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Abstract—Electroencephalograph (EEG) has been widely ap-
plied for brain-computer interface (BCI) which enables paralyzed
people to directly communicate with and control of external
devices, due to its portability, high temporal resolution, ease of
use and low cost. Of various EEG paradigms, steady-state visual
evoked potential (SSVEP)-based BCI system which uses multiple
visual stimuli (such as LEDs or boxes on a computer screen)
flickering at different frequencies has been widely explored in the
past decades due to its fast communication rate and high signal-
to-noise ratio. In this paper, we review the current research in
SSVEP-based BCI, focusing on the data analytics that enables
continuous, accurate detection of SSVEPs and thus high infor-
mation transfer rate. The main technical challenges, including
signal pre-processing, spectrum analysis, signal decomposition,
spatial filtering in particular canonical correlation analysis and
its variations, and classification techniques are described in this
paper. Research challenges and opportunities in spontaneous
brain activities, mental fatigue, transfer learning as well as hybrid
BCI are also discussed.

Index Terms—Brain-computer interface (BCI), steady state
visual evoked potential (SSVEP), healthcare application, data
analytics, canonical correlation analysis.

I. INTRODUCTION

Brain-computer interface (BCI) is a communication system
that enables paralyzed people to directly communicate with
and control of external devices without body movement via
analysing the user’s brain activities [1], [2], and it has been
widely explored in the past years, as illustrated by the fast
increment of the numbers of BCI related publications in the
Fig. 1. There are a wide variety of applications of BCI systems,
ranging from wheelchairs, robot and prosthetic arms control
to character spelling, games and entertainment [3]-[5].

BCI systems normally rely on different modalities of
functional neuro-imaging, such as electroencephalography
(EEG) [7], functional near-infrared spectroscopy (fNIRS) [8],
functional magnetic resonance imaging (fMRI) [9], and mag-
netoencephalography (MEG) [10]. Among the various modal-
ities, EEG is the most commonly employed one due to its
portability, high temporal resolution, ease of use and low cost
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Figure 1. Cumulative number of publications referring to BCI indexed by
IEEE Xplore, Web of Science, PubMed and Scopus, and it is obvious the
research on BCI is increasing year by year.
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Figure 2. Distribution of published papers in subareas of EEG-based BCI
systems.

[11]-[14], as shown in the Table. I. Four typical paradigms in
the EEG signal, namely P300 event related potential (ERP),
slow cortical potential (SCP), sensorimotor thythms (SMR),
and steady-state visual evoked potential (SSVEP) are used
to analyse brain activities [15], and Fig. 2 outlines a rapid
surge of interest in EEG-based BCI in recent years in terms of
the number of publications using different type of paradigms.



Table I

THE COMPARISON OF EEG AND THE OTHER NEURO IMAGING TECHNIQUES

EEG

Neuro imaging techniques SSVED P300 ERD SMR SCP fNIRS fMRI MEG
ITR (bits/min) 24.7~32533 | 4.47~20.1 | 4.47~17 N.A 3.18~8.23 ~5 13.1~19.6
SNR(dB) 8.97~25 0.87~8.18 -16~5 17.5~42.8 26.48~31.93 1.07~161.2 2~35
Temporal resolution millisecond millisecond second millisecond
Spatial resolution centimeter millimeter millimeter millimeter
Cost low moderate high very high
0.5 flickering target on the screen as quickly as possible. The
T:fft’ subjects rested for a few minutes between two consecutive
~— blocks to relieve visual and mental fatigue. Besides, to de-
One trial One trial crease artifacts generated by eye movements, subjects should
avoid eye blinks during the experimental period. SSVEPs are
""""""""" periodic neural responses generated in occipital scalp areas
P ~ of the brain, and the stimulus frequency will determine the
I-st block 12-th block response frequency content, which contains activities not only
) ) at the stimulus frequency but also at its higher harmonics [18].
(a) Scheme of the experimental paradigm. . . . .
Signal processing algorithms are applied to analyze the charac-
Freq. teristics of SSVEP responses and identify the subject’s intent
2> Stimulus design of a 40-target high speed BCI (%‘Se to control the peripheral equipment. As a result, subjects can
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(b) Stimulus design of the 40-target BCI system.

Figure 3. The redraw of the experimental paradigm and stimulus design in
[6], which represented the setting for one of the highest numbers of stimuli.

It is obvious that SSVEP-based BCI has received extensive
research interests in the past decades due to its fast commu-
nication rate and high signal-to-noise ratio (SNR).

The SSVEP-based BCI usually utilizes several visual os-
cillating stimuli, such as LEDs or boxes on a computer
screen, which are generally modulated at different frequencies
and phases [16], [17]. A typical experimental paradigm of a
SSVEP-based BCI system generally contains M blocks each
containing N trials corresponding to N visual stimuli which
flicker at a random order. For example, Fig. 3(a) shows a
typical stimulated experiment in [6], which represented the
setting for one of the highest numbers of stimuli. The user
interface is a 5 X 8 matrix of visual stimuli including 40 targets
which were modulated by linearly increasing frequencies and
phases, as shown in Fig. 3(b). In each experimental block,
subjects were required to gaze at each visual stimulus for
0.5 s, and completed 40 trials corresponding to all 40 targets.
Each trial began with a 0.5 s visual cue that shows the target
stimulus produced by the stimulus program. During the target
cue period, users were required to shift their attention to the

output desired commands by gazing at different target stimuli
sequentially [16].

Recent surveys of the BCI system used in computer in-
terface spellers [19] [20], and hybrid BCI [21] [22] have
signified the importance of SSVEP-based technologies. These
surveys focus mainly on the various applications of SSVEP
rather than its technical novelty and challenges. In other
surveys, Zhu et al. [23] reported the different repetitive visual
stimulus choices in terms of rendering devices, properties
(e.g., frequency, color), and their potential effects on BCI
performance, user comfort and safety. Zerafa er al. [24]
compared the different training requirements of feature extrac-
tion methods for SSVEP-based BCIs. They divided SSVEP
feature extraction methods into three categories according to
training requirements, namely training-free, subject-specific
and subject-independent training approaches. Different to pre-
vious surveys, this review focuses on technical challenges
and developments in SSVEP data analytics including signal
pre-processing, spectrum analysis, signal decomposition, spa-
tial filtering in particular canonical correlation analysis and
its variations, and classification techniques. Three databases,
Google Scholar, IEEE Xplore and Web of Science, were used
for the literature search. A combination of keywords, such
as BCI, SSVEP, classification, spatial filtering and canonical
correlation analysis, were used as search terms. Publications
from 2010-2020 were preferred, but this range was extended
in some cases.

The remainder of this paper is organized as follows. Section
IT briefly introduces the typical healthcare applications of
SSVEP-based BCI system. Data analytics and signal pro-
cessing algorithms for SSVEP identification are detailed in
Section III. Section IV presents some new emerging challenges
and opportunities of SSVEP. Discussion and conclusion are
provided in Section V and VI.



