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ABSTRACT

Understanding the nature of dark matter in the Universe is an important goal of modern cosmology. A key method for
probing this distribution is via weak gravitational lensing mass-mapping — a challenging ill-posed inverse problem where
one infers the convergence field from observed shear measurements. Upcoming stage IV surveys, such as those made by the
Vera C. Rubin Observatory and Euclid satellite, will provide a greater quantity and precision of data for lensing analyses,
necessitating high-fidelity mass-mapping methods that are computationally efficient and that also provide uncertainties for
integration into downstream cosmological analyses. In this work we introduce a novel generative adversarial network (GAN) for
mass-mapping, which we call the Mass-Mapping GAN (MMGAN), based on a regularized conditional GAN framework, which
generates approximate posterior samples of the convergence field given shear data. We adopt Wasserstein GANs to improve
training stability and apply regularization techniques to overcome mode collapse, issues that otherwise are particularly acute for
conditional GANs. We train and validate our model on a mock data set modeled after the Cosmic Evolution Survey (COSMOS)
before applying it to true COSMOS data. Our approach significantly outperforms the Kaiser—Squires technique and achieves
similar reconstruction fidelity as alternative state-of-the-art deep learning approaches. Notably, while alternative approaches for
generating samples from a learned posterior are slow (e.g. requiring ~10 GPU min per posterior sample), MMGAN can produce

a high-quality convergence sample in less than a second.
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1 INTRODUCTION

The shape and magnitude of distant galaxies appear distorted under
observation due to gravitational lensing, wherein the path of the
photons emitted by these galaxies is bent by the gravitational field
of intervening matter. This distortion can be used to infer large-
scale cosmological structure, in particular the distribution of said
intervening matter — both visible matter and dark matter. Stage IV
surveys, such as the Vera C. Rubin Observatory (Ivezi¢ et al. 2019)
and Euclid (Laureijs et al. 2011), will provide an abundance of new
data for lensing analyses.

Weak lensing has two effects to first order: convergence, «,
and shear, y. Mass-mapping is the process of approximating the
convergence from the shear and is an ill-posed inverse problem due
to instrumental and noise effects. Mass-maps are incredibly useful
for calculating higher-order statistics — such as Minkowski functions
and bispectrum (Munshi & Coles 2017), peak count statistics (Liu
et al. 2015a, b; Martinet et al. 2018; Harnois-Déraps et al. 2021)
and scattering transform statistics (Cheng et al. 2020) — which can
be compared against predictions for different cosmological models
to constrain parameters and refine our understanding of the true un-
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derlying nature of the Universe. Given the advances in observational
technology, we are now in the era of precision cosmology, where
weak lensing measurements can provide unprecedented insights into
the large-scale structure of the Universe (Mandelbaum 2018). To
fully exploit the potential of these applications, mass-mapping meth-
ods must advance to provide precise and accurate reconstructions
on par with the quality of the data now available to us. These
methods should aim to retain small-scale structure and minimize the
loss of information due to noise. Furthermore, they should provide
well-characterized uncertainties, and be computationally feasible
for large-scale inference to enable robust cosmological parameter
estimation and model comparison.

The Kaiser—Squires technique (Kaiser & Squires 1993) is the
seminal mass-mapping approach, based on direct inversion of the
noisy shear field. It remains widely used due to its speed and
computationally efficiency. In an idealized setting it is equivalent to
the maximum-likelihood estimator due to the straightforward invert-
ibility of the forward model. In practice, however, additional factors
such as masking and instrumental effects break this invertibility,
making mass-mapping an ill-posed problem (Price et al. 2021a).
Prior information is often injected to regularize ill-posed problems
to recover effective solutions —an aspect not addressed by the Kaiser—
Squires method. Instead, it is common to include a post-processing
step in the Kaiser—Squires approach, typically Gaussian smoothing,
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to improve the signal-to-noise ratio of a reconstruction. However, this
smoothing suppresses small-scale structures, potentially discarding
valuable non-Gaussian information. While this may be an acceptable
trade-off in certain applications (e.g. Kovécs et al. 2022), it is
fundamentally limiting for higher-order statistical analyses and
cosmological parameter estimation, where the small-scale structure
is crucial. Wiener filtering (Wiener 1949) provides a maximum a
posteriori estimate, assuming a Gaussian prior based on a fiducial
cosmology for the convergence. Like Gaussian-smoothed Kaiser—
Squires maps, the Wiener filter also suppresses small-scale structures
that are dominated by noise, resulting in a similar loss of information.
Wavelet-based methods (Lanusse et al. 2016; Price et al. 2019, 2020,
2021b; Starck et al. 2021) aim to retain small-scale structure through
the use of wavelet-based priors. These priors have led to increased
performance, however, the lack of flexibility with hand-crafted priors
has led to growing interest in deep learning methods, which can learn
the priors from data itself.

Recent deep learning approaches for mass-mapping fall into two
main categories. The first involves using deep learning for post-
processing. For example, Jeffrey et al. (2020) introduce a technique to
post-process a reconstructed convergence field using a convolutional
U-Net (Ronneberger, Fischer & Brox 2015). This approach is very
fast but does not provide any uncertainty quantification. Conversely,
Shirasaki et al. (2021) use conditional generative adversarial net-
works (GANs) to learn noise maps which can then be used to
denoise convergence maps. Again, uncertainties are not provided.
The second general category seeks to directly learn the posterior
distribution of the data using deep learning. For example, Remy et al.
(2023) introduce a technique that generates samples from a learned
approximate posterior distribution, using data-driven priors learned
by neural score estimation. These approximate posterior samples
can then be used to construct a point-estimate reconstruction and to
estimate uncertainties. However, it comes at the cost of being very
slow, requiring 10 GPU min to generate a single independent approx-
imate posterior sample. For both categories generative modelling
techniques have proven highly effective due to the rich data-driven
prior information that they are able to capture (Shirasaki et al. 2021;
Remy et al. 2023). While all of these deep learning methods have
provided promising results, particularly in recovering both large and
small-scale structure in convergence maps, there is still work to be
done to develop methods that provide high-fidelity reconstructions,
are computationally efficient, and also provide uncertainty estimates.
Fast generation of approximate posterior samples is necessary for
integration into downstream cosmological parameter estimation and
model comparison pipelines so that uncertainties in the mass-
mapping process are captured.

To address these challenges we propose a novel mass-mapping
method named MMGAN that is based on a regularized conditional
GAN framework that generates approximate posterior samples of the
mass-mapping inverse problem. Unlike Shirasaki et al. (2021), which
uses conditional GANs to learn noise maps, our method attempts
to learn the posterior distribution of the convergence field directly
and sample from it. Furthermore, we adopt Wasserstein GANs
(Arjovsky, Chintala & Bottou 2017) to improve training stability and
apply regularization techniques (Bendel, Ahmad & Schniter 2023)
to overcome mode collapse, issues that otherwise are particularly
acute for conditional GANs. We show that MMGAN produces high-
quality convergence samples, is highly computationally efficient, and
provides accurate uncertainty estimates. We apply our model to both
simulations and COSMOS survey data (Scoville et al. 2007), and
compare our results to the Kaiser—Squires method and Remy et al.
(2023) to demonstrate its effectiveness.
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The structure of this paper is as follows: In Section 2, we provide
an overview of weak gravitational lensing and mass-mapping, as well
as an overview of GANs. In Section 3, we introduce our MMGAN
approach. In Section 4, we describe how we constructed our training
data set, outline our approach to model training, and describe our
validation and model selection methods. Then, in Section 5 we
present our results, and in Section 6 we discuss our conclusions.

