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ARTICLE INFO ABSTRACT

Keywords: Over the past decade, the accessibility of electric vehicle (EV) infrastructure has been predominantly measured
Electri'c vehicle from a spatial proximity-based perspective, often overlooking the user’s perspective. While calculated accessi-
Charging bility provides valuable insights, it does not necessarily translate into actual charging behaviour. Given the
Accessibility . L. . e, . . . L .

. s growing recognition that perceived accessibility plays a critical role in shaping user decisions, there is a clear
Perceived accessibility . c S . .
London need for tools that integrate both objective and subjective measures. To address this gap, this study proposes a

combined accessibility framework that integrates calculated, perceived, and prospective accessibility to provide
a holistic understanding of EV infrastructure accessibility. Using London as a case study, this research adopts a
mixed-methods approach and introduces a typology of accessibility profiles. The study reveals two key findings.
First, the relationship between calculated and subjective accessibility is nuanced and complex, with a spectrum
of alignment identified across four clusters—ranging from moderate agreement to strong disagreement. Second,
eight key features related to the built environment, demographics, and travel behaviour are identified as the
primary drivers of these patterns. These findings reinforce the importance of incorporating multiple dimensions
of accessibility into EV infrastructure planning. By acknowledging the gap between modelled accessibility and
user experience, this approach offers a valuable tool for designing more user-centred and responsive EV charging

networks.

1. Introduction

The UK government has set ambitious targets to achieve net-zero
emissions, including a ban on the sale of new petrol and diesel cars by
2035. Expanding the public electric vehicle (EV) charging network is a
critical element of this strategy (HM Government, 2022), particularly in
urban areas such as London. However, despite these policy efforts, the
uptake of EVs remains slower than anticipated, with the majority of car
sales still dominated by conventional vehicles. This highlights the
pressing need for more targeted approaches to encourage the transition
to electric mobility and accelerate progress towards sustainable trans-
port goals. High accessibility to EV charging infrastructure has been
shown to significantly influence public intentions to adopt EVs (Coffman
et al., 2017; Canepa et al., 2019), while also generating important
environmental benefits (Liang et al., 2023). Therefore, understanding
and improving accessibility to public EV charging infrastructure is
critical not only for supporting the widespread adoption of EVs, but also
for encouraging continued use and preventing users from switching back

to conventional vehicles, ultimately helping to achieve the UK’s decar-
bonisation targets.

While accessibility to EV charging infrastructure has been widely
studied over the past decade—driven by the rapid growth of the EV
industry and increasing rates of adoption—most existing research (Hsu
and Fingerman, 2021; Falchetta and Noussan, 2021; Roy and Law,
2022) has focused on calculated accessibility. This typically involves
spatial proximity-based measures such as charger density, distance, and
travel time. Recent advancements have extended this work by incor-
porating temporal perspectives and spatial subdivisions by policy
context. For instance, Park et al. (2022) examined the hourly variation
of accessibility to public EV charging networks in Seoul, Korea, ac-
counting for fluctuations in charging demand and supply. Similarly,
Zhang et al. (2024) analysed differences in accessibility across London’s
traffic emission zones, highlighting the importance of spatial policy
subdivisions.

However, existing studies on public EV charging accessibility have
three key limitations. First, while research on calculated
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accessibility—typically based on objective measures such as distance,
density, and travel time—has advanced significantly, perceived acces-
sibility has received limited attention in this context. Perceived acces-
sibility, defined as an individual’s subjective sense of how easily they
can reach their desired destination (Negm et al., 2025; Pot et al., 2021),
plays a critical role in shaping charging behaviour (Pot et al., 2023;
Negm et al., 2025). Yet, despite widespread recognition that calculated
accessibility does not always reflect actual user behaviour, most studies
continue to prioritise proximity-based metrics. Second, while some
research has examined the mismatch between perceived and calculated
accessibility, or the factors influencing perceived accessibility (e.g.,
Lattman et al., 2016), studies have yet to move beyond treating these
dimensions in isolation. This limits our understanding of how different
accessibility measures interact to shape charging decisions, and con-
strains the potential for more responsive, user-centred EV infrastructure
planning. Third, prior research has tended to generalise the relationship
between calculated and perceived accessibility, often using broad
regression models (Thronicker and Klinger, 2019; Olsson et al., 2021) or
structural equation modelling (Zhu et al., 2024; Chau et al., 2024).
These approaches typically provide global-level insights but risk over-
simplifying the nuanced and complex interactions between individual
users, the built environment, and travel and charging behaviours. By
broadly categorising accessibility as either aligned or mismatched,
existing work may obscure the diversity of user experiences and limit its
relevance for practical planning applications.

To address these limitations, this study develops a combined acces-
sibility framework that integrates calculated, perceived, and prospective
accessibility to provide a more comprehensive understanding of public
EV charging infrastructure in London. This study makes two major
contributions. First, it proposes a novel analytical framework that moves
beyond proximity-based measures by incorporating subjective user
perceptions and expectations into accessibility analysis. This integrated
approach enables the capture of nuanced and complex interactions
across different dimensions of accessibility, offering a more user-centred
perspective on EV infrastructure. Second, the study applies clustering
methods to segment users into distinct accessibility profiles and employs
partial dependence analysis to further explore the relationships between
socio-demographic, built environment, and behavioural factors and
cluster membership. This combined approach identifies patterns of (mis)
alignment between calculated and subjective accessibility across user
groups, revealing where accessibility gaps exist and highlighting the key
factors that contribute to these differences. These insights provide
actionable evidence to inform more responsive and user-centred EV
infrastructure planning and deployment strategies.

