Automated Software Transplantation
for Procedural Content Generation

Maria del Mar Zamorano Lopez

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of
University College London.

Department of Computer Science

University College London

September 18, 2025

2

I, Maria del Mar Zamorano Lépez, confirm that the work presented in this thesis
is my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

Game Software Engineering (GSE) is a specialized branch of Software Engineering
dedicated to the development of video games. Unlike traditional software, video
game development presents unique challenges, including the management of di-
verse artefacts, differing development paces, limited code reuse, and difficulties
in automated testing. Research in GSE has grown significantly since 2010, with

contributions appearing in top Software Engineering venues.

Video games are complex products that blend art and programming, requiring
input from designers, programmers, and audio engineers. The industry has rapidly
expanded, with a wide variety of titles driving economic growth and cultural influ-
ence. However, all games share a common challenge: the immense need for content.
Large-scale productions require vast amounts of high-quality assets, leading to costly
and time-intensive development cycles. Smaller teams, constrained by limited re-
sources, must carefully balance ambition and feasibility, while games designed for

specialized purposes are restricted by domain-specific content requirements.

To address these challenges, researchers have explored Procedural Content
Generation (PCQG), an approach that automates or semi-automates the creation of
game assets. This thesis introduces a novel technique, Procedural Content Trans-
plantation (PCT), which applies Software Transplantation principles to PCG. In
software, transplantation involves extracting functional components from one system
and integrating them into another. Traditionally, it has been used for program repair,
testing, security, and functionality enhancements. Applied to content generation,
PCT extracts functional content from a game to integrate it into another content of a

game.

Abstract 4

PCT employs a search-based algorithm to identify and integrate suitable content
fragments from existing games into new contexts, mitigating the challenges of
manual content creation. To validate this approach, we designed and implemented the
first search-based transplantation algorithm for video game content. Our evaluation,
conducted in collaboration with a commercial game studio, assessed the effectiveness
of PCT in generating non-playable characters (NPCs) and compared its results with

a standard PCG method from the literature.

Impact Statement

The work presented in this thesis has an impact in the field of Game Software
Engineering research, more precisely on Procedural Content Generation.

This research introduces Procedural Content Transplantation (PCT), a novel
technique that leverages Software Transplantation principles to enhance Procedural
Content Generation (PCG). By automatically identifying and integrating existing
content fragments into new game contexts, PCT reduces the manual effort required
for asset creation, lowering development costs and accelerating production timelines.

The development and evaluation of a search-based transplantation algorithm
mark a significant advancement in game development methodologies. In collabo-
ration with a commercial game studio, this approach was tested on non-playable
character (NPC) generation, demonstrating its effectiveness compared to traditional
PCG methods. The results suggest that PCT can improve content diversity and qual-
ity while maintaining design coherence, offering practical benefits for developers
across the industry.

By bridging the gap between software engineering and creative game design,
this research contributes to the broader field of automated game development. It
opens new possibilities for scalable, efficient content production, making high-
quality game creation more accessible to developers with varying resources. As PCT
continues to evolve, it has the potential to shape future industry practices, supporting
both large studios and independent developers in delivering richer, more engaging

gaming experiences.

Acknowledgements

Completing this PhD has been a challenging yet incredibly rewarding journey, and I
would not have reached this milestone without the support and encouragement of

many individuals.

First and foremost, I would like to express my heartfelt appreciation to my
family. Specially to my parents, Angel and Esther, for their unwavering belief in me
and constant encouragement, and also for their patience and understanding. They
have been my rock since I can even remember, and without them I would not be here.

Their endless love is what has made who I am.

I would like to express my deepest gratitude to my advisors, Federica Sarro
and Carlos Cetina, for their unwavering guidance, invaluable insights, and contin-
uous support throughout this process. Their expertise and mentorship have been
instrumental in shaping both this research and my development as a scholar. Also, I
would like to thank you for the emotional support through this journey, and believing

always in me even when I could not.

A special thank you goes to my colleagues and friends at SOLAR group at
UCL and SVIT group at USJ. The stimulating conversations, shared challenges, and
camaraderie have made this journey all the more fulfilling. I am especially grateful

to Rail, Africa, Carol, Thanatad, Song, and Dave for their friendship and support.

On a personal note, I extend my heartfelt appreciation to my partner, Gvidas,
and friends. I have fallen many times not only during my thesis but during my life,
and you have always been there for me. All your love, support, and encouragement
have been my anchor throughout this journey. To my closest friends, Laura and

Esther, I hope you know how important you are to me, and I am deeply grateful for

Acknowledgements 7

having you and your families.
This thesis is as much a product of my efforts as it is of the collective support I

have received, and for that, ‘thank you’ is not enough.

Contents

1 Introduction 16
1.1 Motivation for Transplantation 19

1.2 Contributions L 20

1.3 Publications 21

1.4 Roadmap 21

2 Background 22
2.1 Procedural Content Generation 22
2.2 Search-Based Procedural Content Generation 24

2.3 Automated Software Transplantation 26
2.4 General Software Development vs Game Software Development . . 28
2.5 Model-Based Game Software Development 29
2.6 The Kromaia VideoGame 32
27 Conclusion 34

3 Literature Review 36
3.1 Introduction 36
31,1 Scope 36

3.2 Survey Methodology 38
3.2.1 Search Methodology 38

3.2.2 Selected Publications 40

323 Threatsto Validity 40

33 SBPCGTaxonomy vuuneneo... 41

Contents 9

34 GameBits 46
341 Texture 46
342 Sound 47
343 Weapons e e 47
344 Vegetation. 49
35 GameSpace e 50
3.5.1 Outdoor Maps (Terrains) 51
352 IndoorMaps 53
3.6 Game Systems 57
377 Game Scenarios e e e e 59
371 Puzzles 60
372 Tracks 64
373 Levels. o 66
374 Stories e 73
3.8 GameDesign 74
3.8.1 SystemDesign 74
382 CameraControl 76
3.9 Future Directions 76
39.1 Content Opportunities 77
392 OnlinePCG. 79
3.9.3 Solvability, Playability, Fairness, and Diversity 80
394 Bricolage 82
3.9.5 StatisticalRigor. oo 83
39.6 Industrial Content 84
3.9.7 Interaction between SBPCG and other techniques 86
3.10 Conclusion L 86
Our Proposal: Imhotep 88
4.1 Introduction 88
4.2 Our Proposal: IMHOTEP 90

42.1 Inputselection, 90

Contents 10

422 Boundarydetection 91

423 Boundarymapping 92
4.2.4 Initialize population 93

4.2.5 Geneticoperators i e e 93
4.2.6 Objective function 94

4.2.7 Software engineering reflections and tooling requirements . 96

5 Empirical Evaluation 98
5.1 Experimental Design 99
5.1.1 ResearchQuestions 99

5.1.2 Methodology, 100

5.1.3 Algorithms’ Settings 100

5.1.4 Evaluation Measures 102

5.1.5 Statistical Analysis oL 103

52 Results. 104
5.3 Discussion. 106
54 Threatsto Validity 108
54.1 Conclusion Validity 108

54.2 Internal Validity 109

543 Construct Validity 109

5.4.4 External Validity 109

6 Controlled Experiment 111
6.1 Experimental Design 113
6.1.1 Objective 113

6.1.2 Research Questions and Hypotheses 113

6.1.3 Variables 113

6.1.4 Design 116

6.1.5 Participantso 118

6.1.6 Experimental Objects 118

6.1.7 Experimental Procedure 119

Contents 11

6.1.8 AnalysisProcedure 121

6.2 Results. 125
6.2.1 Changes in the Response Variables 126

6.2.2 Hypothesis Testing and Response to the Research Questions 130

6.3 Discussion. 133

6.4 Threatsto Validity 134
6.4.1 Conclusion Validity 134

6.4.2 Internal Validity 134

6.4.3 Construct Validity 135

6.4.4 External Validity 135

6.5 Relatedwork 136

6.6 Conclusion 138

7 Conclusions 139
7.1 FutureWork L 140
Appendices 143
A Summary of surveyed papers 143

Bibliography 152

List of Figures

2.1
2.2

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8
3.9

Overview of video game artefacts.
Model-Driven Development vs. Code-Centric Development in the

context of Kromaia

Summary of the process we followed to construct a taxonomy of pro-
cedural content categories. We started from two existing taxonomies
([, 2D, - o o
Structure of our proposed taxonomy of procedural content cate-
gories. The subcategories highlighted in grey are those that have
been introduced in this taxonomy based on the articles we found,
thus extending previous existing taxonomies.
Evolution of the categories on each step of the process to construct
Our taXxonoMY. v v v v v vt v e e e e e e e e e e
Example of weapons evolved via constrained surprise search (source
[BD. . o e
Screenshot of Chapas video game where the terrain was generated
onlinebyaTP (source [4]).
In-game screenshot of a spaceship generated using the approach by
Gallota et al. [5] (source [S]).
Example of levels generated with the GA of Ferreira et al. [6]
(source [6]).
Architecture of TrackGen (source [7]).
Example map generated for the Multi-Region Map Experiment -

different regions colored (source [8]).

30

49

List of Figures

3.10 One of the evolved games presented by Kowalski et al. [9] (source
[OD. . .

3.11 Number of articles published per year for each category of the tax-
onomy studied in thissurvey.

3.12 Percentage of articles where the case study involves academic games,

academic environments or commercial games.

4.1 Overview of IMHOTEP, our proposal for PCT.

4.2 Overview of IMHOTEP on a running example.

5.1 Overview of the evaluation process.
5.2 Results of IMHOTEP (Simnorep and Tyuporep) and the SBPCG bench-

mark in terms of Opuration. + + « « « + « o e e e

6.1 Two-Treament crossover design of our experiment.
6.2 (A)PCGboss. BYPCTboss.
6.3 Our experimental procedure.
6.4 Files provided for the experiment.
6.5 Histograms with normal distributions and box plots for Won Rate,
Design and Immersiveness, with boxplots by the alternatives of

Gamer Profile, Group and Profile respectively

13

75

92

120

List of Tables

2.1

3.1
3.2

5.1
5.2

6.1

6.2
6.3

6.4

6.5

Definitions of the key components for Search-Based Procedural

Content Generation (SBPGC). 24

Number of publications retrieved at each step of our literature search. 40

Summary of the three surveys. 42

IMHOTEP parameter settings 102

RQI1-RQ2. (a) Mean value and standard deviation for Opurarion
obtained by each approach per boss and overall. (b) Wilcoxon test
and Vargha-Delaney A5 results obtained by comparing Spunorep V-
SBPCG (RQ1) and Spnnorep VS Timhotep (RQ2) per boss and overall.
A Large—L. 105

Response variables and correspondent items in the evaluation ques-
HONNAITE v ot et et e e e e e e e 114
Focus group questions. oL 122
Mean and standard deviation (1 4= ¢) values of the dependent vari-
ables for the factor (Technique) in each alternative of the fixed factors.
The light, medium and dark gray highlight indicates a small, medium
orlargeeffect. 126
Cohen d values for the response variables for each fixed factor. Gamer
Profile: 1=Non Target audience, 2=Neutral, and 3=Target audience. 128
Results of the Type III test of fixed effects for each response variable

and factor, or factor’s interactions. NA=Not Applicable 133

List of Tables

6.6 Overview of related work. Evaluation: generated content (A), variants of the
proposed algorithm (VA), generated content compared to a baseline (C). Measures:

Design (De), Difficulty (Diff), Fun (F), Immersiveness (I).

15

Chapter 1

Introduction

Game Software Engineering (GSE) [10] is a branch of Software Engineering which
focuses on the development of video games. GSE specifically tackles the challenges
arising from the fact that video games present characteristics that differentiate their
development and maintenance from the development and maintenance of classic
software [11, 12]. For example, developers contribute to video games vs. non-
games by working on different kind of artefacts, develop and maintain artefacts
at a difference pace [11], find it more difficult to reuse their code [11] and adopt
automated testing [12]. The interest in GSE research has witness a continuous growth
since 2010 [13], with several GSE work published in the most renewed SE venues

including ICSE, FSE, MODELS, ASE [14].

Video games are complex software products where art and coding are combined
during the development process to conform the final product. The industrial scene
of video games development has seen a rapid expansion in the last decades, with
video games becoming an economic motor and a worldwide phenomenon that has

captured the general interest of all sectors of the population globally [15].

The industry of video games development can be split into three main different
branches: AAA games, indie games, and serious games. The main players in the
field develop AAA video games, which are produced and distributed by mid-sized
or major publishers [16]. These games are typically more complex than other types
of games, and have high development and marketing budgets, while being mainly

constrained by time factors in the form of deadlines and firm release dates. On the

17

other side of the spectrum, it is possible to find the so-called indie games, created by
individuals or smaller video game studios that lack the financial and technical support
of a large game publisher. While indie games benefit from unbridled creativity, they
often struggle with funding and issues typically associated to small development
teams such as having a constrained extension or undesired functionality due to
limited testing. Serious games are designed not only to entertain, but to also instruct,
inform, or educate the players. We can find examples of serious games in Non-
Governmental Organizations that develop games to raise awareness about societal
issues, medical research associations that do so to simulate complex operations, or
top-valued tech companies that use gamification to instruct new recruits in their
processes. These games are usually restricted to the scope of their respective domain,

and can vary wildly in their goals, complexity, and development times.

Regardless of the differences in their development goals and processes, all these
games share a common issue in the form of their need for content. Nowadays, the
creation of video games is a creative process that involves experts from many different
crafts, including artists, designers, programmers, and audio engineers, among many
other disciplines. Without the aesthetic components that create immersive game
environments, the music scores and sound effects that evoke feelings and create
memorable game experiences, or the interactive elements that the players can use as

tools within the game, there can be no game at all.

Of all games, AAA games are usually the ones that require the most content
both in amount and variety, often resulting in a long, manual, repetitive, and very
costly content creation effort that is carried out by large amounts of game developers.
On the other hand, in indie games, content creation is a delicate process constrained
to the capabilities of the team. While being too ambitious with game content can
cause delays in a project or even result in failure to publish a game, being too lax
with the content can render a game unsuccessful. For small game studios, as it may
happen with any start-up company, both scenarios can be deadly due to the limited
available funding. Serious games are in the same spot as indie games with regard to

their limits in content creation, but often for different reasons. In the case of serious

18

games, their very nature narrows their scope and their target players, and restricts
the creation of content to that which is strictly necessary within the domain of the
application. While this may be seen as beneficial, it is more often than not a severe
hindrance in development, since the specificity of content often calls for unique

solutions involving usually unavailable domain experts.

To tackle these development challenges, researchers have focused their efforts
towards Procedural Content Generation [17], a field of work that has gained traction
in the last decades. Procedural Content Generation (PCG) [1] is defined as the
automated production of different components of video game. Through PCG, video
game software engineers generate components and aspects of video games in an
automated or semi-automated fashion, which is a more competitive approach than

doing so through the traditional manual development process.

This thesis address the need for content from a new perspective applying
Software Transplantation into Procedural Content Generation, which we named
Procedural Content Transplantation (PCT). In medicine, transplantation is a pro-
cedure in which cells, tissues, or organs of an individual are replaced by those of
another individual, or the same person [18]. In software, researchers understand
transplantation as a procedure in which a fragment (organ) of a software element
(donor) is transferred into another software element (host) [19]. Software transplan-
tation has been successful for different tasks: program repair [20, 21], testing [22],

security [23], and functionality improvements [24].

We rely on a search-based algorithm as the process of transplantation involves
connecting the boundaries of the donor organ with those of the host, and with
multiple potential connection points available from the donor, the search space
created by the combination of boundaries and host is simply too vast to be thoroughly
explored through brute force methods. Moreover, search-based approaches have

been successfully applied for traditional software transplantation [19].

To show the viability of procedural content generation via transplantation
we designed and realised the first ever search-based transplantation algorithm for

video-game procedural content, dubbed IMHOTEP, and evaluated its effectiveness in

1.1. MOTIVATION FOR TRANSPLANTATION 19

generating non-playable characters (NPCs) for the commercial video-game Kromaia.
Our approach is named after IMHOTEP, who is considered by many to have written
the Edwin Smith Papyrus (the oldest known manual of surgery).

To evaluate our proposal we have carried out an industrial case study in collabo-
ration with the developers of the commercial video game Kromaia!, and we have
empirically assessed and compared the content generated by our approach and a

PCG technique from the literature.

1.1 Motivation for Transplantation

While Procedural Content Generation (PCG) offers automated means to address the
increasing demand for game content, most existing approaches rely on generating
new artefacts from scratch. These methods often struggle to balance quality, diversity,
and believability, particularly in content-heavy domains such as AAA or serious
games. Moreover, many PCG techniques operate within tightly constrained rule
systems or generative grammars, which can inadvertently limit the richness of the
produced artefacts compared to manually crafted ones.

Transplantation provides a complementary perspective by leveraging existing
game content as reusable building blocks. Instead of reinventing content anew,
transplantation transfers functional or aesthetic fragments from a donor artefact into
a host artefact, enabling the creation of novel yet coherent game elements. This

process offers several advantages:

* Reuse of Proven Content: Borrowing from content that has already been de-
signed, tested, and integrated into a game ensures higher quality and reliability

compared to generating completely new assets.

* Reduction of Development Costs: By transplanting fragments, studios can
mitigate the high costs of manual asset creation, especially in contexts with

limited resources such as indie or serious game development.

* Increased Variety: Transplantation allows recombination of existing artefacts

ISee the official PlayStation trailer to learn more about Kromaia: https://youtu.be/
EhsejJBp8Go

https://youtu.be/EhsejJBp8Go
https://youtu.be/EhsejJBp8Go

1.2. CONTRIBUTIONS 20

in unforeseen ways, expanding the design space while preserving consistency

within the game world.

* Empowering Developers: Unlike black-box generative methods, transplanta-
tion is not only an automated process but also a tool for developers. It gives
them greater power over the generation process by allowing them to guide
what gets reused, where it is placed, and how it is adapted. This balance
between automation and human oversight ensures that the resulting content

aligns with the creative vision of the development team.

* Bridging Manual and Automated Processes: Unlike purely generative meth-
ods, transplantation strikes a middle ground between handcrafted content and
automated generation, enabling developers to retain creative control while

benefiting from automation.

In essence, transplantation reframes the challenge of PCG: rather than asking
“how do we generate new content?”, it asks “how can we adapt and reuse existing
content to create something new?”. This shift aligns well with the realities of video
game development, where assets are plentiful but costly to produce, and where

creativity often emerges from the recombination of familiar patterns.

1.2 Contributions

The main contributions of the current PhD research are:

1. A comprehensive survey about the current state of Search-Based PCG
(SBPCQ) that also provides insights for future directions in this field (Chap-
ter 3).

