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A B S T R A C T

Over the past decade, the accessibility of electric vehicle (EV) infrastructure has been predominantly measured 
from a spatial proximity-based perspective, often overlooking the user’s perspective. While calculated accessi
bility provides valuable insights, it does not necessarily translate into actual charging behaviour. Given the 
growing recognition that perceived accessibility plays a critical role in shaping user decisions, there is a clear 
need for tools that integrate both objective and subjective measures. To address this gap, this study proposes a 
combined accessibility framework that integrates calculated, perceived, and prospective accessibility to provide 
a holistic understanding of EV infrastructure accessibility. Using London as a case study, this research adopts a 
mixed-methods approach and introduces a typology of accessibility profiles. The study reveals two key findings. 
First, the relationship between calculated and subjective accessibility is nuanced and complex, with a spectrum 
of alignment identified across four clusters—ranging from moderate agreement to strong disagreement. Second, 
eight key features related to the built environment, demographics, and travel behaviour are identified as the 
primary drivers of these patterns. These findings reinforce the importance of incorporating multiple dimensions 
of accessibility into EV infrastructure planning. By acknowledging the gap between modelled accessibility and 
user experience, this approach offers a valuable tool for designing more user-centred and responsive EV charging 
networks.

1. Introduction

The UK government has set ambitious targets to achieve net-zero 
emissions, including a ban on the sale of new petrol and diesel cars by 
2035. Expanding the public electric vehicle (EV) charging network is a 
critical element of this strategy (HM Government, 2022), particularly in 
urban areas such as London. However, despite these policy efforts, the 
uptake of EVs remains slower than anticipated, with the majority of car 
sales still dominated by conventional vehicles. This highlights the 
pressing need for more targeted approaches to encourage the transition 
to electric mobility and accelerate progress towards sustainable trans
port goals. High accessibility to EV charging infrastructure has been 
shown to significantly influence public intentions to adopt EVs (Coffman 
et al., 2017; Canepa et al., 2019), while also generating important 
environmental benefits (Liang et al., 2023). Therefore, understanding 
and improving accessibility to public EV charging infrastructure is 
critical not only for supporting the widespread adoption of EVs, but also 
for encouraging continued use and preventing users from switching back 

to conventional vehicles, ultimately helping to achieve the UK’s decar
bonisation targets.

While accessibility to EV charging infrastructure has been widely 
studied over the past decade—driven by the rapid growth of the EV 
industry and increasing rates of adoption—most existing research (Hsu 
and Fingerman, 2021; Falchetta and Noussan, 2021; Roy and Law, 
2022) has focused on calculated accessibility. This typically involves 
spatial proximity-based measures such as charger density, distance, and 
travel time. Recent advancements have extended this work by incor
porating temporal perspectives and spatial subdivisions by policy 
context. For instance, Park et al. (2022) examined the hourly variation 
of accessibility to public EV charging networks in Seoul, Korea, ac
counting for fluctuations in charging demand and supply. Similarly, 
Zhang et al. (2024) analysed differences in accessibility across London’s 
traffic emission zones, highlighting the importance of spatial policy 
subdivisions.

However, existing studies on public EV charging accessibility have 
three key limitations. First, while research on calculated 
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accessibility—typically based on objective measures such as distance, 
density, and travel time—has advanced significantly, perceived acces
sibility has received limited attention in this context. Perceived acces
sibility, defined as an individual’s subjective sense of how easily they 
can reach their desired destination (Negm et al., 2025; Pot et al., 2021), 
plays a critical role in shaping charging behaviour (Pot et al., 2023; 
Negm et al., 2025). Yet, despite widespread recognition that calculated 
accessibility does not always reflect actual user behaviour, most studies 
continue to prioritise proximity-based metrics. Second, while some 
research has examined the mismatch between perceived and calculated 
accessibility, or the factors influencing perceived accessibility (e.g., 
Lättman et al., 2016), studies have yet to move beyond treating these 
dimensions in isolation. This limits our understanding of how different 
accessibility measures interact to shape charging decisions, and con
strains the potential for more responsive, user-centred EV infrastructure 
planning. Third, prior research has tended to generalise the relationship 
between calculated and perceived accessibility, often using broad 
regression models (Thronicker and Klinger, 2019; Olsson et al., 2021) or 
structural equation modelling (Zhu et al., 2024; Chau et al., 2024). 
These approaches typically provide global-level insights but risk over
simplifying the nuanced and complex interactions between individual 
users, the built environment, and travel and charging behaviours. By 
broadly categorising accessibility as either aligned or mismatched, 
existing work may obscure the diversity of user experiences and limit its 
relevance for practical planning applications.

To address these limitations, this study develops a combined acces
sibility framework that integrates calculated, perceived, and prospective 
accessibility to provide a more comprehensive understanding of public 
EV charging infrastructure in London. This study makes two major 
contributions. First, it proposes a novel analytical framework that moves 
beyond proximity-based measures by incorporating subjective user 
perceptions and expectations into accessibility analysis. This integrated 
approach enables the capture of nuanced and complex interactions 
across different dimensions of accessibility, offering a more user-centred 
perspective on EV infrastructure. Second, the study applies clustering 
methods to segment users into distinct accessibility profiles and employs 
partial dependence analysis to further explore the relationships between 
socio-demographic, built environment, and behavioural factors and 
cluster membership. This combined approach identifies patterns of (mis) 
alignment between calculated and subjective accessibility across user 
groups, revealing where accessibility gaps exist and highlighting the key 
factors that contribute to these differences. These insights provide 
actionable evidence to inform more responsive and user-centred EV 
infrastructure planning and deployment strategies.

