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Abstract—The brain-computer interface (BCI) enables para-
lyzed people to directly communicate with and operate peripheral
equipment. The steady-state visual evoked potential (SSVEP)-
based BCI system has been extensively investigated in recent
years due to its fast communication rate and high signal-to-
noise ratio. Many present SSVEP recognition methods determine
the target class via finding the largest correlation coefficient.
However, the classification performance usually degrades when
the largest coefficient is not significantly different from the rest
of the values. This study proposed a Bayesian-based classification
confidence estimation method to enhance the target recognition
performance of SSVEP-based BCI systems. In our method, the
differences between the largest and the other values generated
by a basic target identification method are used to define a
feature vector during the training process. The Gaussian mixture
model (GMM) is then employed to estimate the probability
density functions of feature vectors for both correct and wrong
classifications. Subsequently, the posterior probabilities of being
an accurate and false classification are calculated via Bayesian
inference in the test procedure. A classification confidence value
(CCValue) is presented based on two posterior probabilities
to estimate the classification confidence. Finally, the decision-
making rule can determine whether the present classification
result should be accepted or rejected. Extensive evaluation studies
were performed on an open-access benchmark dataset and a
self-collected dataset. The experimental results demonstrated the
effectiveness and feasibility of the proposed method for improving
the reliability of SSVEP-based BCI systems.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), classification confidence estimation, Bayesian inference

I. INTRODUCTION

RAIN-computer interface (BCI) systems can detect brain
activity and then translate neural signals directly into
commands to operate external devices without relying on
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peripheral nerves and muscles [1]-[3]. The electroencephalo-
gram (EEG)-based BCI is a popular non-invasive technique
due to portability, low cost, and high temporal resolution [4]-
[6]. Three paradigms in the EEG signal are most widely
explored, namely, the steady-state visual evoked potential
(SSVEP), the P300 event-related potential (ERP), and the
event-related desynchronization (ERD) [7]. These paradigms
have come to light in several practical applications, including
assistance robots [8], augmented reality (AR) glasses [9], [10],
and entertainment [11], [12]. Among these paradigms, SSVEP-
based BCI systems have attracted extensive research attention
because of their advantages of high information transfer rate
(ITR) and signal-to-noise ratio (SNR) [13]-[16].

In the past decades, many target recognition methods have
been proposed to analyze the SSVEP features and detect
the subject’s intent to operate the peripheral device [17]. In
particular, canonical correlation analysis (CCA) is the most
popular target detection method because of its simplicity of use
and robustness [18], [19]. However, the performance of CCA
is still influenced by the interference from spontaneous EEG
signals [20]. In recent years, many improved approaches have
been proposed for SSVEP detection. Generally, the literature
presents three major optimization directions, i.e., individual
templates [21], [22], time filters [23], and spatial filters [20],
[24]. Among many methods, sum of squared correlations
(SSCOR) [24] and task-related component analysis (TRCA)
[20] have attained nice performance in SSVEP detection. In
the recognition stage of the aforementioned methods, the target
class is identified by the largest correlation coefficient. It
may lead to misclassification when the maximum coefficient
has a low confidence level. The detection performance may
deteriorate if the maximum value is not remarkably different
from the other values. Therefore, evaluating the reliability of
classification results is another crucial direction for enhanc-
ing the performance and applicability of SSVEP-based BCI
systems.

The classification confidence analysis process could facil-
itate detection methods to reject results with a low level of
confidence [25]. In recent research, many confidence evalu-
ation methods for the SSVEP-based BCI system have been
introduced. For instance, Zhao et. al [26] designed a decision-
making selector to select a more reliable result from a pair
of CCA-based methods. The overall recognition performance
was enhanced by the fusion strategy, but the average detec-
tion time increased accordingly. Currently, many researchers
have focused on confidence estimation based on a single
decision. Chen et.al [27] created a hypothesis testing model
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Fig. 1. (a) experimental paradigm and (b) channel location of SSVEP recording.

for evaluating the credibility of results using the coefficients
of filter-bank CCA. Cecotti [28] investigated the impact of
different dynamic time segment selections on the confidence
of CCA’s outputs. Similarly, Jiang et.al [29] estimated the
classification confidence based on the largest two coefficients
and then determined the optimal data length. According to
several previous studies, the difference between the first and
the second-largest feature values provides useful information
for the classification estimation [30]. In general, the probability
of correct recognition is higher as this difference is larger [27].
However, these methods simply exploit the first two coeffi-
cients or their difference, which is insufficient to construct
informative features for enhancing SSVEP detection.

In this paper, Bayesian-based classification confidence es-
timation method was proposed for improving the recognition
reliability of SSVEP-based BCI systems, which is crucial for
SSVEP-based human-robot interaction [31], [32]. Wrong clas-
sifications can cause the external device to carry out the wrong
actions, perhaps resulting in adverse incidents and serious
physical harm to humans. In the practical usage scene, it is
essential to enhance subjects’ safety and security, particularly
in rehabilitation and assistive technology. The main contribu-
tions of this work include: 1) In the training step, the feature
vector involving the differences between the largest correlation
coefficient and the other values was constructed. Gaussian
mixture model (GMM) was used to estimate the conditional
probability density functions of feature vectors given correct
and wrong results. 2) In the test step, Bayesian inference was
used to calculate the posterior probabilities of being a correct
and wrong classification using the newly obtained feature
vector. A classification confidence value (CCValue) was then
presented to estimate the classification confidence. 3) The
decision-making rule decides whether the present classification
result should be accepted or rejected.

For this study, SSCOR and TRCA were selected as the
basic target recognition methods. The proposed methods that
incorporate CCValue estimation based on SSCOR/TRCA are
named SSCOR+CCValue and TRCA+CCValue, respectively.
The performance was assessed on a 40-class publicly available
benchmark dataset [33] and a 12-class self-collected dataset.
Extensive comparisons were performed among the four meth-
ods. The effectiveness and reliability of SSCOR+CCValue

and TRCA+CCValue were demonstrated via experimental
evaluation studies on two datasets.

