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Automatic embroidery texture synthesis for garment design
and online display
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Abstract We introduce an automatic texture synthe-

sis based framework to convert an arbitrary input image

into embroidery style art for garment design and online

display. Given an input image and some reference tex-

tures, we first extract key embroidery regions from the

input image using image segmentation. Each segmented
region is single-colored and labeled with a stitch style
automatically. We then fill these regions with embroi-
dery reference textures via a stitch-style-based texture

synthesis method. For each region, our approach main-

tains color similarity before and after synthesis, along

with stitch style consistency. Compared to existing ap-

proaches, our method is able to generate digital embroi-
dery patterns with faithful details automatically. More-
over, it can accept diverse input images effectively, en-
abling a fast preview of the embroidery patterns synthe-

sized on digital garments interactively, and therefore ac-

celerating the workflow from design to production. We

validate our method through extensive experimentation

and comparison.
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1 Introduction

Embroidery can be defined as the craft of decorating

fabric with sophisticated design patterns woven over

its surface, providing an aesthetic function for design

which is commonly observed on clothing. Owing to its

labor-intensive manual work and training, it is pro-

hibitively slow to visualize an embroidery design with-

out completing at least some of the actual work phys-

ically. Existing procedures deal with this problem via

deep neural networks [23], patch-based methods [22],

or image-based interactive methods [7,9], which greatly

rely on reference images or require complex user inter-

action. We argue that this problem can be solved by

automated style-transfer from design images to their

embroidery-style correspondences using texture synthe-

sis, and thus design an automated tool for embroidery

design visualization.

Texture synthesis is ubiquitous in digital content

generation. It can create an image of a similar style

given a reference image [31]. Some approaches focus on

developing a unified framework for image style transfer

[20,22] in order to generate stylized results with faithful

effects. However, they may fail to capture the regular-

ity of the embroidery stitch styles, and cause undesir-
able ambiguities or distorted stitches in the results (see
Fig. 1(c) and (d)). Some methods [7,9] rely heavily on

user interaction to perform the segmentation and stitch

style selection, which is very time-consuming when the

content of the image is complex; while others impose re-

strictions on the input images, making them impractical

when dealing with various types of user input. Specif-

ically, existing methods [21,24,23] are simply designed

for a particular embroidery stitch style, and cannot be

easily generalized for other widely-used stitches such

as the satin stitch used in folk handicraft and the cos-
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Fig. 1 Given an input image and some reference textures,
our method is able to convert the input into an embroi-
dery artwork automatically. (a) The original image along with
three reference textures (bottom, from left to right: reference
texture for the long-short stitch, the edge stitch, and the satin
stitch, respectively) used by our system, (b) our result, (c) re-
sult of neural style transfer [20] with the reference image in
the top-left corner, and (d) result of patch-based synthesis
[22], bottom images are its masks, and the reference image is
in the top-left corner.

tume industry. Neural-based methods [20,23] need ref-

erence images to capture semantic information in the

network, which is often inconsistent with their input

images. Patch-based methods [28,22] require users to

specify guiding information as input, and the reference

images should be sufficiently similar which not only

leaves the embroidery segmentation workload to users,

but can also lead to failures when the shapes of the
reference and target are distinctive (see Fig. 1(d)). In
general, the previous methods have limitations such as
unstable results, time-consuming interactions, and in-

sufficient generality for various types of input, which

limit their applications in garment design and online

display. Answering the question of how to synthesize

faithful embroidery designs with fast response time re-
mains challenging.

To address these challenges, we present a novel method

to transfer arbitrary input images into embroidery art-

works automatically with the assistance of auxiliary ref-
erence textures. Our framework first employs the fea-
tures of three different common stitch styles (the long-
short stitch, the satin stitch, and the edge stitch, which

dominate the embroidery garment stitch styles) to per-

form the embroidery region segmentation, as well as

the stitch style labeling procedures automatically with-

out any user interaction. Second, the subsequent step

of texture synthesis is developed to preserve the visual

effects of each stitch style faithfully. Owing to the con-

venience of replacing and modifying reference textures,

we can synthesize diverse results with flexibility. In this

way, for the same input image, we can easily synthesize

different results with different colors or stitch styles.