2. Literature review
2.1. Accessibility in public EV charging infrastructure

Research on EV charging infrastructure and services has expanded
rapidly over the past decade, covering a diverse range of topics including
charger placement and accessibility (Lam et al., 2014; Kios and Sier-
pinski, 2023), charging demand and user behaviour (Wang et al., 2023;
Jiang et al., 2024; Jonas and Macht, 2024), infrastructure resilience
under uncertainty (Ahmad et al., 2023; Raman et al., 2022), and user
experience studies (Fabianek and Madlener, 2023; Ha et al., 2021).
Among these, accessibility studies have received particular attention,
given the critical role that accessibility to public EV charging infra-
structure plays in both sustainable transport planning and decarbon-
isation efforts. A well-connected and highly accessible charging network
has been shown to significantly encourage the shift from conventional
vehicles to electric vehicles, thereby accelerating EV adoption and
supporting sustainable mobility goals. Furthermore, it is inherently
linked to principles of inclusivity and transport equity, ensuring that
individuals across different social, economic, and spatial cohorts have
equitable opportunities to access charging services.

Journal of Transport Geography 129 (2025) 104438

Hansen (1959) first brought the concept of accessibility to wider
attention in his seminal work, defining it as “the potential of opportu-
nities for interaction”—that is, the ease with which interactions can take
place. This sparked the emergence of accessibility interpretations and
measurement approaches. Numerous debates about the definition of
accessibility (Handy and Niemeier, 1997; Geurs and Van Wee, 2004;
Geurs et al., 2012) followed. Most developments and discussions around
accessibility have focused on advancements in its measurement, such as
proximity-based measures and buffer analysis (Roy and Law, 2022), the
two-step floating catchment area method (Luo and Wang, 2003) and
space-time measures (Weber, 2003).

In the context of EV infrastructure, accessibility can be understood as
the ease of get access to charging services. On this conceptual basis,
Zhang et al. (2024) summarise that existing accessibility studies on EV
charging infrastructure and services can broadly be categorised into two
types based on spatial scale: regional and neighbourhood-level studies,
each employing different methods and focusing on distinct research
interests. At the regional level, the primary focus is not on identifying
specific areas but rather on understanding general spatial patterns and
landscapes. Accordingly, measurement approaches tend to rely on
relatively simple and computationally efficient indicators, such as the
number of charging points per kilometre (Pemberton et al., 2021),
charging point density (Falchetta and Noussan, 2021), or average travel
time to the nearest charging station (Carlton and Sultana, 2024). Un-
surprisingly, studies consistently reveal pronounced spatial disparities
in accessibility. For example, significant gaps have been identified be-
tween Northern and Southern Europe, while in the United States, even
starker disparities emerge between census tracts within and outside
designated charging corridors. These findings raise important equity
concerns, as they highlight potential misalignments between the dis-
tribution of charging infrastructure and governmental equity objectives.

Compared with the relatively limited number of regional-level
studies, most research on EV charging accessibility has been conduct-
ed at the neighbourhood scale, particularly in China and the United
States (e.g., Choi et al., 2025; Yu et al., 2025), with only a few exceptions
such as studies from India (Jha et al., 2025).This focus is largely
attributed to the rapid development of EV infrastructure in these
countries and the availability of granular data. Similar to regional-level
studies, some neighbourhood-level research has examined the spatial
disparities in accessibility, seeking to identify whether spatial hetero-
geneity exists. For example, Li and his colleagues (Li et al., 2022)
investigated ten Chinese cities and found that cities like Shanghai
exhibited severe spatial inequities in charging infrastructure provision,
highlighting the need for targeted interventions. Beyond spatial
disparity, many neighbourhood-level studies have examined how spe-
cific population groups may face inequities in access to charging infra-
structure. For instance, previous work has identified that low-income
households (Roy and Law, 2022; Mehditabrizi et al., 2025), Black and
Hispanic majority neighbourhoods (Hsu and Fingerman, 2021), pop-
ulations with lower education levels (Malabanan et al., 2025; Peng et al.,
2024), and specific family compositions (Roy and Law, 2022) are more
likely to experience accessibility challenges compared to other groups.
The recent EV Charger vertical equity studies such as.

Recent advancements in EV charging accessibility studies have
focused on two key areas: embedding temporal perspectives and spatial
subdivision by policy context. Recognising that accessibility is shaped by
people, transport systems, and land use patterns, and that it varies over
time (Geurs and Van Wee, 2004), recent research has begun to examine
how accessibility to EV charging infrastructure and services interacts
with temporal demand patterns. A few pioneering studies have
attempted to measure space-time accessibility to EV charging stations,
accounting for fluctuations in service availability and dynamic charging
demand. However, the limited availability of temporal service data has
constrained this line of research. Notable examples include Park et al.
(2022), who identified five distinct temporal clusters of accessibility in
Seoul, Korea, using hourly spatial accessibility measures over a 24-h
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period, and Zhou et al. (2021), who examined significant regional var-
iations in accessibility across Nanjing, China, with peripheral suburbs
showing the most pronounced fluctuations. In addition to incorporating
temporal perspectives, some recent studies have sought to capture
accessibility variations by subdividing urban space based on transport
and energy policy regulations, acknowledging that policy context
significantly shapes the distribution of charging infrastructure. For
example, Zhang et al. (2024) examined neighbourhood-level accessi-
bility in three different emission zones in London, revealing granular
differences in accessibility and highlighting how vulnerable populations
are differentially affected across regulatory contexts.