2. IMHOTEP, a Procedural Content Transplantation technique (Chapter 4).

3. An empirical study on the use of IMHOTEP in an industrial video game (Chap-

ter 5).

4. A controlled experiment with humans to assess IMHOTEP and a PCG technique

(Chapter 6).

1.3. PUBLICATIONS 21

1.3 Publications

The following publications are the work presented in this PhD thesis:

1. The Quest for Content: A Survey of Search-Based Procedural Content
Generation for Video Games currently under review in ACM Surveys 2 and

available on arXiv [25];

2. Game Software Engineering: A Controlled Experiment Comparing Auto-
mated Content Generation Techniques [26] was published in ESEM 2024
Technical Papers Track (Chapter 6), and received the Best Paper Award on its
category. It has also won the Best Video-Presentation on the ‘2* Happy Hour
de la Red Al4Software’ from Red de Investigacion en Inteligencia Artificial

Aplicada al Proceso de Desarrollo Software;

3. Video Game Procedural Content Generation Through Software Trans-

plantation [27] was published in ICSE (SEIP) 2025 (Chapter 4, 5);
During my PhD I undertook additional research that is not part of this thesis:

1. Evaluating Explanations for Software Patches Generated by Large Lan-

guage Models [28] was published in SSBSE 2023.

2. Search-based Negative Prompt Optimisation for Text-to-Image Genera-

tion [29] was published in EvoMUSART 2025.

1.4 Roadmap

This thesis is organized as following: Chapter 2 discuss the relevant background
knowledge for our automated software transplantation in procedural content genera-
tion work. Chapter 3 presents the literature review undertaken as part of this thesis
on Search-based Procedural Content Generation. Chapter 4 presents our automated
software transplantation approach. Chapter 5 presents an empirical evaluation of
our approach. Chapter 6 presents our controlled experiment comparing automated
content generation techniques. Chapter 7 discusses the outcomes of the thesis and

future lines of work, thus concluding the content for this thesis.

Zhttps://dl.acm.org/journal/csur

Chapter 2

Background

This chapter provides the reader with an overview of relevant topics for our search-
based transplantation algorithm for video-game procedural content.

First, we put our work in the context of Procedural Content Generation (Sec-
tion 2.1), and more precisely into Search-Based Procedural Content Generation
(Section 2.2). Next, we introduce the state-of-the-art of Automated Software Trans-
plantation (Section 2.3).

Finally, we provide some clarifications about Video-game Development (Sec-
tion 2.5) to understand Kromaia. Kromaia (Section 2.6) is the industrial video-game

used for the empirical study and the controlled experiment of this thesis.

2.1 Procedural Content Generation

Procedural Content Generation (PCG) refers to the automation or semi-automation
of the generation of content in video games. By content, we refer to every aspect of a
game. This definition is broad given the large amount of content that a game usually
needs, starting from the environment till the inner system logic of the game. To that
extent, the literature groups the content in different content types [1]; game bits,
game space, game system, game scenarios, game design, and derived content. Game
bits, game space, game system, game scenarios, and game design, refer to elements
inside the game such as vegetation [30] or sound [31] (game bits), environment
or terrain [32] (game space), Non-Playable Characters [33] (game system), levels

or puzzles [34, 35] (game scenarios), and rules or restrictions [36] (game design).

2.1. PROCEDURAL CONTENT GENERATION 23

Derived content, on the other hand, is all the content that are generated because of a
game, like videos of player experiences playing a game.

PCG can be carried out in two different manners, corresponding to two different
stages of the lifetime of a game. Hence, offline PCG refers to content generated
before the release of a game (at design time), and online PCG refers to content

generated on the fly while the game is being played (at run-time).

PCG is a large field spanning many algorithms [37], which can be grouped
in three main categories according to the survey of PCG techniques by Barriga et
al. [38]: Traditional methods [39] that generate content under a procedure without
evaluation; Machine Learning methods (PCGML) [40, 41, 42] that train models
to generate new content; and Search-Based methods (SBPCQG) [1, 2] that generate
content through a search on a predefined space guided by a meta-heuristic using one

or more objective functions.

Our work falls in the SBPCG category and it generates content of the NPC type.
In the context of NPC generation using SBPCG, Ripamonti ez al. [43] developed a
novel approach to generate monsters adapted to players, considering the monster with
more death rate the preferred by the player. To evaluate the monsters, they recreated
an environment with the main aspects from a MMORPG ! game. Pereira et al. [44]
and later extended by Viana et al. [33] seek for generating enemies that meet a
difficulty criteria. Pereira et al. and Viana et al. use the same research academic game
in their experimental designs. Blasco et al. [45] focuses on generating spaceship
enemies that are comparable to the ones manually created by developers. To generate
spaceships, Gallota et al. [5] used a combination of Lindenmayer systems [46] and
evolutionary algorithm. Gallota et al. as well as Blasco et al. use a commercial video
game in their evaluation.

In the context of ML, to the best of our knowledge there is a gap in the generation
of NPC. ML research focus on other aspects of video games, such Al [47] or
graphical aesthetics [48]. The motivation of our work comes from the limitations that

we detected in previous work. Previous work focused on speeding up development

'Massive Multiplayer Online Role-Playing Games

2.2. SEARCH-BASED PROCEDURAL CONTENT GENERATION 24

Table 2.1: Definitions of the key components for Search-Based Procedural Content Genera-

tion (SBPGC).
Name Short Description
Encodin Direct Less genotype-to-phenotype complexity
& conversion
Indirect Requires human effort on creating the con-

version system genotype-to-phenotype
Direct - Theory The developers assess with their opinion to

Driven elaborate the objective function

. . Direct - Data The objective function is based on infor-

Objective Function_ . .
Driven mation about relevant parameters extracted
from artefacts

Simulation - The simulator agent does not change during
Static the simulation
Simulation - Dy- The simulator agent learns during the simu-
namic lation
Interactive - Im- Players are outright asked for their opinions
plicit
Interactive - Ex- Data is indirectly extracted or inferred from
plicit the observation of the actions of the players

and the results of those actions

time. However, the influence of the developers on the generated content was limited.
The generated content depended on randomness resulting on generated content not
aligned with the intention of the developers. As a result, the generated content was

either not used or used as secondary content.

2.2 Search-Based Procedural Content Generation

Search-Based Procedural Content Generation is a field of the more general Search-
Based Software Engineering (SBSE) research area [49, 50] .

SBSE seeks to reformulate Software Engineering problems as ‘search problems’.
Given a search space of a particular problem, a search-based approach can look
for an optimal or near optimal solution within a set of candidate solutions. The
next paragraphs describe the most commonly used algorithms in SBSE (which are
also summarised in Table 2.1), and how the two key ingredients of SBSE (namely

representation and objective function) have been being applied in SBPCG.

Within the main algorithms used for SBSE, we find local search algorithms,

2.2. SEARCH-BASED PROCEDURAL CONTENT GENERATION 25

single-objective evolutionary algorithms, and multi-objective evolutionary algo-
rithms [49, 50]. Local search algorithms receive a set of candidate solutions as input,
and then determine one of the candidate solutions as the starting point for the search.
In order to perform the search, they then iteratively move to a neighbour solution
which slightly differs from the current solution and evaluate the new candidate so-
lution according to the fitness function. Single-objective evolutionary algorithms
use mechanisms inspired by the Darwinian concept of evolution. Evolutionary al-
gorithms apply genetic operations such as the crossover or mutation of individuals
over the candidate solutions to obtain new populations of candidate solutions, which
are then evaluated according to a fitness function that targets a single objective.
Multi-objective evolutionary algorithms work through the same Darwinian principles
and genetic operations to search for the best candidate within a search space, but
evaluate the candidate populations according to objective functions that consider

more than one goal.

A search-based approach needs a representation of the particular problem that
an algorithm can understand to perform the search (i.e. encoding). Regarding the
representation of the problem, we find two main components, the genotype and the
phenotype. The genotype is the data structure that the algorithm will process, and the
phenotype is the data structure that will handle the evaluation part of the search. In
other words, a phenotype is a conversion from a genotype. Based on the difficulty of
the conversion from genotype to phenotype, we refer to ‘direct encoding’ or ‘indirect
encoding’. A direct encoding implies less genotype-to-phenotype complexity conver-
sion than an indirect encoding, which requires a more complex conversion system.
While an indirect encoding requires more human effort on creating the conversion
system, it also provides freedom to represent the content. In SBPCG, an example
of a direct encoding is a grid where each cell represents an element of the content.
An evolutionary algorithm is capable of interpreting the grid and evolve it, and the
final phenotype can be extrapolated just by looking at the genotype. An example
of indirect encoding is a list of the details of the different elements that compose

the content. A vector representing that list of details is likely to be evolved by an

2.3. AUTOMATED SOFTWARE TRANSPLANTATION 26

evolutionary algorithm. However, there is a need for interpreting the details of the

elements in the vector to generate the phenotype.

Finally, a search-based approach needs an objective function (or fitness function)

that guides the search towards an optimal solution.

Regarding the objective function, SBPCG differentiates between three different
types [2]: direct, simulation, and interactive. Direct objective functions are those that
are based on the available knowledge of developers (that is, the developers themselves
participate in the assessment of the objective function). Direct objective functions
can be either theory-driven (meaning that the opinion of the developers is directly
leveraged) or data-driven (meaning that information about relevant parameters is
extracted from artefacts like questionnaires or player models). Simulation objective
functions replicate real situations to estimate the behaviour of real players. Work in
this area focuses mainly on developing more human-like agents, bots, and Als to be
used by objective functions. Simulation objective functions can be static, where the
simulator agent does not change during the simulation, or dynamic, where agents
that learn during simulation are used. Finally, interactive objective functions are
those that involve players in the composition of the objective function. Incorporating
human expertise in the objective function constitutes a broad research area itself,
named human-in-the-loop [51, 52], which studies how to incorporate humans into the
algorithm process. In SBPCG, interactive objective functions can be either explicit,
when players are outright asked for their opinions, or implicit, when the data is
indirectly extracted or inferred from the observation of the actions of the players and

the results of those actions.

2.3 Automated Software Transplantation

Automated Software Transplantation (AST) is a technique that involves extracting
functional components from one software system and integrating them into another.
This process allows the reuse of code across different applications while handling
differences in dependencies, architectures, and execution environments. AST has

been applied for automated program repair, testing, security and functionality im-

2.3. AUTOMATED SOFTWARE TRANSPLANTATION 27

provements.

On functionality transplantation, Miles et al. [53] and Petke et al. [54] proposed
the first approaches that transplant software code in a same program (assuming that
different versions of the programs are considered a same program). This seminal
work has inspired follow up research to perform Automated Software Transplantation
between different programs [19], or even different programming languages [55] and
platforms [56], as summarised below. When transplanting within a same program,
there is no need for adapters (i.e. alterations in organ or host to adapt the organ to fit

into the host).

Sidiroglou-Douskos et al. [57] proposed a technique that divides the donor
program by specific functionality, each piece is called a ‘shard’. The approach insert
the shard into the host without modifications, that is, the work from Sidiroglou-

Douskos does not use adapters either.

On the other hand, Maras et al. [58] proposed a three step general approach,
without implementing it, which applies feature localization to identify the organ;

then code analysis and adaptation, and finally feature integration.

Wang et al. [59] instead of using feature localization, takes as inputs the desired
type signature of the organ and a natural language description of its functionality.
With that, the approach called Hunter uses any existing code search engine to search
for a method to transplant in a database of software repositories. Further, Hunter
generates adapter functions to transform the types from the desired type signature

into the type signatures of the candidate functions.

Allamanis et al.’s SMARTPASTE [60] takes the organ and replace variable
names with holes, the approach using a deep neural network fills the holes. Allamanis
et al. [60] use Gated Graph Neural Networks [61] to predict the correct variable

name in an expression.

Unlike Allamanis et al., who puts holes into the organ, Lu ef al. [62] introduced
program slicing where the host is provided with a draft of the code with holes, or
natural language comments. Similarly to Wang et al. [59] , program splicing looks

into a database of programs to identify a relevant code to the current transplant task.

2.4. GENERAL SOFTWARE DEVELOPMENT VS GAME SOFTWARE DEVELOPMENT28

Finally, the approach selects the more suitable result found to fill the holes in the
draft.

Barr et al. propose uSCALPEL [19], an automatic code transplant tool that uses
genetic programming and testing to transplant code from one program to another.
USCALPEL uses test cases to define and maintain functionalities, small changes
are made to the transplanted code, and code that does not aid in passing tests can be
discarded, reducing the code to its minimal functioning form.

Subsequently, Marginean et al. proposes TSCALPEL [55] to achieve the trans-
plantation between different programs and programming languages. Kwon et al.
propose CPR [56] that transplants an entire program between different platforms.
CPR realizes software transplantation by synthesizing a platform independent pro-
gram from a platform dependent program.

To synthesis the platform independent program, CPR uses PIEtrace [63] to
construct a set of trace programs, which captures the control flow path and the data
dependencies observed during a concrete execution, and replaces all the platform
dependencies with the concrete values that it observed during the concrete execution.
Finally, CPR merges all these trace programs together to handle any input, by

replacing the concrete values observed during the executions, with input variables.

2.4 General Software Development vs Game Software

Development

From a software engineer’s perspective, general software development and game
development share foundational skills—like coding, debugging, and design patterns,
but they differ significantly in goals and workflows. General software is typically
built to solve real-world problems, prioritizing functionality, usability, and long-term
maintainability. Whether it’s a banking app or a logistics dashboard, the focus
is on delivering reliable tools that perform clearly defined tasks, often following
standardized architectures like MVC or microservices.

Game development, in contrast, aims to create immersive and emotionally

engaging experiences. This shift in purpose demands a real-time performance

2.5. MODEL-BASED GAME SOFTWARE DEVELOPMENT 29

focus, which adds unique constraints around graphics, physics, and user input.
Game developers rely on specialized engines like Unity or Unreal, use lower-level
programming techniques for optimization, and architect systems around game loops
and data-driven models such as Entity-Component-System (ECS). The work blends
technical skill with artistic sensibility, where changes are often driven by gameplay

feel rather than functional requirements.

Testing and collaboration also differ greatly. General software emphasizes
automated testing—unit, integration, and end-to-end—to ensure reliability and re-
gressions. In game development, testing is more experiential, relying heavily on
manual playtesting, balancing, and user feedback. Furthermore, game development
is highly interdisciplinary: engineers work closely with artists, sound designers,
and narrative teams to bring the game world to life, requiring tools and systems to

accommodate rapidly evolving creative input.

Overall, while both domains require disciplined engineering, game development
introduces unique challenges that revolve around performance, storytelling, user
experience, and cross-functional creativity. General software is built to be stable
and scalable; games are built to be felt. A software engineer moving between the
two must shift not only their technical focus but also their mindset—from solving

problems to shaping experiences.

2.5 Model-Based Game Software Development

Video games are pieces of software that, like any other software, need to be designed,
developed, and maintained over time. However, there are some particularities of
video games that make them differ from traditional software, such as the artistic
component of the video-game, the complexity of the rendering pipelines, the het-
erogeneous nature of video game development teams, and the abstract nature of the
final purpose of a video game: fun [11, 64]. Hence, video games present character-
istics that differentiate their development and maintenance from the development
and maintenance of classic software. Examples of these differences can be found

in how video game developers must contribute to the implementation of different

2.5. MODEL-BASED GAME SOFTWARE DEVELOPMENT 30

kinds of artifacts (e.g., shaders, meshes, or prefabs) or in the challenges they face
when locating bugs or reusing code [11, 64]. Nowadays, most video games are
developed by means of game engines. Game engines are development environments
that integrate a graphics engine and a physics engine as well as tools for both to
accelerate development. The most popular ones are Unity and Unreal Engine, but it
is also possible for a studio to make its own specific engine (e.g., CryEngine [65]).
One key artefact of game engines are software models. Unreal proposes its own
modeling language (Unreal Blueprints) [66], Unity proposes Unity Visual Script-
ing [67], and a recent survey in Model-Driven Game Development [68] reveals that
UML and Domain Specific Language (DSL) models are also being adopted by devel-
opment teams. Developers can use the software models to create video game content
instead of using the traditional coding approach. While code allows for more control
over the content, software models raise the abstraction level, thus promoting the use
of domain terms and minimizing implementation and technological details. Through
software models, developers are freed from a significant part of the implementation
details of physics and graphics, and can focus on the content of the game itself (see

Figure 2.1).

- 2
Video Game Content (NPCs, weapons, levels, ...)

Software

(L5]| models | [A% [umrer] [
J

!

Game Engine (Unreal, Unity, CryEngine, O3DE, ...)

| Graphics Engine | | Physics Engine |

!

[Libraries (openGL, Vulkan, OGRE, Bullet, ...)]

Figure 2.1: Overview of video game artefacts.

One of the challenges in software development is the environment used, as
each environment and programming languages has unique characteristics. Software
models, and more precisely Model Driven Engineering, study how to alleviate
this problem by approaching software development from a platform-independent
perspective through models. Video game developers must deal with this challenge as

well and has motivated the research that combine software models and the domain

2.5. MODEL-BASED GAME SOFTWARE DEVELOPMENT 31

of video games.

The 2010 survey of Software Engineering Research for Computer Games [13]
identified only one work that applied Model-Driven Development to video
games [69]. That work coined the term “Model-Driven Game Development” and
presented a first approach to 2D game prototyping through Model-Driven Develop-
ment. Specifically, they used UML classes and state diagrams that were extended

with stereotypes, and a model-to-code transformation to generate C++ code.

More recent work presents work that intended to minimize errors, time, and cost
in multi-platform video game development and maintenance [70, 71, 72], or suggest

the use of business process models as the modelling language for video games [73].

In the intersection between software models and evolutionary computation,
Williams et al. [74] use an evolutionary algorithm to search for desirable game
character behaviours in a text-based video game that plays unattended combats
and that outputs an outcome result. The character behaviour is defined using a
Domain-Specific Language. The combats are managed internally and are only driven
by behaviour parameters, without taking into account a spatial environment, real-
time representation, or visual feedback (which takes into consideration the physical

interaction of the characters, variation in the properties, etc.).

Another work that focuses on the intersection between software models and
evolutionary computation is Avida-MDE [75], which generates state machines that
describe the behaviour of one of the classes of a software system (Adaptive Flood
Warning System case study). The resulting state machines comply with developer
requirements (scenarios for adaptation). Instead of generating whole models, Avida-
MDE extends already existing models (object models and state machines) with
new state machines that support new scenarios. The work in Goldsby and Cheng
et al. [75] does not report the size of the generated state machines; however, the ones
shown in the paper are around 50 model elements, which is significantly smaller
than the more than 1000 model elements of the models of a commercial video game

such as Kromaia.

