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Figure 1: An example of the controlled simulation with a keyframe. (a) The original trajectories. (b) The keyframe controlled trajectories.

The vehicle drives along the rightmost lane originally. A keyframe is assigned in the center lane, which denotes that we want the vehicle to

arrive at the position marked by the yellow vehicle at the time framed by the red box. As a result, a new reference path is planned through

the position at first, and then the vehicle follows it to meet the spatial-temporal constraints smoothly.

Abstract

We present a novel traffic trajectory editing method which uses spatio-temporal keyframes to control vehicles during the sim-

ulation to generate desired traffic trajectories. By taking self-motivation, path following and collision avoidance into account,

the proposed force-based traffic simulation framework updates vehicle’s motions in both the Frenet coordinates and the Carte-

sian coordinates. With the way-points from users, lane-level navigation can be generated by reference path planning. With a

given keyframe, the coarse-to-fine optimization is proposed to efficiently generate the plausible trajectory which can satisfy the

spatio-temporal constraints. At first, a directed state-time graph constructed along the reference path is used to search for a

coarse-grained trajectory by mapping the keyframe as the goal. Then, using the information extracted from the coarse trajec-

tory as initialization, adjoint-based optimization is applied to generate a finer trajectory with smooth motions based on our

force-based simulation. We validate our method with extensive experiments.

CCS Concepts

• Computing methodologies → Procedural animation; Interactive simulation;

† Corresponding author: jin@cad.zju.edu.cn

1. Introduction

Traffic simulation has received increasing attention due to the de-

velopment of computer games, film industry, urban planning, au-
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tonomous vehicle driving [LPZ∗19], etc. A reliable traffic simula-

tor that can generate high-fidelity virtual traffic data is thus valu-

able [CBL∗20].

While realistic traffic flows can be simulated via a variety of

simulators [KEBB12, APA∗16, Fel94, DRC∗17], editing or impos-

ing specific space-time constraints on vehicles is difficult. Mean-

while, the capability of interactively editing vehicle trajectories is

needed when traffic scenes need to be simulated with specific ve-

hicles controlled/showing a pre-defined driving behavior. As a re-

sult, currently traffic simulation editing has to be based on labor-

intensive manual tuning of simulation parameters and exhaustive

trial-and-error runs of simulators. Some attempts have been made

to address such a limitation, e.g. by allowing users to manually

generate desired trajectories or rare traffic events observed less

frequently in previous methods or datasets [HRW∗22]. However,

they do not address the spatio-temporal nature of the editing con-

straints, e.g. specifying a certain vehicle to arrive a certain posi-

tion at a pre-defined moment. Recently, traffic reconstruction meth-

ods [VDBO07, SVDBLM10] provide a potential solution via opti-

mization with respect to the space-time constraints. But they deteri-

orate the trajectory quality, e.g. discontinuous and implausible tra-

jectories, and incur large computational costs which renders them

unscalable.

To ensure the pluasibility of edited trajectories, TraED-

ITS [HRW∗22] integrates a data-driven traffic simulation mod-

ule inspired by [RXX∗19]. Data-driven methods can utilize pre-

recorded traffic data to generate realistic behaviors. However, there

is a fundamental challenge to combine data-driven methods with

optimization-based methods which are widely used in traffic sim-

ulation. The core reason is the simulation process of optimization-

based methods is intrinsically non-differentiable, making gradient-

based learning infeasible. It is worth noting that the social force

model, which is widely used in crowd animation, has also shown

fantastic potential in traffic simulation recently. A unified force-

based framework [CJH∗19] and a simplified force-based frame-

work [HCJ21] are successively proposed to simulate mixed traffic

scenarios with different types of agents. Because agent’s dynam-

ics are explicitly expressed with derivable formulas, optimization

based on force models is more practical. However, current force-

based traffic simulation methods can only provide scenarios with

simple straight lanes, and vehicle’s motions are restricted strongly

to the lane shapes.

To generate traffic trajectories based on the force-based models

with given spatio-temporal constraints, keyframing is a practical

and effective technique for controlling coarse results in physically-

based simulation. The adjoint method, as one of the popular meth-

ods in optimal control for gradient computation, has been intro-

duced in fluid simulation [MTPS04] and general particle dynam-

ics [WMT06], to satisfy given keyframe constraints. However, the

results of the adjoint optimization are highly dependent on the ini-

tialization. Bad initialization can slow down or even prevent gradi-

ent descent from achieving convergence.

None of the prior methods can fulfill all of our requirements per-

fectly due to the following challenges. Firstly, the current force-

based traffic simulation frameworks constrain vehicles to drive

along straight lanes and can hardly meet the demands of arbi-

trary settings or edits given by users. Secondly, there is no proper

method for optimizing traffic trajectories with spatio-temporal

keyframe control. State-time space search becomes extremely time-

consuming if we need smooth traffic behaviours, while gradient-

based optimization like the adjoint method may decelerate conver-

gence or generate implausible trajectories due to poor initialization.

The optimization process needs to be adapted to efficiently gener-

ate plausible traffic behaviours.

To address the above challenges, we provide a novel traffic tra-

jectory editing method that allows users to control vehicle’s mo-

tions with spatio-temporal keyframes. Vehicles are updated by

force-based models using path coordinates to make them more ma-

neuverable rather than being strongly restricted to straight lanes.