This paper is organized as follows: Section II introduces
the SSVEP datasets and the proposed Bayesian-based classi-
fication confidence estimation method for SSVEP-based BCI
systems. The experimental results are shown in Section III.
Section IV discusses some issues with our method. Section V
presents the conclusion.

II. METHOD AND MATERIALS
A. EEG Signals

In this paper, an open-access dataset [33] and a self-
collected SSVEP dataset (referred to as Dataset I and Dataset
II, respectively) were utilized to evaluate the performance of
the proposed method. The benchmark dataset was recorded
from thirty-five participants with forty visual stimuli. The
sampling rate is 250 Hz. The frequencies range from 8 Hz
to 15.8 Hz, with an interval of 0.2 Hz. The phase difference
between two neighboring stimuli is 0.57. For each participant,
the data contains six blocks of forty trials associated with
forty stimuli. In each trial, the subject was asked to faze at
the stimulus for 5 s. More information about this publicly
available dataset can be found in [33]. A detailed description
of the self-collected dataset is provided below.

1) Subjects: In Dataset I, eleven subjects (five females and
six males, mean age: twenty-five years) joined the SSVEP
experiment. All the people were healthy and had a normal or
corrected-to-normal vision. The experiment has been approved
by the Research Ethics Committee of the University of Leeds.
The subjects were all asked to read and sign the participant
consent form.

2) Stimulus Design: In Dataset II, the visual stimulation
was coded by the joint frequency and phase modulation
(JFPM) method. There was a 4 x 3 matrix on a 23.6-inch LCD
monitor, which has a resolution of 1920 x 1080 pixels and a
refresh rate of 60 Hz, respectively. The stimulation frequencies
differed from 9.25 Hz to 14.75 Hz with an interval of 0.5 Hz.
The phase began from O to 1.57 in steps of 0.57. The reason
for frequency band selection is to collect relatively strong
SSVEP signals. The experiment included five blocks for each
participant. In each block, there are twelve trials corresponding
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Fig. 2. Diagram of the Bayesian-based SSVEP classification confidence
estimation method.

to twelve targets. Each trial started with a 0.5 s red dot cue,
indicating the target stimulus. Then, twelve flickers flashed at
the same time for 5 s, during which the subject was required
to stare at the target flicker without moving his or her eyes.
The screen was blank for 0.5 s after that. There was a short
break of one minute between two adjacent blocks. During the
experiment, the subject was asked to sit in a comfortable chair
in a dimly lit and quiet environment. The viewing distance to
the computer screen was 70 cm. To decrease body noise, each
subject was requested not to talk, cough, or cry during the data
collection. The experimental paradigm is shown in Fig. 1(a).

3) EEG Recording: For Dataset 1I, SSVEP data was
recorded by the experiment device from g.tec medical engi-
neering GmbH. The g.USBamp amplifier was used to sample
data at 256 Hz. SSVEP signals mainly appear over parietal
and occipital regions since they are closer to the visual cortex
of the human brain [34]-[36]. Some studies presented that
SSVEP signals near these areas have larger amplitude and
SNR [33], [37]. Therefore, nine electrodes (i.e., Pz, PO3,
POz, PO4, PO7, O1, Oz, O2, and POS) located in parietal
and occipital areas were chosen. Fig. 1(b) shows the channel
positions. The reference channel was at the right earlobe, and
the ground electrode was placed over electrode FPz.

B. Data Preprocessing

To account for the latency delay in the human visual system,
the EEG signal in [0.14 s 0.14 + d s] was extracted for
method performance evaluation [38]. The variable d in this
context refers to the length of the data that is being used
for analysis. The Chebyshev Type I Infinite Impulse Response
(IIR) filter was applied in this work to create band-pass filters.
The data was filtered between eight Hz and eighty-eight Hz
for Dataset I. The data was filtered between eight Hz and forty
Hz for Dataset II. In addition, a data standardization step was
performed on both datasets [20].

C. Bayesian-based SSVEP Classification Confidence Estima-
tion Method

A Bayesian-based classification confidence estimation
method was proposed for improving SSVEP recognition re-
liability. As shown in Fig. 2, it includes four modules: EEG
signal acquisition, feature extraction, classification confidence
evaluation, and decision making. The dataset descriptions
have been given in the previous section. In the following
subsections, the work procedures of the other three modules
will be explained in detail.

1) Feature Extraction: Denote a four-way tensor x €
RN XNeXNaXNt \where N ¢ indicates the number of stimuli,
N, represents the number of channels, N, is the number of
samples, and NN, is the number of training trials. Hereafter,
1 refers to the stimulus index, j refers to the channel index,
m refers to the sample index, and h refers to the index of
training trials. Therefore, the recorded individual calibration
signal for i-th stimulus is x; € RNeXNs*Nt The spatial filter
w; € RMe for i-th stimulus can be constructed as w; = f (xi)
by a basic target recognition method in SSVEP-based BClIs.
f(-) represents the spatial filtering method. In this study,
TRCA and SSCOR were selected. In TRCA [20], weight
coefficients are optimized to maximize inter-trial covariance of
brain activities. SSCOR spatial filter learns a common SSVEP
representation space through the optimization of the individual
SSVEP templates. It could improve the SNR of the SSVEP
components embedded in the recorded EEG data [24].

