MeshingNet3D: Efficient Generation of Adapted
Tetrahedral Meshes for Computational Mechanics

Zheyan Zhang, Peter K. Jimack, He Wang
School of Computing, University of Leeds, UK

Abstract

We describe a new algorithm for the generation of high quality tetrahedral
meshes using artificial neural networks. The goal is to generate close-to-
optimal meshes in the sense that the error in the computed finite element
(FE) solution (for a target system of partial differential equations (PDEs))
is as small as it could be for a prescribed number of nodes or elements in
the mesh. In this paper we illustrate and investigate our proposed approach
by considering the equations of linear elasticity, solved on a variety of three-
dimensional geometries. This class of PDE is selected due to its equivalence
to an energy minimization problem, which therefore allows a quantitative
measure of the relative accuracy of different meshes (by comparing the energy
associated with the respective FE solutions on these meshes). Once the
algorithm has been introduced it is evaluated on a variety of test problems,
each with its own distinctive features and geometric constraints, in order to
demonstrate its effectiveness and computational efficiency.

Keywords: Optimal mesh generation, Finite element methods, Machine
learning, Artificial neural networks

1. Introduction

The finite element method (FEM) is one of the most widely used ap-
proaches for solving systems of partial differential equations (PDEs), which
arise across multiple applications in computational mechanics [1, 2]. The
key feature in determining the efficiency of the FEM on any given problem is
the quality of the mesh: in general terms, the finer the mesh the better the
solution but the greater the computational cost of obtaining it. This trade-
off has led to a vast body of research into the generation of high-quality FE

Preprint submitted to Advances in Engineering Software April 30, 2021



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

meshes over decades. Typically, the objective is either to generate a mesh
for which the corresponding FE solution has a prescribed accuracy using a
minimal number of degrees of freedom (e.g. [3]), or to generate the best
possible mesh for a predetermined number of degrees of freedom (e.g. [4]).
In this paper we focus primarily on the latter, however the two approaches
are very closely related.

Interest in the use of data driven methods to obtain solutions of PDEs has
grown significantly in recent years, largely due to the increase in computing
power that supports the application of deep neural networks (NNs) [5, 6]. In
this work however, we do not aim to apply NNs to estimate PDE solutions
directly: instead we consider their use to estimate optimal meshes on which
to compute traditional FE approximations. The rationale for this is our
hypothesis that, for a given approximation error, a larger representation error
can be tolerated in a NN to estimate the FE meshes than for a NN to estimate
a family of PDE solutions directly. We present a universal deep-learning-
based mesh generation system, MeshingNet3D, that extends our initial 2D
ideas, [7], by building upon classical a posteriori error estimation techniques
and adopting a new local coordinate system. Consequently, MeshingNet3D is
able to guide non-uniform mesh generation for a wide range of PDE systems
with rich variations of geometries, boundary conditions and PDE parameters.

In the remainder of this section we provide brief overviews of classical
non-uniform mesh generation methods, artificial neural networks and mean
value coordinates (which are core to the generality of our algorithm). Key
areas of related research are also highlighted. Section 2 then describes our
methodology in full, whilst Section 3 provides detailed validation and testing.
The paper concludes with a discussion of our findings and of the outlook for
further developments.

1.1. Non-uniform mesh generation

When applying the FEM to approximate the solution of a computational
mechanics problem, it is necessary to define both the type of elements and
the computational mesh upon which the approximation is sought. The sim-
plest elements are piecewise linear functions on simplexes (triangles in 2D
and tetrahedra in 3D) however other choices are widely used. In 3D, these
include higher order Lagrange elements (also defined on tetrahedra), tri-
linear and triquadratic elements (defined on octahedra) and more general
elements associated with discontinuous Galerkin methods, which may be ap-
plied on hybrid meshes [8]. In this paper we restrict our consideration to



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

unstructured tetrahedral meshes [9, 10]. Structured meshes of octahedra do
have some advantages, such as requiring less memory, however they are less
flexible when considering complex geometries or when targeting highly non-
uniform meshes, with optimal approximation properties, which is the goal of
this work.

When the volumes of the elements in a given mesh are approximately
equal, and the aspect ratio of each tetrahedron is bounded by a small con-
stant, we refer to the mesh as being uniform. Theoretical results about the
asymptotic convergence of the FEM typically hold for sequences of finer and
finer uniform meshes [11]. For many problems such meshes are not the best
choice however: since the error in the corresponding FE solution may be
much greater on some elements than on others. In such cases it would usu-
ally be far better to have more elements in the “high error” regions and fewer
elements in the “low error” regions. The resulting mesh may have the same
number of elements in total (with a non-uniform size distribution) but per-
mit a much more accurate FE representation of the true solution. Ideally, we
would like to identify an element size distribution to ensure that a prescribed
global error tolerance can be obtained with the fewest possible number of el-
ements [12]. In practice this is attempted through the use of prior knowledge
to control the mesh size distribution (e.g. geometrical information or a priori
analysis [13]), or through an iterative process based around a posteriori error
estimates for intermediate solutions [3].

This iterative approach to mesh generation consists of three steps: (i)
compute an FE solution on a coarse mesh; (ii) estimate the error locally
throughout this solution; (iii) adapt the mesh based upon this estimate. At
the next iteration these steps are repeated, beginning with the mesh produced
in (iii).

There is a large body of work on the development of cheap and reliable a
posteriori error estimators. Popular approaches include those which involve
solving a set of local problems on each element, or on small patches of ele-
ments, to directly estimate the error function [14, 15], and those based upon
the recovery of derivatives of the solution field by sampling at particular
points and then interpolating with a higher degree polynomial [16, 17]. For
example, in the context of linear elasticity problems, the elasticity energy
density of a computed solution is evaluated at each element and the recov-
ered energy density value at each vertex is defined to be the average of its
adjacent elements. The local stress error is then proportional to the differ-
ence between the recovered piece-wise linear energy density and the original

3



84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

107

108

109

110

111

112

113

114

115

116

117

118

119

120

piece-wise constant values, [16]. Considering its wide application in engineer-
ing practice, this “ZZ error estimate” has been used as the baseline in our
work, to generate comparative data (and meshes) from which MeshingNet3D
will be trained, and against which it will be evaluated.

