cluster - Neutral and Happy form one cluster characterised by 
significant reliance on dynamic flow features and relatively low 
reliance on distance metrics. This grouping suggests similarities 
in the movement patterns associated with positive and neutral 
emotional expressions.

• Second cluster - encompasses predominantly negative emotions 
(Anger, Disgust, Fear, Sad, and Surprise). Within this negative 
cluster, emotions such as Sad and Surprise care closely aligned, 
reflecting a common reliance on spatial distance cues, particularly 
those involving head-hand configurations.

This clustering provides deeper insights into how emotional expres-
sions share or differ in their underlying body language. It highlights 
how specific dynamic and spatial cues are selectively utilised across 
affective categories. Such insights can inform targeted improvements 
in computational models for emotion recognition, enhancing their sen-
sitivity to both universal and emotion-specific movement patterns.

To further validate the observations above, we compared global 
feature-importance scores across the three categories: Flow, BV, and 
Distance, using the non-parametric Kruskal–Wallis test (Fig.  11;
Table  6).

A Kruskal–Wallis 𝐻 test indicated a statistically significant differ-
ence in feature importance across the three groups, 𝐻(2) = 218.62, 
𝑝 < .001, 𝜂2 = .16 (medium effect). Post-hoc pairwise comparisons using 
Mann–Whitney 𝑈 tests showed that Flow features had significantly 
higher importance than both BV  features (𝑈 = 2 717, 𝑝 < .001) and
Distance features (𝑈 = 70 387, 𝑝 < .001). Additionally, BV  features were 
rated as more important than Distance features (𝑈 = 58 792, 𝑝 < .001), 
as illustrated in Fig.  11.

These findings underscore the superior value of movement dynamics 
over static positional information in affective-computing applications.
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Fig. 8. Top 10 features ranked by average importance in emotion recognition.
Table 5
Top-5 important features for each emotion (mean ± SD).
 Emotion Rank Feature Category Mean SD  
 Anger 1 Right_Side_Flow Flow 0.306 0.172 
 2 Left_Side_Flow Flow 0.246 0.206 
 3 Lower_Body_Flow Flow 0.173 0.060 
 4 Upper_Body_Flow Flow 0.122 0.080 
 5 Distance_LeftHandHead Distance/Other 0.115 0.119 
 Disgust 1 Right_Side_Flow Flow 0.290 0.193 
 2 Left_Side_Flow Flow 0.275 0.221 
 3 Lower_Body_Flow Flow 0.204 0.062 
 4 Distance_RightHandHead Distance/Other 0.118 0.105 
 5 Lower_Body_BV BV 0.114 0.042 
 Fear 1 Right_Side_Flow Flow 0.305 0.143 
 2 Left_Side_Flow Flow 0.270 0.184 
 3 Lower_Body_Flow Flow 0.229 0.109 
 4 Distance_RightHandHead Distance/Other 0.140 0.144 
 5 Distance_LeftHandHead Distance/Other 0.130 0.151 
 Happy 1 Right_Side_Flow Flow 0.353 0.068 
 2 Left_Side_Flow Flow 0.296 0.077 
 3 Upper_Body_Flow Flow 0.221 0.129 
 4 Lower_Body_Flow Flow 0.197 0.064 
 5 HandRight_FootLeft_Distance_X Distance/Other 0.116 0.021 
 Neutral 1 Right_Side_Flow Flow 0.300 0.100 
 2 Left_Side_Flow Flow 0.271 0.098 
 3 Lower_Body_Flow Flow 0.206 0.116 
 4 Upper_Body_Flow Flow 0.175 0.105 
 5 Distance_RightHandHead Distance/Other 0.158 0.165 
 Sad 1 Right_Side_Flow Flow 0.318 0.126 
 2 Left_Side_Flow Flow 0.282 0.197 
 3 Lower_Body_Flow Flow 0.191 0.078 
 4 Distance_RightHandHead Distance/Other 0.143 0.139 
 5 Upper_Body_Flow Flow 0.140 0.055 
 Surprise 1 Right_Side_Flow Flow 0.287 0.163 
 2 Left_Side_Flow Flow 0.264 0.223 
 3 Lower_Body_Flow Flow 0.186 0.043 
 4 Distance_RightHandHead Distance/Other 0.142 0.139 
 5 Distance_LeftHandHead Distance/Other 0.131 0.147 
6.3.2. Comparison of high-level and low-level features
Building upon the overall feature-importance analysis, we com-

pared the relative significance of high-level (dynamic movement) and 
low-level (static spatial) features in predicting emotional states.

A Mann–Whitney U test revealed that high-level features were 
significantly more important than low-level features, U = 73638, 𝑝 <
.001 (see Fig.  12).
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This substantial difference, accounting for approximately 17% of 
the variance, highlights the superior predictive value of dynamic move-
ment characteristics over static spatial measurements.

Further investigation of emotion-specific patterns (Fig.  13) demon-
strated consistent dominance of high-level features across all emotional 
categories: Anger (𝑈 = 2 653, 𝑝 < .001), Disgust (𝑈 = 2 665, 𝑝 < .001), 
Fear (𝑈 = 2 599, 𝑝 < .001), Happy (𝑈 = 2 593, 𝑝 < .001), Neutral 
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Fig. 9. Top-5 ranked features for each emotion.
(𝑈 = 2 681, 𝑝 < .001), Sad (𝑈 = 2 644, 𝑝 < .001), and Surprise 
(𝑈 = 2 647, 𝑝 < .001). These consistently significant results underscore 
the robustness of high-level features in capturing dynamic emotional 
expressions across the full affective spectrum.

These combined results underline a fundamental insight: high-level 
features effectively encapsulate dynamic and holistic characteristics of 
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emotional body movements, such as fluidity, expansiveness, and move-
ment coherence. They significantly outperform low-level distance met-
rics, which predominantly capture static spatial relationships between 
specific body parts. Low-level features, though useful, consistently 
exhibit lower importance, likely due to their inherent limitations in 
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Fig. 10. Hierarchical clustering of emotions based on feature-importance profiles (Ward linkage).
Fig. 11. Feature importance by category. Horizontal bars indicate Mann–
Whitney significance tests (∗∗∗𝑝 < 0.001).

Fig. 12. High-level vs. Low-level feature importance (total importance score). 
Mann–Whitney 𝑈 = 73 638, 𝑧 = −5.00, 𝑟 = .17, 𝑝 < .001.
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Table 6
Descriptive statistics of feature importance by category (mean ± SD).
 Category Mean SD Feature count 
 Flow 0.231 0.114 56  
 Distance/Other 0.030 0.027 1267  
 BV 0.085 0.061 56  

Fig. 13. High-level vs. Low-level feature importance per emotion (mean ±
95% CI). All Mann–Whitney 𝑈 tests: 𝑝 < 0.001.

accounting for individual variability in physical structure and habitual 
posture.