The work mentioned above focus on generating new content from models,

2.6. THE KROMAIA VIDEO GAME 32

which differs with our proposal of using MDE to transplant model fragments between

models.

2.6 The Kromaia Video Game

In this section we introduce Kromaia, the commercial video game investigated, in
collaboration with its developers, in the empirical study and the controlled experiment

presented in this thesis.

Each level of Kromaia consists of a three-dimensional space in which a player-
controlled spaceship has to fly from a starting point to a target destination, reaching
the goal before being destroyed. The gameplay experience involves exploring floating
structures, avoiding asteroids, and finding items along the route, while basic enemies
try to damage the spaceship by firing projectiles. If the player manages to reach
the destination, the ultimate antagonist corresponding to that level (which is called
boss) appears and must be defeated in order for the player to complete the level.
Kromaia’s boss is the NPCs target content that we aim to automatically create via
PCT. Bosses can be built either using C++ code or software models. The upper part
of Figure 2.2 depicts a boss fight scenario in which the player-controlled ship (item A
in the figure) is battling the NPC Serpent (item B in the figure), which is the final boss
that must be defeated to complete Level 1. The bottom part of Figure 2.2 illustrates
the two possible development approaches for the Serpent boss (model-driven Vs.

code-centric).

Even though Figure 2.2 shows excerpts of the implementation of the Serpent
both in the form of software models and code, it is not necessary to realize both in
order to implement this content. Developers can mix both technologies by developing
different parts of the boss using one or the other approach indistinctly, but they are
also free to implement the content using software models exclusively or to do so
purely via code. However, the heterogeneous nature of video game development
teams - comprised mainly of programmers [76], but also counting game designers,
artists, Ul designers, and QA engineers within their ranks - possibly favours the

use of software models over code thanks to the higher abstraction level of the

2.6. THE KROMAIA VIDEO GAME 33

Screenshot of Kromaia

Code-Centric Development

Model-Driven Development

netoy:Player void buildScenario() {
playerLife = 100000 //Player
position =(000) Player netoy(100000.0, Vector3f(0.0, 0.0, 0.0));
setPlayer(netoy);
vermis:GameElement i | lement //Asteroids
GameElement asteroid@(ElementType: :ELEMENT_TYPE_ASTEROID,
mmﬂyue ;ﬁ)ng;NT_TVPE_UNIT Zl:srlv:;r:wne ; (E_Iégrg;gl)T_WPE_ASTEROID Vector3£(0.0, 50.0, 10.0));
: | Hull hullA@(MobilityType: :MOBILITY_TYPE_OPEN,
_ Vector3£(0.0, 50.0, 0.0), 0.1, MaterialType::MATERIAL_TYPE_STONE,
IIAH i) 49.0, HullType::HULL_TYPE_NORMAL);
mobilityType = MOBILITY_TYPE_OPEN asteroidd. addHullChul1A0);
position =(000) id0).
s =001 addGameElement (asteroide);
objectMaterial = MATERIAL_TYPE_STONE

objectLifeMaximum = 40 GameElement asteroid1(ElementType::ELEMENT_TYPE_ASTEROID,

hullType =HULL_TYPE_NORMAL Vector3f(20.0, 10.0, 20.0));
i Hull hullA1(MobilityType: :MOBILITY_TYPE_OPEN,

| | Vector3f(20.0, 10.0, 10.0), 0.01, MaterialType::MATERIAL_TYPE_STONE,

R ROV 40.0, HullType: :HULL_TYPE_NORMAL);
mobility Type =MOBILITY_TYPE_ROLL hullFirst = hullo asteroidl.addHull(hullAl);
position =(0,0,0) hullSecond = vitalo addGameElement (asteroidl)
objectMass =10 destructible =true !
objectMaterial = MATERIAL_TYPE_METAL
objectLifeMaximum = 1000 //B0SS
hullType = HULL_TYPE_NORMAL GameElement vermis(ElementType: :ELEMENT_TYPE_UNIT,

- Vector3f(0.0, 0.0, 0.0));

mouth:Weapon
mobiityType = MOBILITY_TYPE_NONE //HULL @ (Head)
position Z00.1) Hull hull@(MobilityType: :MOBILITY_TYPE_ROLL,
objecthass =0 Vector3f(.0, 0.0, ©.0), 1.0, MaterialType::MATERIAL_TYPE_METAL,
ozlecl't'fl:;'a' =mTER'AL_TYPE_N°NE 1000.0, HullType::HULL_TYPE_NORMAL);
objectLifeMaximum = y . . o
asoaTio = WEAPON_TYPE_PROJECTILE Weapon mouth(MobilityType: :MOBILITY_TYPE_NONE,
reloadTime -0 Vector3f(.0, 0.0, 1.0), 0.0, MaterialType::MATERIAL_TYPE_NONE,
fireDamage =200000 100.0, WeaponType: :WEAPON_TYPE_PROJECTILE, .0, 200000.0);

hul1l0.addWeapon(mouth) ;
vermis.addHull(hulle);
(LT

Figure 2.2: Model-Driven Development vs. Code-Centric Development in the context of
Kromaia

former (combined with their detachment from more technical implementation details)
which empowers less tech-focused roles to embrace a more active participation in
development tasks. Also, previous work [77] showed that video game developers
make fewer mistakes and are more efficient when working with models rather than
code.

In Kromaia, the elements of the game are created through software models,

2.7. CONCLUSION 34

and more specifically, through the Shooter Definition Model Language (SDML).
SDML is a DSL model for the video game domain that defines aspects that are
included in video game entities: the anatomical structure (including their components,
physical properties, and connections); the amount and distribution of vulnerable
parts, weapons, and defences; and the movement behaviours associated to the whole
body or its parts. SDML has concepts such as hulls, links, weak points, weapons,
and Al components, and allows for the development of all types of video game
content, such as bosses, enemies, or environmental elements. The models are
created using SDML and interpreted at runtime to generate the corresponding game
entities. In other words, software models created using SDML are translated into
C++ objects at runtime using an interpreter integrated into the game engine [45].
More information on the SDML model can be found on-line at https://youtu.

be/Vp3Zt4gXkoY.

2.7 Conclusion

To the best of our knowledge this thesis propose the first automated software trans-
plantation approach in the field of content generation for video games. Our proposal
allows the transplantation between different types of content. More precisely, in this
thesis, we transplant organs from scenarios to NPCs. We have demonstrated that in
this context a simulation-based objective function yield superior outcomes compared
to the test-based objective function that previously attained the most favourable

results in traditional software engineering transplantation (uSCALPEL [55]).

A previous work from us also generated NPCs using SBSE [45], speeding up
development time. However, in our previous work the influence of the developers
on the generated content was limited. The generated NPC depended on randomness
resulting on generated NPCs not aligned with the intention of the developers. As
a result, the generated content was either not used or used as secondary content.
In fact, the limitations of our previous work were the inspiration for moving to
transplantation. The transplant-based approach of this work keeps control in the

hands of the developers (who choose the organ to transplant) and helps to explore

https://youtu.be/Vp3Zt4qXkoY
https://youtu.be/Vp3Zt4qXkoY

2.7. CONCLUSION 35

the latent content that exists in the video game.

Our research introduces a fresh perspective on content generation through the
use of transplantation, which sets it apart from traditional procedural content gener-
ation (PCG) methods. Transplantation enables the seamless integration of various
content types, facilitating in our work the transplant of elements from scenarios to

NPCs.

Chapter 3

Literature Review

3.1 Introduction

This chapter surveys the current state of Search-Based PCG (SBPCG) and provide
insights for future directions in this field. The ultimate aims is to encourage further
applications of Search-Based Software Engineering to Game Software Engineering
as we may have just scratched the surface of its application in this area. In the

following subsection we further detail the scope of our survey.

3.1.1 Scope

Traditional methods include diverse methods, such as pseudo-random number gener-
ators, cellular automata, generative grammars, fractals, or noise. Developers must
design an approach for a specific type of content which produces useful elements
for that type of content without an evaluation or a learning process. Thus, TM do
not follow diverse content, and require human domain-specific knowledge. The
generation of vegetation is probably the most successful case of video game PCG
through Traditional Methods, with the development of tools such as SpeedTree [78].
The usage of SpeedTree in games, both AAA games and indie games, is widespread.
SpeedTree was first launched in 2002, and since then there has been no similar suc-
cessful tool. Traditional methods have mostly been used for offline generation; we
found no references to TM online generation. The fact that they have been restricted

to offline use hinders their use for replay-ability'.

I'The potential for continuing playing after the first completion of a game.

3.1. INTRODUCTION 37

Machine Learning methods train models to generate content based on training
data, thus reducing the need for human domain-specific knowledge. ML online
generation is still not widespread, most of the work on ML is offline generation.
The use of ML methods for PCG (PCGML) was recently reviewed in 2018 by
Summerville et al. [40], who could not identify any successful case study used by
the industry. One of the open challenges of using PCGML is the lack of training
content, which is not always accessible, thus requiring additional effort from the
development team to create the training content in advance. While the use of Deep
Learning (a subfield of ML) has provided some advances in PCGML as reviewed by
Liu et al. [41], its application to PCG is still limited by two main factors. First, DL
approaches resist the specification and enforcement of explicit constraints, such as
setting up the number of rooms in a dungeon. Constraints are important for game
developers to achieve their vision of the content. Furthermore, DL has issues with
the interpretation of results [79], making it difficult for developers to understand
the design patterns that appear in the generated content. The understandability of
the patterns beneath the content is important for the development, since it allows
developers to generate the content exactly as expected in the design. This is perhaps
less of a problem in AAA and indie games, where creativity is encouraged to a

certain degree, but a major issue for serious games.

Search-based methods do not suffer from the limitations of TM, and are there-
fore less expensive to apply for many types of content. SB methods also do not
suffer from the limitations of ML methods, since they are easier to constrain and
provide more accessible explanations of the generated results. In fact, some of the
weaknesses of other methods become a strength in SB methods. For instance, in
SB methods, the objective function can use constraints to guide the search. SB
approaches for PCG generate content that is evaluated within the algorithm prior to
its use. During the evaluation phase, content is appraised to decide whether to use it,

discard it, or recombine its building blocks to generate further content.

The scope of this survey puts the focus on SB methods, since they mitigate or

outright remove a series of limitations suffered by TM and ML methods alike. In

3.2. SURVEY METHODOLOGY 38

2010, Togelius et al. [2] surveyed SB methods for PCG (SBPCG) reviewing the very
first research work in this field. They identified several research challenges for SB
methods: Suitability of the generated content, avoidance of catastrophic failure, and
improvement of the key components of the SB methods.

Our study reveals that in 2025 many of those challenges are still open, whereas
new types of contents and concepts have appeared such as surprise search [3] or
quality diversity [80]. Thus, making this field an exciting avenue for future research.

In this chapter we survey the current state of SBPCG by analysing a total of
121 articles, published between 2010 and 2023, that have applied at least one Search-
Based method to procedural content generation. Based on the analysis of this article
we evolve previous taxonomies [2, 1] in a new one, which is able to capture the most
recent content proposed in the literature, we describe the current work according to

this taxonomy, and conclude by providing insights for future directions in this field.

3.2 Survey Methodology

This survey gathers and categorizes research work published in the field of PCG
for Game Software Engineering. More precisely, this work puts the focus on the
context of SBPCG. In the following subsections, we present our search methodology

in detail, along with a description on the selected publications.

3.2.1 Search Methodology

Inspired by Martin et al. [81], our search methodology follows three steps: First we
perform a preliminary search followed by a repository search, then we apply the
selection criteria, and finally, we conduct a snowballing process.

Our preliminary search has two goals. The first one is to assess whether there
is a sufficient amount of publications in this field since the latest survey on Search-
Based PCG [2] from 2011. The second one is to define the keywords that will
be used for the repository search. The results of the preliminary search define the
following keywords: (‘pcg’ OR ‘automatic generation’ OR ‘procedural’) AND (
‘videogame’ OR ‘game’) AND (‘search-based’ OR ‘evolutionary’ OR ‘genetic’ OR

‘local search’ OR ‘tabu search’ OR ‘Monte Carlo Tree Search’ OR ‘mcts’)

3.2. SURVEY METHODOLOGY 39

We conduct the repository search on Scopus, a database that indexes papers from
ACM, IEEE, Springer and Elsevier, among others. We have gathered publications
from 2011 to 2023, since the last survey on Search-Based PCG [2] released on 2011,
which covers work published until 2010. We restrict the publications based on the
words defined during the preliminary search. We run the query on the title of the

article, the abstract and the keywords associated to each publication.

The inclusion criteria used in this survey ensure that the publications present
Search-Based algorithms with the aim of generating content in the area of video
games. For example hybrid approaches such as ‘Neuroevolution’, that is, the use
of an evolutionary algorithm to evolve a neural network (or any other ML method)
that will create the content, are not included. Similarly, approaches that evolve other
agents assessing content rather than creating it, are not included either. To verify that
the publications found during our search meet the inclusion criteria, we examine the

publications by applying the following three stages process:

1. Title: we remove publications that are clearly irrelevant from the title.

2. Abstract: we inspect the abstract and remove publications that are clearly

irrelevant according to the scope defined in Section 3.1.1.

3. Body: publications that pass the previous two steps are excluded if their

content is not relevant to the scope of this survey (Section 3.1.1)

The publications studied in this survey are the result of the application of this
selection process. Sections 3.4 to 3.8 discuss in detail the studied publications.

To reduce the risk of missing relevant publications from the literature, we
apply one level of backwards snowballing [82]. More precisely, we inspect the
publications cited in the related work of each publication that passed the previous
selection process.

In addition, we request feedback from the authors of the work included in our

survey, as done in previous surveys [81].

3.2. SURVEY METHODOLOGY 40

Table 3.1: Number of publications retrieved at each step of our literature search.

Step Number of publications Added publications
Preliminary search 318 107
Snowballing 196 13
Author feedback 1 1

3.2.2 Selected Publications

Table 3.1 provides the number of publications we retrieved at each stage of our
search, and specifies the number articles that at each step meet the inclusion criteria

for this survey, and were therefore included in the survey.

As a result of the examination of 498 publications, we retained 121 unique
publications that are in the scope of our survey, i.e., articles describing content
generation for video games by applying at least one SB technique. These 121
publications have been published in 43 different venues. The list is available in our
online appendix 2, along with a classification of the publication venues according to

the CORE ranking portal 3, and the JCR ranking portal #.

3.2.3 Threats to Validity

To mitigate the threat of missing relevant information in our literature survey we
undertook a number of mitigation actions, as detailed below. Opo-Two authors exam-
ined all articles independently, in order to ensure reliability and reduce researcher
bias. The results were compared at the end of the process, and any inconsistency was
resolved by a joint analysis and discussion. Moreover, to ensure that our survey is
comprehensive and accurate, we contacted the authors of the publications collected.
We asked them to check whether our description about their work is correct. Based
on their feedback, we revise our survey as well as included 1 additional publication.
We carefully describe the search process we followed and make additional data
available in our online appendix, so that future studies can reproduce, replicate, and

extend our work.

https://solar.cs.ucl.ac.uk/os/sbpcg/Venues.xlsx
3https://www.core.edu.au/conference-portal
‘https://jcr.clarivate.com/jcr/home

https://solar.cs.ucl.ac.uk/os/sbpcg/Venues.xlsx
https://www.core.edu.au/conference-portal
https://jcr.clarivate.com/jcr/home

3.3. SBPCG TAXONOMY 41
3.3 SBPCG Taxonomy

The main aim of creating an SBPCG taxonomy is to correctly identifying and
classify the different type of contents that have been described in published work on
SBPCG. This taxonomy is then used to discuss each of the articles within a given
category. This will ease the analysis and comparison of work aiming at automatically
generating new type of content. In this section, we explain the methodology by

which we construct the taxonomy that we use to classify existing SBPCG work.

Figure 3.1 summarizes the steps we followed elaborating the taxonomy. In
Step 1, Harmonizing, we analysed the taxonomies from two previous studies and
looked for similarities, thus getting a starting point for an harmonized taxonomy.
Then in Step 2, Test of time, we create a preliminary categorisation of the work
that we analyse in our survey. We then expand this categorization by including
additional subcategories to better reflect the current state of the work in SBPCG
in Step 3, Subdividing. Finally, in Step 4, Check Empty Categories, we analysed
why some types of contents that was discussed in the previous surveys, have not
been subsequently get any traction in SBPCG, thereby leading us to the removal of
some categories. Further details for each of the steps are provided in the following

paragraphs.

Previous PCG surveys have adopted a similar approach, by proposing their own
taxonomy. Our taxonomy stems from the analysis of these previous work, and also
includes new types of content according to the needs of newer articles published
from 2011 to 2023. Specifically, we used two surveys (namely Togelius ef al. [2] and
Hendrikx et al. [1]) as the starting point for our taxonomy as they are more generic
and cover more types of content than other surveys [40, 41]. Togelius et al. [2]
focused on Search-Based techniques (as we do) proposed till 2011; while the 2013
survey by Hendrikx et al. [1] focused on the most common and some emerging
techniques for PCG (including 11 Search-Based ones). Table 3.2 summarise and
compare the two previous surveys and our own by specifying their publication venue,

the publication time frame of the articles discussed by each survey, and their main

3.3. SBPCG TAXONOMY 42

Figure 3.1: Summary of the process we followed to construct a taxonomy of procedural
content categories. We started from two existing taxonomies ([1, 2]).

PCGML [36
Surl\al(és 1 OurSearch | | | _________ | &
_________ Query | | - Step 4:
,,,,,,,,, i Step 2: | Unbalanced | -DLPCG 37] o

Step 1:

e Testof | taxonomy ! Step3: | ———————— "
e)| e || me || vihemey [suiniang | | werey || e
survey [2] | _Taxonomy_| | empty |
[Tasonomy | | categories |
|
Base for our taxonomy ‘ Our taxonomy for the Types of Content
Table 3.2: Summary of the three surveys.
Authors Published in Cover articles from Number of articles Focus
Togelius et al. [2] ToG 2005 - 2010 25 SBPCG
Hendrikx et al. [1] TOMM 1991 - 2011 80 PCG
This survey under review 2011 - 2023 118 SBPCG
focus’.

In the following paragraphs, we explain the taxonomies used in both the previous
surveys, and the process we followed to derive the one we use in this survey.

Togelius et al. [2] divided SBPCG content into two categories: considering
whether the content was necessary, that is, whether the content was needed for a
game to be played, or optional, that is, whether the content was not strictly needed
for the game to be played and could be avoided during gameplay. The types of
content on each category may vary depending on their purpose in a game. This
survey built the taxonomy considering research articles published until 2010.