The single-trial individual template signal is denoted as

Ny
X; = N% S xin € RNeXNs Once the spatial filter w; is
" h=1

produced, the evaluation SSVEP data X € RNexNs gnd in-
dividual template signal x; can both be optimised. Therefore,
the SSVEP feature was further extracted from recorded EEG
signals. The correlation coefficient between the two spatially
filtered signals corresponding to each stimulus is shown as
follows:

ri:p(}ZTwhi;rwi)? i:172a"'aNf (1)

where p(a,b) refers the Pearson correlation coefficient be-
tween vector a and vector b. The frequency of the individual
template related to the largest correlation coefficient is decided
as the frequency f of the test signal:

f=argmaxr;,i =1,2,...,Ny 2)

Considering this type of decision-making rule may result in
poor classification performance when the maximal coefficient
is not much different from others, a Bayesian-based classifica-
tion confidence estimation method was proposed in this study.
The coefficient vector calculated by (1) is denoted as & =
[r1,72,...,7n,]. The coefficient vector was rearranged in de-
scending order, resulting in a new vector > = (71,72, oy T )
It means that the largest coefficient is 7, and the smallest
one is 7y,. Subsequently, it is possible to calculate the
differences between the largest coefficient 7; and other values
75,(j = 2,3,...,Ny), and thus yield (Ny — 1) differences.
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Fig. 3. The detailed framework of the Bayesian-based classification confidence estimation method for SSVEP detection. The leave-one-block-out cross-

validation was performed in the experiment evaluation.

Therefore, the difference values Ar;, (1 =1,2,...,Ny_1) can
be expressed as:

Arl = Fl _FQ

ATQZF:[_;'::}

3)

Arn,_, =T1 —TN;.

The final feature vector can be expressed as F =
[Ary, Arg, ..., Ary,_,] by (Ny — 1) differences.

2) Bayesian-based Classification Confidence Evaluation:
As illustrated in Fig. 3, performance was assessed by the leave-
one-block-out cross-validation. Specifically, for N, blocks of
EEG signals, (N, — 1) blocks were selected for training
conditional probability density functions, and one block was
used for testing. Moreover, in the training process, leave-
one-block-out cross-validation was again employed to collect
classification results and construct feature vectors (blue part
in Fig. 3). Specifically, (N, — 2) blocks were selected to train
the target recognition method, and the left-out block was used
as evaluation data. The signal in each block is represented as
X € RNr*NexNs Therefore, there are total (N, — 1) x Ny
trials that can be evaluated, thus classification results and
feature vectors can be collected to train GMM accordingly.

The classification results were subsequently separated into
two groups. Suppose the correct classification is represented as
C1, and the corresponding feature vectors are F.. The wrong
classification is denoted as C, and the corresponding feature
vectors are F),,. The probability density functions of the feature
vector for correct and wrong classifications are represented as
p(F|Cy) and p(F'|Cy), respectively. For ease of reference,
they can also be written as p(F.) and p(F,,). In this study,
GMM was applied to fit feature vectors from correct and
wrong classifications. The GMM is a versatile and efficient
probabilistic model, that can build any complicated probabil-
ity distribution function [39]. Therefore, the two probability

distribution functions can be expressed as follows:

K
p(F|Ch) = p(F.) = Y \eN(Fe|6;)
e 4)
p(F|Co) = p(Fy) =Y mN (Fultpr)
k=1

where K is the number of mixed components. The A € [0, 1]
and 7, € [0,1] are the mixture component weights for the
k-th component, with the constraint that Zszl Ar = 1 and
Zszl nr = 1. The Gaussian density functions A (F.) and
N(F,) are determined by the parameter 0y = (p, X)
and v = (vg,I'x), where pj and vy refer to the mean,
while 3, and I'y, are the covariance matrix, respectively. The
GMM parameters, namely, A, Nk, Uk, Xk, V; and Tp(k =
1,2,..., K), were estimated by the Expectation-Maximization
(EM) algorithm in this study. The EM algorithm is an iter-
ative method for estimating parameters in statistical models
[40]. Each iteration of this algorithm involves two steps: the
expectation (E) step and the maximization (M) step.

Consider the case of p(F.), assuming that there are N,
accurate classifications and F!, (t = 1,2,...,N,) is the
feature vector corresponding to ¢-th accurate result. A latent
variable 7, (t = 1,2, ..., Noo;k = 1,2,..., K) was defined,
and its expression is:

. )1, F!is from k-th mixed component
T = . )
0, otherwise

Therefore, the complete data is (F, 74,75, ..., vk)-
E step is to determine the Q function, which is the expec-
tation of the log-likelihood function for complete data:

Q(6,6')) = Ellogp(F.,~|0)|F.,0)] (6)

0(%) represents the parameters obtained by the s-th iteration.
Q step is to find the model parameter corresponding to the
maximum value of the Q function:

6C+Y) = argmax Q(0,0%) %
2]
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TABLE I
A CONFUSION MATRIX OF EXPLANATION ABOUT FOUR PARAMETERS, I.E., TR, FA, FR AND TA.

The proposed method’s decision

Rejection Acceptance

Target identification method’s | Wrong

True Rejection (TR) | False Acceptance (FA)

decision (e.g. TRCA, SSCOR) | (Correct

False Rejection (FR) True Acceptance (TA)

The updated model parameters gy, i, g, (K = 1,2,..., K)
are [41]:
Neo 2
(s+1) D Y Fe )
k - Neo ot
t=1 Tk
co 2 s+1 s+1
st _ Lot = T F =TT
k Neo ot
t=1 Tk
s+1) (10)

where 4} is the probability that ¢-th feature vector F be-
longs to k-th mixed component. 4, (t = 1,2,..., Neos k =
1,2, ..., K) can be calculated via the following equation:
t
it = BGLIF.0) = N0 (1n
2 k=1 AN (FE|Or)

The iteration between the E-step and M-step continues until
convergence. Finally, p(F.), also known as p(F|C;) can
be obtained. Accordingly, the parameters of the probability
density function p(F'|Cy) can also be calculated by the EM
iterations. The distinction is that the F' here refers to the
feature vector F,, associated with the wrong classifications.