These findings advocate the prioritisation of high-level dynamic 
features in future computational models for emotion recognition, sig-
nificantly enhancing their sensitivity, accuracy, and robustness. Such 
models can more effectively accommodate variability in emotional ex-
pression, thus improving their reliability and applicability in real-world 
human–computer interaction scenarios.

6.3.3. Feature analysis by body part
To gain deeper insights into the role of different body regions 

in emotional expression, we categorised body movements into four 
distinct regions: left side, right side, lower body, and upper body (Figs. 
2 and 3). This analysis builds on previous findings emphasising the 
superior importance of dynamic and coordinated features over static 
spatial metrics.

Fig.  14 presents the average feature importance across four body 
regions. A Kruskal–Wallis test revealed significant differences among 
regions, 𝐻(3) = 172.26, 𝑝 < .001. Pairwise Mann–Whitney 𝑈 tests 
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Fig. 14. Average feature importance by body part.
Fig. 15. Top 3 features in each body part.
showed that the left side had significantly lower importance than the 
lower body (𝑈 = 12 682, 𝑝 < .001), the right side (𝑈 = 14 458, 𝑝 < .001), 
and the upper body (𝑈 = 15 219, 𝑝 < .001). No significant differences 
were found between lower body versus right side (𝑝 = 1.00), lower 
body versus upper body (𝑝 = 1.00), and right side versus upper body 
(𝑝 = 1.00).

These findings underscore the crucial role of expressive movements 
associated with the lower body (e.g., stepping, stomping, weight shift-
ing) and dynamic gestures involving the dominant limb (right side), 
both of which showed significantly higher importance than the left 
side. The lack of significant differences among lower body, right side, 
and upper body suggests these regions contribute similarly to emotion 
recognition when considering their most important features.
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Fig.  15 further clarifies this pattern by identifying the top three 
features per body part. Consistent with earlier results, dynamic flow-
related features, notably Lower_Body_Flow and Right_Side_
Flow, dominate feature importance rankings, reinforcing the necessity 
of capturing motion fluidity and continuity. In contrast, static features 
such as inter-limb distances (LeftHand_RightFoot_Distance) 
show comparatively lower relevance, highlighting limitations of purely 
spatial information for robust emotional classification.

Taken together, these analyses suggest a clear prioritisation strategy 
for future model development. Emphasising dynamic and coordinated 
movements, particularly those originating from the lower body and 
dominant side, promises the greatest improvement in emotional recog-
nition accuracy. By targeting these informative body parts and move-
ment types, computational models can achieve finer sensitivity to subtle 
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Table 7
Model accuracy comparison between two datasets.
 Model EGBM accuracy KDAEE accuracy 
 Low-Level LSTM 0.89 0.79  
 High-Level LSTM 0.93 0.85  
 Low-Level Bayesian LSTM 0.91 0.82  
 High-Level Bayesian LSTM 0.93 0.87  
 All-Level LSTM 0.96 0.87  
 HBP-LSTM 0.98 0.88  
All accuracy values are reported in decimal format (e.g., 0.88 = 88%).

emotional nuances, ultimately enhancing their real-world applicability 
and effectiveness in human–computer interaction scenarios.

7. Results

Several models are constructed for comparative analysis to validate 
the robustness of the HBP-LSTM framework. The distinctive aspects of 
each model are summarised as follows:

• Low-Level LSTM : Utilises 41 low-level kinematic features.
• High-Level LSTM : Incorporates 80 high-level features derived 
from LMA (Laban Movement Analysis) to capture the emotional 
essence in body dynamics.

• Low-Level Bayesian LSTM : Extends the Low-Level LSTM by inte-
grating Bayesian inference into the LSTM layers.

• High-Level Bayesian LSTM : Enhances the High-Level LSTM with 
Bayesian LSTM layers for probabilistic modelling.

• All-Level LSTM : Combines both low and high-level features in a 
non-Bayesian LSTM framework, serving as a baseline for compar-
ison.

• HBP-LSTM : The proposed framework that synergises LSTM and 
Bayesian inference across all feature levels for enhanced emotion 
recognition.

For each model, we used the leave-one-subject-out cross-validation 
method, in which we systematically removed one participant from the 
dataset in each round of training and evaluation. This measure assesses 
the generalisability of the model to participants not included in the 
training data. All models were trained on a high-performance machine 
equipped with an NVIDIA RTX 4090 GPU, utilising CUDA acceleration 
for optimised computation.

As shown in Table  7, after examining the performance on both the 
EGBM and KDAEE datasets, most models achieve high accuracy levels 
in emotion recognition, with the exception of the Low-Level LSTM on 
the KDAEE dataset, which has an accuracy of 79%. This highlights the 
importance of high-level features for sentiment recognition. The All-
Level LSTM, which pools both high and low-level data, achieved 96% 
accuracy on EGBM and 87% accuracy on KDAEE, demonstrating the 
impact of integrated data quality on model performance.

The accuracy of the models remained high after adding the Bayesian 
layer. The accuracy of the low-level LSTM model increased by 2 per-
centage points on both datasets, indicating the effectiveness of Bayesian 
inference in enhancing the performance of low-dimensional data pro-
cessing. In contrast, the HBP-LSTM model achieves an accuracy of 98% 
on the EGBM dataset and 88% on the KDAEE dataset, which is an 
improvement of 2 percentage points and 1 percentage point over the 
All-Level LSTM, respectively. This indicates that the combination of 
Bayesian inference and LSTM has significant advantages in interpreting 
complex emotional states and adapting to different datasets.

To assess the robustness of the model, we adopt a multidimensional 
approach that simulates the challenges associated with data quality 
and integrity in a real-world environment by introducing multiple 
perturbations in the data. Specifically, we design and implement three 
complementary strategies to comprehensively assess the ability of the 
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model to maintain performance in the face of different unpredictable 
conditions.

Introducing Controlled Noise: We introduced additive Gaussian 
noise into the data with zero mean and standard deviations varying 
over the ranges [0, 1], [−5, 5] and [−10, 10], respectively. These 
ranges correspond to different noise intensities and are intended to 
simulate signal attenuation and distortion encountered in real-world 
data acquisition. By evaluating the model’s performance under these 
controlled perturbation conditions, we further analysed its adaptability 
and robustness to moderate noise environments common in real-world 
applications.