II. HEALTHCARE APPLICATIONS

In this section, we will use healthcare as the exemplar
to illustrate SSVEP-based BCI systems’ wide spectrum of
applications. Clinically, SSVEP-based BCI systems have been
applied for diagnosis of various diseases and health issues,
such as migraine [25], autism [26], cognitive aging [27],
as well as the abnormal nervous system in patients with
bipolar disorder [28] and schizophrenia [29], via comparing
differences between the patients and healthy people on certain
physiological indexes such as brain complexity described by
inherent fuzzy entropy and the amplitude/power of SSVEP
responses, when they look at certain visual stimuli. In addition
to the diagnostic applications, the SSVEP-based BCI systems
also show great potential in providing commands to control
rehabilitation or assistive devices for people with disability.
For patients with impaired mobility, restoring their lost abil-
ities, or at least helping them adapt to suffered disabilities,
is essential for them to live with dignity. The SSVEP-based
BCI system can output the patient’s desired commands and
control the external devices, which can thus restore/rebuild
the function of damaged muscles to efficiently accelerate the
rehabilitation procedure. For instance, the operation process
for rehabilitation is that BCI system analyses the SSVEP
responses generated from the scalp when the user looks at
different visual stimuli. Then, intentions are translated into
various commands to trigger the peripheral devices, e.g. upper
extremity rehabilitation [30], ankle rehabilitation robot [31],
which can stimulate impaired muscles to perform more precise
motion tasks that the patient cannot perform on his/her own.
Assistance applications have the same working principle with
rehabilitation equipment, but their output commands are used
to control aided peripheral experiment like wheelchair [4],
speller [5] or meal assistance robot [32].

SSVEP-based BCI systems also have made pragmatic
progress in the smart home scenarios, which provides
disabled people more direct interactions with the environment.
It performs mainly in two aspects, controlling household
appliances and undertaking housework. SSVEP-based BCI
offers people the possibility to recognize various commands
and control corresponding devices in their houses by
watching different stimuli [33]. By means of the quick
response technology QR code, Abdul et al. [34] designed
an augmented reality smart glasses to control items in the
environment, such as lights, coffee machines and elevators,
by focusing on different SSVEP stimuli displayed on the
glasses. Similarly, based on SSVEP-based BCI technology, a
hand-free control smart home has been created in [35], which
can control six devices. The SSVEP-based BCI system also
assists in reducing domestic pressure and improving home
conditions by helping people accomplish heavy housework.
Shao et al. [36] designed a novel EEG-based intelligent
teleoperation system for a mobile wall-crawling cleaning
robot, which uses the crawler type instead of the traditional
wheel type for window or floor cleaning. The developments
of SSVEP-based BCI in smart environment field may offer
the prospect of greatly improving the quality of life for
disabled people out clinics, and considerably increase their

independence, autonomy, mobility, and ability, which also
leads to reduced social costs.

III. DATA ANALYTICS FOR SSVEP IDENTIFICATION

The data analytics of a standard SSVEP-based BCI system
generally includes signal pre-processing and SSVEP recogni-
tion. The purpose of signal pre-processing is to improve the
quality of EEG signals by removing background noises, while
the SSVEP recognition is to make the characteristics contained
in the SSVEP responses emerge and then use them to identify
the stimuli. In this section, we will elaborate on the details of
signal pre-processing and SSVEP recognition.

A. Signal pre-processing

The EEG potentials gathered by electrodes are coming from
the brain, which can be easily contaminated by muscles acti-
vation, eyes movement and external artifacts [37]. Therefore,
it is necessary to pre-process the raw EEG signal to achieve
higher SNR before the SSVEP recognition step. Thus far, there
are mainly two types of pre-processing method: filtering and
blind source separation (BSS).

Band pass and notch filter are the most common pre-
processing filtering to remove the noises (i.e., eye move-
ment, head movement, power noise) whose frequencies are
not overlapped with SSVEP responses. The band pass is
utilized to retain the pertinent parts of the EEG signal, which
correspond to the stimulation frequencies as well as harmonics.
The SSVEP signal is divided into different frequency bands,
and just the sub-band signal in the given frequency can be
collected. Many works about SSVEP-based BCI have adopted
band pass as the signal pre-processing algorithm, such as [6],
[18], [38]. In most countries, the frequency of power frequency
interference is commonly concentrated near 50 Hz or 60 Hz
[39], [40]. The notch filter is utilized to eliminate power line
interference, but it is prone to induce waveform distortion [40].
Besides, these time-domain filtering methods require that the
correlated and uncorrelated signals are in different frequency
bands, which are not suitable for overlapping.

BSS is a popular way to enhance SSVEP responses if
the frequency range of some artifacts (i.e., EMG) and the
EEG overlap to a high degree. The BSS represents a group
of methods that recover underlying useful signals and reject
harmful artifacts through exploring the statistical indepen-
dent criteria [41], [42]. For example, independent component
analysis (ICA) returns independent sources which form the
measured EEG signal under the assumption that they are
linearly mixed [41]. Therefore, it is flexible to reconstruct
the EEG signal with non-artifact components to improve the
quality of signals, thus enhance the stimulation frequency
identification accuracy [43].

B. SSVEP recognition and classification

SSVEP-based BCIs are generally divided into two typical
classes, named frequency-coding and phase-coding, decided
by the modulation procedure and feature variable employed



for classification [39]. Frequency coding system, which has
the same number of stimuli and targets, uses visual stimuli
with different frequencies and then examines the spectral
peaks in the recorded spectrum for recognizing targets [44],
[45]. Phase coding systems, designing visual stimuli with
the same frequency but different phases, compare phase lags
between SSVEP responses and reference ones to detect gazed
target [46], [47]. Thus far, the frequency coding is often
combined with phase coding to generate a high number
of commands. Recognizing the frequency and phase of the
SSVEP with superior accuracy in a short time window (TW)
is the main task for exploiting high performance BCI sys-
tems. Many frequently used SSVEP recognition algorithms,
such as Fourier transform-based spectrum analysis, signal
decomposition-based analytics, basic spatial filtering methods
and CCA-based methods are all reported in this subsection.
The advantages and disadvantages of most techniques are
also discussed, as shown in the Table. II. Moreover, many
classifiers utilized in the context of SSVEP identification are
also presented in this subsection.

