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A B S T R A C T 

Understanding the nature of dark matter in the Universe is an important goal of modern cosmology. A key method for 
probing this distribution is via weak gravitational lensing mass-mapping – a challenging ill-posed inverse problem where 
one infers the convergence field from observed shear measurements. Upcoming stage IV surveys, such as those made by the 
Vera C. Rubin Observatory and Euclid satellite, will provide a greater quantity and precision of data for lensing analyses, 
necessitating high-fidelity mass-mapping methods that are computationally efficient and that also provide uncertainties for 
integration into downstream cosmological analyses. In this work we introduce a novel generative adversarial network (GAN) for 
mass-mapping, which we call the Mass-Mapping GAN (MMGAN), based on a regularized conditional GAN framework, which 

generates approximate posterior samples of the convergence field given shear data. We adopt Wasserstein GANs to improve 
training stability and apply regularization techniques to overcome mode collapse, issues that otherwise are particularly acute for 
conditional GANs. We train and validate our model on a mock data set modeled after the Cosmic Evolution Survey (COSMOS) 
before applying it to true COSMOS data. Our approach significantly outperforms the Kaiser–Squires technique and achieves 
similar reconstruction fidelity as alternative state-of-the-art deep learning approaches. Notably, while alternative approaches for 
generating samples from a learned posterior are slow (e.g. requiring ∼10 GPU min per posterior sample), MMGAN can produce 
a high-quality convergence sample in less than a second. 

Key words: gravitational lensing: weak – methods: data analysis – software: machine learning – dark matter. 
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 I N T RO D U C T I O N  

he shape and magnitude of distant galaxies appear distorted under
bservation due to gravitational lensing, wherein the path of the
hotons emitted by these galaxies is bent by the gravitational field
f intervening matter. This distortion can be used to infer large-
cale cosmological structure, in particular the distribution of said
ntervening matter – both visible matter and dark matter. Stage IV
urveys, such as the Vera C. Rubin Observatory (Ivezić et al. 2019 )
nd Euclid (Laureijs et al. 2011 ), will provide an abundance of new
ata for lensing analyses. 
Weak lensing has two effects to first order: convergence, κ ,

nd shear, γ . Mass-mapping is the process of approximating the
onvergence from the shear and is an ill-posed inverse problem due
o instrumental and noise effects. Mass-maps are incredibly useful
or calculating higher-order statistics – such as Minkowski functions
nd bispectrum (Munshi & Coles 2017 ), peak count statistics (Liu
t al. 2015a , b ; Martinet et al. 2018 ; Harnois-Déraps et al. 2021 )
nd scattering transform statistics (Cheng et al. 2020 ) – which can
e compared against predictions for different cosmological models
o constrain parameters and refine our understanding of the true un-
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erlying nature of the Universe. Given the advances in observational
echnology, we are now in the era of precision cosmology, where
eak lensing measurements can provide unprecedented insights into

he large-scale structure of the Universe (Mandelbaum 2018 ). To
ully exploit the potential of these applications, mass-mapping meth-
ds must advance to provide precise and accurate reconstructions
n par with the quality of the data now available to us. These
ethods should aim to retain small-scale structure and minimize the

oss of information due to noise. Furthermore, they should provide
ell-characterized uncertainties, and be computationally feasible

or large-scale inference to enable robust cosmological parameter
stimation and model comparison. 

The Kaiser–Squires technique (Kaiser & Squires 1993 ) is the
eminal mass-mapping approach, based on direct inversion of the
oisy shear field. It remains widely used due to its speed and
omputationally efficiency. In an idealized setting it is equivalent to
he maximum-likelihood estimator due to the straightforward invert-
bility of the forward model. In practice, however, additional factors
uch as masking and instrumental effects break this invertibility,
aking mass-mapping an ill-posed problem (Price et al. 2021a ).
rior information is often injected to regularize ill-posed problems

o recover effective solutions – an aspect not addressed by the Kaiser–
quires method. Instead, it is common to include a post-processing
tep in the Kaiser–Squires approach, typically Gaussian smoothing,
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o improve the signal-to-noise ratio of a reconstruction. However, this 
moothing suppresses small-scale structures, potentially discarding 
aluable non-Gaussian information. While this may be an acceptable 
rade-off in certain applications (e.g. Kovács et al. 2022 ), it is
undamentally limiting for higher-order statistical analyses and 
osmological parameter estimation, where the small-scale structure 
s crucial. Wiener filtering (Wiener 1949 ) provides a maximum a 
osteriori estimate, assuming a Gaussian prior based on a fiducial 
osmology for the convergence. Like Gaussian-smoothed Kaiser–
quires maps, the Wiener filter also suppresses small-scale structures 

hat are dominated by noise, resulting in a similar loss of information.
avelet-based methods (Lanusse et al. 2016 ; Price et al. 2019 , 2020 ,

021b ; Starck et al. 2021 ) aim to retain small-scale structure through
he use of wavelet-based priors. These priors have led to increased 
erformance, however, the lack of flexibility with hand-crafted priors 
as led to growing interest in deep learning methods, which can learn
he priors from data itself. 

Recent deep learning approaches for mass-mapping fall into two 
ain categories. The first involves using deep learning for post- 

rocessing. For example, Jeffrey et al. ( 2020 ) introduce a technique to
ost-process a reconstructed convergence field using a convolutional 
-Net (Ronneberger, Fischer & Brox 2015 ). This approach is very 

ast but does not provide any uncertainty quantification. Conversely, 
hirasaki et al. ( 2021 ) use conditional generative adversarial net- 
orks (GANs) to learn noise maps which can then be used to
enoise convergence maps. Again, uncertainties are not provided. 
he second general category seeks to directly learn the posterior 
istribution of the data using deep learning. For example, Remy et al.
 2023 ) introduce a technique that generates samples from a learned
pproximate posterior distribution, using data-driven priors learned 
y neural score estimation. These approximate posterior samples 
an then be used to construct a point-estimate reconstruction and to 
stimate uncertainties. However, it comes at the cost of being very 
low, requiring 10 GPU min to generate a single independent approx- 
mate posterior sample. For both categories generative modelling 
echniques have proven highly effective due to the rich data-driven 
rior information that they are able to capture (Shirasaki et al. 2021 ;
emy et al. 2023 ). While all of these deep learning methods have
rovided promising results, particularly in recovering both large and 
mall-scale structure in convergence maps, there is still work to be 
one to develop methods that provide high-fidelity reconstructions, 
re computationally efficient, and also provide uncertainty estimates. 
ast generation of approximate posterior samples is necessary for 

ntegration into downstream cosmological parameter estimation and 
odel comparison pipelines so that uncertainties in the mass- 
apping process are captured. 
To address these challenges we propose a novel mass-mapping 
ethod named MMGAN that is based on a regularized conditional 
AN framework that generates approximate posterior samples of the 
ass-mapping inverse problem. Unlike Shirasaki et al. ( 2021 ), which 

ses conditional GANs to learn noise maps, our method attempts 
o learn the posterior distribution of the convergence field directly 
nd sample from it. Furthermore, we adopt Wasserstein GANs 
Arjovsky, Chintala & Bottou 2017 ) to improve training stability and 
pply regularization techniques (Bendel, Ahmad & Schniter 2023 ) 
o overcome mode collapse, issues that otherwise are particularly 
cute for conditional GANs. We show that MMGAN produces high- 
uality convergence samples, is highly computationally efficient, and 
rovides accurate uncertainty estimates. We apply our model to both 
imulations and COSMOS survey data (Scoville et al. 2007 ), and 
ompare our results to the Kaiser–Squires method and Remy et al. 
 2023 ) to demonstrate its effectiveness. 
The structure of this paper is as follows: In Section 2 , we provide
n overview of weak gravitational lensing and mass-mapping, as well 
s an overview of GANs. In Section 3 , we introduce our MMGAN
pproach. In Section 4 , we describe how we constructed our training
ata set, outline our approach to model training, and describe our
alidation and model selection methods. Then, in Section 5 we 
resent our results, and in Section 6 we discuss our conclusions. 

