nature mental health

Article

https://doi.org/10.1038/s44220-025-00508-1

Macroeconomicincomeinequality, brain
structure and function, and mental health

Received: 18 February 2025

Accepted: 26 August 2025

A list of authors and their affiliations appears at the end of the paper

Published online: 30 September 2025

% Check for updates

Income inequality, a structural property of societies characterized by
the unequal distribution of resources, is associated with adverse mental
health outcomes during adolescence, which is a sensitive period of
neurodevelopment. While previous research has explored the impact of

individual-level socioeconomic factors on brain structure and function, the
neurobiological mechanisms linking structural inequality to mental health
disparities remain poorly understood. Here, using data from the Adolescent
Brain Cognitive Development study, we investigated the associations
between state-level income inequality, indexed by the Gini coefficient, and
brain structure and functional connectivity in over 8,000 children aged
9-10 years (from 17 states in the USA). We analyzed whole-brain cortical
thickness and surface area, and volume and region-specific measures of
thickness and surface area, as well as functional connectivity within and

between 12 brain networks, controlling for several individual-level and state-
level confounders (for example, income, educational attainment, state-level
incarceration rate and Medicaid expansion status). Mediation analyses were
conducted to test whether brain metrics linked income inequality to mental
health outcomes at 6-month and 18-month follow-ups. Higher income
inequality was associated with reduced cortical thickness and surface area
across widespread brain regions, as well as altered functional connectivity
between multiple brain networks. Lower cortical volume and surface area,
as well as connectivity between the default mode and dorsal attention
networks, mediated the association between higher structuralincome
inequality and greater mental health problems. Our findings reveal income
inequality as a unique societal-level determinant of neurodevelopment and
mental health, independent of individual socioeconomic status. Policies
aimed at reducing inequality and strengthening social cohesion to mitigate
its neurobiological and mental healthimpacts are needed.

Economic inequality, characterized by the unequal distribution of
income and wealth in a society, is associated with mental health and
wellbeing outcomes beyond the influence of household income' ™, This
may be particularly relevant during adolescence—a dynamic period of
neurodevelopment when the brain undergoes rapid maturation and
many mental health disorders begin to emerge*’. Researchincreasingly
underscores the link between higherincome inequality and arange of
adverse mental health outcomes in young people, including elevated

rates of depression, anxiety and behavioral disorders®. Inequality-
related stressors may contribute to heightened mental health vulner-
abilities by shaping neurodevelopmental pathways, particularly those
involved inemotion regulation and social cognition. Although numer-
ous studies have examined how individual-level income is associated
with brain development'*", few have considered the broader role of
structuralincomeinequality inbrain development and mental health.
Incomeinequality has risen worldwide in recent decades™. Investigating
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whether and how inequality becomes neurobiologically embedded
and heightens the risk of psychopathology during adolescence could
provide valuable insights. Absolute poverty—typically defined as the
inability to meet basic needs and operationalized based on thresholds
set by the government and/or economists—has known effects on neuro-
biology™.If structural inequality has similar measurable associations,
addressing it may gain broader acceptance across political ideologies.

Income inequality, which refers to the disproportionate concen-
tration of income within a small fraction of the population, can fun-
damentally alter the social environment and is a distinct construct
from poverty. While income inequality can exacerbate poverty by
concentrating resources among a small proportion of the popula-
tion, it is a structural characteristic of a society that can influence
mental health through unique pathways—such as increased social
comparison, whichis afundamental process through which individu-
als evaluate themselves by comparing their attributes, abilities and
achievements to those of others”, and reduced social cohesion—not
captured by individual income or poverty alone'”. Inequality fosters
relative deprivation, social comparison and perceptions of limited
socialmobility"’. This creates conditions thatinduce chronic stress, a
well-established risk factor for psychopathology™. Although evidence
from adolescent samples is limited, biological evidence is aligned
with the idea that inequality contributes to increased stress. A study
of over19,000 individuals across four European countries found that
C-reactive protein levels, a marker of inflammation, were lowest in
more equal societies (for example, Switzerland) and highest in more
unequal ones (for example, Portugal)®. Experimental findings are also
consistent with this: Shapiro et al.” showed that short-term exposure
toinequality triggers physiological stress responses. Increased stress
levels could explain the well-established links between inequality and
mental health*",

Stress neurobiology research shows that chronic stress exposure
isassociated with neural pathways involved in emotionregulation and
cognitive control'®, which are relevant for mental health. Extensive
research has linked low individual income to altered brain structure
and function, suchasreduced cortical thickness and surface area and
changes in functional connectivity'*, factors closely associated with
mental health”. Importantly, the association of individual socioeco-
nomic status (SES) with brain volume has been shown to vary across
European countries, with associations being stronger insome countries
than others*—potentially reflecting broader structural factors such
asinequality—ahypothesis that remains untested. Apart from a study
examining electrophysiological brain dynamics in adults* and a few
studies examining links of local income disparity with gray matter®*%,
therole of structuralincome inequality in shaping brain structure and
function and, crucially, behavior outcomes in youth, remains unex-
plored. This gap underscores the critical need to explore how income
inequality may influence neurobiology and mental health,independent
ofindividualincome.

In this study, we leverage population-based data from the Ado-
lescent Brain Cognitive Development (ABCD) study to assess asso-
ciations between state-level income inequality, indexed by the Gini
coefficient,and brain structure and functional connectivity in children
aged 9-10 years. Specifically, we examine the associations of inequality
with cortical thickness and surface area, analyzing both whole-brain
andregion-specific measures, as well as functional connectivity within
andbetween 12 brainnetworks. Finally, we evaluated whether any impli-
cated brainstructure or connectivity metrics mediated the relationship
between state-levelinequality and mental health 6 and 18 months later,
aimingto elucidate the pathways through which structural inequality
contributes tomental health disparities. Overall, the present study aims
to examine the neural mechanisms through whichincomeinequality is
associated with adolescent mental health. By examining neurobiologi-
cal pathways, we aim to better understand how inequality contributes
to mental health disparities and inform potential interventions.