The prior probabilities of the correct and wrong classifica-
tions can be formulated as follows:

N,
P _ _ "¢
(Ch) Noo + Nopw 12
N’UJT’
PG = N ¥ Nor

where N, indicates the number of wrong classification
results. The target recognition method is then trained using
(Np — 1) blocks of SSVEP signals, and the trained model
is tested using the left-out block. According to the newly
obtained feature vector F' € RWs=1), Bayesian inference is
used to calculate the posterior probabilities of being a correct
classification P(C4|F') and a wrong classification P(Cy|F):

P(GiIF) = —— PFICOP(C)
p(F|Cy)P(Ch) + p(F|Co) P(Co) (13)
P(Co|F) = 1) PIC)

p(F|C)P(Cr) + p(F|Co) P(Co)

Based on (13), the classification confidence value (CCValue)
can be defined as:

CCValue(F) = P(C1|F) — P(Co|F) (14)

3) Decision-Making Rule: In the decision-making module,
the CCValue needs to be compared with a threshold «.
The classification result should be accepted if the CCValue
is greater than «. Otherwise, this module should reject the
classification result. Therefore, the decision-making rule can
be written as:

. if CCValue(F) >
Dfinal(F) = { ( )

if CCValue(F) <

AC?epL (15)
Reject,

As shown in (15), Dfmal(l:") works as a binary classifier.
The grid-search method was used to determine « via (N —1)
blocks training data. The range of « is specified as [-1, 1]
according to (14). An exhaustive search is performed on the
threshold values of the method with an interval of 0.1. In
the search process, leave-one-block-out cross-validation was
employed. Finally, the value that provides the highest average
classification reliability across subjects was determined as a.

TRCA/SSCOR’s classification result will be compared with
the label of this classification. The classification results will be
given a new label, i.e., “correct” or “wrong”, which represents
the ground truth. It is a gold standard that can be used
to compare and evaluate the proposed method’s results. If
the proposed detection method could accept the ‘“correct”
classification or reject the “wrong” classification successfully,
it means that the proposed method is effective.

The details of the proposed Bayesian-based classification
confidence estimation method are shown in Fig. 3. This frame-
work aims to reduce the number of low-confidence results and
thus improve recognition reliability.

III. RESULTS

In this section, the proposed Bayesian-based classification
confidence estimation method was applied to a 40-target
benchmark dataset [33] as well as a 12-target self-collected
dataset. TRCA+CCValue, SSCOR+CCValue, TRCA, and SS-
COR are compared extensively. The number of channels and
training blocks were set to nine, and five for Dataset I and nine,
and four for Dataset II, respectively. The two datasets have
different numbers of training blocks because of their different
sizes. The selections of these hyperparameters were made to
ensure that the model had access to all the available infor-
mation and to facilitate the training process for each dataset.
The number of Gaussian mixture components was set to two.
The optimal number of components in the GMM was selected
using the Akaike information criterion (AIC), which provides
a trade-off between the goodness of fit of the model and its
complexity. The effects of parameters, such as the number
of channels, training blocks and correlation coefficients on
recognition performance were further investigated.
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using different time windows (TWs) on (a) Dataset I and (b) Dataset II. The error bars represent standard error of mean (SEM), oz = T where

)2
. x; is the classification reliability or ITRs of i-th subject, = is the mean of samples, and n is the number of subjects. The asterisks

indicate a significant difference between the two methods obtained by paired t-test analysis (x: p<<0.05, s*: p<0.01, % % *: p<0.001, * * *x: p<0.0001).

A. Performance Evaluation

Table. I introduced four measures: true rejection (TR), false
acceptance (FA), false rejection (FR), and true acceptance
(TA). As indicated in the Table, the wrong classification results
of TRCA/SSCOR can be divided into TR and FA. The correct
results of TRCA/SSCOR can be divided into FR and TA. The
significance of the proposed method is that low-confidence
decisions can be detected and rejected so the system can
be more robust and reliable. Therefore, the accuracy of the
confusion matrix (i.e., Table. I) [42], also expressed as the
recognition reliability (%) of the proposed method, can be
defined as follows:

TA+TR
TA+FA4+TR+ FR

Fig. 4 shows the average classification reliability of SS-
COR, TRCA, SSCOR+CCValue, and TRCA+CCValue on (a)
Dataset I and (b) Dataset II. The sampling rates are different in
the two datasets, so different data lengths were used to keep the
number of samples without decimals. To depict the improve-
ment more intuitively, a pairwise comparison was performed
between SSCOR and SSCOR+CCValue, as well as TRCA
and TRCA+CCValue. The proposed method can attain higher
reliability across a wide range of data lengths. Specifically,
SSCOR+CCValue improved SSCOR by 2.90% ~ 27.74% and
TRCA+CCValue increased TRCA by 2.04% ~ 21.07% in
Dataset 1. The classification reliability of SSCOR+CCValue
is greater than that of SSCOR by 0.30% ~ 26.37% in Dataset
II. Similarly, TRCA+CCValue improved TRCA by 1.37%
~ 17.42%. The paired t-test was conducted to explore the
similarity of reliability between the basic recognition method
and the corresponding proposed method. Statistical analysis
shows that the reliability of SSCOR is significantly different
from that of SSCOR+CCValue for almost all data lengths. This
conclusion also applies to TRCA and TRCA+CCValue.

In Fig. 4, the ITRs of the proposed methods are slightly
higher than those of SSCOR and TRCA. This is reasonable

x 100

Reliability = (16)

because SSCOR+CCValue and TRCA+CCValue aim to accept
results with high confidence and discard results with low confi-
dence, which would lead to trials corresponding to unconfident
results not being classified. It is advantageous to allow the
method to leave some trials unclassified since this can prevent
the classifier from making errors when the classification results
are not confident enough.