 BAC K G RO U N D  

n this section, we provide an overview of weak gravitational lensing
nd mass-mapping. For a more detailed review of weak lensing we
efer the reader to Bartelmann & Schneider ( 2001 ). For a current
eview of the adoption of machine learning for astrophysics we refer
he reader to Lanusse et al. ( 2023 ). We also provide a brief overview
f GANs, specifically conditional GANs. Further discussion on 
ANs can be found in related articles (Goodfellow et al. 2014 , 2020 ;
irza & Osindero 2014 ; Creswell et al. 2018 ). 

.1 Weak gravitational lensing 

istant sources emit photons which travel along space–time 
eodesics. In an empty universe, or one with uniformly distributed 
atter, these geodesics are simply straight lines, however this is 

ot generally the case. Distributions of matter in the Universe, 
oth visible and dark, induce local Newtonian potentials which 
esult in perturbed geodesics, lensing the natural path of photons 
nder gravity. When such perturbations are considered in aggregate 
ur perception of distant objects is distorted. As these observable 
istortions are sensitive to all matter they are a natural cosmological
robe for dark matter, dark energy, and the nature of gravity. Such
istortions affect both the shape and apparent magnitude of the object,
nd the distant object is said to have been gravitationally lensed. 

Suppose we consider photons which have an angular position 
n their source plane β, relative to the line-of-sight from observer
hrough the primary lensing mass, greater than one Einstein radius 

E from intervening matter, the lensing is said to be in the weak
ensing regime. This ensures that the lensing effects are small, that
he lensing equation 

= ω − ωE 
ω 

| ω|2 where ωE = 4 GM 

c2 

fK 

( r − r ′ ) 
fK 

( r) fK 

( r ′ ) 
, (1) 

s singular, and that distant objects cannot be multiply imaged. Here
 is the gravitational constant, M is the lensing mass, c is the speed

f light, and fK 

denotes the angular diameter distance in the usual
ense, which is dependent on the curvature K of the Universe. The
niverse has been observed to be essentially flat (Aghanim et al.
020 ). Consequently, it is often reasonable to approximate K ≈ 0 ⇒
K 

( r) ≈ r , where r is the comoving distance. 
Consider now the local Newtonian potential � ( r, ω) induced

y the matter distribution in the Universe, where ω = ( ϕ, ϑ) are
pherical polar co-ordinates on the sky. Such physical potentials 
ust necessarily satisfy Poisson’s equation given by 

2 � ( r , ω) = 3 
M 

H 2 
0 

2 a( r ) 
δ( r , ω) , (2) 

here δ( r, ω) denotes the fractional overdensity, H0 is the Hubble
onstant, a( r) is the scale-parameter, and 
M 

is the density of matter
n the Universe. Integrating this potential along the line of sight
MNRAS 542, 2464–2479 (2025)



2466 J. J. Whitney et al.

M

p

φ

w  

p  

e

∇

A  

a  

a  

κ  

f

κ

w

ð

a  

P

ð

I  

p  

s  

b  

p
 

e

κ

w  

f  

t

κ

f

γ

w  

t  

a  

fi
 

o  

i  

a
d  

h  

T  

l
 

o  

a  

c  

b  

w  

o  

e

2

W  

e  

b  

s  

m  

t  

m  

r  

a  

m
 

e  

d  

n  

I  

p  

t  

G  

i  

p  

w  

i  

t
 

m  

b  

2  

e  

m  

f  

W  

n
 

e  

w  

i  

P  

e  

u  

t  

s  

i  

t
 

i  

f  

r  

t

2

W  

2  

p  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/542/3/2464/8240260 by Eastm
an D

ental Institute user on 13 O
ctober 2025
roduces the lensing potential 

( r, ω ) = 2 

c2 

∫ r 

0 
d r ′ fK 

( r − r ′ ) 
fK 

( r) fK 

( r ′ ) 
� ( r ′ , ω ) , (3) 

hich conceptually aggregates the effect of � ( r, ω) over r , i.e. the
otential of this collective mass to induce lensing effects. These
quations are straightforwardly connected through Laplacian 

2 φ( r, ω ) = 3 
M 

H 2 
0 

c2 

∫ r 

0 
d r ′ fK 

( r − r ′ ) 
fK 

( r) fK 

( r ′ ) 
δ( r, ω ) 

a( r) 
. (4) 

t linear order such a lensing induces two distortions. Images
re magnified by a convergence field κ and their ellipticity is
nisotropically stretched by a shear field γ . Both the convergence
and shear γ fields can be related to the lensing potential φ by the

ollowing expressions (e.g. Wallis et al. 2022 ) 

( r , ω) = 1 

4 
( ðð̄ + ð̄ ð ) φ( r , ω) and γ ( r , ω) = 1 

2 
ðð φ( r , ω) , (5) 

here ð denotes the spin- s raising operator, 

 = − sin s ϑ

(
∂ ϑ + i∂ ϕ 

sin θ

)
sin −s ϑ ≈ −(∂ x + i∂ y ) (6) 

nd where ð̄ denotes the spin- s lowering operator (Newman &
enrose 1966 ; Goldberg et al. 1967 ), 

¯
 = − sin −s ϑ

(
∂ ϑ − i∂ ϕ 

sin θ

)
sin s ϑ ≈ −(∂ x − i∂ y ) . (7) 

n both cases the final inequality represents the appropriate ap-
roximation when one considers a field of view small enough to
atisfy the flat-sky approximation, in which the sky may reasonably
e parametrized through cartesian co-ordinates x, y in the tangent
lane. 
Substituting the flat-sky approximation of the ð and ð̄ into the

xpression for the shear and convergence one finds that 

= 1 

2 
(∂ xx + ∂ yy ) φ and γ = 1 

2 
(∂ xx − ∂ yy + 2 i∂ xy ) φ, (8) 

here ∂ xx is shorthand for ∂ x ∂ x , and where we have dropped the
unction arguments for notational brevity. Next we take the Fourier
ransform of these differential equations to find 

˜ = 1 

2 
( k2 

x + k2 
y ) ˜ φ and ˜ γ = 1 

2 
( k2 

x − k2 
y + 2 ikx ky ) ˜ φ, (9) 

rom which we can straightforwardly eliminate ˜ φ to find 

˜ = k2 
x − k2 

y + 2 ikx ky 

k2 
x + k2 

y 

˜ κ = D ˜ κ ⇒ γ = F−1 DF κ (10) 

here D represents the Fourier mapping and F represents the Fourier
ransform. This expression is called the lensing forward model
nd determines how one may map between convergence and shear
elds. 
Ideally one would observe both the shear and convergence, each

f which encodes subtly different and complementary cosmological
nformation. Unfortunately, the brightness of a distant object is
 priori unknownable and therefore it is impossible to observe κ
irectly. Importantly, the distribution of intrinsic galaxy ellipticities
as zero mean 〈 εs 〉 whilst the shear field has non-zero mean 〈 γ 〉 	= 0.
herefore by aggregating many ellipticity observations the net

ensing effect may be distilled 〈 εs + γ 〉 = 〈 εs 〉 + 〈 γ 〉 ≈ 〈 γ 〉 . 
The accuracy of this approximation is determined by the number of

bjects Ng over which one averages. Making a central limit theorem
rgument the variance of the residual intrinsic shear component,
olloquially referred to as the shape noise , is approximately given
NRAS 542, 2464–2479 (2025)
y var( εs ) ≈ σ 2 
ε /Ng , where σε is the intrinsic ellipticity dispersion

hich is typically ∼ 0 . 37. Given the typical magnitude of γ ∼ 0 . 05
ne need only average over Ng ≈ 30 observations to recover a fair
stimate of the shear. 