2.2. Beyond calculated accessibility

However, while research on EV charging accessibility has advanced
considerably, it remains predominantly focused on proximity-based
measures or referred to as calculated accessibility. This approach
grounded in objective spatial analysis relies on methods such as 2-Step
Floating Catchment Area analysis (Luo and Qi, 2009) relying on the
distance to the nearest chargers, charger provision and speed, density
etc. However, this perspective assumes that accessibility directly trans-
lates into behaviour, overlooking the subjective and cognitive processes
through which individuals perceive and interact with their environment
(Pot et al., 2021). As argues in theory of Cognitive behaviour theory
(Golledge, 1997), spatial behaviour is shaped by both the objective
properties of the environment and the individual’s cognitive percep-
tions, attitudes, and knowledge of that environment. For instance, users
may have limited awareness of public charging locations (Noel et al.,
2020), experience range anxiety due to insufficient knowledge, or
perceive financial constraints (Varghese et al., 2024). Such cognitive
and perceptual barriers can hinder the actual adoption of EV charging,
meaning that even individuals living in areas with high spatial accessi-
bility may not make use of the available infrastructure. Therefore,
calculated accessibility discussed above does not necessarily equate to
actual charging behaviour, as it fails to capture how different individual
interpret and process to their surroundings. As highlighted by Mala-
banan and his colleagues (Malabanan et al., 2025), both actual and
perceived difficulties in accessing EV charging services can lead to
charging disadvantages, thereby constraining individuals’ full partici-
pation in social activities and discouraging EV adoption.

Perceived accessibility refers to an individual’s subjective sense of
how easily they can reach their desired destination using various modes
of transport (Negm et al., 2025; Pot et al., 2021). The concept was first
introduced by Morris et al. (1979), marking a departure from earlier
approaches that focused solely on objective, spatial measures of acces-
sibility. Compared to the substantial advancements in calculated
accessibility, the development of perceived accessibility has been rela-
tively limited, with much of the discourse remaining at the level of
theoretical exploration. This is partly due to the challenges of quanti-
fying subjective perceptions, as much of the available evidence remains
anecdotal (Curl et al., 2011). The significance of distinguishing between
calculated and perceived accessibility lies in the argument that while
perceived accessibility may be derived from objective measures, it is
ultimately perceived accessibility that serves as the true determinant of
behaviour (Negm et al., 2025).

To the best of our knowledge, few studies have specifically examined
perceived accessibility in the context of EV charging infrastructure, with
two exceptions. These studies have explored how perceived accessibility
influences non-EV owners’ intentions to adopt EVs, as demonstrated in
research from Hong Kong and China (He et al., 2022) and Montreal,
Canada (Renaud-Blondeau et al., 2023). These findings suggest that for
non-EV owners, low perceived accessibility to public charging infra-
structure likely acts as a barrier to EV adoption. For current EV owners,
although direct evidence is lacking, it is plausible that perceived
accessibility influences a range of behaviours—including the choice of
charging locations, which EV to use, charging frequency, and overall
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ease and satisfaction with the charging network. This assumption is
supported by studies on conventional transport modes (e.g., buses and
underground systems), where perceived accessibility has been shown to
play a significant role in shaping broader transport planning objectives,
including social inclusion (Lattman et al., 2016), ease of travel (De Vos
et al., 2025), and sustainable travel behaviour (Negm and El-Geneidy,
2024).

Building on this distinction between calculated and perceived
accessibility, recent work has proposed an additional dimension, namely
prospective accessibility. He et al. (2022) extended the conventional
dichotomy by introducing this concept to capture expectations about
future accessibility. Drawing on Expectation Confirmation Theory
(Oliver, 2014), which emphasises that adoption decisions are shaped by
the alignment between prior expectations and subsequent experiences,
prospective accessibility highlights how mobility choices such as EV
adoption depend not only on current charging provision but also on
anticipated developments in the charging network. In this sense, pro-
spective accessibility reflects individuals’ confidence that infrastructure
will expand adequately to meet future needs. This consideration is
particularly important for potential adopters who must make decisions
under conditions of infrastructural uncertainty. As such, prospective
accessibility should be regarded as an integral component of accessi-
bility, especially during the current transitional phase from conven-
tional vehicles to EVs, when both the pace and geography of charging
infrastructure development remain uncertain.

In summary, while the literature provides valuable insights into the
spatial and temporal dimensions of calculated accessibility for EV
charging infrastructure, it remains fragmented. Existing studies tend to
focus on isolated aspects of accessibility, overlooking how different di-
mensions interact to shape user behaviour and, ultimately, the effec-
tiveness of EV charging networks. This creates a critical knowledge gap.
Without integrating calculated, perceived, and prospective accessibility
within a unified analytical framework, there is a risk of misrepresenting
the realities of EV charging access and designing infrastructure that fails
to meet diverse user needs. To address this gap, this study proposes a
combined framework that brings together calculated, perceived, and
prospective accessibility to build a more holistic understanding of EV
charging accessibility.