A coarse-to-fine optimization process is presented to find optimal

keyframe controls of the simulation appropriately. The main con-

tributions of this work are as follows:

• A traffic trajectory editing approach, which allows users to spec-

ify keyframes to regulate vehicles and generate desired trajecto-

ries that can meet the spatio-temporal constraints while the traffic

behaviours can remain plausible.

• A novel force-based framework that decouples vehicle’s motions

from static lanes and can generate microscopic traffic simulation

in complex scenarios including diverse interactions.

• A coarse-to-fine optimization process is developed by combin-

ing the adjoint method with state-time space search to perform

gradient descent effectively and stably to generate smooth tra-

jectories with keyframe controls.

2. Related Work

2.1. Interactive Editing Technology

Traffic simulation software packages like SUMO [KEBB12], Sim-

Mobility [APA∗16], Vissim [Fel94] and Carla [DRC∗17] can gen-

erate traffic flows effectively. However, if users want to edit the

results or generate some cases with specific behaviours, they have

to tune parameters and run the simulation over and over based on

the previous result until it meets the expectation.

The interactive editing concept was proposed to solve the simi-

lar problem in crowd animation at the very beginning. Cage-based

deformation was introduced to edit large-scale crowd animation in-

teractively [KSKL14]. Similar results can be achieved based on

mesh deformation [ZZZY20]. Users can also control the simula-

tion in real-time by drawing sketches as reference paths or obsta-

cles [MM17]. In traffic simulation, a human-in-the-loop framework

is proposed, which allows users to generate irregular and diverse

traffic trajectories [HRW∗22] by generating self-defined reference

paths or modifying vehicle’s attributes. However, this method only

allows users to edit in space dimension, and the temporal con-

straints like specific arriving time are not supported explicitly. Our

method allows users to assign spatio-temporal keyframes to regu-

late vehicle’s motions and generate desired trajectories.

2.2. Traffic Simulation

In computer graphics, data-driven methods are used to gen-

erate realistic traffic flows based on pre-captured traffic data
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Figure 2: Overview of our spatio-temporal keyframe control of traffic simulation using a coarse-to-fine optimization process. By discretizing

static scenarios, we can generate reference paths for vehicles using the given way-points. We simulate the vehicles using our proposed social

force models. With given spatio-temporal keyframes, a coarse-grained state-time search and fine-grained adjoint-based optimization are

combined to efficiently generate smooth trajectories that can satisfy the keyframe constraints.

from video, LiDAR, GPS, and other available sensors. Spatio-

temporal data from in-road sensors is provided to reconstruct traf-

fic flows [WSL13, LWL17]. Based on texture synthesis and cage-

based deformation, appropriate traffic flows can be populated in

any road network with given samples [CDR∗17]. A data-driven

optimization-based method is proposed to simulate heterogeneous

multi-agent systems [RXX∗19]. However, it is difficult to combine

data-driven methods with numerical optimization if we want to add

extra spatio-temporal constraints through the generated trajectories

since it is difficult to compute the derivative of data-driven simula-

tion processes.

On the other hand, the social force model, which is widely

used in crowd animation [HM95, HFV00, AGR∗16, CSC16], has

recently shown great potential in traffic simulation due to its high

computational effectiveness and flexibility. In order to consider all

possible agents in a realistic urban environment, a unified force-

based framework is proposed which can describe various inter-

actions among different types of agents [CJH∗19]. Based on an

object-oriented concept, a simplified model is proposed to param-

eterize adjustable coefficients for different agents, make parame-

ter tuning more intuitive and improve the scalability of the frame-

work [HCJ21]. With real-world traffic datasets, the coefficients in

the force model can also be calibrated automatically with adaptive

genetic algorithm [CLH∗21]. However, these methods only provide

simulation scenarios with straight lanes, and vehicles’ behaviours

are strongly restricted and difficult to extend to complex scenar-

ios. We develop a more viable force-based framework to simulate

vehicles in different environments and generate diverse behaviours.

2.3. Keyframe Control Animation

Keyframe is a classical technique for giving fine-grained controls

manually to coarse results in physically-based simulation such as

fluid, smoke and cloth. As one of the popular methods of opti-

mal control problems involving gradient computation, the adjoint

method is introduced to control fluid simulation [MTPS04], gen-

eral particle systems [WMT06] as well as elastic motion editing

[LHDJ13]. However, the gradient-based methods greatly rely on

the initialization, and are improper to be applied to optimize traffic

simulation directly. Specifically, traffic reconstruction methods can

respect keyframe constraints via searching for paths by mapping

the keyframes as the goals in state-time space [VDBO07, SVD-

BLM10], but their performance and generated results strongly de-

pend on the space discretization timestep. Therefore, we combine

the adjoint method with state-time space search and propose a

coarse-to-fine optimization process that can generate plausible traf-

fic simulation results effectively with given keyframes.

3. Method

The overview of our proposed method is demonstrated in Fig. 2.