1) Fourier transform-based spectrum analysis methods:
The simplest detection approach for SSVEP-based BCIs is
power spectral density analysis (PSDA) which is based on
the fast Fourier transform (FFT). By transforming the time
domain EEG signals to frequency domain, amplitudes and
phases information of each stimulation frequency are obtained
for further target identification procedure [86]. Many works
[48], [49] about SSVEP-based BCIs employ Fourier transform
due to its small computation time and simplicity. Estimating
the phase of EEG signals is another fundamental issue of
SSVEP-based BCI systems. Currently, most phase estimators
are implemented based on the discrete Fourier transform
(DFT), which highly depend on the conclusion of frequency
estimation [87]. Many efforts are dedicated to compensating
above drawback, such as the work based on energy [88] or
based on interpolated FFT [89]. However, they all fail to
remove the bias produced by frequency acquisition, which will
bring uncertainty to the phase estimation [90]. To solve this
limitation, Huang et al. [51] present a novel idea to estimate
phases based on fully-traversed DFT which enables consider-
ing all possible truncated DFT spectra to achieve direct phase
extraction and extracts instantaneous phase information in high
accuracy without any correction process.

Most current Fourier-based analysis methods require a
long window length to obtain a sufficiently high frequency
resolution. Moreover, when DFT is used to estimate phase
information, the data length needs to contain an integer number
of cycles, which may limit practical applications. Furthermore,
the magnitude and distribution of SSVEPs are quite different
across subjects, leading to the problem that PSDA is not robust
to real-time BCIs [91]. Some efforts attempt to solve this
issue by optimizing parameter, such as electrode and time
length selection [92], [93], which may increase the additional
work. The FFT is a linear method based on a predefined basis
function, which generally requires an assumption of stationary,
so it is unable to treat the highly complex EEG signals with
nonlinear and non-stationary features well [63].

The Fourier transform-based methods normally achieve

stimulus target recognition utilizing spectrum. To be specific,
since the SSVEP carries the frequency characteristics of visual
stimulation, the frequency corresponding to the peak of the
signal power spectrum obtained by Fourier transform is deter-
mined as the stimulation frequency that induces the SSVEP
response.

2) Signal decomposition-based analysis methods: Wavelet
transform (WT) can be regarded as FT with adjustable window
[52], which is good at dealing with non-stationary signals like
SSVEP responses. WT has gained many focuses due to its
ability to provide the information about frequency components
presented in the signal, and their occurrence time simultane-
ously. For example, Rejer et al. [53] employed wavelet analy-
sis to detect both frequency and time information of SSVEP re-
sponses through translation and dilation of the mother wavelet.
In many practical application scenarios, the discrete wavelet
transform (DWT) that uses discrete translations and scales is
generally employed to decompose the given signal into several
small components according to different frequency bands,
and then components with corresponding frequencies will be
extracted for further analysis [54], [55], [63]. In WT-based
methods, the wavelet coefficients of sub-bands that contain
stimulation frequencies are frequently selected as the feature
vector and input to the classifier for SSVEP recognition [56].
WT shows high quality in processing non-stationary signals,
but it is still hard to demonstrate excellent performance for
highly complex SSVEPs which show nonlinear dynamics and
chaos.

Huang [59] proposed the idea of Hilbert-Huang transform
(HHT), including Empirical mode decomposition (EMD) and
Hilbert transform (HT). EMD as a nonlinear technique is
appropriate to process dynamic and complicated signals. EMD
enables to adaptively decompose signals into a group of
intrinsic mode functions (IMFs) which show oscillation feature
in the non-stationary signals [39], satisfying the requirements
of HT. Besides, IMFs are analytical, self-constructed and well-
defined functions with time-varying amplitudes and frequen-
cies, indicating that EMD is an entirely data-driven approach
because it is based on original features of the signal [60].

Currently, many studies have employed EMD successfully
to achieve frequency recognition and enhance classification
accuracy in SSVEP-based BCIs, such as [57] and [61].
Besides, ensemble empirical mode decomposition (EEMD)
was employed to deal with the mode-mixing problem caused
by signal intermittences [62]. Considering another obstacle
in EMD technique named mode misalignment in multiple-
channel decompositions, Chen et al. [63] proposed multivari-
ate empirical mode decomposition (MEMD) to better align the
corresponding IMFs of multi-channel signals. Compared with
FFT and WT, HHT has better universality to handle nonlinear
and non-stationary signals. It not only absorbs the advantages
of multi-resolution of WT but also overcomes the difficulty
of selecting an appropriate wavelet base which is a key
issue of wavelet analysis. However, HHT requires complicated
calculations, thus the calculation time is increased.

In the EMD-based methods, target identification requires
further analysis of IMFs. In [57], SSVEP-related IMFs are
selected through calculating the instantaneous frequency, and



Table II

TARGET RECOGNITION METHODS FOR SSVEP-BASED BCI SYSTEMS

Categories Methods Description Advantages Disadvantages Recognition/classification
PSDA is based on the FFT. By
PSDA transformlr}g the EEG signals frgm Simplicity and  small It shows_poor performance _
time domain to frequency domain, 7 on non-linear and unstable | Since the SSVEP

[48], [49] . . computation time. . .
amplitudes and phases of each signals. carries the frequency
stimulation frequency are obtained. features of visual
Discrete Fourier transform. Most stimulation, the
phase estimators are implemented L . . . frequency

Fourier DFT [50] | based on the DFT, which highly I.t achieves phase estima The Operation time of corresponding to the
N . tion. DFT is longer than FFT. -
transform- depend on the conclusion of fre- peak of the signal
based quency estimation. power spectrum
spectrum Considering all possible truncated obtained by Fourier
analysis sequences containing the center | It extracts instantaneous . transform is used as the
. . X . In current work, it em- . .
methods Fully- sample, spectral leakage in | phase information in loved two flickers and stimulation frequency
traversed | corrected-phase DFT is greatly | high accuracy without ploy ) that induces SSVEP
. . more targets may be ex-
DFT [51] | reduced and thus the instantaneous | correction process and . . response.
. . plored in future studies.
phase information of the center | solves spectral leakage.
sample can be directly extracted.
e el T Hoween, i il

WT [52], Justa -1tp ) It is good at dealing with | show an excellent perfor-

formation about frequency compo- . . . .
[53] . . . non-stationary signals. mance for nonlinear situa-

nents and their occurrence time si- tions

multaneously. )

It generally decomposes the given

signal into several small compo- L o :

[5]:]\}];6] nents according to different fre- i?ﬁgizr;pggjg%%,}b more {;gﬁk of phase informa In WT-based methods,
quency bands through discrete ’ ' the wavelet coefficients
translations and scales. of sub-bands that
It can reat the- hlghly- complex It is suitable to han- | It faces the mode-mixing contain s.tlmulatlon

