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Summary
Background Translation of blood RNA signatures might be accelerated by identifying biomarkers composed of the 
minimum number of gene transcripts. We aimed to test the hypothesis that single-gene transcripts provide similar 
accuracy for detection of subclinical tuberculosis to multi-gene signatures and benchmark their accuracy and clinical 
utility against interferon-γ release assays (IGRAs).

Methods For this individual participant data meta-analysis, we searched PubMed from database inception to 
June 10, 2024, using terms for “tuberculosis”, “subclinical”, and “RNA” to identify studies in which participants 
underwent whole-blood RNA sampling with at least 12 months of follow-up for development of clinical 
tuberculosis. We performed a one-stage individual participant data meta-analysis to compare the accuracy of multi- 
gene signatures against single-gene transcripts to discriminate individuals with subclinical tuberculosis—defined as 
asymptomatic prevalent or incident tuberculosis (diagnosed ≥21 days from enrolment, irrespective of symptoms) 
over a 12-month interval—from individuals who remained disease free. We performed decision curve analysis to 
evaluate the net benefit of using single-gene transcripts and IGRAs, alone or in combination, to stratify preventive 
treatment compared with strategies of treating all or no individuals.

Findings 276 articles were identified in the search; of these, seven met the eligibility criteria and all had IPD available. 
We evaluated 80 single-genes and eight multi-gene signatures in a pooled analysis of four RNA sequencing and three 
quantitative PCR datasets, comprising 6544 total samples and including 283 samples from 214 individuals with 
subclinical tuberculosis. Distributions of transcript and signature Z scores after standardisation were similar 
and there was little heterogeneity between datasets. Five single-gene transcripts (BATF2, FCGR1A/B, 
ANKRD22, GBP2, and SERPING1) had equivalent areas under the receiver operating characteristic curves 
(0⋅75 [95% CI 0⋅71–0⋅79] to 0⋅77 [0⋅73–0⋅81]) to the best-performing multi-gene signature over 12 months, but 
none met the WHO minimum target product profile (TPP) for a tuberculosis progression test. IGRAs 
approximated the TPP in low-burden settings but showed much lower specificity in high-burden settings 
(74% [95% CI 72–76] vs 32% [30–35]). By contrast, sensitivity (67% [47–82] in high-burden settings vs 78% [67–86] 
in low-burden settings) and specificity (72% [70–74] vs 67% [64–69]) of the best-performing single-gene transcript 
was similar across settings. Decision curve analysis showed that in high-burden settings, stratifying preventive 
treatment using single-gene transcripts had greater net benefit than using IGRAs, which offered little net benefit 
over treating all individuals. In low-burden settings, IGRAs offered greater net benefit than single-gene 
transcripts to stratify treatment, but combining both tests provided the highest net benefit for tuberculosis 
programmes aiming to treat fewer than 50 people to prevent a single case.

Interpretation Single-gene transcripts are equivalent to multi-gene signatures for detection of subclinical 
tuberculosis, with consistent performance across settings. Single-gene transcripts show potential clinical utility to 
stratify preventive treatment, particularly when used in combination with IGRAs in low-burden settings.
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Introduction
Despite global efforts, tuberculosis is a leading cause of 
morbidity and mortality worldwide, with 10⋅6 million cases 
and 1⋅3 million deaths in 2022, and a disproportionate 
burden among disadvantaged communities.1,2 In response 
to increased recognition of the spectrum of tuberculosis, 
the International Consensus for Early Tuberculosis (ICE- 
TB) group developed a framework to classify disease states 
in 2024. The ICE-TB framework divides tuberculosis 

disease into subclinical or clinical based on signs and 
symptoms, with further subdivisions of each into infectious 
and non-infectious based on the detection of aerosolised or 
expectorated Mycobacterium tuberculosis.3 Targeting the 
subclinical disease state, potentially with truncated treat
ment regimens,4 could prevent disease progression and 
reduce the risk of onward transmission.

Tests of immunoreactivity to M tuberculosis used to 
stratify tuberculosis preventive therapy, such as the 
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tuberculin skin test and interferon-γ release assay (IGRA), 
have low positive predictive values (PPVs) for progression 
to clinical disease,5–7 resulting in unnecessary treatment for 
most individuals. Preventive therapy can be financially 
burdensome on health-care systems and lead to adverse 
effects in 3⋅7% of individuals.8

Measurement of blood RNA can be used to detect 
changes in host gene expression in response to tuberculosis 
disease. Multiple RNA signatures have been discovered 
that have promising diagnostic accuracy for clinical 
tuberculosis9–20 or to predict progression to clinical 
disease.21–24 In a previous analysis comparing the per
formance of 17 RNA signatures to predict progression to 
clinical disease, we showed that eight signatures performed 
equivalently, were co-correlated, and shared common 
upstream pathways.25

The development of near-patient, cartridge-based proto
type platforms, such as the Xpert MTB Host Response 
(MTB-HR; Cepheid, Sunnydale, CA, USA) assay, have 
advanced progress towards clinical translation of blood 
RNA signatures.26,27 However, this progress might be fur
ther accelerated by simplification of multi-gene signatures 
to single-gene biomarkers. In view of the co-correlation and 
common regulators of the genes that comprise the most 

accurate signatures to date, multiple genes might not offer 
orthogonal value. In this study, we used a pooled dataset of 
studies with blood RNA sampling and longitudinal 
follow-up for tuberculosis to hypothesise that single-gene 
transcripts will perform as well as multi-gene signatures 
for subclinical tuberculosis detection. We also sought to 
benchmark the diagnostic performance and clinical utility 
of RNA biomarkers to IGRAs, a widely available prognostic 
test, and stratify these analyses by tuberculosis burden.