We first introduce the Frenet coordinates and our static scenarios

representation (Section 3.1).Then we show the force-based traf-

fic simulation including social forces calculation (Section 3.2.1)

and reference path planning (Section 3.2.2). In order to provide

keyframe controls with spatio-temporal constraints, we come up

with a coarse-to-fine optimization process (Section 3.3). The state-

time graph is constructed (Section 3.4.1) to search for coarse-

grained trajectories as initialization (Section 3.4.2, 3.5.1), and the

adjoint method is further applied to obtain smooth trajectories and

plausible behaviours (Section 3.5.2).

3.1. Frenet Coordinates and Scenario Representation

We perform our framework in both the Cartesian coordinates and

the Frenet coordinates. Frenet frame is a more intuitive way to de-

scribe the vehicle state in the lane. A Frenet coordinate [s,d] con-

sists of the longitudinal displacement along the lane and the lateral

deviation relative to the lane center. We use p = [x,y], p̂ = [s,d],
v = [vx,vy] and v̂ = [vs,vd ] to represent positions and velocities in

the Cartesian coordinates and the Frenet coordinates, respectively.

Similarly, we use notations f = [ f x, f y] and f̂ = [ f s, f d ] to represent

forces or other attributes in these two coordinate systems.

Specifically in our work, Lane is the static areas where vehicles

can drive, usually defined segment-by-segment with specific lane

width in the configuration files. Path is a sequence of points linking
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a starting point to a destination, and we interpolate them by cubic

spline. Namely, the center line of each Lane with a specific driving

direction is a Path. We use L and P to represent a Lane and a Path,

respectively.

Given a certain scene configuration, the lanes in the scene are

always determined. So we initialize the reference path set as:

P∗ = P∗
topo ∪P∗

user,

P∗
topo = DFS

(

L∗) ,

P∗
user =∅,

(1)

where P∗ is the reference path set containing all the available ref-

erence paths in the scene, and L∗ is the lane set containing all the

lanes defined in the configuration file. P∗
topo and P∗

user represent the

reference paths determined by lanes’ topology and user settings, re-

spectively. Each path in P∗
topo is a unique link from the origin of a

lane without in-comings to the end of a lane without out-goings.

DFS represents the depth-first search function.

In accordance with [HRW∗22], we generate a grid map for the

scene in 2D space with a given resolution. The lanes are embedded

into the grid nodes by capsule-like shape approximation for every

segment, and we label the grid cells of undrivable areas, drivable

areas and lane centers with different values. The 2D grid map will

be used to plan the reference paths with way-points from users and

store vehicles’ information to accelerate real-time neighbor search

during the simulation.

3.2. Force-based Traffic Simulation

3.2.1. Force Calculation

We model three factors which heavily influence a vehicle’s state:

self-motivation, surrounding neighbors and the environment. The

state of a vehicle at time t is denoted as [v̂t , p̂t ,vt ,pt ,θt , v̂o,t ,Pk].
v̂t ,vt ∈ R

2 represents its velocity in Frenet coordinates and Carte-

sian coordinates, respectively. p̂t , pt ∈ R
2 represent its position in

Frenet coordinates and Cartesian coordinates, respectively. θt ∈ R

represents its orientation by Euler angles. v̂o,t ∈ R
2 represents the

free-flow desired velocity. Pk ∈ P∗ represents the reference path

k it follows. The vehicle’s attributes in the Frenet coordinates and

the Cartesian coordinates can be interconverted by the cubic spline

function Sk of its reference path. The dynamics of a vehicle are

formulated as:

f̂ t = f̂ o,t + f̂ k,t +Sk

(

∑
j∈Nt

f j,t

)

,

v̂t+1 = v̂t +
f̂ t

m
·∆t,

p̂t+1 = p̂t + v̂t+1 ·∆t,

[vt+1,pt+1,θt+1] = Sk

(

p̂t+1

)

,

(2)

where f̂ t represents the total force on the vehicle in Frenet coordi-

nates, which is a combination of the self-motivated force f̂ o,t , the

path keeping force f̂ k,t from its reference path Pk and the colli-

sion avoidance forces f j,t exerted by the neighbor vehicle j in its

neighbors set Nt . Specifically, the collision avoidance forces are

computed in Cartesian coordinates at first. m represents the vehi-

cle’s mass. The velocity and the position in Frenet coordinates are

updated by the forces. The velocity and the position in Cartesian

coordinates as well as the orientation are obtained using the cubic

spline function Sk. ∆t is the timestep used in the simulation.

Self-motivated force: We assume that each vehicle has a desired

velocity to travel at when it is not constrained by the presence of

neighbor vehicles. Different from the previous methods [CJH∗19,

HCJ21, CLH∗21], we formulate the self-motivated force as:

f̂ o,t = ωom

(

2

1+ ev̂o,t−v̂t
−1

)

â, (3)

where ωo is a corresponding weight, and â is the maximum acceler-

ation of the individual in Frenet coordinates. Such formulation can

make vehicles gradually change and keep their velocity to the de-

sired v̂o,t , while the derivative of the expression exists at each point

in its domain.

Path keeping force: Typically drivers tend to drive along the

lane center due to safety and traffic rules in real world traffic. As

mentioned, we consider the center line of a lane with a driving di-

rection as a path, so the lane keeping behaviors can also be regarded

as path keeping. We define the path keeping force as an attractive

force from the path:

f̂ k =

{

ωk |dt |uk, |dt | ≥
1
2 (wl −wv)

0, otherwise
, (4)

where ωk is a corresponding weight, dt ∈ p̂t is the current lateral

displacement of the vehicle related to the path, and uk is the unit

vector pointing from the vehicle to the path. wl is the lane width,

and wv is the vehicle’s width. As shown, path keeping force is active

only if a vehicle’s deviation from its reference path exceeds the

threshold in order to prevent the vehicle oscillating around the path.