Hendrikx et al. [1] proposed a more structured classification for PCG methods.
Instead of constructing their taxonomy from the results of a literature search, they
asked themselves about the contents of a game. Then, they looked into the different
types of content to analyse the techniques applied within each category.

We have studied the detailed descriptions of both taxonomies, appreciating
significant similarities between them (see Fig. 3.1 Step 1). Both taxonomies overlap
in 10 out of 12 types of content of the sub-classification of the taxonomy of Togelius

etal. [2]. More precisely, there are three types of content with the same name

>These information have been extrapolated from the content of the surveys, as they are not
explicitly discussed in the surveys.

3.3. SBPCG TAXONOMY 43

Figure 3.2: Structure of our proposed taxonomy of procedural content categories. The
subcategories highlighted in grey are those that have been introduced in this
taxonomy based on the articles we found, thus extending previous existing

taxonomies.
Textures (4) Outdoor Maps (3) Entity Behavior (12) Mazes System Design (4)
Puzzles (10)
Sound (1) Shooter (20) ToE Camera Control (1)
Indoor Maps (5) (‘1/;';:5
Weapons (3) Maps (21) | Strategic
Vegetation (1) Maps (16) Tracks (4)

Rooms
(17)
Puzzles Dungeons
(42) (12)
Timeline
(13)

Stories (5)

(buildings, puzzles and levels) in both taxonomies, and we argue that vegetation
subsumes trees, indoor maps subsumes maps, outdoor maps subsumes terrains,
storytelling is equivalent to storyboards, story is equivalent to narrative, and system

design subsume rules and mechanics.

To build a first version of our taxonomy we start from the those of Hendrikx
et al.. Although their focus is different from ours, their taxonomy is more compre-
hensive than those by Togelius et al.’s one, and we observe that it better fits the more
recent articles we found in our search till 2023. We augment this taxonomy with
three types of content from the taxonomy of Togelius et al. (i.e., weapons, tracks, and
camera control) because we found recent articles that tackle those types of content.
Weapons fit in game bits, tracks fit in game scenarios, and camera control fits in

game design.

Then, we analysed our literature search results and categorised the articles
found according to this preliminary taxonomy (see Fig. 3.1 Step 2). Such an analysis
pointed out two aspects that must be taken into account in devising our new taxonomy:
difference in the amount of work related to different type of content, and decaying
vs. emerging type of content. Firstly, the number of work within the different
types of content vary significantly (see Fig. 3.1 Step 3). In particular, there are two

types of content (levels and indoor maps) that independently comprise more work

Base of our taxonomy

SBPCG Survey [2] \

Optional

« Entity Behavior

* Derived Content

3.3. SBPCG TAXONOMY

Leader boards

\~ News and Broadcasts

Step 1: Harmonizing

* Game Space

* News and Broadcasts
* Leader boards

Step 2: Test of time

+ Game Space

* Game Scenarios

—News-and-Broadeasts
+——teaderbeards

Step 3: Subdividing

PCG Survey [1] .
v + GameBits <« Weapons * Game Bits + Game Bits
* Game Bits * Necessary « Texture « Texture
« Texture + Rules and mechanics . ;EXW: . Sound . sound
+ Soun
. + Vegetation ~—Vegetation
\S/mmd * Vegetation N
caetation . + Buildings Buildings ®
+ Buildings T, +—Behavior «—Behavier
* Behavior * Na ehavior R
+ Elements - * Elements + Weapons + Weapons

+ Game Space

* Game Space Indoor Maps < + Indoor Maps + Indoor Maps
+ Indoor Maps + Outdoor Maps + Outdoor Maps + Shooter Maps
+ Outdoor Maps . Water —Water + Strategic Maps
© Water + Game Systems + Outdoor Maps
* Game Systems - Water
* Game Systems +Ecosystems
+ Ecosystems R o _GameSystems
Ecosystems + Road Networks e M
* Road Networks « Urban Environments
+ Urban Environments . Entity Behavior
* Entity Behavior - Urban Lpvitonments

+ Entity Behavior

N * Game Scenarios <« + Puzzles
* Game Scenarios .
Puzzl * Puzzles * Game Scenarios
uzzles « Storyboards + Stories « Puzzles
* Storyboards .+ Story © levels . Mazes
. i“"\: « Levels evels « Tracks + Physics
* Llevels . i
+ Game Design Camera Control Game Design storier
. i * System Dq N b
Game Design «+ System Design Rules and mechanics ystem Design + Levels
+ System Design . WorldD =
+ World Design orid Deslgn + Camera Control + fooms
X X - Dungeons
* Derived Content T ":’W

« Tracks

* Game Design
System Design

44

e
OSSR * Camera Control
e 9 .
! D Derived Content
I Harmonized name Integrated category No work in this category (—) Unbalanced category New subcategorization i
ettt ettt e et e et e e £ 4t e e e b e e e e s et e — «teaderboards

Figure 3.3: Evolution of the categories on each step of the process to construct our taxonomy.

than those presented by the rest of the types of content combined. Looking into
those types of content we have identified differences over the content that allow
a further sub-categorization. We therefore propose a further sub-categorization of
levels, indoor maps, and puzzles. To that extent, we have divided levels into the
timeline, room, and dungeon subcategories; indoor maps into the shooter maps,
strategic maps, and floor subcategories; and puzzles into the physics and mazes
subcategories (see Fig. 3.2). We argue that this new classification is better adapted to
the current research in SBPCG. Secondly, one of the general categories mentioned
above (i.e. derived content) and half of the types of content defined in the taxonomy
subcategories have not been tackled in the last decade by SBPCG works. The derived
content category addresses the generation of content after the development of a game.
This type of content is usually related with the interaction of players with a game.
Derived content is out of our scope as we relate to the generation of content for a

game before its release or during its gameplay.

From the analysis of the literature we also noticed that there are types of content
that have not been tackled by SBPCG. To speculate about the reason (see Fig. 3.1

Step 4), we have examined two more recent surveys of PCG [40, 41], which tackle

3.3. SBPCG TAXONOMY 45

PCG from the point of view of PCGML. PCGML handles patterns better as it is
based on learning, while SBPCG needs a manual configuration of the constraints
in order to be able to follow patterns. Maybe there are types of content that require
so much effort in the form of constraints that researchers resort on learning the

constraints.

In the last ten years there are types of content that have not been tackled by
neither SBPCG nor PCGML (i.e. buildings, behaviour, elements, water, ecosystems,
road networks, urban environments and world design). We ran an informal search
in Google Scholar for each type of content, in order to understand these types of
content, with the following query: ‘procedural generation’ + < type of content >.
The results show that works that study these types of content are addressed through
Traditional Methods, such as, noise generators, fractal structures or L-systems [83].
Here we find an opportunity for SBPCG and PCGML. TM approaches have been
successful but we did not find arguments proving their efficiency over SBPCG or

PCGML techniques.

Further explanation about the general categories, types of content, and sub-
categories can be found within the following sections, which compose the survey
per se. The Game Bits Section (Section 3.4) addresses textures, sounds, weapons,
and vegetation. The Game Space Section (Section 3.5) addresses indoor maps (and
their subcategories into shooter maps, strategic maps, and floors) and outdoor maps.
The Game Systems Section (Section 3.6) addresses non-playable characters. The
Game Scenarios Section (Section 3.7) addresses puzzles (and their subcategories
into mazes and physics), levels (and their subcategories into timeline, room, and
dungeon), tracks, and stories. The Game Design Section (Section 3.8) addresses
system design and camera control. In the online appendix °, we list the articles dis-
cussed in this survey by reporting on their publication year and venue, the two main
characteristic of the search-based approach (i.e. encoding and objective function)

and content type they investigate (see Figure 3.2).

Shttps://solar.cs.ucl.ac.uk/os/sbpcg.html

https://solar.cs.ucl.ac.uk/os/sbpcg.html

3.4. GAME BITS 46

3.4 Game Bits

We start our survey by discussing Game Bits. Game bits are the smallest units of
game content, or in other words, the most basic pieces that can be used to build a
game. Game bits on their own, that is, when considered independently and out of the
context of a particular game, do not hold any value for the players of the game. In
that sense, game bits are the most basic building blocks that are in turn used by the
developers of a game to generate other types of content. For instance, textures are
one of many different game bits that can be used to construct game scenarios. We
analyse work with respect to textures, sounds, weapons and vegetation. Textures are
the images and materials of the elements of a game. Textures are in accordance with
the artistic style of the game. Sounds encompass the music and sound effects of a
game. Music is an important element to create the game atmosphere. Sound effects
report feedback to the player regarding their actions or changes in the environment.
Weapons are game bits that are used by the players to face adversities in a game.
Vegetation creates an aesthetic engaging environment. In addition, this game bit
help players as hiding place, as raw material, or guide players about directions and

climate changes.

3.4.1 Texture

Textures have been mainly addressed by the Graphical Computation community [84].
The generation of textures for video games tackle a wide range of challenges. For
instance, there are work that generate the shape of the elements of a game [85].
Kowalski et al. [85] generated novel shapes for chess-like games motivated by previ-
ous work related to chess-like games that used the rules of chess to generate novel
games (see Section 3.8.1). Their work tackled the generation of the whole collection
of pieces for a game, as well as each individual piece separately. The evaluation
indicated that keeping the balance between the collection and the individuals moved
the results towards one of the objectives.

Other work have tackled the generation of textures by evolving the colour
palette [86] or the complex materials [87] that compose an element of a game.

Players tend to associate the appearance of an element of a game with its aim, that

3.4. GAME BITS 47

means, that a change in the appearance of an element of a game would affect the
perspective of the player. Liapis [86] studied the use of an evolutionary approach to
modify the colour palette of Pokémon keeping their shape. The new colour would fit
those Pokémon into different Pokémon categories just by their appearance.

Brown et al. [88] evolves camouflages patterns for game assets. Inspired by a
real military uniform pattern, a genetic algorithm is able to generate new patterns
assessed by the environment. The evaluation used computational vision observation
of the pattern in the environment, and assessed its capacity to camouflages. They
also conducted a human evaluation that corroborated the blend capacity assessed
previously by a computer.

The work on textures shows how the search in a large space leads to provide
new ideas over this type of content, and the human evaluation corroborated how new

content would be feasible in a video game.

3.4.2 Sound

The application of algorithms for sound composition tasks is not a new challenge.
Research in algorithmic composition started in the last decade and has a long his-
tory [89]. Its application on games is not new either [90]. After the survey of
Togelius et al. [2], Plans et al. [31] brought Experience-Driven PCG and sound to-
gether. Plans et al. generated music based on the experience of players while playing.
The actions of players are the inputs of the approach, and affect the music at runtime.
Their results sustained the idea that music affects gameplay.

A key factor over the sounds is the effect on the players, generating new sound
content seems to require some human verification. This may be the reason why there

is not so much SBPCG work on this type of content.

3.4.3 Weapons

Previous work on procedural generation of weapons tackled the challenge through
approaches guided by human players [91, 92, 93]. The authors of these work
developed a 2D commercial game where the weapons were generated based on

the interaction of the players with the game. More precisely, the game generated

3.4. GAME BITS 48
weapons based on how often the players interacted with a weapon in particular.

McDuffe et al. [94] also applied an interactive objective function for generating
weapons. In contrast to the work referenced in the prior paragraph, McDuffe et al.
generated weapons for an academic 3D multiplayer game. The weapons were evolved
through the study of implicit evaluations of each weapon provided by players. The
measured factors were the time that players had equipped each weapon and the
number of kills obtained by players with each weapon. From the point of view of the

developers, the results suggested that the approach generated interesting weapons.

Inspired by the work of McDuffe et al. [94], Gravina et al. [95] introduced a
weapon generation approach for a 3D commercial game. They evolved weapons
with the aim of obtaining balanced weapons, where balance was calculated through
an objective function that contemplated the distribution of kills of each weapon. In
addition, they applied the same objective function to evolve and improve existing
weapons. In contrast to the work by McDuffe ef al. [94], the objective function
simulated matches among bots, which did not need rendering to do the simulation
thus accelerating the evaluation. The authors also ran an experiment with human
players to assess the quality of the generated weapons. The received feedback
showed that the approach generated weapons that were interesting, fun to play, and

balanced.

Based on their previous work, Gravina et al. [3] continued with the generation
of balanced and effective weapons, where balance still considered the distribution of
kills of a weapon and effectiveness considered whether a weapon could actually kill
an enemy or not. Throughout the paper, they explored the usage of a constrained
surprise search approach to generate weapons. Constrained surprise search is a
Feasible Infeasible-2population constrained optimization algorithm which looks for
“surprising” results, that is, diversity on the output. Gravina et al. [3] compared the
performance of their approach against a single-objective search approach and a con-
strained random search approach. The comparison exposed that the objective search
approach obtained more feasible results than the other two approaches. However,

the surprise search approach obtained more diversity in the results than the other two

3.4. GAME BITS 49

Figure 3.4: Example of weapons evolved via constrained surprise search (source [3]).

approaches. Overall, the results of this work highlighted that the constrained surprise
search approach was capable of quickly and reliably generating diverse weapons.
We observe a successful use of on-line generation for weapons where the search
is guided through players feedback to create the content that would suit those players.
On the other hand, weapons generation has moved also towards generating diverse

content that could be unexpected and not only suiting players preferences.

3.4.4 Vegetation

Vegetation includes wherever plants appear in any digital environment, including
indoor plants. Vegetable, like any digital object, can be interactive or not. To date,
almost all vegetation is noninteractive. The importance of detail representation of
vegetation, depends heavily on the target realism of the game and the resolution of
the hardware. Empirically, vegetation is well-suited for TM: certainly, the game
industry has overwhelming voted for it with their keyboards for it to date. Evidently,

the industry deems the coarse-grained realisation of vegetation satisfactory. The

3.5. GAME SPACE 50

canonical TM is SpeedTree, which provides a development environment to create
and modify vegetation, as well as a wide catalogue. The development environment
allows the user to visualize the vegetation in different seasons, and to add wind, and
light, among the different options. SpeedTree is widely used in cinema and video
games, two of the most popular 3D game engines [96] (Unity and Unreal) integrate
it. Perhaps, TM’s success has stymied ML work in the space; in any case, we are

unaware of any PCGML for vegetation.

The uniformity of TM vegetation, TM’s weakness, inspired one group of
SBPCQG researchers to look to improve the diversity of noninteractive vegetation.
Mora et al. [30] has proposed a novel, SBPCG approach to generate vegetation.
Their approach uses an evolutionary algorithm to simulate the life cycle of the
flora. Universe 51 game is a planetary exploration game, one with photo realistic
environments which enhance the fun and interest of exploring an alien landscape.
The authors integrated their flora generator into Universe 51 and play-tested it. Their
goal is to increase the naturalness of a digital environment by simulating change in
the flora. There are two big questions unaddressed by Mora et al., the computational
cost of adding this dynamism, and the benefit in terms of player satisfaction. Perhaps

this is why, at the time of writing, no game publisher has adopted it.

Interactive flora is even less explored. To our knowledge, there is only one
game that does so. Petalz [97], a game which allows players to interact with flowers
creating new content. Interactive objects, by definition, as noted in the introduction,
have behaviours, which, in turn, introduce constraints, like weight, that are well-

suited for SBPCG.

Flora generation has been dominated by TM techniques, however there is no
evidence that prove why other techniques have not gained a similar widespread.

Answering the two open questions that we have aroused could enlighten the reason.

3.5 Game Space

Game spaces (or maps) are the environments of a game, that is, a one-, two-, or

three-dimensional area that can be filled with game bits in a relative position and

3.5. GAME SPACE 51

direction. Game spaces do not specify linear gameplay, meaning that they do not
need a start and end point. We can distinguish two main types of game spaces:
outdoor and indoor maps. Outdoor maps are large spaces, usually with different
ecosystems, that require a certain amount of time to traverse. In these spaces it
is common to use vehicles or teleport systems. Specific to outdoor maps is the
topography of their terrain, which is a depiction of the elevation of the map. Most
works in the field of outdoor maps deal with the topography of the terrain of the map,
and often referred to it just as terrain. Indoor maps are maps that are contained in
a limited space within which the player can move. For example, shooter maps rely
on buildings and objects to create suitable combat spaces, while strategic maps are
designed to require the management of different kinds of assets in real-time. The
assets are the different kinds of units, resources, buildings, and any other video game

elements that a player can position, manoeuvrer, manage, or otherwise control during

play.

3.5.1 Outdoor Maps (Terrains)

In 2009, Frade et al. [32] coined the term Genetic Terrain Programming (GTP),
which refers to the use of SBPCG in order to generate terrain for video games.
Their approach used an interactive objective function that involved humans to guide
the search. The results highlighted two limitations regarding user fatigue and the
inability to perform zoom over the generated pieces of terrain.

In order to address these limitations, Frade et al. continued their work with a new
version of GTP, named Automated Genetic Terrain Programming (GTPa) [98, 99].
These works modified their previous approach to tackle these limitations by avoiding
user fatigue and enabling the zoom feature over the generated terrain. In order
to avoid user fatigue, the authors proposed two distinct direct objective functions,
guided by different objectives in each of the two works, that did not involve humans.
In 2012, the same authors combined the two functions from their GTPa previous
work into a new direct objective function that was the result of the sum of the
formerly individual objectives [4]. The approach decreased overlaps in the results,

but generated terrain with smaller amplitude. The results were released in an open

3.5. GAME SPACE 52

Figure 3.5: Screenshot of Chapas video game where the terrain was generated online by a
TP (source [4]).

database’ for future research purposes [100].

In 2016, Pech et al. [101] proposed a novel approach for generating terrains
by incorporating elements into pre-existent terrains. To incorporate those elements,
Pech et al. [101] introduced the use of an architectural element in the objective
function, which is isovist. An isovist is the volume of a space visible from a given
point in space. Through this perspective, Pech et al. [101] were able to introduce
elements such as hidden areas in a terrain. This novel approach benefited terrains

that were previously unplayable.

Terrains generation has evolved from the use of an interactive objective function
to a direct objective function to avoid user fatigue. It is interesting to notice that there
is no comparison between the use of an interactive objective function or a direct
objective function, and it gives an opportunity to explore simulation-based objective

function to address the issue of user fatigue.

"https://sourceforge.net/projects/tps—-db/

https://sourceforge.net/projects/tps-db/

3.5. GAME SPACE 53

3.5.2 Indoor Maps

3.5.2.1 Shooter Maps

The previous SBPCG survey [2] shows that SBPCG work addressed the challenges
of generating content as tracks for racing games, rules for board games, weapons for
space shooters, levels for platform games and maps for real-time strategy games. The
work of Cardamone et al. [102] is the first to address the challenge of generating First
Person Shooter (FPS) maps. Despite FPS is one of the most popular game genres,
only three studies [103, 104, 105] investigated FPS games before, by targeting the
generation of a new form of content; that is, generating the behaviour of Non-Playable
Characters.