2 BACKGROUND

In this section, we provide an overview of weak gravitational lensing
and mass-mapping. For a more detailed review of weak lensing we
refer the reader to Bartelmann & Schneider (2001). For a current
review of the adoption of machine learning for astrophysics we refer
the reader to Lanusse et al. (2023). We also provide a brief overview
of GANSs, specifically conditional GANs. Further discussion on
GANSs can be found in related articles (Goodfellow et al. 2014, 2020;
Mirza & Osindero 2014; Creswell et al. 2018).

2.1 Weak gravitational lensing

Distant sources emit photons which travel along space-time
geodesics. In an empty universe, or one with uniformly distributed
matter, these geodesics are simply straight lines, however this is
not generally the case. Distributions of matter in the Universe,
both visible and dark, induce local Newtonian potentials which
result in perturbed geodesics, lensing the natural path of photons
under gravity. When such perturbations are considered in aggregate
our perception of distant objects is distorted. As these observable
distortions are sensitive to all matter they are a natural cosmological
probe for dark matter, dark energy, and the nature of gravity. Such
distortions affect both the shape and apparent magnitude of the object,
and the distant object is said to have been gravitationally lensed.

Suppose we consider photons which have an angular position
on their source plane B, relative to the line-of-sight from observer
through the primary lensing mass, greater than one Einstein radius
wg from intervening matter, the lensing is said to be in the weak
lensing regime. This ensures that the lensing effects are small, that
the lensing equation

. _4GM fir—1)
W R T T ) ()

is singular, and that distant objects cannot be multiply imaged. Here
G is the gravitational constant, M is the lensing mass, c is the speed
of light, and fx denotes the angular diameter distance in the usual
sense, which is dependent on the curvature K of the Universe. The
Universe has been observed to be essentially flat (Aghanim et al.
2020). Consequently, it is often reasonable to approximate K =~ 0 =
fx(r) & r, where r is the comoving distance.

Consider now the local Newtonian potential ®(r, w) induced
by the matter distribution in the Universe, where w = (¢, ) are
spherical polar co-ordinates on the sky. Such physical potentials
must necessarily satisfy Poisson’s equation given by

(€]

P 0]
=0w—wg—>
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VIO(r, w) = 0
2a(r)

8(r, w), 2
where §(r, w) denotes the fractional overdensity, Hy is the Hubble

constant, a(r) is the scale-parameter, and 2y is the density of matter
in the Universe. Integrating this potential along the line of sight
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produces the lensing potential

2 [, fxkr—7r)
o)== [ e KT
o) Cz/o " I fx ()

which conceptually aggregates the effect of ®(r, w) over r, i.e. the
potential of this collective mass to induce lensing effects. These
equations are straightforwardly connected through Laplacian

3QuHE [T fxk(r—r") 8(r, w)
V2 y = M0 / d 1 JEY 77 . 4
P = Y O e at) @

At linear order such a lensing induces two distortions. Images
are magnified by a convergence field x and their ellipticity is
anisotropically stretched by a shear field y. Both the convergence
k and shear y fields can be related to the lensing potential ¢ by the
following expressions (e.g. Wallis et al. 2022)

o(r', w), 3)

| R 1
k(r,w) = 2(55 +00)¢p(r,w) and y(r,w)= Eﬁ@(f)(r, ), ()
where 0 denotes the spin-s raising operator,
. i, \ ., .
O=—sin"¥ [0y + — |sin* ¥ ~ —(0, +1i0,) 6)
sin @ ’

and where & denotes the spin-s lowering operator (Newman &
Penrose 1966; Goldberg et al. 1967),

§=—sin" 0 (az, _ 1% ) sin 9 &~ —(d; — id,). %
sin6 |

In both cases the final inequality represents the appropriate ap-
proximation when one considers a field of view small enough to
satisfy the flat-sky approximation, in which the sky may reasonably
be parametrized through cartesian co-ordinates x, y in the tangent
plane.

Substituting the flat-sky approximation of the d and & into the
expression for the shear and convergence one finds that

1 1
K = E(am +0,y)¢ and y = E(a” — 0yy +2i0,y)0, ®)

where 0., is shorthand for 0,0,, and where we have dropped the
function arguments for notational brevity. Next we take the Fourier
transform of these differential equations to find

K

1 2 2N % ~ 1 2 2 . g
S HKDG and 7 = S — k] +2ikck,)B. )

from which we can straightforwardly eliminate ¢ to find

KR4+ 2ikk, y
X y

14

where D represents the Fourier mapping and F represents the Fourier
transform. This expression is called the lensing forward model
and determines how one may map between convergence and shear
fields.

Ideally one would observe both the shear and convergence, each
of which encodes subtly different and complementary cosmological
information. Unfortunately, the brightness of a distant object is
a priori unknownable and therefore it is impossible to observe «
directly. Importantly, the distribution of intrinsic galaxy ellipticities
has zero mean (e,) whilst the shear field has non-zero mean (y) # 0.
Therefore by aggregating many ellipticity observations the net
lensing effect may be distilled (e, + y) = (&) + (y) =~ (y).

The accuracy of this approximation is determined by the number of
objects N, over which one averages. Making a central limit theorem
argument the variance of the residual intrinsic shear component,
colloquially referred to as the shape noise, is approximately given
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by var(e;) & 02/ Ny, where o is the intrinsic ellipticity dispersion
which is typically ~ 0.37. Given the typical magnitude of y ~ 0.05
one need only average over N, ~ 30 observations to recover a fair
estimate of the shear.

2.2 Lensing inverse problem

With observations of y to hand one may attempt to infer « by
exploiting their Fourier space relationship. The most naive algorithm
by which ¥ may be recovered given observations of y is by
simply inverting this relation kxs = D~', which is the original
method developed by Kaiser & Squires (1993). As discussed in
the introduction, in an idealized setting kgs is equivalent to the
maximum-likelihood estimator (Price et al. 2021a). However, in
realistic scenarios noise contributions are overwhelmingly dominant
and complex masking is present, thus the two estimators are by no
means equivalent.

The Kaiser—Squires estimator is known for its computational
efficiency and simplicity, however, it comes with several major
drawbacks. First and foremost, it does not account for observational
noise, which consequently propagates directly to the reconstruction.
In order to use the mass-maps for cosmological inference, post-
processing methods are conventionally used to improve their signal-
to-noise ratio. This post-processing typically takes the form of
Gaussian smoothing, which leads to the loss of non-Gaussian features
in the convergence map. In particular, this results in a suppression of
peaks in the reconstruction, and loss of small-scale structure — both of
which are critical information for contemporary cosmology. Second,
it does not provide any measure of the uncertainties associated with
the reconstruction.

Since the Kaiser—Squires method was proposed there have been
many other methods developed for mass-mapping, such as sparsity-
based wavelet methods (Lanusse et al. 2016; Price et al. 2019, 2020,
2021b; Starck et al. 2021) and deep learning architectures (Jeffrey
et al. 2020; Shirasaki et al. 2021; Remy et al. 2023). Several of these
methods have further been extended from the flat-sky to the sphere
for wide-field mass-mapping (Chang et al. 2018; Price et al. 2021a;
Wallis et al. 2022). Nevertheless, it is fair to say mass-mapping is by
no means a solved problem.