Unrestricted Noise Introduction: We introduced additive Gaus-
sian noise with zero mean and large variance (e.g., variance > 100) 
across the feature set and did not set a priori limits on the noise 
intensity. This high-intensity noise is intended to simulate severe data 
corruption or extreme environmental changes to fully assess the ro-
bustness of the model under highly unpredictable conditions. With this 
strategy, we can test whether the model is effective in maintaining its 
performance despite significant degradation in the quality of the input 
data.

FGSM Adversarial Testing: To assess the vulnerability of the 
model to adversarial attacks, we use the Fast Gradient Sign Method 
(FGSM) (Naqvi et al., 2023). FGSM works by calculating the gradient of 
the loss function for the input features and adding small perturbations 
in the direction that increases the loss (scaled by the coefficient 𝜖) 
to generate adversarial samples. In our experiments, we selected 𝜖 =
0.01 and 𝜖 = 0.1 as two perturbation strengths to simulate how 
minor but intentional input modifications can significantly affect model 
performance. Through this test, we can deeply analyse the model’s 
robustness in the face of malicious attacks and small input changes.

Together, these three strategies constitute a rigorous test of the 
model, designed to simulate a variety of challenges that may be en-
countered in real-world emotion recognition scenarios. These strategies 
not only cover the issue of data corruption due to noise, but also test 
against deliberate adversarial manipulation. In practice, data quality 
may be affected by a wide range of factors, and therefore, evaluating 
the performance of the models under these conditions is essential 
to verify their adaptability, robustness and reliability. The following 
section describes each robustness testing strategy in detail, and their 
specific impact on model performance is analysed.

7.1. Comparison with standard machine learning approaches

Both datasets (EGBM and KDAEE) use the same seven emotion 
categories: anger, disgust, fear, happiness, neutral, sadness, and sur-
prise, framing the task as a 7-way classification problem. We employ 
Leave-One-Participant-Out (LOPO) cross-validation, where for a dataset 
with 𝑆 participants, each fold reserves one participant for testing and 
uses the remaining 𝑆 − 1 for training/validation. This yields 𝑆EGBM=16
folds for EGBM and 𝑆KDAEE=22 folds for KDAEE. The random-chance 
accuracy is 1

7 ≈ 0.143 under uniform class distribution. All results 
report macro-averaged accuracy per fold, presented as mean ± standard 
deviation values across all dataset folds.

We used two datasets (EGBM and KDAEE) to compare the per-
formance of the HBP-LSTM model with traditional machine learning 
algorithms including Random Forests (RF) (Wu and Chang, 2024), 
K-Nearest Neighbours (KNN), Support Vector Machines (SVM) (Khan 
et al., 2024), and Multi-Layer Perceptrons (MLPs). For these tradi-
tional algorithms, we extracted six statistical features from the body 
movement data: minimum, maximum, standard deviation, variance, 
skewness and kurtosis. These features are based on the descriptions 
in Figs.  2 and 3, and are computed for different body parts such as 
upper body, lower body, left side, right side, and torso, using velocity 
and acceleration data collected during the experiment. The extracted 
features provide a comprehensive characterisation of the movement 
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Table 8
Emotion recognition performance on the EGBM dataset (LOPO; mean ± SD).
 Algorithm Anger Disgust Fear Happiness Neutral Sadness Surprise Mean ± SD  
 SVM 0.5250 0.4267 0.3750 0.5823 0.5467 0.3784 0.2875 0.4457 ± 0.041 
 MLP 0.5000 0.4533 0.4000 0.5570 0.5733 0.3784 0.4125 0.4678 ± 0.038 
 KNN 0.3250 0.3067 0.2625 0.5696 0.6800 0.3649 0.2000 0.3849 ± 0.052 
 RF 0.3250 0.4133 0.4625 0.6329 0.7733 0.2703 0.3500 0.4604 ± 0.049 
 HBP-LSTM 0.9850 0.9800 0.9750 0.9900 0.9950 0.9750 0.9600 0.9817 ± 0.006 
SD is the sample standard deviation across all LOPO folds (16 folds for EGBM).
Table 9
Emotion recognition performance on the KDAEE dataset (LOPO; mean ± SD).
 Algorithm Anger Disgust Fear Happiness Neutral Sadness Surprise Mean ± SD  
 SVM 0.4100 0.4350 0.3850 0.4550 0.4250 0.4200 0.4660 0.4230 ± 0.035 
 MLP 0.4150 0.4300 0.4000 0.4400 0.4250 0.4325 0.4140 0.4220 ± 0.036 
 KNN 0.3400 0.3600 0.3300 0.3550 0.3700 0.3450 0.3535 0.3505 ± 0.045 
 RF 0.4600 0.4800 0.4750 0.4500 0.4850 0.4700 0.4700 0.4700 ± 0.039 
 HBP-LSTM 0.8750 0.8800 0.8650 0.9000 0.8850 0.8700 0.8900 0.8807 ± 0.008 
SD is the sample standard deviation across all LOPO folds (22 for KDAEE).
patterns and are used to train machine learning models for emotion 
recognition on both datasets.

The performance of the models for emotion recognition is shown 
in Tables  8 and 9. For both datasets, all algorithms perform better 
than chance level ( 17 ≈ 0.143), although true positive rates are con-
sistently lower for emotions like sadness and surprise. This aligns with 
previous research (Castellano et al., 2007; Visi et al., 2017; Kleinsmith 
and Bianchi-Berthouze, 2013) that suggests that sadness and surprise 
have less distinctive motion patterns, leading to lower classification 
accuracy.

In both datasets, the KNN algorithm generally shows lower accuracy 
across most emotion classifications, except for neutral emotion. The 
SVM model demonstrates reasonable performance for most emotions 
but struggles with low-energy emotions such as sadness and high-
energy emotions like surprise. The MLP model offers slightly better 
accuracy for happiness and neutral emotions but faces challenges with 
less distinctive emotions.

Across both datasets, none of the four traditional algorithms com-
pares favourably to the HBP-LSTM in terms of accuracy. The HBP-LSTM 
achieves significantly higher accuracy levels — over 98% mean accu-
racy on the EGBM dataset and 88% on the KDAEE dataset — highlight-
ing the importance of temporal information for emotion recognition. 
By leveraging the sequential nature of LSTM networks, HBP-LSTM 
effectively models the temporal dynamics of emotions, capturing subtle 
changes and patterns in body movements over time that traditional 
algorithms may miss.