Table 1| Demographic information

Characteristic normeanzs.d.

No. of subjects (n female) 10,071 (4,871)

Non-Hispanic white (n) 5,591

Age (years) 9.92+0.62

Gini coefficient (2017) 0.47+0.02
Income-to-needs ratio 3.65+2.4
Parent educational attainment (years) 15.28+2.52
Parent mental health problems 2116+17.91
TANF (US$) 530.38+173.99
Incarceration rate (per 100,000) 689.42+219.9
Total mental health problems 6.8+5.41

Mean FDR 0.23+0.21

TANF is a monthly temporary assistance for needy families.

Results

The sample consisted of 10,071 children (4,871 female; 56% non-His-
panicwhite; Table 1) from across 17 states inthe USA (N = 8,412 for func-
tional connectivity after excluding unusable scans). We used linear
mixed-effects models to examine associations of income inequality
(operationalized as the Gini coefficient) with average cortical thickness,
total cortical volume, total surface area, regional cortical thickness
(n=34variables) and surface area (n = 34 variables), and within- and
between-network connectivity (n = 78 variables). Our analyses control
for multiple key covariates, including participant age and sex assigned
atbirth, scanner model, in-scanner motion (for connectivity variables),
household income-to-needs ratio, parental educational attainment,
parent mental health and state-level variables including incarceration
rate, Temporary Assistance for Needy Families (TANF) and Medicaid
expansion status. We also accounted for the nested family structure.
These covariates were included to isolate the unique contribution of
structural inequality to brain and mental health outcomes. False dis-
coveryrate (FDR) corrections (Pgpr < 0.05) were applied within cortical
thickness, surface area and functional connectivity analyses.

Inequality and brain structure

Higherincomeinequality was significantly associated with lower overall
cortical volume (8=-2.93,s.e.m 0.49, t =-6.04, P< 0.001), average
cortical thickness (8=-1.33,s.e.m. 0.55, t =-2.41, P= 0.016) and total
surfacearea (8=-2.99,s.e.m.0.49,t=-6.06,P < 0.001; Fig.1a-c). Fur-
ther, higher income inequality was associated with widespread pat-
terns of lower cortical thickness (Fig. 1d and Table 2) and surface area
(Fig. 1e and Table 2) across frontal, temporal, parietal and occipital
regions (n =48 variables). For a few regions, inequality was associ-
ated with higher thickness and surface area, including for the bank
of superior temporal sulcus (STS) and supramarginal thickness, and
parahippocampal area. The complete model output for all associations
isavailable in Supplementary Table 2.

Insensitivity analyses, we adjusted for the average cortical thick-
ness for thickness models and the total surface area in surface area
models (Supplementary Table 4). Briefly, thickness results remained
largely unchanged (22 out of 24 variables were still significant), whereas
some surface arearesults were no longer significant (12 out of 22 vari-
ables remained significant). This suggests thatinequality is associated
with regional structure, over and above global effects.

Inequality and brain connectivity

Similarly, we found a significant relationship between inequality and
several (n=46) connections between and within functional networks.
Higherinequality was associated with alterationsin connectivity within
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Fig. 1| Relationship between Gini coefficient and brain structure. a-c, The
association between Gini coefficient and average cortical thickness (a), total
surface area (b) and total cortical volume (c). d,e, The ¢-statistic values from

linear mixed-effects models for significant associations between Gini coefficient
and regional cortical thickness variables (d) and surface area variables (e).
Only areas with significant associations are depicted in the figure.

and between networks involved in higher-order cognition and atten-
tion, such as the cingulo-opercular network (CON), dorsal attention
network (DAN), default mode network (DMN), frontoparietal network
(FPN) and ventral attention network (VAN). Inequality was also linked
to connectivity in networks related to sensory and motor functions,
including the auditory network (AN), sensorimotor network (SMN) and
visual network (VN) (Fig. 2 and Table 3). The complete model output
for all associations is available in Supplementary Table 3.

Additionally, to directly assess whether income inequality
explained additional variance beyond individual-level SES, we com-
pared models with and without the Gini coefficient for a few repre-
sentative models (global brain measures and the first two significant
connectivity variables). We found that including income inequality
significantly improved the model fit for all brain outcomes tested
andresulted in small but consistent increases in marginal R*when the
Gini coefficient was added to the models (Supplementary Table 5).
This suggests that the Gini coefficient explains unique variance above
individual-level SES and other covariatesin the model. The main effects
of parentincome to needs and educational attainment are presented
inSupplementary Tables11and 12.

Inequality, brain structure and connectivity and mental health
We then leveraged structural equation modeling, including the same
covariates as the linear mixed-effects models, to test the role of the
implicated brain variables as mediators of the association of inequal-
ity with total mental health problems at 6 months and 18 months
later. The FDR was used to adjust for multiple comparisons within
each set of analyses. Fit indices indicated acceptable to excellent fit
for the structure models (root mean square error of approximation:
mean 0.013, s.d. 0.004; comparative fitindex: mean 0.997,s.d. 0.002;
Tucker-Lewis index: mean 0.97, s.d. 0.023) and connectivity models
(root meansquare error of approximation: mean 0.016, s.d. 0.003; com-
parative fitindex: mean 0.993, s.d. 0.004; Tucker-Lewis index: mean
0.93,s.d.0.038). There was a significant total effect of inequality on
mental health at the 18-month follow-up but not the 6-month follow-up
(Supplementary Tables 6-10). We found a significant indirect effect

for total surface area and cortical volume, and connectivity between
the DAN and DMN for the association between inequality and total
mental health problems at both 6 months and 18 months later. Spe-
cifically, higherinequality was associated with lower surface areaand
volume and higher (that is, less negative) DMN-DAN connectivity,
which were in turn associated with higher mental health problems
(Fig. 3 and results for 6 months provided in the Supplementary Infor-
mation). These results were significant even when total mental health
problems at baseline were accounted for in sensitivity analyses (see
Supplementary Information for the model output).