Maps are the heart and soul of FPS games. Cardamone et al. [102] argue that
generating FPS maps poses a bigger challenge than generating maps for other games.
They also acknowledge that FPS maps should favor gameplays that reward skillful
use of complex tactics, and force players to vary their tactics so they cannot use the
same patent trick all the time to win.

Outside of PCG, researchers have analysed FPS maps and proposed design
patterns for FPS maps [106]. These design patterns might be useful for guiding
the automated search of new FPS maps. Nevertheless, Cardamone et al. [102] do
not leverage the former design patterns but rely on bots for the objective function
instead.

The work of Cardamone et al. [102] generated complete and playable FPS maps
for Cube 2 8, an open-source game from 2004. They learned that direct encoding
works better than indirect encoding for this kind of map. However, they point out two
main limitations of their work: (1) the dependency on the control logic of the default
bots of the game, and (2) the lack of validation by players, that is, they evaluate the
maps in terms of synthetic measures (fighting time and map space), but they do not
claim that their measures correspond with human players’ judgments.

Three years later, Lanzi et al. [107] revisited the challenge of generating maps

for FPS. Their work shares the encoding, the case study, and the synthetic evaluation

8http://sauerbraten.org

http://sauerbraten.org

3.5. GAME SPACE 54

with the work of Cardamone et al. [102]. Nevertheless, Lanzi et al. [107] aimed for
a different goal. Whereas Cardamone et al. addressed fast-paced action maps, Lanzi
et al. addressed match balanced maps. Balancing a match between two players is
one of the seminal problems of video game development. To do so, Lanzi et al. [107]
proposed a novel objective function computed on the basis of the statistics collected
from a simulated match between two bots. Their work succeeded, in three scenarios,

generating maps that balanced the match between pairs of bots with different skills.

Olsted et al. [108] brought human players to the work of Cardamone et al. [102].
The novelty of their work was the use of human players as objective function.
Humans played the maps and used votes to rank them. The approach was evaluated
in an academic context with the FPSEvolver video game, a video game developed by
the authors for the evaluation. Almost every player agreed that the maps improved
in quality as they played. However, players expressed that maps felt quite flat in
comparison to maps of real games such as the popular Counter-Strike and Call of

Duty.

Loiacono et al. [109, 110] were the first to explore multi-objective algorithms
for generating FPS maps. As in previous work, they use the same encoding as
Cardamone et al. [102] and Lanzi et al. [107] (i.e. a static simulation through bots
to guide the search) and the same case study (i.e. Cube 2). However, Loiacono
et al. [110] collect statistics from the simulation for multi-objective search. Their
objectives are the balance of the map, the pacing on which the players are engaged in
fights, the average length of kill streaks, the fighting time, the shooting time, ability
of loose enemy’s sight during fight and loose enemy’s sight enough time to stop the
fight. Their evaluation suggest that multi-objective evolution can provide a good
insight of what happen with human players. The same objectives computed using

bots and evaluated with human players provide significant agreement.

Shooter map generation approaches have addressed several challenges, starting
with the use of single and multi objective search algorithms. They have also used
simulation and interactive objective functions. Finally, their evaluations used both

academic and commercial video games. One of the works unveil players concern

3.5. GAME SPACE 55

that the content felt quite flat, and this issue seems to remain unaddressed in the

literature.

3.5.2.2 Strategic Maps

In the previous SBPCG survey [2], it is possible to appreciate that SBPCG works
tackled map generation for strategic games. Those work generated strategic maps
at the scale of academic games [111, 112]. Togelius et al. [111, 112], authors
of those works, used a semi-direct encoding, crossover and mutation operators,
and a five-objective function. The objectives were obtained individually for each
game, and were derived from the play style and rules of each specific game under
evaluation. Four of these objectives (surface, asymmetry, resource distance, and
resource clustering) were of the direct type, and the fifth (A* base distance) was of
the simulation type. In 2013, Togelius ef al. [113] extended their previous work with
further experiments and included human players in the evaluation. Human players
appreciated that the asymmetry objective generated unbalanced maps.

In the last ten years, SBPCG moved from academic strategic games to commer-
cial strategic games. Lara-Cabrera et al. [114] were the first that generated strategic
maps at the scale of commercial games (in particular, they did so for Planet Wars,
an indie game). To do that, they went beyond the state of the art by leveraging
bot-based simulations to guide the search [114, 115]. Specifically, they identified
the indicators that should be monitored during the simulation to calculate the objec-
tive function [116, 117]. Those indicators, once again specific to the game being
evaluated, addressed map balancing (territorial imbalance, growth imbalance, and
enemy imbalance), resource management dynamism (game length, conquering rate,
reconquering rate, and peak difference), and player confrontations (battle rate and
destroyed enemies). These works claimed that they successfully generated strategic
maps, however, none of them involved humans in the evaluation to evaluate the qual-
ity of the results or to find out whether the results were aligned with the expectations
of the players.

In 2013, Lara-Cabrera et al. continued their work on strategic maps from a

different perspective: The aesthetics of strategic maps [118, 119, 120], that is, the

3.5. GAME SPACE 56

spatial distribution of the elements of the map and their features (size and number
of elements). In contrast to their previous work, the authors based their research
on direct objectives through which they assessed the geometric, morphological,
and topological properties of the maps with the purpose of generating procedural
content related to aesthetic aspects of the game. The results of these works were
evaluated through the usage of automated and semi-automated techniques along with
the support of a human expert. Contrary to previous work [116, 117], the evaluation
of these approaches intended to measure the degree of the quality of the aesthetics of
the maps according to the defined objectives, with the aim of studying whether the

generated maps were aligned with the expectations of the players.

The aesthetics of strategic maps have also been addressed by other authors
before. Through a constructive method, Johnson et al. [121] used a Cellular Au-
tomata (CA) algorithm for generating maps. A CA algorithm is a discrete model
with self-organizing properties that consists of a grid containing cells that can exist
within a finite number of states. The algorithm works by setting a state in each
cell of the grid and traversing the grid through an iterative process. However, CA
algorithms lack control and cannot be easily adapted for generating other maps. For
this reason, Mahlmann et al. [122] generated maps using a search-based approach
that incorporated a control mechanism to the CA algorithm approach. To that extent,
they use a direct objective function that generates maps for an abstract version of

another strategic game (Dune 2).

The most recent work by Lara-Cabrera et al. [123] is the first one that tackled
level balancing for a 3D academic strategic game (i.e. Paintbol). The authors defined
a balanced level as a level that does not provide an initial advantage for one of the
two participating teams over the opposing team. In contrast to their previous work
on balancing content [114] (with a simulation objective function), Lara-Cabrera
et al. [123] used an indirect encoding and a direct objective function that analysed
the defensiveness, ranking, and dispersion indicators. Those indicators generated
balanced levels based on the results of the objective function. The results of this

work suggested that, by applying different parameters in the evolutionary algorithm,

3.6. GAME SYSTEMS 57

better maps were generated. In particular, the rank and elitist selection methods

generated better maps than roulette selection according to the measured indicators.

Other authors also tackled the generation of balanced maps [124, 125, 126, 127].
Those approaches used search-based techniques to obtain the balanced maps rather
than generating them from scratch. Barros et al. [124] balanced the maps through the
initial position of the players. Kowalski et al. [125] and Franco et al. [126] evolved
the positions of the assets that would be placed in the map. Ma et al. [127] also
placed the assets in the map, but using a multi-objective approach The results by
Barros et al. [124], by Kowalski et al. [125] , by Franco et al. [126], and by Ma
et al. [127] generated playable and balanced maps.

One of the main goals in strategic map generation is the balance in the maps gen-
erated. Several approaches have addressed this goal from different perspectives (e.g.,
different representations and objective functions) but only one work has provided a
human evaluation that concludes that asymmetry does not work for balanced maps.
The other main goal addressed by strategic map generation is based on the aesthetics
of the maps. We find it interesting that contrary to the balance goal, researchers have
taken into account human expectations but they have only investigated the use of

direct objective functions.

3.6 Game Systems

Game systems bring the virtual worlds of video games closer to the human world
in order to provide the players with a sense of immersion. This is achieved through
complex models that include, among others, entity behaviours, also known as Non-
Playable Characters or NPCs. NPCs are essential for the experience of the players,
since they generate the illusion of a virtual world along with the opportunity to create

interactions between the environment and the players.

In 2013, Guarneri et al. [128] described an approach to automatic generate NPC
monsters through an evolutionary algorithm. The goal of the approach was to obtain
a diversity set of new monsters from a starting population defined by the developer.

This approach was later applied by Norton et al. [129] on another video game genre.

3.6. GAME SYSTEMS 58

With the same goal, Ripamonti et al. [43] developed a novel approach to generate
monsters adapted to players. This approach records the number of times a player kill
each type of monster, considering the monster with more death rate the preferred by
the player. The evaluation used a simulation to test the generated monsters, meeting

authors’ expectations on diversity, coherence, and difficulty.

Pereira et al. [44] instead of diversity seek for generating enemies that meet a
difficulty criteria. In that sense, the objective function looks for enemies that are
closer to the difficulty stated in the search. The results with human players indicates
that the generated content matched the desired difficulty. Viana et al. [33] extended
the work by Pereira ef al. [44] introducing quality diversity methods, to improve
the diversity of the enemies generated. As Pereira et al., the results show how the

generated content matched the desired difficulty.

In 2021, Blasco et al. [45] looked for generating, and later improving [130],
spaceship enemies which quality is comparable to manually content created by
developers. The approach has a novelty as they worked with software models,
instead of code. Model-Driven Engineering has the ability to provide an abstraction
level in the development process. The results show how the approach was capable
to generate content comparable to the manually created by developers in 5 hours,
compared to ten months that took to the developers. On other hand, to generate also
spaceships, Gallota et al. [5] used a combination of Lindenmayer systems [46] and
evolutionary algorithm. Their results suggest that the approach generated spaceships

that meet some human preferences.

Some work in the literature tackle battle formations on games where the player
must defeat a coordinated group of NPC enemies. Players do not find challenge
on the static strategy behind battle formations, as they just learn the optimal way
to win. Thus, Ruela ef al. [131, 132, 133] presented a co-evolutionary approach
for generating balanced and challenging battle formations. They evaluated the
effectiveness of their proposal offline (i.e., outside the game itself) by comparing
the search-based generated battle formations against the battle formations built by

human players. The results showed how the generated battle formations could win

3.7. GAME SCENARIOS 59

"
PERFOPMANCE ISSUES
Shift + FI lar mane infa.

Figure 3.6: In-game screenshot of a spaceship generated using the approach by Gallota
et al. [5] (source [5]).

against the formations of active players, improving the challenge for the players.

A novel work in the literature by Brown et al. [134] proposed a generative
approach towards city discovery in four different role playing video games based on
the social structures and networks of the NPCs. As a result, the designed algorithm
devised the placement of cities and NPCs based on the intern complex relationships of
NPCs in order to generate a more realistic video game environment. The evaluation

showed the approach to be human competitive.

Most of the work on this type of content focus on enemies NPC, and only one
of them on social aspects of NPCs, which provides space to explore more types
of NPCs. On other hand, an interesting strategy has been presented by the use of
Model-Driven Engineering to generate new content, that could be likely extended to

more content types in future work.

3.7 Game Scenarios

Game scenarios describe the goals of a game, and the way and order in which game
events unfold. Normally, the events of a game are set in motion as a result of partial

or total completion of the game goals, as well as through the interaction between

3.7. GAME SCENARIOS 60

the players and the game. Game scenarios are described by game developers, and
are often transparent to the players of the game. Game scenarios can be classified
into three different types of content: puzzles, tracks, levels, and stories. Puzzles
are problems to which the player must find a solution. The solution can be based
on previous knowledge or on a systematic exploration of the space of the possible
solutions embedded in the problem. Puzzles can be found in a wide variety of game
genres. Some different kinds of puzzles are mazes and physics. Mazes are puzzles
defined as a network of paths and hedges through which the player has to find a way.
Physics puzzles introduce the laws of the physics into games. Players need to apply
the laws of physics for the sake of solving the problem. Tracks are cyclical game
scenarios, and are usually found in racing games. Levels are logical separators that
enable advancement within the different sequences of a game. The advancement is
often based on the successful completion of game objectives by the player. Levels
can take up many different forms as follows: Rooms are levels where the players
must interact with a set of game elements available within a particular section of a
game; Dungeons are levels composed by a succession of rooms. The player must
pass through the different rooms to complete the goals of the level, Timelines are
levels that are linearly designed and are usually found in platform games. Stories
are the narrative elements that compound the game. Stories present the events of
the game to the player affecting directly their experience. The following paragraphs

discuss the relevant search-based research work in each area.
3.7.1 Puzzles

3.7.1.1 Mazes

A previous work on maze generation by Ashlock et al. [135] presented an evolution-
ary approach to generate mazes. In the approach, the authors used a direct encoding
and a simulation-based and direct theory-driven objective function. In 2011, the same
authors [136] proposed new types of encodings (direct, chromatic, indirect positive,
and indirect negative) and features that could be used to construct the objective
function. Their results showed that the different encodings and objective functions

were feasible, and that the selection of one of them would depend on the desired type

3.7. GAME SCENARIOS 61
of maze.

In the same year, Ashlock et al. [137] presented a work that can generate mazes
with two possible solutions, depending on the character that addresses the challenge,
named as dual mazes. In this approach, the authors used features for the objective
functions from previous work [136], but modified the chromatic and indirect positive
encodings. The results suggested that the direct encoding generated more diverse
mazes and that the indirect encoding found better solutions according to the objective
function. Based on this work, McGuinness et al. [138, 139] generated large mazes
using small mazes as tiles. The novelty of these works [138, 139] resided in the
objective function, which was adapted in order to provide the developers with more
control over the tiles and the final maze. McGuinness et al. evaluated the results of
their work by using their approaches to generate large mazes according to designs

provided by developers.

In 2012, McGuiness [140] ran an experiment to statistically compare different
encodings from previous work [139]. The author argued that the encoding is an
important factor to the final visual representation of the mazes. The results suggest
that the visual representation of the mazes is very different depending on the encod-
ing, even when the mazes are similar according to the measurements that the author
used in the analysis. More recently, McGuinness [141] built up on previous work by
incorporating a direct encoding and features from previous studies in the objective
function. In this work, McGuinness [141] tackled maze generation with a novel
search-based approach adapted from the Monte Carlo Tree Search technique. The
results revealed that the mazes generated through this approach were intuitive and

qualitatively different from those generate by using only evolutionary computation.

Approaches other than evolutionary computation or Monte Carlo Tree Search
have also been applied in the last decade. First, Kim et al. [142, 143] proposed a
search-based approach to generate ‘perfect’ mazes, that is, mazes with no loops or
inaccessible areas. The approach takes as input the desired metrics for the maze and
selects the algorithm that better suit the metrics in order to generate the mazes. Once

the mazes are generated they are evaluated by the desired metrics and by a set of

3.7. GAME SCENARIOS 62

measure metrics. The difference between the values obtained by the mazes for the
desired metrics and for the measure metrics act as the objective function and as the
stop criteria for the search. Secondly, Pech et al. [144, 145] proposed an approach
based on the evolution of Cellular Automata (CA) rules that would be in charge of
the generation of mazes. The authors argued that evolving CA rules is faster than
evolving mazes, because their proposed CA was able to generate a variety of mazes
that met the set of rules evolved.

The work on mazes appeared in the literature since the last survey has focused
their effort on the representation of the maze problem. This work point out how
different types of representation are feasible to generate mazes, but depending on the
encoding the results will vary, and while the generated content may be similar based
on measurements it can still exhibit visual differences. One open challenge within

maze generation is the validation with humans in commercial video games.

3.7.1.2 Physics

Physics-based puzzles are a type of content that has not been tackled by SBPCG
before 2013. Shaker et al. [17] are the pioneers in this area. They proposed an
evolutionary algorithm based on a indirect encoding and a direct objective function.
Their results suggested that this technique generated promising puzzles to be played.
Afterwards, Ferreira et al. [146, 147] also presented an evolutionary algorithm for
generating physics-based puzzles. However, the encoding and objective function by
Ferreira et al. [146, 147] differ from those proposed by Shaker ef al. [17]. Ferreira
et al. [146, 147] used a direct encoding and simulation in the objective function,
with the main purpose of stability. The results showed that their approach generated
stable puzzles.

Kaidan er al. [148] extended these prior work, modifying the objective function
to adjust the levels according to the player. Kaidan e al. did a preliminary validation
with human players. In a subsequent work, Ferreira et al. [6] built upon their
previous work in the field [147]. In contrast to the work by Kaidan et al. [148],
their approach improved the encoding to allow for more features, such as duplicated

blocks. Moreover, the objective function for their approach also took into account

3.7. GAME SCENARIOS 63

Figure 3.7: Example of levels generated with the GA of Ferreira et al. [6] (source [6]).

the feasibility of a puzzle, not only its stability. The results showed that the approach
generated relevant puzzles for the first episode of the game used as case study (i.e.

Angry Birds).

The direct encoding used in previous work limited the structure of the puz-
zles [148]. Due to this limitation, Calle et al. [149] proposed a novel evolutionary
approach to generate stable free form puzzles. In order to reduce the cost to eval-
uate the objective function, before the simulation, a candidate needed to meet two
criteria (distance to the ground and overlapping of blocks). Their results highlighted
that SBPCG had potential for generating physics-based puzzles, and the need for
problem-specific knowledge. Lately, the same authors [150, 151] reduced the cost
to evaluate the simulations of the objective function through the usage of a physics

engine instead of a game engine.

In contrast with the work mentioned above, other authors [152, 153] tackled
the n-body physics problem. To that extent, they proposed an evolutionary approach
which generated puzzles according to a given difficulty (easy, medium or hard). The

approach by Lara et al. [152] presented three different objective functions, based on

3.7. GAME SCENARIOS 64

different criteria (intersections, gravitational acceleration, and simulations), and a
preliminary analysis was run with human players. The results suggested that none
of the three objective functions rated the difficulty of the generated content in the
same manner as human players did. Lopez-Rodriguez et al. [153] further validate
the work by Lara ef al. with human players. They found out that the automated
approach tended to rate the generated content as higher difficulty when compared to
the difficulty ratings provided by the human players.