Comparing the experimental results on the two datasets, we find 
that HBP-LSTM consistently outperforms traditional machine learn-
ing algorithms. The performance of the KDAEE dataset is degraded, 
which can be attributed to differences in data characteristics, such 
as the diversity of participants or variations in recording conditions. 
In contrast, the traditional algorithms showed greater fluctuations in 
performance between the two datasets, suggesting that they are more 
sensitive to dataset-specific features and, thus, less able to generalise 
across different populations or recording conditions.

Overall, the HBP-LSTM model significantly outperforms both
dataset’s traditional machine-learning methods for emotion recogni-
tion. These results highlight the importance of combining time series 
and probabilistic modelling techniques in developing emotion recogni-
tion systems, providing strong support for improving model robustness 
and adaptability.

7.2. Comparison with other state-of-the-art methods

In this section, we compare our results with existing state-of-the-art 
methods on two datasets. To ensure the fairness of the comparison, we 
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strictly follow the cross-validation strategies set out in the literature 
for each dataset. For both datasets, we used 10-fold cross-validation 
and a ‘Leave-One-Participant-Out’ (LOPO) protocol. The following is a 
specific description of the methods used in the comparison:

(1) EGBM Dataset:  Sapiński et al. (2019a) proposed an approach 
based on body joint analysis using sequential models to capture effec-
tive movement for emotion recognition. Zhang et al. (2021) developed 
an attention-based LSTM network that improves accuracy by focusing 
on key joint movements. Wang et al. (2024a) introduced a framework 
using a body expression energy model and a multi-input symmet-
ric positive definite matrix network to extract temporal and spatial 
features.

(2) KDAEE Dataset: Avola et al. (2022) proposed a pipeline utilising 
multi-view representation learning (MVRL) for affective action recogni-
tion. Ghaleb et al. (2021) represented posture sequences as graphs and 
employed spatio-temporal graph convolutional networks (ST-GCNs) for 
emotion recognition.

Our proposed Hybrid Bayesian Pre-trained LSTM (HBP-LSTM)
model is compared with the above methods on the respective datasets. 
Table  10 summarises the comparison results.

As shown in Table  10, our proposed HBP-LSTM model achieves 
superior performance on both datasets. Specifically, on the EGBM 
dataset, our method achieves an accuracy of 98.17%, surpassing the 
previous best result of 97.43% by Wang et al. On the KDAEE dataset, 
our model attains an accuracy of 88.07%, significantly outperforming 
the methods by Avola et al. and Ghaleb et al.

In contrast, previous methods, such as those by Sapiński et al. and 
Zhang et al. primarily relied on low-level joint data without incor-
porating high-level movement analysis, which may limit their ability 
to capture the full spectrum of emotional expressions. While Wang 
et al.’s method achieved high accuracy by using energy models and 
SPD networks, it may not effectively model uncertainty or handle noisy 
data.

On the KDAEE dataset, the methods by Avola et al. and Ghaleb 
et al. employed multi-view learning and graph convolutional networks, 
respectively, but they may not fully capture the temporal dynamics and 
uncertainty modelling provided by our HBP-LSTM. Our method’s supe-
rior performance on KDAEE demonstrates its effectiveness in general-
ising across different datasets and handling variations in data quality.

Overall, our HBP-LSTM enhances emotion recognition accuracy 
and robustness by combining multi-level feature integration, Bayesian 
inference, and attention mechanisms.

7.3. Component contribution via ablation study

To quantify the contribution of each architectural block in HBP–
LSTM, we conduct a controlled ablation on the EGBM seven-class 
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Table 10
Comparison of methods on EGBM and KDAEE Datasets.
 Research Dataset Methodology Recognition performance  
 Sapiński et al. (2019a) EGBM RNN-LSTM 0.6900  
 Zhang et al. (2021) EGBM AS-LSTM* 0.7410  
 Wang et al. (2024a) EGBM BEEM* +  SPDnet* 0.9743  
 Avola et al. (2022) KDAEE MVRL* 0.6410  
 Ghaleb et al. (2021) KDAEE ST-GCN* 0.6500  
 Our Method EGBM, KDAEE HBP-LSTM* EGBM: 0.9817; KDAEE: 0.8807 
* Abbreviations: AS-LSTM: LSTM network based on attention, GCN: Graph Convolution Network, HMM: Hidden Markov Model, L-GrIN: Learnable 
Graph Inception Network, LMA: Laban Movement Analysis, LSTM: Long Short-Term Memory, MVRL: Multi-View Representation Learning, Pos: 
Position, RegNetY-800MF: Regular Network Y-800 MegaFLOPs, RF: Random Forest, RNN: Recurrent Neural Network, Rot: Rotation, ST-GCNs: 
Spatio-Temporal Graph Convolutional Networks, SVM: Support Vector Machine.
Table 11
Ablation on the EGBM seven-class dataset (LOPO, 𝑛=8 folds).
 Variant Accuracy 𝛥Acc Sig. 
 LSTM–Base 0.2749 ± 0.0423 −0.3875 ‡  
 Bayes–LSTM–1 0.2674 ± 0.0581 −0.3950 ‡  
 Bayes–LSTM–1 + Attn (no Adapter) 0.3069 ± 0.1075 −0.3555 ‡  
 HBP–LSTM (full) 𝟎.𝟔𝟔𝟐𝟒 ± 𝟎.𝟏𝟏𝟒𝟒 Ref. –  
 HBP–LSTM (– SecondBayes) 0.6171 ± 0.1132 −0.0453 †  
 HBP–LSTM (– FirstBayes) 0.6270 ± 0.0889 −0.0354 n.s. 
Notes.  𝛥Acc = variant − full; Sig.: Holm–Bonferroni corrected paired 𝑡-tests (†𝑝 < 0.05,
‡𝑝 < 0.01; n.s.: not significant).
Variant definitions:  LSTM–Base deterministic 2-layer LSTM (no Bayesian/atten-
tion/adapter);  Bayes–LSTM–1 Bayesian weights in the first LSTM only;  Bayes–
LSTM–1 + Attn (no Adapter) adds multi-head temporal attention, adapter removed;
HBP–LSTM (full) first Bayesian LSTM + attention + adapter + second Bayesian LSTM;
(– SecondBayes)/(– FirstBayes) replace the corresponding Bayesian LSTM with a 
deterministic one.