3. Data and methods

Given the gaps in the existing literature where calculated accessi-
bility does not necessarily translate into actual user behaviour—and the
recognition that perceived accessibility plays a critical role in shaping
charging behaviour, it becomes essential to broaden the scope of anal-
ysis. In response to this need, He et al. (2022), drawing on Expectation
Confirmation Theory (ECT), introduced the concepts of perceived and
prospective accessibility to capture how subjective perceptions and ex-
pectations influence EV adoption intentions. However, no study to date
has combined calculated, perceived, and prospective accessibility into a
unified framework that reflects both the objective conditions of the
charging network and the subjective experiences and expectations that
influence users’ charging behaviour. This study proposed a combined
accessibility framework that integrates calculated, perceived, and pro-
spective accessibility, arguing that such a multi-dimensional approach is
necessary to capture a more holistic and user-centred understanding of
accessibility in the context of public EV charging infrastructure and
services.

As shown in Fig. 1, three dimensions of accessibility are evaluated:
calculated accessibility, perceived accessibility, and prospective acces-
sibility. Calculated accessibility measures the possibility of engaging
with various opportunities for interaction, typically using a proximity-
based approach. Perceived accessibility refers to the perceived poten-
tial to participate in spatially dispersed opportunities. It is influenced by
factors such as different transport modes, service quality, and individual
characteristics—including age, income, and vehicle ownership (Negm
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Fig. 1. A combined accessibility model for EV charging infrastructure and services.

et al., 2025). The final dimension, prospective accessibility, reflects the
anticipated potential to participate in spatially dispersed opportunities
in a future scenario. By combining them, accessibility to public EV
chargers can be understood not merely as a spatial outcome, but as a
cognitive and anticipatory process that influences behavioural choices
and adoption trajectories. Translating this framework into empirical
analysis, this study calculates three accessibility measures and employs
the Min-Max Normalisation method to rescale them into a common
value range. Specifically, following previous studies method (Zhang
et al., 2024), calculated accessibility is derived using the Gaussian 2-
Step Floating Catchment Area (2SFCA). The perceived accessibility
and prospective accessibility measures are extracted through factor
analysis applied to survey data. The detailed methods are elaborated
below.

51.70
51.65
51.60
51.55
51.50
51.45
51.40

51.35
Rapid chargers

© Slow chargers

51.30

51.70 4

3.1. Data

We illustrate our method with a case study of the Greater London’s
public EV charging network. This study mainly uses two datasets. The
first is the National Chargepoint Registry (NCR), published by the UK
Department for Transport (D, which provides detailed information on
public EV chargers, including their geographic location, charging speed,
and other technical features. In this work, we group slow chargers
(typically 3-7 kW AC) separately from fast and rapid chargers (above 7
kW AC, including >43 kW AC or > 50 kW DC), following UK practice
(Greater London Authority (GLA), 2019), as shown in Fig. 2a. The sec-
ond dataset was derived from a primary survey conducted online in July
2024. Stratified sampling was used to achieve probability-proportionate
representation by population size, ensuring the sample reflected Greater
London’s socio-demographic composition. This approach is particularly
valuable for EV charging behaviour research, as charging needs,

51.65
51.60 4
51.55 1
51.50 1
51.45 1
51.40 4
51.35 1

51.30 1

(@)

(b)

Fig. 2. (a) Spatial distribution of public EV chargers in London. (b) Geographical distribution of survey participants (heatmap used to indicate spatial density for
confidentiality purposes, where red indicates areas with a higher number of participants and blue indicates areas with fewer participants.). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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perceptions, and usage patterns can differ across demographic groups
and locations. Eligible participants were aged 18 or over, resided within
Greater London (verified via Prolific’s location filter), and reported both
EV driving experience and prior use of public EV chargers. The socio-
demographic variables collected were informed by a review of rele-
vant literature. The questionnaire comprised three sections: de-
mographic variables, travel behaviour, and perceived and prospective
accessibility. In total, 1088 valid responses were obtained, with partic-
ipant characteristics summarised in Table 1.

3.2. Measuring calculated accessibility

To better capture calculated accessibility by accounting for both
supply and demand factors, this study estimates calculated accessibility
(also referred to as spatial accessibility) to public EV chargers using the
Gaussian two-step floating catchment area (2SFCA) method.

In step one, the service area of charger location j is defined as the
area within 15 min walking zone (dp =1200 m; Park et al., 2022). Within
each charger service area, the process involves searching all LSOA
(neighbourhood) locations k that are within a distance threshold d, from
location j, and computes the charger’s weighted capacity-to-population
ratio, R; within the catchment areas as follows:

R — S£(S))

S L) — )
’ Zke{dk,gdc}Dkf(dki)
4, SeAC
f(8) = {48, S, € DC 2

where S; is the type of EV chargers and f(S;) indicates the capacity of
charger. Considering the varying charging capacity between Alternating
Current (AC) and Direct Current (DC) chargers, this study assumes that a

Table 1
Descriptive analysis of participants’ characteristics.