We can also generate the corresponding normal of the
resulting embroidery by taking the normal maps of ref-
erence textures as input.

In summary, our main contributions are listed as
follows:

– We present an embroidery transfer framework in-
tegrated with a novel image segmentation method.
This can produce virtual embroidery work with ar-

bitrary input images automatically, and our method
makes it possible to preview the embroidery effect
of a casual image on digital garments interactively.

– We design a set of stitch-style-based texture syn-
thesis methods. With the assistance of reference tex-
tures, this can flexibly adapt to the three main types
of embroidery.

2 Related Work

Texture synthesis and transfer of embroidery style, usu-
ally regarded as a branch of image stylization, can be
divided into parametric and non-parametric methods.

2.1 Parametric Texture Synthesis and Transfer

Deep neural networks contribute significantly to the

field of image stylization. They perform stylization by
statistical analysis, which finds that style and content
can be separated from a given image by neural networks
[13,14]. With the development of network architecture,

one single trainable model can transfer arbitrary artis-

tic styles [6], which can then be applied to the embroi-

dery problem. This avoids the need for training on a va-

riety of stitch styles separately. Recently, a CNN-based
method [23] was designed for embroidery style trans-
fer, which can produce results with irregularly placed
stitches. However, neural networks work well only on

images which contain more natural contents with clear
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high-level semantic information [18]. When dealing with

abstract images (e.g., sketch or cartoon images), they

will fail to extract sufficient information, and hence

produce poor results in embroidery works. Users usu-

ally take their own abstract design knowledge as input,

which is unfriendly to the neural network.
Another alternative for neural-based style transfer

is the use of recently-proposed Generative Adversar-

ial Networks (GANs) [15]. Results are improved by the

minimax game between generator and discriminator net-

works. Based on this framework, the concept of image

translation [17] is developing rapidly to solve a vari-

ety of stylization problems. The occurrence of networks

like CycleGAN [33] can even train the network with un-

paired image samples, making it easier to build an em-

broidery image training database. However, for embroi-

dery works, building high-quality embroidery databases

is just the first step. The images should be organized by

their stitch styles, and the network should be designed

accordingly, rather than being applied to the embroi-

dery problem directly.

2.2 Non-Parametric Texture Synthesis and Transfer

Non-parametric methods not only release the burden

of data preparation, but also produce more predictable
and controllable results. Following the concept of image-
based artistic rendering [19], example-based methods

belong to one category pioneered by methods like im-

age analogies [16] used in situations such as texture-

by-numbers. In example-based synthesis, patch-based

methods [3] rearrange patches in the reference image in

order to generate the target one, as shown in the im-

age quilting method [11]. The ability of preserving de-

tails and significant results inspired us in using patches

rather than pixels as synthesis units. PatchMatch [1]

and its following methods [2,4] are proposed to acceler-

ate the procedure of searching proper patches, and cur-

rently, the patch-based method can demonstrate com-
petitive visual quality results at an acceptable speed
[22], compared with neural-based methods. However,

time-consuming efforts must be taken in optimizing search

results to achieve a better mapping. As the distribution

of embroidery stitches shows more regularity compared

to other texture generation cases (e.g., inhomogeneous

textures generation [32], text effects generation [28] or
poster headline generation [29]), its matching method
must be specially designed to streamline the procedure.

Stroke-based synthesis belongs to another category

of methods which can be applied to the element dis-
tribution problem. Each algorithm should be specially
designed according to its corresponding style. We note

that embroidery with different stitch styles may require

different distribution methods. Aiming at Chinese ir-

regular needling embroidery, a series of algorithms [27,
26,21] have been developed to produce results directly
from input images. However, these methods cannot be

generalized for other commonly used stitch styles, such

as the satin stitch, etc. Similar limitations exist in meth-

ods [25,24], as their artistic rendering methods cannot

easily be applied to the usual regular stitches directly.

For common stitches, the existing embroidery gener-

ation methods focus more on modeling different stitch

styles and stitch rendering. Chen et al. presented a line-

drawing-based method [7] which uses clean embroidery

patterns as input, and relies on user interaction to de-

cide the stitch style. Cui et al. [9] also left the segmenta-

tion of complicated reference images and the selection

of stitch style as the future work. The level of human

intervention in these aforementioned methods restricts

their applications which require fast response. Different

from these methods, our presented work can transfer in-

put images into their embroidery styles automatically.

