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Abstract

Quantum computing has demonstrated computational advantages over classical com-

puting, yet its applications to natural language processing (NLP) remain in their early

stages. Quantum contextuality, a fundamental feature of quantum mechanics, has

been identified as a resource for achieving these advantages. Meanwhile, ambiguities

in human languages present challenges in building systems capable of understanding

and generating natural language. Many of these ambiguities can be addressed by

considering the context in which they arise. This thesis investigates the connection

between quantum contextuality and ambiguities in natural language. It introduces a

framework that models ambiguities in language as a form of measurement, analogous

to physical experiments. The findings reveal that contextuality is present in natural

language and that its degree is linked to the reasoning capabilities of large language

models (LLMs).



Impact Statement

The advent of large language models (LLMs) like ChatGPT has significantly ad-

vanced the field of natural language processing (NLP), demonstrating incredible

abilities in understanding and generating languages. These breakthroughs, however,

raise important questions about the underlying mechanisms of these models and the

nature of their intelligence.

At the same time, quantum computing has introduced a new paradigm of

computing, using principles of quantum mechanics to solve certain problems more

efficiently than classical computers. Quantum mechanics, a fundamental theory of

physics, describes the behaviour of matter and energy at the smallest scales, where

classical intuitions often fail. It has led to revolutionary advancements in various

fields, including cryptography, optimization, and simulation of quantum systems. A

central concept in quantum mechanics is contextuality, which challenges traditional

ideas of realism and locality. Contextuality has been identified as a key resource for

achieving computational advantages, enabling fault-tolerant quantum computation

through techniques like magic state distillation and surface codes.

This research explores the intersection of quantum contextuality and natural

language, examining how contextuality models linguistic ambiguities. This project

introduces a novel framework connecting quantum contextuality with natural lan-

guage, offering a theoretical basis for understanding language ambiguities through

quantum principles. This work also demonstrates that contextuality can be linked to

the reasoning capabilities of LLMs, providing a new perspective on evaluating their

performance.

Although the impact of this work is mainly academic, it has the potential to
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influence the development of future AI systems and their applications in various

fields. Recent studies have shown that LLMs suffer from hallucinations, which are

instances where the model generates incorrect or nonsensical information. Resoning

ability is a key factor in the performance of LLMs, and contextuality can provide an

alternative way to evaluate the reasoning capabilities of these models and go beyond

the limitations of traditional evaluation metrics. By bridging the gap between quan-

tum mechanics and natural language processing, this research opens new avenues for

understanding language and computation, paving the way for innovative approaches

to AI and NLP.
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Introduction

Realism and non-contextuality are two fundamental principles that are believed

to be at the core of classical physics. Realism posits that the value of a physical

quantity exists independently of measurements, while non-contextuality posits that

the value of a physical quantity is independent of what other quantities are being

measured simultaneously. Non-contextuality is also related to locality, which means

that information cannot travel faster than light. This ensures that what happens in

one place does not immediately affect what happens elsewhere, so measurement

results are independent of distant choices.

To better understand these principles, let us consider an illustrative example:

imagine a London bus with three observable properties: its colour, the number of

passengers, and its speed. Realism asserts that the values of these properties exist

independently of observation. Non-contextuality, on the other hand, posits that the

value of one property, such as the colour, should remain unaffected by which other

properties are being observed. For instance, the colour of the bus should remain

unchanged regardless of whether we observe the number of passengers or the speed.

However, in quantum physics, these two principles—realism and non-

contextuality—are fundamentally incompatible. This incompatibility was first

demonstrated in the 1960s by John Bell [3] and later by Simon Kochen and Ernst

Specker [4]. Hypothetically, this means that in a quantum scenario, the colour of

the bus we observe could appear red if we also observe the number of passengers,

but it might appear blue if we instead observe the speed of the bus. Such behaviour

highlights the contextual nature of quantum systems.

The study of contextuality has led to a deeper understanding of the fundamental
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differences between quantum and classical physics. Building on Bell’s theoretical

work, Clauser et al. [5] proposed an experiment using entangled photons to test

Bell’s inequalities. Aspect et al. [6] later performed such experiments, providing

strong empirical evidence that quantum mechanics violates Bell’s inequalities. These

experimental violations confirm the contextual nature of quantum systems and

demonstrate the incompatibility of realism and non-contextuality with quantum

physics.

Recently, it has been shown that contextuality is linked to the computational

advantage of quantum computers, which is an application of quantum technologies

that promises speed-ups over classical computers. Anders and Browne were the first

to note that correlations in quantum systems can be seen as a source of computational

power in the context of measurement-based quantum computation (MBQC) [7].

Raussendorf strengthened this connection by showing that the computational power

of quantum correlations is linked to the degree of contextuality in the quantum

state [8]. Howard et al. [9] showed that contextuality is necessary for magic state

distillation [10], which is a key step in the realisation of fault-tolerant universal

quantum computation via the error-correcting scheme known as the surface code [11].

On the other hand, human languages exhibit another form of contextuality,

where the meaning of a word or phrase can depend on the context in which it is used.

However, this form of contextuality differs from that found in quantum physics, as

the change in meaning arises from the causal influence of the context. For example,

when a reader interprets the phrase “slippy bank”, they first see the word “slippy”

and then the word “bank”. The meaning of “bank” is casually influenced by the

preceding word “slippy”, leading the reader to interpret “bank” as the side of a

river rather than a financial institution. This type of contextuality is more akin to

signalling in quantum physics, where information can be transmitted from one part of

a system to another. Hence, disambiguation is a central challenge in natural language

processing (NLP), since the meaning of a word or phrase can vary depending on its

context and, at times, the common sense or background knowledge of the reader.

This linguistic contextuality can be seen as a form of quantum contextuality,
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where the meaning of a word or phrase is not fixed but depends on the context in

which it is used. This has led to the idea of formalising ambiguity in natural language

through the lens of quantum contextuality, with the hope of using this formalism to

develop new methods for natural language processing.

In this thesis, we make a step towards this goal by uncovering a form of quantum

contextuality in a type of ambiguity known as anaphoric ambiguity, which arises

when a word or phrase refers to another word or phrase that appears earlier in the

text. We construct explicit examples of ambiguous English sentences and show that

they exhibit quantum contextuality. In doing so, we shed light on the quantum nature

of natural language understanding and pave the way for quantum-inspired methods

for natural language processing.

Structure of the thesis
Part I of this thesis introduces the necessary background knowledge used in the rest

of the thesis.

• Chapter 1 introduces the basic concepts in quantum physics that are used in

this thesis.

• Chapter 2 reviews the literature on natural language processing and in particu-

lar coreference resolution.

• Chapter 3 introduces the concept of contextuality and related concepts in

quantum physics.

Part II presents the main findings of this thesis, which involve demonstrating quantum

contextuality within natural language and initial results on making use of contextual-

ity to evaluate language models.

Published Contributions
This thesis contains results that have been published in the following paper:

• Title: Generalised Winograd Schema and its Contextuality

Authors: Kin Ian Lo, Mehrnoosh Sadrzadeh and Shane Mansfield



List of Tables 28

Published in: EPTCS as part of the proceedings of the 20th International

Conference on Quantum Physics and Logic (QPL 2023)

Publication date: 2023

Material presented in thesis in: Chapter 7

• Title: A Model of Anaphoric Ambiguities using Sheaf Theoretic Quantum-

like Contextuality and BERT

Authors: Kin Ian Lo, Mehrnoosh Sadrzadeh and Shane Mansfield

Published in: EPTCS as part of the Proceedings End-to-End Compositional

Models of Vector-Based Semantics

Publication date: 2022

Material presented in thesis in: Chapter 7

• Title: Developments in Sheaf-Theoretic Models of Natural Language Ambi-

guities

Authors: Kin Ian Lo, Mehrnoosh Sadrzadeh and Shane Mansfield

Published in: EPTCS as part of the proceedings of the 13th International

Workshop on Developments in Computational Models of (DCM 2023)
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Material presented in thesis in: Chapter 6
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Submitted to: Proceedings of the Royal Society A
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Chapter 1

Quantum Mechanics

The study of the quantumness of physical systems dates back to the 19th century,

when the physics community was puzzled by the ultraviolet catastrophe, where

classical physics predicted that the electromagnetic heat radiation would scale to

infinite energy at high frequencies. It was later resolved by the German physicist

Max Planck in 1900, who proposed that energy is quantised, and that the energy of

a photon is proportional to its frequency [12]. This was a departure from classical

physics, in which every physical system was assumed to be composed of continuous,

infinitely divisible quantities.

In 1905, Albert Einstein successfully explained the photoelectric effect using

Plank’s quantum hypothesis [13], for which he was awarded the Nobel Prize in

Physics in 1921. The next big step was De Broglie’s hypothesis in 1924, which stated

that not only light has both wave-like and particle-like properties, but that particles

also exhibit wave-like behaviour [14]. Waves, unlike particles, are able to interfere

and diffract, leading to the development of quantum mechanics. In the following

years, several physicists made crucial contributions to the field. Erwin Schrödinger

developed wave mechanics and his famous equation describing the evolution of

quantum systems [15]. Werner Heisenberg formulated matrix mechanics and the

uncertainty principle [16, 17]. Paul Dirac unified these approaches and developed the

bra-ket notation widely used in quantum mechanics today [18]. John von Neumann

formalised these ideas into a comprehensive mathematical framework making use of

Hilbert spaces and operators by the early 1930s [19].
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A key concept in quantum mechanics is the description of quantum systems

using vectors in a Hilbert space, and observables as operators acting on these vectors.

Composite systems are described using the tensor product of the individual systems’

state spaces. These basic concepts will be introduced in the next section.

In the rest of this chapter, I will give a brief overview of the basic concepts of

orthodox quantum mechanics used in the text book by Nielsen and Chuang [20].

Quantum States In quantum mechanics, the state of a physical system is

described by a vector in a complex vector space known as a Hilbert space. Vectors,

or quantum states, are denoted by the ket notation |ψ⟩, and the corresponding dual

vectors are denoted by the bra notation ⟨ψ|. The inner product of a ket and a bra is

written as ⟨ψ|φ⟩, which is a complex scalar number. A state is called normalised if

its inner product with itself is 1, i.e. ⟨ψ|ψ⟩= 1.

For a simple two-level quantum system (like the spin of an electron or polariza-

tion of a photon), this state can be represented as:

|ψ⟩= α|0⟩+β |1⟩

where |0⟩ and |1⟩ are the orthonormal basis states (often referred to as com-

putational basis in the context of quantum computing), and α and β are complex

numbers that satisfy the normalization condition |α|2 + |β |2 = 1. This state |ψ⟩
is known as a quantum bit or qubit, the fundamental unit of quantum information.

The fact that the state is a linear combination of basis states is what allows for the

description of superposition.

Generally speaking, the state of a quantum system can be written as a linear

combination of basis states in the form:

|ψ⟩= ∑
i

αi|i⟩

where |i⟩ are basis states and αi are complex coefficients satisfying the normalization

condition ∑i |αi|2 = 1.

Quantum Measurement
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Measurement in quantum mechanics is described by a kind of mathematical

operations known as observables, which are linear operators acting on the Hilbert

space. Measurement made on a quantum system against an observable will yield one

of the eigenvalues of the observable, and the system will collapse to the corresponding

eigenstate. Hence, a proper observable A must satisfy the following properties:

• be diagonalizable, i.e. have a complete set of eigenvectors,

• have real eigenvalues,

• have mutually orthogonal eigenvectors.

It turns out these properties are equivalent to the operator being Hermitian: A = A†.

Hence, we say that any valid observable must be an Hermitian operator.

The probability of measuring a particular eigenvalue ai of an observable A from

a state |ψ⟩ is given by the Born rule:

P(ai) := |⟨i|ψ⟩|2 = ⟨ψ|i⟩⟨i|ψ⟩

where |i⟩ is the eigenvector corresponding to the eigenvalue ai.

Sometimes we would be interested in the expectation value of an observable A

in a state |ψ⟩, which is given by:

⟨A⟩= ⟨ψ|A|ψ⟩.

Since the observable is Hermitian, we can write it as a sum of its eigenvalues and

eigenvectors (the eigen-decomposition):

A = ∑
i

ai|i⟩⟨i|.
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Rewriting the expectation value in terms of the eigen-decomposition gives

⟨A⟩= ⟨ψ|A|ψ⟩

= ⟨ψ|
(

∑
i

ai|i⟩⟨i|
)
|ψ⟩

= ∑
i

ai⟨ψ|i⟩⟨i|ψ⟩

= ∑
i

aiP(ai),

which is the weighted average of the eigenvalues of the observable, where the weights

are the probabilities of measuring the corresponding eigenvalues.

A commonly used observable in the Pauli-Z operator, which is defined as:

Z = |0⟩⟨0|− |1⟩⟨1|,

where the eignvalue of |0⟩ is 1 and the eigenvalue of |1⟩ is -1. However, in the field

of quantum computing, we often use a slightly variant of the Pauli-Z operator, which

is defined as:

M = 0 |0⟩⟨0|+1 |1⟩⟨1|= |1⟩⟨1|,

where the eigenvalue of |0⟩ is 0 and the eigenvalue of |1⟩ is 1.

As an example, consider a single qubit in the state:

|ψ⟩=
√

1
3
|0⟩+

√
2
3
|1⟩.

To measure this qubit in the computational basis {|0⟩, |1⟩}, we use the observ-

able M = |1⟩⟨1|. The probability of measuring the eigenvalue 0 and corresponding

state |0⟩ is:

P(0) = |⟨0|ψ⟩|2 =
∣∣∣∣ 1√

3

∣∣∣∣2 = 1
3
.

Similarly, the probability of measuring the eigenvalue 1 and corresponding state
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|1⟩ is:

P(1) = |⟨1|ψ⟩|2 =
∣∣∣∣∣
√

2
3

∣∣∣∣∣
2

=
2
3
.

The expectation value of the observable M in the state |ψ⟩ is:

⟨M⟩= ⟨ψ|M|ψ⟩= ⟨ψ|1⟩⟨1|ψ⟩= 2
3
.

This way of interpreting measurement in quantum mechanics is known as

the Measurement Postulate, which states that the outcome of a measurement is

probabilistic, and the state of the system collapses to the eigenstate corresponding to

the measured eigenvalue.

That concludes the introduction to measurement in quantum mechanics, which

is critical to the understanding of the concept of contextuality, which will be discussed

later in this thesis.

Composite Systems and Entanglement The state of a composite system is

described by the tensor product of the individual systems’ states, where a tensor

product of two states |a⟩ and |b⟩ is defined as:

|a⟩⊗ |b⟩ := |a,b⟩ := |ab⟩

Superposition of composite systems like above is what allows for the phenomenon of

entanglement, which is a unique quantum phenomenon where the quantum states of

two or more particles become correlated in such a way that the state of each particle

cannot be described independently of the state of the others, even when the particles

are separated by large distances. As an example, consider the equal superposition of

|00⟩ and |11⟩:
|Φ+⟩= 1√

2
(|00⟩+ |11⟩),
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which is one of the four Bell states. The rest of the Bell states are:

|Φ−⟩= 1√
2
(|00⟩− |11⟩),

|Ψ+⟩= 1√
2
(|01⟩+ |10⟩),

|Ψ−⟩= 1√
2
(|01⟩− |10⟩).

The Bell states are maximally entangled states, and hence plays a crucial role in

quantum information theory. A composite state is non-entangled or separable if

it can be written as a product of the individual systems’ states. One example of a

separable state is:

|ψ⟩= 1√
2
(|00⟩+ |10⟩) = 1√

2
(|0⟩+ |1⟩)⊗|0⟩= |+⟩⊗ |0⟩,

for it can be written as a product of the plus state |+⟩= 1√
2
(|0⟩+ |1⟩) and the zero

state |0⟩.
State evolution and Quantum Gates The evolution of quantum states is determined

by the Hamiltonian H of the system, which is a Hermitian operator whose eigenvalues

correspond to the energy levels of the system. The time evolution of a quantum state

|ψ(t)⟩ is given by the Schrödinger equation:

iℏ
d
dt
|ψ(t)⟩= H|ψ(t)⟩,

where ℏ is the reduced Planck constant. The solution to this equation is given by the

unitary operator:

U(t) = e−iHt/ℏ,

which is known as the time evolution operator. The time evolution of a quantum

state is then given by:

|ψ(t)⟩=U(t)|ψ(0)⟩.

The unitarity of the time evolution operator ensures that the total probability of all

possible outcomes remains 1, that is, ⟨ψ(t)|ψ(t)⟩= 1 for all t.
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In quantum computing, the continuous time evolution is abstracted into discrete

quantum operations or gates, which are unitary operators acting on the state space of

the system.

The first gate we will introduce is the identity gate, which is defined as:

I = |0⟩⟨0|+ |1⟩⟨1|=

1 0

0 1

 ,

which leaves the state of the system unchanged.

Another set of commonly used gates are the Pauli gates, which are defined as:

X = |0⟩⟨1|+ |1⟩⟨0|=

0 1

1 0

 ,

Z = |0⟩⟨0|− |1⟩⟨1|=

1 0

0 −1

 ,

Y = iXZ = i(|0⟩⟨1|− |1⟩⟨0|) =

0 −i

i 0

 .

The Pauli-X gate, also known as the bit-flip gate, swaps the amplitudes of the

basis states |0⟩ and |1⟩. The Pauli-Z gate, also known as the phase-flip gate, leaves

the basis state |0⟩ unchanged while flipping the sign of the basis state |1⟩. The

Pauli-Y gate is less intuitive but could be thought as a combination of the bit-flip and

phase-flip gates up to a global phase factor.

The Pauli gates are both unitary and Hermitian. That means they are gates as

well as Hamiltonians. For example, the evolution operator generated by the Pauli-X

gate is given by:

UX(t) = e−iXt/ℏ,

which can be interpreted as a rotation of the state vector around the X-axis of the
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Bloch sphere.

Another commonly used gate is the Hadamard gate, which is defined as:

H =
1√
2
(X +Z) =

1√
2

1 1

1 −1

 .

One useful property of the Hadamard gate is that it maps the basis states to the

plus and minus states:

H|0⟩= |+⟩= 1√
2
(|0⟩+ |1⟩),

H|1⟩= |−⟩= 1√
2
(|0⟩− |1⟩).

So far we have introduced common single-qubit gates. In quantum computing,

we are often interested in entangled states, which require the use of multi-qubit gates.

One of the most important multi-qubit gates is the CNOT gate, which is a two-qubit

gate that flips the second qubit if the first qubit is in the state |1⟩. The CNOT gate is

defined as:

CNOT = |0⟩⟨0|⊗ I + |1⟩⟨1|⊗X =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

To prepare the Bell state |Φ+⟩, we can start with the state |00⟩ and apply the

Hadamard gate to the first qubit followed by the CNOT gate with the first qubit as

the control and the second qubit as the target. Explicitly, the preparation of the Bell
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state |Φ+⟩ is given by:

|Φ+⟩= CNOT(H ⊗ I)|00⟩

= CNOT
(

1√
2
(|0⟩+ |1⟩)⊗|0⟩

)
= CNOT

(
1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(|00⟩+ |11⟩).

To summaries, we have introduced the basic concepts of quantum mechanics,

including quantum states as vectors in a Hilbert space, quantum measurements of

observables, composite systems and entanglement, and quantum gates for state

manipulation. In particular, quantum measurement is a crucial for making sense of

the examples discussed in the later chapters, where we will explore the concept of

contextuality in quantum physics and more broadly in fields other than physics.

I will wrap up this chapter by introducing the four postulates of quantum

mechanics, which are the axioms that form the foundation of modern quantum

theory. The postulates are as follows:

1. Postulate 1: The state of an isolated quantum system is described by a vector

|ψ⟩ in a complex vector space known as a Hilbert space.

2. Postulate 2: The evolution of the state of a closed quantum system |ψ⟩ is

described by a unitary operator U acting on the state space:

|ψ(t)⟩=U(t)|ψ(0)⟩.

3. Postulate 3: Quantum measurement of the observable A correspond to

collapsing the state |ψ⟩ to one of the eigenstates |i⟩ of A with probability

P(ai) = |⟨i|ψ⟩|2 (Born rule).

4. Postulate 4: The state of a composite system is described by the tensor product

of the individual systems’ states: |ψ⟩= |ψ1⟩⊗ |ψ2⟩⊗ · · · |ψn⟩.
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Natural Language Understanding

Language is a cornerstone of human civilization, enabling communication to organise

complex societies and the transfer and accumulation of knowledge across generations.

Teaching machines to understand human languages allows for a more natural way for

humans to interact with computers, and allows machines to tap into the vast amount

of information accumulated in text written in numerous human languages. Machine

understanding of human languages can also foster communication between people

who speak different languages, and can help bridge the digital divide by making

information more accessible to people less familiar with technology. In recent years,

the field of Natural Language Processing (NLP) has made significant strides in

developing transformer-based models [21] that can understand and generate human

language, paving the way for a new era of human-computer interaction.

The significance of language understanding in Artificial intelligence is under-

scored by the Turing Test [22], proposed by Alan Turing in the 1950s, which aims

to assess whether a machine can exhibit intelligent behaviour similar to, or indistin-

guishable from, that of a human. The field of Natural Language Processing (NLP)

has a rich history that spans several decades, evolving alongside advancements in

better computational resources and innovation in algorithms and machine learning

techniques.

The origins of NLP can be traced back to the 1950s. One of the earliest and most

famous experiments in machine translation was the Georgetown-IBM experiment

in 1954 [23, 24]. By making use of 6 hand-crafted rules and the dictionary of
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250 lexical items between the two languages, the program was able to translate 60

carefully chosen Russian sentences into English, demonstrating the feasibility of

machine translation, but it did not scale. Figure 2.1 demonstrates the flowchart used

in the translation system and a few examples of the translations produced by the

system are shown below:

Russian sentence English Translation

Качество угля определяется его калорийно-

стью.

The quality of coal is determined by

calory content.

Крахмал вырабатывается механическим пу-

тем из картофеля.