Discussion

The present study provides new evidence on the neural mechanisms
through which structuralincome inequality contributes to psychopa-
thology. Our findings show that structural inequality is associated with
measurable differences in brain structure and functional connectiv-
ity, which have implications for subsequent mental health outcomes
during early adolescence. Higher income inequality was associated
withreduced cortical thickness and surface area across widespread
brain regions spanning all four lobes of the brain, whichisin line with
our whole-brain findings. The present study also revealed that struc-
tural income inequality was associated with alterations in functional
connectivity within and between multiple cortical brain networks,
including both higher-order cognitive and sensorimotor systems.
These findings of widespread associations between inequality and
brain structure and connectivity extend prior research on the impact
of individual socioeconomic factors'®"'*2*2¢-32 on brain development
by highlighting the role of structural income inequality as a unique
societal-level determinant that operatesindependently of individual-
level SES. Importantly, total brain volume and surface area, as well
as connectivity between the DMN and DAN, mediated links between
inequality and mental health 6 months and 18 months later.

Given the evidence showing thatinequality fundamentally alters
the social environment—resulting in lower levels of social cohesion,
trust and social capital, as well as higher levels of social compari-
son—and the crucial role that social relationships play in our health
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Table 2 | Inequality and regional cortical thickness and surface area

Brain region B s.e.m. t P Peor Semi-partial R?
Bank of superior temporal sulcus thickness 0.053 0.012 4.357 <0.001 <0.001 0.0019
Caudal anterior cingulate thickness -0.064 0.012 -5.253 <0.001 <0.001 0.0030
Caudal middle-frontal thickness -0.046 0.012 -3.799 <0.001 <0.001 0.0016
Cuneus thickness -0.132 0.012 -11.094 <0.001 <0.001 0.0124
Entorhinal thickness -0.075 0.012 -6.284 <0.001 <0.001 0.0042
Fusiform thickness -0.051 0.012 -4.197 <0.001 <0.001 0.0019
Inferior parietal thickness -0.038 0.012 -3.276 0.001 0.002 0.0012
Isthmuscingulate thickness -0.067 0.012 -5.436 <0.001 <0.001 0.0031
Lateral occipital thickness -0.108 0.01 -10.087 <0.001 <0.001 0.0095
Lateral orbitofrontal thickness -0.144 0.012 -11.975 <0.001 <0.001 0.0147
Lingual thickness -0.109 0.012 -9.244 <0.001 <0.001 0.0083
Medial orbitofrontal thickness -0121 0.012 -10.228 <0.001 <0.001 0.0099
Parahippocampal thickness -0.036 0.012 -3.010 0.003 0.004 0.0010
Paracentral thickness -0.031 0.012 -2.612 0.009 0.013 0.0007
Parsorbitalis thickness -0.034 0.012 -2.831 0.005 0.007 0.0007
Pericalcarine thickness -0.122 0.012 -10.296 <0.001 <0.001 0.0m
Precentral thickness -0.025 0.012 -2.120 0.034 0.045 0.0006
Precuneus thickness -0.040 0.012 -3.296 <0.001 0.002 0.0011
Rostral anterior cingulate thickness -0.103 0.012 -8.756 <0.001 <0.001 0.0078
Rostral middle-frontal thickness -0.094 0.012 -7.780 <0.001 <0.001 0.0065
Superior frontal thickness -0.063 0.012 -5.174 <0.001 <0.001 0.0028
Superior parietal thickness -0.044 0.012 -3.648 <0.001 <0.001 0.0014
Supramarginal thickness 0.029 0.011 2.545 0.01 0.015 0.0004
Temporal pole thickness -0.043 0.012 -3.580 <0.001 <0.001 0.0014
Transverse temporal thickness -0.038 0.012 -3.147 0.002 0.003 0.0009
Insula thickness -0.146 0.012 -12.256 <0.001 <0.001 0.0152
Caudal anterior cingulate area -0.031 0.012 -2.593 0.01 0.017 0.0007
Caudal middle-frontal area -0.058 0.012 -5.033 <0.001 <0.001 0.0023
Cuneus area -0.043 0.012 -3.609 <0.001 <0.001 0.0012
Isthmuscingulate area -0.036 0.012 -3.144 0.002 0.003 0.0009
Lateral occipital area -0.037 0.01 -3.353 <0.001 0.002 0.0009
Lateral orbitofrontal area -0.046 0.0m -4.073 <0.001 <0.001 0.0015
Medial orbitofrontal area -0.032 0.0M -2.874 0.004 0.008 0.0006
Parahippocampal area 0.028 0.012 2.377 0.017 0.028 0.0005
Parsopercularis area -0.059 0.012 -5.061 <0.001 <0.001 0.0025
Parsorbitalis area -0.069 0.0m -6.191 <0.001 <0.001 0.0035
Parstriangularis area -0.041 0.0M -3.580 <0.001 <0.001 0.0012
Pericalcarine area -0.032 0.012 -2.582 0.01 0.017 0.0007
Postcentral area -0.041 0.0M -3.683 <0.001 <0.001 0.0010
Precentral area -0.045 0.01 -4.143 <0.001 <0.001 0.0013
Precuneus area -0.048 0.01 -4.212 <0.001 <0.001 0.0017
Rostral anterior cingulate area -0.039 0.012 -3.338 <0.001 0.002 0.00M
Rostral middle-frontal area -0.060 0.01 -5.488 <0.001 <0.001 0.0026
Superior frontal area -0.044 0.01 -3.939 <0.001 <0.001 0.0014
Superior parietal area -0.047 0.012 -4.097 <0.001 <0.001 0.0014
Frontal pole area -0.072 0.01 -6.399 <0.001 <0.001 0.0036
Temporal pole area -0.025 0.01 -2.200 0.028 0.043 0.0005
Insula area -0.038 0.01 -3.358 <0.001 0.002 0.001
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Fig. 2| Relationship between Gini coefficient and resting-state functional the matrix has been displayed for ease of readability. b, A chord diagram for
connectivity. a, A heat map of the ¢-statistic values (from linear mixed models) of ~ significant connections. Red and blue chords represent positive and negative
the relationship between Gini coefficient and significant connectivity variables associations, respectively.