Methods
Search strategy and selection criteria
For this one-stage individual participant data (IPD) meta- 
analysis, we performed a systematic search of PubMed 
from database inception to June 10, 2024, using terms for 
“tuberculosis”, “subclinical”, and “RNA” to identify studies 
in which participants underwent whole-blood RNA sam
pling with at least 12 months of follow-up for development 
of clinical tuberculosis. Studies using genome-wide (RNA 
sequencing or microarray) or targeted transcriptional pro
filing (quantitative PCR [qPCR] or NanoString quantifica
tion) were included. Full details on the search, including 
search terms, are provided in the appendix (p 3). JG-B 
performed the search and any uncertainties about 

Research in context

Evidence before this study
With increasing recognition of the spectrum of tuberculosis and 
the importance of subclinical tuberculosis, in 2024 the 
International Consensus for Early Tuberculosis (ICE-TB) group 
developed a framework to classify disease states and called for 
diagnostic development to detect the subclinical states. We 
performed a systematic search of PubMed from database 
inception to June 10, 2024, using the terms “tuberculosis”, 
“subclinical”, and “RNA”, without language restrictions. Multiple 
studies have discovered or validated multi-gene blood RNA 
signatures for tuberculosis, including to differentiate individuals 
who progress to clinical tuberculosis from non-progressors. In our 
previous head-to-head evaluation of these signatures, we showed 
that eight signatures had equivalent performance to predict 
progression to tuberculosis. Simplifying biomarkers to single- 
gene transcripts could facilitate clinical translation. However, no 
previous studies have systematically compared the performance 
of single-gene transcripts to multi-gene signatures. Moreover, the 
clinical utility of RNA biomarkers to detect subclinical tuberculosis 
and guide preventive treatment decisions, compared with 
alternative strategies using interferon-γ release assays (IGRAs), is 
untested.

Added value of this study
To our knowledge, this study is the largest pooled analysis of RNA 
biomarkers to predict progression to clinical tuberculosis, the first 
RNA analysis to align with the ICE-TB definitions, and the first 
head-to-head comparison of single-gene transcripts with multi- 
gene signatures. We tested 80 single-genes and eight multi-gene 

signatures to detect subclinical tuberculosis in a pooled dataset 
from four RNA sequencing and three quantitative PCR datasets, 
comprising over 6500 RNA samples. We showed that five 
co-correlated single-gene transcripts were equivalent to the best- 
performing multi-gene signature to detect subclinical 
tuberculosis over a 12-month interval, but none met the WHO 
minimum target product profile for a tuberculosis progression 
test. We showed that single-gene transcripts performed 
consistently across settings, whereas IGRA performance was 
heterogeneous, with poor specificity in high-burden settings. By 
using decision curve analysis, we showed that single-gene 
transcripts offered highest net benefit in high-burden settings, 
whereas IGRA offered highest net benefit in low-burden settings, 
either alone or in combination with single-gene transcripts in a 
two-step approach.

Implications of all the available evidence
Single-gene transcripts perform as well as multi-gene signatures 
to diagnose subclinical tuberculosis. These findings might simplify 
RNA biomarker testing, encourage commercial competition, and 
facilitate translation of this technology into clinical practice. Blood 
RNA biomarkers showed clinical utility to direct preventive 
treatment decisions as a stand-alone test in high-burden settings 
and in combination with IGRA in low-burden settings. Further 
interventional studies are required to evaluate the clinical and 
cost-effectiveness of serial RNA biomarker testing to stratify 
delivery of preventive treatment among individuals at high risk in 
high-burden countries or using a two-step testing approach in 
combination with IGRA in low-burden settings.

See Online for appendix
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eligibility were discussed and resolved between JG-B, MN, 
and RKG. We included four studies using RNA sequen
cing from our previous IPD meta-analysis25 and three 
studies using qPCR identified from the systematic 
search.28–30 All included data were publicly available. Since 
this was a secondary analysis of publicly available data, 
ethical approval was not required.

Data analysis
Data from four previously included RNA sequencing studies 
were mapped, batch corrected, and integrated into a single 
pooled dataset using transcripts per million measurements, 
as previously described.25 Our data preparation pipeline 
for qPCR studies is described in the appendix (pp 3–21). 
The approach to combining studies is described in the 
appendix (p 4). We included 80 single-genes that were 
present in the RNA sequencing dataset and at least 
one qPCR study (Correlate of Risk Targeted Intervention 
Study [CORTIS-01],28 CORTIS-HR,29 or Regional Pro
spective Observational Research for Tuberculosis Brazil 
[REPORT-Brazil]30). We calculated scores for eight existing 
RNA signatures that were included in our previous analysis 
(appendix pp 3–4).31 We standardised signatures and single- 
gene transcripts within each RNA sequencing and qPCR 
dataset by converting to Z scores (appendix pp 14–15), before 
combining into a pooled dataset.