Table. II provides the intuitional numerical results for
comparing methods more clearly [43]. As shown in Table.
II, TRCA+CCValue always achieves the best performance
with various data lengths in each dataset. SSCOR consistently
performs worse than TRCA, whereas the performance of
SSCOR+CCValue was improved after accounting for classi-
fication confidence estimation, and finally, SSCOR+CCValue
outperforms TRCA at some TWs. Two popular recognition
methods, i.e., CCA and Msetcca, were included for com-
parison. It is obvious that the proposed method achieves
much higher recognition reliability than the two methods.
A One-way repeated-measures ANOVA was conducted to
investigate the similarity of classification reliability among
these methods. The P-value is always < 0.0001, indicating
statistically significant differences between the reliability of
these methods at each TW.

The proposed method enhances recognition performance by
accepting highly-trustworthy results and rejecting unconfident
ones. Therefore, the method was further assessed in terms of
two other indicators, i.e., the true accept proportion (TAP)
and the true reject proportion (TRP). TAP is defined as the
proportion of correct target identification method decisions
to be accepted by Dfina[(p). TRP is defined as the pro-
portion of wrong decisions rejected by the proposed method.
Therefore, TRP indicates the rejection efficiency, whereas TAP
relates to the cost [25]. Fig. 5 displays the TAP and TRP
of SSCOR+CCValue and TRCA+CCValue on (a) Dataset I
and (b) Dataset II using different data lengths. In Dataset
I, with increasing data lengths, SSCOR+CCValue’s TAP in-
creases from 54.81% to 91.98%, while its TRP decreases
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TABLE II
RELIABILITY COMPARISON BETWEEN FOUR METHODS

0.2 04 0.6 0.8 1 0.25 0.5 0.75 1

Averaged Recognition Reliability £ SEM (%)
Methods Dataset I Dataset 11
0.2s 0.4s 0.6 s 0.8s 1s 025 s 05 s 0.75 s 1s
CCA 376 £ 021 9.1 £0.8 17.8 £ 2.1 30£3 41 £ 4 132 £ 12 29 £ 4 49 £5 72 £5
Msetcca 80+ 12 19+3 31 +4 46 £ 5 55+&5 10.5 £ 1.8 20+ 4 33+ 4 517 £24
SSCOR 157 £ 1.6 37 +£3 55+ 4 70 + 4 79+ 3 183 + 1.8 44 + 4 69 + 4 838 £ 24
TRCA 29+ 3 48 £ 4 63 + 4 79 £+ 4 84 +3 29.7 £ 2.1 57 + 4 782 +25 894+ 17
SSCOR+CCValue | 435 £ 2.6 52+ 4 65 +3 75+ 3 82.0 £2.8 45+ 4 56 + 3 717 £2.6 84.1 £23
TRCA+CCValue 45+ 4 61 + 4 71 + 4 81 +£3 856 £2.7 | 47.1 £ 1.8 60 + 4 796 £26 912+ 1.6
P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SSCOR+CCValue: TAP TRCA+CCValue: TAP SSCOR+CCValue: TRP TRCA+C9Va\ue. TRP CCA Msetcca [1SSCOR TRCA [1 SSCOR+CCValue [l TRCA+CCValue
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Fig. 5. TAP and TRP of SSCOR+CCValue and TRCA+CCValue on (a)
Dataset I and (b) Dataset II with different data lengths. The error bars represent
SEM. The asterisks indicate a significant difference between methods obtained
by t-test analysis.

from 53.84% to 23.06%. For TRCA+CCValue, TAP rises
from 54.08% to 92.53%, and its TRP changes from 59.79%
to 20.01%. Dataset II exhibits similar results as well. Simi-
larly, in Dataset II, SSCOR+CCValue’s TAP increases from
50.39% to 97.96%, while its TRP changes from 49.66% to
8.82% with longer TWs. For TRCA+CCValue, TAP rises from
52.80% to 99.64%, and its TRP changes from 47.10% to
17.78%. The underlying reason is that SSCOR/TRCA provides
more correct classification results as the TW increases. So
SSCOR+CCValue/TRCA+CCValue is more inclined to accept
the results of SSCOR/TRCA. It is worth noting that although
TRP has dropped, the False Acceptance in TABLE. I generally
did not increase due to a decrease in the number of wrong
classifications from SSCOR/TRCA. The t-test was used to
perform statistical analysis between TAP or TRP of different
methods. The result shows that there is no significant differ-
ence in almost all data lengths. It indicates that the proposed
method has similar effectiveness for both TRCA and SSCOR
on datasets of different scales.

The above experiment results were carried out on a DELL
laptop with a 1.8GHz quad-core CPU, and 8 GB RAM,
using Matlab 2022a and running on Windows 10. The aver-
aged recognition time per time window for performing the
TRCA+CCValue and TRCA is 0.0057 s and 0.0020 s on
Dataset I, and 0.0043 s and 0.0015 s on Dataset II, respectively.
For SSCOR+CCValue and SSCOR, the averaged recognition
time is 0.0043 s and 0.0022 s on Dataset I, and 0.0036 s and
0.0014 s on Dataset II. The proposed method incorporates the
classification confidence estimation based on the basic method,

Number of channels Number of channels

(a) Dataset I (b) Dataset 11

Fig. 6. Barchart of the classification reliability of six methods with different
numbers of electrodes on (a) Dataset I and (b) Dataset II. The error bars
represent SEM. The asterisks indicate significant differences between the four
methods obtained by one-way repeated-measures ANOVA.

so the detection time increases slightly, but it is still around
an acceptable value.