task under the same Leave-One-Participant-Out (LOPO) protocol (8 
folds), preprocessing, and optimiser as in Section 6. All variants use a 
lightweight configuration of 25 training epochs and hidden size 𝐻=64; 
absolute accuracies are therefore lower than Table  7 but comparable
across variants. We report mean±std over folds and assess significance 
via paired two-tailed 𝑡-tests with Holm–Bonferroni correction. For 
clarity, we also report the marginal difference
𝛥Acc = Accvariant − Accfull,

where the ‘‘full’’ model is the complete HBP–LSTM.
Table  11 yields four observations. (1) Post-fusion Bayesian infer-

ence is crucial: removing the second Bayesian LSTM reduces accuracy 
by 4.53 pp (†), indicating that modelling uncertainty after low–high 
feature fusion is key for cross-participant generalisation. (2) Early 
Bayesian uncertainty is secondary : replacing the first Bayesian LSTM 
causes a smaller, non-significant drop (3.54 pp), suggesting that under 
a lightweight setting (25 epochs, 𝐻=64) early Bayesian modelling 
is less influential than later-stage inference. (3) Attention helps even 
without the adapter : adding multi-head attention to a single-Bayesian 
model improves accuracy by 3.95 pp; the adapter remains necessary for 
peak performance. (4) Synergy is indispensable: removing all advanced 
modules (LSTM–Base) leads to a 38.75 pp loss (‡), confirming that 
robustness stems from the combination of Bayesian inference, attention, 
and adapter rather than any single component.

7.4. Noise tolerance test

7.4.1. Model performance under fixed noise ranges
In this approach, noise was generated by sampling from a uni-

form distribution within specified ranges, such as U(0,1), U(−5,5), and 
U(−10,10), and then added to the original feature values. This ensures 
that the noise has different magnitudes, enabling us to test the model 
under varying degrees of data corruption.

The generated noise was independently applied to each feature 
across the entire dataset. In other words, for each data point, all feature 
values were adjusted by adding a randomly selected noise value from 
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the corresponding distribution. This process was repeated for each 
noise intensity level, creating multiple noisy versions of the dataset.

The choice of different noise intensity ranges was made to sim-
ulate various levels of signal degradation that might occur in real-
world scenarios. For example, noise within the [0,1] simulates minor 
fluctuations, such as those caused by sensor precision limitations or 
environmental factors, leading to minor data collection errors. Noise 
in the [−5,5] represents moderate degradation, possibly due to tran-
sient hardware issues or temporary environmental disturbances. Noise 
in the [−10,10] range introduces severe noise, analogous to sensor 
malfunctions or widespread environmental interference.

The initial trial employed a noise range of 0 to 1, corresponding 
to a relatively mild level of distortion. As illustrated in Table  12, at a 
10% noise level, the Low-Level (LL) LSTM model achieved accuracies 
of 89.63% on the EGBM dataset and 79.03% on the KDAEE dataset. 
In comparison, the High-Level (HL) LSTM model attained accuracies 
of 86.00% on EGBM and 85.00% on KDAEE. These results indicate 
that the LL LSTM exhibits greater robustness to low-intensity noise 
than the HL LSTM. However, the performance of the HL LSTM model 
demonstrated a higher dependency on data quality. As the noise level 
increased to 70%, both LL and HL LSTM models experienced declines in 
accuracy across both datasets. Specifically, at 70% noise, the LL LSTM 
maintained accuracies of 74.71% on EGBM and 69.05% on KDAEE, 
whereas the HL LSTM’s accuracies decreased to 42.73% on EGBM and 
45.73% on KDAEE. These findings underscore the superior resilience of 
the LL LSTM model under severe noise conditions compared to the HL 
LSTM model.

To further clarify which part of our model contributes most to noise 
robustness, we performed a targeted comparison in which Gaussian 
noise was added exclusively to the low-level branch (41-dimensional 
kinematic inputs) or exclusively to the high-level branch (LMA-derived 
features). The results, see Table  12, show that when only the low-
level inputs are corrupted, the drop in accuracy for the deterministic 
LL-LSTM (e.g. from 89.6%→83.7% on EGBM at 30% noise) is only 
slightly larger than for the Bayesian LL-LSTM (from 92.3%→84.7%), 
indicating a modest gain. By contrast, when only the high-level inputs 
are corrupted, the deterministic HL-LSTM’s accuracy falls much more 
steeply (e.g. 86.0%→72.6% on EGBM) than the Bayesian HL-LSTM 
(93.8%→84.8%). In other words, introducing Bayesian inference brings 
a substantially larger robustness benefit to the high-level branch. This 
occurs because high-level LMA features are aggregated statistics; thus 
noise perturbs them, and the network can only recover by leveraging 
weight uncertainty. Low-level kinematic sequences, however, already 
contain strong temporal redundancy, so even a deterministic LSTM 
can partially ‘‘average out’’ the frame-wise noise. Hence, the Bayesian 
HL-LSTM (together with its Adapter+Attention+second-stage Bayesian 
LSTM) is the key driver of robustness when noise exceeds 30%.

Incorporating Bayesian inference into the LSTM models (LL Bayesian 
LSTM and HL Bayesian LSTM) results in a consistent performance 
improvement across most noise levels for both the EGBM and KDAEE 
datasets. At a 30% noise level, the LL Bayesian LSTM outperforms 
the standard LL LSTM by approximately 1.0% on EGBM (84.71% vs. 
83.74%) and by 1.8% on KDAEE (72.01% vs. 70.23%). Similarly, 
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Table 12
Testing results for various models with noise range 0–1.
 Model* 10% noise 30% noise 50% noise 70% noise
 EGBM KDAEE EGBM KDAEE EGBM KDAEE EGBM KDAEE 
 LL LSTM 0.8963 0.7903 0.8374 0.7023 0.8073 0.7532 0.7471 0.6905 
 HL LSTM 0.8600 0.8500 0.7256 0.7250 0.6483 0.6034 0.4273 0.4573 
 LL Bayesian LSTM 0.9227 0.8223 0.8471 0.7201 0.8398 0.7622 0.6961 0.7010 
 HL Bayesian LSTM 0.9380 0.8733 0.8485 0.7402 0.6754 0.7011 0.6036 0.6505 
 All-Level LSTM 0.9663 0.8734 0.8600 0.7701 0.7661 0.7400 0.5783 0.6300 
 HBP-LSTM 0.9863 0.8304 0.8637 0.7536 0.8619 0.7323 0.8619 0.7136 
* LL LSTM = Low-Level LSTM, HL LSTM = High-Level LSTM, etc.
Table 13
Testing results for various models with noise range −5–5.
 Model* 10% noise 30% noise 50% noise 70% noise
 EGBM KDAEE EGBM KDAEE EGBM KDAEE EGBM KDAEE 
 LL LSTM 0.6519 0.6012 0.2947 0.2021 0.2431 0.1941 0.2118 0.1941 
 HL LSTM 0.8729 0.7301 0.4751 0.3243 0.3370 0.2341 0.2947 0.2240 
 LL Bayesian LSTM 0.8416 0.7322 0.4052 0.3543 0.2449 0.2351 0.2063 0.1963 
 HL Bayesian LSTM 0.8802 0.7652 0.5046 0.5123 0.3966 0.3542 0.3016 0.2502 
 All-Level LSTM 0.9024 0.7833 0.5930 0.5520 0.4254 0.3970 0.4070 0.3540 
 HBP-LSTM 0.9466 0.8133 0.7974 0.7236 0.7422 0.6543 0.6262 0.6132 
* LL LSTM = Low-Level LSTM, HL LSTM = High-Level LSTM, etc.
Table 14
Testing results for various models with noise range −10 to 10.
 Model* 10% noise 30% noise 50% noise 70% noise
 EGBM KDAEE EGBM KDAEE EGBM KDAEE EGBM KDAEE 
 LL LSTM 0.3591 0.3233 0.2118 0.2013 0.2173 0.1941 0.1860 0.1531 
 HL LSTM 0.5064 0.4563 0.2910 0.02510 0.2615 0.1942 0.2357 0.1831 
 LL Bayesian LSTM 0.5801 0.5501 0.3131 0.2812 0.2560 0.2341 0.2449 0.1832 
 HL Bayesian LSTM 0.6072 0.5814 0.3324 0.3021 0.2816 0.2513 0.2672 0.1941 
 All-Level LSTM 0.6538 0.6516 0.4088 0.3875 0.3757 0.2316 0.3407 0.1941 
 HBP-LSTM 0.8122 0.7532 0.6372 0.7032 0.5304 0.5103 0.4088 0.3980 
* LL LSTM = Low-Level LSTM, HL LSTM = High-Level LSTM, etc.
the HL Bayesian LSTM achieves a 12.3% accuracy improvement over 
the standard HL LSTM on EGBM (84.85% vs. 72.56%) and a 1.5% 
improvement on KDAEE (74.02% vs. 72.50%) at the same noise level, 
indicating the robustness of the Bayesian approach in mitigating the 
impact of noise.