Collision avoidance force: A vehicle should avoid colliding

with others who are too close to it. We formulate such behaviour as

a point-to-point repulsive force that effects between the vehicle and

its surrounding neighbors. The collision avoidance force between a

vehicle and its neighbor j is defined as:

f j = ωc
a ·b

(

1+ c||p j,t −pt ||
)2

uc,

a =

{

cosφ, φ ≤ π
4

0, otherwise
,

b = s0 + ||vt ||T0 +
||vt || · ||v j,t − vt ||

2||â||
,

c =
1

s0
,

(5)

where ωc is a corresponding weight, a is a visual factor, b and c

are parameterized coefficients, and uc is the unit vector pointing

from j to the vehicle. We formulate the coefficients inspired by the

intelligent driver model (IDM) [THH00]. φ is the angle between the

vehicle’s moving direction and the direction of the vehicle pointing

to j. v j,t and p j,t is the velocity and the position of j in Cartesian

coordinates. s0 and T0 are the safety space headway between two

vehicles and the reacting time for the vehicle to brake, which are

both constant for a certain individual. The neighbor set Nt can be
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Figure 3: An example of the forces on a vehicle. The vehicle follows

the reference path Pk and has two neighbors, where j0 is in the

same lane and j1 is in the adjacent lane.

updated at each frame effectively by the 2D grid map, where the

search range is 100 × 100 grid nodes in our implementation.

Based on the force models, our traffic simulation can generate

smooth traffic behaviours such as acceleration/deceleration, lane

keeping and lane changing. Since we update the vehicles along

their reference paths, our framework can simulate the traffic in

complex scenarios. We give an example of the forces on a driving

vehicle in Fig. 3.

3.2.2. Reference Path Planning

In addition to the paths extracted from lane centers, new reference

paths can be created by clicking a sequence of key points in the

scene. The given key points are mapped to the specific nodes on

the constructed 2D grid map, and then the whole path is planned

segment-by-segment, where the first node of each segment is con-

sidered as the start and the second one is the terminal. We use the

A* algorithm to plan the path and define the heuristic function as:

h(n) = ||n−ngoal ||+µa · e
(µb·sign), (6)

where ||n−ngoal || is the Euler distance between the current node

and the terminal, and µa and µb are adjustable coefficients. sign ∈
[0,1,2] is the sign filled in different types of nodes we metioned in

Section 3.1, where 0 represents unreachable area, 1 represents driv-

able area and 2 represents lane center. The second term on the right-

hand side of the equation can make the planning tend to search

along with lane centers.

We post-process the planning results by down-sampling, Gaus-

sian smoothing and interpolating with cubic spline. Finally the

user-defined path P becomes available for vehicles to follow, de-

noted as P∗
user = P∗

user ∪ [P ]. Specifically, once a vehicle’s refer-

ence path is changed, its state values represented in Frenet coordi-

nates need to be updated according to the new cubic spline function.

3.3. Spatio-temporal Keyframe Control

In order to provide further keyframe controls with both spatial

and temporal constraints, the adjoint method is applied since it

is proven to be effective in optimal control. We can find a set of

optimal controlling desired speeds and corresponding controlling

forces, and make vehicle’s behaviours satisfy the keyframe con-

straints based on our force-based simulation.

However, gradient-based optimization greatly depends on the

initial values of the parameters to be optimized. Bad initialization

may decelerate or even prevent gradient descent from achieving

Algorithm 1 Coarse-to-fine optimization

Input:

State-time graph for a vehicle along its reference path;

K setting keyframes Q = [q̃0, q̃1, ..., q̃K ];
The maximum iteration number N for the adjoint method;

Learning rate α, exponential decay rates β0, β1;

Output:

Trajectory T under keyframes control;

1: Initialize controlling desired speeds V ⇐∅, controlling forces

F ⇐∅;

2: for i = 0 to K −1 do

3: Start state-time node [sstart ,v
s
start , tstart ]⇐ q̃i;

4: Goal state-time node [sgoal ,v
s
goal , tgoal ]⇐ q̃i+1;

5: Find a coarse trajectory in state-time graph with A* algo-

rithm, Tc ⇐A∗([sstart ,v
s
start , tstart ], [sgoal ,v

s
goal , tgoal ]);

6: Append controlling desired speeds, V ⇐ V ∪ [vs
o,0,v

s
o,1, ...]

extracted from current Tc;

7: end for

8: Pad controlling desired speeds V ;

9: for i = 0 to N −1 do

10: Compute corresponding forces with controlling desired

speeds, F ⇐V ;

11: Simulate the current whole trajectory To with F using our

force-based traffic simulation algorithm;

12: if loss decreases then

13: Update T ⇐ To;

14: end if

15: Compute gradient of desired speeds using the adjoint

method, ∇V ⇐Ad joint(To,V );
16: Gradient descent, V ⇐ Adam(∇V,α,β0,β1);
17: end for

18: return Fine trajectory T ;

convergence. Therefore, we perform another optimization in a dis-

crete state-time space to find a coarse-grained trajectory at first, and

then treat it as initialization to further optimize and improve the

behaviours. The pseudo-code of our coarse-to-fine optimization is

described in Algorithm 1, and we will introduce the details in the

following sections.