The third step in the iterative approach to mesh generation is to adapt the
existing coarse mesh based upon the estimated local error distribution. This
may be achieved through the creation of an entirely new mesh, with target
element sizes guided by the local error estimate [9], or via local adaptivity. In
the latter case the mesh can be moved locally (r-refinement) [4] and/or locally
refined /coarsened (h-refinement) [18]. No matter the type of refinement, the
iterative process will generally require multiple passes to obtain a high quality
final mesh. This therefore becomes a time-consuming pre-processing step —
which we seek to avoid in this work.

1.2. Deep neural networks

Artificial neural networks (ANNs) are used to approximate mappings be-
tween specified inputs and outputs. They achieve this through a composition
that is loosely based upon the neurons in a biological brain: there are a num-
ber of layers of nodes which are connected in a predetermined manner, and
each node combines inputs received from the previous layer to generate an
output that is passed to the next layer (with the first layer representing the
input vector and the last layer the output vector). A number of free pa-
rameters are associated with each node, defining the action of that node,
and these are prescribed based upon the minimization of a chosen training
loss function. This learning problem is therefore equivalent to a nonlinear,
multivariate optimization. Furthermore, since the loss function is designed
to be differentiable with respect to the network parameters, an ANN can be
trained using gradient decent methods such as stochastic gradient descent
[19].

In recent years, with the developments in parallel hardware, so-called
deep neural networks (DNNs), with many layers and very large numbers of
parameters, have been proven to be remarkably effective at high-level tasks
such as object recognition [20]. Within computational science, DNNs have
also been explored to solve ordinary differential equations (ODEs) and PDEs
in both supervised [21, 22] and unsupervised [23] settings. In the latter cases
the network parameters are evaluated based upon a residual minimization,
rather than using a labelled training data set, as in the supervised case. In
each approach however, whilst the results are very promising, it is difficult

4



121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

to obtain high accuracy in the solutions and it is currently not possible to
provide any guarantees on the accuracy. Consequently, rather than solving
PDEs directly, our focus in what follows is to use DNNs to provide an esti-
mate of the optimal finite element mesh, with the goal of obtaining the most
efficient possible finite element solution.

1.3. Mean value coordinates

An important feature of our algorithm is the use of mean value coor-
dinates (MVCs). These are a generalization of the barycentric coordinate
system for simplexes [24, 25|, to polygons in 2D and polyhedra with tri-
angular faces in 3D [26], whereby the coordinates of any point within the
polygon/polyhedron may be expressed as a convex combination of the po-
sitions of the boundary vertices. Consequently, all interior points in the
neighbourhood of an arbitrary boundary vertex have a high value of the cor-
responding MVC component. MVCs also have a number of properties that
make them attractive choices as input parameters to a DNN, for example
their local smoothness with respect to spatial variations, as well as being
both scale and rotationally invariant.

1.4. Related work

As noted above, recent developments in DNNs have led to renewed in-
terest in the application of machine learning (ML) to the direct solution of
PDEs and PDE systems [27]. The majority of this research is based upon
supervised learning strategies, such as [28], which requires the use of a con-
ventional solver to generate training data. Once trained, the NN is able to
solve problems of the same type much more quickly than the original solver.
Recently there has also been a growth in interest in the development and ap-
plication of unsupervised learning methods, which act as independent PDE
solvers without the need to refer to external supervisory information. These
have been investigated particularly in the context of physics-informed algo-
rithms [29, 30] or those targeting high-dimensional PDEs, [5, 6]. However,
the issue still remains that, whether solving computational mechanics prob-
lems directly via supervised or unsupervised learning, current capabilities
do not provide any a priori guarantees of accuracy. Indeed, even when a
such solution has been produced, it is not generally possible to estimate how
accurate it is.

Some previous authors have also considered the application of ML to
mesh-related problems, sharing our aim of enhancing traditional FE solvers



157

158

159

160

161

162

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

181

182

183

184

185

186

187

rather than replacing them completely. Examples include mesh quality as-
sessment [31, 32] and mesh partitioning algorithms, such as [33], to comple-
ment parallel distributed solvers. Research into mesh generation using ML
has also been undertaken, both for pure shape representation [34, 35|, and
as the basis for an efficient finite element solver [36]. This latter approach
is based upon a self-organizing network but is restricted to fitting (and op-
timizing) a mesh of a fixed topology to a prescribed geometry. In [37] a
recurrent network is used to enhance the traditional iterative approach to
mesh generation through the use of ML to control the mesh adaptivity step.
They are able to show results that match the quality of iteratively refined
meshes using conventional error estimates and refinement strategies. Whilst
these works each replace some aspects of the conventional mesh generation
step with a NN, none of them address the specific problem tackled in this
paper, where we seek to generate a single, non-uniform, tetrahedral mesh
that provides a pseudo-optimal finite element representation of the solution
of an unseen problem.

In this context of using ML to guide high-quality non-uniform mesh gen-
eration there is relatively little prior research. In [38], for example, early
knowledge-based approaches were considered, though with limited success.
Time-dependent remeshing is studied by [39], where an NN is used to under-
take time-series predictions that identify areas of greater (and less) refinement
at different times, though on a domain with a simple geometry. In [40, 41]
NNs were applied successfully to generate high quality finite element meshes
for elliptic PDEs, however the input vectors are highly problem-dependent:
requiring specific a prior: knowledge of the geometries being considered. The
challenge of using DNNs to generate psuedo-optimal FE meshes on quite gen-
eral geometries was first considered in [7] for selected two-dimensional PDEs.
This paper extends these ideas to problems in three dimensions, to consider
PDE systems with rich variation in geometry, boundary conditions and ma-
terial properties.

2. Methodology

The goal of this research is to develop a robust, and widely applicable,
mesh generation procedure for the efficient FE solution of systems of elliptic
PDEs. Our particular emphasis here is on the equations of linear elasticity,
however the approach described in this section may equally be applied to
any family of problems for which a reliable a posterior: local error estimator



193

194

195

196

197

198

199

200

201

202

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

is available to support the training phase for our neural network. In the first
subsection we provide an overview of our methodology, with further details
on the software design, training data generation and the training of the deep
network given in the following subsections.