In the comparative analyses, the HBP-LSTM model demonstrates 
excellent adaptability with Bayesian inference and multi-level feature 
integration. Even at a high noise level of 70%, the model still achieves 
robust accuracies of 86.19% and 76.61% on the KDAEE dataset and the 
EGBM dataset, respectively, which demonstrate the model’s excellent 
robustness under data distortion conditions and highlight its stable 
performance in challenging environments.

When the noise range is extended to [−5, 5], as presented in 
Table  13, the performance trajectories of the low-level (LL) and high-
level (HL) LSTM models exhibit significant differences. Initially, at 
lower noise levels, the LL LSTM demonstrates robustness; however, at 
a 70% noise level, its accuracy sharply declines to 20.63% (EGBM) 
and 19.63% (KDAEE). In contrast, the HL LSTM exhibits greater noise 
robustness, with a more gradual decrease in accuracy under the same 
noise intensity. Notably, in lower-noise environments, the LL model 
appears to be as fault-tolerant as, or even more fault-tolerant than, the 
HL model, as shown in Table  12. This robustness may be attributed to 
the effectiveness of direct low-level features in capturing essential af-
fective information when the data is relatively clean. However, as noise 
levels increase, the advantages of high-level features become more 
pronounced. High-level features provide a broader context and intrinsic 
connections, which are crucial for extracting meaningful patterns from 
complex and noisy data. This shift underscores the importance of 
integrating low- and high-level features to enhance model resilience 
and interpretability under varying noise conditions.
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Taking the All-level LSTM as an example, it generally outperforms 
single-layer models (LL and HL), particularly under moderate noise 
conditions. Within the noise range of [−5, 5], at a noise level of 
30%, the All-level LSTM maintains relatively high accuracies of 79.74% 
(EGBM) and 72.63% (KDAEE), indicating its superior ability to mitigate 
noise by leveraging a more comprehensive perspective of the data. 
However, as shown in Table  14, under the most extreme noise condition 
of [−10, 10], the full-layer LSTM, while still outperforming single-layer 
models, experiences a significant performance decline, with accuracy 
dropping to approximately 40% at a noise level of 70%.

Fig.  16 compares the normalised confusion matrices of the All-
Level LSTM and HBP-LSTM models at different noise levels across the 
EGBM and KDAEE databases. Fig.  16(a) shows the confusion matrix 
for the All-Level LSTM model on the EGBM database at a 70% noise 
level. The model achieves a high accuracy of 97.33% in recognising 
the ‘‘Disgust’’ emotion. However, the model exhibits significant con-
fusion in distinguishing ‘‘Happiness’’ from ‘‘Surprise’’ and ‘‘Fear’’ from 
‘‘Sadness’’, leading to higher misclassification rates. This indicates that, 
despite its overall good performance, the All-Level LSTM struggles 
to distinguish between emotions with similar expressive patterns in 
high-noise environments.

In contrast, Fig.  16(b) shows that the HBP-LSTM model exhibits 
greater robustness at the same database and noise level. The model 
achieves over 88% accuracy in recognising ‘‘Disgust’’ and significantly 
reduces the confusion rates between ‘‘Happiness’’ and ‘‘Surprise’’ as 
well as ‘‘Fear’’ and ‘‘Sadness’’. This suggests that HBP-LSTM has a better 
discriminatory ability in handling noisy data and is more effective at 
parsing complex emotional expressions.

Fig.  16(c) shows the confusion matrix for the All-Level LSTM model 
on the KDAEE database at a 50% noise level. The model achieves 
recognition accuracies of 0.0% for ‘‘Anger’’ and 17.6% for ‘‘Disgust’’, 
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Fig. 16. Comparison of normalised confusion matrices for all-level LSTM and HBP-LSTM models on EGBM and KDAEE datasets at different noise levels.
with 45.5% and 42.9% accuracy for ‘‘Fear’’ and ‘‘Happiness’’, respec-
tively. Notably, ‘‘Neutral’’ and ‘‘Sadness’’ are recognised with moderate 
accuracies of 50.0% and 40.0%. However, ‘‘Surprise’’ is accurately 
identified only 37.5% of the time. The All-Level LSTM model ex-
hibits significant challenges in accurately recognising ‘‘Anger’’, which 
is wholly misclassified, and shows overlaps between ‘‘Disgust’’, ‘‘Fear’’, 
and other emotions like ‘‘Neutral’’ and ‘‘Sadness’’. Additionally, there 
is confusion between ‘‘Happiness’’ and ‘‘Surprise’’, indicating that the 
All-Level LSTM struggles to distinguish nuanced emotional states within 
the KDAEE dataset under high-noise conditions.