after correction for multiple comparisons (n =46). Only the bottom half of
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Table 3 | Inequality and functional connectivity

Connectivity B sem. t P Pror Semi-
variable partial R
AN to CON -0.031 0.013 -2.385 0.017 0.03 0.0007
CON to CON -0.115 0.013 -9158 <0.001 <0.001 0.0101
CPN to CON -0.034 0.013 -2.610 0.009 0.018 0.0009
CON to DMN 0.056 0.013 4.382 <0.001 <0.001 0.0024
DMN to DMN -0.063 0.012 -5.033 <0.001 <0.001 0.0033
DAN to DMN 0.078 0.012 6.246 <0.001 <0.001 0.0048
AN to DAN 0.039 0.013 3.010 0.003 0.006 0.00M
CON to DAN 0.034 0.013 2.532 0.011 0.021 0.0007
CONto FPN 0.034 0.013 2.571 0.01 0.019 0.0008
DAN to FPN 0.035 0.013 2.686 0.007 0.015 0.0009
FPN to FPN 0.041 0.013 3163 0.002 0.004 0.0010
AN to RTN 0.066 0.013 5.156 <0.001 <0.001 0.0032
CONtoRTN 0.087 0.013 6.765 <0.001 <0.001 0.0055
CPN to RTN 0.049 0.013 3.667 <0.001 <0.001 0.0016
DAN to RTN -0.049 0.013 -3.719 <0.001 <0.001 0.0018
FPN to RTN 0.059 0.013 4.482 <0.001 <0.001 0.0026
RTN to RTN -0.076 0.013 -5.986 <0.001 <0.001 0.0046
DMN to SN -0.042 0.013 -3.168 0.002 0.004 0.0012
DAN to SN 0.079 0.013 6.020 <0.001 <0.001 0.0044
RTN to SN 0.080 0.013 6.153 <0.001 <0.001 0.0047
SN to SN -0.033 0.013 -2.531 0.01 0.021 0.0008
CON to SMN (H) -0.045 0.013 -3.406 <0.001 0.002 0.0015
DMN to SMN (H) -0.039 0.013 -3.020 0.003 0.006 0.00Mm
FPN to SMN (H) -0.051 0.013 -3.902 <0.001 <0.001 0.0018
RTN to SMN (H) 0.058 0.013 4.439 <0.001 <0.001 0.0024
SN to SMN (H) -0.034 0.013 -2.615 0.009 0.018 0.0008
SMN (H)to SMN (H)  0.062 0.013 4793 <0.001 <0.001 0.0026
AN to SMN (M) 0.028 0.013 2.201 0.028 0.047 0.0005
CON to SMN (M) -0.035 0.013 -2.641 0.008 0.017 0.0009
SMN (H) to SMN (M)  0.065 0.013 5.061 <0.001 <0.001 0.0030
DMN to VAN -0.050 0.013 -3.865 <0.001 <0.001 0.0020
DAN to VAN 0.032 0.013 2.452 0.014 0.025 0.0008
RTN to VAN 0.062 0.013 4797 <0.001 <0.001 0.0029
SN to VAN -0.066 0.013 -5.093 <0.001 <0.001 0.0031
SMN (H) to VAN -0.037 0.013 -2.813 0.005 0.01 0.0010
VN to VAN 0.096 0.013 7.580 <0.001 <0.001 0.0068
ANto VN 0.092 0.013 7.060 <0.001 <0.001 0.0062
CONto VN 0.051 0.013 3.881 <0.001 <0.001 0.0019
CPNto VN 0.064 0.013 4.827 <0.001 <0.001 0.0029
DMN to VN 0.081 0.013 6.452 <0.001 <0.001 0.0050
DAN to VN -0.073 0.013 -5.590 <0.001 <0.001 0.0038
FPN to VN 0.040 0.013 3102 0.002 0.005 0.0013
RTN to VN -0.080 0.013 -6.156 <0.001 <0.001 0.0046
SN to VN 0.052 0.013 4.001 <0.001 <0.001 0.0019
SMN (H) to VN 0.093 0.013 7188 <0.001 <0.001 0.0064
VN to VN -0.148 0.012 -12.229 <0.001 <0.001 0.0165

Within-network connectivity is signified by the name of the network repeated twice (for
example, VN to VN).

and wellbeing®, it is unsurprising that inequality is associated with
higher stress levels®*. While not directly measured in our study, we
speculate that these social changes and increased stress levels probably

contribute to the profound impacts on the brain outcomesin children
observed in our study. We discuss these ideas further below.

Akey finding of this study is that youth living in states with higher
income inequality have, on average, lower surface area and thickness
across widespread regions in the brain, spanning the frontal, parietal,
temporal and occipital lobes. Theimplicated regions support arange
of functionsincluding executive function, emotion regulation, reward
processing, attention and sensory integration, socioemotional pro-
cessingand visual processing®*°.Inequality was also associated with
differences in functional connectivity within and between numerous
functional systems involved in both sensorimotor and higher-order
cognitive functions. Together, these findings indicate that income
inequality may shape brain development in a diffuse and pervasive
manner, potentially influencing a wide range of cognitive, emotional
and behavioral outcomesin children and adolescents. Importantly, our
findings are consistent with and extend prior work on individual SES
showing similarly widespread associations of SES with brain structure
and connectivity'”*°? and associations between SES and a range of
outcomesin children***, We speculate that such widespread patterns
may be aconsequence of inequality-related chronic stress. While both
householdincome and inequality generate chronic stress, with poten-
tial biological consequences, they may do so via different psychosocial
pathways. Forinstance, absolute poverty may trigger stress viamaterial
deprivation andincome insecurity, while inequality may amplify status
anxiety and social comparison as inequality heightens the salience of
socioeconomic hierarchies, leading to increased upward social com-
parisons and feelings of inadequacy®***°. Social comparison—a psycho-
logical process through which individuals evaluate themselvesrelative
toothers”—is heightened in unequal societies where status hierarchies
are more salient. This fosters upward comparison and contributes to
status anxiety, a persistent worry about one’s social standing*’. Accord-
ingtothe status anxiety hypothesis, individuals in more unequal socie-
ties may experience greater stress about their social rank—evenifthey
are not economically deprived. Supporting this, relative income (for
example, income rank) is often a stronger predictor of psychological
distress and life satisfaction than absolute income, particularly in high-
inequality areas**~'. Experimental and observational studies have also
linked higher inequality to increased materialism, status seeking and
conspicuous consumption®?. For children and adolescents, who are
particularly sensitive to social comparison®, this may translateinto a
heightened preoccupation with peer status, social rejection and nega-
tive self-evaluation®*, all of which lead to higher stress levels®. Growing
up in the context of higher income inequality is also associated with
greater victimization in adolescence™.