3 Overview

Our method aims to generate the embroidery image
from an arbitrary input image without user interaction.

As shown in Fig. 2, our pipeline consists of two main
phases: embroidery region segmentation and stitch-style-
based texture synthesis, respectively.

In the embroidery region segmentation, we first ex-

tract the main colors from the input image in order to
remove unwanted noises and details, and abstract the
input image as a cartoon image. Subsequently, we ex-

tract each single-colored slice from the image, and sep-
arate each slice into one or more unconnected compo-
nents. For each component, our method uses the stroke

width transform method to analyze its shape. With the

shape information, we can divide the connected compo-

nent into one or more regions via a graph-cut algorithm

[10] which is designed with a set of stitch-styled-based

formulations, enabling stitch style to be labeled for each
region with the segmentation step simultaneously.

In the stitch-style-based texture synthesis, we fill

each region with an embroidery pattern independently
with three types of stitches (the long-short stitch, the
satin stitch and the edge stitch) similar to Cui et al.
[9]. Our system stores three types of preset reference

textures, which will be recolored for each different re-
gion before synthesis. By taking both the shape and
stitch style of each region into consideration, we per-

form the texture synthesis step by a texture mapping

process based on the calculated UV value of each pixel

in these regions. After all the regions are synthesized,

we obtain the output embroidery image.
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Fig. 2 Overview of our embroidery transfer framework.
Given an input image (a), our framework first performs
color extraction (b) and stitch style classification (c) steps to
achieve the embroidery region segmentation procedure. Then,
based on three different stitch styles, our method calculates
the UV value map (d), and performs the texture synthesis
procedure using the recolored preset reference textures, syn-
thesizing the stylized embroidery image (e).

We will articulate the aforementioned phases in Sec-
tion 4 and Section 5 in detail, respectively.

4 Embroidery Region Segmentation

Segmenting images into embroidery regions is neces-

sary for dealing with arbitrary input images, such as

sketches, photos, etc. This processing procedure is com-

posed of two main steps, which are color extraction and

stitch-style-based segmentation.

The color extraction procedure can be performed

by common clustering algorithms, such as mean-shift
segmentation [8], or a hierarchical clustering tree. We
use median filters to preprocess the image and choose
the CIELab color space to calculate the color differ-

ences. We obtain 4-connected components after analyz-

ing each clustered single-colored slice. Each component

(a) (b)

Fig. 3 Two embroidery region segmentation results via our
graph-cut algorithm. (a) Lollipop and (b) robot. The blue
and dark blue areas represent the long-short stitch regions.
The green areas represent the satin stitch regions. The red
areas represent the edge stitch regions. The white areas are
transparent in the original image.

may have irregular shapes and should be further seg-
mented into embroidery regions.

Observations show that widths of the pattern shapes

affect the stitch style selection significantly. In prac-
tice, extremely narrow shapes (see the red antennas

of the robot in Fig. 3(b)) tend to use the edge stitch.
Wide shapes (see the dark background and the blue
candy part of the lollipops in Fig. 3(a) and the blue

body in Fig. 3(b)) tend to use the long-short stitch.

For shapes with moderate widths (see the green lol-

lipop sticks in Fig. 3(a), the limbs and the text in Fig.

3(b)), the satin stitch can be chosen. The stroke width

transform (SWT) method [12] is employed to measure

the width by pairing two contour pixels across the com-

ponent shape and getting their distance. Note that the

pairing test fails in the following two cases. If one of the

contour pixels is located on the boundary of the image,

it will lack the gradient value required for the test; if

the shape is irregular and the gradient directions of two

contour pixels are too different, the test may also fail.

To solve the aforementioned two special cases, the con-

nected component should be directly assigned with the
long-short stitch style, since the long-short stitch can
adapt to any complex shapes more flexibly than the
other two stitch styles. In our experiments, we empiri-

cally set a threshold of the pixels failing to obtain the

width to n0.8, where n represents the number of pixels
of the entire component.