Fig.  16(d) illustrates the confusion matrix for the HBP-LSTM model 
on the KDAEE database at the same 50% noise level. The HBP-LSTM 
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model demonstrates improved recognition accuracies across most emo-
tion categories, achieving 50.0% for ‘‘Anger’’, 52.9% for ‘‘Disgust’’, 
54.5% for ‘‘Fear’’, and 57.1% for ‘‘Happiness’’. ‘‘Neutral’’ and ‘‘Sadness’’ 
are recognised with high accuracies of 83.3% and 73.3%, respectively, 
while ‘‘Surprise’’ is accurately identified 56.2% of the time. Although 
‘‘Anger’’ remains a challenging category, the HBP-LSTM model signifi-
cantly reduces misclassification rates for ‘‘Disgust’’ and ‘‘Surprise’’, min-
imising confusion with other emotions. These improvements suggest 
that the HBP-LSTM model offers better resilience and discriminatory 
power in handling noisy data, leading to more accurate emotional 
recognition in the KDAEE database. However, further optimisation is 
needed to enhance the recognition of ‘‘Anger’’ and ‘‘Surprise’’.
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Table 15
Model performance evaluation under unrestricted random noise conditions for EGBM and KDAEE Datasets.
 Model/noise level* EGBM KDAEE

 3% 5% 7% 10% 3% 5% 7% 10%  
 All-Level LSTM 0.3757 0.3462 0.3278 0.2910 0.3625 0.3401 0.3155 0.2882 
 HBP-LSTM 0.4880 0.4346 0.4144 0.3554 0.4752 0.4298 0.3981 0.3491 
* Noise levels are simulated with completely random values, without fixed range constraints, to evaluate model resilience in unpredictable 
conditions. Performance is shown separately for EGBM and KDAEE datasets.
7.4.2. Model robustness under unrestricted noise conditions
To assess the model’s robustness under extreme and unpredictable 

conditions, we introduce noise with no predefined limits. This noise is 
randomly generated and imposed on the entire feature set and designed 
to simulate real-world scenarios such as sensor failures, system errors, 
or extreme environmental disturbances.

In contrast to the first strategy, this method’s noise intensity is not 
systematically controlled but randomly sampled from a broad spectrum 
that may contain outliers and extreme values. The high noise size and 
direction variability pose a more significant challenge for the model.

Applying noise indiscriminately across the entire feature set means 
that each feature may be disturbed to varying degrees in magnitude 
and type. This setup simulates a realistic situation in which some data 
streams may have severe errors while others remain stable, thus pro-
viding a severe test of the model’s ability to process under chaotic and 
unexpected input conditions. We aim to examine the model’s ability 
to generalise and maintain performance under the most challenging 
conditions by introducing noise without predetermined limits. Such 
tests provide an essential basis for understanding the robustness and 
adaptability of the model in real-world applications.

This subsection explores the model’s performance under
unrestricted random noise conditions, reflecting the unpredictable data 
corruption encountered in real-world scenarios. Observing the model’s 
performance decline in such a challenging environment provides valu-
able insights into its robustness.

Table  15 presents the results from this rigorous testing, showcasing 
how each model variant contends with a spectrum of noise levels from 
mild (3%) to significant (10%).

The results highlight the challenge that unrestricted noise poses 
to model robustness. At a noise level of 10%, HBP-LSTM demon-
strates a stronger adaptive capability with an accuracy of 35.54% 
(EGBM dataset) and 34.91% (KDAEE dataset), compared to 29.10% 
and 28.82% for All-Level LSTM. This result demonstrates the superior 
performance of HBP-LSTM in dealing with unstructured noise.

Despite the performance degradation observed, the relative stability 
of the HBP-LSTM in adverse conditions is promising. It accentuates 
the model’s applicability in emotion recognition within complex and 
unpredictable environments. Future endeavours may concentrate on 
refining the model’s architecture, potentially through optimising its 
Bayesian elements or adopting advanced regularisation techniques to 
further attenuate the noise impacts. Such enhancements are pivotal for 
bolstering the model’s resilience and ensuring the reliability of emotion 
recognition applications.

The above analysis shows that the HBP-LSTM model maintains a sig-
nificant advantage in different noise levels, consistently delivering high 
emotion recognition rates. This consistent performance across various 
noise levels, especially when data integrity is at stake, speaks volumes 
about the model’s potential for application in different environments. 
The superiority of the HBP-LSTM is most evident when compared to 
the All-Level LSTM, which is significantly less sensitive to accuracy 
degradation.

Furthermore, these results reaffirm the importance of robust model 
design in the field of emotion recognition. As the technique is inte-
grated with dynamic, real-world environments, the ability to maintain 
high recognition rates in the presence of imperfect data will be critical.
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7.5. FGSM adversarial testing

Adversarial attacks were conducted using FGSM with perturbation 
magnitudes 𝜖 = 0.01 (minor) and 𝜖 = 0.10 (significant). This setup 
aimed to evaluate how each model withstands varying levels of adver-
sarial noise, simulating scenarios where inputs are subtly or heavily 
manipulated to degrade performance.

Figs.  17(a) and 17(b) illustrate the models’ accuracies under FGSM 
attacks on the EGBM and KDAEE datasets, respectively. The HBP-LSTM 
(blue solid line) consistently outperforms the Normal LSTM (red dashed 
line) at lower perturbation levels (𝜖 = 0.01 and 0.05), indicating 
superior resilience to mild adversarial noise. However, at the higher 
perturbation level (𝜖 = 0.10), the Normal LSTM achieves higher accu-
racy — approximately 22% for EGBM and similar trends for KDAEE — 
compared to the HBP-LSTM’s 15%. This suggests that while HBP-LSTM 
excels under moderate adversarial conditions, the simpler architecture 
of the Normal LSTM may better handle extreme, generalised noise. Fig. 
17 provides a comparative overview across both datasets. It highlights 
that the HBP-LSTM maintains higher accuracy at lower 𝜖 values but 
is outperformed by the Normal LSTM when perturbations are severe. 
This outcome underscores a trade-off between model complexity and 
generalisation capabilities.

In the previous noise test (see Section 7.4), HBP-LSTM outper-
formed ordinary LSTM at all noise levels, demonstrating its superior 
ability to handle random and unstructured noise. However, in the 
FGSM adversarial test, although the HBP-LSTM still performed well at 
low to medium perturbation strengths, it was no match for the ordi-
nary LSTM at high perturbation strengths. This phenomenon indicates 
that the complex architecture of the HBP-LSTM may have limitations 
when dealing with intentional perturbations in the gradient direction, 
especially at high perturbation strengths, where the model may be 
more susceptible to severe interference due to its complexity. The 
Normal LSTM performs better under FGSM high perturbation strength, 
possibly due to its simple structure reducing the risk of overfitting, 
giving it better generalisation ability under extreme noise conditions. 
This comparison highlights the impact of different noise types on 
model robustness and emphasises the need to trade off complexity and 
generalisation ability in model design for various application scenarios.