Proportion/Mean (SD)

Age (mean) 36.13 (11.13)
Gender (%)
Male 54.59
Female 44.30
Others 1.11
Education (%)
GCSE or equivalent 7.40
A-levels (high school) 17.41
Bachelor’s degree 49.45
Master’s degree and above 25.74
Employment (%)
Full time 78.67
Part time 11.76
Student 4.50
Unemployed 3.77
Retired 1.29
Income (%)
Less than £25,000 24.41
£25,000- £34,999 24.81
£35,000- £44,999 18.20
Above £45,000 36.58
Daily travel distance (%)
<2.5 km 17.10
2.5-5 km 39.43
5-10 km 29.87
More than 10 km 23.60
Daily travel duration (%)
<15 min 13.79
15-30 min 46.51
30-60 min 34.83
More than 60 min 4.87
Charging frequency (%)
Never 17.10
Once a week 53.95
More than once a week 28.95
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DC charger can serve 48 electric vehicles and an AC charger can serve
four electric vehicles (Li et al., 2022). Dy is the charging demand
(indicated by the number of registered drivers at location k); dy; is the
distance between EVCS location j and demand location k.

The influence of supply and demand diminishes through each step as
the distance increases, in accordance with the decay function f (dkj), as
mathematically represented in Eq. (3).

L ifdg<do 3)
0, if dig > do

In step two, for each neighbourhood population location k, search all
charger locations j that are within the catchment areas of population
location i, and aggregate the charger’s capacity-to-population ratios
(derived from step1), R;, discounted by distance decay function f(dj;).

A=D1 tayany R () ©)

where Ay is the accessibility values for neighbourhood location k. A
lower Ay value indicates limited accessibility for residents in that area,
while a higher value indicates better EVCS accessibility.

3.3. Measuring perceived and prospective accessibility

In our London questionnaire survey, perceived and prospective
accessibility were measured using a set of statements (see Table 2),
which were developed based on previous work (He et al., 2022; Renaud-
Blondeau et al., 2023). Respondents were asked to rate their level of
agreement with these statements regarding the perceived and prospec-
tive accessibility of public EV chargers. Each item was rated on a five-
point Likert scale ranging from 1 (strongly disagree) to 5 (strongly
agree). To assess the internal consistency of each construct, Cronbach’s
alpha was calculated. The results indicate good internal reliability, with
a Cronbach’s alpha of 0.88 for perceived accessibility and 0.79 for
prospective accessibility, both exceeding the commonly accepted
threshold of 0.70 (Nunnally, 1978). Given the satisfactory Cronbach’s
alpha values, the average score for each construct was calculated to
represent perceived and prospective accessibility in the analysis.
Therefore, a higher average score suggests a higher level of subjective
accessibility.

3.4. Clustering segmentation and drivers

Using the postcode information provided by participants in the
questionnaire, we first geocoded the addresses into geospatial

Table 2
Measurement of perceived accessibility and prospective accessibility (developed
based on He et al., 2022).

Perceived - There are enough public EV chargers available when I need
accessibility them.

- Whenever I want to use the EV chargers I can find it.

- Public EV chargers are located near places I frequently visit,
such as shopping centres, workplaces, and recreational
areas.

Public EV chargers are conveniently located for my daily

travel needs.

I believe the number of EV charging stations will

significantly increase in the next five years.

I expect the locations of EV charging stations to become

more convenient and accessible in the next five years.

- Ibelieve the reliability of EV charging stations will improve,
reducing the likelihood of encountering broken or non-
functional chargers.

Prospective
accessibility
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coordinates. By performing a spatial join between the calculated
accessibility values and participants’ locations, we integrated the survey
data with the calculated accessibility measures. In other words, for each
individual in the dataset, we obtained a unique combination of calcu-
lated, perceived, and prospective accessibility values, along with their
socio-demographic and travel behaviour information.

To ensure comparability among the three accessibility measures, we
applied Min-Max normalisation to rescale each dimension to a common
range from O to 1, where a higher value indicates greater accessibility.
Following this, a K-means cluster analysis was conducted to identify
distinct groups of respondents, minimising variance within clusters
while maximising variance between them. The optimal number of
clusters was determined using the average silhouette method
(Rousseeuw, 1987). To capture the granular differences between clus-
ters, we calculated the standard deviation (SD) across the means of the
three accessibility measures (perceived, prospective, and calculated), as
well as the range across the mean values. These indicators quantify the
(dis)agreement between the three accessibility dimensions within each
cluster. A standard deviation (SD) across the means below 0.1 and a
range across means less than 0.2 indicate high agreement among the
accessibility measures, whereas an SD exceeding 0.4 and a range greater
than 0.5 suggest low agreement among the measures (Martinez and
Bartholomew, 2017).

To investigate the key drivers of matches and mismatches among the

Accessibility
values
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three accessibility dimensions, as well as the differences between clus-
ters, we modelled cluster membership (derived from the k-means clus-
tering in the previous step) using four algorithms: Extreme Gradient
Boosting (XGBoost), Multilayer Perceptron (MLP), Random Forest, and
Support Vector Machine (SVM). The hyperparameters for each model
were tuned using a random search strategy, with the final configurations
presented in the Appendix. Model performance was assessed through
five-fold cross-validation, using both accuracy and Fl-score to identify
the best-performing model. The model incorporated socio-demographic,
built environment, travel behaviour, and attitudinal factors (Lukina
et al., 2021; van der Vlugt et al., 2019; Lattman et al., 2018), allowing
for a nuanced understanding of how these variables shape accessibility
outcomes.