The original Kaiser—Squires method is quick and computationally
efficient at the cost of loss of information. Deep learning techniques,
which are data-driven, have shown promise in capturing the complex-
ities of features in the data, but each approach has its own drawbacks.
Post-processing learned denoising methods such as those by Jeffrey
et al. (2020) and Shirasaki et al. (2021) are fast but lack principled
uncertainty quantification. Neural score estimation methods such as
those by Remy et al. (2023) provide uncertainty estimates but are
slow at run-time. An additional question that warrants further study
is the accuracy of machine learning methods when the only available
training data is simulated, often for a single fiducial cosmology.

Overall, deep learning methods show great promise for ill-posed
inverse problems such as mass-mapping, however, there is still need
for deep learning methods which are fast, that produce high-fidelity
reconstructions, and provide uncertainty quantification. We address
this need with our proposed method, MMGAN.

2.3 Generative adversarial networks

We will now briefly review the GAN framework (Goodfellow et al.
2014). GANs are comprised of two models: a generator, Gy, with
parameters 6 and a discriminator, Dy, with parameters ¢. During
training, examples x are drawn from the real data distribution p.(x),
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which is unknown to the model. The generator learns a distribution
D¢ (x), from which it will output samples, X. The aim of the generator
is to match p,(x) as closely as possible to p;(x). The discriminator’s
role is to assess incoming data (which is a mix of real and generated
samples), and decide whether it belongs to p; or p,. In other words
it aims to distinguish true samples from samples produced by the
generator.

Both Gy and Dy are trained simultaneously to solve a two-player
minimax game

minimaxV (Gy, Dy) = Ly p(vy[log Dy (x)]
Gy Dy
+ Eevp.pllog(l — Dy(Go(2)))]. (11)

for a value function V (see Goodfellow et al. 2014), where z
is a latent variable drawn from a distribution p.(z) ~ N0, 1).
Through training the generator will learn how to construct better
samples, leading to a drop in performance of the discriminator.
Consequently, this motivates the discriminator to once again learn
how to differentiate the true data from the generated data, which
will incentivize the generator to learn richer features of the data, in
order to produce more convincing samples (Saxena & Cao 2021). It
is this adversarial framework which allows GANs to produce such
high-quality realizations after training.

GANSs famously suffer from two main challenges during training:

(i) difficulty in converging;
(ii) mode collapse.

The generator and discriminator are both playing a minimax game,
however, the game is a non-cooperative one; the optimal solution to
such games is the Nash equilibrium. For GAN:S, this is equivalent
to a discriminator which outputs a score Dy = 0.5 for all inputs,
indicating it is unable to distinguish between real and generated
samples.

In practice, it is difficult to reach Nash equilibrium, and the
discriminator may become too good at distinguishing between real
and generated samples. One may think this is a good thing that will
lead to an improved rate of training, however, to those versed in
game theory it will come as no surprise that it in fact leads to the
opposite. This is because in non-cooperative games, an improvement
for one player inherently causes a loss in performance for the other, as
such a strong player will dominate the game. A perfect discriminator
will output Dy(x) =1,Yx € p, and Dy(x) =0,Vx € p,. When
this happens, log(1 — Dy(Gy(z))) = 0, and the generator’s influence
on the value function is lost. This can lead to the generator struggling,
or failing entirely (Arjovsky & Bottou 2017).

Conversely, during training the generator may reach a local
minimum in the learned probability space — this translates to a sample
which is particularly good at fooling the discriminator, especially in
relation to other nearby samples in the generator’s distribution. In
such cases, there is little inherent incentive for the generator to further
explore the target probability distribution when called to generate
samples. This is a problem known as mode collapse. In the most
extreme scenario this can lead to the generator producing the exact
same output each time it is called — this is known as total mode
collapse (Metz et al. 2016). Mode collapse is also a problem when
calculating uncertainties, as the loss of diversity in the generated
samples leads to severe bias in the uncertainty estimates.

In short, regardless of whether the discriminator performs badly or
well, the generator does not receive rich enough feedback to wholly
represent the true data distribution.

Generative mass-mapping with fast UQ 2467

2.3.1 Wasserstein GANs

Wasserstein GANs were developed by Arjovsky et al. (2017) in order
to tackle the difficulty in GAN training mentioned in the previous
section. The overall idea is to use a new distance metric for the loss
function, in order to provide a gradient which was more meaningful
to the generator.

The Wasserstein-1 distance (also known as Earth Mover’s dis-
tance) (Peyré & Cuturi 2019) between two continuous distributions
pr and p, may be expressed using the dual formation of the
Wasserstein-1 distance,

Wi(pr, pg) = sup BEenp, [f(X)] = Enp, [ f ()], 12)
IflL=<t

where f is a 1-Lipschitz continuous function satisfying the constraint

[[fllz < 1and| - || represents the Lipschitz norm.

To provide an intuition for what this distance represents, imagine
two separate piles of dirt whose shapes may be described by
distributions p, and p,, respectively. The Wasserstein-1 distance
between these two distributions is the minimum energy cost of
moving the dirt in the second pile such that it is transformed from
shape p,, to shape p,. This cost is proportional to the amount of units
of dirt moved multiplied by how far each unit has been moved. A
lower value of W indicates a higher level of similarity between the
two distributions (Rubner, Tomasi & Guibas 2000). The Wasserstein-
1 distance is a more generalizable metric than the Jensen—Shannon
(JS) divergence used in traditional GANSs, as rather than measuring
the point-wise similarity between two distributions, it measures the
cost of transporting one distribution to another. This means the
Wasserstein-1 distance can be used to compare distributions with
disjoint support, which is a problematic area for the JS divergence
that often leads to vanishing gradients. These disjoint distributions
are especially common in higher-dimensional data spaces, such as
images, making the Wasserstein-1 distance a more suitable choice
for GANs.

Unlike in traditional GANs, where the discriminator is a direct
critic of the samples, in a Wasserstein GAN, the discriminator is
trained to learn the optimal function f to help estimate W(p,, p,).
As the loss of the discriminator decreases, so does the Wasserstein-1
distance between the two distributions, implying that the generator’s
distribution p, is approaching the true distribution p, (Weng 2019).

One key difference between Wasserstein GANs and standard
GAN:Ss is that where a perfect discriminator causes the generator in a
standard GAN to fail, Wasserstein GAN actually rely on training the
discriminator to convergence. For this reason, typically the gradients
of the discriminator are updated more frequently than the generator,
which also leads to improved stability during training.

3 METHODOLOGY

In this section, we describe our methodology for building and training
our mass-mapping GAN, coined MMGAN, a regularized conditional
GAN. We begin by introducing conditional GANs, and highlight
how they differ to standard GANs. We then introduce regularization
techniques utilized to overcome training issues, such as mode
collapse and lack of convergence, traditionally faced by conditional
GAN:Ss, before describing how these techniques are utilized to also
provide uncertainty quantification.

3.1 Conditional GANs

Conditional GANs (Adler & Oktem 2018) differ from standard
GANs in that they are conditioned on auxiliary input data, y, typically
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some kind of class or observational data, to which both the generator
and discriminator have access. This additional information allows for
greater control over the generated output, as the model is conditioned
to provide targeted samples for a given input.