3.4. Coarse Search in State-Time Space

3.4.1. State-Time Graph Construction

We define the state space of a vehicle as a subset of its entire state

representation shown in Section 3.2.1 for simplicity in the follow-

ing. The state space along a vehicle’s reference path in the longitu-

dinal direction is denoted as [s,vs], where s ∈ p̂ and vs ∈ v̂ are the

longitudinal displacement and the longitudinal speed, respectively.

The state space can be discretized into grid nodes by giving an-

other timestep ∆t̃, which is much larger than the one we use in traf-

fic simulation. Assume that the acceleration of a vehicle can only

be chosen from a discrete set [−as,0,as] where as ∈ â is the max-

imum longitudinal acceleration. According to the state dynamics

shown in Eq. 2, the intervals along the vs-axis and the s-axis are
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Figure 4: A part of discretized state-time space and directed state-

time graph. The reachable nodes are marked by the dots with dif-

ferent colors laying on the corresponding s-vs planes, representing

time at ∆t̃ (green), 2∆t̃ (red) and 3∆t̃ (blue). The transitions from

parent nodes denoted by arrows are also colorized.

∆vs = as∆t̃ and ∆s = 1
2 as(∆t̃)2. Therefore, starting from a given

state node [s,vs], there should be three reachable state nodes after

∆t̃: [s+(2 vs

∆vs +1)∆s,vs +∆vs] for acceleration, [s+2 vs

∆vs ∆s,vs] for

speed maintenance and [s+(2 vs

∆vs −1)∆s,vs−∆vs] for deceleration.

As a result, the behaviours along the reference path can be repre-

sented as a directed graph with finite combinations of reachable

state nodes.

The state-time space of a vehicle is the state space augmented

by the time dimension. Similarly, we can also construct a directed

graph in the state-time space that contains transitions from given

state-time nodes q̃ = [s,vs, t] to their corresponding three reachable

state-time nodes. Therefore, the given keyframes can be mapped to

specific state-time nodes, and we need to find a trajectory from the

start node [sstart ,v
s
start , tstart ] to the goal [sgoal ,v

s
goal , tgoal ] through

the spanning graph. A part of discretized state-time space and state-

time graph are demonstrated in Fig. 4.

The state-time space and the corresponding directed state-time

graph for any vehicle are identical with the same discretization pro-

cess. In practice, we only need to explicitly construct one directed

state-time graph and reuse it for different reference paths.

3.4.2. Coarse Trajectory Search

Finding a trajectory through the state-time graph with given a start

and goal can be seen as finding an optimal path in the special 3D

solution space. We also use the A* algorithm to search for it. The

heuristic function for a certain node is defined as:

h̃(q̃) = ωd h̃d(q̃)+ωah̃a(q̃),

h̃d(q̃) =
√

|s− sgoal |2 + |vs − vs
goal

|2 + |t − tgoal |2,

h̃a(q̃) =
|vs − vs

parent |

∆t̃
,

(7)

where h̃d is the distance between the state-time node and the goal,

and h̃a is the variation of speed compared with its parent state, mak-

ing the vehicle accelerate or decelerate as infrequently as possible.

ωd and ωa are corresponding weights.

Moreover, other moving vehicles can be pre-converted to static

obstacles in the state-time space [SVDBLM10]. During the A*

search, the nodes occupied by other vehicles are marked as un-

reachable from their parent nodes. The nodes that exceed allowed

speed, path length or maximum time duration are also prohibited.

However, such constraints may raise failure that we can not find a

trajectory that matches the keyframes. To ensure that the A* algo-

rithm always produces an output, we will return the trajectory that

can reach the node closest to the goal and has the minimal heuristic

value when the search can not reach the true goal.

Obviously, this generated trajectory is implausible because of

the large timestep used to construct the state-time graph as well as

the discrete acceleration options. Though using a small timestep or

adding more alternative acceleration values can generate better re-

sults, they will also make space discretization and state-time search

become extremely time-consuming because of the exponential rise

of the number of state-time nodes. Therefore, we will use the ad-

joint method to refine the behaviours along the coarse trajectory

depending on our force-based simulation.

3.5. Trajectory Refinement with Adjoint Method

3.5.1. Initialization Using Coarse Trajectory

We use the notation T to represent a trajectory in the following.

After searching a coarse trajectory Tc in state-time space, we use

the speeds extracted from Tc as the initialized controlling desired

speeds V = [vs
o,0,v

s
o,1, ...], and further optimize them based on our

force models to make the simulation satisfy the given keyframes.

As we mentioned in the last section, different timesteps in traffic

simulation and state-time space discretization are used. It will cause

different numbers of frames when a certain trajectory is registered

by simulation and state-time space. We pad the sequence of con-

trolling desired speeds V extracted from coarse trajectory by linear

interpolation to align the number of frames with the trajectory gen-

erated by simulation. Then we can use the padded V to calculate

the corresponding controlling forces F and trajectory To. Tc and To

can be seen as the different representations for a certain trajectory

in state-time space and traffic simulation, respectively. Obviously,

we have a relationship that #To ·∆t = #Tc ·∆t̃, where #To and #Tc

are the numbers of frames, and both sides are equal to the total

driving time duration of this trajectory.