To further understand how these features influence the model’s
predictions, Partial Dependence Plots (PDPs) were employed. The PDPs
illustrate how varying a single feature while holding others constant
affects the predicted probability of belonging to a specific cluster
(Friedman, 2001). This approach provides a nuanced understanding of
the relationships between individual features and cluster assignments,
offering insights into the factors driving differences in accessibility
profiles. By enabling a local-level interpretation of feature effects, the
analysis helps identify cluster-specific enablers and barriers to accessi-
bility, providing first-hand evidence to inform targeted policy in-
terventions aimed at reducing accessibility differences.

Calculated accessibility

Sum Value

05

N
@ 0.00-0.01
A ®0.01-0.03
©0.03-0.11
IskL]ﬂ 0.11-0.28
S mi 0.28-0.72
(a)
1.0 T g T Accessibility measure
I Perceived Acc
0.8 1 [ Prospective Acc
o B Calculated Acc
Q L
= 06
> o o} o
£ 0 8
2 04 =
173 - -
:
< 0.2

B

Cluster 1 Cluster 2

Cluster 3 Cluster 4

()

Fig. 3. (a) Spatial distribution of calculated accessibility to public EV chargers in London. (b) Scatter plot of calculated, perceived, and prospective accessibility
values within the combined accessibility framework. (c). Box plots of the three accessibility dimensions by cluster.
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4. Results and discussion
4.1. The combined accessibility

The calculated accessibility to public EV chargers in London, derived
using the Gaussian 2-Step Floating Catchment Area (2SFCA) method at
the neighbourhood level, is shown in Fig. 3a. The analysis reveals that
the city centre, particularly areas in the north-central part of London,
exhibits significantly higher accessibility compared to other regions. In
contrast, suburban areas generally display lower accessibility; however,
certain fragmented neighbourhoods within these areas stand out with
higher accessibility levels. These include key suburban town centres and
major transport hubs—such as Heathrow Airport—where, despite being
located on the western periphery of London, accessibility is notably high
due to the substantial provision of rapid EV chargers. Conversely, sub-
urban areas in the south-east exhibit the lowest accessibility to EV
chargers compared to other suburban regions in London.

Integrating calculated accessibility with the two subjective measur-
es—perceived and prospective accessibility—provides a more holistic
understanding of accessibility for EV charging infrastructure and ser-
vices. As shown in Fig. 3b, the 3D scatter plot visualises the relationship
between normalised calculated, perceived, and prospective accessibility
for each individual. Each point in the plot represents a respondent, with
the colour gradient indicating the sum of the three accessibility val-
ues—where lighter shades represent higher overall accessibility and
darker shades indicate lower overall accessibility. This visualization
allows for an intuitive exploration of the degree of alignment or diver-
gence among the three accessibility measures across the sample.

Compared to previous studies such as Lattman et al. (2018), which
typically address such discrepancies at an aggregate level, this study
applies K-means cluster analysis to the three normalised accessibility
measures and spatial locations, enabling the identification of more
granular patterns across individual users. The number of clusters was set
to four, as the average silhouette value peaked at 0.57 for this solution,
indicating an optimal clustering structure. As shown in Fig. 3¢, Cluster 1
is characterised by relatively high calculated accessibility, while the
other three clusters exhibit notably lower levels of calculated accessi-
bility. However, despite having similar calculated accessibility values,
Clusters 2, 3, and 4 differ significantly in terms of their subjective
accessibility dimensions. Detailed summary statistics are presented in
Table 3. These measures were used to assess the level of (dis)agreement
across the three dimensions of accessibility. Specifically, Distinct from
prior studies, Cluster 1 (Balanced realists) demonstrates the highest
level of agreement, with relatively close mean values across all three
measures and the lowest standard deviation across means (0.1132). In
contrast, the other three clusters broadly align with earlier findings of
disagreement, albeit with differing patterns. Cluster 2 (Cautious opti-
mists) and Cluster 4 (Confident adopters) share a similar pattern, both
characterised by low calculated accessibility and higher prospective
accessibility than perceived accessibility. Yet, the magnitude of differ-
ence is much greater in Cluster 4, where prospective accessibility
(0.8261) far exceeds both perceived (0.5224) and calculated (0.1214)

Table 3
Summary statistics of clusters.
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accessibility, resulting in the largest standard deviation across means
(0.3535). This reflects particularly strong confidence in future charging
provision, suggesting that, despite low calculated accessibility, in-
dividuals in Cluster 4 may be more inclined to adopt EVs compared to
those in Cluster 2. Cluster 3 (Present-biased overestimators) displays a
different pattern: although calculated accessibility is similarly low,
perceived accessibility (0.6302) is the highest among all clusters, while
prospective accessibility (0.4261) is the lowest. This indicates that
current provision is overestimated, but expectations for future accessi-
bility remain cautious.