Consider the sets of data and observations X and Y respectively.
The goal of the generator is to learn a generating function Gy :
Z x Y — X, where 0 are the parameters of the generator, and Z
is the set latent variables z ~ p, = A(0, I). This function takes
observations y € ) as input, as well as some independently drawn z,
and produces samples £ = Gy(z, y). The role of the latent variable
is to provide a source of randomness to the generator, such that
even for fixed y, the generator can produce a variety of samples.
Within a conditional GAN, the discriminator’s function is of form
Dy : X x Y — [0, 1], with parameters ¢. The discriminator’s role
is still to determine whether a given samples is real or generated,
however, it also has access to the observation y.

Each {x, y} pair is unique, meaning there is only a single data
instance, x, corresponding to data y. This can become a challenge
when training conditional GANs and can lead to more acute mode
collapse. Additionally, solutions to mode collapse in unconditional
GANs (Karras et al. 2020; Schonfeld, Schiele & Khoreva 2020;
Zhao et al. 2021) are often ill-suited to conditional GANs because
of the presence of a conditioning variable. This means, that while
Wasserstein GANs were sufficient to effectively solve both issues
of unstable training and mode collapse for standard GANSs, in
conditional GANSs these challenges require distinct solutions.

3.2 Conditional Wasserstein GANs

One can still use the notion of Wasserstein-1 distance, and adapt it
for conditional data as follows

Wi(prCly), peCly)) = sup {Ecvp, {Dy(x]y)}
DyelL

— Einp, (Dy (X1}, (13)

where x is a true sample, with observation y, L, is the set of 1-
Lipschitz continuous functions, and % is a generated sample for
that observation. Through using the discriminator to estimate this
Wasserstein-1 distance, the resulting conditional GAN still benefits
from increased training stability, while avoiding the vanishing
gradient problem.

3.3 Regularized conditional GANs

Regularized conditional GANs (Bendel et al. 2023) are a recent
development, designed to overcome mode collapse in conditional
GANs — which as previously mentioned is a more acute problem
than with traditional GANs, and also harder to solve due to the one-
to-one x, y pairing of data. Within this framework, the generator
aims to solve the following minimization problem

arg ming {Baav Laav (0, @) + L1,50,Nyain (0, Bsp)}, (14)

where Ny,in > 2 represents the number of samples made by the
generator, and S,s, and Bsp are hyperparameters which control
the relative importance of the adversarial loss term L,q, and the
regularizer £, sp vy, respectively. They themselves are defined as

L0, @) := By y{Dy(x]y) — Dp(Go(z]¥)¥)}, (15)
and
L1.5D. Ngin (05 BsD) 1= L1 Nyggin (0) — BSDLSD Niggin (0)- (16)
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As can be seen in equation (16), the regularizer is a combination
of two loss functions: the first being the Ny.i,-sample supervised
£ loss; and the second being the standard deviation reward. These
losses are defined by

L1 Ngain ©) 1= Bz oy U = Zviam 1) (17)
and
b
LD N (0) 1=y [ 57—
" 2Ntrain(Nlrain - 1)
Nirain
X > Eeyay % = £y 1) (18)
i=1
where {£;} are the generated samples and Xy := 1/N ELNZ L Xi ds

the N-sample average. By including the standard deviation within
the reward function, the model is encouraged to produce samples
with some diversity, which helps to avoid mode collapse.

The choice of ¢;-loss and standard deviation reward is not an
arbitrary one. It can be shown that in the case where the generated
samples £; and the true samples x are both independent Gaussian
distributions conditioned on y, the mean and covariance of the
generated samples will match that of the true distribution (Bendel
et al. 2023, section Prop. 3.1). That is to say,

Ezimp. (£ (69)]y} = Exnp, {x]y} = Zmmse (19)

where Xymsg is the minimum mean squared error (MMSE) estimate
of the true posterior, and

COVZ:‘“P: EACHIRIES COwap, {xly}, (20)

where 6* = arg ming £ sp. yy (0 BES) with B =
2/ Nigain(Nigain + 1)) being the optimal parameters for the
generator (Bendel et al. 2023).

In practice, the assumptions required for this proposition do not
necessarily hold, therefore automatic tuning of the hyperparameter
Bsp is considered, which controls the desired standard deviation
between generated approximate posterior samples. Some level of
deviation between samples is necessary to avoid mode collapse,
however, too much deviation among samples can hinder the model’s
ability to learn the true distribution of the data.

In order to constrain the allowed variance of generated samples,
the model auto-tunes Bsp during training. The method utilizes an
observation made by Bendel et al. (2023, section Prop. 3.3) that when
X; ~ pr(+|y) are independent samples of the true posterior, then the
ratio between the ¢, error of a single sample and the N-average
sample is given by

2N
a2 @1)
EN N + 1
where ¢; and ¢y are approximated as follows
1 Nyal
Br=——> I — &3, (22)
Nval i—1
and
1 Nyal \4
By =—— > v = > %3 (23)
Nea = j=1

for some validation set {(x,, yu)}ﬁ]f]]. This ratio is calculated during

each training epoch 7. Then, Bsp is updated using gradient descent
according to the following equation
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Figure 1. Illustration of the architecture of the MMGAN generator. The shear map, comprising real and imaginary components, is used to produce a pseudo-
reconstruction, which is similarly decomposed into its real and imaginary parts. These components are concatenated with a two-channel random latent vector z,
and subsequently passed through our U-Net generator, which outputs a single sample of the convergence from the learned posterior distribution. The numbers
below each block indicate the number of channels in each layer. Additionally, the colour of the blocks indicate the series of operations applied, as dictated by
the legend. The residual block has been illustrated in greater detail below the main generator architecture. It consists of a 3 x 3 convolution, followed by batch
normalization, then parametric ReLU. This is done twice, and then the output of this is added to a 1 x 1 convolution of the original input.

Bsp,r+1 = Bsp,x — IsD

& 2N,
x (10810 [@VL] —logyg {ﬁ—il]) Bspr=o (24
val, T val

for a learning rate usp > 0. For the full details of the above
proposition we refer the reader to Bendel et al. (2023).

3.4 MMGAN

With all the necessary components described, we now introduce our
model architecture. Our regularized conditional GAN, MMGAN,
follows the same general structure as Bendel et al. (2023), with
some key changes to tailor the model to mass-mapping. The goal
of our model is to produce approximate posterior samples of the
convergence given a shear map.

Our generator is based on a U-Net architecture (Ronneberger et al.
2015). There are six input channels: the shear map; a Kaiser—Squires
reconstruction (made on-the-fly from the shear map) with no added
smoothing; and a random noise vector z ~ N(0, I). Each of these
inputs includes two channels, one for the real component of the
input and another for the imaginary component. We trialled models
both with and without the Kaiser—Squires map as an additional input
channel, and found the addition of it led to improved performance,
with negligible increase in computational cost. In particular we
observed that the shear alone is good for capturing the uncertainties
within a reconstruction, however, the addition of the Kaiser—Squires
map leads to better quality reconstructions. Although we used
Kaiser—Squires here, for its simplicity, it is worth noting that any
fast, approximate reconstruction method could be used in its place.
Other mass-mapping methods (Jeffrey et al. 2020; Shirasaki et al.
2021) also take an approximate reconstruction as input, although they

typically do not condition on the observed shear field as we do here,
(e.g. Jeffrey et al. 2020 post-process a Wiener filter reconstruction).