EMD EEG signals with nonlinear and . . frequencies are
: dle nonlinear and non- | problem caused by signal -
[58]-[60] non-stationary features better com- stationary signals intermittence frequently selected as
pared with FFT. y signals. ) the feature vector and
EMD The refined generalized zero- The current study uses a | input to the classifier
+GZC crossing (rGZC) method is used | It helps EMD reduce | fixed window, future re- | for SSVEP recognition
[57] to calculate the instantaneous | background noises. search may have a try on | [56]. In EMD-based
Sienal frequencies in each IMF. adaptive epoch length. methods, the frequency
de%om osition] EMD and CCA are integrated to | It improves the com- of IMFs with the
based Enal sis EMD enhance the classification accuracy | fort level of users and | It may be also affected | maximum presence
y +CCA of high-frequency SSVEPs, which | reduces the possibility | by the problem of mode- | probability and closest
method : . . . . L. . .
[61] also improve the comfort level of | of inducing diseases like | mixing. to the stimulation
subjects in the experiment. epilepsy. frequency is
To deal with the mode-mixing | To reduce mixing of . . determined as the
EEMD . It requires to set certain .
problem of EMD caused by signal | modes and boundary ef- | . .. visual target [57]. The
[62] . . initial parameters.
intermittences fects. peak frequency of
MEMD simultaneously . The optimization of refer- | power spectra of IMFs
. It will benefit narrow . . :
decomposes  multichannel  data . ence signals in the whole | is also commonly
MEMD . . band SSVEP detection ..
to achieve better alignment of . frequency band of training | extracted and taken as
[63] . . with broadband sponta- .
corresponding IMFs from different data rather than a particu- | the target [58].
neous EEG.
channels. lar sub-band.
HHT is composed of EMD de- | It can handle nonlinear It requires more calcula-
HHT [64] | composition and Hilbert transfor- | and non-stationary sig- Lreq
. tion time.
mation. nals well.
MEC finds a spatial filter project- It may lose useful in-
MEC ing tbe mu}tl-channel .51gnal to a Mll’lll’anl.Ilg the back- tonpatlon in EEG signals In MEC/MCC. the

[65], [66] low-dimensional combined one to | ground signals during the linear transfor- SSVEP power

weaken background noises. mation. ' bo
contained in the filtered
MCC attempts to make the energy . .
. e It may lose some useful | EEG signal at different
. . MCC in the SSVEP frequencies is max- N . . . .
Basic spatial . . Maximizing the SNR information in the EEG | frequencies are
. [67] imized through the computation of . .
filtering . . signals. estimated. The
a weight matrix.
methods - — - - frequency related to the
Improving the distinc- | It is suitable for narrow maximal power is
It aims to maximize the SNR of | tion between EEG sig- | frequency bands, depends P )
. ) . regarded as the target.
CSP [68] SSVEP responses against the non- | nals from the stimulus | on robust channel covari- .
. o . . - R CSP is commonly used
stimulus situation. and non-stimulus situa- | ance matrix estimations . . .
. . with a single classifier.
tions. and easy to overfitting.
CCA tries to find a pair of lin- | It is an effective way | The artificial reference
CCA ear combinations of multi-channel | to compute the rela- | signals lack true
Canonical (691, [70] EEG signals and sine-cosine ref- | tion between two multi- | information of EEG data
correlation ’ erence signals that have the max- | variable signals without | and only the maximum
analysis-based imum correlation with each other. training. coefficient is used.
methods Calculating the correlation between . . L
Mway two multiway data arrays rather A reference signal opti- | The computing time is in-
CCA [71] Y y mization step is added. creasing.

than vector variables.




Canonical
correlation
analysis-based
methods

L1-

L1-regularization is implemented

Regularized : L Removing  obstruction | The increase in computing
on trial-way array optimization of - .
MCCA trials. time.
(72] MwayCCA .
It improves the standard
P.CCA The SSVEP response phases are | SSVEP response phase | CCA method in compli-
(73] estimated based on the physiologi- | is placed to the reference | cated ways that may be
cally apparent latency. signal as a constraint. difficult to understand and
implement in real practice.
MsetCCA MsetCCA extracts common fea- | The performance are | It may treat background
‘[7 4] tures shared by the real EEG sig- | better than MwayCCA | noises as common fea-
nals to optimize reference signals. and CCA. tures.
. . It  further improves
In order to aYOId extracting the SSVEP recognition | It shows relative poor per-
MCM background noise as common fea- T .
S accuracy by designing | formance with a short
(18] wres, the MCM ‘adopts superiori- three-layer of correlation | time window.
ties of both CCA and MsetCCA. ayer ’
maximization steps.
The advantages and disadvantages | It can become 2.5%
Fuzzy of the MLR and MsetCCA are in- | higher than the best re- | A successful fuzzy ensem-
ensemble | vestigated using expert knowledge, | sponse between these | ble system needs sufficient
system and the rules are developed for | two methods in the best | and correct expert infor-
[75] their strategic combination to im- | condition in detecting | mation on the subsystem.
prove the overall performance. frequency.
It includes three major steps: filter | It incorporates .
. The reference signals are
bank analysis, CCA between sub- | fundamental and K . .
FBCCA . . . sine-cosine waves, which
band components and sinusoidal | harmonic frequency .
[76] . . may need further improve-
reference signals, and target iden- | components together for ment
tification. target detection. )
A combination of the training-free | It can describe The stlmulatlop time ef-
. e . fects the experimental re-
feature extraction capabilities of | the  variational and
FBCCA . . Lo . sults. Too long or too
FBCCA with the accurate physio- | individually  different . NP .
+BF [77] . . - . . short stimulation time will
logical representation capability of | physiological SSVEP- cause ITR to become
the spatiotemporal beamforming. based BClIs better. Worse
IT-CCA The reference signal is individ- | It is proposed to de- | The screen refresh rate in-
(78] ual template acquired by averaging | tect temporal features of | fluences the system per-
multiple training trials. EEG signals. formance.
A combi- . .
nation . . [t alleviates the interfer- The ITCCA-based method
Three weight vectors are applied | ence from spontaneous . S
method . . . requires precise time syn-
as spatial filters which form four | background EEG activi- L
of CCA ) - . . L chronization between a
correlation vectors as recognition ties by incorporating in- . .
and features dividual SSVEP trainin stimulation program and
IT-CCA ’ data e | EEG recording.
[79], [80] )
Linear CCA-based
. . . methods may be
The kernel 18 app.hed to project insufficient given the | How to choose the ap-
the data to high-dimension space - - . . :
KCCA R complexity of EEG | propriate kernel is still
to solve the problem that CCA is . . . L
[81], [82] . X . X signals. KCCA provides | a question worth thinking
infeasible for nonlinear relation ex- .
R . a nonlinear method to | about.
isting in the real signals.
solve the frequency
detection problem.
DCCA improves the | DCCA only considers
. . performance of SSVEP- | the nonlinear correlation
DCCA {2 Dgg:g ?festngsgogl;;;r: gg: based BCI with higher | between EEG signals and
[83] ror():e duré P SNR and detection | reference templates rather
p ' accuracy compared to | than the information
those of CCA. within the real signals.
The background noises
It can extract more real informa- The DMCCA-based | contained in the SSVEP
DMCCA X L . method effectively | are also nonlinear, which
tion within the EEG signals than | . .
[38] DCCA improves the accuracy | may be represented with
’ at short time windows. real useful information by
neural networks.
e .| It remedies the limita- | It requires individual
CORRCA | CORRCA can calculate same spa- | "o dandard CCA | training  data,  which
tial filters for two multichannel sig- . . .
[84], [85] nals method requires spatial | is cumbersome  and
’ filters to be orthogonal. time-consuming.
It also needs training data,
TRCA extracts task-related com- | TRCA has the potential | which might resort to the
TRCA ponents efficiently by maximizing | to eliminate the back- | transfer learning method
[6] the reproducibility of time-locked | ground unrelated activi- | to obtain the spatial fil-

activities across trials.

ties from EEG.

ters with existing datasets
from other subjects.