.2 Lensing inverse problem 

ith observations of γ to hand one may attempt to infer κ by
xploiting their Fourier space relationship. The most naı̈ve algorithm
y which κ may be recovered given observations of γ is by
imply inverting this relation ˜ κKS = D−1 ˜ γ , which is the original
ethod developed by Kaiser & Squires ( 1993 ). As discussed in

he introduction, in an idealized setting κKS is equivalent to the
aximum-likelihood estimator (Price et al. 2021a ). However, in

ealistic scenarios noise contributions are overwhelmingly dominant
nd complex masking is present, thus the two estimators are by no
eans equivalent. 
The Kaiser–Squires estimator is known for its computational

fficiency and simplicity, however, it comes with several major
rawbacks. First and foremost, it does not account for observational
oise, which consequently propagates directly to the reconstruction.
n order to use the mass-maps for cosmological inference, post-
rocessing methods are conventionally used to improve their signal-
o-noise ratio. This post-processing typically takes the form of
aussian smoothing, which leads to the loss of non-Gaussian features

n the convergence map. In particular, this results in a suppression of
eaks in the reconstruction, and loss of small-scale structure – both of
hich are critical information for contemporary cosmology. Second,

t does not provide any measure of the uncertainties associated with
he reconstruction. 

Since the Kaiser–Squires method was proposed there have been
any other methods developed for mass-mapping, such as sparsity-

ased wavelet methods (Lanusse et al. 2016 ; Price et al. 2019 , 2020 ,
021b ; Starck et al. 2021 ) and deep learning architectures (Jeffrey
t al. 2020 ; Shirasaki et al. 2021 ; Remy et al. 2023 ). Several of these
ethods have further been extended from the flat-sky to the sphere

or wide-field mass-mapping (Chang et al. 2018 ; Price et al. 2021a ;
allis et al. 2022 ). Nevertheless, it is fair to say mass-mapping is by

o means a solved problem. 
The original Kaiser–Squires method is quick and computationally

fficient at the cost of loss of information. Deep learning techniques,
hich are data-driven, have shown promise in capturing the complex-

ties of features in the data, but each approach has its own drawbacks.
ost-processing learned denoising methods such as those by Jeffrey
t al. ( 2020 ) and Shirasaki et al. ( 2021 ) are fast but lack principled
ncertainty quantification. Neural score estimation methods such as
hose by Remy et al. ( 2023 ) provide uncertainty estimates but are
low at run-time. An additional question that warrants further study
s the accuracy of machine learning methods when the only available
raining data is simulated, often for a single fiducial cosmology. 

Overall, deep learning methods show great promise for ill-posed
nverse problems such as mass-mapping, however, there is still need
or deep learning methods which are fast, that produce high-fidelity
econstructions, and provide uncertainty quantification. We address
his need with our proposed method, MMGAN. 

.3 Generative adversarial networks 

e will now briefly review the GAN framework (Goodfellow et al.
014 ). GANs are comprised of two models: a generator, Gθ , with
arameters θ and a discriminator, Dφ , with parameters φ. During
raining, examples x are drawn from the real data distribution pr ( x),
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hich is unknown to the model. The generator learns a distribution
g ( x), from which it will output samples, ˆ x . The aim of the generator

s to match pg ( x) as closely as possible to pr ( x). The discriminator’s
ole is to assess incoming data (which is a mix of real and generated
amples), and decide whether it belongs to pr or pg . In other words
t aims to distinguish true samples from samples produced by the 
enerator. 
Both Gθ and Dφ are trained simultaneously to solve a two-player 
inimax game 

in 
Gθ

i max 
Dφ

V ( Gθ, Dφ) = E x ∼pr ( x ) [log Dφ( x)] 

+E z∼pz ( z) [log (1 − Dφ( Gθ ( z)))] . (11) 

or a value function V (see Goodfellow et al. 2014 ), where z 

s a latent variable drawn from a distribution pz ( z) ∼ N (0 , 1).
hrough training the generator will learn how to construct better 
amples, leading to a drop in performance of the discriminator. 
onsequently, this motivates the discriminator to once again learn 
ow to differentiate the true data from the generated data, which 
ill incentivize the generator to learn richer features of the data, in
rder to produce more convincing samples (Saxena & Cao 2021 ). It
s this adversarial framework which allows GANs to produce such 
igh-quality realizations after training. 
GANs famously suffer from two main challenges during training: 

(i) difficulty in converging; 
(ii) mode collapse. 

The generator and discriminator are both playing a minimax game, 
owever, the game is a non-cooperative one; the optimal solution to 
uch games is the Nash equilibrium. For GANs, this is equivalent 
o a discriminator which outputs a score Dφ = 0 . 5 for all inputs,
ndicating it is unable to distinguish between real and generated 
amples. 

In practice, it is difficult to reach Nash equilibrium, and the 
iscriminator may become too good at distinguishing between real 
nd generated samples. One may think this is a good thing that will
ead to an improved rate of training, however, to those versed in
ame theory it will come as no surprise that it in fact leads to the
pposite. This is because in non-cooperative games, an improvement 
or one player inherently causes a loss in performance for the other, as
uch a strong player will dominate the game. A perfect discriminator 
ill output Dφ( x) = 1 , ∀ x ∈ pr and Dφ( x) = 0 , ∀ x ∈ pg . When

his happens, log (1 − Dφ( Gθ ( z))) = 0, and the generator’s influence 
n the value function is lost. This can lead to the generator struggling,
r failing entirely (Arjovsky & Bottou 2017 ). 
Conversely, during training the generator may reach a local 
inimum in the learned probability space – this translates to a sample 
hich is particularly good at fooling the discriminator, especially in 

elation to other nearby samples in the generator’s distribution. In 
uch cases, there is little inherent incentive for the generator to further
xplore the target probability distribution when called to generate 
amples. This is a problem known as mode collapse . In the most
xtreme scenario this can lead to the generator producing the exact 
ame output each time it is called – this is known as total mode
ollapse (Metz et al. 2016 ). Mode collapse is also a problem when
alculating uncertainties, as the loss of diversity in the generated 
amples leads to severe bias in the uncertainty estimates. 

In short, regardless of whether the discriminator performs badly or 
ell, the generator does not receive rich enough feedback to wholly 

epresent the true data distribution. 
.3.1 Wasserstein GANs 

asserstein GANs were developed by Arjovsky et al. ( 2017 ) in order
o tackle the difficulty in GAN training mentioned in the previous
ection. The overall idea is to use a new distance metric for the loss
unction, in order to provide a gradient which was more meaningful
o the generator. 

The Wasserstein-1 distance (also known as Earth Mover’s dis- 
ance) (Peyré & Cuturi 2019 ) between two continuous distributions 
r and pg may be expressed using the dual formation of the 
asserstein-1 distance, 

1 ( pr , pg ) = sup 
‖ f ‖L ≤1 

E x∼pr 
[ f ( x)] − E ˆ x ∼pg 

[ f ( x)] , (12) 

here f is a 1-Lipschitz continuous function satisfying the constraint 
 f ‖L ≤ 1 and ‖ · ‖L represents the Lipschitz norm. 

To provide an intuition for what this distance represents, imagine 
wo separate piles of dirt whose shapes may be described by
istributions pr and pg , respectively. The Wasserstein-1 distance 
etween these two distributions is the minimum energy cost of 
oving the dirt in the second pile such that it is transformed from

hape pg to shape pr . This cost is proportional to the amount of units
f dirt moved multiplied by how far each unit has been moved. A
ower value of W1 indicates a higher level of similarity between the
wo distributions (Rubner, Tomasi & Guibas 2000 ). The Wasserstein- 
 distance is a more generalizable metric than the Jensen–Shannon 
JS) divergence used in traditional GANs, as rather than measuring 
he point-wise similarity between two distributions, it measures the 
ost of transporting one distribution to another. This means the 
asserstein-1 distance can be used to compare distributions with 

isjoint support, which is a problematic area for the JS divergence 
hat often leads to vanishing gradients. These disjoint distributions 
re especially common in higher-dimensional data spaces, such as 
mages, making the Wasserstein-1 distance a more suitable choice 
or GANs. 

Unlike in traditional GANs, where the discriminator is a direct 
ritic of the samples, in a Wasserstein GAN, the discriminator is
rained to learn the optimal function f to help estimate W1 ( pr , pg ).
s the loss of the discriminator decreases, so does the Wasserstein-1
istance between the two distributions, implying that the generator’s 
istribution pg is approaching the true distribution pr (Weng 2019 ). 
One key difference between Wasserstein GANs and standard 

ANs is that where a perfect discriminator causes the generator in a
tandard GAN to fail, Wasserstein GANs actually rely on training the
iscriminator to convergence. For this reason, typically the gradients 
f the discriminator are updated more frequently than the generator, 
hich also leads to improved stability during training. 