Our network architecture consists of four downsampling blocks,
starting with 128 initial channels. Rather than traditional pooling
methods, we downsample through convolutional blocks. Each block
consists of a convolutional layer with a kernel of size 3 x 3 and
padding of 1, followed by batch normalization and a Parametric
rectified linear unit (PReLU) activation function. At this point, we
include a residual block, which consists of two convolutional layers
followed by batch normalization and a PReLU activation function.
This block is our skip connection. Then, we take a final convolutional
layer with a kernel of size 3 x 3, padding of 1, and stride of 2,
which will act as our downsampling step. The number of channels
doubles at each downsampling block, from 128 to 256, 512, and
finally 1024.

In the bottleneck of the U-Net, we include a single residual block
before moving to our upsampling blocks. For upsampling, we rely
on transpose convolutions. The number of channels halves at each
upsampling block; as such, the number of output channels is also 128.
Each upsampling layer begins with a transpose convolutional layer
with kernel size 3 x 3, padding size 1 and stride 2, which acts as our
upsampling mechanism and is followed by batch normalization and
a PReLU activation function. We then concatenate the output with
the corresponding skip connection and again apply a convolutional
layer with kernel size 3 x 3 and padding size 1, followed by batch
normalization, PReLU activation, and a residual block. As we move
through the upsampling blocks, the number of channels halves,
meaning after four layers, the number of channels is once again 128.
Finally, after upsampling, we apply two convolutions with 1 x 1
kernels. The output of the generator is a single approximate sample
of the convergence field. An illustration of the generator can be found
in Fig. 1.

MNRAS 542, 2464-2479 (2025)
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Our discriminator is a standard convolutional neural network
classifier, taking two inputs x and y, with one initial convolutional
layer followed by six convolutional downsampling layers and one
final fully connected layer. In the initial layer, we use convolutions
with kernels of size 3 x 3 with 1 padding and a leaky ReLU with a
negative slope of 0.01. In each downsampling layer, we reduce spatial
resolution with average pooling, using 2 x 2 kernels with a stride of
2, then a convolutional layer with a 3 x 3 kernel with padding of 1,
instance normalization, and a leaky ReLU with a negative-slope of
0.2. The final output of the discriminator is the estimated Wasserstein
score for the convergence map.

3.4.1 Point image estimate

In order to create a final convergence map reconstruction we need
to select a suitable point estimate. It is natural to use the posterior
mean, which is also the MMSE, especially given equation (19),
where it is shown that under certain assumptions a link can be
drawn between the MMSE and the true posterior. Therefore, to build
the final convergence map, the shear map is passed through the
generator many times. Each time the generator is called it produces
a new approximate posterior sample. The empirical posterior mean
is used as the MMGAN reconstruction, which is obtained by doing
an average of N approximate posterior samples.

3.4.2 Uncertainty quantification

The convergence map reconstruction is the average of N approximate
posterior samples. For uncertainty quantification, we calculate the
pixel-wise standard deviation of the samples, in order to build
an uncertainty map. Based on the proposition outlined in Bendel
et al. (2023), the standard deviation of the approximate posterior
samples matches that of the true posterior, under certain assumptions.
Therefore, features that consistently appear across the generated
samples are more likely to be true features of the data, as compared
to features which appear in one or two samples. For features that
appear in the majority of samples, the standard deviation for those
pixels will be low. Conversely, in areas where the model is less certain
about present features, the generated samples will be more diverse,
meaning the standard deviation of that region will be higher. In this
way, by looking at the standard deviation map, one can infer the
model’s confidence in the reconstruction.

4 SIMULATIONS, TRAINING, AND
VALIDATION

This section details the simulations and mock data set used to train
our model. We first discuss the «x TNG simulations, a collection of
convergence maps based on the IllustrisTNG simulations, before
moving on to describe how we used this weak lensing map suite to
build a mock catalogue of 10000 convergence maps in the style of
the COSMOS survey. This catalogue was then used to train, validate,
and test our model.

4.1 KappaTNG simulations

The «TNG simulations are a suite of 10000 mock weak lensing
maps (Osato, Liu & Haiman 2021), based on the IllustrisTNG
hydrodynamical simulations (Springel et al. 2018). All simulations
assume the flat Acold dark matter cosmology as in Planck 2015
(Ade et al. 2016), with Hy = 67.74 kms™'Mpc™!, baryonic density

MNRAS 542, 2464-2479 (2025)

2, = 0.0486, matter density €2,, = 0.3089, and spectral index of
scalar perturbations n, = 0.9667.

The maps were generated by creating light cones with an opening
angle of 5 x 5 deg?, from the IlustrisTNG simulations, made by
stacking TNG snapshots along the line of sight. The mock weak
lensing maps were then created by tracing the light cones from z = 0
up to the target redshift, z; € [0.00, 2.57]. To create the full suite, a
large number of random flips, rotations, and translations were applied
to the [llustrisTNG snapshots. The subsequent maps were shown to
be statistically independent (Osato et al. 2021). Each map is of size
1024 x 1024 pixels, with a resolution of 0.29 arcmin pixel ™.

4.2 COSMOS data

In the following analysis we make use of data from the COSMOS
survey (Scoville et al. 2007). The COSMOS field is a 1.64 deg®
field on the sky, images using the advanced camera for surveys.
Throughout this work, we use the Schrabback et al. (2010) shape
catalogue, which is a catalogue with two subsets: a bright catalogue
with iT < 25, and a faint catalogue with it > 25. Galaxy samples
in the bright catalogue can be cross-matched with the COSMOS-
30 catalogue (Ilbert et al. 2008), providing individual photometric
redshifts. This is not available for the faint catalogue.

In our analysis we use the full catalogue, including both the bright
and faint samples. We cut bright galaxies with zphe < 0.6 and i >
24, as there are indications these may in fact be galaxies at high
redshifts (Schrabback et al. 2010); see also Remy et al. (2023) for
further discussion on this. After applying these cuts, the total number
of galaxies is 417 117.

4.3 Mock COSMOS data set

In order to create mock COSMOS maps we utilized both the K TNG
simulations, and the Schrabback et al. (2010) shape catalogue. As
mentioned, this shape catalogue is divided into a bright and faint
catalogue, which we combined into a full catalogue. We discarded
galaxies with photometric redshifts z,no < 0.6 for reasons specified
in Section 4.2. Then we calculated the redshift distribution, p(z), of
the galaxies in the full catalogue.

Convergence maps for sources with a redshift distribution p(z)
calculated by

max
K = Z Wik, (25)

i=imin

where

2i+Azi /2
w; = / dzp(2), (26)
zi—Azi/2

where «' is the convergence map for sources with a redshift
distribution p(z), ; is the convergence map for sources at redshift
zi, Az; is the width of the iy-redshift bin, and iy, and i, are
the minimum and maximum redshifts of source galaxies considered,
respectively (Makiya, Kayo & Komatsu 2021).

The «TNG maps are sliced at discrete redshifts between z €
[0, 2.568], leading to 40 evenly spaced source planes. For our mock
COSMOS maps we required a redshift up to z = 5, therefore we
chose redshift values z; with spacing equal to the k TNG slices. This
resulted in 80 redshift values z;, leading to 79 redshift bins, centered
on the redshift values of the K TNG maps. Note that the bin size is
halved for the first and last bins. For z > 2.568 we follow Remy
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et al. (2023) and reused the highest redshift slice convergence map
(z = 2.568), while calculating a new weight for each bin.

Finally, we created a mask to represent the COSMOS survey area.
To do this we binned the COSMOS shape catalogue into maps of the
shear components, and calculated the number of galaxies per pixel.
We created a binary mask for empty pixels.