When the width of the pixels is fully provided in the

component, we use the graph-cut algorithm [10] to per-

form the segmentation procedure by designing the data

cost, the smooth cost, and the label cost. We formulate
the data cost as follows:

D(np, LS) =
k1

1 + e
w−sW

2

, p ∈ C, (1)
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D(np, ST ) =







k1

1+e
sW−w

2

, w ≥ sW

k2

1+e2×eW×(w−eW ) , w < sW
, p ∈ C, (2)

D(np, ES) =
k2

1 + e2×eW×(eW−w)
, p ∈ C, (3)

D(np, LS) = D(np, ST ) = D(np, ES) = 0, p 6∈ C, (4)

where np is a pixel node in the graph, LS is the long-

short stitch, ST is the satin stitch, ES is the edge stitch,

eW is the desired width of the edge stitch region, sW

is the desired width of the satin stitch region, k1, k2
are the weight parameters, and C represents a set of

contour pixels with valid SWT values whose gradient
direction difference is less than π

6 in the SWT contour
pixel pairing test, because smaller difference indicates

more credible width to classify the pixel. If a pixel can-

not meet the condition of C, its data cost is set to zero

regardless of the stitch style, and the pixel label is de-

cided by the smooth cost and the label cost. Our obser-

vation shows that contour pixels are usually included

in a reasonable region, while the classification of inner

pixels may produce regions without contour pixels when

there is noise in the SWT value. As a result, we only

use the contour pixels in C.

The smooth cost formulation is defined as follows:

S(np, nq) =











0, if sp = sq

k3, if sp = ES or sq = ES

k4, else

, (5)

where np, nq represent two neighbor pixel nodes in the
graph, k3, k4 are the weight parameters, and sp, sq are

the stitch styles of the pixel nodes, respectively. Note

two types of node pairs can be defined as neighbors in

the graph. Given the pixel p, the pixel q of its neighbor

node could be its neighbor pixel, or its nearest contour

pixel in the image. We experimentally set k3 higher

than k4, which will prevent setting edge stitch pixels

with different neighbors, and preserve the continuity of

regions in detailed area.

The label cost formulation is defined as follows:

L(si) = csi , (6)

where si is a stitch style, and csi is the corresponding

cost. We empirically set cST the highest in the three

stitch styles, to classify less regions into the satin stitch.

This is because the data costs of the satin stitch and

the long-short stitch are indistinguishable at a width of

about sW. Using the label cost to choose the long-short
stitch can adapt to more cases of irregular shapes. The

edge stitch is less affected because it is mainly classi-

fied by the data cost with an extremely narrow width.

We can also set the label cost to totally different values

(a) (b)

Fig. 4 The long-short stitch. (a) Embroidery work produced
by our system, and (b) the UV value image as the interme-
diate result.

to adjust the proportion of three stitch styles. Using

some extreme label costs can even generate embroidery
with only certain stitch styles, such as embroidery with
only the long-short stitch (see Fig. 4(a)), and embroi-
dery without the satin stitch (see Fig. 16(e) and 16(f)),

respectively.

From this, each region has been segmented in a

comparatively regular shape, and adapted to a specific

stitch style.

5 Stitch-Style-Based Texture Synthesis

In this texture synthesis step, we fill each region inde-

pendently with the reference textures, according to the

given stitch style. In the following five sub-sections, we

illustrate the detailed texture synthesis procedures of

the aforementioned three stitch styles, and introduce

further improvements to produce colored and multi-
layer embroidery, respectively.

5.1 Long-Short Stitch Synthesis

The long-short stitch (see Fig. 4(a)) is a traditional

stitch, which consists of rows of stitches to show inten-

sity graduation [7,9]. The number of repetition in each

stitch row can vary with the width, making the long-

short stitch flexible to fit any shapes, especially for the

large areas or shapes with irregular contours. The tex-

ture synthesis step based on the long-short stitch paves

the regions with rows of the stitch reference textures.
During the process, the edge of each texture row should
be aligned with the contours of the region. The detailed
procedure is described as follows.

First, assuming that the stitch rows in one region

are parallel with each other, we figure out the rotating
direction of the stitches in the given region by search-

ing along the region’s external contour and averaging

out the rotation of the neighboring regions. Although
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(a) (b)

Fig. 5 The satin stitch. (a) Embroidery work produced by
our system, and (b) the UV value image as the intermediate
result.

this method can maintain the consistency of direction,
it may fail when neighbor rotations are absent, in which
case we should calculate the bounding box for this re-

gion, and then take the main direction of the bounding

box as the stitch rotation.