We used the original study definitions for tuberculosis in 
each cohort. As baseline screening for prevalent disease 
was performed variably between studies, we arbitrarily 
defined prevalent tuberculosis as a tuberculosis diagnosis 
up to 21 days after RNA sampling.25,32 Cases diagnosed after 
21 days were considered to be incident tuberculosis.

As our aim was to evaluate the accuracy of RNA bio
markers to discriminate between individuals with sub
clinical tuberculosis and those without disease, we used the 
ICE-TB consensus classification to define disease states at 
the point of RNA sampling.3 Individuals with symptomatic 
prevalent tuberculosis disease were classified as having 
clinical tuberculosis at the point of RNA sampling. Indi
viduals with asymptomatic prevalent disease or those who 
progressed to incident disease were classified as having 
subclinical tuberculosis at the point of RNA sampling. 
Those without prevalent or incident disease were defined as 
being disease free. We approximated asymptomatic 
prevalent tuberculosis to the subclinical, infectious tuber
culosis state and incident tuberculosis to the subclinical, 
non-infectious tuberculosis state. The subclinical, non- 
infectious ICE-TB state is based on the presence of 
macroscopic pathology, for which there is no gold standard. 
We therefore used progression to incident tuberculosis as a 
reference standard to approximate this state, based on the 
assumption that macroscopic pathology would have been 
detectable at the time of blood RNA sampling if investigated 
with sufficient resolution.

All analyses were done with R (version 4.4.0). We per
formed a one-stage IPD meta-analysis to calculate the 

accuracy of candidate signatures and transcripts to dis
criminate individuals with subclinical tuberculosis from 
individuals who remained disease free, stratified by interval 
from sampling to disease. Initial analyses showed similar 
accuracy of RNA biomarkers in each study, so our primary 
analysis assumed common accuracy across studies, as 
previously described.25 The primary analysis was over a 
12-month interval from sampling, with secondary analyses 
over months 0–3, 0–6, 0–15, 6–12, and 12–15. For each 
analysis, disease free samples with follow-up less than the 
stated interval were excluded to reduce the risk of outcome 
misclassification. We included participants irrespective of 
IGRA status but excluded individuals who received tuber
culosis preventive therapy from the primary analysis as 
this affects progression risk and might be differential 
among those with high RNA biomarker scores. If datasets 
included serial RNA samples from the same individuals, 
we considered serial samples as independent because intra- 
individual variance was similar to inter-individual variance 
(appendix p 22). If candidate signatures were originally 
derived from included datasets, we excluded these datasets 
when evaluating the accuracy of that signature.

Accuracy of candidate signatures and transcripts was 
quantified by the area under the receiver operating curve 
(AUROC) with 95% CIs. Sensitivity and specificity were 
calculated at the maximum Youden index, giving equal 
weighting to sensitivity and specificity, and benchmarked 
against the WHO minimum target product profile (TPP) 
parameters for predicting progression to tuberculosis over 
2 years (≥75% sensitivity and ≥75% specificity).33 AUROCs 
of single-gene transcripts were compared with the best- 
performing multi-gene signature using the pairwise 
Delong test, with multiple testing correction using the 
Benjamini–Hochberg approach. Signatures and tran
scripts with adjusted p values over 0⋅05 were considered 
equivalent. Correlation of equivalent transcripts was 
assessed using Spearman’s rank correlation. We also eval
uated expression and AUROCs of the best-performing 
single-gene transcript across different disease states: 
clinical tuberculosis; subclinical tuberculosis, infectious; 
and subclinical tuberculosis, non-infectious.

We then compared the diagnostic performance (to dis
criminate individuals with subclinical tuberculosis from 
individuals who remained disease free) of the single-gene 
transcript with the highest AUROC point estimate 
against IGRA in a head-to-head analysis among partic
ipants for whom results of both tests were available over a 
12-month interval from sampling. These analyses were 
stratified by setting, defined as low tuberculosis burden if 
the incidence was less than 50 per 100 000 people and high 
tuberculosis burden if it was more than 50 per 
100 000 people. Among individuals with serial IGRA sam
ples, low intra-individual variance indicated high correlation 
between serial samples (appendix p 22); therefore, we 
included only one sample per individual, sampled at 
random. We used thresholds of the maximum Youden 
index for the single-gene transcript and the standard cutoff 
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of 0⋅35 IU/mL for the IGRA assay (QuantiFERON-TB Gold- 
in-tube or QuantiFERON-TB Gold Plus, Qiagen). We also 
explored a two-step approach using a combination of the 
single-gene transcript and IGRA, in which only those 
positive for both tests are offered treatment and compared 
the sensitivity, specificity, and PPVs of these approaches. 
As datasets included case–control studies, we calculated 
PPV using a fixed cumulative disease risk (reflecting prior 
probability) of 1% and 2%, with 2% risk based on 1-year 
incidence rates in high-risk close contacts.34,35

To evaluate the clinical utility of the single-gene tran
script, IGRA, and combined testing approaches, we per
formed decision curve analysis. Decision curve analysis 
quantifies the trade-off between correctly identifying true 
tuberculosis cases and incorrectly identifying false positives 
as net benefit.36 Net benefit is calculated across a range of 
weightings for the false positives, defined as the threshold 
probability (appendix p 4). Threshold probability is the risk 
of disease at which a clinician or patient would opt for an 
intervention such as treatment and relates to the number- 
willing-to-treat (NWT), defined as the number of individ
uals that a clinician would be willing to treat with preventive 
therapy to prevent a single case of tuberculosis disease. We 
calculated net benefit using the best-performing single- 
gene transcript or IGRA to guide preventive treatment 
compared with the default strategies of treating all indi
viduals or no individuals across a range of threshold prob
abilities. Since the contributing datasets included case– 
control analyses, we fixed the cumulative tuberculosis risk 
as 1% and 2% in our decision curve analyses.