2.1. Theory

We seek to automatically generate high quality FE meshes for arbitrary
instances within a given family of PDE problems, where each instance is
defined by the domain geometry G (from a predefined family of possible
geometries), the PDE parameters M, and the applied boundary conditions
B. For any given mesh, the corresponding FE solution is assumed to be a
unique solution, for which we have available a means of determining the local
error. This computed a posterior: error is also assumed to be unique, and
provides a mechanism for determining a desired FE element size for each
location within the domain. Consequently, in order to generate a pseudo-
optimal FE mesh we seek to estimate a mapping F' that represents an ideal
spatial distribution of the FE element sizes:

F: XS (1)

Here, X is the specified location in the domain and S is the target element
size (for example average edge length) at X. Noting that we define each
instance by its specific geometry, parameter values and boundary conditions,
we may express this mapping more precisely as:

F:X —S(G,B,M;X) (2)

Our goal is to make use of offline training to create a neural network that is
able to learn the mapping

F:G,BMX—S (3)

After training, the NN is able to predict a pseudo-optimal mesh-size distri-
bution for unseen problems. Specifically, given G, B, M for any problem,
and an arbitrary sample point X, the NN outputs a target element size at
that sample point. This is precisely the information required by a 3D mesh
generator in order to generate a non-uniform, unstructured finite element
mesh.



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

2.2. Software and evaluation

In this paper we use Tetgen for tetrahedral mesh generation, [9], and
FreeFem++ to assemble and solve the corresponding global FE systems [42].
The input to Tetgen includes a .poly file containing vertices and edges of
polygons that define the boundary of the computational domain. From this
file Tetgen is able to generate a uniform mesh based upon a single parameter,
indicating a constant target element size. To generate a non-uniform mesh,
Tetgen reads a background mesh from .b.ele, .b.node and .b.face files, and
an element size list file .b.mtr, that defines target element sizes correspond-
ing to the vertices of the background mesh. Having defined a valid mesh,
FreeFem++ is able to solve variational problems that are user defined. To
do this it executes a .edp script file containing information such as: how to
import the mesh; what type of finite element to use, what the specific vari-
ational form is; and which solver to apply. In this paper all examples are
based upon the use linear tetrahedral elements (as gerenated by Tetgen) and
the Lamé solver (for the equations of linear elasticity).

To mass produce training problems a simple script has been produced that
allows an appropriate .poly file to be generated for a given geometry G. Then,
for each geometry this calls FreeFem++ to obtain linear elasticity solutions
for a range of material parameters (M) and boundary conditions (B). Note
that FreeFem++ not only solves the elasticity equations but also computes
the total stored energy, which may be used to evaluate the quality of a given
FE solution. This is because the underlying PDE system corresponds to an
energy minimization problem, so the analytic solution minimizes the energy
functional over all functions from the appropriate Sobolov space ((HE)? in
this case). On the other hand, the FE solution minimizes the energy over all
functions in the space of piecewise linear functions on the given tetrahedral
mesh. Since this is a subspace of (H})?, the energy corresponding to the FE
solution is always greater than the energy of the analytic solution. Therefore,
the lower the energy associated with the computed FE solution the better the
solution. Consequently, the quality of any given set of tetrahedral meshes,
for a particular problem, may be ranked based upon the computed energy
corresponding to the finite element solution on each mesh: the lower the
energy the better the mesh. We will use this observation as part of the
evaluation of our approach.



- |,, Corresponding
Point 1 il 611 612 Ml X1 - il
_ =
o G621 Sz
Problem 1 Point 2 |
Neural
Network
Last point _,|
of problem 1 |,,_
Problems_ |
2-3000

Figure 1: Illustration of the training data for MeshingNet3D: each individual problem is
defined by the geometry G, the PDE parameters M and the boundary condition parame-
ters B (not shown here). However for each such problem there are multiple sample points,
X, in the domain, with the corresponding local mesh size S specified.

w6 2.3. Data generation

257 Training data is required in order to sample the mapping of equation
23 (2). Each training problem is defined by parameters that uniquely define the
20 geometry (G), PDE parameters (M) and boundary conditions (B). For each
%0 such problem, multiple training data are generated by specifying numerous
1 points, X, at which the target mesh size is given. This is illustrated in
s%2 Figure 1: for which there are 3000 test problems, each of which generates
%3 multiple inputs, corresponding to different points X in the domain. The
s precise number of points X is problem-dependent which should be sufficient
265 to represent the spatial mesh size variation throughout the domain (too many
s6 points will not decrease the training performance but will slow down the data
27 generation). For each input the generated output, used to train the NN, is
xs the target mesh size, S, for that point and that problem.

260 The value of S is computed using a variation of the iterative approach
o0 to mesh generation, based upon a posteriori error estimation, described in
on Subsection 1.1. For each problem we generate a relatively coarse uniform
o2 mesh and compute the corresponding FE solution and error estimate. In
23 this work we use the “ZZ” energy estimate of [16]. However, for different
o problems or different quantities of interest, other choices are possible. For
zs each sample point, X, the estimated local error, E(X), can be converted to

a

=3



276

277

278

279

280

281

282

283

284

285

286

287

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

a target element size using an inverse relationship such as

S = 5057 @)

for some scaling coefficient K. This is the value of S(X) used to define (2),
as illustrated in Figure 1. The effect of the scaling coefficient is to control the
total number of elements in the non-uniform mesh that is generated based
upon the target local size distribution S(X). Hence, for each test problem,
K may be adjusted iteratively in order to obtain a target number of elements
in the non-uniform mesh (or a target total error in the FE solution).

Note that the precise definition of the input vector in Figure 1 has to
be problem dependent: a parameterization of the family of domains is re-
quired to define GG; the number of free parameters in the PDE systems has
to be predetermined; and the possible boundary conditions must also be
parameterized. For each example shown in the Experiments section of this
paper a different input vector has therefore been prescribed. Nevertheless,
the methodology described here is shown to work robustly on all settings.