In summary, we created 10000 convergence maps of size 300 x
300 pixels. In order to convert these to mock shear maps, we used
the forward model described by equation (10). We added spatially
varying noise to the shear, treating the real and imaginary components
separately by calculating the standard deviation of the y; and y,
estimates in the COSMOS shape catalogue, respectively. We then
simulated the noise by multiplying the two standard deviations by a
random normal distribution, and adding to the real and imaginary
components of the clean mock COSMOS shear maps. We note
that these maps do not account for instrumental effects such as
photometric uncertainty, intrinsic galaxy alignment, or baryonic
feedback effects. However, if these effects were incorporated into
the training data, the model could, in principle, learn to account for
them.

4.4 Training

During each training epoch, for a batch size and Nyn = 2, we
generated mock shear maps on-the-fly from our convergence maps
(see Section 4.3). Each shear map was paired with two latent vectors,
corresponding to the real and imaginary components, which were
then input to the generator. The generator optimized the following
loss function

Le, = BaavLaav(O, @) + L1 Npin (@) — BspLSD, Nyin (0) (27)

where B,q, Was initially set to 1072 for the first five epochs, then
decreased to 10~* until epoch 23, and finally to 10~ for the remainder
of training. The value of Bsp was updated according as described
in Section 3.3 using N,, = 8. Following this, the discriminator
performed an optimization step on its own loss

£D¢, = _Eadv(ev ¢) + al£gre\d(¢) + a2£driﬂ(¢)a (28)

where Lgr,q is a gradient penalty used to encourage that Dy € L,
(Gulrajani et al. 2017), with &; = 10 the gradient penalty weight. We
follow Karras et al. (2018) and add the term L5, Which penalizes
the discriminator’s output from drifting too far away from zero, as
it can make the training unstable. More precisely, the drift penalty
is defined as Lasir(¢) := £, y{Dg(x |y)2}. Following Adler & Oktem
(2018), we use a small drift penalty weight of o = 0.001. We used
the Adam optimizer (Kingma 2014) with a learning rate of 1073,
B1 =0, and B, = 0.99. Our model was trained across 4 Nvidia A-
100 GPUs, and took approximately 6.5 h to train for 100 epochs.

4.5 Model validation

To evaluate the performance of the trained model we validated it on
a subset of our mock COSMOS data set previously unseen by the
model.

For validation we looked at the peak signal-to-noise ratio (PSNR),

MAX3
MSE /'’
where MAX; is the maximum possible pixel value (which we set
to 1), and MSE is the mean squared error between the truth and

the reconstruction. We calculated the PSNR of a single posterior
sample as well as the PSNR of a reconstruction made from the

PSNR = 101og,, ( (29)

Generative mass-mapping with fast UQ 2471

average of N = 32 samples (for discussion on our choice of N see
Section 5.1.1).

This procedure is repeated across a number of different input
maps. We then collate the data and calculate the difference between
the single PSNR and reconstruction PSNR. We define a tolerance,
and if the magnitude of the difference is larger than that tolerance
we remove the epoch from the set. We took this approach to ensure
that any epoch we considered as our final model was not one prone
to over-variance in the generated samples.

With the remaining epochs, we calculated a range of metrics across
a set of mock maps and reconstructions. These metrics were the
PSNR, RMSE, and Pearson correlation coefficient,

S0 = D)(pr = )
r = 4 N
\/z_(x,- — &) \/Zm - pP

where x; and p; are the truth and the reconstruction, respectively,
and £, p denote their respective means. We selected the epoch which
performed best across all metrics as our final model.

(30)

5 RESULTS

In this section, we present both the performance of our model on the
mock COSMOS test simulations, followed by its application to the
true COSMOS field data. We show some example reconstructions
and discuss how the quality of the reconstruction changes with the
number of approximate posterior samples used to create it. We also
compare our results to the Kaiser—Squires method, and in the case
of our full COSMOS reconstruction we show it alongside the Remy
et al. (2023) reconstruction. In addition, we show how the standard
deviation map of the approximate posterior samples can be used to
quantify the uncertainty in the reconstruction.

To assess reconstruction quality, we compared to the pixel-wise
absolute error = |%y) — x| between the reconstruction and the
ground truth. We also used the absolute error to asses the usefulness of
using the standard deviation of the generated approximate posterior
samples as a measure of uncertainty.

5.1 Simulations

In this subsection, we present the results of our model applied to the
mock COSMOS simulations. We begin by motivating the choice of
N = 32 for the number of approximate posterior samples used to
create a reconstruction. We then show some example reconstructions
and approximate posterior samples. We directly compare our results
to the Kaiser—Squires method, as well as qualitatively compare to
other state-of-the-art methods. Finally, we assess the quality of our
uncertainty quantification and calculate coverage probabilities for
our reconstructions.

5.1.1 Reconstructions of simulations

When building a reconstruction it is important to choose an appropri-
ate number of generated samples from which to calculate the mean.
We calculated both the PSNR and the Pearson correlation coefficient
for reconstructions made with different numbers, N, of samples. For
both metrics, a higher value indicates a better reconstruction. Fig. 2
illustrates how these metrics change with the number of samples used
to create the reconstruction. As can be seen, there is a large increase
in quality between N = 1 and N = 4, however, the curves quickly
flatten out for larger N indicating that from a quality perspective

MNRAS 542, 2464-2479 (2025)

G20 1990J00 €| U0 Josn ajnyisu| [ejueq uewised Aq 09Z0¥Z8/v9IvZ/E/ZyS/aI0IMe/SeIuwW/Wwod"dno-olWapeo.//:sdjly Woy papeojumod



2472 J. J. Whitney et al.

345 —— Mean PSNR
+1 std Dev

3.0

33.0

o 5 10 15 20 25 30
Number of Samples N

0.80
—— Mean Pearson Corr.

x1 Std Dev

Pearson Coefficient

0.50

o 5 10 15 20 25 30
Number of Samples N

Figure 2. PSNR and Pearson correlation coefficient values of MMGAN
reconstruction dependant on the number of approximate posterior samples
used to create that reconstruction, which is given by the mean of the
approximate posterior samples. The curve flattens out for both metrics,
indicating there is little need to consider N > 32.

Table 1. Reconstruction quality for different values of N, where N is the
number of posterior samples averaged over to create a reconstruction.

N PSNR 1 SSIM ¢
1 31.35 £ 0.01 0.6886 = 0.0007
2 32.56 + 0.01 0.7423 %+ 0.0007
4 33.33 £ 0.01 0.7745 = 0.0006
8 33.77 £ 0.01 0.7921 £ 0.0006
16 34.01 £ 0.01 0.8018 = 0.0006
32 3413 £ 0.01 0.8062 = 0.0006

there is no need to choose an excessively high value for N. We
choose N = 32 henceforth for reconstructions.

Table 1 further explores how the reconstruction changes as the
number of generated samples used changes. It shows the PSNR and
structural similarity index measure (SSIM; Wang et al. 2004) on
reconstructions with different values of N, calculated during model
validation. The SSIM is computed as

Quxpy + C)Q2oxy + C2)

SSIM(x, y) = s
V= e 2 e+ o2+ O

€2V
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where u, and p, are the means of x and y, o, and o, are the
standard deviations of x and y, o,, is the covariance of x and y, and
C| and C; are constants. These metrics were calculated by comparing
reconstructions with the ground truths for the mock data.