2. Literature review

2.1. Accessibility in public EV charging infrastructure

Research on EV charging infrastructure and services has expanded 
rapidly over the past decade, covering a diverse range of topics including 
charger placement and accessibility (Lam et al., 2014; Kłos and Sier
piński, 2023), charging demand and user behaviour (Wang et al., 2023; 
Jiang et al., 2024; Jonas and Macht, 2024), infrastructure resilience 
under uncertainty (Ahmad et al., 2023; Raman et al., 2022), and user 
experience studies (Fabianek and Madlener, 2023; Ha et al., 2021). 
Among these, accessibility studies have received particular attention, 
given the critical role that accessibility to public EV charging infra
structure plays in both sustainable transport planning and decarbon
isation efforts. A well-connected and highly accessible charging network 
has been shown to significantly encourage the shift from conventional 
vehicles to electric vehicles, thereby accelerating EV adoption and 
supporting sustainable mobility goals. Furthermore, it is inherently 
linked to principles of inclusivity and transport equity, ensuring that 
individuals across different social, economic, and spatial cohorts have 
equitable opportunities to access charging services.

Hansen (1959) first brought the concept of accessibility to wider 
attention in his seminal work, defining it as “the potential of opportu
nities for interaction”—that is, the ease with which interactions can take 
place. This sparked the emergence of accessibility interpretations and 
measurement approaches. Numerous debates about the definition of 
accessibility (Handy and Niemeier, 1997; Geurs and Van Wee, 2004; 
Geurs et al., 2012) followed. Most developments and discussions around 
accessibility have focused on advancements in its measurement, such as 
proximity-based measures and buffer analysis (Roy and Law, 2022), the 
two-step floating catchment area method (Luo and Wang, 2003) and 
space-time measures (Weber, 2003).

In the context of EV infrastructure, accessibility can be understood as 
the ease of get access to charging services. On this conceptual basis, 
Zhang et al. (2024) summarise that existing accessibility studies on EV 
charging infrastructure and services can broadly be categorised into two 
types based on spatial scale: regional and neighbourhood-level studies, 
each employing different methods and focusing on distinct research 
interests. At the regional level, the primary focus is not on identifying 
specific areas but rather on understanding general spatial patterns and 
landscapes. Accordingly, measurement approaches tend to rely on 
relatively simple and computationally efficient indicators, such as the 
number of charging points per kilometre (Pemberton et al., 2021), 
charging point density (Falchetta and Noussan, 2021), or average travel 
time to the nearest charging station (Carlton and Sultana, 2024). Un
surprisingly, studies consistently reveal pronounced spatial disparities 
in accessibility. For example, significant gaps have been identified be
tween Northern and Southern Europe, while in the United States, even 
starker disparities emerge between census tracts within and outside 
designated charging corridors. These findings raise important equity 
concerns, as they highlight potential misalignments between the dis
tribution of charging infrastructure and governmental equity objectives.

Compared with the relatively limited number of regional-level 
studies, most research on EV charging accessibility has been conduct
ed at the neighbourhood scale, particularly in China and the United 
States (e.g., Choi et al., 2025; Yu et al., 2025), with only a few exceptions 
such as studies from India (Jha et al., 2025).This focus is largely 
attributed to the rapid development of EV infrastructure in these 
countries and the availability of granular data. Similar to regional-level 
studies, some neighbourhood-level research has examined the spatial 
disparities in accessibility, seeking to identify whether spatial hetero
geneity exists. For example, Li and his colleagues (Li et al., 2022) 
investigated ten Chinese cities and found that cities like Shanghai 
exhibited severe spatial inequities in charging infrastructure provision, 
highlighting the need for targeted interventions. Beyond spatial 
disparity, many neighbourhood-level studies have examined how spe
cific population groups may face inequities in access to charging infra
structure. For instance, previous work has identified that low-income 
households (Roy and Law, 2022; Mehditabrizi et al., 2025), Black and 
Hispanic majority neighbourhoods (Hsu and Fingerman, 2021), pop
ulations with lower education levels (Malabanan et al., 2025; Peng et al., 
2024), and specific family compositions (Roy and Law, 2022) are more 
likely to experience accessibility challenges compared to other groups. 
The recent EV Charger vertical equity studies such as.

Recent advancements in EV charging accessibility studies have 
focused on two key areas: embedding temporal perspectives and spatial 
subdivision by policy context. Recognising that accessibility is shaped by 
people, transport systems, and land use patterns, and that it varies over 
time (Geurs and Van Wee, 2004), recent research has begun to examine 
how accessibility to EV charging infrastructure and services interacts 
with temporal demand patterns. A few pioneering studies have 
attempted to measure space-time accessibility to EV charging stations, 
accounting for fluctuations in service availability and dynamic charging 
demand. However, the limited availability of temporal service data has 
constrained this line of research. Notable examples include Park et al. 
(2022), who identified five distinct temporal clusters of accessibility in 
Seoul, Korea, using hourly spatial accessibility measures over a 24-h 
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period, and Zhou et al. (2021), who examined significant regional var
iations in accessibility across Nanjing, China, with peripheral suburbs 
showing the most pronounced fluctuations. In addition to incorporating 
temporal perspectives, some recent studies have sought to capture 
accessibility variations by subdividing urban space based on transport 
and energy policy regulations, acknowledging that policy context 
significantly shapes the distribution of charging infrastructure. For 
example, Zhang et al. (2024) examined neighbourhood-level accessi
bility in three different emission zones in London, revealing granular 
differences in accessibility and highlighting how vulnerable populations 
are differentially affected across regulatory contexts.