We also estimated the number-needed-to-treat (NNT), 
defined as the number of people needing to be treated with 
preventive therapy to prevent a single case of tuberculosis 
disease, using the single-gene transcript, IGRA, and com
bined testing approaches to stratify treatment, and com
pared with a default strategy of treating all individuals. 
Here, we assumed a constant treatment effect of 80% and 
fixed the cumulative tuberculosis risk as 1% and 2%.

We performed four sensitivity analyses. First, we per
formed a two-stage IPD meta-analysis in which we calcu
lated accuracy of signatures and transcripts for each 
contributing cohort, explored between study heterogeneity 
by visualising forest plots, and performed a random-effects 
meta-analysis to calculate pooled AUROCs (using the 
metafor package in R).37 Second, we included participants 
commencing tuberculosis preventive therapy in the 
analysis. Third, we included only one RNA sample per 
individual, sampled at random. Finally, we included 
datasets from which signatures were originally derived in 
the accuracy calculation for that signature. As all data 
were publicly available, this study did not need to be 
registered.

Role of the funding source
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, writing of the 
report, or decision to submit for publication.

Results
276 articles were identified in the search; of these, seven 
met the eligibility criteria and all had IPD available. Four 
RNA sequencing datasets and three qPCR datasets were 
included. Study characteristics are provided in table 1. The 
RNA sequencing datasets included the Adolescent Cohort 
Study of individuals from South Africa with a positive IGRA 
or tuberculin skin test;21 the Grand Challenges 6–74 study 
of tuberculosis household contacts from South Africa, The 
Gambia, and Ethiopia;22 and two UK close contact studies 
from London24 and Leicester.38 The qPCR datasets included 
the CORTIS-01 study of healthy volunteers from tubercu
losis endemic communities in South Africa,28 the 
CORTIS-HR study consisting of people living with HIV 
from tuberculosis endemic communities in South Africa,29

and the REPORT-Brazil study of tuberculosis close contacts 
from Brazil.30

In total, 6530 samples from 5185 individuals were 
included in the primary analysis, with a total of 283 samples 
from individuals with subclinical tuberculosis: 39 from 
asymptomatic prevalent cases and 244 from incident cases 
(appendix p 23). Baseline participant characteristics and 
risk of tuberculosis disease for each study are shown in the 
appendix (p 24).

Three signatures (Penn-Nicholson6, Darboe11, and 
Suliman4) were derived from included studies (table 1), so 
the original study was excluded from the evaluation of the 
derived signature in the primary analysis. Distributions of 
Z scores after standardisation were similar between datasets 
and there was little heterogeneity in AUROCs of transcripts 
between datasets (appendix pp 15, 32). Therefore, we proceeded 
to a one-stage IPD meta-analysis as the primary analysis.

The multi-gene signature with the highest AUROC for 
discrimination of individuals with subclinical tuberculosis 
from individuals who remained disease free over 
12 months from sampling was Roe3 (AUROC 0⋅77 [95% CI 
0⋅73–0⋅81]; appendix p 30), which was then used for pair
wise comparison with the single-gene transcripts. Five 
single-gene transcripts had equivalent AUROCs to Roe3; 
BATF2 (0⋅77 [0⋅73–0⋅81]), FCGR1A/B (0⋅77 [0⋅73–0⋅81]), 
ANKRD22 (0⋅77 [0⋅72–0⋅81]), GBP2 (0⋅75 [0⋅71–0⋅79]), and 
SERPING1 (0⋅75 [0⋅71–0⋅79]; table 2). These transcripts 
showed moderate–strong correlation (0⋅54–0⋅82) using 
Spearman’s rank correlation (appendix p 25). Using max
imum Youden index thresholds, none of the transcripts 
met the WHO minimum TPP parameters for progression 
tests over 12 months. Discriminative performance of 
single-gene transcripts and Roe3 diminished gradually over 
increasing time intervals from sampling to disease, with 
poor discrimination over 12–15 months (appendix pp 
26–30). BATF2 expression and discriminative perform
ance across different disease and disease free states is 
shown in figure 1. Notably, discriminative performance 
of BATF2 was highest for clinical tuberculosis (AUROC 
0⋅93 [95% CI 0⋅87–0⋅99]), compared with other states.