The final component required for the data generation is the algorithm to
select the sample points X for each of the training problems. This is achieved
via two steps: first an initial non-uniform mesh with predefined target ele-
ment number is generated (e.g. by Tetgen) based upon the a posteriori error
computed on the coarse uniform mesh; then we sample a fixed percentage
of the elements of this mesh (we find that 10% is adequate), choosing each
X to be the MVCs of the centroids of the sampled elements. Note that the
advantage of sampling from the non-uniform, rather than the uniform, mesh
is that the training data is weighted based upon the error distribution: our
experiments show this to be advantageous.

2.4. Training and using the neural network

The deep learning platform that we use in this work is Keras [43] based
on Tensorflow [44]. Our networks are fully connected, typically with six
hidden layers, though we find that our results are not especially sensitive to
the number of layers or the precise number of neurons per layer. We do ob-
serve however that it is advantageous to first increase and then decrease the
number of neurons per layer as we pass forward through the network. The
activation functions selected in this model are rectified linear functions [45]
for the hidden units, with linear activation in the output layer. Before train-
ing, the input data is linearly normalised and 10% is selected for validation

10



310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

(monitoring the validation loss during training can help to identify and pre-
vent over-fitting). The training itself uses mean square error loss and the
stochastic gradient descent optimiser, Adam[46], with batch sizes of 128: for
each of the examples considered in this paper this takes no longer than 3
hours on a Nvidia RTX 2070 graphics card.

Once trained, the NN can be used to guide mesh generation for unseen
problems in real time. Given a new problem, defined by G, M and B, a
uniform background mesh is generated based upon G alone. For each element
in this background mesh we compute the MVC of its centre and concatenate
this with the problem parameters to form an input vector for the NN. The
corresponding output is the target element size at the centre of that element.
The background mesh, with its associated target element size distribution,
is then used to allow TetGen to generate the desired non-uniform mesh. If
the total number of elements in this mesh is outside of the required range
then each S(X) may be scaled linearly before generating an updated non-
uniform mesh. In this way, an adapted tetrahedral mesh of a specified size is
generated directly, without the need to compute a sequence of FE solutions
and a posteriori error estimates, as would otherwise be the case.

3. Computational Experiments

We present four computational tests which allow us to analyse the per-
formance of MeshingNet3D across a range of different problems, geometries,
boundary conditions and PDE parameters. The first and the third case in-
volve prismatic geometries, which permit the description of spatial locations
based upon “2.5D MVCs”. These are composed of regular 2D MVCs in the
x-y planes plus an additional z-coordinate. The second case uses general
3D Cartesian coordinates, whilst the final example uses general polyhedral
geometries and fully 3D MVCs.

For each of the examples we provide a brief description of the problem,
followed by a discussion of the network topology used (including the specific
input vector) and the training undertaken. We then present results based
upon 500 unseen test problems. These results compare the FE solutions
computed on the NN-guided mesh with those computed on a “ground truth”
mesh of similar size, generated using the same ZZ a posteriori error estimator
that was applied to train the network. We also compare against the FE
solution computed on a uniform mesh with a similar number of elements. To
facilitate these comparisons, for each of the 500 test problems, we compute

11



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

the difference between the total energy of the FE solution on the NN-guided
mesh with that of the FE solution on the comparison mesh. We then provide
a histogram to illustrate the proportion of the test cases in different binned
error ranges. A negative value of the difference indicates that the solution
on the NN-based mesh has a lower energy and is therefore superior.

3.1. Clamped beam

We consider the problem of an over-hanging beam (under gravity), with
different cross sections (G) and variable boundary conditions (B). In this case
the material parameters (M) are not varied (the specific inputs to the Lamé
solver in FreeFEM++ being: density = 8000, Young’s modulus = 210 x 10°
and Poisson’s ratio = 0.27).

3.1.1. Problem specification

The beam is a right prism with a convex quadrilateral cross section as
illustrated in Figure 2. This cross section has vertices at (zg,yo) = (0,0) and
(x1,11) = (0,2), and also at (z2,ys) and (x3, y3) which are randomly sampled
within 25 € (1.5,2.5), y2 € (1.5,2.5), x3 € (—0.5,0.5) and y3 € (1.5,2.5) for
each problem. The length of the beam is fixed (0 < z < 6) and a boundary
shear, with components ( f,, f,,0), is applied at the face z = 6. The face z = 0
is clamped and the bottom face is clamped between z = 0 and z = (, where
2 < ¢ < 4 (randomly sampled for each problem). All other boundaries are
free, subject to zero normal stress. Hence the input vector for this problem
requires values for x9, y2, 3, y3, ¢, f, and f,, along with the MVCs of
the point at which the mesh spacing is required. In these examples, the
parameters f, and f, are constrained to lie in the range (—10°,10°).

3.1.2. Network information

In this example our fully-connected network has six hidden layers with
32, 64, 128, 64, 32 and 8 neurons respectively. Training data is generated
based upon solving 3000 individual problems, each of which is obtained us-
ing a random choice for each input parameter (selected uniformly from its
range), leading to 10, 740, 746 individual input-output pairs. Of these, 10%
are selected for validation and the remainder are used for training using a
batch size of 128. The training takes 10 epochs, meaning that each item of
data has been used an average of 10 times. Figure 13 shows the rates of
convergence for the training, along with the corresponding validation curve.

12



380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Figure 2: The geometry and boundary conditions for the Clamped beam, with constant
cross section along the z-axis. The gravity is uniformly distributed over the volume. The
surfaces bounded by four vertices with blue triangles are clamped.

3.1.3. Results

Figure 3 demonstrates that the NN-guided meshes generally perform at
least as well as the ground truth meshes (generated from explicitly-computed
a posteriori error estimates) and, as expected, much better than uniform
meshes. Two typical examples are shown in Figure 4, which compares NN-
guided meshes (bottom) with their ground-truth counterparts (top). In each
case the high mesh density near y = 0 and z = ( is easily captured. More
significantly however, high and low mesh density regions are captured well
throughout the domain, with a smooth variation between these regions.