Further, inequality may also contribute to higher levels of ado-
lescent stress indirectly. For example, ample evidence shows that
inequality degrades mental healthin adults**",and poor parent mental
healthis associated with greater family conflict and reduced parental
support”, both of which may contribute to adolescent stress. Biologi-
cal and experimental evidence is in line with the idea that inequality
contributes to stress™'. Experiencing chronic stress may disrupt the
hypothalamic-pituitary-adrenal axis and elevate cortisol levels, nor-
epinephrine and adrenaline®. While short-term stress responses may
be protective, chronic stress places strain on the brain and other organ
systems™. Inthe brain, chronic stress may disrupt synaptic homeostasis
by impairing the balance between synapse formation and pruning,
driven in part by prolonged glucocorticoid exposure®. This can lead
to widespread synaptic loss and reduced synaptic density®, which
may contribute to the widespread connectivity alterations in large-
scale functional networks observedinthe present study. Additionally,
chronic stress can reduce dendritic arborization complexity, poten-
tially driving reductions in cortical volume and thickness®*“’. Further
researchis needed to test these pathways directly.

Income inequality not only exacerbates chronic stress but may
also deprive adolescents of the protective effects of strong social
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Fig.3|Neural mediators of the link between income inequality and mental health problems 18 months later. a-c, The neural mediators between income inequality
and total mental health problems for total surface area (a), total cortical volume (b) and DMN to DAN connectivity (c).

ties, such as emotional support and shared resources, which may
buffer these associations. For example, income inequality erodes
social capital—defined as trust, networks and norms of reciprocity
within communities—which is critical for fostering social cohesion
and mental wellbeing®. Communities with high levels of inequality
tend to experience greater segregation, reduced civic participation
and weaker social networks, all of which can amplify feelings of isola-
tion and mistrust®, contributing to the maintenance or exacerbation
of chronic stress. This chronic stress may ultimately influence brain
structure and function as described earlier.

Another central finding of our study is that whole-brain cortical
surface area and cortical volume, and connectivity between the DMN
and DAN, mediated the association between income inequality and
mental health problems. These results are consistent with prior work
showing that the DMN and DAN are involved in emotion regulation,
and disruptions in their connectivity have been associated with vari-
ous mental health disorders®**®, Furthermore, our findings build on
prior research showing associations between reduced cortical volume
and surface area and various forms of psychopathology (for example,
depression, anxiety and externalizing disorders)®””". Our results sug-
gest that income inequality may contribute to these associations by
shaping neurodevelopment, although further research is needed to
disentangle the mechanisms underlying these links. Notably, only
a small subset of brain variables associated with income inequality
mediated these links, leaving the exact contribution of these neural
alterations to behavioral outcomes uncertain. We speculate that it is
possible such effects would be evident in outcomes not examinedinthe
present study—such as emotionregulation and cognitive function—or

over a longer developmental timespan, such as late adolescence or
young adulthood.

Implications for policy and intervention

Our findings suggest that structural income inequality is associated
with neurobiological differences, even after accounting for absolute
income and poverty. These braindifferences, in turn, help explain links
to adverse mental health outcomes. As such, structural inequality
should be considered aharmful social determinant with clear biological
sequalae, meriting attention in efforts to improve population mental
health, regardless of political ideology. In other words, addressing
absolute poverty alone is likely to be inadequate and policies aimed
at reducing inequality, improving social capital and cohesion, and
mitigating the effects of social comparison are needed. We have dis-
cussed possible interventionsindepthin arecent paper (see ref. 3 for
areview). Briefly, economic reform including progressive taxation,
increased social safety nets and universal healthcare are needed to
alleviate the stressors that disproportionately affect childrenin more
unequal societies’. Further, efforts to promote social capital, such as
community-building initiatives and investments in public infrastruc-
ture, could mitigate the detrimental effects of inequality on mental
health by fostering trust and social cohesion' . Interventions targeting
status anxiety, such as programs promoting emotion regulation, social
connectedness and feelings of self-worth, may help reduce the salience
of social comparison among adolescents. In particular, schools could
play a critical role by creating inclusive environments that minimize
socioeconomic disparities and emphasize belonging and connected-
ness to promote mental health in young people’. Given our findings
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of links between structural inequality and brain structure and func-
tion, and evidence suggesting thatinequality is associated with worse
outcomes for everyone, even those not struggling financially>", such
measures are urgently needed.