 M E T H O D O L O G Y  

n this section, we describe our methodology for building and training 
ur mass-mapping GAN, coined MMGAN, a regularized conditional 
AN. We begin by introducing conditional GANs, and highlight 
ow they differ to standard GANs. We then introduce regularization 
echniques utilized to overcome training issues, such as mode 
ollapse and lack of convergence, traditionally faced by conditional 
ANs, before describing how these techniques are utilized to also 
rovide uncertainty quantification. 

.1 Conditional GANs 

onditional GANs (Adler & Öktem 2018 ) differ from standard 
ANs in that they are conditioned on auxiliary input data, y, typically 
MNRAS 542, 2464–2479 (2025)
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ome kind of class or observational data, to which both the generator
nd discriminator have access. This additional information allows for
reater control over the generated output, as the model is conditioned
o provide targeted samples for a given input. 

Consider the sets of data and observations X and Y respectively.
he goal of the generator is to learn a generating function Gθ :
 × Y → X , where θ are the parameters of the generator, and Z 

s the set latent variables z ∼ pz = N (0 , I ). This function takes
bservations y ∈ Y as input, as well as some independently drawn z,
nd produces samples ˆ x = Gθ ( z, y). The role of the latent variable
s to provide a source of randomness to the generator, such that
ven for fixed y, the generator can produce a variety of samples.
ithin a conditional GAN, the discriminator’s function is of form
φ : X × Y → [0 , 1], with parameters φ. The discriminator’s role

s still to determine whether a given samples is real or generated,
owever, it also has access to the observation y. 
Each { x , y } pair is unique, meaning there is only a single data

nstance, x, corresponding to data y. This can become a challenge
hen training conditional GANs and can lead to more acute mode

ollapse. Additionally, solutions to mode collapse in unconditional
ANs (Karras et al. 2020 ; Schonfeld, Schiele & Khoreva 2020 ;
hao et al. 2021 ) are often ill-suited to conditional GANs because
f the presence of a conditioning variable. This means, that while
asserstein GANs were sufficient to effectively solve both issues

f unstable training and mode collapse for standard GANs, in
onditional GANs these challenges require distinct solutions. 

.2 Conditional Wasserstein GANs 

ne can still use the notion of Wasserstein-1 distance, and adapt it
or conditional data as follows 

1 ( pr ( ·| y ) , pg ( ·| y )) = sup 
Dφ∈ L1 

{E x∼pr 
{ Dφ( x | y ) } 

−E ˆ x ∼pg 
{ Dφ( ˆ x | y) }} , (13) 

here x is a true sample, with observation y, L1 is the set of 1-
ipschitz continuous functions, and ˆ x is a generated sample for

hat observation. Through using the discriminator to estimate this
asserstein-1 distance, the resulting conditional GAN still benefits

rom increased training stability, while avoiding the vanishing
radient problem. 

.3 Regularized conditional GANs 

egularized conditional GANs (Bendel et al. 2023 ) are a recent
evelopment, designed to overcome mode collapse in conditional
ANs – which as previously mentioned is a more acute problem

han with traditional GANs, and also harder to solve due to the one-
o-one x, y pairing of data. Within this framework, the generator
ims to solve the following minimization problem 

rg min θ { βadv Ladv ( θ, φ) + L1 ,SD ,Ntrain ( θ, βSD ) } , (14) 

here Ntrain ≥ 2 represents the number of samples made by the
enerator, and βadv and βSD are hyperparameters which control
he relative importance of the adversarial loss term Ladv and the
egularizer L1 ,SD ,Ntrain , respectively. They themselves are defined as 

adv ( θ, φ) : = E x,z,y { Dφ( x | y ) − Dφ( Gθ ( z| y ) | y ) } , (15) 

nd 

1 ,SD ,Ntrain ( θ, βSD ) : = L1 ,Ntrain ( θ ) − βSD LSD ,Ntrain ( θ ) . (16) 
NRAS 542, 2464–2479 (2025)
As can be seen in equation ( 16 ), the regularizer is a combination
f two loss functions: the first being the Ntrain -sample supervised
1 loss; and the second being the standard deviation reward. These
osses are defined by 

1 ,Ntrain ( θ ) : = E x,z1 ,....,zN ,y {‖ x − ˆ x( Ntrain ) ‖1 } , (17) 

nd 

SD ,Ntrain ( θ ) : = 

√ 

π

2 Ntrain ( Ntrain − 1) 

×
Ntrain ∑ 

i= 1 

E z1 ,...,zN ,y {‖ ˆ xi − ˆ x( Ntrain ) ‖1 } (18) 

here { ˆ xi } are the generated samples and ˆ x( N) : = 1 /N
∑ N 

i= 1 ˆ xi is
he N -sample average. By including the standard deviation within
he reward function, the model is encouraged to produce samples
ith some diversity, which helps to avoid mode collapse. 
The choice of �1 -loss and standard deviation reward is not an

rbitrary one. It can be shown that in the case where the generated
amples ˆ xi and the true samples x are both independent Gaussian
istributions conditioned on y, the mean and covariance of the
enerated samples will match that of the true distribution (Bendel
t al. 2023 , section Prop. 3.1). That is to say, 

 zi ∼pz 
{ ˆ xi ( θ

∗) | y} = E x∼pr 
{ x| y} = ˆ xMMSE (19) 

here ˆ xMMSE is the minimum mean squared error (MMSE) estimate
f the true posterior, and 

ov zi ∼pz 
{ ˆ xi ( θ

∗) | y} = Cov x∼pr 
{ x| y} , (20) 

here θ∗ = arg min θL1 ,SD ,Ntrain ( θ, βN 

SD ) with βN 

SD : =
 

2 / ( πNtrain ( Ntrain + 1)) being the optimal parameters for the
enerator (Bendel et al. 2023 ). 
In practice, the assumptions required for this proposition do not

ecessarily hold, therefore automatic tuning of the hyperparameter
SD is considered, which controls the desired standard deviation
etween generated approximate posterior samples. Some level of
eviation between samples is necessary to avoid mode collapse,
owever, too much deviation among samples can hinder the model’s
bility to learn the true distribution of the data. 

In order to constrain the allowed variance of generated samples,
he model auto-tunes βSD during training. The method utilizes an
bservation made by Bendel et al. ( 2023 , section Prop. 3.3) that when

ˆ i ∼ pr ( ·| y) are independent samples of the true posterior, then the
atio between the �2 error of a single sample and the N -average
ample is given by 

ε1 

εN 

= 2 N 

N + 1 
, (21) 

here ε1 and εN are approximated as follows 

ˆ 1 = 1 

Nval 

Nval ∑ 

i= 1 

‖ xi − ˆ x1 ‖2 
2 , (22) 

nd 

ˆ N = 1 

Nval 

Nval ∑ 

i= 1 

‖ xi −
V ∑ 

j= 1 

ˆ xj ‖2 
2 , (23) 

or some validation set { ( xv , yv ) }Nval 
v= 1 . This ratio is calculated during

ach training epoch τ . Then, βSD is updated using gradient descent
ccording to the following equation 
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Figure 1. Illustration of the architecture of the MMGAN generator. The shear map, comprising real and imaginary components, is used to produce a pseudo- 
reconstruction, which is similarly decomposed into its real and imaginary parts. These components are concatenated with a two-channel random latent vector z, 
and subsequently passed through our U-Net generator, which outputs a single sample of the convergence from the learned posterior distribution. The numbers 
below each block indicate the number of channels in each layer. Additionally, the colour of the blocks indicate the series of operations applied, as dictated by 
the legend. The residual block has been illustrated in greater detail below the main generator architecture. It consists of a 3 × 3 convolution, followed by batch 
normalization, then parametric ReLU. This is done twice, and then the output of this is added to a 1 × 1 convolution of the original input. 