B. The Influence of Parameters

1) The Number of Channels: Fig. 6 shows the average
classification reliability rate of four methods with different
numbers of electrodes using 0.6 s-long data on (a) Dataset
I and 0.75 s-long data on (b) Dataset II. The number of
training blocks is set to five for Dataset I and four for Dataset
II, respectively. Generally, the performance of each method
improved as the number of electrodes increased. For N. =5, 6,
7, 8, and 9, it is obvious that the proposed SSCOR+CCValue
always outperforms SSCOR. TRCA+CCValue shows higher
recognition reliability compared with TRCA. Meanwhile,
these four methods all achieve better performance than CCA
and Msetcca. A one-way repeated-measures ANOVA showed
significant differences between the six methods at each TW
on two datasets. The results in Fig. 6 demonstrate that, to
some extent, our method is superior to some existing advanced
methods, irrespective of the number of electrodes. Specifically,
SSCOR+CCValue improved SSCOR by 9.31% ~ 12.32% and
TRCA+CCValue increased TRCA by 8.12% ~ 12.65% in
Dataset 1. The classification reliability of SSCOR+CCValue
is greater than that of SSCOR by 0.45% ~ 7.27% in Dataset
II. Similarly, TRCA+CCValue improved TRCA by 0.76% ~
15.00%.

2) The Number of Training Blocks: 1t is also investigated
how the number of training blocks affects the classification
reliability of six different methods. The heat map is a valuable
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Fig. 7. Heat maps of the classification reliability of four methods under
different number of training blocks on (a) Dataset I and (b) Dataset II.

data visualization tool for displaying an indicator in color in
two dimensions. It offers a method for understanding numer-
ical numbers visually. The heat maps in Fig. 7 show the reli-
ability comparison between SSCOR and SSCOR+CCValue,
as well as between TRCA and TRCA+CCValue, on two
datasets using 0.6 s or 0.75 s data length. For the sake of
comparison, the performance of two other algorithms, namely
CCA and Msetcca, were also included. In a heat map, the
x-axis indicates recognition methods with varying numbers
of training blocks, and the y-axis represents the index of the
subject. The range of the number of training blocks was [3, 5]
for Dataset I and [2,4] for Dataset II. The shade of color
indicates the level of classification reliability. The darkest color
is always displayed at its maximum value. As demonstrated
in Fig. 7, with varying numbers of training blocks, the color
squares generated by SSCOR+CCValue and TRCA+CCValue
are generally more profound than those created by SSCOR and
TRCA, and notably darker than those generated by CCA and
Msetcca. This indicates that the proposed method produces
more reliable and consistent results compared to the other
methods. Furthermore, the color squares generally get darker
as the number of training blocks increases.

Table. III shows the numerical classification reliability of
SSCOR and SSCOR+CCValue and the corresponding paired
t-test analysis results. Similarly, Table. IV shows the outcome
of TRCA and TRCA+CCValue. The average classification re-
liability of SSCOR+CCValue is higher than that of SSCOR by
10.33% across different numbers of training blocks in Dataset
I, and by 8.55% in Dataset II. TRCA+CCValue improved
TRCA by 4.52% in Dataset I, and by 2.44% in Dataset II.
The paired t-test analysis results revealed that a statistically

TABLE III
RELIABILITY COMPARISON BETWEEN SSCOR AND SSCOR+CCVALUE
WITH DIFFERENT NUMBERS OF TRAINING BLOCKS

Reliability with different number of training blocks
Methods Dataset I Dataset 11
3 4 5 2 3 4
SSCOR 4523  51.01 55.00 | 46.21 60.04 68.94
SSCOR+CCValue| 5536 62.07 64.80 | 51.94 65.15 71.67
P-value <0.0001 <0.0001 <0.0001| 0.0843 0.1848 0.2255

TABLE IV
RELIABILITY COMPARISON BETWEEN TRCA AND TRCA+CCVALUE
WITH DIFFERENT NUMBERS OF TRAINING BLOCKS

Reliability with different number of training blocks
Methods Dataset 1 Dataset 11
3 4 5 2 3 4
TRCA 4998 57.67 63.17 | 4545 6742  78.18
TRCA+CCValue| 57.54 67.64 7129 | 4798 70.83  79.55
P-value <0.0001 <0.0001 0.0002 | 0.4825 0.1145 0.1698

significant difference (i.e., P < 0.0001) between the compared
methods with all numbers of training blocks for Dataset I. For
Dataset II, although the significant difference is not as large
as for Dataset 1, the proposed method still provides higher
recognition reliability than SSCOR and TRCA. In conclusion,
the two tables further demonstrate the effectiveness of the
proposed method by providing more quantitative evidence.

3) The Number of Correlation Coefficients Incorporated in
the Feature Vector: In this study, it is also explored how
the number of correlation coefficients used for constructing
the feature vector affects the classification performance. The
aforementioned performance evaluation figures were all gen-
erated by (N; — 1)-dimensional feature vectors. It implies
that the feature vector was constructed using Ny correlation
coefficients via (3). In this subsection, a 40-class benchmark
dataset was used to evaluate more types of coefficient numbers.
The correlation coefficients were sorted in descending order.
The top two, four, eight, sixteen, thirty-two, or forty values
were chosen to construct the feature vector via (3). Here, the
number of electrodes and training trials are set to be nine
and five, respectively. Fig. 8(a) shows TRP, TAP, and classi-
fication reliability of SSCOR+CCValue for various numbers
of correlation coefficients. The reliability of SSCOR (blue
bars) was also incorporated into the performance comparison.
The number of correlation coefficients does not affect the
performance of SSCOR. Hence, the corresponding reliability
remains constant (i.e., SSCOR: 36.58%). Similarly, Fig. 8(b)
shows the evaluation results of TRCA and TRCA+CCValue.
The reliability of TRCA is represented by the orange bars at
48.18%.