In the CCA-based
methods, correlation
coefficients can be
calculated between a
SSVEP response and
reference signals at
each stimulus
frequency [18]. The
frequency related to the
maximal correlation
coefficient is
determined as the
target.




then the frequency with the maximum presence probability
and closest to the stimulation frequency is determined as the
visual target. Moreover, the power spectra of IMFs that contain
stimulation frequencies are also used for SSVEP recognition.
The peak frequency is commonly extracted and taken as the
target [58]. In addition, the EMD can also combine with CCA
where the IMFs contain almost all the energy are selected and
input into CCA for SSVEP detection [61].

3) Basic spatial filtering methods: The combination of
signals collected from different electrodes is called spatial
filtering [39]. In the past few years, multi-channel-based
frequency recognition methods have received much attention,
because they overcome inter-subject variations which cannot
be solved by single-channel SSVEPs [16], [69]. By optimizing
the combination of data from multiple electrodes with less
parameter optimizations, the algorithm’s anti-noise capability
is greatly enhanced than unipolar or bipolar systems. Minimum
energy combination (MEC) and maximum contrast combi-
nation (MCC) are two common spatial filtering algorithms,
but they have different objective functions. The core idea
of MEC is to find a spatial filter that projects the original
multi-channel signal to obtain a low-dimensional combined
one in order to weaken the noise and other artifact signals
[65], [66]. However, MCC approach attempts to make the
energy in SSVEP frequencies maximized through computing
a weight matrix [67]. Therefore, one advantage of spatial
filters is computational time reduction by combining signal
preprocessing and feature selection. For each reference signal,
MEC or MCC can obtain a spatial filter which is applied
over the original EEG data. And then the total SSVEP power
contained in the cleaned EEG signal at each stimulation
frequency is estimated. The target frequency should be the
frequency of the reference signal that maximizes the SSVEP
power [94].

Common spatial pattern (CSP) [68], [95] is another spatial
filter to improve the distinction between EEG signals from
stimulus and non-stimulus situations. There are two distri-
butions in a C-dimensional space where C is the number
of known channels, and CSP attempts to find projections
minimizing the variance of one class but maximizing the
variance of the other one. In SSVEP-based BClIs, it aims
to maximize the SNR of SSVEP responses against the non-
stimulus situation [68]. CSP as a spatial filtering method that
enhances the SSVEP is generally combined with the sepa-
rate feature extraction and classification steps to distinguish
different stimulation frequencies [24]. For example, in [68],
the amplitude estimations of the filtered SSVEPs at different
stimuli were extracted and then linear discriminant analysis
(LDA) performed classification task.

The above three spatial filters reduce artifacts and noise
signals by extracting spatial features. However, for the algo-
rithms based on MEC and MCC, performance may decrease
due to some useful information contained in the signal also
eliminated during the linear transformation.

4) Canonical correlation analysis-based methods: The
canonical correlation analysis (CCA) method is used to find
the relationship between two sets of data, which can be used
as a feature extraction algorithm in SSVEP-based BCIs. The

CCA-based spatial filter, first presented by Lin er al. [69],
has attracted many interests in recent years due to better
SNR, higher recognition accuracy, well usage of harmonic
frequencies, and lower inter-subject variability [24]. The CCA
attempts to find a pair of linear combinations of the multi-
channel signals and the artificial reference signals, generally
sine and cosine waves, that have the correlation maximization
at each stimulus frequency. Then, the frequency related to
the maximal correlation coefficient is determined as the target
[69], [70]. Nowadays, many improved CCA-based methods are
proposed due to higher requirements of performance indexes
such as SNR and ITR, or the drawbacks of CCA, e.g. the
artificial reference signals lack true information of EEG data,
and multi-channel signals are easily influenced by background
noise such as spontaneous EEG.

a) Multiway canonical correlation analysis (MwayCCA):
Before introducing MwayCCA, the concept of tensor should
be firstly referred. A tensor is a multiway array of data, and
its order is the number of dimensions, also called models or
ways [96]. Tensor CCA is a development of standard CCA,
which concentrates on calculate the correlation between two
multiway data arrays, rather than two sets of variables based on
vector [97]. Based on this concept, MwayCCA optimizes the
reference signals through maximizing the correlation between
third-order EEG data tensor (channel x time x trial) and
pre-constituted sine-cosine reference signal matrix (harmonic
x time) [71]. Then, target frequency can be recognized by
applying multiple linear regression (MLR) or CCA between
test EEG data and optimized reference signals [71]. In Mway-
CCA, EEG tensor is constructed by multiple trials where
some trials may contain more artifacts which generally have
negative contribution to the reference signal optimization.
Therefore, L1-regularization is implemented on trial-way array
optimization of MwayCCA to remove obstruction trials [72].

MwayCCA and its variation add a reference signal optimiza-
tion procedure, so that the reference signal is enriched with
more real information of EEG signals, thereby improving the
performance of standard CCA. The disadvantage is that the
consequent increase in computing time.

b) Phase constrained canonical correlation analysis (p-
CCA): Except the amplitude information, phases of SSVEPs
are also important for improving target frequency detection
accuracy [98], which have been used to add the number of
visual stimuli. Wang et al. [17] provided a benchmark SSVEP
dataset with a 40 targets BCI speller which was coded using
a JFPM method.

In study [73], phase constrained CCA (p-CCA) is proposed
for recognising the phase of SSVEP responses based on the
apparent latency L that means the delay of SSVEP responses
caused by the transfer time of visual pathway. L is fixed for a
specific subject but unknown for all the stimulus frequencies
[99] and it can be estimated using SSVEP phases ®,, that is
defined as the phase lag between the fundamental component
and the closest prior stimulus [73]. Then @, is calculated
through the EEG training data of a subject, and L can be solved
through an exhaustive search process using the results of &g
[24]. It is presented in [73] that for a specific subject, SSVEP
response phases @, are derived from the apparent latency L



and proportional to the different stimulus frequencies. Finally,
®,. as a constraint condition is placed to the preconstructed
sine-cosine reference signals which is further used for calcu-
lating canonical correlation with test data.