Physics is a novel type of content that we have identified in our survey. It has
gained enough attention and several authors have investigated the use of different
encodings and objective functions. Some authors recommend the use of indirect
encoding to avoid structure limitations on the puzzles. A work with human validation
noticed how human and the approach differed over the difficulty of the generated
physics puzzles. Further investigating the reason behind this difference could lead to

interesting insights.

3.7.2 Tracks

Some work in the field of tracks [154, 155], included in the previous survey [2],
tackled track generation through an evolutionary algorithm that generated racing
tracks for an academic 2D racing game. In order to generate the racing tracks, the
authors based their approaches on a bot-simulation objective function to guide the
search.

More recent works, such as the one presented by Loiacono et al. [156], aimed to
optimize the fun value of the game through the maximization of the potential diversity
of race tracks in the game, namely, through the maximization of the differences
between the available race tracks in the game. The diversity of a particular race
track was assessed by a multi-objective function that measured the curvature of
the track through a direct objective, and the speed profile of the track through
a simulation objective. Loiacono ef al. performed a preliminary validation with
humans, which suggested that there is a statistically significant alignment between
the results provided by the approach presented and the preferences of human players.

Prasetya et al. [157] also worked towards the optimization of the fun of a game

3.7. GAME SCENARIOS 65

FRONTEND BACKEND
(WEB & DB SERVER) (GA & TORCS SERVER)
) ‘.'_'____ ____'_'_': / N
o i
G e —1/ E <—> downloadable |% | 2
brawsar = tracks scenerey E_
. _g —_— generator b
i 1— g | \ request E
» \— = /| queue ; L
browsar ! L
3 L\ ey .
E J { — genetic
“ _l/ g J_‘/ \\ / algorithm
browser =
s .E population TORCS
browser —

Figure 3.8: Architecture of TrackGen (source [7]).

through its tracks. They differed from the work of Loiacono et al. mainly in two
aspects. Firstly, they used a semi-direct encoding instead of an indirect encoding.
Secondly, they compared the performance of two different search algorithms (Tabu
Search versus a Genetic Algorithm). Among the two search algorithms, the Genetic
Algorithm had less average generation time than Tabu Search. Prasetya et al. per-
formed an evaluation with humans comparing the tracks generated by their approach
against man-made tracks. Their results suggested that the generated tracks were

measured up to man-made tracks in terms of the measured fun.

With the aim of aligning content generation results with the preferences of the
human users of a game, Cardamone et al. [158, 7] were the first to introduce an inter-
active objective function in the track generation process. Through their approach, a
population of tracks was generated by an Evolutionary Algorithm. The Evolutionary
Algorithm was guided through the assessment of the tracks, provided by human
participants after each iteration of the algorithm. After the experiment, humans stated
improvements in the quality of the tracks, and that the process produced interesting

tracks.

3.7. GAME SCENARIOS 66

The work in tracks share a common goal, that is ‘fun’. In order to achieve this
objective, human intervention is present either in the evaluation or in the objective

function.
3.7.3 Levels

3.7.3.1 Rooms

We have noticed the need of this subcategory because in the last ten years, the
amount of works that fall into this type of content ,and the diversity of techniques
(such as Evolutionary Algorithms [159], Multi-objective Algorithms [160], Quality
Diversity [161]), has increased. As an example, in 2012, Togelius et al. [162]
proposed a preliminary approach that tackled this type of content through a hybrid
approach that used Evolutionary Algorithms and Answer Set Programming (ASP),
which has been used before for system design generation [163]. However, in more
recent work, the core of the generation of this type of content has shifted towards the
usage of the General Video Game Al (GVGAI) framework. Two main elements are
used to build this framework: (1) the Video Game Descriptive Language, and (2) the
General Video Game Playing Competition. The Video Game Descriptive Language
(VGDL) [164] is a textual description language that has been used to represent two-
dimensional games. The General Video Game Playing Competition [165], which
started in 2014, is an event that explores the challenge of creating controllers for
general video game play, where a single agent must be able to play many different
games. The GVGALI framework provides a series of different games based on VGDL,
as well as the game-independent agents to play the generated room levels for those
games.

Neufeld et al. [166] used an Evolutionary Algorithm to evolve the rules used by
a room generator from GVGALI based on ASP. These rooms were evaluated through
a simulation objective function that calculated the difference of average scores
obtained by vanilla Monte Carlo Tree Search and a random player. Their results
showcased the benefits of the approach, however, Drageset et al. [167] identified the
computational cost of translating VGDL games into ASP rules as a drawback. Hence,

Drageset et al. proposed a purely evolutionary approach, named Meta Generator,

3.7. GAME SCENARIOS 67

based on a more elaborated simulation-based objective function that uses three of the
agents provided by GVGALI. The evaluation compared the Meta Generator against
both random and constructive generators using the same objective function. The
results highlighted that the Meta Generator obtained higher scores for the objective

function than the other generators.

Zafar et al. [168] also proposed an evolutionary approach, more precisely, a
Feasible Infeasible Two Population algorithm which differ from previous work in
the metrics used for the objective function, measuring aesthetics and the difficulty
of the rooms. Their results suggested that the levels obtained were aesthetically
and challenging. With the same aim, Petrovas et al. [169, 170] proposed a genetic

approach, with a complex direct fitness function, Combined Compromise Solution.

Another proposal from Zafar et al. [171] used design patterns to generate rooms.
The approach selected patterns from a collection of design patterns and used them
as input for the evolutionary process. The objective function also included a factor
in the equation related to design patterns. The experiments were run with different
agents from GVGALI, and concluded that the agents had better performance on rooms

generated with design patterns.

Walton et al. [172] addressed the room generation from the perspective of the
developers instead of the player. Their proposed approach takes as input a level
designed by the developer, and uses a Feasible Infeasible Two Population algorithm
to generate new levels. This approach was evaluated by developers judging its
capacity to facilitate their job. The developers found more inspiring the results from
the evolutionary algorithm than random generation. However, the approach lacks of

diversity, which limits its use.

In order to tackle this issue, which is common to different approaches, a novel
evolutionary strategy, named Illumination Algorithm [173], was exploited. Illumina-
tion Algorithms find high performing solutions in different sections of the search
space instead of maximizing one solution as evolutionary algorithms usually do.
Charity et al. [174] incorporated this idea in their approach, and used the mechanics

from some of the games provided by the GVGAI framework to create multiple,

3.7. GAME SCENARIOS 68

relatively high quality states for a GVG-AI level that demonstrate combinatorial
variations of a game’s mechanics. Their results showed that this approach gener-
ated satisfactory rooms with a single mechanic or with a controlled combination of

mechanics.

The use of Quality Diversity methods has grown also in the field of room gen-
erations. Green et al. [161] introduced Constrained MAP-Elites, generating rooms
based on different human play-styles called ‘Personas’. Using Personas to generate
content can encourage a player towards new challenges. Alvarez et al. [175] and
Charity et al. [176] proposed a co-creative approach, where MAP-Elites approach
proposes new rooms and users guide the generative process. Users can also modify

the generated content influencing the evolutionary process.

In contrast with the work study above, Bhaumik et al. [177] were curious about
the performance of more Search-Based strategies. Due to that reason, Bhaumik
et al. [177] compared eight different search-based algorithms, including Tree Search
Algorithms and Optimization Algorithms. Those algorithms include Breadth First
Search, Depth First Search, Greedy Best First Search, Monte Carlo Tree Search, Hill
Climbing, Simulated Annealing, Evolution Strategy, and Genetic Algorithm. Their
results suggest that Optimization Algorithms generally performs faster than Tree

Search Algorithms.

More recently, Bailly et al. [178] proposed the inclusion of Wave Function
Collapse (WFC) into a genetic algorithm. They introduce WFC to generate rooms
targeting specific play experiences. Their approach used a simulation to measure
novelty, safety, and complexity of the generated rooms. The results compare those
metrics within a pure genetic search, a brute force search, and their genetic WFC

approach, obtaining this last the highest fitness.

Most of the work in this category is related to the General Video Game Al,
and its interest on the General Video Game Playing Competition. However, after
a human-based evaluation unveiled that the generated content lacks of diversity,
researchers seems to have moved towards addressing this issue. This also suggests

that a human evaluation is strongly recommended for all the approaches based on

3.7. GAME SCENARIOS 69

diversity.

3.7.3.2 Dungeons

Dungeons play an important role in video games. In the last ten years, the interest
has not decreased. One of the challenges of generating dungeons is the reduction
of the generation time. Pereira et al. [179] claimed that a tree structure reduce the
need for validation and fixing time that graph/grid approaches required, such as
the one proposed by Valtchanov et al. [8]. Later, Pereira et al. [180] conducted an
experiment with human players to validate the generated dungeons. The results
showed that the dungeons were enjoyable and challenging.

Font et al. [181] used a graph approach to reduce the generation time, which
differs from the work by Valtchanov et al. [8] for two aspects. First, the approach
used a context-free grammar representation to avoid the generation of syntactically
non-valid individuals. Secondly, Font ef al. [181] reduced the search space by
dividing the approach in two steps: Generating the structure of the dungeon first,
and the detailed elements that are more time consuming, such as monsters or chests,
afterwards.

Another challenge in the generation of dungeons is the diversity of the results.
Tackling this challenge, Ruela er al. [182, 183, 184] proposed a single-objective
approach, which later derived into a multi-objective approach due to the fact that a
single-objective approach that combines different objectives tends to prioritize one in
detriment of the others. Melotti et al. [185] proposed a variation of a multi-objective
approach combined with Deluged Novelty Search Local Competition, which sep-
arated the search space into niches, allowing for the control of the differentiating
characteristics of the niches through a distance function.

On a different perspective, Liapis [186] addressed dungeon generation using
intertwining segments as representation. And, inspired by Liapis representation,
Viana et al. [187] generate dungeons using barriers as novelty, which are mechanics
that force players to follow a path. The diversity of the dungeons are measured
by map linearity, mission linearity, leniency, and path redundancy. Their results

analysed through expressive range suggest that the approach achieve the diversity on

3.7. GAME SCENARIOS 70

— L
= | _-II___I o
L L th 41 i
v s ped ol

ok A A]

Lo ool P
© @ e
gl =
r o
) I:'J LD_I'_J
—J 171]
[fe
= T
POk

! i b
b foy W
L L_-'ul--_-ljtﬂ[jq "'Lm Tﬂﬂﬁﬁﬁ'“éﬂr L]

Noft e e s
i__ _J_ .D.Eb'_l_'d_lu | - ﬂ___l —

Figure 3.9: Example map generated for the Multi-Region Map Experiment - different re-
gions colored (source [8]).

dungeons generation.

In addition to diversity, Ruela et al. [184] designed an experiment to compare
the performance of four well-known algorithms against their own algorithm. They
concluded that it is not possible to define an overall winner algorithm, and that the
use of each algorithm will depend on designer preferences. The baseline algorithms
were: Improved Strength Pareto Evolutionary Algorithm (SPEA2), Pareto Archived
Evolution Strategy (PAES), Non-dominated Sorting Genetic Algorithm IT (NSGA-II),
and Multi-objective Cellular (MOCell). The main limitation of the novel algorithm

proposed by the authors was its time consumption, which limited its usage to offline

3.7. GAME SCENARIOS 71

PCG.

To scale up the resources of a game, Brown et al. [188, 189] proposed the
integration of a dungeon editor that players can use into a commercial game. The
proposed search-based approach generated different rooms within a space and then
connected the rooms. The connection was possible due to the hard constraint that
each new room must overlap with an existing one. This work serves as an indicative
that hard constraints are an advantage that search-based methods provide as we
mention in the ML constraints (Section 3.1). Brown et al. also allowed the integration
of objects and enemies into the dungeon. A Petri net method filled the dungeon with
objects, and a second evolutionary approach placed enemies throughout the dungeon.
On other hand, Harisa and Tai [190] generate dungeon levels for based on game
designer preferences of game pacing. The experiments showed the error between the
designer preferences and the generated content with results between 1.16-18.53%.

The work on dungeon generation has identified two challenges for this type of
content. First the need to reduce the generation time, and secondly the diversity of
results. Due to those challenges the generation of dungeons has mainly remained an
offline generation. However, there is work on online generation, which makes use of
hard constraints in the approach. There is no outcome from online approaches about

generation time or diversity.

3.7.3.3 Timeline

Most of the work under this category used a well known platformer video game as a
case study, Infinite Mario Bros, which is a clone of Super Mario Bros. However, we
have decided to name this subcategory as ‘Timeline levels’ because a more general
name provides the potential of covering a wide range of genres, such as platform
games, runner games, or endless games. Shaker et al. [191] is a good example of a
generic approach of this category. The approach generated linearly the sequence of
actions for different games. They validated the approach simulating the sequences.

An advantage of the timeline levels is that they reflect the difficulty curve of
games. A difficulty curve is a graphical representation of how the difficulty fluctuates

during the game. Several approaches has addressed this challenge on platformer

3.7. GAME SCENARIOS 72

games [192, 193, 194]. Adrian et al. [192] was the first one that used the difficulty
curve designed by developers as objective function. The experiments showed that
the difficulty curve of the generated timeline levels were close to the designed
difficulty curve. A preliminary validation with 22 players supported the similarity
with handmade timeline levels. Inspired by Adrian ef al., Atmaja et al. [195] applied
the same idea into a scrolled vertically shooter game. Moghada et al. [193] also

generate the rhythm of the level, fitness with difficulty curve by human.

Different representation approaches has been studied for timeline levels, more
precisely for Mario Bros. In 2011, Mourato et al. [196] found out that the use of a
grid as a detailed representation of timeline levels had the risk of consuming substan-
tial resources. To reduce the consumption of resources, Dahlskog et al. [197, 198]
divided Mario Bros levels into vertical slices. Each slide was a micro-patterns that
they extracted from the original video game. The combination of the slides generated
the resultant timeline levels, named as ‘scenes’. Dahlskoger al. [198] validated
the approach finding in the generated scenes combinations of micro-patterns that
expressed meso-patterns that were originally in the game. Later, Green et al. [199]
‘stitched’ the scenes generating long timeline levels. In 2022, Moradi ef al. [200]

introduced Estimation Distribution Algorithm to also create meso-patterns.

Based on the work of Dahlskog et al., Green et al. [201] generated scenes that
served as tutorials for a specific mechanic. The approach used a feasible infeasible
two population algorithm with two objectives function. The infeasible population
objective function measured the aesthetics, e.g. a pipe on Mario Bros requires two
consecutive slides. The feasible objective function compared the performance of
two agents, a ‘perfect’ agent and a limitated agent. When the limitated agent failed
on completing the level, it meant that a special mechanic is needed, and therefore
the level could be a tutorial. Khalifa ef al. [202] compared three approaches which
generate timeline levels for one mechanic, including the work of Green et al. [201].
They results showed that the approach that guarantee the mechanic on the scene had
three disadvantages: It was the slowest approach, required human intervention, and

relied on agents failures.

3.7. GAME SCENARIOS 73

We have seen that in more recent years, new techniques such as illumination
techniques (see Section 3.7.3.1) have appeared. Warriar et al. [203] presented a first
attempt of [lluminated approach for platform video games. The results highlighted
three opportunities for improvement: A more visual human-designed aesthetic levels,
better features that define fun, diversity and controllability on the content, and how
to keep a computationally low consumption with an entire map of playable levels.
In this direction, Withington [80] presented a preliminary comparison of Quality
Diversity algorithms MAP-Elites [173] and SHINE [204], however neither approach
stood out above the other.

Research on timeline generation has worked towards three different aspects.
The first one is the use of a difficulty curve designed by developers to approximate
the generated content to the desire curve. Second is the effect of using different
representations. The last one is seeking diversity over the results. These three aspects
has been addressed separately, where future work it is needed to investigate their

combination.

3.7.4 Stories

Addressing the generation of stories is a complex task for procedural content gen-
eration. The reason is the difficulty to obtain a cohesive story from evolutionary
operators. However, the use of trees or grammars with small pieces of stories are
known to work well together [205]. Based on the use of trees and the recent works
to reach diversity through Search-Based PCG, Fredericks e? al. [206] introduced a
novel idea that combines those two elements into a genetic improvement algorithm.
The work is still under development, and currently lacks of evaluation. In this di-
rection, Alvarez et al. [207] and De Lima et al. [208] has also generated narrative
quests making use of grammars [207], and trees [208].

By the hand of Alvarez et al. [209, 210] Quality diversity methods has also
been applied in stories generation. Alvarez et al. [175] first proposed a co-creative
approach to generate rooms (See 3.7.3.1) that has been adapted and applied for
stories [210].

Even with the difficulties that stories present to PCG, novel ideas have been

3.8. GAME DESIGN 74

applied for this type of content. Most of the work move toward achieving diversity

in the results.

3.8 Game Design

Game design is the core of a game. Game design defines the gameplay of a game
by conceiving and designing its rules and structure. A change in game design could
generate a whole new game. Game design decisions affect all the content in the
previous sections. We can further distinguish game design into two aspects: (1)
System design, which refers to the rules and mechanics that define a game; (2)
Camera control, which refers to the placement and behavior of the camera in the

game, or in other words, how the player will visualize and experience the game.

3.8.1 System Design

As seen in the previous SBPCG survey [2], system design has been addressed by
different approaches.

Browne [36] presented the Ludi system, which used Evolutionary Computation
combined with a simulation-based objective function, with the aim of measuring
aesthetic aspects of the game. This system led to the first fully computer-invented
games to be commercially published. Togelius et al. [211] introduced the concept
of ‘fun’ measurement through a Hill-Climbing approach. Both approaches used
simulation-based objective functions that have been used in recent works to tackle
system design from different points of view.

Aligned with the work by Togelius et al., Halim et al. [212] guided the search
with the aim of optimizing entertainment. The objective function measurements
included the duration of game, the intelligence required to play the game, the
dynamism exhibited by the pieces, and the usability of the play area. Halim et al.
validated their approach by conducting two experiments: one with a neural network-
based Al to measure controller learning ability, and another with human users to
measure the entertainment provided by the game. The results suggested that the
evolved games were more interesting and better than the randomly generated games.

Kowalski et al. [9, 213] proposed different approaches to generate games based

3.8. GAME DESIGN 75

7

N W B~ O O

LY

a b ¢ d e f

Figure 3.10: One of the evolved games presented by Kowalski et al. [9] (source [9]).

on chess. In 2015, Kowalski et al. [9] presented an objective function based on
simulation to generate playable and balanced games. A hand-made evaluation
function analyzed the playout histories and checked the balance, game tree size,
pieces importance, and complexity of the game rules. In 2016, Kowalski et al. [213]
generated games that were closer to chess and more constrained than those generated
by their previous work. The objective function increased the number of agents
in the simulation, representing players with various degrees of intelligence. The
experiment had two parts; the first compared the different agents of the simulation,
and the second compared the results with human-made chess-like games. The results
showed that the approach obtained playable and balanced games that were similar to

the high quality human-made games.