With an increasing number of correlation coefficients, TRP
generally climbs fast and then lowers slightly. TAP gradually
decreased and then increased. TRP and TAP are both critical
indicators for a classification confidence evaluation model.
TRP indicates the model’s rejection effectiveness, whereas
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Fig. 8. Barchart of the TRP, TAP and classification reliability of SS-
COR+CCValue and TRCA+CCValue with different numbers of correlation
coefficients. The error bars represent SEM. The asterisks indicate significant
differences between methods obtained by paired t-test analysis. The reliability
of SSCOR and TRCA were used as a comparison.

TAP relates to the cost. As a result, it is preferable to keep
them both at a relatively high level. TAPs have achieved the
largest values for two coefficients in Fig. 8(a) and Fig. 8(b),
but TRPs reached relatively low values. Therefore, two is
not an ideal number of coefficients for this dataset. It is
worth mentioning that TRP and TAP for forty coefficients
were both within a satisfactory range, and their difference
was not as large as that of other coefficients. Moreover,
the reliability also reached superior values for forty coeffi-
cients (i.e., TRCA+CCValue: 61.39% and SSCOR+CCValue:
51.48% with 0.4 s-long data). The TRCA+CCValue and
SSCOR+CCValue provide consistently higher reliability than
TRCA and SSCOR, regardless of the number of correlation
coefficients. TRCA+CCValue improves TRCA by 3.84% ~
15.84%, and SSCOR+CCValue increases SSCOR by 1.42% ~
12.71%. Moreover, paired t-test analysis showed that statistical
differences between the compared algorithms become more
significant as the number of coefficients increases.

IV. DISCUSSION
A. Performance of SSCOR+CCValue and TRCA+CCValue

Almost all existing advanced SSVEP recognition methods
determine the signal triggered by which stimulus via the
largest correlation coefficient, such as CCA [18], MsetCCA
[21], SSCOR [24], and TRCA [20]. It can easily lead to
erroneous results when the maximum coefficient is slightly
larger than the other values. In this study, a classification
confidence estimation method based on Bayesian theory was
proposed to improve the SSVEP recognition performance.
The feature vector was constructed by differences between
the largest coefficient and the remaining values. This kind of
design can make full use of all the coefficient information.
As a consequence, the proposed method can accept high-
confidence classification results while rejecting results with
low confidence. As shown in Fig. 4(a), TRCA+CCValue and
SSCOR+CCValue obtained the highest reliability of 85.57%
and 81.98% for the data length of 1 s. TRCA+CCValue and
SSCOR+CCValue both improved the performance of the basic
target recognition methods.

In Fig. 4, the performance of TRCA+CCValue is slightly
better than that of TRCA at 1 s TW. Besides, a similar situation
is reflected in SSCOR+CCValue and SSCOR. The underlying
reason is that long-length signals generally contain more

EEG information and are thus more likely to lead to correct
classification results. The proposed methods can accept results
with high confidence and reject results with low confidence.
Therefore, the proposed method accepted more reliable results
and achieved reliability comparable to basic methods at 1 s
TW.

Although the experiment was conducted in a relatively quiet
environment and the subjects were typically requested to avoid
movements during signal recording, complete elimination of
environmental and body noises is difficult to achieve. Noise is
usually present due to a variety of factors, including muscle
movements, eye blinks, and external sources such as traffic
or other environmental factors. In this study, the fundamental
target recognition methods employed for feature extraction
are TRCA and SSCOR. These two methods can reduce
background EEG activities in different ways [20], [24]. For
example, TRCA is a spatial filtering method, in which weight
coefficients are optimized to maximize inter-trial covariance
of brain activities. It can be used for removing background
EEG activities from scalp recordings [20]. TRCA+CCValue
and SSCOR+CCValue can improve classification performance
via confidence estimation and take advantage of TRCA and
SSCOR to decrease background noises. To evaluate the per-
formance of the proposed method, CCA and Msetcca were
used in this study for extensive comparison, and the numerical
results of six methods are shown in Table II. Additional ex-
periments were also conducted to compare the performance of
the six methods under various parameters, such as the number
of electrodes and the number of training blocks, as shown
in Fig. 6 and Fig. 7. The evaluation results indicate that the
proposed method provides better recognition performance than
the other four methods across a range of different parameter
settings. For example, SSCOR+CCValue improved CCA and
Msetcca by 40.00% ~ 47.10% and 31.17% ~ 34.48% with the
different number of channels. For different number of training
blocks, TRCA+CCValue increased them by 39.88% ~ 53.59%
and 31.34% ~ 40.84%, respectively.

In the presented method, leave-one-block-out cross-
validation was performed in the experiments. The detailed
process was shown in Fig. 3. Cross-validation is a widely
used technique in machine learning and statistical modelling
to estimate the performance of a model and prevent over-
fitting. Cross-validation provides an accurate evaluation of the
performance of the proposed method because it uses all the
available data for both training and testing. Therefore, it helps
improve the reliability and generalization of the experimental
results.

B. Ensemble-based methods comparison

In the previous sections, the effectiveness and superiority
of the proposed method were demonstrated by comparing
TRCA+CCValue and SSCOR+CCValue with the basic target
recognition methods. In this part, the performance comparison
of ensemble-based methods was carried out. Specifically, the
target recognition method was enhanced by utilizing an ensem-
ble approach, in which Ny spatial filters were concatenated to
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Fig. 10. Barchart of the classification reliability of SSCOR, TRCA, SS-
COR+CCValue and TRCA+CCValue with different numbers of classes con-
sidering imbalanced data. The error bars represent SEM. The asterisks indicate
significant differences between methods obtained by paired t-test analysis.

create an ensemble spatial filter W € RNe>Ns:

W = [wy,wy, ..., wN,] 17

The correlation coefficient in (1) can be re-defined as follows:

ri=p(X W, X[ W), i=1,2,..,Ny (18)