β

f  

p

3

W
m
f  

s
o
c

2  

r
s  

i
i
b
c
w
o
w
m
K
f
O
2

t  

(

s
m
c  

p
r
i
f
T  

l  

w  

d  

fi
 

b
o
u  

E
w  

u
a
t
l  

n
t
m  

F
k  

o  

i

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/542/3/2464/8240260 by Eastm
an D

ental Institute user on 13 O
ctober 2025
SD ,τ+ 1 = βSD ,τ − μSD 

×
(

log 10 

[
ˆ ε1 ,τ

ˆ εNval ,τ

]
− log 10 

[
2 Nval 

Nval + 1 

])
βSD ,τ= 0 (24) 

or a learning rate μSD > 0. For the full details of the above
roposition we refer the reader to Bendel et al. ( 2023 ). 

.4 MMGAN 

ith all the necessary components described, we now introduce our 
odel architecture. Our regularized conditional GAN, MMGAN, 

ollows the same general structure as Bendel et al. ( 2023 ), with
ome key changes to tailor the model to mass-mapping. The goal 
f our model is to produce approximate posterior samples of the 
onvergence given a shear map. 

Our generator is based on a U-Net architecture (Ronneberger et al. 
015 ). There are six input channels: the shear map; a Kaiser–Squires
econstruction (made on-the-fly from the shear map) with no added 
moothing; and a random noise vector z ∼ N (0 , I ). Each of these
nputs includes two channels, one for the real component of the 
nput and another for the imaginary component. We trialled models 
oth with and without the Kaiser–Squires map as an additional input 
hannel, and found the addition of it led to improved performance, 
ith negligible increase in computational cost. In particular we 
bserved that the shear alone is good for capturing the uncertainties 
ithin a reconstruction, however, the addition of the Kaiser–Squires 
ap leads to better quality reconstructions. Although we used 
aiser–Squires here, for its simplicity, it is worth noting that any 

ast, approximate reconstruction method could be used in its place. 
ther mass-mapping methods (Jeffrey et al. 2020 ; Shirasaki et al. 
021 ) also take an approximate reconstruction as input, although they 
ypically do not condition on the observed shear field as we do here,
e.g. Jeffrey et al. 2020 post-process a Wiener filter reconstruction). 

Our network architecture consists of four downsampling blocks, 
tarting with 128 initial channels. Rather than traditional pooling 
ethods, we downsample through convolutional blocks. Each block 

onsists of a convolutional layer with a kernel of size 3 × 3 and
adding of 1, followed by batch normalization and a Parametric 
ectified linear unit (PReLU) activation function. At this point, we 
nclude a residual block, which consists of two convolutional layers 
ollowed by batch normalization and a PReLU activation function. 
his block is our skip connection. Then, we take a final convolutional

ayer with a kernel of size 3 × 3, padding of 1, and stride of 2,
hich will act as our downsampling step. The number of channels
oubles at each downsampling block, from 128 to 256, 512, and
nally 1024. 
In the bottleneck of the U-Net, we include a single residual block

efore moving to our upsampling blocks. For upsampling, we rely 
n transpose convolutions. The number of channels halves at each 
psampling block; as such, the number of output channels is also 128.
ach upsampling layer begins with a transpose convolutional layer 
ith kernel size 3 × 3, padding size 1 and stride 2, which acts as our
psampling mechanism and is followed by batch normalization and 
 PReLU activation function. We then concatenate the output with 
he corresponding skip connection and again apply a convolutional 
ayer with kernel size 3 × 3 and padding size 1, followed by batch
ormalization, PReLU activation, and a residual block. As we move 
hrough the upsampling blocks, the number of channels halves, 
eaning after four layers, the number of channels is once again 128.
inally, after upsampling, we apply two convolutions with 1 × 1 
ernels. The output of the generator is a single approximate sample
f the convergence field. An illustration of the generator can be found
n Fig. 1 . 
MNRAS 542, 2464–2479 (2025)
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Our discriminator is a standard convolutional neural network
lassifier, taking two inputs x and y, with one initial convolutional
ayer followed by six convolutional downsampling layers and one
nal fully connected layer. In the initial layer, we use convolutions
ith kernels of size 3 × 3 with 1 padding and a leaky ReLU with a
egative slope of 0.01. In each downsampling layer, we reduce spatial
esolution with average pooling, using 2 × 2 kernels with a stride of
, then a convolutional layer with a 3 × 3 kernel with padding of 1,
nstance normalization, and a leaky ReLU with a negative-slope of
.2. The final output of the discriminator is the estimated Wasserstein
core for the convergence map. 

.4.1 Point image estimate 

n order to create a final convergence map reconstruction we need
o select a suitable point estimate. It is natural to use the posterior
ean, which is also the MMSE, especially given equation ( 19 ),
here it is shown that under certain assumptions a link can be
rawn between the MMSE and the true posterior. Therefore, to build
he final convergence map, the shear map is passed through the
enerator many times. Each time the generator is called it produces
 new approximate posterior sample. The empirical posterior mean
s used as the MMGAN reconstruction, which is obtained by doing
n average of N approximate posterior samples. 

.4.2 Uncertainty quantification 

he convergence map reconstruction is the average of N approximate
osterior samples. For uncertainty quantification, we calculate the
ixel-wise standard deviation of the samples, in order to build
n uncertainty map. Based on the proposition outlined in Bendel
t al. ( 2023 ), the standard deviation of the approximate posterior
amples matches that of the true posterior, under certain assumptions.
herefore, features that consistently appear across the generated
amples are more likely to be true features of the data, as compared
o features which appear in one or two samples. For features that
ppear in the majority of samples, the standard deviation for those
ixels will be low. Conversely, in areas where the model is less certain
bout present features, the generated samples will be more diverse,
eaning the standard deviation of that region will be higher. In this
ay, by looking at the standard deviation map, one can infer the
odel’s confidence in the reconstruction. 

 SIMULATIONS,  T R A I N I N G ,  A N D  

A L IDATION  

his section details the simulations and mock data set used to train
ur model. We first discuss the κTNG simulations, a collection of
onvergence maps based on the IllustrisTNG simulations, before
oving on to describe how we used this weak lensing map suite to

uild a mock catalogue of 10 000 convergence maps in the style of
he COSMOS survey. This catalogue was then used to train, validate,
nd test our model. 

.1 KappaTNG simulations 

he κTNG simulations are a suite of 10 000 mock weak lensing
aps (Osato, Liu & Haiman 2021 ), based on the IllustrisTNG

ydrodynamical simulations (Springel et al. 2018 ). All simulations
ssume the flat � cold dark matter cosmology as in Planck 2015
Ade et al. 2016 ), with H0 = 67 . 74 kms −1 Mpc −1 , baryonic density
NRAS 542, 2464–2479 (2025)
b = 0 . 0486, matter density 
m 

= 0 . 3089, and spectral index of
calar perturbations ns = 0 . 9667. 

The maps were generated by creating light cones with an opening
ngle of 5 × 5 deg 2 , from the IllustrisTNG simulations, made by
tacking TNG snapshots along the line of sight. The mock weak
ensing maps were then created by tracing the light cones from z = 0
p to the target redshift, zs ∈ [0 . 00 , 2 . 57]. To create the full suite, a
arge number of random flips, rotations, and translations were applied
o the IllustrisTNG snapshots. The subsequent maps were shown to
e statistically independent (Osato et al. 2021 ). Each map is of size
024 × 1024 pixels, with a resolution of 0 . 29 arcmin pixel −1 . 

.2 COSMOS data 

n the following analysis we make use of data from the COSMOS
urvey (Scoville et al. 2007 ). The COSMOS field is a 1 . 64 deg 2 

eld on the sky, images using the advanced camera for surveys.
hroughout this work, we use the Schrabback et al. ( 2010 ) shape
atalogue, which is a catalogue with two subsets: a bright catalogue
ith i+ < 25, and a faint catalogue with i+ > 25. Galaxy samples

n the bright catalogue can be cross-matched with the COSMOS-
0 catalogue (Ilbert et al. 2008 ), providing individual photometric
edshifts. This is not available for the faint catalogue. 

In our analysis we use the full catalogue, including both the bright
nd faint samples. We cut bright galaxies with zphot < 0 . 6 and i+ >

4, as there are indications these may in fact be galaxies at high
edshifts (Schrabback et al. 2010 ); see also Remy et al. ( 2023 ) for
urther discussion on this. After applying these cuts, the total number
f galaxies is 417 117. 