Starch is produced by mechanical

method out of potatoes.

Величина угла определяется отношением

длины дуги к радиусу.

Magnitude of angle is determined by

the relation of length of arc to radius.

Мы передаем мысли посредством речи.
We transmit thoughts by means of

speech.

Железо добывается из руды химическим про-

цессом.

Iron is obtained out of ore by chemi-

cal process.

Динамит приготовляется химическим путем

из нитроглицерина с примесью инертного

материала.

Dynamite is prepared by chemical

method out of nitroglycerine with ad-

mixture of inert material.

Военный суд приговорил сержанта к лише-

нию гражданских прав.

Military court sentenced the sergeant

to deprival of civil rights.

Throughout the 1960s and 1970s, NLP research continue to focused on rule-

based systems. These systems relied on hand-crafted rules to parse and understand

language. Notable projects during this era included ELIZA [25], a rule-based

chatbot that could engage in dialogue by pattern matching and substitution, and

SHRDLU [26], a program that could understand and execute commands in a simpli-

fied blocks world.

ELIZA was the first chatbot that could engage in a conversation with a human

user that made some believe that the program was truly intelligent. It was developed

by Joseph Weizenbaum at MIT in 1966 and was designed to simulate a Rogerian
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Figure 2.1: The flowchart of the Georgetown-IBM translation system. Image taken from
Figure 1 in [1].

psychotherapist. An ELIZA response is generated by transforming the user’s input

using a set of rules. For example, if the user’s input is “I am sad”, ELIZA will match

it with the pattern “I am (.*)” and generate the response “How long have you been
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$1?”, where $1 is a placeholder for the captured text “sad”. The following is my

conversation with ELIZA which starts with me expressing my struggles to write this

exact thesis:

ELIZA

Me: I am struggling to write my thesis.

ELIZA: How long have you been struggling to write your thesis?

Me: Far too long to be honest.

ELIZA: I think you are blocking what you really want to say.

Me: How can I be motivated?

ELIZA: I’m not convinced that you truly want to be motivated.

Me: I truly want to be motivated.

ELIZA: I’m not sure I understand you fully.

Me: It’s ok.

ELIZA: OK... “How can you be motivated”. Tell me more.

The bolded text indicates the matched patterns and the responses generated

by ELIZA using the (I am (.*), How long have you been $1?) rule (where

$1 is the captured text), and the pronoun substitution rule (your, my). Eventually

ELIZA failed to believe that I truly want to be motivated to write this thesis.

The 1980s and 1990s saw a paradigm shift towards statistical methods in NLP.

This approach, driven by the increasing availability of textual data in digital forms

and computational power, relied on probabilistic models trained on large corpora.

Key developments included Hidden Markov Models for speech recognition [27]

and part-of-speech tagging [28], statistical machine translation models [29, 30], and

N-gram language models for text prediction and generation[31].

From the 2010s onwards, neural network-based models have become increas-

ingly prevalent in NLP. In particular, Recurrent Neural Networks (RNNs) [32] and

Long Short-Term Memory (LSTM) [33] have been widely used for sequence mod-

elling tasks like machine translation and sentiment analysis due to their ability to

capture long-range dependencies in sequences. These advancements have dramati-
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cally improved performance on various NLP tasks, including machine translation,

sentiment analysis, and question answering. The attention mechanism [34] was intro-

duced in 2014 to improve the performance of neural machine translation models by

allowing the model to focus on longer-range dependencies in the input sequence. In

fact, the Transformer architecture [21] was introduced in 2017, which demonstrated

the effectiveness of self-attention mechanisms in capturing long-range dependencies

in sequences, without the need for recurrent connections. The Transformer archi-

tecture has since become the basis for many state-of-the-art NLP models, including

BERT [35], GPTs [36], T5 [37], LLamas [38], and the recent state-of-the-art reason-

ing model DeepSeek R1 [39] which achieved on-par performance with OpenAI’s

4o model on the mathematical reasoning benchmarks AIME 2024 and MATH-500.

For instance, see below the same conversation as the one above but instead with

DeepSeek:

Conversation with DeepSeek V3

Me: I am struggling to write my thesis.

DeepSeek V3: Writing a thesis can be a challenging and overwhelming pro-

cess, but breaking it down into manageable steps can make it more achievable.

Here are some tips to help you get started and stay on track:

1. Clarify Your Topic and Structure

Ensure your research question or thesis statement is clear and focused. Create

an outline with chapters or sections (e.g., Introduction, Literature Review,

Methodology, Results, Discussion, Conclusion). Break each section into

smaller tasks to make progress feel less daunting.

2. Set Realistic Goals

Set daily or weekly writing goals (e.g., “Write 500 words today” or “Complete

the Literature Review by Friday”). Use tools like a planner, calendar, or apps

(e.g., Trello, Notion) to track your progress.

3. Start Writing, Even If It’s Imperfect

Don’t aim for perfection in the first draft. Just get your ideas down on paper.
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Use placeholders for sections you’re unsure about (e.g., “Add citation here”

or “Expand on this point later”).

4. Work on Sections Out of Order

If you’re stuck on one section, move to another. For example, if the Introduc-

tion feels overwhelming, start with the Methodology or Literature Review.

Writing something—anything—can help build momentum.

5. Schedule Regular Writing Time

Dedicate specific blocks of time to writing, even if it’s just 30 minutes a day.

Find a time of day when you’re most productive and stick to it.

6. Seek Feedback Early

Share drafts with your advisor, peers, or a writing group to get constructive

feedback. Don’t wait until the end to seek input—early feedback can save you

time and effort.

7. Manage Perfectionism and Procrastination

Remember that your thesis doesn’t have to be perfect; it just needs to be done.

Break tasks into smaller steps to avoid feeling overwhelmed. Use techniques

like the Pomodoro Technique (25 minutes of focused work, 5-minute breaks)

to stay productive.

8. Take Care of Yourself

Writing a thesis is a marathon, not a sprint. Take breaks, exercise, and get

enough sleep. Avoid burnout by setting boundaries and rewarding yourself for

milestones.

9. Use Resources

Check if your university offers writing workshops, thesis boot camps, or one-

on-one consultations. Use reference management tools like Zotero, Mendeley,

or EndNote to organise citations. Read other theses in your field to get a sense

of structure and style.

10. Stay Motivated

Remind yourself why your research matters and how far you’ve come. Cel-
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ebrate small wins, like finishing a section or hitting a word count goal. If

you’re feeling stuck on a specific part of your thesis, let me know, and I can

help you brainstorm or provide more targeted advice. You’ve got this!

Neural translation services are now widely used for communication, making it

easier for people to interact across different languages. They are also used to create

parallel corpora for businesses and government organizations. Popular tools include

Google Translate, while platforms like Lokalise and Weglot focus on low-resource

languages. Other tools like eLUNA and eTranslation are designed for use by the

United Nations and the European Commission.

In summary, at the time of writing this thesis, the field of NLP has made

significant progress in developing models that can understand and generate natural

language text. These models have been applied to a wide range of tasks, including

machine translation, sentiment analysis, question answering, code generation, and

problem-solving.

The recent advancements in NLP have been driven by the availability of large-

scale datasets, powerful computational resources, and innovative algorithms. How-

ever, there are still many challenges to be addressed in NLP, including the need for

more explainable and interpretable models, to shed a light into the inner workings of

neural learning models, and the energy efficiency of language models.

2.1 Ambiguity in Natural Language

Ambiguity is a major challenge in NLP. Words and sentences can have multiple

meanings depending on the context in which they are used. For example, the word

“bank” can refer to a financial institution or the side of a river. Similarly, “book”

might refer to the physical object or the content within it. These examples illustrate a

type of ambiguity known as lexical ambiguity, where a word has multiple meanings,

and the intended meaning must be inferred from the context in which it is used. In

particular, the first example (bank) is an example of homonymy, where two words

have the same form but different meanings, while the second example (book) is an
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example of polysemy, where a single word has multiple related meanings, called

senses.

Word-level ambiguity is also known as lexical ambiguity. Early attempts to

resolve this issue led to the formulation of Word Sense Disambiguation (WSD), a

problem first introduced by Warren Weaver [40]. In the 1950s, initial solutions were

predominantly rule-based, using manually curated resources such as dictionaries and

thesauri. By the 1970s, researchers began incorporating semantic roles—such as

hypernymy and hyponymy—into disambiguation systems. 1980’s and 90s saw the

introduction of networks of semantic roles, leading to the development of resources

such as WordNet [41], FrameNet [42], and ConceptNet [43] – large-scale graphs

where the nodes are words and the edges are semantic relations. In particular, Word-

Net provided a comprehensive lexical database for English, FrameNet focused on

verb-centric frames and their participants, and ConceptNet offered a commonsense

knowledge graph emphasizing conceptual relationships. Statistical methods emerged

in the late 20th century, using clustering techniques on large corpora to automati-

cally classify word meanings based on context. Since 2010, these approaches have

been significantly advanced by deep neural network algorithms and specifically

transformer models such as BERT [35].

Coreference ambiguity is another type of ambiguity that arises when a pronoun

or noun phrase refers to a previously mentioned entity. For example, the sentence

“John sleeps. He snores.” contains two mentions of the same entity, the human being

“John”. The first mention is simply “John” in the first sentence and the second is “He”

in the second sentence. In fact, this is an example of an anaphor, where “He” refers

back to “John”. An anaphor is a noun phrase (usually a pronoun) that refers back

to a previously mentioned noun phrase. On the other hand, a cataphor is a noun

phrase that refers forward to a noun phrase that will be mentioned later in the text.

For example, in the sentence “When he arrived, John was tired.”, the pronoun “he”

is a cataphor that refers forward to “John”. Cataphora usually occurs in compound

sentences where the pronoun was mentioned in the first clause and the referent is

mentioned in the second clause. The task of coreference resolution is to determine



2.2. Winograd Schema Challenge 47

which mentions in a text refer to the same entity.

Early work on coreference resolution focused on rule-based systems that used

hand-crafted rules to identify coreferent mentions based on syntactic and semantic

information. Hobbs [44] introduced a syntactic algorithm for pronoun resolution

using parse trees and a set of semantic rules on gender, number, and animacy (the

distinction between living and non-living entities). However, Hobbs’ algorithm was

limited to simple pronoun resolution and did not handle more complex cases such

as those involving ellipsis, as “John played the piano so did Mary.” It also did not

encode thematic preferences such when the subject of the first sentence will also

often be the reference of the subject pronoun of the second one, as in “John met Bill

in a Café. He bought some coffee.”. In this example, almost certainly “He” refers to

“John” and not “Bill”. Soon after, Lappin and Leass [45] proposed a more general

algorithm for pronoun resolution that used a set of constraints based on syntactic

and semantic information to identify coreferent mentions. Neither of these systems

and none of the ones the improvements that followed could deal with cases where

common sense reasoning and world knowledge helped. As a result, they could not

resolve many of the cases that were easy for humans, as in “The trophy did not fit in

the suitcase. It was too small.”. We will see below that this weakness led to a famous

challenge argued to be a better test of machine intelligence than Turing’s test.

2.2 Winograd Schema Challenge

Commonsense reasoning, the inherent human capacity to logically comprehend the

world around us, has long been a focal point in the field of artificial intelligence, with

the aim to cultivate this ability in machines.

The Winograd Schema Challenge (WSC) emerged as a measure of this com-

monsense reasoning capability, proposed in 2011 by Hector Levesque et al. [46]. The

challenge was inspired by Terry Winograd’s seminal paper [47], where he contended

that syntax alone falls short in the interpretation of natural language, necessitating

common sense or world knowledge as well. Every Winograd schema is a pair of

sentences that differ only in one word or phrase, and the task is to determine the
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referent of an ambiguous pronoun in both sentences. The WSC is a collection of

such sentence pairs, demanding common-sense reasoning abilities to disambiguate

the pronouns.

The classic example of a Winograd schema, originally constructed by Winograd

himself, is the following pair of sentences:
City Councilmen Example

The city councilmen refused the demonstrators a permit because they feared

violence.

The city councilmen refused the demonstrators a permit because they advo-

cated violence.

Note that the two sentences differ only in the adjective feared and advocated.

The ambiguous pronoun they can either refer to the city councilmen or the demon-

strators. In the first sentence, it can be inferred through commonsense reasoning

that the pronoun they refers to the city councilmen, as it aligns with the common

sense that city councilmen are the ones who tend to worry about violence and would

refuse a permit to prevent any violence in demonstrations. In the second sentence,

the pronoun they refers to the demonstrators, as it is within the common sense that

demonstrators may advocate for violence which would lead to the refusal of a permit

for a demonstration.

Another classic example of a Winograd schema proposed by Levesque et al. [46]

is the following pair of sentences:
Trophy-Suitcase Example

The trophy doesn’t fit into the suitcase because it is too small.

The trophy doesn’t fit into the suitcase because it is too large.

The pronoun it in the first sentence refers to the trophy, while in the second

sentence, it refers to the suitcase. Answering this question correctly requires under-
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standing the common sense that an object larger than the container cannot fit inside

it.

Since a Winograd Schema is a pair of sentences that differ slightly, we can

compactly represent the pair of sentences as well as the answers in the following

compact format:

Winograd Schema Compact Notation

The trophy doesn’t fit into the suitcase because it is too [small/large]. What

is too [small/large]?

Answer: The suitcase/the trophy.

Here the pair of square brackets encloses the two possible word choices, each

leading to a different sentence. Usually we refer to the first option as the special

word and the second option as the alternate word. The answers to both options are

provided in the same order as the options in the square brackets. This notation will

be employed throughout the paper.

The correctness of the answer to a Winograd schema question is unambiguous

and can be judged by determining whether the correct referent of the ambiguous

pronoun is identified. A machine that achieves accuracies on-par with humans

on the WSC is considered to have human-level commonsense reasoning abilities.

In contrast, the Turing Test has been criticised for its subjective and ambiguous

evaluation criteria. Originally proposed as the imitation game by Turing [22], the

test involves a human judge engaging in a textual conversation with a machine and a

human. The goal is for the judge to determine which participant is the machine. If the

judge or a panel of judges cannot reliably distinguish the machine from the human,

the machine is considered to have passed the test. However, the unrestricted nature of

the Turing Test allows for potential exploitation, as machines can rely on deceptive

tactics or avoid answering certain questions to obscure their non-human nature. In

fact, for a machine to pass the test, it must deceive about its identity, as machines

inherently lack biological attributes. If questioned about physical traits, such as skin

colour or heart rate, the machine is compelled to fabricate responses to convincingly
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pose as a human. Due to its more straightforward evaluation process compared to

the Turing Test, the WSC was proposed as a more practical and objective alternative

for assessing machine intelligence.

A major issue with the WSC is that it is over-constrained - it is surprisingly

difficult to construct examples of it, due to the numerous requirements that must

be satisfied. To see why this is the case, let us consider the requirements of a valid

Winograd schema:

WSC Requirements

1. A Winograd Schema comprises a pair of sentences that differ slightly

from each other. The first sentence includes a special word which, when

replaced by an alternate word, yields the second sentence. For instance, in the

trophy-suitcase example, small is the special word, and large is its alternate.

2. The sentences should contain two noun phrases. In the trophy-suitcase

example, the trophy and the suitcase serve as the two noun phrases.

3. A pronoun, which agrees with the two noun phrases in number and gender,

must be present in the sentences. For example, in the trophy-suitcase scenario,

the pronoun it aligns with both the trophy and the suitcase regarding number

and gender.

4. The pronoun’s referent should be easily identifiable from a natural read-

ing of the sentence, and the correct referent should differ between the two

sentences.

5. Each sentence in the pair should be fluid and natural to read, to the extent

that they could feasibly appear in regular text sources like news articles or

Wikipedia pages.

The outlined requirements ensure the preservation of both the linguistic structure

and the test’s integrity.

1. The first requirement ensures grammatical consistency across the pair of

sentences.

2. The fourth requirement necessitates a change in the correct referent of the
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pronoun when the special word is replaced with the alternate. This stipulation

indicates that the grammatical structure alone does not determine the correct

pronoun referent.

3. The fifth requirement safeguards the authenticity of the language used in the

test, ensuring that it remains aligned with naturally occurring language.

Crafting valid examples of the Winograd schema is a complex and time-consuming

task due to the set restrictions and requirements. In the original paper of WSC, only

100 expert-crafted schemas were provided. The set of schemas was later expanded to

273 examples (known as WSC273) and further to 285 examples (WSC285), though

creating valid schemas remained challenging. Below are some examples from the

original 100 schemas:

Schemas from the original WSC paper

1. The city councilmen refused the demonstrators a permit because they

[feared/advocated] violence. Who [feared/advocated] violence?

Answer: The city councilmen/the demonstrators.

2. The trophy doesn’t fit into the brown suitcase because it’s too [small/large].

What is too [small/large]?

Answer: The suitcase/the trophy.

3. Joan made sure to thank Susan for all the help she had [given/received].

Who had [given/received] help?

Answer: Susan/Joan.

4. Paul tried to call George on the phone, but he wasn’t [successful/available].

Who was not [successful/available]?

Answer: Paul/George.

5. The lawyer asked the witness a question, but he was reluctant to [an-

swer/repeat] it. Who was reluctant to [answer/repeat] the question?

Answer: The witness/the lawyer.
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6. This book introduced Shakespeare to [Ovid/Goethe]; it was a fine selection

of his writing. A fine selection of whose writing?

Answer: Ovid/Shakespeare

7. Alice looked for her friend Jade in the crowd. Since she always [has good

luck/wears a red turban], Alice spotted her quickly. Who always [has good

luck/wears a red turban]?

Answer: Alice/Jade

8. During a game of tag, Ethan [chased/ran from] Luke because he was "it".

Who was "it"?

Answer: Ethan/Luke

9. At the Loebner competition the judges couldn’t figure out which respon-

dents were the chatbots because they were so [advanced/stupid]. Who

were so [advanced/stupid]?

Answer: the chatbots/the judges.

10. The user changed his password from "GrWQWu8JyC" to "willow-towered

Canopy Huntertropic wrestles" as it was easy to [remember/forget].

What was easy to [remember/forget]? Answer: the password "Gr-

WQWu8JyC"/the password "willow-towered Canopy Huntertropic wres-

tles".

After the proposal of the WSC, attempts to solve it were made using various

methods, including feature-based approaches, neural networks, and language mod-

els. Sharma et al. [48] first focused on two particular categories of commonsense

reasoning: event-event causality and causal attributive. In the former, an event is the

cause of another event, while in the latter, an attribute is the cause of an event. For

example, in the sentence “Sid explained his theory to Mark but he could not convince

him”, the pronoun “he” refers to “Sid” because it is more likely that someone who

explains something to a person also could not convince that person. This is an

example of event-event causality. In the sentence “Pete envies Martin because he is
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very successful”, the pronoun “he” refers to “Martin” because it is more likely that

someone who is very successful is envied by others. This is an example of causal

attributive reasoning. The authors developed a semantic parser that could extract the

two categories of reasoning from an input sentence and used a knowledge hunting

method to identify commonsense relations in a large corpus. They achieved an

accuracy of 69% on a subset of 71 schemas of WSC282 which belonged to the two

said categories of reasoning.

Initial progress on the tackling the full WSC was made by Emami et al. in

2018 [49], who achieved a better-than-chance accuracy of 57.1% on WSC273 using

a more robust knowledge hunting framework. The advent of transformer models has

revolutionised the field of natural language processing and has become the state-of-

the-art approach for various tasks, including WSC. Sakaguchi et al. [50] achieved a

human-like accuracy of 90.1% using a fine-tuned RoBERTa model [51].

The WSC has suffered from the same problem that plagued the Turing Test –

there are weaknesses in the test that can be exploited without having to demonstrate

the desired human-level intelligence. Simply put, the WSC has been defeated [52].

It is even more so for the WSC precisely because of its ease of evaluation.

Proposals to increase the difficulty of the WSC, such as requiring the test-taker

to select a correct explanation for their answer from a list of options [53, 54],

emerged as potential solutions. However, these suggestions further complicate

the already challenging task of question set construction. An alternative could

involve requiring free-form explanations from the test-taker, though this would likely

introduce additional ambiguity and make the evaluation process more difficult.



Chapter 3

Contextuality

In the following, I will first give an overview of the history of contextuality in

quantum mechanics, and then discuss its manifestations in other domains. Two

different frameworks to study contextuality will be presented: the sheaf-theoretic

framework and the contextuality-by-default framework.

3.1 Contextuality in quantum mechanics
The study of contextuality originated in the early developments of quantum mechan-

ics, where the probabilistic behaviour of quantum systems seemed to defy classical

intuition. In the orthodox description of quantum mechanics, measurements on

quantum systems are intrinsically probabilistic. This raised the question whether

the probabilistic behaviour of quantum systems is due to our lack of knowledge of

the system’s hidden variables, or if it is an intrinsic property of the system itself.

The debate was initiated by the Einstein-Podolsky-Rosen (EPR) paradox, which

proposed a thought experiment involving a pair of entangled particles and demon-

strated that measurements on one particle can be used to predict the outcome of

measurements on the other particle deterministically [55]. The paradox comes from

the Heisenberg uncertainty principle, which states that the position and momentum

of a particle cannot be measured simultaneously with arbitrary precision. However,

in the EPR thought experiment, once one of the particle’s properties is measured, the

other particle’s property is determined. Hence, Heisenberg’s uncertainty principle

seems to be violated. EPR concluded that quantum mechanics was not complete and
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there should be some underlying hidden variables that determine the outcomes of

measurements on entangled particles. In modern language, the classical explanations

EPR sought were called realistic hidden variable theories. A theory is considered

to be realistic if it assigns definite values to observable features (observables) of a

system, regardless of acts of measurement. Classical physics had been built on this

natural assumption of realism but quantum mechanics seemed to challenge it. EPR

proposed such a realistic hidden variable theory for a pair of entangled photons but

concluded that the hidden variables must be non-local, that is, the particles must

communicate with each other instantaneously over arbitrarily large distances. This

phenomenon was later famously coined “spooky action at a distance” to argue for

the incompleteness of quantum mechanics.