Limitations and future directions

Despiteits strengths, this study has several limitations: (1) while the Gini
coefficient we used provides arobust measure of income inequality, it
did not capture otherinequities, such as wealth disparities oraccess to
healthy nutrition, that may also influence brain development. Although
we relied on the Gini coefficient, otherindices, such as the proportion
of total income earned, Atkinson index, income ratios or the Robin
Hood index may offer complementary insights”. For instance, the Theil
index allows for the decomposition of inequality into between-group
and within-group components™” (for example, between race versus
withinrace), offering amore granular understanding of how different
dimensions of inequality may relate to brain development. Future
work could benefit fromincorporating multiple measures of inequal-
ity to provide amore nuanced understanding of how different aspects
of income distribution may differentially relate to brain outcomes.
(2) Our findings are correlational. Experimental studies (for example,
from behavioral economics) and longitudinal neuroimaging research,
ideally groundedin causal inference frameworks, are needed to estab-
lish causal pathways. (3) While we speculate that the brain differences
observedinour study may be due to the chronic stress associated with
inequality, we did not measure perceived stress or biological markers
of stress (for example, cortisol levels) directly. As such, any interpreta-
tions should be made with caution. Future work should test whether
bothself-reported and physiological indicators of stress mediate links
betweeninequality and brain structure and function. Relatedly, stress
and its neurodevelopmental consequences caused by structural fac-
torssuch asinequality, and individual-level factors including poverty
are not easily dissociable. (4) We chose to focus on state-level income
inequality, which captures broader macrosocial factors and has been
underexplored in developmental cognitive neuroscience. Future work
should test the unique, distinct and joint effects of local inequality
versus state inequality to better understand how different social con-
texts contribute to developmental outcomes’. (5) In our dataset, 21
sites spanonly 17 states, with 15 out of 17 states represented by asingle
site. This precluded us fromincluding site as arandom effect without
compromising our ability to estimate state-level associations. While
we controlled for scanner manufacturer and model, future research
with broader geographic sampling and multiple sites per state could
better disentangle site-specific variability from state-level predictors
of brain structure and function. (6) The ABCD study does not include
datafromstates withthe highest povertyratesinthe USA (forexample,
Mississippi, Louisianaand New Mexico). These findings therefore may
not be generalizable to structurally disadvantaged states. However,
our findings of inequality being associated with brain structure and
function evenin states with comparatively lower levels of poverty high-
lights the relevance of state-level contextual factors beyond absolute
deprivation. (7) Averaging left and right hemisphere values may have
masked potential hemispheric differences. This could be explored in
future work with specific hypotheses. (8) This study examined whole-
brain patterns and overall psychopathology and cannot comment on
associationsrelevant for specific mental health domains. Future work
should investigate more specific pathways to delineate risk and resil-
ience mechanisms for distinct mental health domains. (9) We did not
examine the role of residential segregation and homogeneity, which
may influence children’s development through shared pathways with
inequality such aslow social capital, fragmentation, exclusionand lack
of belonging™ "%, Future work that examines the extent to which these
exposures share common versus distinct pathwaysis needed. Further,
itwould also be valuable to examine whether racialhomogeneity within
astate or region influences the strength of the association between

inequality and children’s outcomes in future work. Future research
should examine the environmental and biological mechanisms linking
inequality to brain structure and connectivity, such as neighborhood
cohesion, prosocial behavior, parental stress, family conflict and stress
pathways. Finally, while effect sizes are small, small effects can accu-
mulate and have meaningful effects at the population level”.

Conclusions

This study advances our understanding of how income inequality
shapes child brain structure and function and mental health. Our
findings highlight how structural inequality becomes biologically
embedded to influence mental health. Addressing inequality at the
societal levelis essential to fostering environments that support healthy
neurodevelopment and mental wellbeing for all children.

Methods

Participants

This study utilized data from the ABCD study (release 5.1), an ongo-
ing large-scale, multisite, longitudinal research study from the USA.
Baseline data were collected from September 2017 to August 2018.
The present study used neuroimaging data from the baseline time
point and self-reported mental health from 6-month (when self-
reported mental health was first assessed®’) and 18-month (the last
time point before the COVID-19 pandemic) follow-ups. The ABCD
study aims to comprehensively track psychological and neurobiologi-
caldevelopment fromlate childhood to late adolescence. The study is
conducted across 21 research sites (from17 states). The participating
sites cover about 20% of the 9-10-year-old population in the USA.
Schools within a 50-mile radius of each site—across public, charter
and private institutions—were selected using probability sampling
within the 21 defined catchment areas (see ref. 81 for more informa-
tion). Participants took part in clinical interviews, neuroimaging
sessions, neurocognitive testing and completed various surveys. Writ-
ten informed consent was obtained from parents or caregivers, and
children provided assent. All participant rights were safeguarded by
localinstitutional review boards. After excluding participants based
on imaging quality and missing data on covariates, 10,071 children
remained in the final analysis sample for brain structure and 8,412 for
functional connectivity. Detailed demographic information for the
sample has been provided below.

Measures

Inequality. We focused onstructural inequality at the state level, which
isintended to capture broader, system-level socioeconomic stratifi-
cation—the policies, norms and institutional frameworks that shape
income distribution at a population level. Inequality at the state level
was assessed using the Gini coefficient, one of the most widely used
measures ofincome inequality***”®, making it comparable with previ-
ousresearch. The Gini coefficient quantifies the extent towhich income
distribution among individuals or households within a population
deviates from perfect equality. Values range from 0 (complete equal-
ity, where everyone has the same income) to 1 (complete inequality,
where one person has all theincome and everyone else has none). Itis
typically calculated from the Lorenz curve, which plots the cumulative
proportion ofincome earned against the cumulative proportion of the
population, ranked from poorest to richest. The coefficient represents
the area between the Lorenz curve and the line of perfect equality,
divided by the total area under the line of perfect equality. State-level
Gini coefficient values were acquired for the year 2017 from the US
Census Bureau. Importantly, larger geographic units, such as states
or nations, offer more consistent and robust findings on the relation-
ship between inequality and various outcomes than inequality at a
smaller geographical scale such as the neighborhood**®%. For example,
Wilkinson and Pickett® found that the proportion of analyses report-
ing a supportive association between income inequality and health
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outcomes was 83% among international studies, 73% in studies using
large subnational units (for example, states) and only 45% in studies
using small areas such as neighborhoods. Similarly, Hsieh and Pugh®
concluded that consistent associations betweenincomeinequality and
violent crime were found in studies using national or state-level data,
but not in studies using smaller geographic units®*. This pattern has
been echoed in later multilevel meta-analyses®***, supporting the idea
that state-level measures more reliably capture meaningful variation
in inequality. Further, inequality is a relatively stable construct and
canbeassumed to precede neurobiological changes temporally. More
importantly, brainstructure and function cannotinfluence state-level
incomeinequality, making reverse causality anon-issue in this context.
We report associations between the state-level Gini coefficient and
state-level medianincome and racialhomogeneity (percentage white)
and income-to-needs ratio (averaged for individuals in the state) in
Supplementary Table 1.