3.2. Laminar material

In this example we consider a variation of the previous problem for which
the material parameters (M) are now permitted to vary but the geometry
(G) and the boundary conditions (B) are kept fixed.

3.2.1. Problem specification

A beam of dimensions 1 x 1 x 5 is composed of two horizontal layers, as
illustrated in Figure 5. Each layer has a Young’s modulus (E¢qp and E} o)
between 10° and 10", and a Poisson’s ratio (vop and 1) between 0.05
and 0.45. The densities of the two materials are both 8000 and the interface
between the layers is at a height y = h € (0.2,0.8). Half of the bottom surface

13



399

400

401

402

403

404

406

407

408

409

410

411

412

413

414

415

416

417

418

0.14 — T T T T T T T 0.2—

proportion
proportion

5 5 4 3 2 A 0 1 5 5 4 3 2 A 0 1
NN mesh energy - uniform mesh energy %GT NN mesh energy - GT energy %GT

Figure 3: For the Clamped beam, FE energies of neural network (NN) generated meshes
versus uniform mesh FE energies and ground truth (GT) energies. The height of each bar
represents the proportion of experiment results in the energy range shown on the z-axis
(as a percentage of the ground truth energy).

(y =0,0 < z < 2.5) is clamped, as is the surface z = 0. On the surface
z = b a traction of amplitude 10000 is applied in the x direction, with all
other boundaries free to displace under zero normal-stress conditions. Hence
the input vector for this problem requires values for Etop7 Eyot s Vtops Yhot
and h, along with the coordinates of the point at which the mesh spacing
is required. We actually use log,, (Etop) and logy (E} o) as the first two
input parameters.

3.2.2. Network information

In this example our fully-connected network has five hidden layers with 32,
64, 32, 16 and 8 neurons respectively. Training data is generated based upon
solving 3000 individual problems, each of which is obtained using a random
choice for each input parameter (selected uniformly from its range), leading
to 19,719, 750 individual input-output pairs. Of these, 10% are selected for
validation and the remainder are used for training using a batch size of 128.
The training takes 15 epochs, and Figure 13 shows the rates of convergence
for this training, along with the corresponding validation curve.

3.2.3. Results

Figure 6 demonstrates that, as in the previous example, the NN-guided
meshes typically perform on a par with the ground truth meshes, and much
better than uniform meshes. Two typical examples are shown in Figure 7:

14



419

420

421

422

Figure 4: For the Clamped beam, ground truth meshes (top) and NN-guided meshes
(bottom) for two test cases.

in the case (a) and (c)

(logy, (Etop),log10 (Ebot),z/top, Vhot» 1) = (10.82,9.17,0.34,0.20,0.34) ,
and for (b) and (d)

(logy, (Etop)> logo (Bt ) Vtop» Vhot h) =(9.17,10.33,0.44,0.21,0.41) .

In the first example the top layer has the higher Young’s modulus, which
leads to a higher mesh density in this layer (for both the NN-guided and

traction

4

!
clamped =

clamped

gravity

Figure 5: The boundary conditions and loads of the laminar material where the height
of the interface is random

15



423

424

425

426

427

428

429

430

431

432

434

435

436

437

438

439

440

441

0.25 — T T T T T T T 0.4

0.35

0.2F
0.3

0.25

©
o

0.2

proportion
proportion

IS4

0.15

0.1
0.05

0.05

-10 -8 -6 -4 -2 0 2 4 -10 -8 -6 -4 -2 0 2 4
NN mesh energy - uniform energy %GT NN mesh energy - GT energy %GT

Figure 6: For the Laminar material, FE energies of neural network (NN) generated
meshes versus uniform mesh FE energies and ground truth (GT) energies. The height of
each bar represents the proportion of experiment results in the energy range shown on the
z-axis (as a percentage of the ground truth energy).

the ground-truth meshes). Conversely, in the second example the bottom
material is stiffer than the top and we see a very different distribution of the
element size. In each case there is a strong correlation between the NN-guided
mesh and the ground-truth case.

3.8. hex-bolt with a hole

We consider the problem of a hex-bolt (under torque), with different cross
sections (G). In this case the material parameters (M) are not varied (the
specific inputs to the Lamé solver in FreeFEM++ being: density = 8000,
Young’s modulus = 210 x 10° and Poisson’s ratio = 0.27).

3.3.1. Problem specification

A regular hexagonal prism has an octagonal prism hole inside it where
the height of the prism is h = 4 (Figure 8 left). On the cross section, the
edge length of the regular hexagon is 4 and the octagon is coaxial with the
hexagon. The eight vertices of the octagon lie on the same circle, whose
radius varies r € (0.2,1.0). The arc angles between vertices are random.
Linear distributed pressures are applied to create a torque on the top (p =
—10000z + 10000) and bottom (p = —10000x — 10000) surfaces. The eight
surfaces of the hole are clamped. The input vectors for this problem include
the position of the octagon’s eight vertices and the MVCs of the target point

16



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

(c) t (d)

Figure 7: (a)(c) and (b)(d) are two problems in the laminar material experiments. (a)
and (b) are ground truth meshes and (¢) and (d) are non-uniform meshes guided by the
neural network

expressed with respect to both the vertices of the outer hexagon and the
inner octagon (combined with its z coordinate, z € (—1.0,0.0)).

3.3.2. Network information

In this example our fully-connected network has four hidden layers with
32, 64, 16 and 8 neurons respectively. Training data is generated based upon
solving 3000 individual problems, each of which is obtained using a random
choice for each input parameter (selected uniformly from its range), leading
to 10, 748, 618 individual input-output pairs. Of these, 10% are selected for
validation and the remainder are used for training using a batch size of 128.
The training takes 10 epochs and Figure 13 shows the convergence for this
training, along with the corresponding validation curve.