Bohm proposed a simplified version of the EPR setup [56], making use of spins

instead of continuous properties like position and momentum. Bell used Bohm’s

version of the EPR setup of two entangled and spatially separated particles to derive

his famous theorem, which states that no local hidden variable theory can reproduce

all the predictions of quantum mechanics [3]. Kochen and Specker later proved

another no-go theorem for realistic hidden variable theories in a more general setting,

where they carefully designed an example which requires the hidden variable to

be dependent on the choice of the set of compatible measurements [4]. Such set

of compatible measurements are also known as a context. Contextuality refers to

the need for the hidden variable to depend on the context in which the system is

measured. Quantum physics is considered to be contextual precisely because any

realistic hidden variable theory that describes quantum systems must be contextual.

Contrary to a common misconception, the orthodox quantum mechanics [20] is

not contextual, as the probability of measuring a particular outcome is independent

of the context. Quantum mechanics is however non-realistic, as outcomes are not

deterministic but probabilistic according to the Born rule [57]. Therefore, a theory

of quantum physics can be either non-contextual or realistic, but not both at the

same time. There have been many attempts to construct realistic theories of quantum

physics, with the most famous one being the pilot-wave theory proposed by Louis de



3.1. Contextuality in quantum mechanics 56

Broglie [58], which was later mathematically formalised by David Bohm [59].

3.1.1 Bell’s inequalities

Bell’s inequalities are a type of inequalities in terms of measurement probabilities

that are satisfied by local realistic hidden variable theories but violated by quantum

mechanics. In this subsection, we will review CHSH inequality, which was derived

by Clauser, Horne, Shimony and Holt [5], which has been experimentally tested by

several groups [60, 61, 62, 63, 64].

The setting of the Bell-CHSH experiment is as follows: Two spatially separated

observers, Alice and Bob, each perform measurement on a shared pair of entangled

particles, which are commonly implemented using photons. The state of the pair

of particles is maximally entangled. An example of such a state is given by the

following Bell state:
1√
2
(|00⟩+ |11⟩)

Alice and Bob can each choose to measure their part of the state with one of two

incompatible observables, a1 and a2 for Alice and b1 and b2 for Bob. To be precise,

a1 and a2 are incompatible and so are b1 and b2, but a1 and b1 are compatible and so

are a2 and b2. In the traditional settings, the measurement outcomes are either −1

or +1 for each observable. Therefore, there are 4 possible measurement contexts:

{a1,b1}, {a1,b2}, {a2,b1}, and {a2,b2}. The Bell-CHSH inequalities are satisfied

by all local and real systems. There are 8 Bell-CHSH inequalities in total:

−2 ≤ S+++− :=+⟨a1b1⟩+ ⟨a1b2⟩+ ⟨a2b1⟩−⟨a2b2⟩ ≤ 2

−2 ≤ S++−+ :=+⟨a1b1⟩+ ⟨a1b2⟩−⟨a2b1⟩+ ⟨a2b2⟩ ≤ 2

−2 ≤ S+−++ :=+⟨a1b1⟩−⟨a1b2⟩+ ⟨a2b1⟩+ ⟨a2b2⟩ ≤ 2

−2 ≤ S−+++ :=−⟨a1b1⟩+ ⟨a1b2⟩+ ⟨a2b1⟩+ ⟨a2b2⟩ ≤ 2

The Bell-CHSH inequalities form a complete characterization of all local observa-

tions, i.e. a theory satisfies the Bell-CHSH inequalities if and only if the theory is

local.
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3.1.2 Leggett-Garg inequalities

Leggett-Garg inequalities [65] are a set of inequalities designed to test the principles

of macroscopic realism and non-invasive measurability in quantum mechanics. These

inequalities serve as temporal analogues to Bell’s inequalities, describing a single

system measured at different times rather than spatially separated systems.

These inequalities reveal a non-classical aspect of quantum systems known

as macroscopic realism, which posits that a macroscopic system with two or more

distinct states is always in one of those states at any given time.

Expressed in terms of correlation functions of measurements performed at

different times, the Leggett-Garg inequalities consider a system with two possible

states. Let Q(ti) represent the measurement outcome at time ti, where Q(ti) ∈
{−1,1}. The correlation function between measurements at times ti and t j is given

by ⟨Q(ti)Q(t j)⟩.

A typical form of the Leggett-Garg inequality is:

+⟨Q(t1)Q(t2)⟩+ ⟨Q(t2)Q(t3)⟩−⟨Q(t1)Q(t3)⟩ ≤ 1.

Similar to the Bell-CHSH inequalities, by flipping the signs of the observables, we

can derive a total of 4 Leggett-Garg inequalities:

+⟨Q(t1)Q(t2)⟩+ ⟨Q(t2)Q(t3)⟩−⟨Q(t1)Q(t3)⟩ ≤ 1,

+⟨Q(t1)Q(t2)⟩−⟨Q(t2)Q(t3)⟩+ ⟨Q(t1)Q(t3)⟩ ≤ 1,

−⟨Q(t1)Q(t2)⟩+ ⟨Q(t2)Q(t3)⟩+ ⟨Q(t1)Q(t3)⟩ ≤ 1,

−⟨Q(t1)Q(t2)⟩−⟨Q(t2)Q(t3)⟩−⟨Q(t1)Q(t3)⟩ ≤ 1.

In quantum mechanics, violations of the Leggett-Garg inequalities have been

observed, indicating that either macroscopic realism or non-invasive measurability,

or both, do not hold. This suggests that quantum systems cannot be fully described

by classical intuition, even at macroscopic scales.

In recent years, several experimental studies have provided compelling evidence
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for these violations. For example, experiments using superconducting qubits have

observed clear deviations from classical predictions [66], highlighting the intrinsic

quantum coherence in these systems. Similarly, tests performed with nuclear mag-

netic resonance (NMR) setups have shown that even nuclear spin systems exhibit

behaviour inconsistent with macroscopic realism [67]. Together, these results demon-

strated the fundamental role of quantum mechanics in describing the behaviour of

systems across different scales.

3.1.3 KCBS inequality

The KCBS inequality, named after Klyachko, Can, Binicioğlu, and Shumovsky [68],

is a simple way to demonstrate the contextuality of qutrit systems, such as a spin-1

system, without the need for entanglement among space-like separated systems.

The 5-cyclic scenario is defined as follows:

• Observables: X = {A1,A2,A3,A4,A5}.

• Contexts: M= {{A1,A2},{A2,A3},{A3,A4},{A4,A5},{A5,A1}}.

• Outcomes: O = {−1,+1}.

The KCBS inequality is expressed in terms of the expectation values of the

observables in each context:

+⟨A1A2⟩+ ⟨A2A3⟩+ ⟨A3A4⟩+ ⟨A4A5⟩+ ⟨A5A1⟩ ≥ −3,

Here, ⟨AiAi⊕1⟩ denotes the expectation value of the product of the outcomes of

the observables Ai and Ai⊕1 in the context {Ai,Ai⊕1}. The above inequality can be

violated by a qutrit system with five diachromatic observables Ai = 2Pi − I, where Pi

is a projector. The projects are arranged in a pentagonal configuration, where each

pair of neighbouring projectors are chosen to be orthogonal to ensure compatibility.

The state of the system is chosen to the eigenstate of ∑
5
i=1 AiAi⊕1 with the lowest

eigenvalue, which turns out to be 5−4
√

5 <−3, violating the KCBS inequality.

Similar to the Bell-CHSH inequalities, more KCBS inequalities can be derived

by considering flipping the signs of observables. Flipping the sign of one observable
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results in the sign switching of two terms in the sum. Hence the number of negative

signs in the sum must be even. The following are the full set of signs pattern of the

KCBS inequalities:

−−+++ −+−++ −++−+ −+++−

+−−++ +−+−+ +−++−

++−−+ ++−+−

+++−−

−−−−+ −−−+− −−+−− −+−−− +−−−−

For example, the signs pattern −+−++ corresponds to the following KCBS

inequality:

−⟨A1A2⟩+ ⟨A2A3⟩−⟨A3A4⟩+ ⟨A4A5⟩+ ⟨A5A1⟩ ≥ −3.

Lapkiewicz et al. [69] experimentally demonstrated the violation of the KCBS

inequality using a single photonic qutrit system. The KCBS inequality was also

tested and used a certification of quantum randomness in an ion-trap system [70].

3.2 Contextuality in other domains
We have seen that contextuality is not only limited to quantum mechanics, but also

exhibits in other domains such as psychology experiments. Indeed, the Bell-CHSH

inequality is not only violated by quantum mechanics, but also by other systems with

the PR box as a well-known example of a non-quantum system that violates Bell’s

inequalities.

3.2.1 Quantum cognition and psychology

Quantum cognition is a field that emerged in the early 2000s, using quantum mechan-

ics’ mathematical principles — like superposition, entanglement, and interference —

to model human cognition, particularly in decision-making, perception, and memory.

Traditional cognitive models often rely on classical probability but struggle with
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phenomena such as the conjunction fallacy and order effects, which defy classical ex-

pectations. Busemeyer and Pothos proposed quantum probability models to address

these anomalies [71]. Earlier attempts to apply quantum contextuality to cognition,

such as the work by Aerts et al. [72], claimed violations of the CHSH inequality in

concept combinations. However, these results were later shown to be flawed due to

the presence of signalling, which was not properly accounted for.

Quantum models have proven effective across cognitive domains. In decision-

making, they account for preference reversals and inconsistent patterns [73]. In

memory and language, quantum interference and contextuality have modelled as-

sociative recall and meaning ambiguities [74]. Contemporary studies also explore

potential links between quantum theory and neural processes, with future research

aiming at quantum cognitive neuroscience and broader applications in behavioural

science [75].

An important advancement in applying contextuality to psychology was the

development of the Contextuality-by-Default (CbD) theory by Dzhafarov and Ku-

jala [76, 77]. This framework provided a systematic way to analyse experiments in

which signalling is prevalent. In the CbD framework, signalling (also referred to as

direct influences) is explicitly treated, while contextuality is defined as the remaining

context-dependence that cannot be explained by these direct influences alone.

3.2.2 Linguistics

Wang et al. [78, 79] pioneered the application of contextuality to the study of lexical

ambiguity in natural language. By examining combinations of ambiguous subject-

verb or verb-object phrases, they constructed the Bell-CHSH scenario within the

domain of linguistics.

For example, the verb-object system {tap, box} × {pitcher, cabinet} induces

four distinct contexts: {tap, pitcher}, {tap, cabinet}, {box, pitcher}, and {box,

cabinet}. Each of these words can be interpreted in two different ways:
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Encoding tap box pitcher cabinet

0 touch put in boxes jug government

1 record fight baseball player furniture

One can view this system as a Bell-CHSH scenario, where the two verbs are

seen as Alice’s measurements and the two nouns as Bob’s measurements. The

outcomes are encoded as 0 and 1, representing the two possible meanings of the

words shown in the table above. The authors demonstrated that such a system can

exhibit contextuality. They also considered different contexts formed by the ordering

of the words in the phrases, such as “throw pitcher” and “pitcher throws”, and showed

that CbD contexutlity can be observed in these systems as well.



Chapter 4

Contextuality frameworks

There is a need of frameworks to study contextuality systematically that goes beyond

describing contextuality using the language of quantum mechanics. The objects of

study in these frameworks are only the empirically observed statistics of compatible

measurements and nothing else. It allows for a unified approach to study contextual-

ity in a way that is independent of the physical system or the context in which the

measurements are performed. One such framework is the sheaf-theoretic framework

proposed by Abramsky and Brandenburger [80], which makes use of the mathemati-

cal language of sheaves to formalise the global compatibility of locally compatible

observations. The other one is the contextuality-by-default framework proposed

by Dzhafarov and Kujala [77], which takes on an even more general approach by

considering random variables.

4.1 Sheaf-theoretic framework
Abramsky and Brandenburger introduced the sheaf-theoretic framework to unify the

study of non-locality and contextuality within a single mathematical formalism [80].

Part of their motivation was the realization that both phenomena can be understood

as obstructions to forming a single global probability distribution consistent across

the local probability distributions on sets of compatible measurements, which are

called contexts. Such idea could be traced back to the work of Fine [81] where he

showed that the following statements are equivalent:

1. A local hidden variable theory exists.
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2. There exists a global joint probability distribution that marginalises to the local

distributions.

The mathematical structure of sheaves naturally captures the notion of globally

compatible local data and the authors in [80] made use of sheaf theory to formalise

contextuality and non-locality in a unified way.

In the following, I will give a brief overview of sheaf theory and how it is used

to study contextuality.

4.1.1 Sheaf theory

Sheaf theory is a branch of mathematics that provides a formal framework for study-

ing local-to-global data living on some kind of space. The core idea of sheaf theory

is best understood through an example. A well-known example of the phenomenon

that local consistency does not imply global consistency is Penrose’s staircase, which

is a hypothetical staircase that appears to have steps that are all going down (when

viewed in the clockwise direction) but still manages to return to the same height after

a full turn.

Figure 4.1: A global view of the Penrose staircase.

The staircase is said to be locally consistent in the sense that a local view of the

staircase at any point is consistent with a physically possible staircase. Figure 4.2

shows four different local views of the staircase. Although each local view appears

consistent with a physically possible staircase, the global view constructed by gluing

them together creates an impossible staircase.
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(a) Top context (b) Right context

(c) Bottom context (d) Left context

Figure 4.2: Different local views of the Penrose staircase. Although each local view is with
a physically possible staircase, the global view pieced together from these local
views is not.

Sheaf theory provides a mathematical framework to study such phenomena.

Here I will briefly introduce the basic concepts of sheaf theory while referring to the

example of the Penrose staircase. First, we need to define what a presheaf is.

Definition 1 (Presheaf). Given a topological space X, a presheaf F on X is

defined such that

1. For each open subset U ⊆ X, there is a set F(U), whose elements are

called sections over U.

2. For each pair of open sets U and V such that V ⊆U, there is a restriction

map resU,V : F(U)→F(V ), which satisfies the following properties:
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(a) For every open set U, resU,U is the identity map on F(U).

(b) For every triple of open sets W ⊆V ⊆U, resV,W ◦ resU,V = resU,W .

Using terminology from category theory, the presheaf F : P(X)op → Set is a

contravariant functor from the category of open sets of X to the category of sets,

where P(X) is the poset of open sets in X and Set is the category of sets.

A presheaf starts with a topological space X , which in the case of the Penrose

staircase is a rectangular canvas on which the staircase is drawn. The topological

space X is by definition a collection of open sets, which can be structured into a

partially ordered set by set inclusion. The four visible regions of the Penrose staircase

in Figure 4.2 are examples of open sets in the space X . For each open set U in X , we

assign a set F(U) which is the set of all possible data that live on the open set U , and

elements in F(U) are called sections over U . In the case of the Penrose staircase,

the set F(U) is the set of all possible ways to draw a physically possible staircase

consistent within the local region U .

Now we have defined how data can be attached to open sets in the space X . The

next step is to define how a section on an open set U can be restricted to a smaller

open set V ⊆U . This is done by specifying a restriction map resU,V : F(U)→F(V )

for each pair of open sets U and V such that V ⊆U . The restriction map resU,V is

a map that takes a section s ∈ F(U) and returns a restricted section in F(V ). The

restriction maps should also compose naturally, i.e., given three open sets W ⊆V ⊆U ,

the restriction map resV,W ◦ resU,V = resU,W should hold. In the case of the Penrose

staircase, the restriction map resU,V takes a drawing on the open set U and just erases

the parts that are not in V . In summary, a presheaf defines what data can be attached

to open sets via F and how the data can be restricted to smaller open sets via res.

A sheaf is a presheaf that allows for gluing of local data to form a global

consistent data, which is formally defined as follows.

Definition 2 (Sheaf). A sheaf is a presheaf that satisfies the gluing property:

for every open cover {Ui}i of an open set U: if si ∈ F(Ui) are sections such
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that resUi,Ui∩U j(si) = resU j,Ui∩U j(s j) for all i, j, then there exists a unique section

s ∈ F(U) such that resU,Ui(s) = si for all i.

Here an open cover {Ui}i of an open set U is a collection of open sets such that

their union
⋃

iUi is equal to U . The gluing property requires that if we have local

sections defined on each open set in a cover that agree with one another on all

pairwise intersections, then there exists a unique global section over the entire space

that restricts to each of these local sections. Recall that the presheaf F for the

Penrose staircase allows only drawings of physically possible staircases as sections.

Figure 4.2 shows the local sections on the four open sets that form an open cover of

the entire space X . If we glue the local sections together to form a global drawing

like Figure 4.1, we will end up with an impossible staircase which is not a physically

possible drawing. Therefore, the presheaf F for the Penrose staircase is not a sheaf.

4.1.2 Framework for contextuality based on sheaf theory

In the sheaf-theoretic framework of contextuality of Abramsky and Branden-

burger [80], the presheaf of interest is a presheaf of joint probability distributions

over measurement outcomes on compatible sets of observables in a measurement

scenario.

Definition 3 (Measurement scenario). A measurement scenario is a tuple

⟨X ,M,O⟩ where

1. (observables) X is a set of observables.

2. (contexts) M is a collection of subsets of X (called contexts), where

each context represents a set of compatible measurements. M forms

a simplicial complex on X , that is, for any context C ∈M, any subset

C′ ⊆C is also in M.

3. (outcomes) O is a set of possible outcomes for each observable in X .

An observable X ∈ X is a quantity that can be measured to produce an outcome

O ∈ O. For example, a Hermitian operator in quantum mechanics is an observable.
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A context is a set of compatible observables that can be measured simultaneously. In

quantum mechanics, two observables are compatible if they commute, i.e., [X ,Y ] = 0.

It is important to note quantum mechanics is not the only system that can be

modelled as a measurement scenario. Any theory or system that can be measured and

there are incompatible measurements can be modelled as a measurement scenario.

Definition 4 (Maximal context). A maximal context is a context C ∈M such

that there is no other context C′ ∈M such that C ⊂C′.

Definition 5 (Empirical model). An empirical model is a collection {PC}C∈M

where each PC is a joint probability distribution on O|C|, assigning probabilities

to each possible combination of measurement outcomes for the observables in

maximal context C ∈M.

Concretely, given a maximal context C = {X1, . . . ,Xn}, the joint probability distribu-

tion PC is a function PC : On → [0,1] such that ∑o1,...,on PC(o1, . . . ,on) = 1.

It is important to note that every joint probability distribution PC where C ∈
M can be estimated from repeated measurements on the observables in C, or be

calculated exactly using an underlying theory of the concerned system, e.g. using

Born’s rule in quantum mechanics for a quantum system. Whereas the global

joint probability distribution P over all observables in X , if it exists at all, cannot be

estimated from repeated measurements unless in the trivial case where all observables

in X are compatible with each other, i.e. M= {X}.

We can now define the presheaf of joint probability distributions on a measure-

ment scenario.

Definition 6 (Distribution presheaf). Given a measurement scenario ⟨X ,M,O⟩,
the corresponding distribution presheaf F is defined as follows:

1. For each context C ∈M, F(C) is the set of all joint probability distribu-

tions on O|C|.
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2. For each pair of contexts C,C′ ∈M such that C′ ⊆C, the restriction map

resC,C′ : F(C)→F(C′) is defined by marginalizing the joint distribution

on C to the smaller context C′.

The marginalization of a joint distribution PC on C to a smaller context C′ is

defined as usual:

resC,C′(PC)({x′}X∈C′) = ∑
x∈C\C′

PC({x}X∈C)

Definition 7 (Non-signalling model). A non-signalling model is an empirical

model {PC}C∈M such that for every pair of contexts C1,C2 ∈M, the marginal-

ization of PC1 to C1 ∩C2 is equal to the marginalization of PC2 to C1 ∩C2, that

is

resC1,C1∩C2(PC1) = resC2,C1∩C2(PC2)

Classical physics has been built on the assumption that all measurements are

revealing deterministic pre-existing values of the observables, in the sense that any

probabilistic behaviour of the measurement outcomes is due to our ignorance of

the underlying state of the system. Fine’s theorem [81] states that if a local hidden

variable theory exists for a particular system, then there is a global joint distribution

over all the observables in the measurement scenario that marginalises to every local

joint distribution in the empirical model of the system.

An empirical model is said to be contextual if it cannot be explained by a local

hidden variable theory, which means there is not a global section over the entire

space X that marginalises to every local section in the empirical model.

Definition 8 (Non-contextual model). An empirical model {PC}C∈M is said

to be non-contextual if there exists a global joint distribution PX on X that

marginalises to every PC for all contexts C ∈ M. Conversely, an empirical
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model that is not non-contextual is said to be contextual.

Note that the global distribution PX in Definition 8, if it exists, is actually a global

section when given local sections PC for all contexts C ∈M. Therefore, the existence

of a contextual model proves that the distribution presheaf F on the measurement

scenario is not a sheaf.

Definition 9 (Non-contextual measurement scenario). A measurement scenario

⟨X ,M,O⟩ is said to be non-contextual if all the empirical models on the sce-

nario are non-contextual. That is, the distribution presheaf F on the measure-

ment scenario is a sheaf.

We say that a measurement scenario supports contextuality if it is not

non-contextual.

As an example, the Bell-CHSH scenario involves two experimenters, Alice

and Bob, who share between them a two-qubit quantum state. Alice is allowed

to measure her part of the state with one of two incompatible observables, a1

and a2, which gives either 0 or 1 as the outcome. Similarly, Bob can choose to

measure his part with observables b1 and b2. Therefore, the Bell-CHSH measurement

scenario is fully described with the following data: X = {a1,b1,a2,b2}, M =

{{a1,b1},{a1,b2},{a2,b1},{a2,b2}}, and O = {0,1}. Notice that {a1,a2} and

{b1,b2} are not in M as they cannot be measured simultaneously due to their

quantum mechanical incompatibility.