.3 Mock COSMOS data set 

n order to create mock COSMOS maps we utilized both the κTNG
imulations, and the Schrabback et al. ( 2010 ) shape catalogue. As
entioned, this shape catalogue is divided into a bright and faint

atalogue, which we combined into a full catalogue. We discarded
alaxies with photometric redshifts zphot < 0 . 6 for reasons specified
n Section 4.2 . Then we calculated the redshift distribution, p( z), of
he galaxies in the full catalogue. 

Convergence maps for sources with a redshift distribution p( z)
alculated by 

tot =
imax ∑ 

i= imin 

wi κi , (25) 

here 

i =
∫ zi + �zi / 2 

zi −�zi / 2 
d zp( z) , (26) 

here κ tot is the convergence map for sources with a redshift
istribution p( z), κi is the convergence map for sources at redshift
i , �zi is the width of the ith -redshift bin, and imin and imax are
he minimum and maximum redshifts of source galaxies considered,
espectively (Makiya, Kayo & Komatsu 2021 ). 

The κTNG maps are sliced at discrete redshifts between z ∈
0 , 2 . 568], leading to 40 evenly spaced source planes. For our mock
OSMOS maps we required a redshift up to z = 5, therefore we
hose redshift values zi with spacing equal to the κTNG slices. This
esulted in 80 redshift values zi , leading to 79 redshift bins, centered
n the redshift values of the κTNG maps. Note that the bin size is
alved for the first and last bins. For z > 2 . 568 we follow Remy
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t al. ( 2023 ) and reused the highest redshift slice convergence map
 z = 2 . 568), while calculating a new weight for each bin. 

Finally, we created a mask to represent the COSMOS survey area. 
o do this we binned the COSMOS shape catalogue into maps of the
hear components, and calculated the number of galaxies per pixel. 
e created a binary mask for empty pixels. 
In summary, we created 10 000 convergence maps of size 300 ×

00 pixels. In order to convert these to mock shear maps, we used
he forward model described by equation ( 10 ). We added spatially
arying noise to the shear, treating the real and imaginary components 
eparately by calculating the standard deviation of the γ1 and γ2 

stimates in the COSMOS shape catalogue, respectively. We then 
imulated the noise by multiplying the two standard deviations by a 
andom normal distribution, and adding to the real and imaginary 
omponents of the clean mock COSMOS shear maps. We note 
hat these maps do not account for instrumental effects such as
hotometric uncertainty, intrinsic galaxy alignment, or baryonic 
eedback effects. However, if these effects were incorporated into 
he training data, the model could, in principle, learn to account for
hem. 

.4 Training 

uring each training epoch, for a batch size and Ntrain = 2, we
enerated mock shear maps on-the-fly from our convergence maps 
see Section 4.3 ). Each shear map was paired with two latent vectors,
orresponding to the real and imaginary components, which were 
hen input to the generator. The generator optimized the following 
oss function 

Gθ
: = βadv Ladv ( θ, φ) + L1 ,Ntrain ( θ ) − βSD LSD ,Ntrain ( θ ) , (27) 

here βadv was initially set to 10−2 for the first five epochs, then 
ecreased to 10−4 until epoch 23, and finally to 10−5 for the remainder 
f training. The value of βSD was updated according as described 
n Section 3.3 using Nval = 8. Following this, the discriminator 
erformed an optimization step on its own loss 

Dφ
: = −Ladv ( θ, φ) + α1 Lgrad ( φ) + α2 Ldrift ( φ) , (28) 

here Lgrad is a gradient penalty used to encourage that Dφ ∈ L1 

Gulrajani et al. 2017 ), with α1 = 10 the gradient penalty weight. We
ollow Karras et al. ( 2018 ) and add the term Ldrift , which penalizes
he discriminator’s output from drifting too far away from zero, as
t can make the training unstable. More precisely, the drift penalty 
s defined as Ldrift ( φ) : = E x,y { Dφ( x | y )2 } . Following Adler & Öktem
 2018 ), we use a small drift penalty weight of α2 = 0 . 001. We used
he Adam optimizer (Kingma 2014 ) with a learning rate of 10−3 ,
1 = 0, and β2 = 0 . 99. Our model was trained across 4 Nvidia A-
00 GPUs, and took approximately 6.5 h to train for 100 epochs. 

.5 Model validation 

o evaluate the performance of the trained model we validated it on
 subset of our mock COSMOS data set previously unseen by the
odel. 
For validation we looked at the peak signal-to-noise ratio (PSNR), 

SNR = 10 log 10 

(
MAX 

2 
I 

MSE 

)
, (29) 

here MAX I is the maximum possible pixel value (which we set 
o 1), and MSE is the mean squared error between the truth and
he reconstruction. We calculated the PSNR of a single posterior 
ample as well as the PSNR of a reconstruction made from the
verage of N = 32 samples (for discussion on our choice of N see
ection 5.1.1 ). 
This procedure is repeated across a number of different input 
aps. We then collate the data and calculate the difference between

he single PSNR and reconstruction PSNR. We define a tolerance, 
nd if the magnitude of the difference is larger than that tolerance
e remove the epoch from the set. We took this approach to ensure

hat any epoch we considered as our final model was not one prone
o over-variance in the generated samples. 

With the remaining epochs, we calculated a range of metrics across
 set of mock maps and reconstructions. These metrics were the
SNR, RMSE, and Pearson correlation coefficient, 

 =
∑ 

i 

( xi − ˆ x )( pi − ˆ p ) 
√ ∑ 

i 

( xi − ˆ x )2 
√ ∑ 

i 

( pi − ˆ p )2 
, (30) 

here xi and pi are the truth and the reconstruction, respectively, 
nd ˆ x , ˆ p denote their respective means. We selected the epoch which 
erformed best across all metrics as our final model. 

 RESULTS  

n this section, we present both the performance of our model on the
ock COSMOS test simulations, followed by its application to the 

rue COSMOS field data. We show some example reconstructions 
nd discuss how the quality of the reconstruction changes with the
umber of approximate posterior samples used to create it. We also
ompare our results to the Kaiser–Squires method, and in the case
f our full COSMOS reconstruction we show it alongside the Remy
t al. ( 2023 ) reconstruction. In addition, we show how the standard
eviation map of the approximate posterior samples can be used to
uantify the uncertainty in the reconstruction. 
To assess reconstruction quality, we compared to the pixel-wise 

bsolute error = | ˆ x( N) − x| between the reconstruction and the 
round truth. We also used the absolute error to asses the usefulness of
sing the standard deviation of the generated approximate posterior 
amples as a measure of uncertainty. 

.1 Simulations 

n this subsection, we present the results of our model applied to the
ock COSMOS simulations. We begin by motivating the choice of 
 = 32 for the number of approximate posterior samples used to

reate a reconstruction. We then show some example reconstructions 
nd approximate posterior samples. We directly compare our results 
o the Kaiser–Squires method, as well as qualitatively compare to 
ther state-of-the-art methods. Finally, we assess the quality of our 
ncertainty quantification and calculate coverage probabilities for 
ur reconstructions. 

.1.1 Reconstructions of simulations 

hen building a reconstruction it is important to choose an appropri-
te number of generated samples from which to calculate the mean.
e calculated both the PSNR and the Pearson correlation coefficient 

or reconstructions made with different numbers, N , of samples. For 
oth metrics, a higher value indicates a better reconstruction. Fig. 2
llustrates how these metrics change with the number of samples used
o create the reconstruction. As can be seen, there is a large increase
n quality between N = 1 and N = 4, however, the curves quickly
atten out for larger N indicating that from a quality perspective
MNRAS 542, 2464–2479 (2025)



2472 J. J. Whitney et al.

M

Figure 2. PSNR and Pearson correlation coefficient values of MMGAN 

reconstruction dependant on the number of approximate posterior samples 
used to create that reconstruction, which is given by the mean of the 
approximate posterior samples. The curve flattens out for both metrics, 
indicating there is little need to consider N > 32. 

Table 1. Reconstruction quality for different values of N , where N is the 
number of posterior samples averaged over to create a reconstruction. 