The p-CCA optimizes the reference signal from the phase
perspective, and can distinguish SSVEP responses of different
phases at the same frequency, thereby increasing the diversity
of visual stimulus coding. Therefore, compared with ordinary
CCA, p-CCA is more universal and comprehensive.

c) Multiset canonical correlation analysis (MsetCCA):
The original constructed reference signals with sine-cosine
waves are generally short of real information of EEG data,
which go against SSVEP frequency recognition. Multiset
canonical correlation analysis (MsetCCA), proposed by Zhang
et al. [74], considers common features shared by EEG signals
may be more real and natural compared with predefined
signals. For a specific subject, some common characteristics
contained in a set of trials at a certain stimulus frequency,
which can be used to construct optimal reference signals to
achieve a higher detection accuracy. To be specific, MsetCCA
learns multiple linear transforms that maximizes the overall
correlation among canonical variates from multiple sets of
random variables [74]. Therefore, in the SSVEP-based BClIs,
the optimal reference signals can be determined by MsetCCA
through the joint spatial filtering of multiple sets of EEG
training dataset for each stimulus frequency [100]. Jiao et al.
[18] further presented a three-layer model based on MsetCCA,
named multilayer correlation maximization (MCM) which
adopts superiorities of both CCA and MsetCCA to avoid
extracting the background noise as common features. Ziafati et
al. [75] proposed a fuzzy ensemble system which encompasses
the benefits of all the subsystems, i.e. multivariate linear
regression (MLR) and MsetCCA. The new SSVEP frequency
detection architecture shows more flexibility in performance
compared with MLR and MsetCCA.

MsetCCA produces fully optimized reference signals based
on the EEG signal training set. It turns out that the averaged
classification accuracy and ITR of MsetCCA are better than
them of MwayCCA and CCA [100]. However, one drawback
is that it may treat background noises as common features, so
it need to be used with other denoising algorithms.

d) Filter bank canonical correlation analysis (FBCCA):
Considering that harmonic SSVEP components are not be em-
ployed for frequency recognition, Chen et al. [76] incorporated
fundamental and harmonic frequency components to propose a
new method, called filter bank canonical correlation analysis
(FBCCA). The FBCCA method contains three steps, firstly,
a filter bank analysis implemented sub-band decomposition
from EEG signals with multiple filters that have different pass-
bands. And then, CCA is employed to calculate the correlation
between the sub-band components and the constructed refer-
ence signals with sine-cosine waves related to all stimulation
frequencies. Finally, a weighted sum of squares of the corre-
lation for all sub-band components are combined as the final
feature for frequency identification. In order to compensate the
deficiency that the reference signals are sine-cosine waves, Ge
et al. [77] proposed a bimodal decoding algorithm, absorbing
the advantages of the training-free recognition of FBCCA and

the data-driven adaptive features of spatiotemporal beamform-
ing (BF), which can describe the variational, complicated and
individually different physiological SSVEP-based BCIs better.

FBCCA was often combined with current innovative meth-
ods in [85], [101], thereby further optimizing them and achiev-
ing higher detection performance. It can be seen that FBCCA
is expected to become a new standard paradigm after CCA.

e) Individual template canonical correlation analysis-
based methods: The individual template based CCA (IT-CCA)
was first proposed in [78] to optimize the reference signals
with sine-cosine waves by detecting temporal features of EEG
data. The IT-CCA calculates the canonical correlation between
test data and individual template signals acquired by averaging
multiple training trials. Nakanishi et al. [79], [80] developed
it and proposed a combination method of CCA and IT-CCA,
that applies three weight vectors as spatial filters for enhancing
the target detection, they are spatial filter between test data
and the individual template, spatial filter between test data
and preconstructed reference signals, and spatial filter between
the individual template and preconstructed reference signals,
respectively. Then four correlation vectors as recognition fea-
tures are obtained by above spatial filters, and an ensemble
classifier is employed to combine four vectors to form a
weighted correlation coefficient as the final feature [100].

Two limitations of individual template-based SSVEP detec-
tion algorithms may need to be noticed and researched in the
future work [2]. The first problem is that they require precise
time synchronization between a stimulation program and EEG
recording procedure in order to exert the superiority of JFPM
coding. Moreover, the stability of stimulus performance may
affect the outcome of the ITCCA-based methods.

f) Nonlinear extensions of CCA: The transformation of
CCA maximizes the mutual information between extracted
multi-dimension features, but it is infeasible to deal with non-
linear relations existing in real signals [93]. Considering the
kernel method used in SVM is applicable for linear situations,
Akaho et al. [81] proposed a kernel CCA (KCCA) method. For
asynchronous SSVEP-based BCls, Zhang et al. [82] presented
a KCCA based idle-state detection method, which provided a
practicable way to extract nonlinear characteristics of multi-
dimension EEG signals. However, there are two limitations of
KCCA method, firstly, its representation is restricted by the
fixed kernel, besides, its training time changes with the size
of training dataset. Andrew et al. [83] further developed deep
CCA (DCCA) which can compensate the above drawbacks of
nonlinear models. DCCA processes input data through deep
network before calculating their correlations. Liu et al. [38]
proposed an extension of DCCA, named deep multiset CCA
(DMCCA) for SSVEP frequency recognition, that extracts
the information within the real EEG signals to attain better
detection accuracy.

The above nonlinear frequency recognition algorithms are
more in line with the characteristics of original EEG signals,
leading to better results than the CCA. For KCCA, how to
choose the appropriate kernel is still a question worth think-
ing about. DMCCA achieved better recognition performance
by combining nonlinear method DCCA and linear method
MsetCCA, which provides us a potential research direction.



g) Correlated component analysis (CORRCA): The CCA
requires spatial filters to be orthogonal, however, it is an
impractical condition for EEG signals. In addition, CCA
distributes two projection vectors for two multi-dimension
signals, which contributes the number of free parameters
doubling, thus the detection performance is impaired [84].
Dmochowski et al. [102] proposed correlated components
analysis (CORRCA) that calculates same spatial filters for
two multichannel signals based on maximizing the linear
components of the two. In 2018, Zhang et al. [85] introduced
the CORRCA to learn spatial filters with multiple trials of
individual training data for SSVEP-based BCI systems, which
is a potential technique to reduce background EEG activities.
Zhang et al. [84] further developed CORRCA to a two-stage
architecture, that utilizes all the spatial filters obtained from
all stimulus frequencies to improve the approach accuracy.