2.2. Beyond calculated accessibility

However, while research on EV charging accessibility has advanced 
considerably, it remains predominantly focused on proximity-based 
measures or referred to as calculated accessibility. This approach 
grounded in objective spatial analysis relies on methods such as 2-Step 
Floating Catchment Area analysis (Luo and Qi, 2009) relying on the 
distance to the nearest chargers, charger provision and speed, density 
etc. However, this perspective assumes that accessibility directly trans
lates into behaviour, overlooking the subjective and cognitive processes 
through which individuals perceive and interact with their environment 
(Pot et al., 2021). As argues in theory of Cognitive behaviour theory 
(Golledge, 1997), spatial behaviour is shaped by both the objective 
properties of the environment and the individual’s cognitive percep
tions, attitudes, and knowledge of that environment. For instance, users 
may have limited awareness of public charging locations (Noel et al., 
2020), experience range anxiety due to insufficient knowledge, or 
perceive financial constraints (Varghese et al., 2024). Such cognitive 
and perceptual barriers can hinder the actual adoption of EV charging, 
meaning that even individuals living in areas with high spatial accessi
bility may not make use of the available infrastructure. Therefore, 
calculated accessibility discussed above does not necessarily equate to 
actual charging behaviour, as it fails to capture how different individual 
interpret and process to their surroundings. As highlighted by Mala
banan and his colleagues (Malabanan et al., 2025), both actual and 
perceived difficulties in accessing EV charging services can lead to 
charging disadvantages, thereby constraining individuals’ full partici
pation in social activities and discouraging EV adoption.

Perceived accessibility refers to an individual’s subjective sense of 
how easily they can reach their desired destination using various modes 
of transport (Negm et al., 2025; Pot et al., 2021). The concept was first 
introduced by Morris et al. (1979), marking a departure from earlier 
approaches that focused solely on objective, spatial measures of acces
sibility. Compared to the substantial advancements in calculated 
accessibility, the development of perceived accessibility has been rela
tively limited, with much of the discourse remaining at the level of 
theoretical exploration. This is partly due to the challenges of quanti
fying subjective perceptions, as much of the available evidence remains 
anecdotal (Curl et al., 2011). The significance of distinguishing between 
calculated and perceived accessibility lies in the argument that while 
perceived accessibility may be derived from objective measures, it is 
ultimately perceived accessibility that serves as the true determinant of 
behaviour (Negm et al., 2025).

To the best of our knowledge, few studies have specifically examined 
perceived accessibility in the context of EV charging infrastructure, with 
two exceptions. These studies have explored how perceived accessibility 
influences non-EV owners’ intentions to adopt EVs, as demonstrated in 
research from Hong Kong and China (He et al., 2022) and Montreal, 
Canada (Renaud-Blondeau et al., 2023). These findings suggest that for 
non-EV owners, low perceived accessibility to public charging infra
structure likely acts as a barrier to EV adoption. For current EV owners, 
although direct evidence is lacking, it is plausible that perceived 
accessibility influences a range of behaviours—including the choice of 
charging locations, which EV to use, charging frequency, and overall 

ease and satisfaction with the charging network. This assumption is 
supported by studies on conventional transport modes (e.g., buses and 
underground systems), where perceived accessibility has been shown to 
play a significant role in shaping broader transport planning objectives, 
including social inclusion (Lättman et al., 2016), ease of travel (De Vos 
et al., 2025), and sustainable travel behaviour (Negm and El-Geneidy, 
2024).

Building on this distinction between calculated and perceived 
accessibility, recent work has proposed an additional dimension, namely 
prospective accessibility. He et al. (2022) extended the conventional 
dichotomy by introducing this concept to capture expectations about 
future accessibility. Drawing on Expectation Confirmation Theory 
(Oliver, 2014), which emphasises that adoption decisions are shaped by 
the alignment between prior expectations and subsequent experiences, 
prospective accessibility highlights how mobility choices such as EV 
adoption depend not only on current charging provision but also on 
anticipated developments in the charging network. In this sense, pro
spective accessibility reflects individuals’ confidence that infrastructure 
will expand adequately to meet future needs. This consideration is 
particularly important for potential adopters who must make decisions 
under conditions of infrastructural uncertainty. As such, prospective 
accessibility should be regarded as an integral component of accessi
bility, especially during the current transitional phase from conven
tional vehicles to EVs, when both the pace and geography of charging 
infrastructure development remain uncertain.