3.5.2. Adjoint-based Optimization

To measure the difference between the trajectory To with T

frames generated by the controlling desired speeds V and a set of

keyframes Q specified by users, we define the objective function

which we want to minimize as:

Φ(To,V ) =
1

2

T

∑
t=0

(

ωt ||To,t −Qt ||
2 +ωv||v

s
o,t ||
)

,

s.t. To,t+1 = G
(

To,t ,v
s
o,t

)

, t ∈ [0,1, ...T −1],

(8)

where ωt is a weight to emphasize the influence of the state at cer-

tain keyframes, To,t = [st ,v
s
t ] is the state at time t along the trajec-

tory, and Qt is the keyframe at time t if there exists. In fact, To,t

should be the state-time node [s,vs, t] as our definition, but the time
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Parameter Value Unit Description

∆t 0.01 s the timestep used in the force-based traffic simulation

â [5.0, 1.0] m/s2 the maximum acceleration of the vehicles in Frenet coordinates

s0 4.0 ± 1.0 m the jam space headway between two vehicles for safety

T0 1.0 ± 0.5 s the reacting time for the vehicles to brake

wv, wl 1.8, 3.5 m the width of lanes and the vehicles, respectively

ωo, ωk, ωc 1.0, 0.5, 3.0 − the weights for the force calculations in Eq. 3, Eq. 4 and Eq. 5, respectively

µa, µb 20.0, −1.5 − the coefficients for the heuristic-based path planning in Eq. 6

∆t̃ 0.5 s the timestep used in state-time space discretization

ωd , ωa 1.0, 2.0 − the weights for the heuristic-based state-time search in Eq. 7

ωt , ωv 1.0, 0.1 − the weights for the objective function in the adjoint method in Eq. 8

α, β0, β1 0.01, 0.9, 0.999 − the parameters of Adam optimizer used for gradient descent in Algorithm 1

Table 1: The values of the important parameters used in our experiments.

dimension is left out here because we strictly align every times-

tamp when calculating the objective function. A regularization term

weighted by ωv is also added to prevent overfitting.

As shown in Eq. 8, the optimization should satisfy a series of

time stepping constraints advanced via function G, an abbreviation

of the state dynamics functions we have already shown in Eq. 2.

According to the adjoint method, we introduce a set of Lagrange

multipliers and transform the optimization into

∇V =
dΦ

dV
=

T

∑
t=0

λt ·
∂G

∂vs
o,t

+
∂Φ

∂V
,

λt =

{

∂Φ
∂To,t

, t = T

λt+1 ·
∂G

∂To,t
+ ∂Φ

∂To,t
, t < T

,

(9)

where λt is the Lagrange multiplier for time t, which is also called

an adjoint state in the adjoint method. These Lagrange multipliers

are calculated by iterating backward in time at first, and then we can

obtain the gradient of the controlling desired speeds V by substitu-

tion. Finally, the controlling desired speeds are updated by gradient

descent algorithm to get a new set of controlling forces which tends

to decrease the difference between the simulation trajectory and the

given keyframes. We use Adam optimizer for gradient descent in

our implementation.

For clarity, we further demonstrate how to solve the terms

∂G/∂vs
o,t and ∂G/∂To,t in the above equations. For the speed com-

ponent vs ∈ [s,vs] along To, according to Eq. 2, the transition func-

tion G can be written as:

v
s
t+1 = G(To,t ,v

s
o,t) = v

s
t +

f s
t

m
·∆t, (10)

where f s
t is the longitudinal component of the total force at time t.

So we can obtain that

∂G

∂vs
o,t

=
∂ f s

t

∂vs
o,t

∆t

m
,

∂G

∂To,t
=

[

1+
∂ f s

t

∂vs
t

∆t

m
,

∂ f s
t

∂st

∆t

m

]

.

(11)

According to the force models demonstrated in Section 3.2.1, we

can easily calculate these expressions. In our implementation, we

only compute the derivative of self-motivated force. Since the

collision avoidance force calculation contains a non-differentiable

piecewise function, and the path keeping force has no contribu-

tion to the vehicle’s longitudinal motions. In a similar way, the two

terms for the position component s ∈ [s,vs] are

∂G

∂vs
o,t

=
∂ f s

t

∂vs
o,t

(∆t)2

m
,

∂G

∂To,t
=

[

∆t

(

1+
∂ f s

t

∂vs
t

∆t

m

)

,1+
∂ f s

t

∂st

(∆t)2

m

]

.

(12)

After repeating optimization for certain iterations, the final re-

fined trajectory T can meet the given spatio-temporal keyframe

constraints and also gets smoother.

4. Experimental Results

4.1. Experimental Setup

The following experiments were implemented on a computer with

a 3.60GHz Intel(R) Xeon(R) W-2123 CPU with 8-core processors

and 32GB memory. Our source code was implemented in C++,

compiled as a x64 dynamic link library and imported into Unity3D

for visualization. The values of some important parameters we used

in our experiments are shown in Table 1, which were pre-defined

in configure files and loaded by the program.