Next, we use the stitch rotation to define a coordi-

nate system, where the x -axis is parallel to the stitches,

and the number of stitch rows increases along the y-

axis. For each pixel in the region, we calculate the value

r = y−ymin

hLS
, where y is the value on the y-axis, ymin is

the minimum of y in this region, and hLS is the height

of the reference texture for the long-short stitch. The
value of v used in texture mapping is obtained directly

from the fractional part of r, and the integer part of

r represents the number of texture rows between the

minimum y position and the current pixel. The u value

is decided similarly along the x -axis. The difference is,

only the central part of the reference texture can be
repeated. Its edge part is always stretched or shrinked
to be mapped to the region contour, which is reflected

in the UV result (see Fig. 4(b)).

5.2 Satin Stitch Synthesis

The satin stitch (see Fig. 5(a)) is suitable for striped
shapes with shorter width compared with long-short

stitch cases. This stitch is commonly used in real em-
broidery work to represent leaves, petals, text charac-
ters, etc. The satin stitch places the stitches one row

after another [7,9]. Compared with previous methods

[7,9] that generate parallel stitches, the stitches in our

system tend to be perpendicular to the tangent of its

nearby contour. The procedure is described as follows.

First, we extract the skeleton branches from each re-

gion. We use the Zhang-Suen thinning algorithm [30] to

obtain the skeleton pixels (see Fig. 6(a)), and organize

them into skeleton branches associated with high-level

(a) (b)

(c) (d)

Fig. 6 The skeleton branches extraction procedure. (a) Ini-
tial skeleton pixels, (b) unexpected skeleton pixels, the yellow
of which represent the short noise branch, the red of which
represent intersection area, (c) reconnection of the cut-off
branches with green pixels, and (d) the resulting skeleton
branches, each of which is in a different blue color.

(a) (b) (c)

Fig. 7 The sub-region extraction procedure. (a) Nearest con-
tour pixels for each skeleton branch, (b) contour completion,
and (c) sub-regions for each skeleton branch, which are over-
lapped with each other.

contents, such as a stroke in a text character, or a petal

in a flower. Further optimization steps are necessary

however, such as abandoning the branches shorter than

a given threshold (see the yellow pixel in Fig. 6(b)). In-

spired by methods adopted in the field of text stroke

separation, we optimize the skeleton tree by removing
the pixels which connect three or more pixels to form an
intersecting area (see the red pixels in Fig. 6(b)). Pixels
connecting located areas can also be merged into these

areas. The cut-off tree branches adjacent to the same

intersecting area are then reconnected in pairs for op-

timal pair-wise similarities (see the green pixels in Fig.

6(c)). Using the reconnection result, we traverse the
skeleton pixels again to obtain all the skeleton branches
(see pixels in different blue colors in Fig. 6(d)).

Next, we assign the region pixels to the adjacent

skeleton branches to get the sub-regions. One pixel can
be assigned to multiple sub-regions if their branches
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intersect at a point near this pixel. We suppose each

sub-region consists of a contour surrounding the skele-

ton branch and region pixels within this contour. To

generate a reasonable contour, we search around the

skeleton pixels until the nearest contour pixels are col-

lected (see Fig. 7(a)), and complete the contour with

line segments or spline curves which connect these orig-

inal contour pixels (see Fig. 7(b)). After the contour
generation step, pixels outside the contours will be as-
signed to their nearest skeleton branches to ensure the

regions are completely separated (see Fig. 7(c)).

In each sub-region, we fit the skeleton branch pix-

els with a B-spline curve, and cut the skeleton curve
into pieces at the interval of the height of the refer-

ence texture. The skeleton branch should be extended

if the length is not enough for fitting. Then we divide

the sub-region into blocks by perpendicular cut lines at

the cut points of the curve (see Fig. 8(a)). Each block

will be synthesized with one reference texture along the

curve which impels the number of stitch rows to grow.