Fig. 3 provides an overview of a given reconstruction, including
the truth, a full reconstruction made by MMGAN, the absolute error
between both, and the standard deviation of the approximate posterior
samples used for the reconstruction. Note, the model was trained on
masked data, so while it was able to fill small masked pixels within
the central map, areas beyond the outer mask boundary (shown as
a white contour on all figures) should be ignored, as the model was
not trained there. We also show a Kaiser—Squires reconstruction,
applying Gaussian smoothing here and throughout with variance
o = larcmin, following Remy et al. (2023), as this was shown to
minimize the RMSE.

As can be seen in Fig. 3 our model has successfully captured
the visual structure of the convergence map. The peaks are not
suppressed in the reconstruction. The error between the truth and
the reconstruction is very small in most areas. The same is true for
the standard deviation. Importantly, from visual assessment, areas
with the largest standard deviation correlate with areas of the highest
error. This is sensical, as we expect that areas where the model is
less certain of the true map, it will explore a wider range of possible
reconstructions. Further examples for other simulated maps can be
seen in the appendix, in Fig. Al.

As mentioned, MMGAN outputs samples from the learned poste-
rior distribution. Fig. 4 shows a selection of generated samples, which
highlights the sample generation diversity. Large-scale features are
consistent across the samples, however, the variability shows itself
in the smaller scale structure, as can be seen in the differences in the
zoomed-in regions of the figure.

Fig. 5 shows how the reconstruction varies as the number of
samples used to build it changes. There is more detail when a
smaller number of samples are used, however, these reconstructions
are more prone to the variability of any individual posterior sample.
By averaging over a larger number of samples, we do lose some level
of small-scale structure, however, the features in the resulting recon-
struction are more likely to be true features of the data. That said,
even our ‘smoother’ reconstruction, with N = 32, more accurately
captures the small-scale structure to a higher level than the Kaiser—
Squires reconstruction. Additionally, because we are not applying
any additional post-processing — such as the Gaussian smoothing
typical in Kaiser—Squires maps — there is no peak suppression of the
small-scale features.

In addition to visually comparing our MMGAN reconstructions
to the Kaiser—Squires reconstruction, we also compare the two
quantitatively through calculating a range of metrics. Those metrics
are the Pearson correlation coefficient, RMSE, and PSNR. The results
of this comparison can be seen in Table 2. MMGAN significantly
outperforms Kaiser—Squires for each metric, which indicates that not
only does our model produce reconstructions that visually appear to
be of higher quality, but also that MMGAN is better capturing the
underlying features of the data. Additionally, in Table 2 we have
included results from other state-of-the-art methods, as reported in
Remy et al. (2023, §Table 1) including GLIMPSE (Lanusse et al.
2016), MCAlens (Starck et al. 2021), DeepMass (Jeffrey et al.
2020), and DLPosterior (Remy et al. 2023). These results are also
using mock COSMOS data, built in the same way as our data
set. However, it is critical to stress that the validation set used to
calculate these metrics differ, as can be seen from the difference
in results for the Kaiser—Squires method. Therefore, the values in
the table with an asterisk should not be compared directly with
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Figure 3. A reconstructed convergence map for one of the mock COSMOS maps. Our reconstruction is the average over 32 approximate posterior samples.
On the bottom row is the pixel-wise absolute error between the reconstruction and the ground truth, and the standard deviation between the 32 samples used to
build the reconstruction. The white contour indicates the outer border of the mask applied to the data. We achieve superior visual quality as compared to the
Kaiser—Squires reconstruction, with no peak suppression. Additionally, we see visual correlation between the absolute error and the standard deviation map.

our own, however, they provide a general sense of MMGAN’s
performance with respect to other methods. In general, MMGAN,
MCAlens, DeepMass, and DLPosterior all perform similarly well.
Where MMGAN stands apart, is its ability to quantify uncertainties
in a highly computationally efficient manner.

5.1.2 Uncertainty quantification validation

As well as evaluating reconstruction quality, we also assessed
the effectiveness of our uncertainty quantification. When building
reconstructions of simulated convergence maps, we qualitatively
compared the resulting uncertainty map with the pixel-wise absolute
error between the MMGAN reconstruction and the ground truth.
Visually, there is a correlation between these fields, as can be seen in
Figs 3 and Al.

We also investigated MMGANS uncertainty maps using coverage
tests, which assess whether the predicted uncertainties accurately
reflect the true reconstruction error. Preliminary results suggest that
MMGAN achieves strong performance. A comprehensive analysis
of these tests will be presented in Whitney, Liaudat & McEwen (in
preparation).

5.2 COSMOS field reconstruction

After validation we apply our full methodology to the COSMOS field
data, using the catalogue described in Section 4.2. Fig. 6 shows an
overview of our results. We compare with the DLPosterior COSMOS
reconstruction of Remy et al. (2023), in addition to the Kaiser—

Squires reconstruction which acts as our baseline. Both our method
and DLPosterior provide uncertainties, which are also included in
Fig. 6. The three reconstructions are all shown on the same scale.

When comparing the features present in our reconstruction with
DLPosterior, we find good agreement in both the large and small-
scale structure. Peaks in the reconstructions are consistent in terms
of magnitude and position.

Our reconstruction uncertainty is largely low throughout, with
the highest magnitudes appearing in the masked region outside
the COSMOS survey boundary. Again, the model was not trained
to optimize this region, so a high level of uncertainty here is not
surprising, and results in this region should be ignored. Interestingly,
the uncertainties in the MMGAN reconstruction and the DLPosterior
reconstruction are similar, with higher levels of uncertainty in the
same regions. In order to better compare the uncertainties between
MMGAN and DLPosterior reconstructions, we have shown them
both on the same scale.

In order to draw a more detailed comparison between the recon-
structions, we overlaid known x-ray clusters using a subset of the
most massive clusters from the Finoguenov et al. (2007) XMM-
Newton data, seen in Fig. 7. We get good agreement between
the features in our reconstruction and the cluster positions. There
are a number of peaks in our reconstruction which do not have
a corresponding cluster, however, given these features also appear
in the DLPosterior and Kaiser—Squires reconstructions, they may
be features which are beyond the depth of the x-ray data.

Another method of comparing our reconstruction with the DLPos-
terior reconstruction, is to take the relative uncertainty (RU) between
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Figure 4. A selection of generated approximate posterior samples for a given shear map, in comparison with the ground truth. We have zoomed in on a region

of the samples, to better show the variation within different samples.

the two using the following equation

M, — M,
RU= L 22 32)

NEER

where M, and M, are the convergence maps, and S; and S, are the
standard deviations across the approximate posterior samples used
for each reconstruction, respectively. This equation can be interpreted
as the number of standard deviations between the two reconstructions
given the uncertainty estimated by each method. A low value means
a high level of agreement between the two maps, and a high value
indicates areas where the reconstructions do not agree as well. We
show the relative uncertainty map between our reconstruction and
the DLPosterior reconstruction in Fig. 7, as the lower panel. Overall
the two reconstructions are in close agreement, with many pixels
being within 1 standard deviation. The peaks in particular are in
good agreement with one another, with the largest differences in the
maps appearing in lower density regions in the reconstructions.