3.3.3. Results

Figure 9 shows that the MeshingNet3D meshes are again better than
uniform meshes and that the NN mesh energies are very close to those of
the ground truth. As illustrated in Figure 10, the NN can successfully guide
non-uniform mesh generation on very different geometries. This example
also illustrates the success of the proposed approach on non-simply-connected

17



459

460

461

462

463

464

465

466

467

468

469

470

471

472

474

475

476

[‘ “~r-___Pressure =-10000x +10000
L ir-.

pressure

clamped

5 I ]
Pressure = 10000x -10000 "~

Figure 8: The boundary conditions and loads of the hex — bolt (left) and irregular
polyhedron (right). On hex — bolt, eight surfaces of the hole are clamped, linear dis-
tributed pressure is applied on top and bottom surfaces.

domains. Note that the second problem (on the right) in Figure 10 illustrates
one of the worst performing cases for the NN mesh relative to the ground
truth: here, the NN mesh is more uniform than the ground truth (though
still a vast improvement on a standard uniform mesh).

3.4. Irregular polyhedron

We now consider the problem of mesh generation on arbitrary twelve-
faced polyhedra, with a range of geometries (G) and variable boundary con-
ditions (B). In this case the material parameters (M) are not varied (the
specific inputs to the Lamé solver in FreeFEM++ being: density = 8000,
Young’s modulus = 210 x 10° and Poisson’s ratio = 0.27).

3.4.1. Problem specification

An irregular polyhedron with twelve triangular faces and eight vertices is
illustrated in Fig 8 (right). The four “bottom” vertices are constrained to be
co-planar and one of the two bottom triangular surfaces (i.e. the two triangles
whose union is bounded by the four co-planar vertices) is clamped. In all
training and testing problems the geometries are subject to the restriction
that the four bottom vertices always lie in the same plane. A normal pressure
of amplitude 10000 is applied on the two “top” surfaces (i.e. the triangular

18



477

478

479

480

481

482

484

485

486

487

488

489

491

492

493

494

495

496

0.45 0.7

0.4

0.35

e
N L
g w

proportion
[=]
N

proportion

o
3

=4

0.1

=
=3
5

o
o

-6 -5 -4 -3 2 -1 0 1 . -6 -5 -4 -3 -2 -1 0 1
NN mesh energy - uniform mesh energy HGT NN mesh energy - GT energy %GT

Figure 9: For hex —bolt with a hole, FE energies of neural network (NN) generated meshes
versus uniform mesh FE energies and ground truth (GT) energies. The height of each bar
represents the proportion of experiment results in the energy range shown on the z-axis
(as a percentage of the ground truth energy).

faces whose union is bounded by the other four vertices) and zero normal
stress is applied on the other nine triangular faces. The input vectors for
this problem define the Cartesian coordinates of the eight vertices and the
corresponding MVCs of the point at which the mesh spacing is required.

3.4.2. Network information

In this example our fully-connected network has four hidden layers with
32, 64, 32, 16, and 8 neurons respectively. Training data is generated based
upon solving 3000 individual problems, each of which is obtained using a ran-
dom choice for each input parameter, leading to 7,383,999 individual input-
output pairs. Of these, 10% are selected for validation and the remainder are
used for training using a batch size of 128. We use the network after training
10 epochs and Figure 13 shows the convergence for this training, along with
the corresponding validation curve.

3.4.3. results

From Figure 11 it is cleear that the MeshingNet3D meshes are signifi-
cantly better than uniform meshes and that the solution energies are rela-
tively close to those of the ground truth: though in some cases the ground
truth mesh is slightly superior. One such example is shown in Figure 12
(three views of the same problem), where we see that the NN mesh appears
to be more conservative in some aspects of its local refinement. Nevertheless,

19



497

498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

even in this worst-case scenario, the MeshingNet3D mesh generally has the
same regions of refinement as the ground truth mesh.

3.5. Discussion

Across the four experiments described in this section we have shown re-
sults over a range of geometries, boundary conditions and material parame-
ters. For each problem the input layer of the NN is necessarily of a different
dimension, which is dependent on the problem specification (along with the
MVCs of the target point), whereas the output is always a single value rep-
resenting the predicted mesh spacing at the target point. The number and
size of the hidden layers is not a critical choice, but does naturally have some
impact on the performance of the network.

As an example, to illustrate this, Table 1 shows the performance of five
different networks when applied to the fourth of the test problems above.
In each case the networks have been trained on the same data set, with
validation losses having converged after 10 epochs. The networks are then
used to compute meshes on the same testing set of 500 unseen problems
and the finite element solutions computed on all meshes. The energy of
each solution is normalised against the energy of the finite element solution
computed on the “ground truth” mesh so as to allow a meaningful average
to be taken across all 500 cases. This is the value shown in the “normalised
average energy” column of Table 1: so, the lower this energy the better the
meshes are on average. The results shown in Subsection 3.4 are generated
using NN3 from the table but NN2 and NN4 produced meshes of very similar
quality. The network denoted by NN1 appears to have too few degrees of
freedom to be able to model the non-uniform mesh patterns satisfactorily,
whereas the network denoted by NNb likely has too many degrees of freedom
for the size of our training data set.

Note that our NNs are always “spindly”, with the greatest number of neu-
rons in the inner layers. We find from experiment that this kind of network
appears to have the best performance for the set of tasks considered in this
work. Given that our problems have a relatively small number of inputs and
a very small number of outputs (typically one) this is perhaps not surpris-
ing: to capture the highly nonlinear relationships between the inputs and the
mesh spacing across the domain, significant complexity must be introduced
into the network between the input and output layers.

Finally, we note that MeshingNet3D has the potential to make simu-
lations more efficient for designers who use pre-built 3D models provided

20



534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

NN NN structure training epochs | normalised average energy
NN1 32-16-8 10 9.0 x 1073
NN2 32-64-16-8 10 8.1x 1073
NN3 32-64-32-16-8 10 7.9 x 1073
NN4 | 32-64-128-32-16-8 10 8.1x 1073
NNb5 | 32-64-128-64-32-16-8 10 8.6 x 1073

Table 1: Comparison of 5 different fully connected NNs based upon normalised average
energies of the finite element solutions. NN3 gives the lowest average energy and therefore
provides the best mean performance.

within Computer Aided Design (CAD) software to accelerate design. From
screws and bolts, to washers and bearings, CAD can not only define ge-
ometries but also materials. Embedding pre-trained MeshingNet3D in these
CAD libraries could save meshing cost and provide high-quality non-uniform
meshes. Similarity, MeshingNet3D can help parametric design where the NN
is pre-trained for each geometry topology: under the guidance of the NN an
appropriate mesh is generated in response to each iteration of the design. To
implement this efficiently the challenge will be in defining a suitable family
of boundary conditions as NN inputs, where forces due to interacting objects
are unknown a priori. However, for components in a specific assembly, if
contacts are defined, the load may be inferred by data-driven methods.