Comparison of the diagnostic performance of BATF2, 
IGRA, and a combined two-step approach of BATF2 and 
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IGRA to discriminate individuals with subclinical tuber
culosis from individuals who remained disease free, 
stratified by setting and benchmarked against the WHO 
minimum TPP criteria (figure 2A), showed that although 
the sensitivity of IGRA was similar across settings 
(87–88%), specificity was markedly lower in high-burden 
settings (32% [95% CI 30–35]) compared with low-burden 
settings (74% [72–76]), resulting in a PPV of 1⋅3% 
(95% CI 1⋅1–1⋅4) for high-burden settings and 3⋅3% 
(2⋅4–3⋅9) for low-burden settings (appendix p 33). By 
contrast, BATF2 performance—sensitivity (67% [95% CI 
47–82] in high-burden settings vs 78% [67–86] in low-burden 
settings), specificity (72% [70–74] vs 67% [64–49]), and PPVs 
(2⋅3% [1⋅8–2⋅7] vs 2⋅4% [1⋅6–3⋅1])—was consistent across 
settings. In high-burden settings, the combined approach 
resulted in a slight increase in specificity compared with 
BATF2 alone (77% [75–79] vs 67% [64–69]) but similar PPVs 
(2⋅8% [2⋅1–3⋅5] vs 2⋅3% [1⋅8–2⋅7]). By contrast, in low-burden 
settings using the combined approach compared with using 

BATF2 alone, a large increase in specificity (92% [90–93] vs 
72% [70–74]) and PPV (6⋅8% [3⋅8–9⋅9] vs 2⋅4% [1⋅6–3⋅1]) was 
reached, albeit with some loss of sensitivity (58% [39–76] vs 
67% [47–82]). None of the testing approaches met the WHO 
minimum TPP parameters over 12 months, although IGRA 
accuracy approached the benchmarks in the low-burden 
settings. The testing approaches had similar performance 
over a 6-month interval from sampling to disease compared 
with the primary 12-month interval (appendix p 34). Using a 
2% prior probability, PPVs approximately doubled with
out changing the overall pattern of results (appendix p 35).

Decision curve analysis of these testing approaches varied 
by setting (figure 2B). In high-burden settings, IGRA 
offered minimal additional net benefit over a treat-all 
strategy. BATF2 offered greater net benefit than IGRA 
and, using prior probability of 1%, had the highest net 
benefit across threshold probabilities of between 0⋅4% and 
2⋅2%, equating to an NWT to prevent a single case of 
45–250. Above this threshold probability, in which NWT 

ACS21 CORTIS-0128 CORTIS-HR29 GC6–7422 Leicester Contacts38 London Contacts24 REPORT-Brazil30

Method of RNA 
profiling

RNA sequencing qPCR qPCR RNA sequencing RNA sequencing RNA sequencing qPCR

Study design Nested case–control Randomised controlled 
trial*

Cohort Nested case–control Cohort Cohort Cohort

Newcastle– 
Ottawa Scale 
score

9/9 7/7 7/7 9/9 7/7 7/7 7/7

Population Children aged 
12–18 years with a 
positive interferon-γ 
release assay or 
tuberculin skin test

Adults aged 18 years or 
older in an endemic 
community

Adults aged 18 years or 
older with HIV in an 
endemic community

People aged 
10–60 years who have 
household contact with 
a tuberculosis index 
case

People aged 16 years or 
older who have close 
contact with a 
tuberculosis index case

People aged 18 years or 
older who have close 
contact with a 
tuberculosis index case

People aged 18 years or 
older who have close 
contact with a 
tuberculosis index case

Location 
(burden of 
tuberculosis in 
setting)

South Africa (high 
burden)

South Africa (high 
burden)

South Africa (high 
burden)

South Africa, The 
Gambia, Ethiopia (high 
burden)

UK (low burden) UK (low burden) Brazil (low burden)

Baseline 
screening

Clinical evaluation Clinical evaluation and 
two spontaneous 
sputum Xpert MTB/RIF 
tests

Clinical evaluation and 
two spontaneous 
sputum Xpert MTB/RIF 
tests

Clinical evaluation Clinical evaluation and 
chest x-ray

Clinical evaluation and 
chest x-ray

Clinical evaluation

Study case 
definition

Two positive smear or 
one positive culture

Two positive Xpert 
MTB/RIF or Xpert Ultra 
or culture

Two positive Xpert 
MTB/RIF or Xpert Ultra 
or culture

Positive culture or 
clinically diagnosed

Positive culture or 
Xpert MTB/RIF

Positive culture or 
clinically diagnosed

Positive culture or 
clinically diagnosed

Duration of 
follow-up, 
months

24 15 15 24 24 22⋅8 24

RNA sample 
timing

Baseline and months 
6, 12, 18, and 24

Baseline Baseline Baseline and months 
6 and 18

Baseline Baseline Baseline and month 6

Signatures 
derived from 
dataset

Penn-Nicholson6 and 
Darboe11

NA NA Suliman4 NA NA NA

Total 
participants

144 2496 404 334 104 324 1379

Total RNA 
samples

318 2496 404 412 104 324 2472

ACS=Adolescent Cohort Study. CORTIS=Correlate of Risk Targeted Intervention Study. GC6-74=Grand Challenges 6-74. NA=not applicable. qPCR=quantitative PCR. REPORT-Brazil=Regional Prospective Observational 
Research for Tuberculisis Brazil. *CORTIS-01 was a randomised controlled trial in which a cohort of healthy participants first underwent measurement of the previously identified RISK11 signature (Darboe11). RISK11- 
positive individuals were randomly assigned to either receive tuberculosis preventive therapy or not, and RISK11-negative individuals did not receive tuberculosis preventive therapy. Only a randomly sampled subset of 
RISK11-negative participants was included to enrich the study cohort for RISK11-positive participants. In this meta-analysis, only individuals who did not receive tuberculosis preventive therapy were included.