8. Discussion

The research presented explores the use of body movements for 
emotion recognition, a rapidly growing area within affective com-
puting. Our proposed Hybrid Bayesian Pre-trained LSTM (HBP-LSTM) 
framework significantly enhances emotion recognition accuracy and 
robustness by integrating low-level pose features with high-level kine-
matic features and incorporating Bayesian inference.

Our experimental results demonstrate that the HBP-LSTM model 
achieves accuracies of 98.17% on the EGBM dataset and 88.07% on the 
KDAEE dataset, outperforming existing state-of-the-art methods. These 
results validate the effectiveness of our approach in handling noisy and 
uncertain data, and its superior performance in emotion recognition 
tasks.

The high accuracy achieved by the HBP-LSTM model underscores 
the importance of integrating both low-level and high-level features for 
comprehensive emotion recognition. By leveraging Bayesian inference, 
our model effectively manages data uncertainty and noise, which are 
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Fig. 17. Comparison of model performance under FGSM adversarial attacks.
 

prevalent in real-world scenarios. This robustness makes our framework 
highly suitable for practical applications where data quality cannot 
always be controlled.

Unlike previous approaches focusing solely on low-level joint data 
or incorporating attention mechanisms without addressing uncertainty, 
our model’s combination of multi-level feature integration and Bayesian
inference provides a more nuanced and reliable emotion recogni-
tion system. This dual-level feature approach captures both the de-
tailed movements and the overarching kinematic patterns that convey 
emotional states. Incorporating Bayesian inference within the LSTM 
framework enhances the model’s ability to handle variability and 
unpredictability in movement data. This adaptability is crucial for de-
ploying emotion recognition systems in dynamic environments where 
data can be highly variable and subject to noise.

The success of the HBP-LSTM model paves the way for deploying 
emotion recognition systems in real-world applications, particularly in 
scenarios where data quality cannot be guaranteed. Applications in-
clude real-time monitoring, human–computer interaction, and assistive 
technologies. Our model can contribute to more reliable and effective 
emotion-aware systems in these domains by ensuring high accuracy and 
robustness.

Through comprehensive feature analysis using a Random Forest 
classifier, we evaluated the importance of various features, compared 
high-level and low-level features, and analysed contributions from 
different body parts across emotional categories. The results revealed 
that certain body parts and features play a more significant role in ac-
curately conveying emotional states. Specifically, high-level kinematic 
features related to the upper body and hands were particularly influen-
tial. This analysis enhances our understanding of emotion recognition 
mechanisms and provides valuable insights for further refining our 
model.

8.1. Limitations

Although the HBP-LSTM model exhibits excellent noise immunity 
and high accuracy in sentiment recognition, it still has some limitations 
that need to be further explored:

First, the model’s performance in the face of severe or uncontrolled 
random noise suggests that there is still room for improvement in 
dealing with extreme data corruption. This implies that more ad-
vanced noise filtering techniques or more robust model architectures 
are needed to ensure that relevant features can be effectively extracted 
despite severe data distortion.

Second, this study relies on a specific dataset for training and 
validation, which may limit the model’s ability to generalise to different 
real-world scenarios. The existing dataset may not be able to cover 
all emotional expressions and environmental changes encountered in 
real-world applications. Therefore, future research should consider in-
corporating a wider range of datasets that cover different cultural 
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backgrounds, emotional nuances, and diverse environmental conditions 
to enhance the model’s adaptability and robustness.

In addition, although Bayesian methods help to enhance model 
robustness and uncertainty management, they have high computational 
complexity and consume a large amount of computational resources. 
This somewhat limits the feasibility of the model in real-time applica-
tions and large-scale deployment. Therefore, exploring more efficient 
Bayesian inference techniques or developing lightweight model archi-
tectures would help alleviate this problem and make the approach more 
practical in resource-constrained environments.

Finally, although the present model performs well in controlled 
experimental environments, its performance in real-world applications 
still needs to be thoroughly evaluated. In real-world applications, data 
may be affected by various unforeseen perturbations and complexities, 
so extensive field testing and user studies will provide valuable insights 
into understanding the model’s real-world effectiveness and point the 
way to further improvements.

8.2. Responsible AI development

This study develops the Hybrid Bayesian Pre-trained LSTM (HBP-
LSTM) framework, a unique technology that involves both low-level 
posture characteristics and high-level kinematic features and includes 
Bayesian inference. Our way brings about considerably improved body 
movement-based emotion recognition, especially in the presence of 
serious noise. The results present the model’s resistance and flexibility 
in uncertain, noisy data ecosystems, demonstrating its potential for 
real-world applications where data integrity may vary.

Through comprehensive feature analysis using a Random Forest 
classifier, we evaluated the importance of various features, compared 
high-level and low-level features, and analysed contributions from dif-
ferent body parts across emotional categories. The outcomes unveiled 
that certain body parts are the most critical body features accurately 
reflecting emotions. Specifically, the upper body and hands have been 
mentioned as higher-level kinematic features that contribute mainly to 
this end. This analysis enhances our understanding of emotion recog-
nition mechanisms and provides valuable insights for further refining 
our model.

Regarding the findings from the feature analysis, further research 
will concentrate on the most influential features and body sections to 
optimise the HBP-LSTM model. By concentrating on the most influen-
tial features, we aim to develop a more efficient model with reduced 
computational complexity without compromising performance.

Further, we want to explore more advanced deep learning algo-
rithms to deal and analyse data more comprehensively. This might 
involve employing convolutional neural networks (CNNs) to find and 
extract local information or transformer to bottle the links between dis-
tant processes in motion sequences. These enhancements may provide 
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deeper insights into the nuances of the data’s features and contribute 
to a more sophisticated understanding of emotion recognition.

Moreover, we recognise the importance of evaluating our model in 
real-world settings. Future work will involve deploying the HBP-LSTM 
model in practical applications, such as real-time emotion recognition 
systems, to validate its generalisation capabilities and robustness in 
diverse environments. Lastly, considering the computational demands 
of Bayesian methods, we will investigate efficient inference techniques 
or develop lightweight model architectures to facilitate real-time appli-
cations. This will make the approach more practical for deployment in 
resource-constrained environments.
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