The feature extraction, classification confidence evaluation,
and decision-making steps are the same as described in the
previous section. Fig. 9 shows the classification reliability
comparison between several ensemble-based methods on (a)
Dataset I and (b) Dataset II. As shown by the black line
and the purple dotted line, the ensemble TRCA+CCValue
achieved higher reliability than the ensemble TRCA, with
almost TWs on two datasets. The ensemble SSCOR+CCValue
also exhibits a superior performance than SSCOR at all TWs.
For example, ensemble TRCA+CCValue improved ensemble
TRCA by 3.96%, and ensemble SSCOR+CCValue increased
ensemble SSCOR by 5.13% with 0.4s data length in Dataset I.
Similarly, the classification reliability of SSCOR+CCValue is
greater than that of SSCOR by 14.55%, and TRCA+CCValue
improved TRCA by 9.09% with 0.25s data length in Dataset II.
A one-way repeated measures ANOVA revealed a statistically
significant difference between the compared methods with
various data lengths. As a result, the proposed method can
improve the performance of both basic and ensemble-based
SSVEP detection methods.

C. Feature Vector Construction

Recently, some studies have also focused on estimating
classification confidence based on correlation coefficients for

SSVEP-based BCI. These works usually use the largest and the
second-largest values or their difference, such as [27]-[29]. In
this study, N correlation coefficients were incorporated, and
then a (Ny — 1)-dimensional feature vector was formed by
calculating the differences between the maximum value and
the other values. The higher-dimensional features are benefi-
cial to improving SSVEP detection, which was confirmed in
Fig. 8. The Ny of the benchmark dataset is forty. Compared
with other numbers of correlation coefficients, TAP, TRP, and
classification reliability generated by the feature vector with
forty correlation coefficients achieve high values. For example,
TRCA+CCValue reached the highest reliability of 61.39%, and
SSCOR+CCValue reached the reliability of 51.49% (highest
value: 51.79% with thirty-two correlation coefficients) with 0.4
s TW. For those cases with similar reliability, the gap between
TAP and TRP provided by the proposed method is relatively
smaller. For example, the gap is 4.19% for forty coefficients
but 9.56% for thirty-two coefficients for SSCOR+CCValue.
Therefore, it indicates that the proposed method can achieve
high classification reliability while maintaining a better bal-
ance between the model’s rejection efficiency (TRP) and the
cost (TAP).

D. Data Imbalance

Data imbalance is a common issue in real-world datasets,
and it occurs when the distribution of classes in a dataset is
uneven. Therefore, it is important to evaluate the effectiveness
of the proposed method on unbalanced datasets to further
validate its reliability in real SSVEP-based BCI systems. In
Fig. 10, the classification reliability of four methods is shown
under different numbers of classes with imbalanced data. For
instance, when the x-axis is five, it means that five classes
are randomly selected with insufficient training data (i.e., four
training blocks), while the other thirty classes have sufficient
training data (i.e., five training blocks). The evaluation re-
sults indicate that the proposed method achieves consistently
better performance. The paired t-test was used to perform
statistical analysis of the recognition performance of different
methods. Statistical analysis shows that the reliability of SS-
COR is significantly different from that of SSCOR+CCValue
regardless of the number of imbalanced classes. The same
conclusion applies to TRCA and TRCA+CCValue. In ad-
dition, the performance of the proposed method does not
show much difference between datasets with many imbal-
anced classes and those without any imbalanced classes. For
example, the recognition reliability of TRCA+CCValue and
SSCOR+CCValue are 69.59% and 63.76% when tested on a
dataset with twenty imbalanced classes, while on a dataset
with zero imbalanced class, the recognition reliability of
TRCA+CCValue is 71.29% and SSCOR+CCValue is 64.80%.
This suggests that TRCA+CCValue and SSCOR+CCValue are
robust to the number of imbalanced classes in the dataset,
indicating their potential for handling imbalanced datasets
in practical situations. Additionally, Fig. 7, TABLE. III, and
TABLE. IV in Section III-B show the experimental evaluation
results after balancing the dataset. It involves adjusting the
class distribution so that each class has an equal number of
examples.
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E. Future Work

Although the proposed method enhanced the recognition
performance of some popular methods in the SSVEP-based
BCI field, it still has some potential directions for further
improvement. First, the presented method focused on the
fixed data length which means that the same amount of data
was collected and analyzed for every trial. This fixed data
length approach may not be optimal because it could include
redundant data. To address this limitation, future work could
aim to develop an adaptive time segment approach that can
dynamically adjust the length of data collected for each trial.
It has the potential to improve system performance in practical
BCI applications. Furthermore, due to individual differences
commonly observed in BCI systems, it can be challenging
to achieve satisfactory classification results when transmitting
data directly between individuals. Therefore, future work
could focus on incorporating transfer learning techniques to
improve the reusability and generalization of models [44]. By
leveraging pre-trained models and knowledge from the source
domain, transfer learning has the potential to enhance the
performance of the BCI system, even with limited training
data.

V. CONCLUSION

In this study, a Bayesian-based classification confidence
estimation method was proposed for enhancing the SSVEP
recognition performance. The differences between the largest
correlation coefficient and the other values were used to
define the feature vector. The probability density functions of
feature vectors given correct and wrong classifications were
then estimated using the GMM model. In the test process,
the posterior probabilities of an accurate and wrong recog-
nition can be calculated using Bayesian inference with the
newly obtained feature vector. The CCValue, the difference
between two posterior probabilities, was applied to evaluate
the confidence of the classification result. Eventually, the
decision-making process can determine whether to accept
trustworthy results or reject unconfident results. Our method
was evaluated on a publicly available benchmark dataset and a
self-collected dataset. The experimental results demonstrated
the effectiveness and feasibility of the proposed method in the
SSVEP-based BCls.
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