Table 1: Characteristics of studies included in meta-analysis
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was less than 45, treating none was best. The combined 
approach (in which only those positive for both tests are 
offered preventive treatment) had only slightly greater net 
benefit than BATF2 alone at threshold probabilities of 
1–3%, equating to an NWT of 33–100. By contrast, in low- 
burden settings, IGRA outperformed BATF2 across all 
threshold probabilities. IGRA offered the highest net 

benefit at threshold probabilities under 2%, equating to an 
NWT of over 50, whereas the combined approach offered 
the highest net benefit at threshold probabilities of 2–7%, 
equating to an NWT of 14–50. Using a prior probability of 
2%, findings were similar, but net benefit for all strategies 
was shifted to the right on the threshold probability scale 
(appendix p 35). For example, in high-burden settings, 

Cases Controls Total AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) p value

Roe3 189 4982 5171 0⋅77 (0⋅73–0⋅81) 0⋅74 (0⋅67–0⋅79) 0⋅70 (0⋅69–0⋅71) Reference
BATF2 189 4982 5171 0⋅77 (0⋅73–0⋅81) 0⋅74 (0⋅67–0⋅80) 0⋅69 (0⋅67–0⋅70) 0⋅72
FCGR1A/B 189 4981 5170 0⋅77 (0⋅73–0⋅81) 0⋅65 (0⋅58–0⋅72) 0⋅79 (0⋅78–0⋅80) 0⋅87
ANKRD22 138 3243 3381 0⋅77 (0⋅72–0⋅81) 0⋅57 (0⋅48–0⋅65) 0⋅86 (0⋅85–0⋅87) 0⋅88
GBP2 189 4982 5171 0⋅75 (0⋅71–0⋅79) 0⋅74 (0⋅67–0⋅79) 0⋅65 (0⋅64–0⋅66) 0⋅064
SERPING1 189 4979 5168 0⋅75 (0⋅71–0⋅79) 0⋅66 (0⋅59–0⋅73) 0⋅75 (0⋅73–0⋅76) 0⋅069

Performance metrics of single-gene transcripts with equivalent performance to the best multi-gene signature (Roe3) to discriminate individuals with subclinical tuberculosis from 
individuals who remained disease free at an interval of 12 months from sampling to disease. Equivalence to Roe3 was defined as an adjusted p value greater than 0⋅05 in the 
pairwise Delong test. Sensitivity and specificity are the maximum Youden index calculated from the one-stage meta-analysis. AUROC=area under the receiver operating curve.

Table 2: Performance metrics of equivalent RNA biomarker single-gene transcripts for subclinical tuberculosis
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Figure 1: BATF2 expression and diagnostic accuracy for different disease states 
Expression (Z score transformed) of the best-performing single-gene transcript, BATF2, is shown as a combined boxplot and scatterplot, stratified by disease state. 
Disease state is classified according to International Consensus for Early Tuberculosis consensus definitions and descriptive terms are also shown. Boxes represent IQR and 
median values. Coloured dots represent individual samples and darker dots represent outliers. Area under the receiver operating characteristic curve with 95% CIs of 
BATF2 to discriminate each disease state from individuals who remained disease free is also shown.
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BATF2 offered greater net benefit over IGRA and a treat-all 
strategy at threshold probabilities of 0⋅7–4⋅5%, equating to 
an NWT of 22–143.

NNT estimates to prevent a single tuberculosis case 
using the testing approaches to stratify treatment, com
pared with a treat-all strategy, are shown in figure 3A. In 
high-burden settings, performing IGRA testing resulted 
in slightly lower NNT estimates than treating all 
(98 [95% CI 88–114] vs 125). Compared with IGRA, NNTs 
were significantly lower using BATF2 (54 [95% CI 46–68]) 
or a combined approach (44 [34–59]). In low-burden set
tings, NNTs of IGRA and BATF2 were similar (38 [32–51] 
vs 53 [40–80]). Using the combined approach resulted in a 
lower NNT (18 [13–33]) compared with BATF2 alone. Due 
to superior specificity, lower NNT estimates were reached 

by IGRA (either alone or in combination with BATF2) in 
low-burden settings versus high-burden settings. Using a 
2% prior probability roughly halved the NNT with a 
similar pattern (figure 3B).