We calculate the UV value of each pixel with the help

of contour pixel pairs. Each contour pixel pair contains

two contour pixels from different sides of the skeleton

curve. To match the contour pixel pairs, we sort the pix-

els on each side according to their relative orders on the

contour, and assemble the contour pixels with similar

orders into pairs. One-to-many relationships are estab-

lished in case that the numbers of contour pixels on the
two sides are unequal. We can thus determine the value
of u of each region pixel along the line connecting the

contour pixel pair, and the value of v according to their

relative contour orders (see Fig. 5(b)). Note that a pixel
can be surrounded by multiple contour pixel pairs. We
set the weight to each pair as follows:

ωp = e
−

(‖p−c0‖2+‖p−c1‖2)×distp

‖c0−c1‖2 , (7)

where p is the position of a pixel, c0, c1 are the contour

pixels positions, ‖·‖2 is the L2-norm operator, and distp
is the distance from p to the connecting line of the
contour pixel pair.

The synthesis results will be badly affected if the

cut lines intersect with each other (see Figs. 8(b) and

8(d)). Similar bad cases may arise when the skeletons

are cut twice or more by a same cut line, etc. To remedy

these improper results, we first try to replace the un-

expected cut line (see line 3 in Fig. 8(b)) with an ideal

one (see the green line segment in Fig. 8(b)), which is

usually generated via the inflection point of the skeleton

curve, or the corners on the original region contour de-

tected by the Harris operator. Another remedy method

is designed for the case when the skeleton branch is

self-crossed (see the blue pixels in Fig. 8(c)), where our

system will add temporary contour pixels (see the dark

(a) (b)

(c) (d)

Fig. 8 Block division cases. (a) Expected block division re-
sult using the orange cut lines, (b) unexpected cut line case
which can be corrected with the green ideal cut line sub-
stitute, (c) self-intersection of the skeleton which causes the
unexpected cut line case in d, and (d) correction by adding
the dark gray temporary contour pixels.

(a) (b)

Fig. 9 The edge stitch. (a) Embroidery work produced by
our system, and (b) the UV value image as the intermediate
result.

gray pixels in Fig. 8(d)) around the crossing position to

adjust the unexpected cut lines (see line 3 and line 7 in

Fig. 8(d)) into reasonable ones.

5.3 Edge Stitch Synthesis

The edge stitch (see Fig. 9(a)) fills thin lines to em-
phasize the design’s contours, or distinguish its inte-
rior details [7,9], where each stitch is synthesized with

one reference texture. In addition, the stitch direction

varies along the shape, which is similar to the satin

stitch. Therefore, the synthesis procedure of the edge

stitch can be regarded as a simplified version of the

satin stitch, and can be performed as follows.
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First, the skeletons of the region are extracted and

optimized similar to the aforementioned steps in the
satin stitch synthesis. However, we adopt simplified steps
in the following phase. By assigning the region pixels

to their nearest skeleton branches, we obtain the sub-

regions, where the skeleton branch is cut simply accord-

ing to its pixel length rather than fitting a B-Spline

curve. To obtain the blocks, each region pixel is as-
signed to its nearest skeleton branch piece. After that,
each block is synthesized with one reference texture. Fi-

nally, we use the line-based 2D-morphing method to de-

form each reference texture into the shape of the block,

with consideration that the edge of the reference texture

should be restricted within the region. The morphing

result is also stored in the form of UV values (see Fig.

9(b)).

5.4 Embroidery Colorization

Our system provides only one set of reference textures

with a specific color for each stitch style. Therefore, it

is necessary to recolor the reference textures for each

region, respectively. We perform the recolor procedure

similar to Chang et al. [5]. In our framework, we ad-

ditionally modify this algorithm by limiting the target

color to a maximum value L to avoid the overexposure

defect in white color cases, while considering that even

embroidery with white threads tends to be gray.

5.5 Multi-layer Embroidery Handle

In embroidery works containing multiple layers, the back-

ground layer should be filled first to make the shapes

inside them less irregular, and subsequently, the con-

tents in the foreground layers will correctly overwrite

these areas. Previous research [7,9] shows that this tech-

nique can greatly improve final visual quality. Since

irregular regions with inner contours tend to be as-

signed with the long-short stitch, we insert the long-

short stitch regions into the background layers, and

test whether the pixels within their inner contours have

completed the synthesis step. If not, all these pixels

are merged into the region and are treated the same

as the original region pixels in the synthesis step. The

synthesis procedures of the other two stitch styles are

performed after the long-short stitch synthesis.