These findings provide a more nuanced perspective than previous
studies, which have broadly acknowledged discrepancies between
calculated and perceived accessibility. Our results reveal a spectrum of
alignment: from moderate agreement (Cluster 1) to moderate
disagreement (Cluster 2), and strong disagreement (Clusters 3 and 4).
This highlights the importance of adopting a combined perspective
when evaluating accessibility, as users’ perceptions and expectations do
not always align with modelled measures. More importantly, these
findings suggest that the interactions between accessibility dimensions
are complex and cannot be generalised. Unlike previous studies that
broadly acknowledge a general mismatch between calculated and
perceived accessibility, this study explicitly accounts for the interplay of
three accessibility dimensions (calculated, perceived, and prospective)
and reveals that not all users experience disagreement. In fact, we
identified a cluster (Cluster 1) where users demonstrate agreement
across all three dimensions. For those clusters where disagreement does
exist, the degree and pattern of disagreement vary: some groups expe-
rience moderate mismatches, while others show stronger, more pro-
nounced discrepancies. This finer-grained perspective highlights the
necessity of adopting a combined accessibility framework that moves
beyond generalisations, enabling a more nuanced understanding of
accessibility experiences in the context of EV charging infrastructure.

4.2. Cluster drivers

Motivated by the need to uncover the key enablers of (dis)agree-
ment, a non-linear modelling approach was adopted to capture the
complex interactions between socio-demographic factors, the built
environment, travel behaviour, and attitudes. The Random Forest clas-
sifier achieved the best performance among the four algorithms, with an
overall accuracy of 0.781 and an F1-score of 0.761. This model enabled
the identification of the top eight features that contribute most to cluster
classification. Recognising the limitations of global feature importance
alone, we further conducted partial dependence analyses for these eight
features to explore their marginal effects on cluster membership
probabilities.

The overall partial dependence patterns reveal both shared trends
and cluster-specific differences. First, the partial dependence plots
(Fig. 4) reveal that clusters differ in their sensitivity to specific features,
as reflected in the steepness of gradients. Cluster 1 (Balanced realists) is
strongly influenced by built environment factors such as road density
and proximity to major roads, showing steeper gradients and marked

Clusters (size) Mean Perceived Accessibility Mean Prospective Accessibility Mean Calculated Accessibility SD across Range across
(SD) (SD) (SD) means means

Cluster 1 (n = 175) 0.4621 (0.2080) 0.5778 (0.2135) 0.6889 (0.1582) 0.1132 0.2265
Balanced realists

Cluster 2 (n = 325) 0.2178 (0.1385) 0.5274 (0.1758) 0.1272 (0.1271) 0.2098 0.4402
Cautious optimists

Cluster 3 (n = 308) 0.6302 (0.1428) 0.4261 (0.1512) 0.1316 (0.1032) 0.2507 0.4987
Present-biased
overestimators

Cluster 4 (n = 280) 0.5224 (0.1783) 0.8261 (0.1087) 0.1214 (0.1057) 0.3535 0.0157

Confident adopters
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Fig. 4. Partial dependence plots for the four clusters including the key features. The x-axis represents the normalised values of each feature, while the y-axis indicates

the predicted probability of cluster membership averaged across all individuals.

fluctuations in predicted probabilities as these variables change. Cluster
2 (Cautious optimists) also displays steep gradients for road density and
proximity to roads but, in addition, shows strong sensitivity to socio-
demographic and behavioural features such as age and daily travel
duration. Cluster 3 (Present-biased overestimators) is shaped by both
built environment and attitudinal features, particularly pro-
environmental attitudes, again reflected in noticeable fluctuations in
the partial dependence lines. In contrast, Cluster 4 (Confident adopters)
demonstrates relatively flat lines with minimal fluctuations across all
eight features, indicating weaker sensitivities and a more stable response
to individual factors.

These sensitivity patterns correspond closely to the accessibility
mismatches identified in the cluster analysis. For example, the strong
responsiveness of Cluster 1 (Balanced realists) to road density helps
explain its relatively balanced accessibility profile across perceived,
prospective, and calculated measures. The heightened role of pro-
environmental attitudes in Cluster 3 (Present-biased overestimators)
aligns with its profile of overestimated perceived accessibility but low
prospective accessibility. Similarly, the flat and less differentiated lines
for Cluster 4 (Confident adopters) reflect its confidence in future
charging provision, despite persistently low calculated accessibility.

In addition, behavioural features, particularly average daily travel
duration and distance, highlight a sharp contrast between Cluster 2
(Cautious optimists) and Cluster 3 (Present-biased overestimators). For
Cluster 2, longer travel durations and distances are associated with a
higher probability of cluster membership, aligning with its profile of low
perceived but relatively higher prospective accessibility. In contrast, for
Cluster 3, longer travel duration and distance reduce the likelihood of
cluster membership, indicating that this group is characterised by
shorter, more localised travel patterns. This behavioural evidence is
consistent with their accessibility profile: shorter travel distances help
explain why perceived accessibility is overestimated, while limited
willingness to travel further aligns with their low expectations of future
accessibility. These contrasting patterns suggest differentiated policy
priorities: improving regional connectivity and long-distance charging
options may help address the needs of Cluster 2, whereas
neighbourhood-based charging provision is critical for Cluster 3 to align
perceived and prospective accessibility and sustain confidence in future

EV adoption.
5. Conclusion

Since 2010, the UK government has emphasised the importance of
expanding the public electric vehicle (EV) charging network to support
the transition to electric mobility, particularly in urban areas such as
London. However, current literature has paid limited attention to
accessibility to EV charging infrastructure, especially in terms of inte-
grating subjective dimensions such as perceived accessibility or inves-
tigating the factors that contribute to alignment and mismatch between
modelled accessibility and user experience. This study proposes a
combined accessibility framework that integrates calculated, perceived,
and prospective accessibility measures to investigate accessibility to
public EV chargers in London. The study places particular emphasis on
capturing the nuanced and complex interactions between these three
dimensions, aiming to uncover the factors that drive (dis)agreement
across them.