In sensitivity analyses, a two-stage meta-analysis to 
calculate pooled AUROCs resulted in similar findings to 
the primary analysis (appendix p 36). Similarly, we 
observed similar AUROCs when including recipients of 
tuberculosis preventive therapy (excluding the participants 
in CORTIS-01 positive for Darboe11 who were randomly 
assigned to receive tuberculosis preventive therapy), 
including only one RNA sample per individual, or when 
including datasets from which the signatures were origin
ally derived in the accuracy calculation for that signature 
(appendix p 36).
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Figure 2: Diagnostic performance for subclinical tuberculosis of BATF2, IGRA, and a combined approach shown in receiver operating space and in a decision curve analysis, by setting 
(A) Diagnostic performance for subclinical tuberculosis over a 12-month interval of BATF2 (threshold set at maximum Youden index), IGRA (QuantiFERON-TB Gold-in-tube or QuantiFERON-TB Gold Plus 
with threshold set at standard cutoff of 0⋅35 IU/mL), and a combined approach of BATF2 and IGRA in the receiver operating space with sensitivity on the y-axis and 1–specificity on the x-axis, stratified by 
setting. Only participants with results for both tests were included in this analysis. Point estimates are shown (dots) with 95% CIs (boxes). Dotted lines represent the WHO minimum target product profile of 
75% sensitivity and specificity for a tuberculosis progression test. Dashed lines represent PPVs of 1%, 3%, and 5%, based on a 1% prior probability. Underlying data are shown in the appendix (p 33). (B) 
Decision curve analysis in which each test is compared with default strategies of treating all or treating no people, stratified by setting. Threshold probability is the risk of tuberculosis disease at which a 
clinician or patient would opt for preventive treatment and is the reciprocal of the number-willing-to-treat to prevent a single case. Net benefit is calculated at a range of threshold probabilities as the true 
positive rate minus a weighted false positive rate, in which the weighting is the threshold probability. Since the contributing datasets included case–control analyses, the cumulative tuberculosis risk was 
fixed at 1%. IGRA=interferon-γ release assay. PPV=positive predictive value.

Articles

www.thelancet.com/microbe Vol ▪ ▪ 2025 7 

www.thelancet.com/microbe


Discussion
To our knowledge, we report the largest pooled RNA bio
marker analysis in subclinical tuberculosis to date, includ
ing over 6500 RNA samples, and the first comprehensive 
head-to-head analysis comparing single-gene transcripts 
with multi-gene signatures. This study is also the first 
evaluation of RNA biomarkers to align with the ICE-TB 
classification. We showed that five single-gene transcripts 
perform equivalently to the best performing multi-gene 
signature for differentiation of individuals with subclin
ical tuberculosis from those who remained disease free over 
12 months. RNA biomarker performance was consistent 
across settings. By contrast, IGRA performance varied 
markedly, with poor performance in high-burden settings. 
In decision curve analysis, we show that, in high-burden 
settings, stratifying preventive treatment using RNA bio
marker testing offers higher net benefit than using IGRA, 
which has minimal benefit over treating all. In low-burden 
settings, IGRA was the best single test to stratify treatment 
and approximated the WHO TPP, with greater net benefit 
than RNA biomarker testing. However, for tuberculosis 

programmes aiming to treat fewer than 50 people to 
prevent a tuberculosis case, a two-step combined testing 
approach improves specificity and is superior.

Development of the Cepheid MTB-HR prototype has 
shown that translation to a near-patient platform is feasible. 
Although the cost of such platforms is unknown, it is 
unlikely to exceed the WHO TPP maximum of US$100 per 
test, based on the cost of an IGRA.33 Our findings could 
facilitate translation of RNA biomarker technology to clin
ical practice by encouraging commercial competition using 
measurement of any one of the best-performing single- 
genes at lower cost compared with measurement of mul
tigene signatures. Nonetheless, none of the transcripts met 
the WHO TPP minimum sensitivity and specificity, even 
over a 12-month interval, although this target was almost 
achieved by IGRA in the low-burden setting (88% sensi
tivity and 74% specificity). In the high-burden setting, the 
WHO TPP seem an unrealistic aim that is unlikely to be 
achieved over 2 years with a transcriptional biomarker tar
geting early disease, although serial testing could improve 
overall performance. Combining different modalities of 
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Figure 3: NNT to prevent a single tuberculosis case using different testing strategies, by setting 
Estimated NNT with preventive treatment to prevent a single tuberculosis case is shown for the default strategy of treating all compared with test stratified treatment 
using BATF2 (threshold set at maximum Youden index), IGRA (threshold set at standard cutoff of 0⋅35 IU/mL), and a combined approach of BATF2 and IGRA. Point 
estimates are shown (dots) with 95% CIs (bars). An estimated preventive treatment effect of 80% was used. Since the contributing datasets included case–control 
analyses, the cumulative tuberculosis risk (prior probability) was fixed at 1% (A) and 2% (B). IGRA=interferon-γ release assay. NNT=number-needed-to-treat.
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tests might improve specificity, albeit at greater cost. 
A universal testing strategy might be challenging to attain if 
test performance is heterogeneous across settings; rather, 
tailored strategies might be required based on tuberculosis 
burden. In low-burden settings IGRA remains a useful test; 
an approach combining IGRA and RNA biomarkers shows 
additional promise and warrants further evaluation. How
ever, in high-burden settings, the high prevalence of 
M tuberculosis sensitisation means that IGRA has poor 
specificity and thus minimal utility. Greater specificity 
might be achieved with better measures of recent (eg, less 
than 6 months) M tuberculosis infection, for example 
M tuberculosis-specific T-cell activation.39 Alternatively, 
combining molecular approaches with radiological testing, 
such as digital chest radiographs,40 as a method to detect 
macroscopic pathology might also improve performance. 
Moreover, as preventive treatment regimens become 
shorter and more acceptable, the NWT will likely increase, 
making a treat-all approach more attractive, particularly 
among individuals at high risk of progression to disease. 
Future studies are required to explore the trade-offs 
between tuberculosis risk and treatment acceptance, 
using current and truncated regimens, and to explore the 
clinical and cost-effectiveness of biomarker-stratified ver
sus universal treatment approaches. Further trials are also 
required to identify optimal treatments for subclinical 
diseases states.