So far we have specified what measurements are allowed and what outcomes

are possible. Suppose now Alice and Bob repeat the experiment many times and

have gathered sufficient data to estimate the joint probability distributions for each

context in M to a sufficient degree of accuracy. Their results can be summarised

in a table referred to as an empirical table, see Figure 4.3, where each row in the

table represent a joint distribution on the context shown in the leftmost column. For

instance, the bottom right entry in the table (1/8) is the probability of both Alice

and Bob getting 1 as their measurement outcomes when Alice chooses to measure

a2 and Bob chooses to measure b2. Note that the empirical model of the system is
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(0,0) (0,1) (1,0) (1,1)

(a1,b1) 1/2 0 0 1/2
(a1,b2) 3/8 1/2 1/2 3/8
(a2,b1) 3/8 1/8 1/8 3/8
(a2,b2) 1/8 3/8 3/8 1/8

(0,0) (0,1) (1,0) (1,1)

(a1,b1) 1 0 0 1
(a1,b2) 1 1 1 1
(a2,b1) 1 1 1 1
(a2,b2) 1 1 1 1

Figure 4.3: Empirical tables of measurement scenarios: Bell-CHSH (left), possibilistic
Bell-CHSH (right)

entirely described by the empirical table.

One can show that, using elementary linear algebra, there exists no global

distribution over {a1,a2,b1,b2} that marginalises to the 4 local distribution shown

in the above empirical table [80]. Therefore, the empirical model considered here is

indeed contextual.

4.1.3 Possibilistic models

Instead of probability distributions, one can also consider possibility, i.e. whether

an outcome is possible or not. If we use Boolean values to represent possibility,

0 for impossible and 1 for possible, the passage from probability to possibility is

just a mapping of all zero probabilities to 0 and all non-zero probabilities to 1. The

following is a summary of the mapping from probability to possibility:

Probability Possibility

values [0,1] {0,1}
addition + ∨

multiplication · ∧

This irreversible mapping is called a possibilistic collapse of the empirical

model. Similarly, we can define the possibilistic version of the distribution presheaf

F , which is a presheaf of joint possibility distributions over measurement outcomes

on compatible sets of observables in a measurement scenario.

Definition 10 (Possibility distribution presheaf). Defined analogously to the

distribution presheaf (Definition 6), except that the probability distributions

are replaced with possibility distributions. Addition is replaced with logical
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disjunction ∨ and multiplication is replaced with logical conjunction ∧.

For the empirical table of the possibilistic version of Bell-CHSH see Figure 4.3.

Given a measurement scenario ⟨X ,M,O⟩, one can visualise its possibility

distribution presheaf in the form of a bundle diagram, which consists of a base space

and a fibre over each point in the base space. The base space is the measurement

cover M, which is a simplicial complex on the set of observables X , and the fibre

over each context C ∈ M is the all possible joint measurement outcomes on the

observables in C.

•a1

•
b1

• a2

•b2

•0

•1

•
0

• • 0

• 1
•

•1

Base space

Fibres

The bundle diagram of a possibilistic empirical model is drawn similarly to

the one of a distribution presheaf, except that the impossible sections are not shown

in the diagram. Figure 4.4 shows the bundle diagrams of three different empirical

models.

Definition 11 (Logical contextuality). An empirical model is said to be logically

contextual if there is no global possibilistic distribution that marginalises to the

local distributions of the possibilistic collapse of the model.

There is a topological interpretation of logical contextuality in terms of the bundle

diagram of an empirical model – an empirical model is not logically contextual if

and only if each local outcome is a restriction of a global joint outcome. This is

because a global possibilistic distribution can be thought of as simply a collection of
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•a1
•
b1

• a2
•b2

•0
•1

•
0

• • 0
• 1•

•1

•a1
•
b1

• a2
•b2

•0
•1

•
0

• • 0
• 1•

•1

•x1

•x2

• x3

•0
•1

•
0

• • 0
• 1

Figure 4.4: Bundle diagrams of possibilistic empirical models: (left) the Bell-CHSH test;
(middle) a PR box; (right) a PR prism.

global joint outcomes. Hence, the fibre part of the bundle diagram of such global

possibilistic distribution is simply a collection of global joint outcomes.

Using the Bell-CHSH scenario as an example, consider a global possibilistic

distribution P(a1,b1,a2,b2) which assigns the value 1 to only two joint outcomes,

(0,0,0,0) and (1,1,1,1), which manifest on the bundle diagram (shown on the left

below) as the two cycles that wrap around the base space.

•a1

•
b1

• a2

•b2

•0

•1

•
0

• • 0

• 1
•

•1

•a1

•
b1

• a2

•b2

•0

•1

•
0

• • 0

• 1
•

•1

The bundle diagram on the right shows an example of a logically contextual model,

because the edge coloured in red is not extendable to a cycle that wraps around the

base once.

Definition 12 (Strong contextuality). An empirical model is said to be strongly
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contextual if there is no global joint outcome that restricts to any of the local

joint outcomes of the model.

An example of a strongly contextual model on the Bell-CHSH scenario is the PR

box, whose bundle diagram is shown in the middle of Figure 4.4. Note that every

edge belongs to a cycle that wraps around the base twice.

4.1.4 Cyclic scenarios

In the following, we introduce a special family of measurement scenarios, the k-

cyclic scenarios [82, 83], and argue that they are minimal in terms of supporting

contextuality for any k ≥ 3. In the formal language of sheaf, that is to say, the

corresponding presheaf of a k-cyclic scenario is not a sheaf, provided k ≥ 3. The

k-cyclic scenarios encompass the Leggett-Garg experiment (k = 3) [65], the Bell-

CHSH test (k = 4) [3, 5], and the KCBS inequality (k = 5) [68].

Definition 13 (k-cyclic scenario with binary outcomes). A k-cyclic scenario

with binary outcomes is a measurement scenario ⟨X ,M,O⟩ such that

1. |X |= |M|= k (there are k observables and k contexts),

2. ∀C ∈M, |C|= 2 (each context contains exactly two observables),

3. |O|= 2 (there are two possible outcomes).

The data of the measurement scenario can always be written in the following

canonical form:

1. X = {x1, x2, . . . , xk},

2. M= {{x1, x2}, {x2, x3}, . . . , {xk, x1}},

3. O = {0, 1}.
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For each context {xi, xi⊕1} ∈M, where i⊕1 = i if i < k and i⊕1 = 1 if i = k,

we denote the local distribution as P(i, i⊕1)(xi, xi⊕1). We denote the local joint

distribution as P(i, i⊕1)(xi, xi⊕1).

•
x1

•x2
• x3

Leggett-Garg (k = 3)

•
x1•

x2

•
x3

•
x4

Bell-CHSH (k = 4)

•
x1

•x2

•
x3

•
x4

• x5

KCBS (k = 5)

Figure 4.5: The measurement covers M of the k-cyclic scenarios with k = 3, k = 4 and k = 5.
The vertices represent the observables and the edges represent the contexts.

In the sheaf-theoretic framework, a 2-cyclic scenario does not admit contextual

since it has only one context {x1,x2}. This is due to the fact that {x1,x2} and {x2,x1}
are the same set. However, in the Contextuality-by-Default framework, which will

be introduced in Section 4.2, a 2-cyclic scenario can admit contextual models as the

framework allows for the same set of observables to be treated as different contexts

and a different joint probability distribution can be assigned to each of them.

The following proposition, stated without proof in [80] and explicitly proven

in [82], establishes that PR boxes are the only strongly contextual empirical models

on a k-cyclic scenario.

Proposition 1. The strongly contextual empirical models on a k-cyclic scenario,

where k ≥ 3, can be fully characterised by the following requirements:

1. For each i ∈ {1,2, . . . ,k}, the local joint distribution P(i, i⊕1)(xi, xi⊕1) is

either

(a) balanced perfect correlated, i.e.

P(i, i⊕1)(0,0) = P(i, i⊕1)(1,1) = 1/2,
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(b) or balanced perfect anti-correlated, i.e.

P(i, i⊕1)(0,1) = P(i, i⊕1)(1,0) = 1/2.

2. The number of contexts with anti-correlated local joint distributions is

odd.

Such a model is called a PR box on the k-cyclic scenario.

In particular, we refer to the PR box on a 3-cyclic scenario as the PR prism, see

Figure 4.4 for its bundle diagram. The parallel edges over the contexts {x2,x3}
and {x3,x1} correspond to perfect correlation, while the crossed edges over context

{x1,x2} correspond to perfect anti-correlation.

4.1.5 The polytopes of empirical models

The space of probabilistic empirical models can be organised into polytopes, an idea

originating from Pitowsky’s pioneering work [84, 85, 86] on correlation polytopes.

For a visualisation of the polytopes, see Figure 4.6. To formalise this, we define a

convex combination of two empirical models e1 and e2 on the same measurement

scenario ⟨X ,M,O⟩ as the following linear combination:

e = (1−λ )e1 +λe2, (4.1)

where 0 ≤ λ ≤ 1. Scalar multiplication and addition on empirical models are

defined as the same operations on the joint distribution of the empirical models. Let

e1 = {PC}C∈M and e2 = {QC}C∈M be two empirical models, where PC and QC are

the joint distributions of the empirical models. Then, the scalar multiplication and

addition are defined as

e1 + e2 = {PC +QC}C∈M, (4.2)

αe1 = {αPC}C∈M. (4.3)
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NCNS

e NS

NCF(e NS)

e

NSF(e)

M1

M2

PR

D

Figure 4.6: A 3-dimensional slice of the polytope of empirical models on the Bell-CHSH
scenario. The polytope NS represents all non-signalling models, while NC
represents all non-contextual models. The vertices of the NC polytope corre-
spond to deterministic models that admit a global joint distribution, such as D.
In contrast, the vertices of the NS polytope that are not part of NC are the
PR boxes, which exhibit maximal contextuality. The vertices highlighted in
yellow, such as M1 and M2, represent deterministic models that are signalling.
The figure is adopted from [2].

The convex hull of all empirical models, including the ones that are signalling, is

called the polytope of empirical models. The next polytope to introduce is NS , which

contains all non-signalling models, which are closed under convex combinations. To

show that non-signalling models are indeed closed under convex combinations, we

make use of the fact that the restriction map is a linear map, i.e.

resC,C′((1−λ )e1 +λe2) = (1−λ )resC,C′(e1)+λ resC,C′(e2), (4.4)
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where resC,C′ is the restriction map from the joint distribution of the empirical model

to the joint distribution of the local model, and C′ ⊆C is a subcontext of C. The proof

of this property is straightforward and follows from the definition of marginalization

of probability distributions.

Another important polytope is the NC, which contains all non-contextual

models. To show that non-contextual models are indeed closed under convex combi-

nations, consider two non-contextual models e1 and e2 on the same measurement

scenario ⟨X ,M,O⟩, which admit global distributions P1 and P2 respectively. The

global distribution of the convex combination e = (1−λ )e1 +λe2 is given by

P = (1−λ )P1 +λP2. (4.5)

To verify that P marginalises to the local distributions in e1 and e2, one can make

use of the linearity property of the marginalization map.

The polytopes offer a geometric perspective on the relationships between dif-

ferent types of models, providing insights into their structure and boundaries. They

also serve as a foundation for visualizing and quantifying key measures such as the

contextual fraction (CF) and the signalling fraction (SF), which will be rigorously

defined and explored in the subsequent sections.

4.1.6 Contextual fraction

The contextual fraction CF [87] measures the degree of contextuality of a given

no-signalling model. Given an empirical model e, the CF of e is defined as the

minimum λ such that the following convex decomposition of e works:

e = (1−λ )eNC +λeC, (4.6)

where eNC is a non-contextual (and no-signalling) empirical model and eC is a model

allowed to be contextual. More formally,

CF = min
λ

{
λ | e = (1−λ )eNC +λeC holds

}
. (4.7)
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The non-contextual fraction (NCF) is simply defined as 1−CF.

For no-signalling models, the criterion of contextuality is just

CF > 0. (4.8)

As eNC is not allowed to be signalling, the CF of a signalling model must be greater

than zero. Thus, interpreting CF as a measure of contextuality for signalling models

would lead to erroneous conclusions. However, most models, including the ones

considered in this paper, are signalling.

4.1.7 Signalling fraction

One can try to define a signalling fraction (SF), in the same way CF is defined, to

quantity the degree of signalling. Given a model e, the SF of e is defined as the

minimum µ such that the following convex decomposition of e works:

e = (1−µ)eNS +µeS, (4.9)

where eNS is a no-signalling empirical model and eS is a model allowed to be

signalling. More concretely,

SF = min
µ

{
µ | e = (1−µ)eNS +µeS holds

}
. (4.10)

The non-signalling fraction (NSF) is simply defined as 1−SF.

4.1.8 Contextuality in the presence of signalling

In [2], the authors considered how much of the contextual fraction can be explained

by the experimental imperfections that lead to signalling. The main idea is to

quantify the change in the CF when the ideal empirical model is perturbed by noise

that introduces signalling. To this end, the authors proved a continuity property of

the CF with respect to the distance between empirical models:
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Theorem 1 (Continuity of CF [2]). Let e and e′ be two empirical models on the

same measurement scenario ⟨X ,M,O⟩. If the total variation distance between

e and e′ is V (e,e′)≤ ε , then

|CF(e)−CF(e′)| ≤ 2|M|ε, (4.11)

where |M| is the number of contexts in the measurement scenario. Here, the

total variation distance between two empirical models e = {PC}C∈M and e′ =

{QC}C∈M is defined as

V (e,e′) = max
C∈M

V (PC,QC), (4.12)

where V (PC,QC) is the total variation distance between two probability distri-

butions.

The Theorem allows us to have a quantifiable flexibility in the choice of an ontologi-

cal model to explain the given empirical model.

In the following, we extend CF to signalling models by allowing eC in the

convex decomposition (4.6) to be signalling.

Definition 14 (Contextual fraction for signalling models). More formally, the

CF of a signalling model e is defined as

CF = min
λ

{
λ | e = (1−λ )eNC +λeCS holds

}
, (4.13)

with eCS a model that is not both non-contextual and non-signalling.

Consider a given signalling empirical model e with CF > 0. One can try to

explain the empirical e using an ontological model hS which is close to a non-

signalling and non-contextual ontological model hNC, such that

V (hS,hNC)≤ SF. (4.14)
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Essentially this is to say that we allow the same amount of signalling in the ontologi-

cal model as in the empirical model.

Using the continuity property of CF, we have

|CF(hS)−CF(hNC)| ≤ 2|M|SF. (4.15)

Which implies

CF(hS)≤ 2|M|SF, (4.16)

as CF(hNC) = 0. This means that even if we allow some amount of signalling in

the ontological model, the (fictitious) CF in the ontological model cannot exceed

2|M|SF. Now, if the CF of the empirical model exceeds 2|M|SF, then no such

ontological model hS exists which explains the empirical model e. Hence the criterion

for contextuality in the presence of signalling is given by

CF > 2|M|SF, (4.17)

where |M| denotes the number of measurement contexts. Again, to compute the CF

for use in the above criterion, eC is allowed to be signalling. Notice how criterion

(4.17) reduces to the usual criterion for contextuality (4.8) when SF = 0. Finally,

it is worth mentioning that the criterion (4.17) is not a necessary condition for

contextuality as Equation (4.16) only provides an upper bound on the CF of the

ontological model. A more precise estimate of the CF of the ontological model

would yield a tighter criterion for contextuality.

4.2 Contextuality-by-default framework

The Contextuality-by-Default (CbD) framework [76, 77] is a framework within

which contextuality can be defined even in the presence of signalling. The primary

objects of study in the CbD framework are random variables that represent the

outcomes of measurements. The starting point of the CbD framework is to assign
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different random variables to the same measurable quantity when it is measured under

different contexts, and that there is no joint distribution between random variables

across different contexts. More formally, the outcome of measuring a content q

under the context c is represented by a random variable Rc
q. In this approach, the

same property measured under different contexts is represented by distinct random

variables, making contextuality the default assumption unless proven otherwise.

In the sheaf-theoretic framework, a measurement scenario describes the set of

all the possible joint measurements that can be performed. In the CbD framework,

the analogous object is a context-content matrix, which is a matrix whose rows are

indexed by the contexts and columns are indexed by the contents. The entries of

the matrix are the random variables Rc
q and whenever a content is not measured in a

context, the corresponding entry is left blank.

For example, the Bell-CHSH scenario has 4 contents q1 = a1, q2 = a2, q3 = b1,

q4 = b2 and 4 contexts c1 = {a1,b1}, c2 = {a1,b2}, c3 = {a2,b1} and c4 = {a2,b2}.

The context-content matrix of the Bell-CHSH scenario is given by the following

4-by-4 matrix:

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
1 R4

4 c4

q1 q2 q3 q4 R4

(4.18)

All random variables in the same context are considered jointly distributed,

meaning that there is a well-defined joint distribution for them. While the random

variables for the same content in different contexts are considered stochastically un-

related, meaning that there is no joint distribution for them. A system is consistently

connected if for any content q, the set of random variables {Rc
q}{c|q∈c} follows the

same distribution. For cyclic scenarios, consistent connectedness coincides with

the no-signalling condition, which states that the marginal distribution of a set of

contents does not depend on the context in which they are measured.

A crucial tool used in the CbD framework is the coupling of random variables.
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Given a set of stochastically unrelated random variables {Xi}i, a coupling is a set

of jointly distributed random variables {Si}i such that for each i, the random variable

Si has the same distribution as Xi.

In the following, we describe how contextuality is treated for cyclic systems in

the CbD framework. Non-contextuality of a system is defined via the existence of

a maximally connected coupling. We refer to a coupling for the set of all random

variables in the context-content matrix as a global coupling, while a coupling for

the random variables of a single content q in the context-content matrix is called a

local coupling for content q. For a global coupling S and a content q, we define the

quantity

eq(S|q) = Pr[Sc1
q = Sc2

q ] (4.19)

which is the probability that the two random variables Sc1
q ,Sc2

q that are measuring

the content q are equal according to the global coupling S. We can also define the

quantity for a local coupling Tq for the content q as

eq(Tq) = Pr[T c1
q = T c2

q ]. (4.20)

A global coupling S is maximally connected if, for each content q, eq(S|q) is maximal,

i.e.

eq(S|q) = max
Tq

eq(Tq). (4.21)

Maximality here means that no local coupling Tq can do better than the global

coupling S in terms of the probability of the random variables being equal.

Definition 15 (Non-contextuality in the CbD framework). A system is said to

be non-contextual in the CbD framework if there exists a maximally connected

coupling for the system.

Hence, a system is contextual if for every global coupling S, there is at least one
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content q such that

eq(S|q)< max
Tq

eq(Tq). (4.22)

This hints at ways to develop quantitative measures of contextuality via the dif-

ferences between the local and global couplings in terms of the probability of the

random variables being equal. In particular, one can take an unweighted sum over

all contents q of the differences between the local and global couplings, i.e.

∑
q

max
Tq

eq(Tq)−∑
q

eq(S|q), (4.23)

which measures the deviation of the coupling S from being maximally connected.

We can then define a measure of contextuality as the maximum of the quantity in

(4.23) over all global couplings S:

CNT = max
S

(
∑
q

max
Tq

eq(Tq)−∑
q

eq(S|q)
)
. (4.24)

For more quantitative measures of contextuality in the CbD framework, we

refer the reader to [88, 83].

4.2.1 Cyclic systems

A well-studied class of CbD systems are the cyclic systems [77], where each context

has exactly 2 contents and every content is in exactly 2 contexts. The rank of a

cyclic system is the number of contents, or equivalently, the number of contexts. For

example, a cyclic system of rank 5 has the following context-content matrix:

R1
1 R1

2 c1

R2
2 R2

3 c2

R3
3 R3

4 c3

R4
4 R4

5 c4

R5
1 R5

5 c5

q1 q2 q3 q4 q5 R5

(4.25)
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It was conjectured in [89] and proven in [90] that for a cyclic system of rank n,

the measure CNT can be expressed as the following form:

CNT = sodd

({
⟨R j

jR
j
j⊕1⟩

}
j=1,...,n

)
−∆−n+2 > 0 (4.26)

where j⊕ 1 = j if j < n and j⊕ 1 = 1 if j = n. The function sodd takes a set of

n numbers {x1,x2, . . . ,xn} and returns the maximum of the odd parity sum of the

numbers, i.e.

sodd(x1,x2, . . . ,xn) = max(±x1 ± x2 ± . . .± xn) (4.27)

such that the number of − signs used is odd. The function sodd can be computed

efficiently as follows:

sodd(x1,x2, . . . ,xn) =


∑

n
i=1 |xi| if number of negative |{k|xk < 0}| is odd

∑
n
i=1 |xi|−2min(|xi|) otherwise

(4.28)

The quantity ∆ is called direct influence which measures the degree of signalling

in the system. A no-signalling system has ∆ = 0.

A feature of the CNT measure is that it generalises the Bell-CHSH inequality.

To see this, consider a cyclic system of rank 4, i.e. the Bell-CHSH scenario. The

CNT quantity becomes:

CNT =sodd
(〈

R1
1 R1

2
〉
,
〈
R2

2 R2
3
〉
,
〈
R3

3 R3
4
〉
,
〈
R4

4 R4
1
〉)

(4.29)

−
∣∣〈R1

2
〉
−
〈
R2

2
〉∣∣− ∣∣〈R2

3
〉
−
〈
R3

3
〉∣∣− ∣∣〈R3

4
〉
−
〈
R4

4
〉∣∣− ∣∣〈R4

1
〉
−
〈
R1

1
〉∣∣−2.

In the usual setting of the Bell-CHSH inequality, no signalling is allowed, i.e. ∆ = 0.