Compared with CCA, CORRCA reduces the number of
parameters and improves the identification accuracy. In order
to further improve performance, the two-stage CORRCA intro-
duced an ensemble spatial filtering strategy. In a SSVEP-based
BCI system, the Ny visual stimuli generate Ny individual
training data, resulting in N spatial filters. These spatial filters
should be similar in ideal conditions, because the mixing
coefficients from the source of SSVEP responses to the scalp
EEG signals can be considered similar in a narrow frequency
range [103], [104], which shows the possibility of further
development by assembling N spatial filters.

h) Task-related component analysis (TRCA): Many tech-
niques [105], [106] have been developed to extract task-related
source signals from scalp recordings based on the idea that
cortical source activities can be rebuilt through a weighted
linear summation of EEG signals from multiple electrodes.
Tanaka et al. [107], [108] proposed task-related component
analysis (TRCA) which achieves better performance com-
pared with other task-related methods due to maximize the
reproducibility of time-locked activities across trials. In 2017,
Nakanishi er al. [6] introduced TRCA-based analysis to EEG
study especially SSVEP-based BCI systems, which success-
fully enhanced the SNR of EEG signals through eliminating
the background noises and showed great capacity for dif-
ferent applications in communication and control. SSVEPs
are time-locked photic-driving responses related to repetitive
visual stimuli. Therefore, TRCA-based techniques have a great
possibility to achieve higher SNR of EEG signals [2], [16].

In the CCA-based methods, correlation coefficients can be
calculated between a SSVEP response and reference signals
at each stimulus frequency [18]. The frequency related to the
maximal correlation coefficient is determined as the target.

5) Traditional pattern recognition methods: In addition
to the aforementioned target identification methods, some
traditional pattern recognition methods involving classic clas-
sifiers such as LDA, SVM and k-nearest neighbour (kNN)
are also usually used for SSVEP classification scheme [44],
[109]. Features corresponding to different visual stimuli are
regarded as the feature vector to train the classifier based
on training data. Then, the experiment is conducted on the
testing data with the trained classifier to determine targets.
For example, in [110], the power spectral density in all

possibly evoked frequency bands is extracted from the SSVEP
responses to facilitate the discrimination task. In this work,
three classifiers, namely LDA, SVM and extreme learning
machines (ELM) are performed at the target detection stage
and the ELM shows more promising classification capacity
in the context of SSVEP. Therefore, it proves the good
generalization performance of neural network-based methods
for SSVEP classification. The convolutional neural network
(CNN) is another popular classifier for SSVEP-based BClIs.
For instance, Kwak et al. [111] explored a CNN architecture
with a spatial convolutional layer and a temporal one which
uses band power features from two EEG channels, resulting
in classification rates of 99.28% and 94.03% in the static
and ambulatory scenario, respectively. With this background,
neural network-based classifiers seem to be more potential and
efficient options to achieve higher accuracy with a mass of
EEG data. Meanwhile, it is worth noting that wider knowledge
and more time or more data are needed for adjusting related
parameters and training feasible models [112].

IV. CHALLENGES AND OPPORTUNITIES

Although significant achievements in SSVEP data analytics
have been made in the past decades, some new emerging
issues need to be further explored, such as the pre-trained
model, the spontaneous EEG signals, mental fatigue, transfer
learning and hybrid BClIs. In this section, we briefly describe
these directions and current development. The underlying
challenges and some potential ideas are also illustrated.

A. The pre-trained model for EEG classification

The big data generated by the human brains maintains long
period neural recordings of a great number of subjects under
various conditions. Due to the considerable large volume
of data, the SSVEP-based BCI system requires an efficient
method to compress, analyze and classify the collected
signals. Recently, data-driven methods based on deep learning
were applied in dealing with EEG signals. For example, Gao
et al. [113] designed a convolutional neural network with long
short-term memory (CNN-LSTM) architecture, which extracts
the spectral, spatial as well as temporal features of SSVEPs
in order to achieve the high classification performance.
However, Ditthapron et al. [114] stated that it is complicated
and costly to collect a large number of EEG signals for
training CNN-LSTM architecture, so a pre-trained model
called event-related potential encoder network (ERPENet)
was proposed to classify the attended and unattended event.
Generally, the pre-trained model can be fine-tuned and then
employed to a novel related scenario to solve insufficient
data and detection accuracy problem [5]. For instance,
Embrandiri et al. [115] employed denoising autoencoder to
pre-train the network and then the network was trained by
back-propagation to maximize contrast/SNR, which proves
the feasibility of pre-trained model in SSVEP detection.
Therefore, the advanced ERPENet in [114] proposed for
ERP/P300 classification may provide potential direction for
SSVEP-based BCI systems, which can ease the pressure of



store and analyze large-scale data.

B. The spontaneous EEG signals

According to the cited papers about CCA, we know that
many methods have considered the reference signal opti-
mization procedure, like MwayCCA, MsetCCA and MCM
[18], [71], [74]. With these approaches, the performance of
target detection in SSVEP-based BCI systems has been highly
enhanced compared with the CCA. MsetCCA and MCM
alleviate the interference from spontaneous brain activities
and improve the SNR of SSVEPs through incorporating real
information existing in EEG signals. The result of [6] also
indicates that TRCA increases the gap between target and non-
target feature by removing background EEG signals. However,
these researches have not paid enough attention to the correla-
tion between SSVEP responses and spontaneous EEG signals.
No matter how large or small the correlation coefficient
is, it always has the special but meaningful implication for
frequency detection. Meanwhile, limited studies consider the
nature of spontaneous EEG [116], which may be a new view
for solving background noises issues.

C. Mental fatigue

The SSVEP-based BCI systems have been successfully
applied in many fields, but mental fatigue is still a tough
problem for both users and researchers. Most publications
mentioned focus on the performance of frequency recognition,
but the accuracy of classification may be damaged due to the
appearance of fatigue symptoms in the operation [117]. The
fatigue can induce many severe problems, such as signal qual-
ity declining, recognition ability deterioration and even risk
of photosensitive epileptic seizures [118], pushing SSVEP-
based BCI systems to higher development [119]. Zhang et al.
[120] studied how much metal fatigue subjects have through
the change of oxygen saturation obtained by near-infrared
spectrum approach when they use an intelligent artificial limb.
Some researches [61], [121] attempted to reduce subjects
fatigue by employing visual stimuli in higher frequencies,
however, they cannot be adaptive according to the state of
mental fatigue. Recently, Talukdar er al. [122] proposed an
adaptive structure for the CSP based on the mental fatigue
of the subjects for motor-imagery BCI, which can adapt the
CSP through employing LDA, providing a potential solution
for SSVEP-based BCI systems.