Mental health. We utilized youth-reported symptoms of psychopa-
thology on the Brief Problem Monitor, which assesses symptoms over
the pastweek using 19 items drawn from the Child Behavior Checklist,
Teacher’s Report Form and Youth Self-Report®*®®, Items are rated as
0 (‘nottrue’),1(‘somewhat true’) or 2 (‘very true’) and are categorized
into three domains (attention, internalizing and externalizing). We
utilized the total problems raw score, which included scores oninter-
nalizing, externalizing and attention symptoms. Internal consistency in
our sample was high (Cronbach’s a = 0.85), indicating good reliability.
The present study used data from two time points: the 6-month (the
time point at which self-reported mental health was first assessed)
and 18-month follow-up (which was the last timepoint of complete
data before the pandemic). This was done to examine whether brain
structure and connectivity mediated associations between inequal-
ity and mental health both in the short term and over a longer period,
thereby testing the robustness and persistence of any observed effects.

Race and ethnicity. Race and ethnicity data were collected through
two questions: (1) “What race do you consider the child to be?” (Asian,
Black or African American, white) and (2) “Is the child of Hispanic/
Latino/Latina descent?” (yes or no). Responses were categorized into
five groups: Asian, Hispanic, non-Hispanic Black, non-Hispanic white
and multiracial/multiethnic, and this classificationis used in the study’s
datareleases. This variable was binarized into non-Hispanic white and
non-white.

Covariates. Models were adjusted for a range of theoretically moti-
vated covariates®. The mean educational attainment of parents/car-
egivers (in years) was calculated by averaging the education levels of
both parents/caregivers. In cases where datafor both were unavailable,
the information for the available parent or caregiver was used. The
income-to-needs ratio was determined by dividing the median value
of the household’s income band (as defined by the ABCD study) by
the federal poverty line for the respective household size. Parental
mental health was the (responding) parent’s total raw score on the
self-reported Adult Self Reportinstrument of broad psychopathology.
Additionally, we accounted for the average TANF benefit at the state
level®®* as low assistance for needy families can exacerbate inequality
as well as increase individual-level stress, which in turn can influence
neurodevelopment. Further, we covaried for incarceration rate’® (that
is, the number of individuals incarcerated in the state out of every
100,000in population), as more unequal states may have higher levels
of crime, which caninfluence brain development and mental health, as
wellas Medicaid expansion (binary variable) as anindicator of whether
the state had expanded Medicaid eligibility”. In sensitivity analyses
for our mediation models, we accounted for parent-reported youth
mental health problems (total problems subscale) based on the Child
Behavior Checklist®.

Imaging acquisition, preprocessing and connectivity data
The imaging procedures used here have been comprehensively out-
lined by Casey et al.”. Neuroimaging was performed following stand-
ardized protocols across multiple sites using 3T magnetic resonance
imaging scanners from Siemens, Phillips or General Electric, equipped
with 32-channel head coils. A high-resolution 3D T1-weighted image
with1 mm voxel size was obtained for all participants. Further, four or
five 5 minresting-state scans (eyes open) were performed to ensure a
minimum of 8 min of relatively low-motion data. For further details,
refer to Hagler et al.”*. The preprocessing was carried out by the ABCD
data analysis and informatics core, utilizing a uniform pipeline (for
detailed procedures and quality control, refer to Hagler et al.”*). Motion
correction was implemented in real-time at the Siemens and GE sites
using dedicated software tools. Both automated and manual methods
were employed to assess data quality, and all images were reviewed
by trained professionals to detect artifacts or abnormalities. Artifact
severity in the cortical reconstructions of the postprocessed images
was rated on a scale from O to 3, with 3 indicating the highest level of
artifact. Based on these ratings, technicians recommended the inclu-
sion of only those images rated O for further analysis. Signal-to-noise
ratios and head motion were assessed using automated tools.
FreeSurfer version 7.1.1 was used for cortical surface reconstruc-
tionand parcellation (Desikan-Killiany atlas). In this study, we focused
on cortical thickness and surface area (34 variables each). Since no
lateralized effects were hypothesized and prior work onindividual-level
environmental factors and brain structure has not yielded consistent
results for lateralized effects'®, values for the left and right hemispheres
were averaged for the analysis. This is consistent with ours and others’
prior work on this sample'®”, and astudy by Taylor et al.” showed that
SESislargely consistently associated with volume in the left and right
hemisphere in the ABCD sample. Scans were excluded if they did not
meet the quality controlinclusion criteria outlined by the data analysis,
informatics and resource center of ABCD (see release notes for details).
Functional magnetic resonance imaging time courses were pro-
jected onto FreeSurfer’s cortical surface. Using these time courses,
within- and between-network connectivity (Pearson correlation) was
calculated based on the Gordon parcellation scheme (36) for 12 pre-
defined resting-state networks: AN, CON, cinguloparietal network,
DAN, DMN, FPN, retrosplenial temporal network (RTN), SMN (hand
(H)), SMN (mouth (M)), salience network (SN), VAN and VN. These
connectivity measures were then Fisher z-transformed, resulting in
78 dependent variables, 66 between-network connectivity variables
and 12 within-network connectivity variables (with within-network
connectivity representing the average correlation across all pairs of
regions within each network). Scans were excluded if they did not
meet the quality control inclusion criteria outlined by the ABCD data
analysis, informatics and resource center (see release notes for details).