MNRAS 542, 2464-2479 (2025)

6 CONCLUSIONS

Deep learning methods are a powerful tool in improving mass-
mapping. They utilize data-driven priors, can handle the large
amounts of data being collected by modern surveys, and are often
better at capturing complex features in the data than traditional
methods. However, in this era of precision cosmology, is it pref-
erential that convergence map reconstructions which will be used
for statistical analysis are accompanied by uncertainty maps. Most
prior methods, including traditional and deep learning approaches,
do not provide uncertainty estimates, and those that do can be slow. In
order to address this gap, we propose MMGAN, a novel convergence
map reconstruction method that provides uncertainties. MMGAN
leverages a regularized conditional GAN to generate approximate
posterior samples given shear observations, and then uses these
samples to build a reconstruction and associated uncertainties. Under
some assumptions, it can be shown that regularized conditional
GANSs are able to approximate the true posterior mean and standard
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Figure 5. Demonstration of how the N-sample reconstruction varies for N € {1, 4, 8,32}, N = 1 being a single posterior sample, for the zoomed-in region
shown in the box. The figure also shows the Kaiser—Squires map for the same region. As can be seen, the reconstruction becomes smoother as N increases,
however, the prominent features remain. An individual sample has a far higher level of detail, comparable with the true map, however, it can be seen that features
differ slightly to the truth, indicating why it is necessary to average over a number of samples. Despite some loss of the smallest-scale structure for N = 32,

there is less peak suppression than the Kaiser—Squires reconstruction.

Table 2. Results of validation metrics. The Pearson correlation coefficient,
RMSE, and PSNR, were calculated for the Kaiser—Squires reconstruction
(with o = l arcmin smoothing, chosen to minimize RMSE) and our 32-
sample MMGAN reconstruction across a validation data set. The results
were averaged and then used to create this Table. Metrics for methods
marked with an asterisk (%) are sourced from Table 1 in Remy et al.
(2023) and therefore should not be directly compared with our results,
since they consider a different validation set. Instead, they serve to provide
a general comparison between MMGAN and other methods. Notably,
the Kaiser—Squires results differ slightly from those reported in Remy
et al. (2023), likely due to differences in the randomly selected validation
sets.

Pearson 1 RMSE | PSNR 1
MMGAN (Ours) 0.727 0.0197 34.106
Kaiser—Squires 0.619 0.0229 32.803
Kaiser—Squires 0.57 0.0240 -
Wiener filter * 0.61 0.0231 -
GLIMPSE = 0.42 0.0284 -
MCAlens * 0.67 0.0219 -
DeepMass * 0.68 0.0218 -
DLPosterior * 0.68 0.0216 -

deviation. Given these assumptions do not hold in all cases, an auto-
tuning mechanism is adopted during training.

Given a noisy shear observation, we construct a pseudo-
reconstruction, and pass both into the MMGAN generator, which
then outputs an approximate posterior sample. We take the posterior
mean of N = 32 approximate posterior samples as our final recon-
struction, and the standard deviation of these samples to quantify
our uncertainties. Currently, we choose a Kaiser—Squires map as
our pseudo-reconstruction, however, this could be replaced with a
more sophisticated reconstruction method, such as the Wiener filter.
MMGAN does not require an explicit choice of cosmology, which

is another reason why we chose the Kaiser—Squires method as our
pseudo-reconstruction. We trained MMGAN on a mock data set with
a fixed cosmology, which we acknowledge may bias the learned
model towards that cosmology. However, this is a limitation of the
data set rather than the method itself — there is no fundamental
reason MMGAN could not be trained on a data set with a range of
cosmologies. Additionally, we did not account for astrophysical and
observational systematics such as intrinsic alignments, photometric
uncertainties, and shear multiplicative biases within our training
data. These effects can introduce biases in the shear measurements,
potentially impacting both reconstruction accuracy and uncertainty
estimated. In future work, it would be interesting to explore how
MMGAN performs when trained on data that accounts for these
effects, as understanding their impact on the reconstruction and
uncertainty maps is an important step towards ensuring the robustness
of the method.

To train MMGAN, we used mock COSMOS-style shear and
convergence maps, made from the kK TNG simulations. We validated
our model on a subset of the mock COSMOS data not seen during
training. We used the PSNR to ensure the model was suitably
constrained in terms of variance in its sample generation, and then
used standard metrics such as the PSNR, RMSE, and Pearson
correlation coefficient to select the best training epoch of our model.
We found that our MMGAN reconstructions are able to capture
both large- and small-scale structure, and do not require any post-
processing such as smoothing, which is known to suppress peaks. The
resulting MMGAN model leverages data-driven priors to produce
high-fidelity reconstructions with uncertainty estimates, all generated
within seconds.

After validation we made a reconstruction of the COSMOS field,
and found the results to be comparable to state-of-the-art methods,
such as DLPosterior (Remy et al. 2023), and significantly more
detailed than Kaiser—Squires. MMGAN was able to generate this
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Figure 6. MMGAN reconstruction of the COSMOS field convergence map with uncertainties (fop), the DLPosterior reconstruction with uncertainties (middle),
and the Kaiser—Squires reconstruction (bottom). All reconstructions are shown on the same scale; uncertainties also share a colour scale. The contour indicates
the outer border of the mask on the COSMOS field data.
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Figure 7. MMGAN COSMOS reconstruction (fop), the DLPosterior recon-
struction (middle), and the relative uncertainty between the two reconstruc-
tions (bottom). The white points indicate the positions of known x-ray clusters
from the Finoguenov et al. (2007) XMM-Newton data, and the white border
is the edge of the COSMOS field mask. Both reconstructions are shown on
the same scale. Both reconstructions are in good agreement with the x-ray
data, and generally in good agreement with each other.
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reconstruction and associated uncertainties in under a minute, as
compared to the ~10 GPU minutes required to generate each
independent approximate posterior sample by DLPosterior. The
Kaiser—Squires reconstruction method (Kaiser & Squires 1993) and
alternative deep learning approaches (Jeffrey et al. 2020; Saxena &
Cao 2021), while also being quick, provide no uncertainties. Fast
techniques that also quantify uncertainties are important for integra-
tion into downstream cosmological parameter estimation and model
comparison pipelines so that uncertainties in the mass-mapping
process are captured.

We hope our method will be useful in future mass-mapping
analyses, in particular within larger pipelines that can make use
of the rapid speeds at which posterior distribution samples can be
generated. We make the code used for this work publicly available to
the community, and hope it can be used to further the field of weak
lensing mass-mapping.
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APPENDIX A: ADDITIONAL SIMULATION
PLOTS

In this section, we provide an additional set of plots (A1) showing the
MMGAN reconstructions of some simulated mock maps, alongside
the ground truth, pixel-wise absolute error, and pixel-wise standard
deviation. These plots are similar to those shown in Fig. 3.
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Figure Al. Overview of the MMGAN reconstructions of the COSMOS mocks including MMGAN reconstructions built from N = 32 approximate posterior
samples, the ground truth, the pixel-wise absolute error between the reconstruction and the ground truth, and the pixel-wise standard deviation between the 32
approximate posterior samples used to build the reconstructions.

o
HA
o

This paper has been typeset from a TEX/IATgX file prepared by the author.

© The Author(s) 2025.
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 542, 2464-2479 (2025)

G20 1990J00 €| U0 Josn ajnyisu| [ejueq uewised Aq 09Z0¥Z8/v9IvZ/E/ZyS/aI0IMe/SeIuwW/Wwod"dno-olWapeo.//:sdjly Woy papeojumod


https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 BACKGROUND
	3 METHODOLOGY
	4 SIMULATIONS, TRAINING, AND VALIDATION
	5 RESULTS
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: ADDITIONAL SIMULATION PLOTS