There are three scenarios used in our cases which were manually

created by SUMO NetEdit and exported as XML files. The first sce-

nario contains a curvy road with three lanes in the same direction.

The second scenario contains a straight road with three lanes in the

same direction as well as a crosswalk. The third scenario contains

an intersection with a four-lane dual carriageway. The discretiza-

tion resolution of the 2D grid map is 0.5m × 0.5m for each.

4.2. Keyframe Controlled Trajectories

We designed some cases to show the results of keyframe controlled

simulation with our method. In the following figures, we use a yel-

low vehicle to represent the position constraint and a red box to
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Figure 5: The original trajectories (top) and the keyframe con-

trolled trajectories (bottom) of running the red light in the cross-

walk scenario.

Figure 6: The original trajectories (top) and the keyframe con-

trolled trajectories (bottom) of yielding to the oncoming vehicles

in the intersection scenario.

frame the time constraint of the keyframe. That is to say, we want

the vehicle to reach the position marked by the yellow vehicle at

the moment framed by the red box. The edited vehicles are shown

with its historical states, while the other vehicles are only shown

with their final states.

The first case was generated in the scenario with a curvy road,

which we have already shown in Fig. 1. The specific vehicle drove

along the rightmost lane originally. We set a keyframe in the center

lane and assigned the vehicle to reach the position at the framed

time. As a result, a new reference path through the position was

planned. Then, the vehicle changed the lane and decelerated to ar-

rive at it on time.

The second case was generated in the crosswalk scenario. The

specific vehicle braked in the center lane and waited for the red

light originally. We set a keyframe to assign the vehicle to overtake

and get through the crosswalk instead of waiting. As a result, a new

reference path was planned to lead the vehicle to the lane which

Discretization Timestep ∆t̃ State-Time Search Time

0.5 0.173

0.25 36.924

0.1 −

Table 2: The state-time search time (s) over different discretization

timesteps (s). Due to memory limitation, it is hardly to obtain the

state-time search time when discretization timestep is 0.1s.

Simulation Timestep ∆t Adjoint-based Optimization Time

0.5 0.002

0.1 0.004

0.05 0.011

0.01 0.185

0.005 0.699

Table 3: The adjoint-based optimization time (s) over different traf-

fic simulation timesteps (s) for a certain trajectory.

had not been blocked yet. The vehicle accelerated to run the red

light (see Fig. 5).

The third case was generated in the interaction scenario. The spe-

cific vehicle turned right in the left lane without yielding to the on-

coming vehicles driving forward in the right lane originally. We set

a keyframe to assign it to wait before turning. In this case, we only

needed to specify the position and the corresponding arrival time

since the reference path for the vehicle was not changed. As a re-

sult, the vehicle decelerated and yielded at the intersection to let the

vehicles in the right lane go first (see Fig. 6).

4.3. Performance and Comparison

To evaluate the performance of our coarse-to-fine optimization pro-

cess, we performed a series of experiments with different timesteps

or initialization for the adjoint method. The following experiments

are based on a keyframe which constrains a vehicle to travel 100

meters in 10 seconds along its reference path, setting the number of

the maximum iterations of the adjoint method to 100.

We searched for the coarse trajectory in the state-time space with

different discretization timesteps ∆t̃=0.5s, 0.25s and 0.1s. The cor-

responding search times are shown in Table 2. ∆t̃=0.5s was used

to reconstruct the traffic flows In [SVDBLM10]. When ∆t̃ gets

smaller, the generated trajectories with state-time search may be-

come smoother, but search time and required memory will also in-

crease rapidly. According to Table 2, the search time is 36.924s

when ∆t̃=0.25s. Due to the memory limitation, the search time can

hardly be obtained when ∆t̃=0.1s. Therefore, as mentioned earlier,

it is impractical to obtain plausible keyframe controlled results by

using a smaller discretization timestep in state-time space.

We optimized the trajectory using the adjoint method with differ-

ent simulation timesteps ∆t. The corresponding optimization times

are shown in Table 3. The optimization time mainly depends on

the number of frames of the trajectory, so it becomes more time-

consuming when ∆t gets smaller. In our implementation, we chose
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Figure 7: (a) The longitudinal speeds of the vehicle generated by

state-time search and our method with the same keyframe con-

straints. (b) The optimization loss over different numbers of iter-

ations of the adjoint method initialized with average speed and our

method with the same keyframe constraints.

∆t̃=0.5s and ∆t=0.01s in order to strike a balance between the to-

tal optimization time and the plausibility of generated trajectories.

Thus the total optimization time with the given keyframe using our

coarse-to-fine optimization is about 0.358s for 100 iterations.

We compare the results generated by state-time search only and

our method. The longitudinal speeds along the generated trajecto-

ries are shown in Fig. 7 (a). The speed of the state-time search result

changes suddenly since the vehicle can only choose the determined

acceleration values in a discrete set at each timestep, which will

cause implausibilities. In comparison, the result generated by our

coarse-to-fine optimization is much smoother.