4. Conclusions

We have proposed a new framework for the generation of non-uniform
three-dimensional finite element meshes. This is designed to produce meshes
of the same quality as those obtained using traditional approaches, based
upon a posterori error estimates and local mesh refinement, but at a sub-
stantially reduced computational cost. This has been implemented as Mesh-
ingNet3D, building upon the 3D mesh generator Tetgen and the finite ele-
ment package FreeFem++. By selecting the linear elasticity solver within
FreeFem++ we have been able to undertake quantitative comparisons of
different meshes based upon the energy minimization property of the elasto-
static equations. Specifically, we can compare any two meshes by solving the
finite element system on each mesh and then computing the stored energy of
the solutions: the lower one being superior.

21




558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

We have assessed the performance of MeshingNet3D on four different
problem families for which the optimal finite element mesh is generally highly
non-uniform. In all cases we are able to demonstrate the capability to gen-
erate meshes which are not only substantially better than uniform meshes
for the same geometry, but which are comparable in quality to non-uniform
meshes that are generated based upon the traditional (and expensive) ap-
proach of undertaking a sequence of local adaptive steps involving finite el-
ement solves and a posteriori error estimates. Perhaps not surprisingly, the
benefits of MeshingNet3D are most apparent on those problems for which
the optimal finite element mesh is far from uniform.

The main limitation of our approach is associated with the need to define
a different set of inputs for each family of problems that is to be considered.
Hence, for each new family of problems being considered, it is necessary
to define a set of inputs that fully reflects the richness of that family, and
then to undertake training for a new network. Furthermore, as with most
supervised learning approaches, there is a trade-off to be made between the
level of generality of the family of problems that the user of MeshingNet3D
wishes to consider and the amount of work that must be undertaken in the
training phase of the algorithm. Nevertheless, in situations where many
solutions are required for large numbers of related problems (such as design
and optimization problems for example) this is likely to be a worthwhile
expense. Finally, we note that, in cases where engineers may have limited
confidence in their ability to define the most appropriate inputs (to define
the geometry or boundary conditions for example), data analysis techniques
such as principle components analysis may be used to find the most critical
parameters.

References

[1] P. M. Gresho, R. L. Sani, Incompressible flow and the finite element
method. volume 1: Advection-diffusion and isothermal laminar flow
(1998).

[2] O. C. Zienkiewicz, R. L. Taylor, The finite element method for solid and
structural mechanics, Elsevier, 2005.

[3] R. Stevenson, Optimality of a standard adaptive finite element method,
Foundations of Computational Mathematics 7 (2007) 245-269.

22



592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

R. Mahmood, P. K. Jimack, Locally optimal unstructured finite element
meshes in 3 dimensions, Computers & structures 82 (2004) 2105-2116.

E. Weinan, B. Yu, The deep ritz method: a deep learning-based nu-
merical algorithm for solving variational problems, Communications in
Mathematics and Statistics 6 (2018) 1-12.

J. Sirignano, K. Spiliopoulos, Dgm: A deep learning algorithm for solv-
ing partial differential equations, Journal of computational physics 375
(2018) 1339-1364.

Z. Zhang, Y. Wang, P. K. Jimack, H. Wang, Meshingnet: A new
mesh generation method based on deep learning, arXiv preprint
arXiv:2004.07016 (2020).

J. Chan, Z. Wang, A. Modave, J.-F. Remacle, T. Warburton, Gpu-
accelerated discontinuous galerkin methods on hybrid meshes, Journal
of Computational Physics 318 (2016) 142-168.

H. Si, Tetgen, a delaunay-based quality tetrahedral mesh generator,
ACM Transactions on Mathematical Software (TOMS) 41 (2015) 11.

C. Geuzaine, J.-F. Remacle, Gmsh: A 3-d finite element mesh generator
with built-in pre-and post-processing facilities, International journal for
numerical methods in engineering 79 (2009) 1309-1331.

G. Strang, G. J. Fix, An analysis of the finite element method (1973).

W. Dorfler, A convergent adaptive algorithm for poisson’s equation,
SIAM Journal on Numerical Analysis 33 (1996) 1106-1124.

T. Apel, O. Benedix, D. Sirch, B. Vexler, A priori mesh grading for an
elliptic problem with dirac right-hand side, STAM journal on numerical
analysis 49 (2011) 992-1005.

M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element
analysis, volume 37, John Wiley & Sons, 2011.

R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic
partial differential equations, Mathematics of computation 44 (1985)
283-301.

23



622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

O. C. Zienkiewicz, J. Z. Zhu, A simple error estimator and adaptive
procedure for practical engineerng analysis, International journal for
numerical methods in engineering 24 (1987) 337-357.

0. C. Zienkiewicz, J. Z. Zhu, The superconvergent patch recovery and a
posteriori error estimates. part 1: The recovery technique, International
Journal for Numerical Methods in Engineering 33 (1992) 1331-1364.

W. Speares, M. Berzins, A 3d unstructured mesh adaptation algorithm
for time-dependent shock-dominated problems, International Journal
for Numerical Methods in Fluids 25 (1997) 81-104.

L. Bottou, Large-scale machine learning with stochastic gradient de-
scent, in: Proceedings of COMPSTAT 2010, Springer, 2010, pp. 177—
186.

A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in neural information
processing systems, pp. 1097-1105.

T. Q. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud, Neural
ordinary differential equations, in: Advances in neural information pro-
cessing systems, pp. 6571-6583.