In this case, the CNT measure becomes:

CNT =sodd
(〈

R1
1 R1

2
〉
,
〈
R2

2 R2
3
〉
,
〈
R3

3 R3
4
〉
,
〈
R4

4 R4
1
〉)

−2 (4.30)
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Recall that the system is contextual if and only if CNT > 0. Note that the sodd

function encompasses the full set of 8 CHSH inequalities. To see this, consider the

all possible combinations of odd number of minus signs in the sodd function:

+++− ++−+ +−++ −+++

−−−+ −−+− −+−− +−−−

where the first row corresponds to the following 4 inequalities:

+
〈
R1

1 R1
2
〉
+
〈
R2

2 R2
3
〉
+
〈
R3

3 R3
4
〉
−
〈
R4

4 R4
1
〉
≤ 2,

+
〈
R1

1 R1
2
〉
+
〈
R2

2 R2
3
〉
−
〈
R3

3 R3
4
〉
+
〈
R4

4 R4
1
〉
≤ 2,

+
〈
R1

1 R1
2
〉
−
〈
R2

2 R2
3
〉
+
〈
R3

3 R3
4
〉
+
〈
R4

4 R4
1
〉
≤ 2,

−
〈
R1

1 R1
2
〉
+
〈
R2

2 R2
3
〉
+
〈
R3

3 R3
4
〉
+
〈
R4

4 R4
1
〉
≤ 2.

The second row corresponds to the following 4 inequalities:

−
〈
R1

1 R1
2
〉
−
〈
R2

2 R2
3
〉
−
〈
R3

3 R3
4
〉
+
〈
R4

4 R4
1
〉
≤ 2,

−
〈
R1

1 R1
2
〉
−
〈
R2

2 R2
3
〉
+
〈
R3

3 R3
4
〉
−
〈
R4

4 R4
1
〉
≤ 2,

−
〈
R1

1 R1
2
〉
+
〈
R2

2 R2
3
〉
−
〈
R3

3 R3
4
〉
−
〈
R4

4 R4
1
〉
≤ 2,

+
〈
R1

1 R1
2
〉
−
〈
R2

2 R2
3
〉
−
〈
R3

3 R3
4
〉
−
〈
R4

4 R4
1
〉
≤ 2,

which can be rewritten to the usual form of the Bell-CHSH inequalities by multiply-

ing both sides by −1.
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Chapter 5

Special classes of empirical models

In the rest of the thesis, we will be making use of two special classes of models, the

PR-like models (Section 5.2) and the outcome-symmetric models (Section 5.3). In

this Chapter, these classes of models will be introduced, and their properties will be

investigated. The motivations to study these classes of models might seem unclear at

this point. Readers are recommended to skip this chapter until its material is properly

motivated in Chapter 6 and Chapter ??.

5.1 PR-box
The PR-box [91] is a model on the Bell-CHSH measurement scenario with the

following empirical table:

(0,0) (0,1) (1,0) (1,1)

(a1,b1) 1/2 0 0 1/2

(a1,b2) 1/2 0 0 1/2

(a2,b1) 1/2 0 0 1/2

(a2,b2) 0 1/2 1/2 0

The PR-box is strongly contextual in the sheaf-theoretic framework with the

maximum possible CF = 1. The first three contexts are correlated, and the last one is

anti-correlated. All other strongly contextual models on the Bell-CHSH measurement

scenario can be produced by swapping the outcomes of the observables. For example,

by swapping the outcomes of a1, the empirical table becomes:
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(0,0) (0,1) (1,0) (1,1)

(a1,b1) 0 1/2 1/2 0

(a1,b2) 0 1/2 1/2 0

(a2,b1) 1/2 0 0 1/2

(a2,b2) 0 1/2 1/2 0

Note that the first two rows are now anti-correlated. In fact, swapping the outcomes

of any observable would lead to two rows to switch between correlated and anti-

correlated. Hence, the number of anti-correlated rows is always odd. In the case of

the Bell-CHSH measurement scenario, the number of anti-correlated rows is either 1

or 3. Each of these cases produces 4 distinct models, resulting in a total of 8 distinct

PR models. These 8 PR boxes span the local polytope.

In the rest of the thesis, the term PR-box will refer to any of the 8 PR models in

the Bell-CHSH measurement scenario.

The notion of PR-box can be generalised to k-cyclic scenarios. A PR-box in a

k-cyclic scenario is a model with an odd number of anti-correlated rows. One such

example is as follows:

(0,0) (0,1) (1,0) (1,1)

(x1,x2) 1/2 0 0 1/2

(x2,x3) 1/2 0 0 1/2
...

...
...

...
...

(xk−1,xk) 1/2 0 0 1/2

(xk,x1) 0 1/2 1/2 0

The rest of the PR-boxes will be generated by swapping the outcomes of the observ-

ables. We can choose independently the parity (correlated or anti-correlated) for

k−1. Hence, the total number of PR-boxes is 2k−1.

5.2 PR-like models
We define a class of models called the PR-like models which are models that share

the same support as a PR box. That is, the set of possible outcomes which have
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NCNS

e NS

NCF(e NS)

e

NSF(e)

M1

M2

PR

D

Figure 5.1: The polytope of empirical models with the PR-like models highlighted in red.
The spaces of PR-like models are perpendicular to the NS space, and intersect
with NS at the PR-boxes.

non-zero probabilities are the same as one of the PR boxes. The PR-like models are

a relaxation of the PR boxes, where the probabilities of the outcomes are allowed to

deviate from the PR box. The geometric visualisation of the PR-like models is given

in Figure 5.1.

For example, on the 3-cyclic measurement scenario, a PR-like model has the

following empirical table parameterised by εi ∈ [−1,1]:

(0,0) (0,1) (1,0) (1,1)

(x1,x2)
1+ε1

2 0 0 1−ε1
2

(x2,x3)
1+ε2

2 0 0 1−ε2
2

(x3,x1) 0 1+ε3
2

1−ε3
2 0

The parameters εi can be thought of as the deviation of the probabilities from a PR

box. Any PR box is also a PR-like model, with all parameters εi = 0. Below is the

formal definition of a PR-like model.
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Definition 16 (PR-like model). The PR-like model in the standard form on

the k-cyclic measurement scenario is an empirical model with the following

empirical table:

(0,0) (0,1) (1,0) (1,1)

(x1,x2)
1+ε1

2 0 0 1−ε1
2

(x2,x3)
1+ε2

2 0 0 1−ε2
2

...
...

...
...

...

(xk−1,xk)
1+εk−1

2 0 0 1−εk−1
2

(xk,x1) 0 1+εk
2

1−εk
2 0

While the other PR-boxes can be obtained by symmetry of the observables and

that of the outcomes.

With the below Proposition 2 and Proposition 3, we show that the contextual

fraction CF and the signalling fraction SF of a PR-like model can be computed

analytically without solving the linear programs as we do in the general case.

Lemma 1. The only non-signalling PR-like models are the PR-boxes, that is,

εi = 0 for all 1 ≤ i ≤ k.

Proof. The no-signalling condition requires that the marginal probability of any

observable is independent of the context in which it is measured. Let’s consider the

observable xi. It is measured in two contexts: (xi−1,xi) and (xi,xi+1) (with indices

taken modulo k). From the context (xi−1,xi), the marginal probability of xi = 0 is

given by:

P(xi = 0) = P(xi−1 = 0,xi = 0)+P(xi−1 = 1,xi = 0) =
1+ εi−1

2
.

From the context (xi,xi+1), the marginal probability of xi = 0 is given by:

P(xi = 0) = P(xi = 0,xi+1 = 0)+P(xi = 0,xi+1 = 1) =
1+ εi

2
.
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For the model to be non-signalling, these two probabilities must be equal for all i:

1+ εi−1

2
=

1+ εi

2
=⇒ εi−1 = εi.

This implies that all εi must be equal. Let’s call this common value ε . Now consider

the special case of the context (xk,x1), which is anti-correlated. The marginal

probability of x1 = 0 from context (x1,x2) is 1+ε1
2 = 1+ε

2 . The marginal probability

of x1 = 0 from context (xk,x1) is:

P(x1 = 0) = P(xk = 0,x1 = 0)+P(xk = 1,x1 = 0) = 0+
1− εk

2
=

1− ε

2
.

Equating the two marginals for x1:

1+ ε

2
=

1− ε

2
=⇒ 1+ ε = 1− ε =⇒ 2ε = 0 =⇒ ε = 0.

Therefore, for a PR-like model to be non-signalling, we must have εi = 0 for all i.

This corresponds to the definition of a PR-box.

Proposition 2. The contextual fraction of a PR-like model is always 1.

Proof. Consider a PR-like model e with a convex decomposition as in Definition 14:

e = (1−λ )eNC +λeC,

where eNC is a non-contextual and no-signalling model and eC is a model that is not

both non-contextual and non-signalling. Recall that the contextual fraction of e is

the minimum λ such that the above decomposition remains valid. As the coefficients

λ and (1−λ ) are non-negative, the models eNC and eC are also PR-like models,

otherwise the decomposition would not be valid. Lemma 1 states that the only

non-signalling PR-like model is the PR box. As the PR box is strongly contextual,

there does not exist a valid eNC for the decomposition. Therefore, the minimum λ is

1 and the CF of a PR-like model is always 1.
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Proposition 3. The signalling fraction of a PR-like model is given by max|εi|.

Proof. Consider a PR-like model e with a convex decomposition as in Equation 4.9:

e = (1−µ)eNS +µeS,

where eNS is a non-signalling model and eS is an arbitrary model allowed to be

signalling. The signalling fraction of e is the minimum µ such that the above

decomposition remains valid. As per the proof of Proposition 2, the only non-

signalling PR-like model is the PR box itself. Therefore, eNS must be a PR box ePR

with the same support as e. While minimising µ (that is, maximising 1− µ), we

have to make sure that eS is a valid model with non-negative probabilities. Hence,

we require that

e ≥ (1−µ)eNS.

The minimum µ is achieved when the inequality is tight for at least one entry in the

matrices, i.e. when

(1−µmin)
1
2
= min

i∈{1,2,3}

(
1± εi

2

)
,

where the right-hand side is just the minimum non-zero probability of e. The 1
2

is due to the fact that a PR box has probabilities of 1
2 for the possible outcomes.

Rearranging the equation gives us the signalling fraction of e:

SF := µmin = 1− min
i∈{1,2,3}

(1± εi) = max
i∈{1,2,3}

|εi|.

Finally, the decomposition corresponding to the minimum µ is given by

e = (1−SF)ePR +SFeS,

where the model eS can be uniquely determined as eS = 1
SF(e− (1−SF)ePR).

The two propositions above showed that the values of CF and SF of a PR-
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like model can be computed analytically without solving the linear programming.

Additionally, the criteria for contextuality for signalling model in the sheaf-theoretic

framework (4.17) can be specialised to PR-like models as follows:

SF ≤ 1
2M

, (5.1)

where M is the number of measurement contexts.

Recall that the measure of contextuality in the CbD framework is

CNT =sodd
(〈

R0
0 R0

1
〉
,
〈
R1

1 R1
2
〉
,
〈
R2

2 R2
3
〉
,
〈
R3

3 R3
0
〉)

(5.2)

−
∣∣〈R0

1
〉
−
〈
R1

1
〉∣∣− ∣∣〈R1

2
〉
−
〈
R2

2
〉∣∣− ∣∣〈R2

3
〉
−
〈
R3

3
〉∣∣− ∣∣〈R3

0
〉
−
〈
R0

0
〉∣∣−2.

For a PR-like model, the correlation term
〈

R j
i R j

i⊕1

〉
is either +1 for the corre-

lated contexts or −1 for the anti-correlated contexts. By definition, a PR-like model

has an odd number of anti-correlated contexts, thus the value of the sodd term is

always n.

The quantity ∆ is the sum of the absolute differences between the correlations of

the same observable in different contexts. For a PR-like model, ∆ has the following

form:

∆ = |ε1 − ε2|+ |ε2 − ε3|+ · · ·+ |εn−1 − εn|+ |εn + ε1|

Recall that for PR-like models we have SF = maxi |εi|, which can be used to bound

the value of ∆. One can show that for a PR-like model with n contexts, ∆ is bounded

by:

2SF ≤ ∆ ≤

2nSF n odd

2(n−1)SF n even
.

The derivation of the above inequality can be found in Appendix A.2. The intuition

behind the lower bound is that the value of SF makes sure that there must be an εi

that is at least SF away from 0. The relationship between ∆ and SF is illustrated in

Figure 6.6. One can readily see that the sheaf contextual region is a strict subset of

the CbD contextual region (considering only the subspace where empirical models
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are allowed). That means any PR-like model that is contextual in the sheaf-theoretic

framework is also contextual in the CbD framework, but not vice versa.

5.3 Outcome-symmetric models
Outcome-symmetry captures the idea that measurement outcomes themselves are

born equal. An empirical model that respects such symmetry shall be invariant to

outcome permutation. In this section, we will give a formal definition of outcome-

symmetric models and prove the important fact that all outcome-symmetric models

are also non-signalling. The rest of this section make uses of certain aspects of group

theory which are introduced in Appendix A.1.

Definition 17 (G-symmetric distribution). Let G be a permutation group that

acts transitively on the set of outcomes O. For the rest of this section, we will

abuse the notation and use g ∈ G to denote both the group element and the group

action which maps an outcome to another outcome. A G-symmetric distribution

is a joint probability distribution Pr(x1,x2, ...,xn) which is invariant under the

action of G on the set of outcomes O. That is, for any g ∈ G,

Pr(x1 = o1,x2 = o2, ...,xn = on) = Pr(x1 = g(o1),x2 = g(o2), ...,xn = g(on)),

(5.3)

where o1,o2, ...,on ∈ O.

Example 1. Consider the context (x1,x2) with outcomes O = {o1,o2}. The most

general form of G-symmetric distribution is given by

Pr(x1 = o1,x2 = o1) = Pr(x1 = o2,x2 = o2) =
α

2
, (5.4)

Pr(x1 = o1,x2 = o2) = Pr(x1 = o2,x2 = o1) =
1−α

2
, (5.5)

where α ∈ [0,1]. The distribution would manifest as the following row in an



5.3. Outcome-symmetric models 95

empirical model:

(o1,o1) (o1,o2) (o2,o1) (o2,o2)

x1 x2
α

2
1−α

2
1−α

2
α

2

Lemma 2. The marginal probability distribution of a single observable x from

a G-symmetric joint distribution is uniform.

Proof. It is routine to show that the G-symmetry is preserved under marginalisation.

Hence, we should have

Pr(x = o) = Pr(x = fg(o)). (5.6)

As G acts transitively on the set of outcomes O, given any two outcomes o1 and o2,

there is a g ∈ G such that g(o1) = o2. Thus, we can assert that Pr(x = o1) = Pr(x =

o2). As o1 and o2 can be arbitrarily chosen, this implies that Pr(x) is a uniform

distribution and Pr(x) = 1/|O|.

The only thing left to show is that the G-symmetry is preserved under marginal-

isation. Without loss of generality, consider the marginal probability distribution of

the first observable x1:

Pr(x1 = o1) = ∑
o2,...,on∈O

Pr(x1 = o1,x2 = o2, ...,xn = on). (5.7)

The symmetry of g ∈ G gives us the following invariance of the joint probability

distribution under the group action fg:

Pr(x1 = o1,x2 = o2, ...,xn = on) = Pr(x1 = fg(o1),x2 = fg(o2), ...,xn = fg(on)).

(5.8)

Therefore, the right-hand side of (5.7) can be written in terms of the transformed



5.3. Outcome-symmetric models 96

outcomes:

Pr(x1 = o1) = ∑
o2,...,on∈O

Pr(x1 = fg(o1),x2 = fg(o2), ...,xn = fg(on)) (5.9)

Since the summation is over all possible values of o2, ...,on, we can relabel the

summation variables to get

Pr(x1 = o1) = ∑
o2,...,on∈O

Pr(x1 = fg(o1),x2 = o2, ...,xn = on) (5.10)

Pr(x1 = o1) = Pr(x1 = fg(o1)). (5.11)

Example 2 (Z2-Symmetric diachromatic cyclic scenarios). In a diachromatic

k-cyclic scenario, each context consists of exactly two observables and there are

exactly two outcomes. The symmetry group in this case is Z2 = {I,σ}, where σ

maps an outcome to the other one. The only non-trivial permutation group is Z2

itself, and it obviously acts transitively on the two outcomes.

Therefore, the marginal probability distribution of any single observable is

uniform over the set of outcomes, as a result of Lemma 2.

Definition 18 (G-symmetric model). A G-symmetric model is one that contains

only G-symmetric local joint distributions.

Theorem 2. Any G-symmetry model is non-signalling.

Proof. Lemma 2 tells us that the marginal distribution of an observable x is always

uniform to 1/|O|, where |O| is the number of outcomes. This is true regardless of

which joint distribution is being marginalised. All local joint distributions from

every context marginalise to a uniform distribution. Therefore, the model is non-

signalling.
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One interesting future work would be to study G-symmetric models where the

transitivity on the group action is lifted. Such relaxation would lead to multiple

orbits, that is, multiple partitions of the set of outcomes. The marginal distribution

would be uniform over the outcomes within an orbit. This means there are non-zero

degrees of freedom, as opposed to the zero degree of freedom in the transitive case.

No-signalling could no longer be guaranteed if transitivity is lifted.



Chapter 6

PR-anaphora schema

Recall that the motivation for this work is to formalise the idea that contextuality

also arises in natural language through resolving ambiguities. We were interested in

solving the Winograd schema challenge, so we construct natural language examples

containing coreference ambiguities. The examples were carefully constructed so that

the resulting logical empirical models exhibit a structure analogous to the PR-box,

but generalised to the 3-cyclic measurement scenario.

To construct examples that exhibit contextuality, we follow a two-step process:

1. Select an appropriate measurement scenario that can support contextual empir-

ical models.

2. Carefully craft a set of sentences where ambiguous words can be modelled by

the chosen measurement scenario.

For simplicity, we use the 3-cyclic scenario, as the underlying measurement

scenario and design the schema in such a way that the resulting empirical model is as

close to it as possible. Note that while a 2-cyclic scenario is even simpler, it cannot

support contextual empirical models for non-signalling systems. Therefore, we use

the 3-cyclic scenario. The measurement scenario of the 3-cyclic scenario reads as

follows:

1. Observables X = {X1,X2,X3};

2. Contexts M=
{
{X1,X2}, {X2,X3}, {X3,X1}

}
;
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3. Outcomes O = {O1,O2}.

We make the following correspondence between the formal description of a

measurement scenario and natural language:

1. An outcome is a noun phrase.

2. An observable is an anaphoric phrase that can refer to the outcomes.

3. A context is a sentence containing a subset of the observables.

Definition 19. The PR-anaphora schema is defined as follows:

There is an O1 and an O2.

1. One of them is X1, and the same one is X2.

2. One of them is X2, and the same one is X3.

3. One of them is X3, and the other one is X1.

Here O1 and O2 are noun phrases; X1, X2 and X3 are modifiers used to modify

the noun phrases O1 and O2.

In definition (19), the modifiers X1, X2 and X3 are the observables in the measurement

scenario, while the noun phrases O1 and O2 are the outcomes. The contexts are

the three different sentences which contain the pair {X1, X2}, {X2, X3} and {X3, X1}
respectively. Note that the observables should have been the anaphoric phrases

one of them, the same one and the other one, but we use the modifiers instead for

readability.

The modifiers can be of different types. For example:

1. Adjectival modifiers: red, round, sweet;

2. Prepositional modifiers: on the table, in a dish, in the fridge;

3. Participial modifiers: being steamed, being cooked, being chilled.
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•red

•
round

• sweet

•apple

•strawberry

•
• • apple

• strawberry

Figure 6.1: Bundle diagram of the PR-anaphora schema with adjectival phrase modifiers
shown in Figure 6.2.

(Adjectival) There is an apple and a strawberry.

1. One of them is red and the same one is round.

2. One of them is round and the same one is sweet.

3. One of them is sweet and the other one of them is red.

Figure 6.2: Example of the PR-anaphora schema with predicate adjective modifiers.

It follows that the schema can be possibilistically modelled by a PR-prism and

is logically contextual. The bundle diagram of the PR-anaphora schema is shown in

Figure 6.1. However, the schema is not naturally occurring—it is grammatical but

somewhat artificial; that is, it is unlikely to appear in natural human conversation.

Figures 6.2 and 6.3 show some natural instantiations of it to nouns and their adjectival,

verb, and preposition modifiers. Other modifiers can be dealt with similarly.

6.1 Probabilistic PR-anaphora schema
To construct probabilistic models for the PR-anaphora schema, we define a prob-

ability distribution over the possible referents of the anaphors using the language

model BERT. BERT is pretrained using a Masked Language Model (MLM) objective,

where a portion of the input words are randomly masked, and the model is trained to

predict the masked words. In practice, masked words are replaced with the special

token [MASK]. The model then predicts a probability distribution over its entire

vocabulary for each masked word. For example, given a sentence such as: The goal
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(Prepositional) There is an apple and a strawberry.

1. One of them is on the table and the same one is in a dish.

2. One of them is in a dish and the same one is in the fridge.

3. One of them is in the fridge and the other one is on the table.

(Participial) There is an apple and a strawberry.

1. One of them is being steamed and the same one is being cooked.

2. One of them is being cooked and the same one is being chilled.

3. One of them is being chilled and the other one is being steamed.

Figure 6.3: Examples of the PR-anaphora schema with participial phrase modifiers and
prepositional phrase modifiers.

of life is [MASK]., BERT produces a probability distribution over each word in

the vocabulary:

token life survival love freedom simplicity · · ·

prob. 0.1093 0.0394 0.0329 0.0300 0.0249 · · ·

In order to construct probabilistic models for the PR-anaphora schema in defini-

tion 19, we go through these two steps: first, as the ambiguities lies in the anaphors,

we replace the anaphor “One of them” with the special token [MASK], then the

prediction of BERT is interpreted as the probability distribution over the possible

referents of the anaphor. As an example consider the following 3 sentences. We feed

them separately to BERT:

1. There is an apple and a strawberry. The [MASK] is red and

the same one is round.

2. There is an apple and a strawberry. The [MASK] is round and

the same one is sweet.