In summary, while the literature provides valuable insights into the 
spatial and temporal dimensions of calculated accessibility for EV 
charging infrastructure, it remains fragmented. Existing studies tend to 
focus on isolated aspects of accessibility, overlooking how different di
mensions interact to shape user behaviour and, ultimately, the effec
tiveness of EV charging networks. This creates a critical knowledge gap. 
Without integrating calculated, perceived, and prospective accessibility 
within a unified analytical framework, there is a risk of misrepresenting 
the realities of EV charging access and designing infrastructure that fails 
to meet diverse user needs. To address this gap, this study proposes a 
combined framework that brings together calculated, perceived, and 
prospective accessibility to build a more holistic understanding of EV 
charging accessibility.

3. Data and methods

Given the gaps in the existing literature where calculated accessi
bility does not necessarily translate into actual user behaviour—and the 
recognition that perceived accessibility plays a critical role in shaping 
charging behaviour, it becomes essential to broaden the scope of anal
ysis. In response to this need, He et al. (2022), drawing on Expectation 
Confirmation Theory (ECT), introduced the concepts of perceived and 
prospective accessibility to capture how subjective perceptions and ex
pectations influence EV adoption intentions. However, no study to date 
has combined calculated, perceived, and prospective accessibility into a 
unified framework that reflects both the objective conditions of the 
charging network and the subjective experiences and expectations that 
influence users’ charging behaviour. This study proposed a combined 
accessibility framework that integrates calculated, perceived, and pro
spective accessibility, arguing that such a multi-dimensional approach is 
necessary to capture a more holistic and user-centred understanding of 
accessibility in the context of public EV charging infrastructure and 
services.

As shown in Fig. 1, three dimensions of accessibility are evaluated: 
calculated accessibility, perceived accessibility, and prospective acces
sibility. Calculated accessibility measures the possibility of engaging 
with various opportunities for interaction, typically using a proximity- 
based approach. Perceived accessibility refers to the perceived poten
tial to participate in spatially dispersed opportunities. It is influenced by 
factors such as different transport modes, service quality, and individual 
characteristics—including age, income, and vehicle ownership (Negm 
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et al., 2025). The final dimension, prospective accessibility, reflects the 
anticipated potential to participate in spatially dispersed opportunities 
in a future scenario. By combining them, accessibility to public EV 
chargers can be understood not merely as a spatial outcome, but as a 
cognitive and anticipatory process that influences behavioural choices 
and adoption trajectories. Translating this framework into empirical 
analysis, this study calculates three accessibility measures and employs 
the Min-Max Normalisation method to rescale them into a common 
value range. Specifically, following previous studies method (Zhang 
et al., 2024), calculated accessibility is derived using the Gaussian 2- 
Step Floating Catchment Area (2SFCA). The perceived accessibility 
and prospective accessibility measures are extracted through factor 
analysis applied to survey data. The detailed methods are elaborated 
below.

3.1. Data

We illustrate our method with a case study of the Greater London’s 
public EV charging network. This study mainly uses two datasets. The 
first is the National Chargepoint Registry (NCR), published by the UK 
Department for Transport (D, which provides detailed information on 
public EV chargers, including their geographic location, charging speed, 
and other technical features. In this work, we group slow chargers 
(typically 3–7 kW AC) separately from fast and rapid chargers (above 7 
kW AC, including ≥43 kW AC or ≥ 50 kW DC), following UK practice 
(Greater London Authority (GLA), 2019), as shown in Fig. 2a. The sec
ond dataset was derived from a primary survey conducted online in July 
2024. Stratified sampling was used to achieve probability-proportionate 
representation by population size, ensuring the sample reflected Greater 
London’s socio-demographic composition. This approach is particularly 
valuable for EV charging behaviour research, as charging needs, 

Fig. 1. A combined accessibility model for EV charging infrastructure and services.

Fig. 2. (a) Spatial distribution of public EV chargers in London. (b) Geographical distribution of survey participants (heatmap used to indicate spatial density for 
confidentiality purposes, where red indicates areas with a higher number of participants and blue indicates areas with fewer participants.). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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perceptions, and usage patterns can differ across demographic groups 
and locations. Eligible participants were aged 18 or over, resided within 
Greater London (verified via Prolific’s location filter), and reported both 
EV driving experience and prior use of public EV chargers. The socio- 
demographic variables collected were informed by a review of rele
vant literature. The questionnaire comprised three sections: de
mographic variables, travel behaviour, and perceived and prospective 
accessibility. In total, 1088 valid responses were obtained, with partic
ipant characteristics summarised in Table 1.

3.2. Measuring calculated accessibility

To better capture calculated accessibility by accounting for both 
supply and demand factors, this study estimates calculated accessibility 
(also referred to as spatial accessibility) to public EV chargers using the 
Gaussian two-step floating catchment area (2SFCA) method.

In step one, the service area of charger location j is defined as the 
area within 15 min walking zone (d0 =1200 m; Park et al., 2022). Within 
each charger service area, the process involves searching all LSOA 
(neighbourhood) locations k that are within a distance threshold d0 from 
location j, and computes the charger’s weighted capacity-to-population 
ratio, Rj within the catchment areas as follows: 

Rj =
Sjf

(
Sj
)

∑
k∈{dkj≤d0}Dk f

(
dkj

) (1) 

f
(
Sj
)
=

{
4, Sj ∈ AC
48, Sj ∈ DC (2) 

where Sj is the type of EV chargers and f
(
Sj
)

indicates the capacity of 
charger. Considering the varying charging capacity between Alternating 
Current (AC) and Direct Current (DC) chargers, this study assumes that a 

DC charger can serve 48 electric vehicles and an AC charger can serve 
four electric vehicles (Li et al., 2022). Dk is the charging demand 
(indicated by the number of registered drivers at location k); dkj is the 
distance between EVCS location j and demand location k.