In 2023, Volden et al. [214] proposed a genetic algorithm to generate rules for
a kindergarten serious game. The approach measures the difficulty of the game with

the generated rules. Their results approximated the target difficulty.

3.9. FUTURE DIRECTIONS 76

In recent years, three different goals have been addressed by System Design
approaches. First, tackling aesthetics, secondly, optimizing entertainment, and last,
playability and balance. The latest search strategies rely on Quality Diversity, which

is a promising opportunity for generating this type of content.

3.8.2 Camera Control

Previous work on automatic generation of camera control content [215, 216] showed
that the search space of this type of content is rough to be explored. In addition, it
has also been highlighted that the objective function for generating camera control
content is computationally expensive, which reduces the number of evaluations
available for the search process.

Preuss et al. [217] addressed automatic camera control through a niching and
restart Evolutionary Algorithm. Niching extends Evolutionary Algorithms to multi-
modal domains, locating multiple optimum candidates where the Evolutionary Algo-
rithm loses population diversity, converging to a unique solution. Convergence is
an issue that Preuss et al. tackled through a restart mechanism when the approach
reached this point. Preuss et al. improved their previous approach [218] by adding a
constraint that reduced search space, which is one of the problems in content genera-
tion of automatic camera control. Their evaluation compared their approach with
the state-of-the-art algorithms. Their results suggested that their novel approach and
another similar approach (CMA-ES) performed better than other prior approaches.

The novel approaches to camera control perform better than the previous ap-
proaches, at least in academic settings, which makes it interesting to further assess

the performance of commercial games.

3.9 Future Directions

Throughout the pages of this section, we analyse the different research challenges that
are open in the field of work of PCG for video games. To that extent, the following
subsections present the challenges, their reason to be, and the open problems for
each challenge, as well as recommendations and potential future research lines in

the identified areas.

3.9. FUTURE DIRECTIONS 77

Figure 3.11: Number of articles published per year for each category of the taxonomy
studied in this survey.

12
11 1" 11

10 10 .
10

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

B Game Design Game Scenarios [Game System [Game Space [l Game Bits

3.9.1 Content Opportunities

Our survey has shown that the number of publications is not balanced across the
content types. In Figure 3.11, we show the number of articles published per year
that tackle the generation of content for each category analysed in our survey. While
Game Scenarios and Game Spaces arise as the most popular content types, it is
also possible to identify three exceptionally unpopular content types: Game Bits,
Game Systems, and Game Design. Regarding the Game Bits category (Section
3.4), which comprises the most basic building blocks of a game, we find a total
of 8 works. Within the category, we find the textures (4 works), sound (a single
work), weapons (3 works), and vegetation (a single work) subcategories. Regarding
the Game Systems category (Section 3.6), which deals with bringing virtual worlds
closer to the human world through the study of NPCs, we find a total of 11 works.
Finally, regarding the Game Design category (Section 3.8), which defines the core of

a game in the form of its rules and structures, we find again a total of 4 works dealing

3.9. FUTURE DIRECTIONS 78

with system design (3 works) and camera control (a single work). The study of
sounds and camera control are, then, the most neglected content types among already
unpopular categories. However, we could not find a clear reasoning coming from the
community for the lack of work in those particular areas, so we can only speculate
why they are being neglected. Games and video game genres appearing in a recent
report on the status of the video game industry® include those types of content, so
their necessity in video game development becomes apparent. As a matter of fact, we
have considered that some of these content types have been neglected because they
are considered too important and integral to the success of a video game: interactions
with NPCs, for instance, help players with video game immersion; and poor sound
effects can lead to a worsening of the user experience, which can in turn lead to poor
reviews and poor sales as a ultimate consequence. This may be a reason that calls
for a special treatment, and for a careful development by hand. We also theorize that
there may be too much diversity in the possible outcomes of PCG in those areas,

which makes it easier for researchers to focus on other content types.

In any case, the existence of fewer studies in those areas implies that there are
less improvements on the current complexity of their generation process and on the
complexity of the needed constraints. This issue could in turn mislead the directions
of researchers that favour other content types, since the current state of research
makes it possible to believe that Search-Based approaches are not suitable for these
content types even when nothing appears to indicate that those areas are harder to
generate through SBPCG than other content types. In that sense, we believe that
these content types should not go unnoticed by the research community any longer.
Even if there is an inherent diversity to the content, many SBPCG approaches allow
constraints to the objective function or different degrees of customization that may
be useful to tailor the results to the necessities of each case study. In addition, as
already discussed, details as textures, sounds, or interactions with NPCs are essential
to captivate players and provide quality to a video game. A game that lacks these

content types is directly headed to a failure. Hence, the procedural generation of

https://www.wepc.com/news/video-game-statistics/

https://www.wepc.com/news/video-game-statistics/

3.9. FUTURE DIRECTIONS 79

these content types could not only help with the economic cost and time to market
of a video game, but also with the outright feasibility of a game where developers
lack the means to build some of these content types.

Finally, regarding the suitability of SBPCG for these content types, we want
to encourage researchers to avoid steering their research to those fields of work
that are already explored, and raise awareness about the opportunities of research
in the field. In particular, we recommend to revisit approaches that have proven
their potential towards PCG applications, and to explore their application towards
researching the neglected content types. Overall, we recommend to approach all
content types equally, as they are equally important for the development of a video

game.

3.9.2 Online PCG

The content of a video game can be added at two different points of the development
process. Those two points are either before the release of the game, offline generation,
or during play, online generation. Most of the works presented in this survey work
with offline generation approaches. We speculate the reason behind this lies in
the content generation time issue: the current reality is that approaches take too
much time to generate content to be viable in online contexts. This problem affects
offline generation to a lesser extent because there is more flexibility with the time for
content generation during the development process. This issue will stand for online
content generation as long as approaches lack the necessary speed to not paralyze
the experience of the player.

The content generation time issue finds its roots mainly in the inefficiency
of the approaches and the computational resources that those approaches use. As
an example, approaches that use an indirect representation of the content require
less resources, however, indirect representations require a transformation process
that turns the indirect representation used in the approaches into the final content
that is incorporated in the video game. On the other hand, simulation objective
functions require more time than direct objective functions. Games that actually

use online generation do so through the combination of preexisting elements, with

3.9. FUTURE DIRECTIONS 80

the disadvantage that the content is then limited to designs that have already been
established by the developers offline.

The challenge lies in the application of current approaches to online generation.
To that extent, it would be necessary to identify applicability problems of current ap-
proaches, improve the necessary generation times, and optimize the device resources
used by a game to dedicate more computing time to the generation of content. In
addition, to study these issues with a greater level of detail, it becomes necessary to
know the time that takes to generate the content. However, most of the presented
works in our survey do not provide the times associated to the generation time. We
recommend to report the generation time in the results of future work in this field.

Finally, we believe that it would be possible to reduce or even avoid these
challenges through the usage of remote servers. Ideally, the remote servers would
run the approaches while the players play the game, generating the content in parallel.
In theory, this would allow for online generation while the players make full usage of
their playing time. Exploring the usage of remote server SBPCG for online content
generation has been largely neglected in research in the field, save for works in
tracks [158] that explores remote generation of content, and hence, it remains a

promising direction for solving the challenge.

3.9.3 Solvability, Playability, Fairness, and Diversity

Through the literature in the field we identify solvability, playability, fairness, and
diversity as the measurements that identify the basis of player expectations towards a
game. Solvability is understood as the characteristic that defines whether a problem
presented in the game content can be completed or solved (e.g. going from point A
to point B in a level). Playability is understood as the measurement that defines the
extent to which content can be exploited by human players. Fairness deals with the
perception of the player when dealing with content (e.g. distribution of resources
in a strategy game, or the probability of an event occurring in the game). Diversity
describes the variety of the content so that players do not receive similar content. All
of these factors affect the overall feelings of players towards a game, and influence

the decision on whether to keep playing or not. For instance, it is important for a

3.9. FUTURE DIRECTIONS 81

game to be challenging but not impossible to finish, and unfair game mechanisms

generate frustration in players.

Due to the reasons listed above, these measurements are commonly used to
evaluate the results produced by approaches and to guide them in procedural content
generation. However, they are not the only means to evaluate the results of the
objective functions in the available research. To that extent, we have observed
multiple research directions regarding the objective function in use for the evaluation
of the generated contents. In that sense, while some works produce objective function
scores based on the above metrics, other works retrieve their evaluation from the
behaviour of simulators that intend to substitute human players, and finally, the
works that obtain the best results in the literature make direct use of humans as the

objective function function in what is known as interactive objective function.

While interactive objective function leads to the results better aligned with
the expectations of players, it is still not a perfectly adequate objective function.
As a result of experimentation, human participants tend to fatigue, which leads to
a worsening of the objective function over time and a ceiling effect in the results
that hinders the potential of research in the field. In addition, the fatigue of human
participants limits the application of approaches to advanced or complex case studies,
which we can observe in the fact that most of the studies in this field evaluate the

approaches over severely tailored academic case studies.

As a potential research direction, we recommend revisiting objective functions
and their application to the research field. In that sense, we believe that researchers
should explore improvements to interactive objective function through the incorpora-
tion of mechanisms to avoid fatigue. To that extent, it would be possible to explore
hybrid objective functions that combine metrics or simulators (or both) with interac-
tive objective function. The combination would see metrics or simulators working
for a while on their own, guiding approaches towards preliminary results that could
be assessed afterwards by human hands. Exposing humans to short interactions with
an evolutionary approach at suitable times would avoid fatigue, thus allowing the

application of the approaches to the more complex industrial case studies, opening

3.9. FUTURE DIRECTIONS 82

promising lines of research in real-world environments.

In addition to the above, in the case of offline generation, if results are not
satisfactory, it is possible to generate new content or involve developers to refine the
content manually. This is not possible for online content generation. Moreover, the
prior survey [2] expressed concerns with the limitation of diversity that may be caused
by approaches looking for the best possible results. To overcome this limitation,
research in the past few years has seen a surge in quality diversity approaches [219],
a young and promising field that has attracted the attention of PCG researchers (on
categories such as weapons, strategic maps, timeline or rooms), and is yet to be
applied to several content types in both offline and online generation. A hybrid
objective function that combines different measurements with human evaluation,
along with the possible generation of content in remote servers mentioned as part of
another future direction (Section 3.9.2), would help with the evaluation of content
generated online, and with the acquisition of feedback directly from the players, who
are the best source of information for indicating the viability and diversity of the

generated content.

3.9.4 Bricolage

The main goal of PCG is to help developers during the development process of the
content of a game. However, not all generated contents are fit to be directly included
in a game. In that sense, the content that is created, stored, but never used creates
a waste of resources. In addition, discarded content becomes a potential source of
frustration for developers, who may evaluate those contents in terms of working
hours, or even see them as promising ideas thrown away, only unfeasible because
of the amount of time that it would take to fix them by hand so that the content can
make the cut into the game.

However, we could tackle this issue from a new angle, considering the contents
discarded after a content generation process as material that can be potentially used to
refine and adapt the process to generate suitable content for the game. To that extent,
it would be possible to consider content as a sum of components rather than as a

whole, and to evaluate the suitability of each component for the game independently.

3.9. FUTURE DIRECTIONS 83

In that way, it would be possible to explore the reuse of components from existent
content to novel content, thus avoiding waste of resources and the frustration of the
developers.

The reuse of components would also not be limited to discarded content, on
the contrary, it would be possible to take into account components coming from
all the existing content for a video game. For instance, reuse of components could
leverage components from content that is under development in order to generate
refined versions or variants of the content during the development process, allowing
developers to have a wider choice of content. Reuse of components could also use
components from content that has been already approved into a game, gaining access
to a library of components that count with the endorsement of the developers of
the game. In addition, though the usage of reuse of components, developers could
be more involved with the generation process, choosing their favored components
to refine the directions of the approaches. Our recommendation for this research
direction is to build approaches, both for online and offline PCG, that take developer
involvement into consideration and that empower the reuse of components of the

existing content.

3.9.5 Statistical Rigor

We have identified two common practices towards evaluating the presented ap-
proaches. The first of them is the usage of an objective function as a measure to
evaluate the outcomes and reliability of the approaches. However, trusting the ob-
jective function requires a prior evaluation of the objective function, and causes the
reliability of content generation systems to fall on the reliability of the objective
function. The second one is to present the approaches to events in order to compare
their efficiency. In this case, the results of the approaches are set against each other,
limiting the comparisons between approaches to the rules of the event and not specific
measurements. In such scenarios, it becomes necessary to improve the execution of
the approaches and their comparison. In that sense, it would be advantageous to have
a baseline that enables a fair comparison between works and equal opportunities for

progress in the community, as well as a fair comparison of certain aspects that could

3.9. FUTURE DIRECTIONS 84

not be compared otherwise.

In addition to the above, the criteria followed by events as a means of evalua-
tion is not uniform. While some events leverage results from bots to evaluate the
approaches, the usage of feedback provided by real players is gaining momentum in
the field in the form of interactive objective function. We can find an example of the
latter in an event where a jury provides an assessment of the results of an approach
based on the performance of players. Many good practices in this field of work,
such as A-B testing, could be leveraged to build hybrid interactive systems that help
with the involvement of players and developers while avoiding fatigue. Overall, we
advocate for building approaches that allow practitioners and developers alike to get
closer to the target public, to ensure that the generated content can live up to the
expectations of players.

Finally, through this survey, we found out that many studies refer to artifacts and
results not publicly available, which severely hinders research replication. Following
the principles of open science!? to which the general Software Engineering commu-
nity adheres to, we strongly recommend the publication of prototypes, approaches,
artefacts, and research results. This would not only help with research replication, but
it would also influence the growth of the community and the rigor of the presented

research.

3.9.6 Industrial Content

The majority of the studies presented in this survey focuses on academic games or
academic environments as case study (see Figure 3.12). Those academical games
are clones of industrial games, simplifications or prototype versions of original
games. Academic environments are environments built explicitly for the research
purposes of the researchers. Plenty of research questions arise from the observed
scenario: Is there a need of more detailed generators? Is it difficult to adapt the
representations used in research to industrial content? Is the content of industrial
games more complex, making the quality of the generated content insufficient in

industrial scenarios? Whatever the case, the reality is that research in the field

Ohttps://github.com/acmsigsoft/open-science-policies

https://github.com/acmsigsoft/open-science-policies

3.9. FUTURE DIRECTIONS 85

Figure 3.12: Percentage of articles where the case study involves academic games, academic
environments or commercial games.

Commercial Game
28,3%

Academic Environment
33,3%

Academic Game
38,3%

is rarely applied to real-world video games. With such a scenario, the research
community remains disconnected from the industry, causing poor communication of
results between the novelties in SBPCG research and the final target users of those
approaches, the players. In other words, current research results do not reach players.
For example, Ruela er al. [131, 132, 133] could not empirically assess their proposal
involving humans due to the lack of access to the original game developers, and the
effort and time that human players would have had to put in for evaluation

This issue leads to what we believe is one of the major opportunities for research
in the field. If we are able to avoid this disconnection by applying the approaches
to real-world industrial case studies, we might be able to obtain feedback from
players, which might represent a very large and very valuable source of information
for developers and researchers alike. This source of information could be used to
guide automated approaches and to manually refine the generated content. However,
in order to apply the approaches to industrial content, we must avoid fatigue. In
addition to the exploration of hybrid interactive approaches, in blockbuster games
with millions of active players, it would also be possible to research mechanisms to
share the fatigue load of the fitness function. To that extent, our recommendation is
to identify the necessities of developers working in industrial contexts, and to adapt

the proposed approaches so that they can work over commercial content.

3.10. CONCLUSION 86

3.9.7 Interaction between SBPCG and other techniques

Throughout the survey, we have focused on pure SBPCG approaches that generate
content. However, there exist work that tackle PCG through the interaction between
SBPCG and other techniques, specifically ML-based techniques. In the recent
years the interaction between SBPCG and PCGML has gained interest due to a
new research line called latent variable evolution [220]. Latent Space (LS) [221]
allows to learn the shape of search spaces where later the approach can search more
effectively. This is important, for example, for online PCG, where the time of the
search matters. On the other end, Quality Diversity (QD), a novel research field
in SBPCG, has already gain attention from the PCGML community exploring the
interaction between QD and LS [222].

3.10 Conclusion

The high demand for video game content has led to an increased interest in PCG, and
its investigation has gained momentum in the past decades. Throughout the pages of
this chapter, we have surveyed the updates in the state-of-the-art stemming from the
10-year gap since the last surveys in PCG for video games were published. To that
extent, we have built a taxonomy based on the two prior surveys [2, 1], and gathered
and categorized novel research in SBPCG. As a result, we have reported herein on
new work in Game Bits, Game Space, Game Systems, Game Scenarios, and Game
Design. Despite the undeniable advances in research in the field, we consider that
there are still many unexplored topics, and that some of the research challenges and
recommendations proposed 10 years ago are yet to be studied in depth. Through
our work, we have identified plenty of open research challenges regarding content
opportunities, the speed of online PCG, the characteristics (solvability, playability,
fairness, and diversity) of the generated content, the possibilities enabled by content
bricolage, the inclusion of statistical rigor in this field of research, and the need for
applying research to industrial content. Along with the open research challenges,
we have presented recommendations and identified several potential future research

lines in the areas under study. Overall, this survey presents a concentrated and

3.10. CONCLUSION 87

comphrensive report on the latest work in SBPCG , effectively assessing the status of
research in the field and providing a renewed point of view for the ongoing discussion

over SBPCG in video games.

Chapter 4

Our Proposal: Imhotep

4.1 Introduction

In this chapter, we propose a new angle to tackle video games content generation
inspired by transplantation techniques [19], which we named Procedural Content

Transplantation (PCT).

Current PCG approaches work as follows: developers provide initial content
(usually human-generated content) into an algorithm to work with. Afterwards, the
algorithm (Traditional, Machine Learning, or Search-Based methods) will generate
new content. Only a few traditional methods have succeeded in providing tools
used by the industry to randomly generate vegetation (e.g., SpeedTree in Unreal and
Unity).

Our PCT proposal introduces for the first time the transplantation metaphor
for video-games. In our approach, the developers of a game will select an organ
(a fragment of video game content) from a donor (video game content), and a host
(another video game content) that will receive the organ. The organ and the host
will serve as inputs for a transplantation algorithm that will generate new content
for the game by automatically combining the organ and the host. Our hypothesis
is that our transplantation approach can release latent content that results from
combining fragments of existing content. Furthermore, our transplantation approach
provides more control to developers in comparison to current PCG approaches that

are solely based on random generation, leading to results that are closer to developers’

4.1. INTRODUCTION 89

expectations.