N PSNR ↑ SSIM ↑ 

1 31.35 ± 0.01 0.6886 ± 0.0007 
2 32.56 ± 0.01 0.7423 ± 0.0007 
4 33.33 ± 0.01 0.7745 ± 0.0006 
8 33.77 ± 0.01 0.7921 ± 0.0006 
16 34.01 ± 0.01 0.8018 ± 0.0006 
32 34.13 ± 0.01 0.8062 ± 0.0006 
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here is no need to choose an excessively high value for N . We
hoose N = 32 henceforth for reconstructions. 

Table 1 further explores how the reconstruction changes as the
umber of generated samples used changes. It shows the PSNR and
tructural similarity index measure (SSIM; Wang et al. 2004 ) on
econstructions with different values of N , calculated during model
alidation. The SSIM is computed as 

SIM ( x , y ) = (2 μx μy + C1 )(2 σxy + C2 ) 

( μ2 
x + μ2 

y + C1 )( σ 2 
x + σ 2 

y + C2 ) 
, (31) 
NRAS 542, 2464–2479 (2025)
here μx and μy are the means of x and y, σx and σy are the
tandard deviations of x and y, σxy is the covariance of x and y, and
1 and C2 are constants. These metrics were calculated by comparing

econstructions with the ground truths for the mock data. 
Fig. 3 provides an overview of a given reconstruction, including

he truth, a full reconstruction made by MMGAN, the absolute error
etween both, and the standard deviation of the approximate posterior
amples used for the reconstruction. Note, the model was trained on
asked data, so while it was able to fill small masked pixels within

he central map, areas beyond the outer mask boundary (shown as
 white contour on all figures) should be ignored, as the model was
ot trained there. We also show a Kaiser–Squires reconstruction,
pplying Gaussian smoothing here and throughout with variance
= 1 arcmin , following Remy et al. ( 2023 ), as this was shown to
inimize the RMSE. 
As can be seen in Fig. 3 our model has successfully captured

he visual structure of the convergence map. The peaks are not
uppressed in the reconstruction. The error between the truth and
he reconstruction is very small in most areas. The same is true for
he standard deviation. Importantly, from visual assessment, areas
ith the largest standard deviation correlate with areas of the highest

rror. This is sensical, as we expect that areas where the model is
ess certain of the true map, it will explore a wider range of possible
econstructions. Further examples for other simulated maps can be
een in the appendix, in Fig. A1 . 

As mentioned, MMGAN outputs samples from the learned poste-
ior distribution. Fig. 4 shows a selection of generated samples, which
ighlights the sample generation diversity. Large-scale features are
onsistent across the samples, however, the variability shows itself
n the smaller scale structure, as can be seen in the differences in the
oomed-in regions of the figure. 

Fig. 5 shows how the reconstruction varies as the number of
amples used to build it changes. There is more detail when a
maller number of samples are used, however, these reconstructions
re more prone to the variability of any individual posterior sample.
y averaging over a larger number of samples, we do lose some level
f small-scale structure, however, the features in the resulting recon-
truction are more likely to be true features of the data. That said,
ven our ‘smoother’ reconstruction, with N = 32, more accurately
aptures the small-scale structure to a higher level than the Kaiser–
quires reconstruction. Additionally, because we are not applying
ny additional post-processing – such as the Gaussian smoothing
ypical in Kaiser–Squires maps – there is no peak suppression of the
mall-scale features. 

In addition to visually comparing our MMGAN reconstructions
o the Kaiser–Squires reconstruction, we also compare the two
uantitatively through calculating a range of metrics. Those metrics
re the Pearson correlation coefficient, RMSE, and PSNR. The results
f this comparison can be seen in Table 2 . MMGAN significantly
utperforms Kaiser–Squires for each metric, which indicates that not
nly does our model produce reconstructions that visually appear to
e of higher quality, but also that MMGAN is better capturing the
nderlying features of the data. Additionally, in Table 2 we have
ncluded results from other state-of-the-art methods, as reported in
emy et al. ( 2023 , §Table 1) including GLIMPSE (Lanusse et al.
016 ), MCAlens (Starck et al. 2021 ), DeepMass (Jeffrey et al.
020 ), and DLPosterior (Remy et al. 2023 ). These results are also
sing mock COSMOS data, built in the same way as our data
et. However, it is critical to stress that the validation set used to
alculate these metrics differ, as can be seen from the difference
n results for the Kaiser–Squires method. Therefore, the values in
he table with an asterisk should not be compared directly with
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Figure 3. A reconstructed convergence map for one of the mock COSMOS maps. Our reconstruction is the average over 32 approximate posterior samples. 
On the bottom row is the pixel-wise absolute error between the reconstruction and the ground truth, and the standard deviation between the 32 samples used to 
build the reconstruction. The white contour indicates the outer border of the mask applied to the data. We achieve superior visual quality as compared to the 
Kaiser–Squires reconstruction, with no peak suppression. Additionally, we see visual correlation between the absolute error and the standard deviation map. 
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ur own, however, they provide a general sense of MMGAN’s 
erformance with respect to other methods. In general, MMGAN, 
CAlens, DeepMass, and DLPosterior all perform similarly well. 
here MMGAN stands apart, is its ability to quantify uncertainties 

n a highly computationally efficient manner. 

.1.2 Uncertainty quantification validation 

s well as evaluating reconstruction quality, we also assessed 
he effectiveness of our uncertainty quantification. When building 
econstructions of simulated convergence maps, we qualitatively 
ompared the resulting uncertainty map with the pixel-wise absolute 
rror between the MMGAN reconstruction and the ground truth. 
isually, there is a correlation between these fields, as can be seen in
igs 3 and A1 . 
We also investigated MMGANs uncertainty maps using coverage 

ests, which assess whether the predicted uncertainties accurately 
eflect the true reconstruction error. Preliminary results suggest that 

MGAN achieves strong performance. A comprehensive analysis 
f these tests will be presented in Whitney, Liaudat & McEwen (in
reparation). 

.2 COSMOS field reconstruction 

fter validation we apply our full methodology to the COSMOS field 
ata, using the catalogue described in Section 4.2 . Fig. 6 shows an
verview of our results. We compare with the DLPosterior COSMOS 

econstruction of Remy et al. ( 2023 ), in addition to the Kaiser–
quires reconstruction which acts as our baseline. Both our method 
nd DLPosterior provide uncertainties, which are also included in 
ig. 6 . The three reconstructions are all shown on the same scale. 
When comparing the features present in our reconstruction with 

LPosterior, we find good agreement in both the large and small-
cale structure. Peaks in the reconstructions are consistent in terms 
f magnitude and position. 
Our reconstruction uncertainty is largely low throughout, with 

he highest magnitudes appearing in the masked region outside 
he COSMOS survey boundary. Again, the model was not trained 
o optimize this region, so a high level of uncertainty here is not
urprising, and results in this region should be ignored. Interestingly, 
he uncertainties in the MMGAN reconstruction and the DLPosterior 
econstruction are similar, with higher levels of uncertainty in the 
ame regions. In order to better compare the uncertainties between 
MGAN and DLPosterior reconstructions, we have shown them 

oth on the same scale. 
In order to draw a more detailed comparison between the recon-

tructions, we overlaid known x -ray clusters using a subset of the
ost massive clusters from the Finoguenov et al. ( 2007 ) XMM –
ewton data, seen in Fig. 7 . We get good agreement between

he features in our reconstruction and the cluster positions. There 
re a number of peaks in our reconstruction which do not have
 corresponding cluster, however, given these features also appear 
n the DLPosterior and Kaiser–Squires reconstructions, they may 
e features which are beyond the depth of the x -ray data. 
Another method of comparing our reconstruction with the DLPos- 

erior reconstruction, is to take the relative uncertainty (RU) between 
MNRAS 542, 2464–2479 (2025)
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M

Figure 4. A selection of generated approximate posterior samples for a given shear map, in comparison with the ground truth. We have zoomed in on a region 
of the samples, to better show the variation within different samples. 
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he two using the following equation 