3. There is an apple and a strawberry. The [MASK] is sweet and

the other one is red.
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BERT will produce probabilities Pi (apple) and Pi (strawberry) for the i-th sen-

tence shown above. Since BERT assigns probability scores to every word in its

vocabulary such that they sum to one, it is generally the case that Pi (apple) +

Pi (strawberry) ̸= 1. We therefore normalise them using the following map 1:

Pi (apple) 7→
Pi (apple)

Pi (apple)+Pi (strawberry)

Pi (strawberry) 7→
Pi (strawberry)

Pi (apple)+Pi (strawberry)

We use the normalised probabilities to construct a PR-like model (see Section 5.2)

on a 3-cyclic measurement scenario with the following empirical table:

(app.,app.) (app.,str.) (str.,app.) (str.,str.)

(red, round) P1 (apple) 0 0 P1 (strawberry)

(round,sweet) P2 (apple) 0 0 P2 (strawberry)

(sweet, red) 0 P3 (apple) P3 (strawberry) 0

All empirical models constructed in this way for the PR-anaphora schema are PR-like

models as defined in Section 5.2. BERT will produce different probabilities if the

order of the nouns changes, i.e. if we change the schema to ‘There is an O2 and an O1,

different probabilities are assigned to the masks. In order to take these differences

into account, we considered both orders of the schema.

Notice that such an empirical model is non-signalling only if Pi (apple) =

Pi (strawberry) = 0.5 for all i. It is therefore very unlikely that the model is

non-signalling. To determine whether a signalling model is contextual, we use the

inequality criterion of equation (4.17). According to Proposition 2, the contextual

fraction CF of a model that has the same support as the PR prism is always 1. Also,

all the examples we considered in this paper have 3 contexts, i.e. |M|= 3. Thus, to

tell if such a model is sheaf-contextual, we just need to check if SF < 1/6. Since

the value of SF is equal to the maximum absolute value of the εi’s, an empirical

1The normalisation here is equivalent to limiting the vocabulary to just apple and strawberry
when BERT computes the probability scores.
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model is sheaf-contextual if BERT is uncertain about the masked word. In the

extreme case where BERT is completely uncertain about the masked word, i.e. εi = 0

for all i, then SF = 0 and the model reduces to a PR box, which is both strongly

contextual and non-signalling. To achieve this, in previous work [92, 93], we chose

the referents to be semantically similar, e.g. boy and girl, cat and dog and discovered

350 sheaf-contextual and 9,312 CbD-contextual models out of 11,052 examples.

Apart from the ability to predict masked words, BERT also produces vector

representations for each word in its vocabulary. The idea behind using vectors to

represent words comes from the distributional model of semantics [94, 95]. In this

model, words come with a distributional property, whereby their collocational con-

texts play a role in identifying their meanings. This was motivated by the observation

that words that have similar meanings, i.e. are synonymous, are collocated in the

context of the same words. A famous example was the words “oculist” and “eye

doctor”, both of which occur in the context of “eye”, “glasses”, and “doctor”. Later,

it was discovered that this property can be used to reason about phenomena that

go beyond synonymy, since words that have any semantic relationship with each

other do also occur in the context of same words. Some examples here are “tea” and

“coffee”, “cat” and “dog”, and “boy” and “girl”. It was also observed that words that

are not semantically related, e.g. “cat” and “coffee” do not co-occur in the same

contexts.

Distributional semantics was implemented by the first wave of Natural Language

Processing researchers, including Rubenstein and Goodenough [96]. They first

embedded a large corpus of natural language data into a matrix. The columns of

this matrix were canonical forms from a dictionary and were referred to as “context.”

The rows denoted “target” words and were all the words that had occurred in the

corpus. Each target word was then represented by its row vector in a vector space

generated by the context words as bases. As a result, words that were semantically

similar were represented by vectors that were close to each other in this space. As an

example, see Figure 6.4. We outline the construction below:

1. Fix a set of target and context words. In principle, these can be the set of all
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stroke

pet

drink

dog

cat

coffee

Figure 6.4: An example vector space and its word vectors. The words “dog” and “cat” are
close to each other in the vector space, while the words “coffee” and “cat” are
far apart.

words in the vocabulary of a language. In practice, one works with the set of

canonical forms of major words as context words and a variable set of words as

targets. The latter often comes from the vocabulary used in a specific dataset.

2. Form a vector space spanned by the set of context words.

3. Count and normalise the number of times a target word occurs in the neigh-

bourhood (usually a window of 5-10 words) around a context word.

4. Form a vector for each list of normalised counts. These are the vector repre-

sentations of your target words.

The above construction was initially implemented using information-theoretic

measures, such as mutual information and local information [97]. Subsequent ad-

vancements introduced neural network-based implementations, with the first notable

approach being a single-layer neural network proposed by researchers at Google [98].

This method, known as word2vec, revolutionised word embedding by efficiently cap-

turing semantic relationships in large corpora. More recent implementations leverage

the Transformer architecture, which employs multiple hidden layers and the attention

mechanism, leading to the development of large language models such as BERT and

GPT-3. Unlike traditional distributional models, where word embeddings reside in

high-dimensional vector spaces spanned by a large set of context words (often tens
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of thousands of dimensions), neural network-based algorithms produce embeddings

in lower-dimensional spaces. These spaces are spanned by a set of learned abstract

features, typically with dimensionality in the range of hundreds. This shift enables

more efficient and compact representations while preserving semantic relationships.

For instance, the word embeddings of the BERT model we use in this paper are

768-dimensional vectors.

In both models, identifying similar pairs of words has been a cornerstone of their

evaluation. Numerous word similarity datasets have been developed to benchmark

this capability. Examples include various extracts of the TOEFL test [99], MEN

[100], WordSim-353 [101], SimLex-999 [102], and SimVerb3500 [103]. These

datasets consist of word pairs, either in or out of context, annotated for their degree

of similarity or dissimilarity. Human similarity judgments are collected for these

pairs, and the average judgments along with inter-annotator agreements are computed.

Over the years, various vector distance measures have been evaluated to determine

which measure best aligns with human judgments. It has been established that the

cosine of the angle between word vectors is one of the most effective measures for

approximating semantic similarity [104, 105, 106, 98]. However, distinguishing finer-

grained lexical relationships such as antonymy, synonymy, hypernymy, hyponymy,

or co-hyponymy remains a challenging task and has proven to be less straightforward.

In line with this approach, we compute the cosine similarity between the noun vectors

to quantify the degree of semantic similarity for each pair (O1,O2) in the schema.

6.2 Dataset

We adopt a systematic approach to construct a much larger dataset of empirical

models in order to investigate the prevalence of contextuality in natural language

data on a large scale. To this end, we considered the entire Simple English Wikipedia

corpus using a March 2022 snapshot of it which is made available to researchers.

This snapshot contains 205,328 articles with 40 million tokens in total, averaging

197 tokens per article. The Simple English Wikipedia is a version of the English

Wikipedia that uses a limited vocabulary and simpler grammar. It is designed for
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Figure 6.5: Histograms of (a) the signalling fraction and (b) the direct influence of the
51,966,480 models constructed for the full dataset Highlighted are the contextual
models with (a) SF < 1/6 or (b) ∆ < 2. The fraction of sheaf-contextual models
is 0.148% and the fraction of CbD-contextual models is 71.1%.

people less proficient in English, such as children and non-native speakers. We chose

this corpus due to its relatively small size while still containing a diverse range of

topics. We extracted all the adjective-noun phrases from the dataset and used them

to construct examples of the PR-anaphora schema. The data set was subjected to the

following standard pre-processing steps used in previous work [107]:

1. Each article was tokenised using the word_tokenize function in NLTK [108].

2. Each tokenised article was then divided into sentences using the

sent_tokenize function in NLTK.

3. Each sentence was tagged with the Penn Treebank tag set [109] using the

pos_tag_sents function in NLTK to obtain the part-of-speech tags for each

token. We used the default tagger offered by NLTK, which was a Greedy

Averaged Perceptron tagger.

4. Adjective-noun phrases were extracted from the whole tokenised dataset by

scanning through the part-of-speech tags for each sentence. Neighbouring

tokens with the tags JJ and NN were extracted as adjective-noun phrases.

After filtering out noise words, e.g. one-letter words and numbers, or nouns that were

not in the BERT vocabulary, we obtained 219,633 adjective-noun phrases, 9,521
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Nouns Adjectives SF ∆

scholar opposition British great Russian 0.963 2.217
apprentice side last former new 0.992 2.626
camera telescope special main old 0.824 2.737
tea tree Japanese small Australian 0.787 3.260
prey day regular important primary 1.000 2.035

fox passenger last American female 0.748 1.496
dwarf bass new Russian black 0.985 1.979
dancer scene main nude German 0.969 1.938
videos text short full sexual 1.000 2.000
series sheep regular single famous 1.000 1.999

fire relief American direct poor 0.165 0.376
person photographer British American French 0.155 0.310
track rule American new British 0.165 0.779
memory saint great important certain 0.141 0.283
island architect new British Japanese 0.142 0.292

Table 6.1: Randomly selected samples of instances of the PR-anaphora schema with sig-
nalling fraction and direct influence values, highlighted when contextual.

nouns, and 21,152 adjectives. To construct examples of the PR-anaphora schema,

we chose the 5 most frequent common adjectives for the noun pair. The number was

taken to be 5 since this provided us with a good level of overlap and at the same

time, a large amount of data. This resulted in 866,108 noun pairs, with which we

constructed 51,966,480 examples of the PR-anaphora schema. Samples of the noun

pairs and their corresponding adjectives are shown in Table 6.1.

In summary, the pipeline for constructing the dataset of PR-anaphora schema

instances (where each instance consists of a noun pair and a triple of adjectives) is as

follows:

1. Extract all adjective-noun phrases from the Simple English Wikipedia corpus.

2. Filter out noise words and nouns not present in the BERT vocabulary.

3. Identify all noun pairs that co-occur with at least five common adjectives in

the corpus, considering both possible noun orderings separately.

4. For each noun pair, select the five most frequent shared adjectives and generate

all possible permutations of three adjectives from this set, resulting in 5!/(5−
3)! = 60 instances per noun pair. Note that both the signalling fraction SF and
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the direct influence ∆ are invariant under permutation of the first two contexts,

so only 30 unique models are obtained per noun pair.

Finally, we constructed empirical models for all the instances using BERT

as described in Section 6.1 and computed their signalling fractions SF and direct

influences ∆ using the results set out in Section 5.2.

6.3 Results

6.3.1 Contextuality in the dataset

We constructed empirical models for all the 51,966,480 examples of the PR-anaphora

schema using BERT, in the manner described in Section 6.1. Out of these, 77,118

(0.148%) were found to be sheaf-contextual; 36,938,948 (71.1%) were found to

be CbD-contextual. Here sheaf-contextual means that the model has SF < 1/6

and CbD-contextual means that the model has ∆ < 2. The low fraction of sheaf-

contextual models could be attributed to the strictness of the criterion SF < 1/6,

which is sufficient but not necessary.

Figure 6.5 shows the distribution of signalling fraction SF and direct influence

∆ of the examples. The distribution of signalling fraction SF can be seen heavily

skewed towards 1 and sharply peaking at 1, while the distribution of direct influence

∆ sharply peaks at 2. Our hypothesis is that in the PR-anaphora schema examples,

BERT often predicts the same word for the masked token in all the contexts with

high probability, resulting all the ε values to be either close to -1 or 1. In order to

see why, suppose that (ε1,ε2,ε3) = (1,1,1) or (−1,−1,−1); this would result in

SF = maxi |εi| = 1 and ∆ = |ε1 − ε2|+ |ε2 − ε3|+ |ε3 + ε1| = 2. Figure 6.6 shows

the distribution of the examples in the space of ∆ and SF. The majority of the

examples are concentrated at the point (SF,∆) = (1,2), which is the point where the

ε values are all equal to 1 or -1. One can observe that the sheaf-contextual region

is entirely contained within the CbD-contextual region; it follows that the set of

sheaf-contextual models is a strict subset of the set of CbD-contextual models. In

other words, every sheaf-contextual model is also CbD-contextual, but not every

CbD-contextual model is sheaf-contextual.
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Figure 6.6: The distribution of the instances in the space of direct influence and signalling
fraction, which is equally divided into 200 times 200 bins. The colour of each
bin represents the log of the number of instances that fall into that bin. As
determined by equation (5.2), certain regions of the space are not accessible
to the instances, which is shown as forbidden in the figure. The regions where
the instances are either CbD-contextual or sheaf-contextual are outlined in the
figure.

Table 6.1 shows samples of the instances of the PR-anaphora schema with their

signalling fraction SF and direct influence ∆.

6.3.2 Similar-Noun Subset of Dataset

The examples of the schema restricted the set of adjectives {X1,X2,X3} to the 5

most frequent adjectives of each noun pair (O1,O2). It however did not impose

any restrictions on the noun pairs themselves. As a result, we come across noun

pairs that are very unlikely to have occurred together in the same context. Some of

these noun pairs even lead to contextual examples, for instance the pair (memory,

saint), from table 6.1, which is both CbD-contextual and sheaf-contextual. Such

pairs of nouns can still share adjectives; as one can see both memory and saint
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Figure 6.7: Histograms of (a) the signalling fraction and (b) the direct influence of the
519,660 models constructed for the similar-noun subset of the dataset.

are commonly modified by any of the three adjectives great, important, certain.

In order to filter out these instances, we only consider pairs of nouns that were

semantically similar and formed a similar-noun subset of the dataset by restricting it

to with top 1% most semantically similar noun pairs. A selection of these and their

degrees of contextuality are presented in table 6.2. This resulted in an increase in

the percentage of the contextual instances. The percentage of the sheaf-contextual

examples increased to 0.50% from 0.0148% and that of the CbD-contextual ones

increased to 81.83% from 71.1%. See figure 6.7 for the histograms of signalling

fraction and direct influence of the similar-noun subset of the dataset.

Nouns Adjectives SF ∆

television tv nationwide web live 0.74 1.47
grandmother grandfather paternal great maternal 0.37 0.73
painting sculpture modern great famous 0.86 2.09
artist facility medical new national 1.00 5.25
supplier producer local single main 0.73 1.62

railroad railway national new main 0.11 0.22
journalist reporter black Italian American 0.12 0.24
station hospital small main large 0.14 0.54
creature snake common giant wooden 0.13 0.26
assassin journalist Japanese American French 0.58 1.15

Table 6.2: A selection of most similar noun pairs and their adjectives.
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[SEP]
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Figure 6.8: A flow chart illustrating how the embedding vectors are transformed into the
output vectors in a BERT model. Extra tokens [CLS] and [SEP] are added to the
input sequence to indicate the start and end of the sequence, while the [MASK]
token is used to indicate the mask.

6.4 Analysis of the Results
BERT (Bidirectional Encoder Representations from Transformers) [35] is a language

encoder that is based on the Transformer architecture [21]. Given a sequence

of tokens (x1,x2, . . . ,xn), BERT encodes each token with a vector, resulting in a

sequence of embedding vectors (x1,x2, . . . ,xn). The embedding vectors are then fed

into a transformer-encoder which is a stack of multi-head self-attention layers to

produce a sequence of embedding vectors (y1,y2, . . . ,yn). The self-attention layers

allow information to flow between any two positions in the input sequence, thereby

modifying the embedding vectors to capture the context of the input sequence. Thus,

the embedding vectors are considered to be contextualised, rather than static as in

word2vec [98]. See figure 6.8 for a high level overview of the BERT architecture. In

this section we present a geometric interpretation of the predictions of BERT, so that

we can relate the factors involved in these predictions to the parameters that affect

contextuality.

6.4.1 BERT logit score and the ε parameter of empirical tables

One of the two tasks that BERT was trained on was masked language modelling.

In this task, a fraction of the input tokens are masked, and the model is trained to
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predict the masked tokens. For this purpose, a further feedforward layer was added

on top of the stack of self-attention layers to produce a sequence of output vectors

(p1,p2, . . . ,pn), one for each token in the input sequence. Suppose that the i-th

token is masked. To obtain the predicted distribution of tokens on the i-th token,

the corresponding output vector pi is compared against the embedding vector of all

candidate tokens and a logit score is produced for each token. A softmax function

is then applied to the logit scores to obtain the probability distribution over the

vocabulary. More precisely, the logit score l j and probability Pj of the j-th candidate

token are given by:

l j = pi · e j +b j (6.1)
and

Pj =
exp l j

∑
|V |
k=1 exp lk

, (6.2)

where b j is a token-specific bias, e j is the embedding vector of the j-th candidate

token, and pi is the output vector of the masked i-th token. Formally, the logit

score of the j-th token in the vocabulary is given by Equation 6.1, where b j is a

token-specific bias term and e j is the embedding vector of the j-th token in the

vocabulary. The logit scores are normalised by the softmax function to produce the

probability distribution in Equation 6.2

In the above, |V | is the size of the vocabulary. In our case, the entire vocabulary

comprises our two outcomes, i.e. the two nouns in the PR-anaphora schema. Using

equations 6.1 and 6.2, below in Prop. 4 we prove a result which connects the BERT

logit scores to the empirical table of the PR-like model describing the PR-anaphora

schema:

(O1,O1) (O1,O2) (O2,O1) (O2,O2)

(X1,X2) pX1 · eO1 +bO1 0 0 pX1 · eO2 +bO2

(X2,X3) pX2 · eO1 +bO1 0 0 pX2 · eO2 +bO2

(X3,X1) 0 pX3 · eO1 +bO1 pX3 · eO2 +bO2 0

Here, the logit scores are shown instead of probabilities for clarity. The probabilities

are obtained by feeding the logit scores into the softmax function per row.
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Proposition 4. The logit scores of the masked token given by BERT relates to

the ε parametrisation of the PR-like model as follows:

ε = tanh
(

1
2
(p ·∆x+∆b)

)
. (6.3)

where p is the output vector of the masked token, ∆x = eO1 −eO2 is the difference

between the embedding vectors of the two nouns O1 and O2, and ∆b = bO1 −bO2

is the difference between the bias terms of the two nouns in the masked modelling

prediction head of BERT.

Proof. Recall the logit scores for the two outcomes are given by:

lO1 = p · eO1 +bO1, lO2 = p · eO2 +bO2. (6.4)

Since the probabilities are obtained by applying the softmax function to the logit

p ·∆x+∆b = 0

∆b
∥∆x∥

p1

p2

p3

∆l1
∥∆x∥

∆l2
∥∆x∥

∆l3
∥∆x∥

Figure 6.9: A 2-dimensional sketch of a geometric interpretation of the mask predictions
from BERT for the PR-anaphora schema. The vectors pi are the output vectors
of the masked token for the i-th context in the schema. The distance from a
predictor vector pi to the hyperplane defined by the equation p ·∆x+∆b = 0
coincides with ∆li/∥∆x∥. As εi relates to ∆li monotonically, specifically εi =
tanh(∆li/2), the signalling fraction SF= max |εi| depends only on the prediction
vectors the furthest away from the hyperplane. In the figure, the prediction vector
p2 (coloured red) is the furthest away from the hyperplane.
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scores, the ratio of the probabilities is given by:

PO1

PO2

=
elO1

elO2
= elO1−lO2 . (6.5)

By definition, PO1 =
1+ε

2 and PO2 =
1−ε

2 . Substituting these into the ratio, we have:

log
1+ ε

1− ε
= lO1 − lO2 = p ·∆x+∆b. (6.6)

Using the identity tanh−1(x) = 1
2 log 1+x

1−x , we can express ε as:

ε = tanh
(

1
2
(
p ·∆x+∆b

))
. (6.7)

This completes the proof.

Note that the tanh function is monotonically increasing. Therefore, we can use the

difference in logit scores given below as a proxy for the value of ε .

∆l := p ·∆x+∆b (6.8)

The value ∆l can be interpreted as ∥∆x∥ times the distance from the prediction vector

p to the hyperplane defined by the equation p ·∆x+∆b = 0. A visualisation of this

geometric interpretation is shown in Figure 6.9. Assuming an isotropic distribution

of the prediction vectors p, equation (6.8) suggests that the value of ∆l is directly pro-

portional to the Euclidean distance between the embedding vectors of the two nouns

∥∆x∥, which in turn non-linearly scales the value of ε through equation (6.3). Since a

higher ε value implies less contextuality in both the sheaf and CbD frameworks, we

expect that the value of ∥∆x∥ plays an important role in determining whether a model

is contextual. Equation (6.8) can be thought as a hyperplane in the word embedding

space of BERT that allows a geometric interpretation of the predictions of BERT

for the PR-anaphora schema which is shown in Figure 6.9. The bias difference ∆b

serves to offset the hyperplane from the origin, while the difference in embedding

vectors ∆x determines the orientation of the hyperplane.
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Sheaf-theoretic CbD
Feature Kendall Spearman Pearson Kendall Spearman Pearson

nouns_entropy -0.0202 -0.0302 -0.0224 -0.0125 -0.0188 -0.0140
adjectives_entropy -0.0214 -0.0322 -0.0257 -0.0132 -0.0198 -0.0167

bert_euclidean_dist 0.0587 0.0877 0.0809 0.0450 0.0674 0.0590
bert_bias_diff 0.0334 0.0500 0.0123 0.0115 0.0173 -0.0054

Table 6.3: Correlation coefficients between the features and the contextuality of the instances
of the PR-anaphora schema, in the full dataset.