The influence of supply and demand diminishes through each step as 
the distance increases, in accordance with the decay function f

(
dkj

)
, as 

mathematically represented in Eq. (3). 

f
(
dkj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e
−

1
2

(
dkj
d0

)2

− e−
1
2

1 − e−
1
2

, if dkj ≤ d0

0, if dkj > d0

(3) 

In step two, for each neighbourhood population location k, search all 
charger locations j that are within the catchment areas of population 
location i, and aggregate the charger’s capacity-to-population ratios 
(derived from step1), Rj, discounted by distance decay function f

(
dkj

)
. 

Ak =
∑

j∈{dkj≤d0}
Rj f

(
dkj

)
(4) 

where Ak is the accessibility values for neighbourhood location k. A 
lower Ak value indicates limited accessibility for residents in that area, 
while a higher value indicates better EVCS accessibility.

3.3. Measuring perceived and prospective accessibility

In our London questionnaire survey, perceived and prospective 
accessibility were measured using a set of statements (see Table 2), 
which were developed based on previous work (He et al., 2022; Renaud- 
Blondeau et al., 2023). Respondents were asked to rate their level of 
agreement with these statements regarding the perceived and prospec
tive accessibility of public EV chargers. Each item was rated on a five- 
point Likert scale ranging from 1 (strongly disagree) to 5 (strongly 
agree). To assess the internal consistency of each construct, Cronbach’s 
alpha was calculated. The results indicate good internal reliability, with 
a Cronbach’s alpha of 0.88 for perceived accessibility and 0.79 for 
prospective accessibility, both exceeding the commonly accepted 
threshold of 0.70 (Nunnally, 1978). Given the satisfactory Cronbach’s 
alpha values, the average score for each construct was calculated to 
represent perceived and prospective accessibility in the analysis. 
Therefore, a higher average score suggests a higher level of subjective 
accessibility.

3.4. Clustering segmentation and drivers

Using the postcode information provided by participants in the 
questionnaire, we first geocoded the addresses into geospatial 

Table 1 
Descriptive analysis of participants’ characteristics.

Proportion/Mean (SD)

Age (mean) 36.13 (11.13)
Gender (%)

Male 54.59
Female 44.30
Others 1.11

Education (%)
GCSE or equivalent 7.40
A-levels (high school) 17.41
Bachelor’s degree 49.45
Master’s degree and above 25.74

Employment (%)
Full time 78.67
Part time 11.76
Student 4.50
Unemployed 3.77
Retired 1.29

Income (%)
Less than £25,000 24.41
£25,000- £34,999 24.81
£35,000- £44,999 18.20
Above £45,000 36.58

Daily travel distance (%)
<2.5 km 17.10
2.5–5 km 39.43
5–10 km 29.87
More than 10 km 23.60

Daily travel duration (%)
≤15 min 13.79
15–30 min 46.51
30–60 min 34.83
More than 60 min 4.87

Charging frequency (%)
Never 17.10
Once a week 53.95
More than once a week 28.95

Table 2 
Measurement of perceived accessibility and prospective accessibility (developed 
based on He et al., 2022).

Perceived 
accessibility

- There are enough public EV chargers available when I need 
them.

- Whenever I want to use the EV chargers I can find it.
- Public EV chargers are located near places I frequently visit, 

such as shopping centres, workplaces, and recreational 
areas.

- Public EV chargers are conveniently located for my daily 
travel needs.

Prospective 
accessibility

- I believe the number of EV charging stations will 
significantly increase in the next five years.

- I expect the locations of EV charging stations to become 
more convenient and accessible in the next five years.

- I believe the reliability of EV charging stations will improve, 
reducing the likelihood of encountering broken or non- 
functional chargers.
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coordinates. By performing a spatial join between the calculated 
accessibility values and participants’ locations, we integrated the survey 
data with the calculated accessibility measures. In other words, for each 
individual in the dataset, we obtained a unique combination of calcu
lated, perceived, and prospective accessibility values, along with their 
socio-demographic and travel behaviour information.

To ensure comparability among the three accessibility measures, we 
applied Min-Max normalisation to rescale each dimension to a common 
range from 0 to 1, where a higher value indicates greater accessibility. 
Following this, a K-means cluster analysis was conducted to identify 
distinct groups of respondents, minimising variance within clusters 
while maximising variance between them. The optimal number of 
clusters was determined using the average silhouette method 
(Rousseeuw, 1987). To capture the granular differences between clus
ters, we calculated the standard deviation (SD) across the means of the 
three accessibility measures (perceived, prospective, and calculated), as 
well as the range across the mean values. These indicators quantify the 
(dis)agreement between the three accessibility dimensions within each 
cluster. A standard deviation (SD) across the means below 0.1 and a 
range across means less than 0.2 indicate high agreement among the 
accessibility measures, whereas an SD exceeding 0.4 and a range greater 
than 0.5 suggest low agreement among the measures (Martinez and 
Bartholomew, 2017).