We further compare the loss during the optimization of the ad-

joint method and our method, and the loss values over different

numbers of iterations are shown in Fig. 7 (b). For the adjoint

method, we initialize the controlling desired speeds as the average

speed that the vehicle needs to travel from the start to the key-frame

position within the time. The loss achieves convergence at approx-

imately the 70th iteration. In comparison, with our coarse-to-fine

process, we initialize the controlling desired speeds better by uti-

lizing the information of the coarse trajectory search in the state-

time space. The loss at the beginning is thus much smaller than

the optimization initialized with average speed and can achieve fast

convergence at approximately the 15th iteration. Therefore, we can

also give an early stop if the loss no longer decreases to further

reduce the optimization time in our method.

Finally, the key aspects of our method in comparison with previ-

ous works are summarized in Table 4. Our method includes all the

positive aspects of the previous works such as generating smooth

traffic motions, allowing to simulate in complex scenarios and edit

vehicles during the simulation. Furthermore, since our traffic simu-

lation is based on the force models, we can provide spatio-temporal

key frames to regulate vehicles and generate desired trajectories in

a more intuitive way.

5. Discussion

5.1. Conclusion and Limitation

We have presented a novel traffic trajectory editing method that

allows users to specify spatio-temporal keyframes to control ve-

Method (a) (b) (c) (d) (e)

[SVDBLM10] State-Time Search ✗ ✓ ✗ ✓

[CLH∗21] Force-based ✓ ✗ ✗ ✗

[HRW∗22] Data-driven ✓ ✓ ✓ ✗

Ours Force-based ✓ ✓ ✓ ✓

Table 4: Comparison with previous methods. Several criteria are

presented: (a) Traffic simulation model, (b) Smooth traffic motions,

(c) Allowing to simulate in complex scenarios, (d) Allowing to in-

teractively edit vehicles during the simulation, (e) Allowing to con-

strain vehicles with spatio-temporal keyframes.

hicles’ behaviours. We propose a force-based traffic simulation

framework containing self-motivated force, path keeping force and

collision avoidance force. It mainly updates vehicles based on the

Frenet coordinates along vehicles’ reference paths which can be

defined manually. To provide keyframe controls, we propose a

coarse-to-fine optimization process. First, we discretize the state-

time space along the path, construct a state-time graph and plan

a coarse trajectory from the start to the keyframe node. Then, we

utilize the coarse trajectory to initialize the adjoint method and ef-

ficiently find a set of optimal controlling desired speeds to generate

a finer trajectory based on our force-based simulation.

Though the proposed method is promising, it still has some lim-

itations. Firstly, the keyframe constraints may become inoperative

if the environment is congested. As we stated in Section 3.4.2, the

state-time search regards the neighbors of an individual as static

obstacles, which means its neighbors will not be optimized at the

same time if we use keyframes to constrain it. If the vehicle is

blocked when it tries to meet the keyframes during the state-time

search, the result will be replaced by a trajectory that can reach the

node closest to the actual goal. Though the problem can be solved

by iteratively editing the surrounding vehicles who block the indi-

vidual until it can meet the keyframes, we believe that a optimiza-

tion process taking all the possible vehicles into consideration at

once will be a worthwhile endeavor. Secondly, the simulation re-

sults may become irregular due to users’ arbitrary edits. For exam-

ple, a vehicle may decelerate for safety and comfort when it follows

a path with sharp curves rather than maintaining a high speed in the

real traffic. This problem can also be solved by interactively setting

keyframes or editing vehicle’s desired speed by users to make the

behaviours more perceptually realistic.

5.2. Failure Cases and Refinements

To demonstrate our framework’s capability, even for some failure

cases caused by the aforementioned limitations, our method is still

capable of refining them by manually providing more keyframes.

For more information, please see our supplementary video.

The first scenario is that the vehicle misses the keyframe due

to traffic congestion (see Fig. 8 (a)). We offer two solutions to the

problem. The first solution is to give the vehicle another keyframe

that causes it to overtake the leader (see Fig. 8 (b)). The second

solution is to assign keyframes to its leaders, forcing them to yield

(see Fig. 8 (c)). As a result, both refinements eventually succeed in

getting the vehicle to meet the keyframe.
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The second scenario is that the vehicle behaves abnormally when

performing a high-speed U-turn (see Fig. 9 (a)). This is due to the

fact that in real-world traffic, drivers tend to slow down for safety

and comfort when following a more curved path. We also provide

two methods for improving the behavior’s perceptual realism. The

first solution is to assign a keyframe that causes the vehicle to sim-

ply decelerate when passing through the curve (see Fig. 9 (b)). The

second solution is to assign two keyframes, one to wait for oncom-

ing vehicles and one to complete the U-turn, to further prevent ag-

gressive driving and maintain polite behavior (see Fig. 9 (c)).
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Figure 8: The first failure case. (a) The vehicle misses the keyframe due to traffic congestion. (b) The first solution is to give the vehicle

another keyframe that causes it to overtake the leader. (c) The second solution is to assign keyframes to its leaders, forcing them to yield.
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Figure 9: The second failure case. (a) The vehicle behaves abnormally when performing a high-speed U-turn. (b) The first solution is to

assign a keyframe that causes the vehicle to simply decelerate when passing through the curve. (c) The second solution is to assign two

keyframes, one to wait for oncoming vehicles and one to complete the U-turn, to further prevent aggressive driving and maintain polite

behavior.
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