U = M1 − M2 √ 

S2 
1 + S2 

2 

, (32) 

here M1 and M2 are the convergence maps, and S1 and S2 are the
tandard deviations across the approximate posterior samples used
or each reconstruction, respectively. This equation can be interpreted
s the number of standard deviations between the two reconstructions
iven the uncertainty estimated by each method. A low value means
 high level of agreement between the two maps, and a high value
ndicates areas where the reconstructions do not agree as well. We
how the relative uncertainty map between our reconstruction and
he DLPosterior reconstruction in Fig. 7 , as the lower panel. Overall
he two reconstructions are in close agreement, with many pixels
eing within 1 standard deviation. The peaks in particular are in
ood agreement with one another, with the largest differences in the
NRAS 542, 2464–2479 (2025)

aps appearing in lower density regions in the reconstructions. 
 C O N C L U S I O N S  

eep learning methods are a powerful tool in improving mass-
apping. They utilize data-driven priors, can handle the large

mounts of data being collected by modern surveys, and are often
etter at capturing complex features in the data than traditional
ethods. However, in this era of precision cosmology, is it pref-

rential that convergence map reconstructions which will be used
or statistical analysis are accompanied by uncertainty maps. Most
rior methods, including traditional and deep learning approaches,
o not provide uncertainty estimates, and those that do can be slow. In
rder to address this gap, we propose MMGAN, a novel convergence
ap reconstruction method that provides uncertainties. MMGAN

everages a regularized conditional GAN to generate approximate
osterior samples given shear observations, and then uses these
amples to build a reconstruction and associated uncertainties. Under
ome assumptions, it can be shown that regularized conditional
ANs are able to approximate the true posterior mean and standard
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Figure 5. Demonstration of how the N -sample reconstruction varies for N ∈ { 1 , 4 , 8 , 32 } , N = 1 being a single posterior sample, for the zoomed-in region 
shown in the box. The figure also shows the Kaiser–Squires map for the same region. As can be seen, the reconstruction becomes smoother as N increases, 
however, the prominent features remain. An individual sample has a far higher level of detail, comparable with the true map, however, it can be seen that features 
differ slightly to the truth, indicating why it is necessary to average over a number of samples. Despite some loss of the smallest-scale structure for N = 32, 
there is less peak suppression than the Kaiser–Squires reconstruction. 

Table 2. Results of validation metrics. The Pearson correlation coefficient, 
RMSE, and PSNR, were calculated for the Kaiser–Squires reconstruction 
(with σ = 1 arcmin smoothing, chosen to minimize RMSE) and our 32- 
sample MMGAN reconstruction across a validation data set. The results 
were averaged and then used to create this Table. Metrics for methods 
marked with an asterisk ( ∗) are sourced from Table 1 in Remy et al. 
( 2023 ) and therefore should not be directly compared with our results, 
since they consider a different validation set. Instead, they serve to provide 
a general comparison between MMGAN and other methods. Notably, 
the Kaiser–Squires results differ slightly from those reported in Remy 
et al. ( 2023 ), likely due to differences in the randomly selected validation 
sets. 

Pearson ↑ RMSE ↓ PSNR ↑ 

MMGAN (Ours) 0.727 0.0197 34.106 
Kaiser–Squires 0.619 0.0229 32.803 
Kaiser–Squires ∗ 0.57 0.0240 –
Wiener filter ∗ 0.61 0.0231 –
GLIMPSE ∗ 0.42 0.0284 –
MCAlens ∗ 0.67 0.0219 –
DeepMass ∗ 0.68 0.0218 –
DLPosterior ∗ 0.68 0.0216 –
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eviation. Given these assumptions do not hold in all cases, an auto-
uning mechanism is adopted during training. 

Given a noisy shear observation, we construct a pseudo- 
econstruction, and pass both into the MMGAN generator, which 
hen outputs an approximate posterior sample. We take the posterior 
ean of N = 32 approximate posterior samples as our final recon-

truction, and the standard deviation of these samples to quantify 
ur uncertainties. Currently, we choose a Kaiser–Squires map as 
ur pseudo-reconstruction, however, this could be replaced with a 
ore sophisticated reconstruction method, such as the Wiener filter. 
MGAN does not require an explicit choice of cosmology, which 
s another reason why we chose the Kaiser–Squires method as our
seudo-reconstruction. We trained MMGAN on a mock data set with 
 fixed cosmology, which we acknowledge may bias the learned 
odel towards that cosmology. However, this is a limitation of the

ata set rather than the method itself – there is no fundamental
eason MMGAN could not be trained on a data set with a range of
osmologies. Additionally, we did not account for astrophysical and 
bservational systematics such as intrinsic alignments, photometric 
ncertainties, and shear multiplicative biases within our training 
ata. These effects can introduce biases in the shear measurements, 
otentially impacting both reconstruction accuracy and uncertainty 
stimated. In future work, it would be interesting to explore how
MGAN performs when trained on data that accounts for these 

ffects, as understanding their impact on the reconstruction and 
ncertainty maps is an important step towards ensuring the robustness 
f the method. 
To train MMGAN, we used mock COSMOS-style shear and 

onvergence maps, made from the κTNG simulations. We validated 
ur model on a subset of the mock COSMOS data not seen during
raining. We used the PSNR to ensure the model was suitably
onstrained in terms of variance in its sample generation, and then
sed standard metrics such as the PSNR, RMSE, and Pearson 
orrelation coefficient to select the best training epoch of our model.
e found that our MMGAN reconstructions are able to capture 

oth large- and small-scale structure, and do not require any post-
rocessing such as smoothing, which is known to suppress peaks. The
esulting MMGAN model leverages data-driven priors to produce 
igh-fidelity reconstructions with uncertainty estimates, all generated 
ithin seconds. 
After validation we made a reconstruction of the COSMOS field, 

nd found the results to be comparable to state-of-the-art methods, 
uch as DLPosterior (Remy et al. 2023 ), and significantly more
etailed than Kaiser–Squires. MMGAN was able to generate this 
MNRAS 542, 2464–2479 (2025)
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Figure 6. MMGAN reconstruction of the COSMOS field convergence map with uncertainties ( top ), the DLPosterior reconstruction with uncertainties ( middle ), 
and the Kaiser–Squires reconstruction ( bottom ). All reconstructions are shown on the same scale; uncertainties also share a colour scale. The contour indicates 
the outer border of the mask on the COSMOS field data. 
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Figure 7. MMGAN COSMOS reconstruction ( top ), the DLPosterior recon- 
struction ( middle ), and the relative uncertainty between the two reconstruc- 
tions ( bottom ). The white points indicate the positions of known x -ray clusters 
from the Finoguenov et al. ( 2007 ) XMM –Newton data, and the white border 
is the edge of the COSMOS field mask. Both reconstructions are shown on 
the same scale. Both reconstructions are in good agreement with the x -ray 
data, and generally in good agreement with each other. 
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econstruction and associated uncertainties in under a minute, as 
ompared to the ∼10 GPU minutes required to generate each 
ndependent approximate posterior sample by DLPosterior. The 
aiser–Squires reconstruction method (Kaiser & Squires 1993 ) and 

lternative deep learning approaches (Jeffrey et al. 2020 ; Saxena &
ao 2021 ), while also being quick, provide no uncertainties. Fast

echniques that also quantify uncertainties are important for integra- 
ion into downstream cosmological parameter estimation and model 
omparison pipelines so that uncertainties in the mass-mapping 
rocess are captured. 
We hope our method will be useful in future mass-mapping 

nalyses, in particular within larger pipelines that can make use 
f the rapid speeds at which posterior distribution samples can be
enerated. We make the code used for this work publicly available to
he community, and hope it can be used to further the field of weak
ensing mass-mapping. 
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PPENDI X  A :  A D D I T I O NA L  SI MULATI ON  

LOTS  

n this section, we provide an additional set of plots ( A1 ) showing the
MGAN reconstructions of some simulated mock maps, alongside

he ground truth, pixel-wise absolute error, and pixel-wise standard
eviation. These plots are similar to those shown in Fig. 3 . 
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Figure A1. Overview of the MMGAN reconstructions of the COSMOS mocks including MMGAN reconstructions built from N = 32 approximate posterior 
samples, the ground truth, the pixel-wise absolute error between the reconstruction and the ground truth, and the pixel-wise standard deviation between the 32 
approximate posterior samples used to build the reconstructions. 
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