Our findings could provide some insights into host 
immune responses in early tuberculosis. The co-correlation 
of best-performing single-gene transcripts is consistent 
with previous findings of shared upstream interferon (IFN) 
and tumour necrosis factor (TNF) signalling pathways,25

which explains why a single transcript is a sufficient 
measure of this immune response and combining these 
transcripts into multi-gene signatures does not offer 
orthogonal value. The consistent performance of RNA 
biomarkers across settings suggests that this is a common 
host response across populations. Likewise, the similar 
performance in CORTIS-HR suggests that this pathway is 
preserved in people living with HIV, although previous data 
have shown probable upregulation of common type-I IFN 
responses in people with untreated HIV.41 Similarly, 
through IFN and TNF signalling, respiratory viral infec
tions have been shown to increase tuberculosis signature 
scores,42 which might partly account for the imperfect 
specificity of RNA biomarkers.43 The imperfect sensitivity 
and the fall in discriminative performance after 12 months 
might be reflective of de-novo infection following signature 
measurement in high-burden settings, or that there is a 
minimal host response in earlier subclinical disease. The 
equivalent performance of multiple co-correlated RNA 
biomarkers, which has also been reported previously,25,29,41

suggests that future discovery and validation of signatures 
using similar approaches is unlikely to yield a test with 
better performance. To date, discovery approaches have 
largely focused on identifying differentially expressed 
transcripts in tuberculosis, before combining these to form 

a discriminating multi-gene signature. Simplifying these to 
single-gene biomarkers has the added benefit of facilitating 
their integration into panels of blood RNA biomarkers 
for multinomial classification44 that might overcome the 
specificity limitations of the binomial approach, for 
example by combining with the best-performing single-gene 
biomarkers of viral infections.45

An important strength of our analysis is that we adopted 
ICE-TB terminology for subclinical tuberculosis to facilitate 
comparisons across studies and biomarker domains. We 
used 6530 samples including 283 samples from subclinical 
tuberculosis cases, making it the largest analysis of RNA 
biomarkers for subclinical tuberculosis to date. Our data 
processing pipeline ensured batch correction within stud
ies and integrated RNA sequencing and qPCR data into a 
pooled dataset, although our analyses were restricted to the 
pool of transcripts measured in at least one qPCR study. We 
also performed the first decision curve analysis, to our 
knowledge, to quantify the clinical utility of RNA bio
markers for subclinical tuberculosis and compare with 
existing tests. We also stratified our decision curve analysis 
by tuberculosis burden, which allowed granular assess
ment of clinical utility by setting. We performed multiple 
sensitivity analyses, including a two-stage IPD meta-analysis, 
to ensure our primary findings were robust.

A limitation of our study is that, although we included 
cohorts from high-burden and low-burden settings, there 
were few contributing countries (South Africa, UK, Brazil, 
The Gambia, and Ethiopia), with no representation from 
Asia, although large proportions of the UK studies were 
individuals of south Asian ethnicity. There were low 
numbers of subclinical cases over a 12-month interval in 
some studies, with both Leicester Contacts and 
CORTIS-HR reporting five cases each, which reflects the 
reality that tuberculosis is a rare outcome in longitudinal 
cohort studies. There were variations in case definitions 
between studies, which might have resulted in misclassi
fication; however, this variation is reflective of real-world 
variations in clinical practice according to resource avail
ability. As sputum sampling was not widely performed at 
baseline, there is also a risk of misclassification between 
subclinical, non-infectious and subclinical, infectious 
disease states; however, combining these groups in our 
primary analysis mitigated this risk. Furthermore, with the 
exception of CORTIS-01 and CORTIS-HR, evaluation of 
tuberculosis disease during follow-up was symptom- 
triggered, so additional cases of subclinical tuberculosis 
might have been missed, leading to underestimations of 
specificity for subclinical tuberculosis. We also acknow
ledge that there is no gold standard for the subclinical, non- 
infectious state and high-resolution investigations for 
macroscopic pathology, such as PET-CT,46 were not per
formed. We therefore assumed that participants who 
developed tuberculosis within 12 months would have had 
macroscopic pathology at baseline, had high-resolution 
investigation been performed. However ongoing 
M tuberculosis exposure during follow-up, particularly in 
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high-transmission settings, might mean that disease cases 
within the primary 12-month interval could be attributable 
to new infection, leading to underestimated sensitivity for 
subclinical tuberculosis. Since subclinical tuberculosis can 
regress or undulate without treatment,47 we could have 
underestimated specificity for subclinical, non-infectious 
tuberculosis that did not progress to clinical disease 
within 12 months. Future studies will be required to further 
evaluate the accuracy of candidate biomarkers for the sub
clinical, non-infectious state, once a scalable and widely 
accepted reference standard is established.

In summary, we have shown that several single-gene 
transcripts perform equivalently to multi-gene signatures 
to detect subclinical tuberculosis, which could simplify 
assays and encourage commercial competition. RNA bio
marker performance is consistent across settings and 
exceeds performance of IGRA in high-burden settings but 
falls short of WHO benchmarks. A combination strategy 
with IGRA shows promise to enable more targeted preventive 
treatment in low-incidence settings.
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