This research yields two key findings. First, rather than generalising
the relationship between calculated accessibility and subjective acces-
sibility (perceived and prospective accessibility), this study explicitly
considers the delicate and complex interactions among them. Different
from previous work (Pot et al., 2023; Geurs and Van Wee, 2004) that
broadly finds a generic disagreement between calculated and perceived
accessibility, this study provides granular insights, revealing a spectrum
of alignment across four clusters: while three clusters exhibit moderate
to strong degrees of disagreement, one cluster demonstrates moderate
agreement across the three dimensions. This nuanced finding reinforces
the importance of incorporating different dimensions of accessibility
into EV infrastructure planning, as modelled accessibility alone does not
always reflect users’ perceptions, nor does it necessarily predict actual
charging behaviour.

Second, to understand the drivers of the (dis)agreement patterns, the
study identifies key factors that contribute to the observed discrep-
ancies. These include built environment characteristics such as road
density and proximity to major roads, as well as socio-demographic and
behavioural factors such as age, daily travel distance, and daily travel
duration. These findings align with previous research (Negm and El-
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Geneidy, 2024) but extend the literature by demonstrating how these
factors interact within a combined accessibility framework specific to
EV charging. Overall, the results highlight how built environment, de-
mographics, and travel behaviours shape accessibility and underscore
the need for targeted, cluster-specific policies to address these
differences.

This study represents the first attempt to propose a combined
framework for evaluating EV charging infrastructure and services. Un-
like previous work that has treated perceived and calculated accessi-
bility as separate constructs, this study integrates calculated, perceived,
and prospective accessibility to re-examine EV charging accessibility
from a user-centric perspective. This approach is based on the under-
standing that spatial behaviour is influenced not only by the provision of
infrastructure but also by the way individuals, shaped by their socio-
demographic characteristics, attitudes, and knowledge of the environ-
ment, perceive and interpret the available charging infrastructure. The
combined framework provides a practical tool for planners and practi-
tioners to assess EV charging provision more holistically. Specifically, it
highlights the importance of complementing infrastructure placement
with ongoing user feedback to identify potential gaps between provision
and user perception. This step is critical for informing future EV
charging deployment strategies, ensuring that infrastructure is not only
available, but also accessible in ways that reflect users’ needs and ex-
periences. For example, placing chargers in locations that are easy to
find, navigate, and use within the built environment can help bridge the
gap between technical provision and real-world usability, thereby
enhancing both the accessibility and overall effectiveness of EV charging
networks. This framework has strong potential to scale to other inter-
national cities and to be applied to shared transport services such as car
clubs. By leveraging emerging big data sources, it enables the integra-
tion of infrastructure planning with users’ perceptions and expectations,
offering a transferable approach that accounts for socio-demographic
and behavioural differences across urban contexts.

Appendix A. Appendix

Table 1
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Although this study provides valuable insights into EV charger
accessibility, we encourage future research to explore several directions
in greater depth. First, applying the combined accessibility framework
to other cities, regions, or national contexts would offer important
comparative perspectives. Such cross-contextual applications could
reveal how the interplay between infrastructure provision and subjec-
tive perceptions varies across spatial and cultural settings, offering
richer insights for both theory and practice. Second, further research
could investigate the potential of emerging technologies, such as natural
language processing (NLP) on user-generated content (e.g., social media
posts, reviews, and comments) or feedback collected via local authority
digital platforms (e.g., participatory planning apps or digital crowd-
sourcing tools). Integrating such techniques would enhance the granu-
larity and timeliness of user perspectives (Afzalan and Muller, 2018),
enabling a more dynamic and responsive approach to EV infrastructure
planning that better aligns with the needs and expectations of diverse
user groups. Additionally, comparing different methods for measuring
subjective accessibility offers a valuable direction for future research
(Van Wee, 2016), helping to assess the consistency and robustness of
results across approaches.
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Hyperparameters configurations and performance metrics of the four models.

Models Hyperparameter configurations Accuracy F1-score
XGBoost Number of trees = 500 0.762 0.743
Max depth = 9
Learning rate = 0.05
subsample: 0.9
MLP Hidden layers: [100, 50, 50, 50] 0.684 0.665
Activation: ReLu
Solver: Adam
Learning rate: 0.005
Max iterations: 1000
RF Number of trees = 300 0.781 0.761
Max depth = 12
Min samples split = 3
Max features = 9
SVM Kerel = RBF 0.597 0.590

Regularization parameter (C): 1.0

Gamma: scale

Data availability

Data will be made available on request.
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