Note, that the real stitches may not locate strictly

close to each other, and blank areas may exist among

them, especially the thin tips of the stitch threads. To

fill up these areas, the adjacent regions in the real em-

broidery works are allowed to be slightly sewn into each

other. Therefore, in our system, we dilate each region

Image
Size

Example
Region
Count

Time(s)

192×195 Fig. 5(a) 1 0.2429
388×272 Fig. 2 170 0.8791
288×288 Fig. 16(e) 47 0.8957
600×400 Fig. 11(c) 295 6.3943
603×604 Fig. 11(f) 619 5.2857
875×739 Fig. 17(b) 1,117 15.4975
700×932 Fig. 14(b) 1,474 15.1318

1034×2029 Fig. 15(b) 5,374 14.5334
1600×1600 Fig. 19(c) 1,735 21.4142

Table 1 Run time performance measured in seconds.

or each sub-region in different layers, to make them

overlap with each other. We represent the seams with

transparent pixels in the reference textures, and use the

alpha channel to combine different layers. The seams in
one layer are likely to be eliminated by the valid pixels
in another layer, while the valid pixels may also be un-

expectedly overlapped. For this reason, we set all the

edge stitch regions in the foreground layers, to ensure

that the fine details are not overlapped by the dilata-

tion.

6 Results and Discussion

Our system is implemented on a PC with a 3.60 GHz
CPU and 16GB memory. The texture synthesis step
of different regions is implemented in parallel via the

OpenMP API without GPU implementation. We con-

duct the experiments on challenging input images, such

as real-world photos, cartoon images and illustrations,

and our method achieves appealing results. The run

time performance of the typical experiments is pre-

sented in Table 1. The time cost is influenced mainly by

the image sizes and content complexity. Given a 425×

425 image, which can support a design of 15cm× 15cm

with 72 dpi in a common garment logo design case, our

system can produce the result within 5 seconds, which

is acceptable for designers to receive the interactive
feedback. For megapixel cases, especially the compli-
cated images containing more regions, our proposed al-

gorithm takes longer time, which needs to be optimized

further but still outperforms the patch-based methods

that cost about 2 minutes on a 500 ×400 image [22].

We compare our results to several state-of-the-art

image transfer methods. Although the adapted Cycle-

GAN method can be applied in most of the stitches,

it fails to capture clear stitches (see Fig. 10(b)). On

the contrary, our method is able to generate clear and

well-shaped satin stitch stripes (see Fig. 10(c)). In ad-

dition, compared to our method (see Fig. 11(c) and

11(f)), other baseline methods [20,23] cannot reproduce
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(a) (b) (c)

Fig. 10 Comparison to the CycleGAN method. (a) The orig-
inal image, (b) the result of CycleGAN [33], and (c) our result.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Comparison to the two neural style transfer meth-
ods. (a)(d) The original image, (b) the result of neural style
transfer [20] along with its reference image in the bottom-
left corner, (e) the result of neural style transfer [23] along
with its reference image in the top-right corner, and (c)(f)
our results.

the object and background colors or stitches of the in-

put images faithfully, since their results overly (see Fig.

11(b) and 11(e)) depend on the provided reference im-

ages.

For the stitch cases, the patch-based image synthe-

sis methods [28,32,22] failed to generate compatible

stitches between the edge and the center, and thus gen-
erate either inconsistent embroidery patterns (see Fig.
12(b)) or totally different ones (see Fig. 12(c)(d)). In
contrast, our method addresses this problem by adopt-

ing parallel stitch rows (see Fig. 12(e)). Although some

image-based embroidery algorithms with manual inter-

actions [7,9] can generate similar visual results with

neat stitch placements (see Fig. 13(a) and 13(c)), our
results can produce comparable results (see Fig. 13(b)(d))
automatically. In addition, our method can adapt to
complicated input images (such as Fig. 14(a) and 15(a))

and generate visually pleasing results (such as Fig. 14(b)

and 15(b)), which are difficult to handle by the afore-

mentioned baseline methods.