To investigate the key drivers of matches and mismatches among the 

three accessibility dimensions, as well as the differences between clus
ters, we modelled cluster membership (derived from the k-means clus
tering in the previous step) using four algorithms: Extreme Gradient 
Boosting (XGBoost), Multilayer Perceptron (MLP), Random Forest, and 
Support Vector Machine (SVM). The hyperparameters for each model 
were tuned using a random search strategy, with the final configurations 
presented in the Appendix. Model performance was assessed through 
five-fold cross-validation, using both accuracy and F1-score to identify 
the best-performing model. The model incorporated socio-demographic, 
built environment, travel behaviour, and attitudinal factors (Lukina 
et al., 2021; van der Vlugt et al., 2019; Lättman et al., 2018), allowing 
for a nuanced understanding of how these variables shape accessibility 
outcomes.

To further understand how these features influence the model’s 
predictions, Partial Dependence Plots (PDPs) were employed. The PDPs 
illustrate how varying a single feature while holding others constant 
affects the predicted probability of belonging to a specific cluster 
(Friedman, 2001). This approach provides a nuanced understanding of 
the relationships between individual features and cluster assignments, 
offering insights into the factors driving differences in accessibility 
profiles. By enabling a local-level interpretation of feature effects, the 
analysis helps identify cluster-specific enablers and barriers to accessi
bility, providing first-hand evidence to inform targeted policy in
terventions aimed at reducing accessibility differences.

Fig. 3. (a) Spatial distribution of calculated accessibility to public EV chargers in London. (b) Scatter plot of calculated, perceived, and prospective accessibility 
values within the combined accessibility framework. (c). Box plots of the three accessibility dimensions by cluster.
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4. Results and discussion

4.1. The combined accessibility

The calculated accessibility to public EV chargers in London, derived 
using the Gaussian 2-Step Floating Catchment Area (2SFCA) method at 
the neighbourhood level, is shown in Fig. 3a. The analysis reveals that 
the city centre, particularly areas in the north-central part of London, 
exhibits significantly higher accessibility compared to other regions. In 
contrast, suburban areas generally display lower accessibility; however, 
certain fragmented neighbourhoods within these areas stand out with 
higher accessibility levels. These include key suburban town centres and 
major transport hubs—such as Heathrow Airport—where, despite being 
located on the western periphery of London, accessibility is notably high 
due to the substantial provision of rapid EV chargers. Conversely, sub
urban areas in the south-east exhibit the lowest accessibility to EV 
chargers compared to other suburban regions in London.

Integrating calculated accessibility with the two subjective measur
es—perceived and prospective accessibility—provides a more holistic 
understanding of accessibility for EV charging infrastructure and ser
vices. As shown in Fig. 3b, the 3D scatter plot visualises the relationship 
between normalised calculated, perceived, and prospective accessibility 
for each individual. Each point in the plot represents a respondent, with 
the colour gradient indicating the sum of the three accessibility val
ues—where lighter shades represent higher overall accessibility and 
darker shades indicate lower overall accessibility. This visualization 
allows for an intuitive exploration of the degree of alignment or diver
gence among the three accessibility measures across the sample.

Compared to previous studies such as Lättman et al. (2018), which 
typically address such discrepancies at an aggregate level, this study 
applies K-means cluster analysis to the three normalised accessibility 
measures and spatial locations, enabling the identification of more 
granular patterns across individual users. The number of clusters was set 
to four, as the average silhouette value peaked at 0.57 for this solution, 
indicating an optimal clustering structure. As shown in Fig. 3c, Cluster 1 
is characterised by relatively high calculated accessibility, while the 
other three clusters exhibit notably lower levels of calculated accessi
bility. However, despite having similar calculated accessibility values, 
Clusters 2, 3, and 4 differ significantly in terms of their subjective 
accessibility dimensions. Detailed summary statistics are presented in 
Table 3. These measures were used to assess the level of (dis)agreement 
across the three dimensions of accessibility. Specifically, Distinct from 
prior studies, Cluster 1 (Balanced realists) demonstrates the highest 
level of agreement, with relatively close mean values across all three 
measures and the lowest standard deviation across means (0.1132). In 
contrast, the other three clusters broadly align with earlier findings of 
disagreement, albeit with differing patterns. Cluster 2 (Cautious opti
mists) and Cluster 4 (Confident adopters) share a similar pattern, both 
characterised by low calculated accessibility and higher prospective 
accessibility than perceived accessibility. Yet, the magnitude of differ
ence is much greater in Cluster 4, where prospective accessibility 
(0.8261) far exceeds both perceived (0.5224) and calculated (0.1214) 

accessibility, resulting in the largest standard deviation across means 
(0.3535). This reflects particularly strong confidence in future charging 
provision, suggesting that, despite low calculated accessibility, in
dividuals in Cluster 4 may be more inclined to adopt EVs compared to 
those in Cluster 2. Cluster 3 (Present-biased overestimators) displays a 
different pattern: although calculated accessibility is similarly low, 
perceived accessibility (0.6302) is the highest among all clusters, while 
prospective accessibility (0.4261) is the lowest. This indicates that 
current provision is overestimated, but expectations for future accessi
bility remain cautious.