6.4.2 Factors affecting contextuality

In the previous section, we showed that the differences in BERT’s logit scores,

i.e. ∆l can be used as a proxy for the values of ε , which are used to compute

the entries of the empirical tables. Further, in Equation 6.8 we showed that ∆l is

directly proportional to Euclidean distance between the vectors of the two nouns in

the instances of the PR-Anaphora schema. Although this finding relates Euclidean

distance to contextuality, it does not rule out other features of either the vectors of

the nouns or the nouns themselves that might affect it too. For instance, Equation 6.8

also hosts the variable ∆b, which is the difference between the bias terms of the

vectors of the two nouns. In this section, we are interested in finding out which

one of these two is most correlated with contextuality. Specifically, we compute the

degree of correlation between three features of BERT’s predicted noun vectors, as

well as two other independent features of the nouns. Our goal is to investigate which

one of these features correlate best with contextuality. For correlation, we compute

Spearman, Pearson and Kendall degrees. For BERT features, we consider Euclidean

Signalling fraction (SF) Direct influence (∆)
Feature linear cubic linear cubic

nouns_entropy 0.0005 0.0006 0.0002 0.0002
adjectives_entropy 0.0007 0.0007 0.0003 0.0004

bert_euclidean_dist 0.0065 0.0092 0.0035 0.0050
bert_bias_diff 0.0001 0.0003 0.0000 0.0001

Table 6.4: Comparison of the R2 values of the linear and cubic regression models, in the full
dataset.
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Sheaf-theoretic (SF < 1/6) CbD (∆ < 2)
Feature Kendall Spearman Pearson Kendall Spearman Pearson

nouns_entropy -0.0436 -0.0654 -0.0625 -0.0394 -0.0592 -0.0541
adjectives_entropy -0.0227 -0.0341 -0.0362 -0.0193 -0.0288 -0.0246

bert_euclidean_dist 0.1234 0.1837 0.1963 0.1155 0.1722 0.1787
bert_bias_diff -0.0821 -0.1241 -0.0996 -0.0670 -0.1005 -0.0679

Table 6.5: Correlation coefficients between the features and the contextuality of the instances
of the PR-anaphora schema, in the similar-noun subset of the dataset.

distances and the difference between the biases of vectors. In order to compute these

distances, we use the pretrained BERT model bert-base-uncased implemented in

the HuggingFace Transformers library [110].

Computing the differences between features of word vectors are not the only

ways of measuring and comparing the statistical information encoded in them. In

fact, the general rule governing BERT is that it chooses the word that has occurred

most in the corpus. This is too rough of a feature to be used in our schema instances,

since we need BERT to choose between the words with equal probability. Here

entropy can come to help. Entropy is an often used method when it comes to

computing the imbalances between word frequencies. If two words have similar

frequencies, entropy will peak. On the other hand, if one has a low and the other

a high frequency, we will have a low entropy. In order to find out whether entropy

is related to contextuality, we compute degrees of correlation between both of our

contextuality measures and the entropy of nouns and adjectives.

Let us first consider the full dataset. In this dataset, the correlation scores

Signalling Fraction (SF) Delta
Feature linear cubic linear cubic

nouns_entropy 0.0001 0.0003 0.0003 0.0004
adjectives_entropy 0.0012 0.0018 0.0024 0.0027

bert_euclidean_dist 0.0779 0.0803 0.0573 0.0581
bert_bias_diff 0.0036 0.0109 0.0020 0.0059

Table 6.6: Comparison of the R2 values of the linear and cubic regression models, in the
similar-noun subset of the dataset.
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Figure 6.10: The R2 scores of the polynomial regression models at different polynomial
degrees predicting (left) the signalling fraction and (right) the direct influence.

between each of the above features and both of our contextuality measures, i.e.

CbD’s delta and sheaf theory’s SF, are shown in Table 6.3. First, we observe that the

correlations are very low in general, which is in the order of a few percent at best.

This is surprising, but not entirely unexpected as the factors affecting predictions

of BERT are quite complex. Equation 6.3 shows that ∆x (and through this, the

Euclidean distance ∥∆x∥) is not the only factor affecting ε . The bias difference ∆b

and the final-layer output vector p—which encapsulates the influence of all learned

parameters and contextual information processed by the transformer—also contribute

to the value of ε and thus to contextuality.

The highest correlations for any of the correlation scores are with Euclidean

distance. BERT’s bias differences provided the second-best set of correlations,

although they were much lower than Euclidean distance. Finally, the nouns entropy

and the adjectives entropy both anti-correlated with both SF and ∆.

The above correlations are all statistically significant (p-values are all below

0.01), but on the low side (below 0.005). This indicates the presence of a correlation.

To test this, we trained a polynomial logistic regression model, on a range of degrees

from 2 to 10. We chose the cubic degree polynomial as a cut-off point. The R2

values for linear vs cubic correlations are shown in Table 6.4. The results for all

the 10 degrees are plotted in Figure 6.10. Clearly, there is a 2-3 times increase in

the correlations of the cubic models in comparison to the linear one. Again, the

highest correlation was with Euclidean distance. Since R2 is the square of Pearson’s
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correlation, all the values are positive. Naturally, with the R2, the entropies provided

better correlations than BERT bias differences, but both of these were still quite low.

This shows that Euclidean distance plays a more important role when it comes to

predicting contextuality, albeit still not a fairly weak one.

The similar-noun subset led to very similar results, see Table 6.5. Here, again

we observe (1) an increase in the cubic regression correlations in comparison to

the linear ones, and (2) Euclidean distance provides the highest correlation with

both SF and delta. These provide further experimental evidence that the Euclidean

distances between BERT’s word vectors are the best statistical predictors of degrees

of contextuality.

6.5 Interpretation of contextuality

The results we obtained demonstrate that quantum-like contextuality can be found

in ambiguous schemas of natural language. However, whether that implies human

languages are genuinely quantum in nature is most certainly a question that needs

further explanation. An important point to note is that in the sheaf-theoretic no-

tion of contextuality, quantum mechanism is just one example of a system that

exhibits contextuality. Contextuality or quantum-like contextuality is not defined

by quantum mechanics, and a contextual system does not necessarily have to be

quantum-mechanical in nature.

To understand what does it mean for a PR-anaphora schema to be contextual

in the sheaf-theoretic sense, we need to recall that an empirical model is contextual

if there does not exist a global joint distribution which marginalises to all the local

joint distributions in the empirical model, given that the empirical model is non-

signalling. According to Fine’s theorem, the existence of a global joint distribution

is equivalent to the existence of a non-contextual realistic hidden-variable model.

Hence, we should understand what a hidden-variable model looks like in the context

of the PR-anaphora schema. A hidden variable dictates the pre-existing outcome of

every observable in the system. In the PR-anaphora schema, the observables are the

adjectives, and the outcomes are the nouns. For example, in the apple-strawberry
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schema, a hidden variable would assign either apple or strawberry to each of the

adjectives red, sweet and round. To be more clear, the following table shows all

possible hidden-variable assignments for the apple-strawberry schema:

red sweet round

λ1 apple apple apple

λ2 apple apple strawberry

λ3 apple strawberry apple

λ4 apple strawberry strawberry

λ5 strawberry apple apple

λ6 strawberry apple strawberry

λ7 strawberry strawberry apple

λ8 strawberry strawberry strawberry

In the sheaf-theoretic framework, if the probabilistic mixture of these hidden-variable

assignments P(λ ) could explain an observed non-signalling empirical model, then

the empirical model would be non-contextual, otherwise it is contextual. For sig-

nalling empirical models, we still assume there is a probabilistic mixture over

hidden-variable assignments. However, when signalling is present, such mixtures

alone cannot fully explain the empirical model; the ontological model must also

deviate from such mixture to include signalling effects to match the observed data.

While in the CbD framework, contextuality is defined in terms of the existence

(or non-existence) of a global coupling of all random variables involved. Specifically,

a system is contextual if it is impossible to construct a joint distribution that (1) repro-

duces the empirical distributions within each context as marginals, and (2) achieves

maximal possible agreement (coupling) between random variables representing the

same observable in different contexts. This approach does not require the assumption

of pre-existing outcomes for observables, and is applicable even in the presence of

signalling.
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6.6 Discussion and Conclusion
In this paper, we set to find out whether quantum contextuality can occur in large

language models. We built a linguistic schema and modelled it over a quantum

contextual scenario. We then instantiated this schema using a snapshot of the Simple

English Wikipedia. Probability distributions of the instances were collected using

the masked word prediction capability of the large language model BERT. Since

natural language data is signalling, one should work in more general frameworks,

such as the Contextuality-by-Default (CbD) and the signalling corrected version of

the sheaf-theoretic model of contextuality. Computing degrees of contextuality in

either of these frameworks led to the discovery of many contextual instances in both

the CbD and sheaf-theoretic framework. In order to investigate the reason behind

this discovery, we worked with features of BERT’s predicted vectors and degrees

of contextuality, and derived an equation between the two. More specifically, we

showed that the differences in BERT’s logit scores can be used as a proxy for the

values of ε . The former is directly proportional to Euclidean distance, and the latter

is used to compute the entries of the empirical tables.
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Figure 6.11: The fraction of sheaf-contextual (left) and CbD-contextual (right) instances at
different subsets of the dataset created by considering the most similar noun
pairs at different percentile thresholds.

The percentage of contextual instances and the degrees of correlation with

contextuality were much higher in the subset of the dataset with semantically similar

nouns in comparison to the full dataset. Figure 6.11 plots the R2 for different

thresholds for the full dataset. This plot shows that the number of contextual instances
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increases as we increase the similarity thresholds. These results match the ones we

obtained previously, also using BERT predictions [92, 93], where we had a much

smaller dataset, consisting of only 11 pairs of nouns and 11,052 empirical models

(vs 866,108 pairs of nouns and 51,966,480 empirical tables of the current paper).

The noun pairs of that dataset were chosen to be highly similar, e.g. (cat, dog), (girl,

boy) and (man, woman). Working with highly similar noun pairs led to 350 sheaf-

contextual (3.1%) and 9,321 CbD-contextual (84%) models. To measure semantic

similarity, we used the cosine similarity, which is defined as the cosine of the angle

between two word embedding vectors. This is one of the most commonly used

measures of semantic similarity between two words given their word embeddings.

Two more similar words will have smaller angles between their vectors, and thus a

higher cosine similarity. We conjecture that the increase in the degree of contextuality

in the similar-noun subset is because Euclidean and cosine distances are related to

each other. Note that the cosine similarity is related to the Euclidean distance via the

identity

∥u− v∥2 = (u− v) · (u− v) = ∥u∥2 +∥v∥2 −2∥u∥∥v∥cos(u,v), (6.9)

where u and v are the word embeddings of the two words. If the vector norms are

approximately equal, i.e. ∥u∥ ≈ ∥v∥, and for illustration purposes, we assume unit

norm ∥u∥= ∥v∥= 1, the identity simplifies to ∥u− v∥2 = 2−2cos(u,v). This indi-

cates a linear relationship between the cosine similarity and the Euclidean distance

squared. In fact, the mean of vector norms in the similar-noun subset is 1.19 with a

standard deviation of 0.14.

The fact that there are overwhelmingly more CbD-contextual models than

sheaf-contextual models in our results is intriguing and raises many questions. This

discrepancy highlights fundamental differences in the criteria for contextuality be-

tween these two frameworks. The contextual bounds in the (∆, SF) space of empirical

models are orthogonal to each other, as depicted in Figure 6.6. This orthogonality

suggests that the two frameworks are capturing different aspects of contextuality. In

the sheaf-theoretic framework, a signalling empirical model is considered contextual
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if any hidden-variable explanation of the empirical data must exhibit more signalling

than the observed data. (See Section 4.1.8 for more details.) In the CbD framework,

a system is considered contextual if it is impossible to construct a global coupling (of

all the random variables involved) that simultaneously (1) reproduces the empirical

distributions within each context as marginals, and (2) achieve the maximal possible

coupling for random variables representing the same content in different contexts.

Failure to achieve this means that the empirical model is contextual in the CbD sense.

These differences underscore the complexity of contextuality in signalling data

and exploring their significance in natural language data and tasks is left for future

work.

To conclude, we demonstrated that a variant of quantum contextuality can

be observed in the predictions of large language models. Contextuality leads to

quantum advantage [9]. It remains to show whether quantum-like contextuality

also leads to advantage, and if so what kind of advantage will it be and how can

it be obtained. Finding answers to these questions is a future direction. In the

meantime, one also needs to substantiate how this potential advantage can be used

in improving methods that natural language tasks. Our linguistic schema is closely

related to a well known coreference resolution task known as the Winograd Schema

Challenge (WSC) [46]. WSC was proposed as a benchmark for measuring machine

intelligence. The idea behind it is that solving the task requires common sense and

access to external knowledge, which humans have, but machines do not. In previous

work, we showed that the measurement scenario of the original WSC is too simple

to host contextuality [111]. The schema presented in this paper offers a suitable

generalisation of it. In this paper, we showed how machines, i.e. the large language

model BERT can be used to solve it. It remains to collect human judgments and

compare their performances.

An advantage of transformer-encoder models with bidirectional attentions such

as BERT over the state-of-the-art decoder models such as the GPTs is that its encoder

architecture allows masked language modelling, which is a crucial tool for obtaining

probability distributions for the instances of our linguistic schema. It could be
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possible to use GPTs for our purpose with a carefully designed prompt, which is a

future direction.

Coreference ambiguity has given rise to other historical challenges in Linguistics

and Computational Linguistics. The most difficult cases arise when pronouns are

used together with quantifiers and indefinites. The term “donkey anaphora” is used

to denote a family of such challenges, defying compositionality and posing many

challenges to existing formal models of syntax and semantics. Donkey anaphora

have been treated using sheaves [112]. Collecting data for these examples using large

language models and investigating whether they can host quantum contextuality is

another future direction. in all possible ways;



Chapter 7

Generalised Winograd Schema

In this chapter, we present our approach for the generalisation of the Winograd

Schema, enabling the potential observation of contextuality. We will first explain why

the original Winograd Schema is not sufficiently complex to exhibit contextuality,

and then propose a generalised Winograd Schema that is sophisticated enough to

host contextuality.

7.1 Modelling Winograd Schemas as measurement

scenarios
To study the contextuality in the original Winograd Schema, we model it with

a measurement scenario in the sheaf-theoretic framework. This way of treating

ambiguity in language is akin to the way ambiguous phrases are treated in [78, 79],

where an ambiguous word is considered an observable in a measurement scenario,

and a pair of ambiguous words form a measurement context.

In the original Winograd Schema, one ambiguous pronoun is used in the twin

pair of sentences. If we follow strictly the approach of “ambiguous words as

observables”, then we will end up with a trivial measurement scenario, where there is

only one observable, that is, the ambiguous pronoun. Moreover, this naive approach

deviates from the spirit of the Winograd Schema, which is to disambiguate a pronoun

by considering the linguistic context. Instead, we argue that there should be exactly

two contexts in the measurement scenario, one for each sentence in the twin pair.

Recall that in the original Winograd Schema, the twin pair of sentences are identical
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except for the special word and the alternate word. In a rough sense, the special

word and the alternate word provide the linguistical context for disambiguating the

pronoun. This way of defining the measurement contexts provides a concrete link

between context in language and contextuality in quantum mechanics.

Following from the above discussion, we define an observable as a tuple:

(pronoun, special word) or (pronoun, alternate word), to distinguish between the

two pronouns in different linguistical contexts. The possible outcomes of each of the

two observables are the candidate referents of the pronoun.

Definition 20 (Winograd Schema scenario). Given a Winograd Schema with

two noun phrases A and B; an ambiguous pronoun p which refers to either A or

B; a special word (s) and an alternate word (a), the corresponding measurement

scenario is defined by the data:

• observables X = {(p,s), (p,a)};

• contexts M=
{
{(p,s)}, {(p,a)}

}
;

• outcomes O = {A,B}.

We call such a measurement scenario a Winograd Schema scenario, or a WS

scenario in short.

With the councilmen-demonstrators example, the measurement scenario would

be given by the data:

• observables X = {(they, feared), (they, advocated)};

• contexts M=
{
{(they, feared)}, {(they, advocated)}

}
;

• outcomes O = {city councilmen, demonstrators}.

It becomes apparent that any Winograd Schema scenario is too simplistic to accom-

modate any contextual model due to the absence of overlapping contexts. One can

always construct a compatible global distribution by taking the product of the local

distributions.



7.2. Generalising the Winograd Schema scenario 126

7.2 Generalising the Winograd Schema scenario
Before proceeding to the generalisation of Winograd Schema, we point out an

interpretation of the WS scenario as an analogy to an experiment in quantum physics.

Consider an imaginary experimenter, Alice, who decides whether to measure the

pronoun with the special word, or with the alternate word. That is, Alice chooses

between the two observables: (p,s) and (p,a). This is exactly analogous to Alice

choosing between two projection axes in an experiment measuring a spin-1/2 particle.

A natural and obvious way to generalise the WS scenario would be to add one

more experimenter, Bob. This results in the Bell-CHSH scenario, which is well-

known to be able to host contextual models. That amounts to introducing one more

pronoun, one more special word and its alternate word, to the original Winograd

Schema. We use the subscript 1 to denote objects relating to the first pronoun and

the subscript 2 to denote objects relating to the second pronoun.

Here we give a set of requirements for the generalised Winograd Schema, in

the style of the original WSC:

1. A generalised schema consists of four slightly differing sentences. The first

sentence contains two special words s1 and s2. Similar to the original Winograd

Schema, s1 can be replaced by an alternate word a1 and s2 can be replaced by

an alternate word a2. The possibility of replacing special words with alternate

words creates the rest of the four sentences.

2. There are a pair of noun phrases.

3. There are two pronouns in the sentences. The first pronoun refers to one of the

noun phrases in the first pair of noun phrases. The second pronoun refers to

either one noun phrase in the second pair of noun phrases.

4. All four sentences should be natural to read.

In short, a generalised Winograd Schema is two Winograd Schemas put together in a

single discourse.
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(a) •a1

•
b1

• a2

•b2

(b)

(0,0) (0,1) (1,0) (1,1)
(a1,b1) 1/2 0 0 1/2
(a1,b2) 3/8 1/8 1/8 3/8
(a2,b1) 3/8 1/8 1/8 3/8
(a2,b2) 1/8 3/8 3/8 1/8

Figure 7.1: (a) The simplicial complex M in the Bell-CHSH scenario. Every vertex repre-
sents an observable and every edge represents a context. Alice chooses between
a1 and a2; Bob chooses between b1 and b2. The absence of edges between a1
and a2, and between b1 and b2, indicates their incompatibility. (b) An empirical
model of the Bell-CHSH scenario. Each row represents a joint probability
distribution over the observables in the context. For example, the bottom-right
entry 1/8 is the probability of observing a2 = 1 and b2 = 1 when measuring the
observables in the context (a2,b2).

Definition 21 (Generalised Winograd Schema scenario). Given a Generalised

Winograd Schema with two noun phrases A and B; two ambiguous pronouns

p1 and p2 can each refers to either A or B; two special words (s1) and (s2);

two alternate words (a1) and (a2), the corresponding measurement scenario is

defined by the data:

• observables X = {(p1,s1),(p1,a1),(p2,s2),(p2,a2)}

• contexts M=
{
{(p1,s1),(p2,s2)},{(p1,s1),(p2,a2)},

{(p1,a1),(p2,s2)},{(p1,a1),(p2,a2)}
}

;

• outcomes O = {A,B}.

Such a measurement scenario is called a Generalised Winograd Schema scenario,

or GenWino scenario in short.

The generalised WS scenario is isomorphic, i.e. identical upon relabelling, to the Bell-

CHSH scenario shown in Figure 7.1. It has long been known that the Bell-CHSH

scenario can host contextual models [3, 5]. Thus, a carefully designed generalised

Winograd Schema would be able to demonstrate contextuality.

Here we provide a straightforward example of a generalised Winograd Schema

scenario, built upon the original trophy-suitcase example:
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• The trophy doesn’t fit into the suitcase because it1 is too [s1 = small / a1 =

large]. Nonetheless, it2 is [s2 = light / a2 = heavy].

The corresponding generalised WS scenario is given by:

• observables X = {(it1,small),(it1, large),(it2, light),(it2,heavy)}

• contexts M=

{
{(it1,small),(it2, light)},{(it1,small),(it2,heavy)},

{(it1, large),(it2, light)},{(it1, large),(it2,heavy)}
}

;

• outcomes O = {trophy,suitcase}.

Interestingly, it was in the original set of Winograd Schemas (WSC285) that Davis

designed a special example making use of two pronouns:

• Sid explained his theory to Mark but he couldn’t [convince / understand] him.

The author deemed this example a “Winograd schema in the broad sense” since

using more than one pronoun violates the requirements of the original Winograd

Schema. Yet, this example is not a proper generalised Winograd Schema defined in

this paper, as it only employs one special word and one alternate word.

Other than the fact that its scenario is too simple, there is another reason why

the original Winograd Schema is not contextual: the intended referent of the pronoun

should be obvious to a human reader. That means an empirical model constructed

with judgement data collected from human subjects on the original Winograd Schema

would be deterministic or nearly deterministic. It is known that deterministic systems

are not contextual [113, 114].

There are two directions to where we could take the generalised Winograd

Schema: (1) to continue its mission to be a test of intelligence or commonsense

reasoning; (2) to become a well-structured linguistic setting under which contextual

models could be found.

Recent results from large language models have demonstrated human-like

accuracies in solving the Winograd Schema Challenge. The introduction of one

more pronoun might increase the difficulty of the challenge, possibly stipulating

advancements in the field of natural language processing. However, it is our goal
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to find bridges between natural language and contextuality. Therefore, the second

direction will be the focus of this paper.

7.2.1 An example of the generalised Winograd Schema

As our goal is to uncover contextual models in natural language, we need to gather

judgement data from human participants to build empirical models for generalised

Winograd Schema instances. Crucially, deterministic systems lack contextuality.

Therefore, our generalised Winograd Schema examples should be inherently am-

biguous to human readers, unlike the original Winograd Schema where humans can

easily resolve the pronoun.

Due to the requirement of having two almost identical pairs of naturally-

sounding sentences, it is a difficult task to come up with examples of the original

Winograd Schema. The extra requirements we put forward for the generalised Wino-

grad Schema make it even harder to come up with naturally-sounding examples.

Here we report an example of the generalised Winograd Schema1:

• A and B belong to the same [cannibalistic / herbivorous]1 species of animal.

On a hot afternoon in the south Sahara, one of them1 was very hungry. They

noticed each other when they were roaming in the field. After a while, one of

them2 is no longer [hungry / alive]2.