Statistical analyses

To examine the effects of state-levelincome inequality on brain struc-
ture and functional connectivity, we conducted linear mixed-effects
models (using the /me4 package in R). State-level income inequality,
indexed by the Gini coefficient, was included as the main predictor,
with brain structure (cortical thickness and surface area, 34 variables
each) and functional connectivity (across 12 brain networks, 78 vari-
ables in total) as the dependent variables (with separate models for
each outcome). We corrected for multiple comparisons using the
FDR within each set of analyses for thickness, area and connectivity
(Prpr < 0.05). Pvalues were obtained using the ImerTest package. We
ranthree additional models for total cortical volume, total surface area
and average cortical thickness. Weincluded participant age at baseline,
sex, scanner type and average framewise displacement (for connectiv-
ity measures), income-to-needs ratio at baseline, parent educational
attainmentatbaseline and parent mental health problems at baseline as
covariates to control for potential confounding factors. We additionally
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adjusted for TANF, incarceration rate and Medicaid expansion status
(from 2016-2017) at the state level and included a random effect for
family ID. Allnumerical variables were standardized for analyses. Semi-
partial R’ values were obtained using the partR2 package in R. Given the
small number of states (n = 17) and adjustments for key individual-level
covariates (for example, age, sex, income-to-needs ratio, parent edu-
cational attainment and parent mental health) and site and state-level
variables (for example, scanner manufacturer and model, state-level
policies and cash assistance, and incarceration rates), clustering or
random effects at the state or site level were deemed redundant as
the included covariates adequately account for potential confound-
ing and site-related variability. Since some covariates might argu-
ably lie on the causal pathway from inequality to youth mental health
(for example, parent mental health issues), the estimates obtained
from our model are conservative. However, including this covariate
adjusts for other environmental factors that may be associated with
parent mental healthissues—such as neglect, inconsistent caregiving
and substance abuse—as well as genetic propensity to mental health
problems. This approach allowed us toisolate effects associated with
inequality to a greater extent. Further, to tease apart regional effects
from global effects, we adjusted for average thickness (for regional
thickness models) and total surface area (for regional surface area
models). Model output for this additional analysis has been provided
inSupplementary Table 4. Additionally, sensitivity analyses adjusting
forracialhomogeneity at the state-level (thatis, percentage white) have
been provided in Supplementary Tables 18-21.

On secondary analyses, race/ethnicity was modeled as a mod-
erator of the association between inequality and brain structure and
connectivity to account for intersectional influences. As above, we
corrected for multiple comparisons using the FDR within each set
of analyses for thickness, area and connectivity (Pgpr < 0.05). These
results have been reported and are discussed in the Supplementary
Information.

For the significant variablesidentified in the linear mixed-effects
models, we performed mediation analysis using structural equation
modelinginthelavaan packageinR. The analysis aimed toinvestigate
whether brain structure or functional connectivity metrics mediated
therelationship between state-levelincome inequality and total mental
health symptoms assessed both 6 months and 18 months later. Scanner
manufacturer/model, family ID (to account for family structure) and
mean framewise displacement (for functional connectivity variables)
were regressed out of the brain measures (that is, the mediator). All
covariates (forexample, sex, baseline income-to-needs ratio, baseline
parental education and baseline parent psychopathology, 2016-2017
Medicaid, TANF and incarceration rate) were included as predictors
in both the brain and outcome equations of the mediation models to
ensure effects of interest were adjusted for these variables. Addition-
ally, interview age at baseline was modeled in the ‘a’ pathand interview
age at the respective mental health assessment (either the 6-month
or 18-month follow-up) was modeled as a covariate in the ‘b’ path.
The structural models were not saturated and included only theo-
retically driven paths. To assess the significance of indirect effects, we
employed abootstrapping procedure with 5,000 resamples to obtain
bias-corrected confidenceintervals (Cls) and Pvalues for the indirect
pathways. As before, we corrected for multiple comparisons within
each set of analyses (that is, thickness, surface area and connectivity;
Prpr < 0.05). Amoderated mediation model was conducted for variables
whererace/ethnicity moderates the association betweeninequality and
brain variables (results reported in the Supplementary Information).
In a sensitivity analysis, we tested whether results were robust to the
inclusion of total mental health problems at baseline as a covariate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The ABCD study data used in this project are publicly available (https://
abcdstudy.org/). Accesstothe datais granted to qualified researchers
via a data use agreement. For further information on how to obtain
access to this dataset, visit the NIH Brain Development Cohorts data
sharing platform (https://www.nbdc-datahub.org/).

Code availability
Alldata analyses used readily available programs (for example, open-
source R code). No custom code was used.
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Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents




Plants

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. ) )
Describe-any-atithentication-procedtres foreach seed stock- tised-ornovel genotype generated—Describe-any-experiments-tsed-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type T1 and resting state fMRI

Design specifications N/A
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Behavioral performance measures  N/A

Acquisition

Imaging type(s) Structural and functional

Field strength 3T

Sequence & imaging parameters The ABCD study is an openly available dataset with standardised preprocessing pipeline. This study used processed
tabulated data, details for which can be found in Casey et al. (see reference below)
Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., ... & Dale, A. M. (2018). The
adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental cognitive
neuroscience, 32, 43-54.

Area of acquisition Whole-brain

Diffusion MRI [ ] Used X Not used

Preprocessing

Preprocessing software The ABCD study is an openly available dataset with standardised preprocessing pipeline. This study used processed tabulated
data, details for which can be found in Hagler et al. (see reference below)

Hagler Jr, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A.S., ... & Dale, A. M. (2019). Image processing and
analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage, 202, 116091.

Normalization See above.
Normalization template See above.
Noise and artifact removal See above.
Volume censoring See above.

Statistical modeling & inference

Model type and settings N/A as not task
Effect(s) tested N/A as not task

Specify type of analysis: [ | wholebrain | ROI-based || Both
Statistic type for inference N/A as not task

(See Eklund et al. 2016)

Correction N/A as not task




Models & analysis

n/a | Involved in the study
|:| & Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson correlation within and between 12 networks from the Gordon parcellation scheme.

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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