These findings provide a more nuanced perspective than previous 
studies, which have broadly acknowledged discrepancies between 
calculated and perceived accessibility. Our results reveal a spectrum of 
alignment: from moderate agreement (Cluster 1) to moderate 
disagreement (Cluster 2), and strong disagreement (Clusters 3 and 4). 
This highlights the importance of adopting a combined perspective 
when evaluating accessibility, as users’ perceptions and expectations do 
not always align with modelled measures. More importantly, these 
findings suggest that the interactions between accessibility dimensions 
are complex and cannot be generalised. Unlike previous studies that 
broadly acknowledge a general mismatch between calculated and 
perceived accessibility, this study explicitly accounts for the interplay of 
three accessibility dimensions (calculated, perceived, and prospective) 
and reveals that not all users experience disagreement. In fact, we 
identified a cluster (Cluster 1) where users demonstrate agreement 
across all three dimensions. For those clusters where disagreement does 
exist, the degree and pattern of disagreement vary: some groups expe
rience moderate mismatches, while others show stronger, more pro
nounced discrepancies. This finer-grained perspective highlights the 
necessity of adopting a combined accessibility framework that moves 
beyond generalisations, enabling a more nuanced understanding of 
accessibility experiences in the context of EV charging infrastructure.

4.2. Cluster drivers

Motivated by the need to uncover the key enablers of (dis)agree
ment, a non-linear modelling approach was adopted to capture the 
complex interactions between socio-demographic factors, the built 
environment, travel behaviour, and attitudes. The Random Forest clas
sifier achieved the best performance among the four algorithms, with an 
overall accuracy of 0.781 and an F1-score of 0.761. This model enabled 
the identification of the top eight features that contribute most to cluster 
classification. Recognising the limitations of global feature importance 
alone, we further conducted partial dependence analyses for these eight 
features to explore their marginal effects on cluster membership 
probabilities.

The overall partial dependence patterns reveal both shared trends 
and cluster-specific differences. First, the partial dependence plots 
(Fig. 4) reveal that clusters differ in their sensitivity to specific features, 
as reflected in the steepness of gradients. Cluster 1 (Balanced realists) is 
strongly influenced by built environment factors such as road density 
and proximity to major roads, showing steeper gradients and marked 

Table 3 
Summary statistics of clusters.

Clusters (size) Mean Perceived Accessibility 
(SD)

Mean Prospective Accessibility 
(SD)

Mean Calculated Accessibility 
(SD)

SD across 
means

Range across 
means

Cluster 1 (n = 175) 
Balanced realists

0.4621 (0.2080) 0.5778 (0.2135) 0.6889 (0.1582) 0.1132 0.2265

Cluster 2 (n = 325) 
Cautious optimists

0.2178 (0.1385) 0.5274 (0.1758) 0.1272 (0.1271) 0.2098 0.4402

Cluster 3 (n = 308) 
Present-biased 
overestimators

0.6302 (0.1428) 0.4261 (0.1512) 0.1316 (0.1032) 0.2507 0.4987

Cluster 4 (n = 280) 
Confident adopters

0.5224 (0.1783) 0.8261 (0.1087) 0.1214 (0.1057) 0.3535 0.0157
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fluctuations in predicted probabilities as these variables change. Cluster 
2 (Cautious optimists) also displays steep gradients for road density and 
proximity to roads but, in addition, shows strong sensitivity to socio- 
demographic and behavioural features such as age and daily travel 
duration. Cluster 3 (Present-biased overestimators) is shaped by both 
built environment and attitudinal features, particularly pro- 
environmental attitudes, again reflected in noticeable fluctuations in 
the partial dependence lines. In contrast, Cluster 4 (Confident adopters) 
demonstrates relatively flat lines with minimal fluctuations across all 
eight features, indicating weaker sensitivities and a more stable response 
to individual factors.

These sensitivity patterns correspond closely to the accessibility 
mismatches identified in the cluster analysis. For example, the strong 
responsiveness of Cluster 1 (Balanced realists) to road density helps 
explain its relatively balanced accessibility profile across perceived, 
prospective, and calculated measures. The heightened role of pro- 
environmental attitudes in Cluster 3 (Present-biased overestimators) 
aligns with its profile of overestimated perceived accessibility but low 
prospective accessibility. Similarly, the flat and less differentiated lines 
for Cluster 4 (Confident adopters) reflect its confidence in future 
charging provision, despite persistently low calculated accessibility.

In addition, behavioural features, particularly average daily travel 
duration and distance, highlight a sharp contrast between Cluster 2 
(Cautious optimists) and Cluster 3 (Present-biased overestimators). For 
Cluster 2, longer travel durations and distances are associated with a 
higher probability of cluster membership, aligning with its profile of low 
perceived but relatively higher prospective accessibility. In contrast, for 
Cluster 3, longer travel duration and distance reduce the likelihood of 
cluster membership, indicating that this group is characterised by 
shorter, more localised travel patterns. This behavioural evidence is 
consistent with their accessibility profile: shorter travel distances help 
explain why perceived accessibility is overestimated, while limited 
willingness to travel further aligns with their low expectations of future 
accessibility. These contrasting patterns suggest differentiated policy 
priorities: improving regional connectivity and long-distance charging 
options may help address the needs of Cluster 2, whereas 
neighbourhood-based charging provision is critical for Cluster 3 to align 
perceived and prospective accessibility and sustain confidence in future 

EV adoption.