We decided to use the referring phrase one of them instead of the third-person

pronoun it to improve the naturalness of the example. Note that we have chosen to

name the two candidate referents by alphabetical symbols, A and B, rather than by

actual names. This is done to minimise any bias towards the candidates. For instance,

one might prefer to choose a name with a specific gender. The reason why debiasing

is so important here is that a model would have a higher contextual fraction if it is

closer to a PR-box. Now recall that PR-boxes are outcome-symmetric. By making

the two candidate referents symmetric by construction, we ensure that empirical

models of the example to be outcome-symmetric as well. While the two candidates

1It was pointed out by one of the reviewers during submission to QPL that the original version of
the example contains two incorrect uses of English. Here we provide the corrected version of the
example.



7.2. Generalising the Winograd Schema scenario 130

are constructed to be as symmetric as possible, perfect symmetry is not fully achieved:

A is always mentioned before B, and subtle ordering effects or associations may still

influence interpretation. For further details on outcome-symmetric models and their

implications, refer to Section 5.3.

Enforcing the outcome-symmetry brings also two additional benefits. Firstly, all

outcome-symmetry models are also non-signalling. This allows us to use the standard

sheaf-theoretic framework without signalling corrections. On top of that, the CbD

framework agree with the sheaf-theoretic one for non-signalling models. Secondly,

it has already been shown that LLMs have reached human-level at coreference

resolution. Thus, having a single correct solution is no longer challenging for the

modern LLMs, and therefore coreference resolution can no longer be thought of as a

proxy test for reasoning capabilities. Instead, the LLM will be not resolving a single

reference, but rather understanding the relationship between the first and the second

referring phrases. We speculate that such understanding takes

7.2.2 Human judgements on the example

Following the methodology of prior studies that investigated contextuality in human

decision-making [115, 116], we gathered human judgements for this example using a

questionnaire administered via Amazon Mechanical Turk. There were four versions

of the questionnaire, each corresponding to one of the four contexts in the generalised

WS scenario. The respondents were asked to read the example and answer a question

about the correct referents, A or B, of the two referring phrases one of them1 and

one of them2. A screenshot of the questionnaire is shown in Figure 7.2.

Since each referring phrase can be interpreted in two ways, there are 4 pos-

sible combinations of interpretations, (A, A), (A, B), (B, A), (B, B), of the two

referring phrases. The symmetry between A and B in the example ensures that the

combinations (A, A) and (B, B) are equally plausible and (A, B) and (B, A) are also

equally plausible. Therefore, we asked the respondents to pick two out of the four

combinations. This design choice also allows the detection of invalid answers, that

is, those that do not respect the symmetry between A and B.

A total of 410 responses were collected on Amazon Mechanical Turk separately
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Instruction: Please read the following short story which contains some ambiguities, then select the
interpretations you think are the most appropriate.

Story: A and B belong to the same ${word1} species of animals. In a hot afternoon in south Sahara,
one of them was very hungry. They notice each other when they were roaming in the field. In a while,
one of them is no longer ${word2}.

Question: The following are 4 different interpretations of the story. Please select the 2 most
appropriate interpretations.

 

 

A was the very hungry ${word1} animal. A is no longer ${word2}.
A was the very hungry ${word1} animal. B is no longer ${word2}.
B was the very hungry ${word1} animal. A is no longer ${word2}.
B was the very hungry ${word1} animal. B is no longer ${word2}.

Please provide your reasoning here.

(optional) Is there any feedback you would like to share with us?

Submit

Figure 7.2: A screenshot of the template of the questionnaire. The placement holders
${word1} and ${word2} are instantiated with the two special words or the
alternate words of the generalised Winograd Schema. In this example, ${word1}
can be either cannibalistic or herbivorous and ${word2} can be either hungry
or alive. Four versions of the questionnaire were created, each corresponding
to one of the four contexts in the generalised WS scenario. Note that the story
contains verb tense inconsistencies, with a mixture of present and past tenses.
Unfortunately, we did not notice these until a reviewer pointed them out, after
data collection.

on two dates: 20 Oct 2022 and 23 Nov 2022. Out of the 410 responses, 110 were to

the context (cannibalistic, hungry) and 100 each were to the rest of the three contexts.

Out of all the responses, 348 were valid, i.e. their responses respected the symmetry

between A and B. (Note that this symmetry filtering is not done in [115, 116].)

The respondents were each rewarded USD 1.00, regardless of the validity of their

responses.

The collected valid data were used to build an estimated probability distribution

for each of the four contexts. The resulting empirical model is shown in Table 7.1.

The model violates the Bell-CHSH inequality by 0.192. Since the model is sym-

metric in the outcomes by construction, it is non-signalling and thus the measure of

contextuality CNT in the CbD framework coincides with the degree of violation [88].

The symmetry in the outcomes also allows the violation to saturate the bound defined

by CF in sheaf-theoretic framework [87], i.e. the following equality is attained

CF = max
{

0,
1
2

violation of Bell-CHSH inequality
}
. (7.1)
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(a) (A, A) (A, B) (B, A) (B, B)
(canni, hungry) 0.402 0.097 0.097 0.402
(canni, alive) 0.044 0.455 0.455 0.044
(herbi, hungry) 0.345 0.154 0.154 0.345
(herbi, alive) 0.344 0.155 0.155 0.344

(b) (A, A) (A, B) (B, A) (B, B)
. . . 1/2 0 0 1/2
. . . 0 1/2 1/2 0
. . . 1/2 0 0 1/2
. . . 1/2 0 0 1/2

Table 7.1: (a) The empirical model constructed with the 410 human judgements collected
from Amazon Mechanical Turk. The violation of Bell’s inequality of the model
is 0.192. For brevity, the special word cannibalistic is shortened to canni and the
alternate word herbivorous is shortened to herbi. The model generally resembled
the PR model shown in Table (b) on the right.

That means that the symmetry renders the Bell-CHSH inequality the strongest

possible test for contextuality, that is, violations of any other inequality would be no

larger than that of the Bell-CHSH inequality. As CNT reduces to the Bell-CHSH

inequality for symmetric models, our model is considered contextual in both the

sheaf-theoretic framework and the CbD framework.

−0.5 0.0 0.5 1.0 1.5 2.0

Violation of Bell-CHSH inequality

0

1

2
Region of contextuality

Figure 7.3: A normalised histogram of the Bell-CHSH inequality violation for 100,000
bootstrap samples from the model shown in Table 7.1. A positive violation,
indicative of contextuality, is observed in 87% of the resampled models. The
standard deviation of the distribution is 0.176.

To test the significance of this result, we performed a one-sided hypothesis

test with the null hypothesis that the Bell-CHSH violation is non-positive (H0 :

violation ≤ 0). We used bootstrap resampling with 100,000 bootstrap samples to

estimate the sampling distribution of the violation statistic. The resulting distribution

is depicted in Figure 7.3.
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The bootstrap p-value, calculated as the proportion of bootstrap samples with a

non-positive violation, is approximately 0.13. Since this p-value is greater than the

conventional significance level of α = 0.05, we cannot reject the null hypothesis.

This provides suggestive but not statistically significant evidence for contextuality.

Consistent with this, the one-sided 95% bootstrap confidence interval for the violation

is [−0.10,∞), which includes zero.

The current results are suggestive of Bell violation, but not yet statistically

significant. More data would be needed to verify the contextuality of the example

with high confidence.

7.3 LLM evaluation of the generalised Winograd

Schema
In the previous section, we have seen that the generalised Winograd Schema (Gen-

Wino) exhibits contextuality when judged by human subjects. With the advent of

large language models (LLMs) which have been demonstrated to be able to tackle a

wide range of reasoning tasks [117, 118], in particular reaching human performance

on the original Winograd Schema Challenge [50, 119], it is natural to ask whether

LLMs can also be used to reproduce the contextuality of GenWino.

In this section, we evaluate LLMs on the contextuality of GenWino. To adapt

the questionnaire for LLMs, we refined the instructions to include a clear response

format and required the LLMs to provide reasoning for their choices. This adjustment

aimed to enhance the transparency and interpretability of the evaluation process. The

modified template is shown below:

GenWino prompt for LLMs

Instruction:

Please read the following short story, then select the two

interpretations you think are the most likely. Your answers

should be comma-separated, followed your reasons for choosing

the two and your reasons for not choosing the other two. An
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example response: ‘1, 2. It is because ...‘.

Story:

A and B belong to the same {word1} species of animals. On

a hot afternoon south of the Sahara,

one of them was very hungry. They noticed each other while

they were roaming in the field. After a while, it was no

longer {word2}.

Question:

The following are four different interpretations of the story.

Which two of the following interpretations are the most likely?

(1) A was the very hungry {word1} animal.

A was no longer {word2} after a while.

(2) A was the very hungry {word1} animal.

B was no longer {word2} after a while.

(3) B was the very hungry {word1} animal.

A was no longer {word2} after a while.

(4) B was the very hungry {word1} animal.

B was no longer {word2} after a while.

Again, the placeholder {word1} and {word2} were instantiated with the two

special words (cannibalistic or herbivorous) and (hungry or alive) respectively.

We evaluated all the models that support the chat/completions endpoint

within the OpenAI API [120]. At the time of the experiment on 26 June 2024, a

total of 13 models were found to support the endpoint, which includes variants of

GPT-3.5 [121], GPT-4 [122], and GPT-4o [123]. To obtain an empirical model, we

treat the probabilities outputs by the LLMs as the empirical probabilities of the four

contexts. Due to practicality and security concerns, the OpenAI API would only

report the probabilities of the top 20 tokens. As there are only 4 valid answers per

token, it is unlikely the top 20 tokens do not contain the four valid answers. If this
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happens, we will assign a zero probability to the missing answers.

Model Bell-CHSH Violation

gpt-3.5-turbo −0.00
gpt-3.5-turbo-0125 −0.00
gpt-3.5-turbo-1106 +0.00
gpt-3.5-turbo-16k −0.89

gpt-4 +2.00
gpt-4-0125-preview +0.00
gpt-4-0613 +2.00
gpt-4-1106-preview +0.00
gpt-4-turbo +0.00
gpt-4-turbo-2024-04-09 +0.00
gpt-4-turbo-preview +0.00

gpt-4o +0.42
gpt-4o-2024-05-13 +0.96

Table 7.2: The violation of Bell-CHSH inequality for the 13 LLMs evaluated. A positive
violation indicates contextuality. The maximum violation attainable is 2, which
is attained by gpt-4 and gpt-4-0613.

Table 7.2 shows the violation of Bell-CHSH inequality for the 13 LLMs evalu-

ated. The GPT-3 variants exhibited a range of violations, from negative (−0.89) to

slight positive (+0.00). The GPT-4 variants did not produce any negative violations

but most of them have a zero violation. Notably, the more recent GPT-4 variants

(gpt-4 and gpt-4-0613) showed strong contextuality, with a maximum violation

of 2. The GPT-4o variants, which were designed to be more cost-efficient compared

to the GPT-4 variants, exhibited positive violations but not as strong as the GPT-4

variants. Hence, one can conclude that the more advanced models exhibited stronger

contextuality. The empirical models can be found in Appendix A.3.

7.4 Conclusions and Future Work
In this work, we employed the sheaf-theoretic framework for contextuality to model

the Winograd Schema, originally formulated as an ambiguous coreference resolution

task. Our findings revealed that the original Winograd Schema scenario lacked

the necessary complexity to exhibit contextuality. To address this limitation, we

introduced an additional ambiguous pronoun and a new pair of special and alternate
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words, creating a generalised Winograd Schema reminiscent of the Bell-CHSH

scenario. Through crowdsourcing, we collected human judgements on an example

of the generalised Winograd Schema and observed a contextual empirical model

with a significance level of 87%.

We also evaluated the contextuality of the generalised Winograd Schema using

LLMs. We observed that LLMs can exhibit contextuality and that more advanced

models exhibit stronger contextuality. This provides indications that the generalised

Winograd Schema is a promising setting for testing the commonsense reasoning

capabilities of LLMs via the contextuality criterion. Currently, one example of

the generalised Winograd Schema is created manually. More examples are needed

to verify if GenWino can be used as a systematic benchmark for LLM evaluation.

It would be interesting to see if LLMs themselves can create more examples of

the generalised Winograd Schema and use them to self-assess their commonsense

reasoning capabilities.

GenWino also offers an opportunity to explore the extent to which the responses

generated by language models align with human responses. By comparing and

analysing the correspondence between model-generated responses and human re-

sponses, one could gain insights into the capabilities and limitations of language

models in capturing the way human beings understand language, potentially paving

the way for better language models.

This work presents an approach that consists of deliberately constructing unnat-

ural sentences that exhibit contextuality, which may invite criticism for its contrived

nature. Another interesting approach could involve the application of mathemati-

cal frameworks designed for contextuality to analyse pre-existing natural language

data, moving away from the intentional construction of examples with distinct fea-

tures [124]. The aim of this strategy would not be to pursue contextuality within

natural language. Instead, it would focus on developing novel methods for modelling

natural language phenomena from a different perspective.
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Chapter 8

Conclusions and Future Directions

We have demonstrated that human language exhibits contextuality by constructing

examples specifically designed to do so. The PR-anaphora schema, which is logically

contextual by construction, exhibits probabilistic contextuality when evaluated using

an LLM on a set of examples generated for this schema. This work establishes a

novel connection between quantum contextuality and natural language, providing a

fresh perspective on how ambiguity in language can be modelled and analysed.

Building on this foundation, we generalised the Winograd Schema Challenge

to include more than two ambiguous pronouns from the original one-pronoun set-

ting. This extension effectively recreates the well-known Bell-CHSH measurement

scenario in a linguistic context. By hand-crafting examples that exhibit contextual-

ity—violating the Bell-CHSH inequality—we demonstrated that both crowd-sourced

human evaluators and a range of LLMs exhibit contextual behaviour when resolving

these ambiguities. This result highlights the potential of using linguistic contextuality

as a tool for studying reasoning and decision-making processes in both humans and

artificial systems.

We analysed specific classes of empirical models to better understand their

properties. For the PR-anaphora schema, we studied PR-like models which are

models that share the same support as the PR-box and derived formulas for vari-

ous quantities of interest, including the contextual fraction and signalling fraction

from the sheaf-theoretic framework, and direct influence from the Contextuality-

by-Default framework. This helped clarify the relationship between contextuality
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and signalling in these models. For the generalised Winograd schema, we looked at

outcome-symmetric models and showed that they are non-signalling if the symmetry

is described by a transitive permutation group. These results provide a clearer picture

of how contextuality operates in linguistic and cognitive systems.

One of the most intriguing observations from this work is the correlation be-

tween the degree of contextuality exhibited by the generalised Winograd schema and

the size of large language models (LLMs). Since the original Winograd Schema Chal-

lenge has already been effectively solved by LLMs, we propose using the generalised

Winograd schema as a new benchmark for evaluating LLMs. In this framework, the

degree of contextuality serves as a novel performance metric, offering a unique lens

through which to assess the reasoning capabilities of these models. Furthermore, we

hypothesise that the degree of contextuality is linked to the reasoning capabilities

of LLMs, a hypothesis that opens up exciting possibilities for future research in

artificial intelligence.

Looking ahead, there are several promising directions for future work. First,

expanding the dataset of contextual examples is a critical next step. While this

thesis focused on carefully constructed examples, developing automated methods

to generate diverse contextual examples could provide a broader foundation for

analysis. Exploring other types of linguistic ambiguities, such as lexical, structural,

or semantic ambiguities, could further enrich our understanding of contextuality in

language. A comprehensive benchmark dataset of contextual linguistic phenomena

would also enable standardized evaluation of language models.

Second, refining contextuality as an evaluation metric offers significant poten-

tial. Investigating whether the degree of contextuality correlates with performance on

other reasoning tasks could validate its utility as a metric. Developing more nuanced

contextuality measures that capture different aspects of linguistic understanding and

reasoning could provide deeper insights into model capabilities. Comparing contex-

tuality measures with existing evaluation metrics could also reveal complementary

strengths and weaknesses, further enhancing our ability to assess language models.

Third, there are several theoretical questions that merit further exploration. De-
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veloping more sophisticated mathematical models of linguistic contextuality could

better capture the richness and complexity of natural language. Exploring the re-

lationship between contextuality in language and other quantum-like phenomena

in cognition and decision-making could uncover deeper connections between these

fields. Extending the contextuality framework to model pragmatic aspects of lan-

guage use, such as conversational implicature or speech acts, could also provide

valuable insights.

Finally, these findings may have implications for the development of future

language models. Incorporating contextuality into model design could potentially

improve their ability to handle ambiguity. Training objectives that take contextuality

into account might also help enhance reasoning capabilities.

Beyond language and language models, the ideas in this thesis could be useful

in other areas. Studying links between linguistic contextuality and contextuality in

other cognitive areas, like decision-making or perception, could help us understand

context-dependent behaviour better. Using the mathematical tools for modelling

contextuality in other complex systems might also give helpful insights. Additionally,

looking into connections between linguistic contextuality and quantum information

processing could lead to new ways of creating quantum algorithms for natural

language processing tasks.

In conclusion, this thesis has established a novel connection between quantum

contextuality and natural language, demonstrating that carefully designed linguistic

examples can exhibit contextuality when evaluated by both humans and language

models. This finding not only deepens our understanding of the fundamental nature

of language processing but also offers new perspectives on evaluating and improving

language models. The framework developed here opens up exciting possibilities for

future research at the intersection of quantum foundations, linguistics, and artificial

intelligence.
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A.1 Symmetric Group
A permutation of a set X is a bijective function from X to itself. It is common to

denote a permutation as σ : X → X . We have the following properties:

1. The identity permutation is the permutation that maps every element to itself.

2. The composition of two permutations is also a permutation, since the composi-

tion of two bijective functions is also bijective.

3. The inverse of a permutation is also a permutation, since the inverse of a

bijective function is also bijective.

These properties satisfy the definition of a group. Hence, the set of all permutations

of a set X forms a group under composition, called the symmetric group of X , denoted

as SX . The group action of g ∈ SX on x ∈ X is defined as g · x = g(x).

A.1.1 Permutation Group

The symmetric group SX contains all the possible permutations of a set X . In some

cases, we may only focus on a subset of the permutations, depending on the context

or specific properties of interest. A permutation group is a subgroup of the symmetric

group, G ⊆ SX .

The orbits of x ∈ X under the action of G is defined as the set of all elements in

X that can be reached from x by group action of some element in G. Formally, the

orbit of x is

Orb(x) = {y ∈ X | ∃g ∈ G,y = g · x}.

A group action is called transitive if any two elements x1,x2 ∈ X are reachable

from each other, that is, there exists some g ∈ G such that g · x1 = x2. Hence, a

transitive group action partitions the set X into a single orbit.
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A.2 Inequality for signalling fraction and direct

influence of PR-like models

Consider a PR-like model on the n-cyclic measurement scenario parameterised by εi

for i = 1,2, . . . ,n. The signalling fraction of such a model is

SF =
n

max
i=1

|εi|, (A.1)

while the direct influence is given by

∆ = |ε1 − ε2|+ |ε2 − ε3|+ · · ·+ |εn−1 − εn|+ |εn + ε1|. (A.2)

We would like to prove the following inequality:

2SF ≤ ∆ ≤

2nSF n odd

2(n−1)SF n even
.

Proof. Without loss of generality, we can assume that ε1 = maxn
i=1 |εi|. For the ease

of notation, we will denote εn+1 :=−ε1. Then direct influence can be expressed as

∆ =
n

∑
i=1

|εi − εi+1|. (A.3)

Now since the sum of absolute values is greater than or equal to the absolute value

of the sum, we have the following for the lower bound:

∆ =
n

∑
i=1

|εi − εi+1| ≥
∣∣∣∣∣ n

∑
i=1

(εi − εi+1)

∣∣∣∣∣= |ε1 − εn+1|= |ε1 − (−ε1)|= 2|ε1|= 2SF.

(A.4)

Here we used the telescopic property of the sum.

Now we will show the upper bound. If n is even, the alternating sign choice

εi = SF for i odd and εi =−SF for i even gives each term in the direct influence as

2SF, except for the last term, which is 0. Hence, ∆ = (n−1)2SF = 2(n−1)SF. If n
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is odd, the alternating sign choice εi = SF for i even and εi =−SF for i odd gives

each term, including the last term, as 2SF. Hence, ∆ = n2SF = 2nSF.
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A.3 LLM Empirical Models for GenWino

gpt-3.5-turbo

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.00000 0.50000 0.50000 0.00000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.00000 0.50000 0.50000 0.00000

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-3.5-turbo-0125

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.00000 0.50000 0.50000 0.00000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.00000 0.50000 0.50000 0.00000

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-3.5-turbo-1106

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.00069 0.49931 0.49931 0.00069

cannibalistic alive 0.00001 0.49999 0.49999 0.00001

herbivorous hungry 0.00013 0.49987 0.49987 0.00013

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-3.5-turbo-16k

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.38770 0.11230 0.11230 0.38770

cannibalistic alive 0.27934 0.22066 0.22066 0.27934

herbivorous hungry 0.34671 0.15329 0.15329 0.34671

herbivorous alive 0.32351 0.17649 0.17649 0.32351
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gpt-4

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.49999 0.00001 0.00001 0.49999

gpt-4-0125-preview

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-4-0613

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.50000 0.00000 0.00000 0.50000

gpt-4-1106-preview

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.49999 0.00001 0.00001 0.49999

herbivorous alive 0.00008 0.49992 0.49992 0.00008
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gpt-4-turbo

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-4-turbo-2024-04-09

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-4-turbo-preview

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00000 0.50000 0.50000 0.00000

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.00000 0.50000 0.50000 0.00000

gpt-4o

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00002 0.49998 0.49998 0.00002

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.10434 0.39566 0.39566 0.10434
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gpt-4o-2024-05-13

word1 word2 (A, A) (A, B) (B, A) (B, B)

cannibalistic hungry 0.50000 0.00000 0.00000 0.50000

cannibalistic alive 0.00001 0.49999 0.49999 0.00001

herbivorous hungry 0.50000 0.00000 0.00000 0.50000

herbivorous alive 0.23956 0.26044 0.26044 0.23956
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