In summary, our method has the following advan-

tages compared with the previous methods. First, the

(a) (b) (c) (d) (e)

Fig. 12 Comparison to the three patch-based methods. (a)
The original image, (b) result of [28] with its reference image
in the top-right corner, (c) result of [32] with its reference im-
age in the top-right corner, (d) result of [22] with its reference
image in the top-right corner, and (e) our result.

(a) (b)

(c) (d)

Fig. 13 Comparison to the two image-based interactive
methods. (a) Result of Chen et al. [7], (c) result of Cui et
al. [9], and (b)(d) our results.

(a) (b)

Fig. 14 Embroidery produced by our framework. (a) Origi-
nal illustration image, and (b) our result.
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(a) (b)

Fig. 15 Embroidery produced by our framework. (a) Origi-
nal photography image, and (b) our result.

stitch length parameters in our system are controllable.

Rather than extracting the stitch information from the
given reference image in some of the previous meth-
ods, our system can obtain the stitch lengths via the
actual sizes of the input image and the physical refer-

ence textures. Thus, the system will scale the pixel sizes

of reference textures to make PixelSizeT
PixelSizeI

= ActualSizeT
ActualSizeI

,
where subscript T represents each reference texture,

and I represents the input image. The algorithm will
use the pixel size to generate stitches with expected

lengths.

Second, our system can model different stitches or

knitting techniques according to different reference tex-

tures (see Fig. 16(b) and (c)), and generate faithful re-

sults (see Fig. 16(e) and (f)), which is difficult for other

algorithms to perform.

Last but not least, our system can generate the nor-

mal maps of the embroidery results (see Fig. 17(b))

based on the UV value image and additionally provided

normal textures (see Fig. 17(a)). The normal map can

greatly enhance the appearance and details of a low

polygon model, and is widely used in modern render-

ing engines. Other common texture maps (e.g., metallic

maps and emission maps) can also be synthesized in a

similar way.

After exporting our embroidery work (see Fig. 18(b))

together with the corresponding normal map (see Fig.

18(c)), we can use them to decorate a scarf and achieve

visually pleasing preview results (see Fig. 18(d) and (e))

(a) (b) (c)

(d) (e) (f)

Fig. 16 Effects of different reference textures. (a) The origi-
nal image, (b) the original reference texture for the long-short
stitch, (c) another reference texture for the long-short stitch,
(d) the UV value image as the intermediate result, (e) the
embroidery result of b, and (f) the embroidery result of c.

(a) (b)

Fig. 17 Normal map generation via our system. (a) The UV
value image and normal textures, top is the UV value image
as the intermediate result, middle-left is the normal reference
texture of the long-short stitch, middle-right is that of the
edge stitch, bottom is that of the satin stitch, and (b) the
normal map result.

for online garment display. More cases are shown in Fig.

19.

7 Conclusions

Aiming at fast garment design and online display, we

have proposed a novel pipeline to synthesize three main
types of embroidery images automatically by taking ar-
bitrary images as input. Our method segments the in-
put image into different embroidery regions, and labels

them with corresponding stitch styles and colors in the

segmentation procedure. Then, we conduct the stitch-
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(a) (b) (c)

(d) (e)

Fig. 18 Applications in the online garment display. (a) The
original image, (b) the embroidery result, (c) the normal map
result, (d) the rendering image of the embroidery on a scarf,
and (e) its close-up detail.

(a) (b)

(c) (d)

Fig. 19 Rendering images of our embroidery results in dif-
ferent online garment display cases. (a) A beanie, (b) a shirt,
(c) a hoddie, and (d) a T-shirt.

style-based texture synthesis with recolored reference

textures to produce the visual effects of each stitch

style. Compared to state-of-the-art embroidery genera-

tion methods, our method is competitive in generating

high-quality embroidery images, and can be performed

automatically with faithful details. Moreover, experi-

mental results show that our framework can be utilized

in digital or real industry applications.

For a 1 megabyte image, our method can take 10

seconds to generate the result. Moreover, we only con-

sider the three most used stitch styles. In the future, we

plan to accelerate the processing speed, and incorporate

more stitch styles. In addition, we will integrate seman-

tics guidance for better results, which will contribute to

appropriate segmentation with respect to aesthetics.
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