D. Transfer learning

Another limitation of most methods in Section III is that
they need to collect training data from each subject and then
proceed a long calibration process. The reason is that high
dimensional EEG signals contain much background noises,
and they are highly non-stationary due to large variations
across the subject or within subjects psychological and mental
states, experimental circumstances [2]. Therefore, the trained
classifier obtained from previous trials may show poor per-
formance on new trials or new subjects [123]. Many studies

have tried to short calibration time through transfer learning,
where data collected from existing users or trials can be used
to new ones [124]. Chiang et al. [123] proposed a cross-
subject transfer approach combined least-squares transforma-
tion (LST) and TRCA, which largely reduces the variability
of SSVEP signals across individuals. Unsupervised transfer
learning [125], [126]have also gained much attention, for
example, Waytowich et al. [125] presented a transfer approach
named spectral transfer using information geometry (STIG),
learning single-trial detection successfully in ERP-based BCI
without the existence of calibration data, which provides a
creative and practical idea for SSVEP-based BCIs.

E. Hybrid BClIs

One of the drawbacks of SSVEP-based BCI is the require-
ment of the constant attention to the light source, which may
be difficult and annoyed for some patients. Hybrid BClIs that
improve the quality of BCIs systems with single modality
through combining two or more BCI paradigms could provide
potential solutions for this problem [127]. To be specific, in
hybrid paradigms, the number of control commands can be
increased through decoding the brain activities simultaneously
[128]. For example, in a Tetris game [129], rotating command
requires a continuous gaze of visual stimulus to evoke SSVEP
potentials. Meanwhile, the active motor imagery (MI) is em-
ployed to output two control commands, which are used to
move bricks toward left and right. This multi-modality system
avoids long gazing stimuli, which cause discomfort. Besides,
hybrid BClIs are capable of enhancing system classification
accuracy. For instance, Wang et al. [130] designed a new
hybrid paradigm (shape-changing and flickering-hybrid) based
on P300 and SSVEP, which improves performance for some
subjects. The works on the hybrid BCI are increasing in the
past few years, but the portable, wearable and low-cost related
products that can be employed for the public need further
commercialization [128]. Moreover, the target detection al-
gorithm adopted in many SSVEP-based hybrid systems is
standard CCA [129]-[131], which can be further improved
by the advanced signal analysis methods illustrated in Section
IIT in order to achieve higher performance.

V. DISCUSSION

In this review, we mainly targeted the SSVEP systems
that use frequency/phase to modulate visual oscillating stim-
uli. However, the stimuli patterns/colors may also affect the
SSVEP identification accuracy. Besides, there are also some
systems using amplitude coding or without gazing. In this
section, we will provide a brief overview of these areas.

A. Stimulus design

In general, in addition to multiple target coding and target
identification methods, the performance of an SSVEP-based
BCI is also attributed to the stimulus design [2], including
the choice of light source, stimulus color and the color of
background, etc. Zhu et al. [23] reported that the computer
screen and LED are the most frequently used stimulation



types. Furthermore, compared with systems using computer
screens, the SSVEP-based BClIs that employ LED for stimulus
design have higher bit rates. Besides, LEDs can be controlled
by waveform generators which are easy to create various
frequencies, so LEDs are preferable in most applications.
Meanwhile, the color of visual stimuli is also an important
factor that affects the SSVEP system. Chu et al. [132] investi-
gated the influence of 10 stimulus colors on SSVEPs and found
that colors with a longer wavelength, such as red and orange,
have better SSVEP responses. However, the choice of color
depends not only on the SNR value or the accuracy of BCI, but
also on the comfort of the subject. Through parallel analysis
of SNR and comfort, Jukiewicz et al. [133] presented that
green is perceived the most friendly color for users. Another
factor is the background color. The selection rule is that higher
contrast between the stimulus color and background color
invokes higher potentials, visibility and brightness. The most
employed background color is black [134], but it is known
that the dynamic scene condition may be inevitable in most
practical usages. Therefore, how to choose the appropriate
stimulus color and light source, while compensating for the
performance degradation caused by the dynamic scene, is a
problem that requires to be considered in future research.

B. Amplitude modulation

In general, SSVEP-based BCI systems are designed based
on frequency-coding and phase-coding, but many works fo-
cused on amplitude modulation [135], [136]. It is widely
useful and critical for a SSVEP-based BCI system to predict
various modes of amplitude modulations, especially for stable
control of future neural rehabilitation tasks. Autthasan er al.
[137] pointed out that the SSVEP amplitude changes as a
function of stimulus luminance contrast and then proposed an
integrated architecture to predict the frequency and contrast-
related amplitude modulations of the SSVEP signal simulta-
neously. Moreover, except for luminance contrast, attention
generally enhances rhythmic brain responses at the frequency
of the stimulus. For example, Gulbinaite et al. [138] explored
the effect of attention on the amplitude of SSVEPs in a wide
range of temporal frequencies (3-80 Hz). The research results
showed that such influence is frequency-dependent, namely
different flicker frequency bands like theta, gamma and alpha
have various relationships with amplitudes. However, there
are still some limitation of current amplitude coding related
works, such as the eye fatigue effect in [137]. An amplitude-
modulated visual stimulation for reducing eye fatigue proposed
by Chang et al. [136] that achieved a similar manner to high-
frequency stimuli may provide a flexible way to solve this
issue. To further confirm this investigative idea, online/real-
time experiments are required.

C. SSVEP-based BCI without gazing

SSVEP-based BCIs generally require the subject changing
his/her gaze direction to focus on different target stimuli,
which is difficult for those patients with severe motor impair-
ment, because they are unable to control gaze optionally [23].
Therefore, it is essential to design gaze-independent BCIs in

order to satisfy more users’ need. The BCI in [139] utilized
visual spatial attention mechanisms to classify binary trials
as left-attended or right-attended. Except for spatial attention,
people can modify the energy of the evoked response without
gazing at the stimulus with the aid of selective attention. A
SSVEP-based BCI design was proposed in [140], in which the
energy difference between SSVEP responses induced under
attend and ignore conditions was maximized, resulting in
higher classification accuracy. Moreover, a visual stimulus
used in [141] combined these two designs, where visual
selectivity through the perception and neural mechanism of
spatial attention was confirmed. Although the SSVEP-based
BCI system without gazing is more robust and friendly in
the face of individual differences, there is still a complicated
problem that hinders its development, namely the limited
targets. For example, there are only two targets in [140] and
[141]. Further research may focus on increasing the number of
targets by employing spatial attention and selective attention
together.

VI. CONCLUSION

This study performed a comprehensive review of the
SSVEP-based BCI system, mainly focusing on signal ana-
Iytics. The healthcare application of the SSVEP-based BCI
system was also briefly introduced. The state-of-the-art devel-
opments of data pre-processing, spectrum analysis, classifier,
spatial filtering such as CCA and its extensions as well as
their limitations were presented in order to provide feasible
references for future research. Besides, some novel emerg-
ing directions of SSVEPs including the pre-trained model,
spontaneous EEG signals, mental fatigue, transfer learning and
hybrid BCIs were also introduced. Finally, this work discussed
some innovative and unconventional aspects including ampli-
tude modulation, SSVEP-BCIs without gazing and stimulus
design.
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