5. Conclusion

Since 2010, the UK government has emphasised the importance of 
expanding the public electric vehicle (EV) charging network to support 
the transition to electric mobility, particularly in urban areas such as 
London. However, current literature has paid limited attention to 
accessibility to EV charging infrastructure, especially in terms of inte
grating subjective dimensions such as perceived accessibility or inves
tigating the factors that contribute to alignment and mismatch between 
modelled accessibility and user experience. This study proposes a 
combined accessibility framework that integrates calculated, perceived, 
and prospective accessibility measures to investigate accessibility to 
public EV chargers in London. The study places particular emphasis on 
capturing the nuanced and complex interactions between these three 
dimensions, aiming to uncover the factors that drive (dis)agreement 
across them.

This research yields two key findings. First, rather than generalising 
the relationship between calculated accessibility and subjective acces
sibility (perceived and prospective accessibility), this study explicitly 
considers the delicate and complex interactions among them. Different 
from previous work (Pot et al., 2023; Geurs and Van Wee, 2004) that 
broadly finds a generic disagreement between calculated and perceived 
accessibility, this study provides granular insights, revealing a spectrum 
of alignment across four clusters: while three clusters exhibit moderate 
to strong degrees of disagreement, one cluster demonstrates moderate 
agreement across the three dimensions. This nuanced finding reinforces 
the importance of incorporating different dimensions of accessibility 
into EV infrastructure planning, as modelled accessibility alone does not 
always reflect users’ perceptions, nor does it necessarily predict actual 
charging behaviour.

Second, to understand the drivers of the (dis)agreement patterns, the 
study identifies key factors that contribute to the observed discrep
ancies. These include built environment characteristics such as road 
density and proximity to major roads, as well as socio-demographic and 
behavioural factors such as age, daily travel distance, and daily travel 
duration. These findings align with previous research (Negm and El- 

Fig. 4. Partial dependence plots for the four clusters including the key features. The x-axis represents the normalised values of each feature, while the y-axis indicates 
the predicted probability of cluster membership averaged across all individuals.
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Geneidy, 2024) but extend the literature by demonstrating how these 
factors interact within a combined accessibility framework specific to 
EV charging. Overall, the results highlight how built environment, de
mographics, and travel behaviours shape accessibility and underscore 
the need for targeted, cluster-specific policies to address these 
differences.

This study represents the first attempt to propose a combined 
framework for evaluating EV charging infrastructure and services. Un
like previous work that has treated perceived and calculated accessi
bility as separate constructs, this study integrates calculated, perceived, 
and prospective accessibility to re-examine EV charging accessibility 
from a user-centric perspective. This approach is based on the under
standing that spatial behaviour is influenced not only by the provision of 
infrastructure but also by the way individuals, shaped by their socio- 
demographic characteristics, attitudes, and knowledge of the environ
ment, perceive and interpret the available charging infrastructure. The 
combined framework provides a practical tool for planners and practi
tioners to assess EV charging provision more holistically. Specifically, it 
highlights the importance of complementing infrastructure placement 
with ongoing user feedback to identify potential gaps between provision 
and user perception. This step is critical for informing future EV 
charging deployment strategies, ensuring that infrastructure is not only 
available, but also accessible in ways that reflect users’ needs and ex
periences. For example, placing chargers in locations that are easy to 
find, navigate, and use within the built environment can help bridge the 
gap between technical provision and real-world usability, thereby 
enhancing both the accessibility and overall effectiveness of EV charging 
networks. This framework has strong potential to scale to other inter
national cities and to be applied to shared transport services such as car 
clubs. By leveraging emerging big data sources, it enables the integra
tion of infrastructure planning with users’ perceptions and expectations, 
offering a transferable approach that accounts for socio-demographic 
and behavioural differences across urban contexts.

Although this study provides valuable insights into EV charger 
accessibility, we encourage future research to explore several directions 
in greater depth. First, applying the combined accessibility framework 
to other cities, regions, or national contexts would offer important 
comparative perspectives. Such cross-contextual applications could 
reveal how the interplay between infrastructure provision and subjec
tive perceptions varies across spatial and cultural settings, offering 
richer insights for both theory and practice. Second, further research 
could investigate the potential of emerging technologies, such as natural 
language processing (NLP) on user-generated content (e.g., social media 
posts, reviews, and comments) or feedback collected via local authority 
digital platforms (e.g., participatory planning apps or digital crowd
sourcing tools). Integrating such techniques would enhance the granu
larity and timeliness of user perspectives (Afzalan and Muller, 2018), 
enabling a more dynamic and responsive approach to EV infrastructure 
planning that better aligns with the needs and expectations of diverse 
user groups. Additionally, comparing different methods for measuring 
subjective accessibility offers a valuable direction for future research 
(Van Wee, 2016), helping to assess the consistency and robustness of 
results across approaches.
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Appendix A. Appendix

Table 1 
Hyperparameters configurations and performance metrics of the four models.

Models Hyperparameter configurations Accuracy F1-score

XGBoost Number of trees = 500 
Max depth = 9 
Learning rate = 0.05 
subsample: 0.9

0.762 0.743

MLP Hidden layers: [100, 50, 50, 50] 
Activation: ReLu 
Solver: Adam 
Learning rate: 0.005 
Max iterations: 1000

0.684 0.665

RF Number of trees = 300 
Max depth = 12 
Min samples split = 3 
Max features = 9

0.781 0.761

SVM Kerel = RBF 
Regularization parameter (C): 1.0 
Gamma: scale

0.597 0.590

Data availability

Data will be made available on request.
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