Z. Long, Y. Lu, X. Ma, B. Dong, Pde-net: Learning pdes from data,
arXiv preprint arXiv:1710.09668 (2017).

J. Han, A. Jentzen, E. Weinan, Solving high-dimensional partial dif-
ferential equations using deep learning, Proceedings of the National
Academy of Sciences 115 (2018) 8505-8510.

K. Hormann, M. S. Floater, Mean value coordinates for arbitrary planar
polygons, ACM Transactions on Graphics (TOG) 25 (2006) 1424-1441.

M. S. Floater, Mean value coordinates, Computer aided geometric
design 20 (2003) 19-27.

M. S. Floater, G. Kés, M. Reimers, Mean value coordinates in 3d,
Computer Aided Geometric Design 22 (2005) 623-631.

S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learning for
fluid mechanics, Annual Review of Fluid Mechanics 52 (2020) 477-508.

24



653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

28]

[29]

W. Tang, T. Shan, X. Dang, M. Li, F. Yang, S. Xu, J. Wu, Study on
a poisson’s equation solver based on deep learning technique, in: 2017
IEEE Electrical Design of Advanced Packaging and Systems Symposium
(EDAPS), IEEE, pp. 1-3.

M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, Journal of
Computational Physics 378 (2019) 686-707.

L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows
based on physics-constrained deep learning without simulation data,
Computer Methods in Applied Mechanics and Engineering 361 (2020)
112732.

S. Igbal, G. F. Carey, Neural nets for mesh assessment, Technical Re-

port, TEXAS UNIV AT AUSTIN, 2005.

X. Chen, J. Liu, Y. Pang, J. Chen, L. Chi, C. Gong, Developing a new
mesh quality evaluation method based on convolutional neural network,
Engineering Applications of Computational Fluid Mechanics 14 (2020)
391-400.

A. Bahreininejad, B. Topping, A. Khan, Finite element mesh partition-
ing using neural networks, Advances in Engineering Software 27 (1996)
103-115.

Y. Feng, Y. Feng, H. You, X. Zhao, Y. Gao, Meshnet: Mesh neural
network for 3d shape representation, in: Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pp. 8279-8286.

W. Yifan, N. Aigerman, V. G. Kim, S. Chaudhuri, O. Sorkine-Hornung,
Neural cages for detail-preserving 3d deformations, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 75-83.

L. Manevitz, M. Yousef, D. Givoli, Finite—element mesh generation
using self-organizing neural networks, Computer-Aided Civil and In-
frastructure Engineering 12 (1997) 233-250.

25



684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

J. Bohn, M. Feischl, Recurrent neural networks as optimal mesh refine-
ment strategies, arXiv preprint arXiv:1909.04275 (2019).

B. Dolsak, A. Jezernik, I. Bratko, A knowledge base for finite element
mesh design, Artificial intelligence in engineering 9 (1994) 19-27.

L. Manevitz, A. Bitar, D. Givoli, Neural network time series forecasting
of finite-element mesh adaptation, Neurocomputing 63 (2005) 447-463.

R. Chedid, N. Najjar, Automatic finite-element mesh generation us-
ing artificial neural networks-part i: Prediction of mesh density, IEEE
Transactions on Magnetics 32 (1996) 5173-5178.

D. Dyck, D. Lowther, S. McFee, Determining an approximate finite ele-
ment mesh density using neural network techniques, IEEE transactions
on magnetics 28 (1992) 1767-1770.

F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012)
251-265.

F. Chollet, et al., Keras, https://keras.io, 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale

machine learning on heterogeneous distributed systems, arXiv preprint
arXiv:1603.04467 (2016).

V. Nair, G. E. Hinton, Rectified linear units improve restricted boltz-
mann machines, in: ICML.

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014).

26



R L
SERE T,

SRS

SISO

L
IRSRERA
-

(N

4
e, é’ﬁ k‘
‘:&%‘?" }ﬁﬂ’m > %

4»535'? “qum
i N
e

Figure 10: hex-bolt experiment, ground truth meshes (top) and NN meshes (bottom) ,
the left and right are two problems that only have different geometries

27



e
Y
@

0.4

0.35

0.3
5 5

£ £ 0.25
(=] [=}

So. S 02
o o

0.15

0.1

0.05

0 :
-15 -10 -5 0 5
NN mesh energy - uniform energy %GT NN mesh energy - GT energy %GT

Figure 11: For irregular polyhedron, FE energies of neural network (NN) generated
meshes versus uniform mesh FE energies and ground truth (GT) energies. The height of
each bar represents the proportion of experiment results in the energy range shown on the
z-axis (as a percentage of the ground truth energy).

28



T,
R [ — e

NOOREONNNREA
R e
4\

A\

NRASARARL
RO LR
S A CAKIZNZSEN W“\AV K]
Fe sy
VAL TAVAV
Vs s
K SISREEERRAPRIPRS
KRR AT
PRI
KSR
N

N/

<IN/

Ve

NN/
AN
DO
A
Mﬂmmw%mwm»

VAVAAY 3]
SRR

VAV s
SR
SN
LAYz
QKL

<R
CASI
N
Raviess

Vavaya i
NE
KD

(a, ¢ and e) and corresponding NN mesh (b, d and f)

Figure 12: A ground truth mesh

they are in front (a and b), right (c and d) and bottom

selected from 500 testing problems,

(

) views.

eand f

29



Loss convergence of clamped beam Loss convergence of laminar material

0.0011 0.00046
0.00044
0.001
0.00042
0.0009 0.0004
0.0008 0.00038
I —
— — 0.00036
0.0007 _/.\-.\‘
0.00034 . S nas
0.0006 0.00032
0.0005 0.0003
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P . . epochs L . . epochs
—e—training loss —e—validation loss —e—training loss —e—validation loss
Loss convergence of hex-bolt with a hole Loss convergence of irregular polyhedron
0.006 0.001
oS 0.00095
0.0009
0.004
0.00085
0.003 0.0008
0.002 0.00075
———— 0.0007
0.001
0.00065
° 1 2 3 a 5 6 7 8 9 10 00006
1 2 3 4 5 6 7 8 9 10
" T epochs h
g loss 0SS e=@==training loss «==@==validation loss epochs

Figure 13: Training and validation loss of the four experiment

30