Moreover, we propose the use of video game simulations (S;,,40rep) to guide the
search, based on the intuition that it is possible to harness video games’ NPCs to run
simulations that provide data to asses the transplantation.

To the best of our knowledge, this is the first work that leverages transplantation
to generate video game content, obtaining more favourable solutions than current

SBPCG in an industrial setting. In summary:

* QOur results show that procedural content generation through transplant (i.e.
PCT) has significantly outperformed classic content generation in the evalua-

tion of this work, opening a new road towards tackling content generation.

* Qur transplantation approach has produced the highest number of success-
ful transplants, to date - almost double than those found in previous work.
Moreover, the transplants are carried out in an real-world industrial context in

contrast to the academic context of other work.

* Our work returns control to the hands of the developers through organ selection.
The generated content is more in line with the intent of developers, as discussed

in the focus group.

* Our work reveals that harnessing simulations rather than test suites leads
to significantly better results. This may empower software transplantation

researchers to reconsider the usage of test suites in their work.

* Our analysis of the results reveals interactions between organs that are a

promising line of research to advance the field of software transplants.

For replicability, reproducibility and extension of our work, we made
IMHOTEP’s source code and the data of our study publicly available at https:

//github.com/SOLAR-group/IMHOTEP.

'In fact, within video games, it is typical to find NPCs that serve as companions to the player,
adversaries to defeat, or inhabitants of the virtual world. These NPCs have pre-programmed be-
haviours that could be used in game simulations. For instance, in a first-person shooter game (like the
renowned Doom video game), NPCs explore the game scenarios in search of weapons and power-ups
to engage in combat with other NPCs or the player.

https://github.com/SOLAR-group/IMHOTEP
https://github.com/SOLAR-group/IMHOTEP

4.2. OUR PROPOSAL: IMHOTEP 90

4.2 Our Proposal: IMHOTEP

This section explains how IMHOTEP makes use of evolutionary computation [223]
and software models to transplant organs within the current content of video games
to create new content (i.e., Kromaia bosses in our case study). To facilitate the
comprehension, we also provide the reader with an example of transplantation for
a simplified version of a Kromaia ‘boss’ inspired by the ‘Serpent’ boss shown
in Figure 2.2 with letter B. Given the popularity of software models for video-
game development (see Section 2.5), we designed IMHOTEP to work with models.
Although our running example uses the SDML models of Kromaia, our approach is
generic and can be used with other modelling languages because it exploits the idea
of boundaries between model elements.

Figure 4.1 shows an overview of IMHOTEP. On the left is the input to our
approach selected by the developers, namely the organ to be transplanted from the
donor and the host to which the organ will be transplanted (input selection 4.2.1).
Afterwards, IMHOTEP automatically detects the points of the organ that allows the
transplantation (Boundary detection 4.2.2) and the points where the organ can be
inserted into the host (Boundary mapping 4.2.3). To initialize the population of
the evolutionary algorithm, the organ is cloned and transplanted to a random point
(Initialize population 4.2.4). Genetic operations generate potential solutions for
transplantation (Genetic operations 4.2.5), while the objective function assesses the
quality of all of these potential solutions (Objective funtion 4.2.6). This process of
generating and assessing is repeated until a specific stop condition is met. When the
evolutionary algorithm finishes the execution, we obtain a ranked list based on the
given objective function of the best transplants between organ and host. Next, we

describe in more detail each step of IMHOTEP.

4.2.1 Input selection

IMHOTEP allows the developers to identify a source model content (donor) with
the organ (a fragment of the source model content) that will be transplanted, and
a target model content (host). Donor, organ and host will be strictly related to the

meta-model used by each context where IMHOTEP wants to be applied.

4.2. OUR PROPOSAL: IMHOTEP 91

Imhotep [~ TTTTTTTTTTTTTTTTTTTTTTTTTToTTooTooooooooomooooo :
o | N
input [Boundary Genetic Obiecti . i
. jective function |i
| .{ detection} operations} : - | Imhote
@) Donor l9 I : |S|mulat|on | | Test | | output
: _8 T stop? :
<: | 'E| | Boundary Initialize !
Host i | mapping population 7? Host’
Developer ! !

Figure 4.1: Overview of IMHOTEP, our proposal for PCT.

In our running example we present a simplified version of the meta-model, and
the corresponding concrete syntax of the model (see Figure 4.2 Metamodel) from
Kromaia. In such model ‘Hulls’ serve as the structural framework that define the
anatomical composition of the models. For example, the boss presented in Figure 2.2
(identified as ‘B’) has its body built by hulls. ‘Weak points’ are conceptual elements
that possess the vulnerability to be harmed. ‘“Weapons’ are tangible items capable
of causing harm through direct contact, such as discharging projectiles like bullets.
Hulls, weak points, and weapons are attached between them through ‘Links’.

In our example, the source donor model is a simplified version of the original
Kromaia ‘boss’ ‘Serpent’. Figure 4.2 Input Donor shows the graphical representation
of the donor’s model . It also shows with dashed lines the elements selected as organ.
The host is a model of a regular enemy that could appear in Kromaia. Figure 4.2

Input Host shows the graphical representation of the host model.

4.2.2 Boundary detection

To transplant an organ into a host we need to find a way to connect them. To this end
we exploit the boundaries between the model elements of the organ and the host. The
study of boundaries between elements in software models has been ongoing for over
ten years, with the aim of managing variability within models [224, 225]. A boundary
is a connection point capable of connecting two distinct model elements within a
model. The connection is restricted by the rules of the metamodel. In the simplified
example in Figure 4.2 Metamodel, the Source and Target meta-relationships are the
boundaries between the model elements of the models conforming to that metamodel.
In other model languages, there will be other meta-relationships with other names

that will be the boundaries.

4.2. OUR PROPOSAL: IMHOTEP 92

oo mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm—mmmmmmmmm———mmm--mmmmme
|
Metamodel Input ' Boundary detection Boundary mapping
i
Donor ' Donor Organ Host
i
i
Hull Weapon Weak Organ ' Organ ba
Point _— ' _ ” "
- i - b17
- = ! -A o e=able
(]} Al ®] (Eyb7 Sut L1 K® e . bg
N) ' B & H ="~ N N
7 (L. Iy, i ~ | 1-T=0 s ot bj
L H ® TSoema 026
N ' ST a®b2s @ bm
® el @ps & b
[# ’I gl d
Host ! Host bs
bj Not connected
bb be
O , .
Concrete syntax of the metamodel H bhz be bf
H bd bp i
N L ! be bf(p b16 bh bi
i & & & ©
O Hun —— Link o . CF)] b2s bk bl
% v H bc e bn bo bq
Weak ' bb bl br bn bo
A weapon @ ; © i ba bs
Point &> m Not connected
.. *----------.
N ; oot
Encoding et Output 3
Organ Boundary mapping ‘G Host’ 2
%}—1 @)
Model elements Orean Host ~ D‘Q—g
A B CDETFGHI JKLMNOTPAO QRS b1l bg 1—‘_‘97‘ V__‘,‘___‘ ,‘T";.‘
TATToIST TAaTT o b16 bf é v DA D ¥
|0|0|o|0|0|0|0.1|1|1,1|0 o|1|1|1|1|0: b25 bn @\ 4

Figure 4.2: Overview of IMHOTEP on a running example.

IMHOTEP automatically identifies the boundaries of the selected organ, and all
the boundaries of the host. In our running example, the boundaries of the organ are
the connection points between donor and host. The elements that connect with the
rest of the donor are H, K, and Q. Figure 4.2 Boundary detection Donor shows the
donor, differentiating each element of the model with a letter from A to S, and the
selected organ (namely, H, I, J, K, N, O, P, Q) with its boundaries (which are b11 for
the H element; b16 for the K element, and b25 for the Q element). While, the host
boundaries are all the points where its model elements connect. Figure 4.2 Boundary
detection Host shows all the boundaries of the host of our running example: The

host has a total of 19 boundaries identified by a tag from ba to bs.

4.2.3 Boundary mapping

In the boundary mapping step, IMHOTEP determines a mapping between the organ
and the host boundaries. For each boundary in the organ, IMHOTEP considers all
compatible boundaries of the host, including the possibility of not connecting the
boundary to the host boundaries. The boundary compatibility is determined by the
metamodel.

The table on the Figure 4.2 Boundary mapping shows a boundary mapping

between the organ and the host of the running example. The boundary bl1 is a

4.2. OUR PROPOSAL: IMHOTEP 93

boundary from a ‘Link’ from the model and according to the metamodel it can
connect to any ‘Hull’, “Weapon’, and ‘Weak Point’. The boundaries b16 and b25 are

both ‘Hulls’ and they can connect with any ‘Link’.

4.2.4 Initialize population

In evolutionary algorithms, a population is a collection of possible solutions for a
problem. The encoding is the problem representation that an algorithm is capable to

understand.

In our work, the encoding requires a binary vector that represents the organ
in the donor, and the boundary mapping (see Figure 4.2 Encoding). In the binary
vector, each element from the model is a position in the vector. If a position in the
vector has a ‘1’, it means that the element from the model is part of the organ. On
the other hand, each boundary from the organ gets assigned a compatible boundary
from the host. The initial population of IMHOTEP contains individuals composed by
the host and the organ placed in a random position (i.e. a random mapping between

the organ boundaries and the compatible organ boundaries).

4.2.5 Genetic operators

IMHOTEP uses traditional genetic operators (namely, selection, crossover, and muta-
tion) to generate new individuals (i.e. candidate solutions). Specifically, we use the
ranking selection, which ranks the individuals based on the objective function and
retains the top ones in the current population. We use a single, random, cut-point
crossover, which selects two parent solutions at random, and determines a cut point
uniformly at random to split them into two sub-vectors. Then, the crossover creates
two children solutions by combining the first part of the first parent with the second
part of the second parent for the first child, and the first part of the second parent with
the second part of the first parent for the second child. Finally, the new offspring is
mutated by changing any value of the encoding uniformly at random with a certain
probability. Figure 4.2 Output shows an example of new individuals that could
results from our running example. For simplicity, these individuals have unaltered

organs, but illustrate different boundary mappings between organ and host.

4.2. OUR PROPOSAL: IMHOTEP 94

4.2.6 Objective function

Our work proposes to harness video games’ NPCs to run simulations that provide
data to assess the transplants (i.e. to compute the value of the objective function
assessing the quality of each transplant). Specifically, we propose to use the content
generated via transplantation (each individual in the population) into a simulation
of the video game. Such a simulation produces a data trace of the events that have
occurred. Using the data from the trace, we can check how well aligned are the
events with the intention of the developers. In our case study, the simulation is a duel
between a spaceship and a boss. The simulation generates data about the duel, such
as the damage inflicted. The intention of the developers may be that the duel ends
with the victory of the spaceship with a remaining life of less than 10%. Our proposal
does not require ad hoc development of simulations. In fact the simulations leverage
mainly the NPCs (but also more video game elements, such as scenarios or items
like weapons or powerups),which are usually developed anyway during for most
types of video games. In other words, NPCs are integral components of most video
game genres such as First-Person Shooter, Real-Time Strategy, or Racing Games.
This use of simulations has two advantages: it makes the use of simulations cheaper
(i.e. it does not involve additional development costs) and it facilitates fidelity to the

video game compared to ad hoc development.

In our case study, IMHOTEP compute the objective function value for each
individual in the population, through a simulation of a game battle between the
boss generated via transplantation (i.e. the candidate solution, also referred to as
Host’) and an NPC spaceship. Since all these elements, as well as the scenarios
and items such as weapons or powerups already belong to the game itself, no extra
development is needed to run the simulation. Note that from now we can refer to
the simulation-based version of IMHOTEP as Sjuorep, to differentiate it from a more
traditional objective function based on test-suite-compliance (referred as to Tyuporep

herein).

Once a simulation is executed, we need a way to quantify its quality. One thing

that differentiates video games from traditional software is that the basic requirement

4.2. OUR PROPOSAL: IMHOTEP 95

of video games is ‘fun’. ‘Fun’ is an abstract concept and the developers are in
charge of interpreting it when creating a game. In fact, different developers may
have different interpretations, also depending on the intended users of a given video
game. For some, ‘fun’ is achieved with a difficult game that is very rewarding when
progress is made (e.g., Dark Souls [226]), while for others, ‘fun’ is achieved by
effortlessly killing enemies (e.g., Dynasty Warriors [227]). Therefore, we argue that
such an intent is key for the evaluation of new generated content. Hence, to evaluate
the quality of the candidate solutions generated by IMHOTEP we take into account the
percentage of simulated player victories (Fy;cory) and the percentage of simulated
player health left once the player wins a duel (Fgqi11,), Which are commonly used
metrics in the literature. Specifically, we compute Fyjciory and Fyqs according to
Blasco et al. [45], as described below:

Fyictory 1s calculated as the difference between the number of human player
victories (Vp) and the optimal number of victories (33%, according to the developers

of Kromaia and their criteria) (Vopsimar):
FVictory =1- (| VOptimal —Vp | /VOptimal) (41)

Freairn, which refers to completed duels that end in spaceship victories, is
the average difference between the spaceship’s health percentage once the duel is
over (®p) and the optimal health level that the spaceship should have at that point
(®optimat> 20%, according to the developers):

Vp

Frean =1 — (Z <| ®0ptimal - ®P> |/®0ptimal)/VP 4.2)
d=1

The Fyicrory and Fyeqp criteria are combined (i.e. averaged) in the objective

function Fy,.,q;; Which guides the evolutionary search, as follows:

N
Foverall = min (Validity, Y F /N) (4.3)
i=1

where Validity is a crucial part to take into account the validity of newly generated

4.2. OUR PROPOSAL: IMHOTEP 96

models by using a run-time interpreter which is already part of the game. In fact,
such validation step is needed to discard models with inconsistencies. When a model
is stated as non-valid by the interpreter the value of Validity will be 0. Fp,,q;; value
is the minimum between Validity and the average value of Fyicrory and Fyeqin, thus
it can assume a value in [0, 1].

To execute Tjpporep, the Kromaia developers supplied a domain-specific test
suite comprising 243 test cases, selected based on their expert knowledge of the
system. The objective function of T7,0rep Was evaluated by subjecting each individ-
ual to all 243 tests, recording the number of successful outcomes, and subsequently
normalizing this value to the interval [0, 1]. Accordingly, an individual passing all
tests attains an objective function score of 1, whereas an individual failing all tests

receives a score of 0.

4.2.7 Software engineering reflections and tooling requirements

IMHOTEP is a novel system for Procedural Content Transplantation (PCT), de-
signed to automate the reuse of game content by transplanting functional fragments
(organs) from one game element (donor) into another (host). Grounded in software
engineering principles, it addresses the high cost and complexity of manual content
creation while positioning itself as both a technical tool and a methodological contri-
bution to Game Software Engineering, emphasizing reuse, abstraction, and empirical
validation.

The process begins with knowledge elicitation, where transplant candidates
are defined. A donor provides the source model, an organ represents the reusable
fragment, and a host is the target model that integrates the organ. This step ensures
that transplantations are meaningful and contextually relevant, establishing the
foundation for automated integration.

Integration is then performed through transplantation, where IMHOTEP uses
boundary detection and mapping to identify how content fragments can be em-
bedded into hosts. This approach mirrors software engineering practices such as
interface matching and component integration, ensuring compatibility between donor

fragments and host systems. By automating this process, IMHOTEP applies model-

4.2. OUR PROPOSAL: IMHOTEP 97

driven engineering and design exploration to streamline the generation of playable
content.

To ensure quality, IMHOTEP employs simulation-based evaluation rather than
relying solely on static test suites. In-game simulations measure metrics such as
victory rate and player health to assess how well transplanted content aligns with
design goals. This reflects runtime validation and feedback-driven refinement, similar
to practices found in DevOps and continuous integration/continuous deployment
(CI/CD).

The implementation of IMHOTEP within a game development context requires
careful consideration and adaptation to the specific needs of each project. Since
the application of IMHOTERP is highly dependent on context, development teams
must begin by defining an appropriate meta-model. This meta-model establishes the
foundational rules and structures that will govern the integration process. The donor,
organ, and host models must all adhere strictly to the rules of the defined meta-model
in order to ensure consistency and compatibility throughout the system.

Once the meta-model has been defined, the development team must determine
how organs are selected and how encoding and boundary functionalities are applied.
These design decisions directly influence the operation of the evolutionary algorithm,
which requires further customization to align with the chosen encoding scheme.
Adaptations are also necessary for the genetic operations and the objective function,
ensuring that they function effectively within the defined parameters of the project.
Together, these steps allow IMHOTERP to be integrated seamlessly into game devel-
opment workflows while remaining flexible enough to accommodate varying project

requirements.

Chapter 5

Empirical Evaluation

In the previous chapter, we introduced our proposed approach, named IMHOTEP. In
this chapter, we present the evaluation performed to validate our proposal.

To evaluate IMHOTEP we have carried out an industrial case study in collabora-
tion with the developers of the commercial video game Kromaia'. Kromaia has been
released on PC, PlayStation, and translated to eight different languages. In particular,
in the Kromaia case study, we were able to assess the effectiveness of IMHOTEP to
transplant 129 different organs extracted from the scenarios of Kromaia into five of
its NPCs bosses that act as hosts, generating new video game bosses, for a total of
645 successful transplants. This is higher than previous work in the literature, which
achieved at most 327 successful transplants [228].

We compare the quality of the 645 bosses generated by using IMHOTEP to the
same number of bosses generate by using a search-based PCG approach from the
literature [5], which is the most relevant state-of-the-art of a comparable nature, and
those generated by a variant of IMHOTEP that uses test-suite as objective function
(namely, Tjnorep), In line with the traditional software transplantation literature. To
perform the comparison, we rely on the concept of game quality and its automated
measurement, which is widely accepted in practice [229].

The results show that, out of the three approaches, the content generated through
the IMHOTEP obtains the best results: It yields 1.5x better results than 77,,0s¢p and

2.5x better results than baseline. The statistical analysis shows that the differences

ISee the official PlayStation trailer to learn more about Kromaia: https://youtu.be/
EhsejJBp8Go

https://youtu.be/EhsejJBp8Go
https://youtu.be/EhsejJBp8Go

5.1. EXPERIMENTAL DESIGN 99

are statistically significant, and the magnitude of improvement is always large.

5.1 Experimental Design

In this section we explain the design of the experiments we perform to empirically
evaluate IMHOTEP by using the commercial video game Kromaia. We present the
research questions that we aim to answer, the evaluation method, and the implemen-

tation details.

5.1.1 Research Questions

IMHOTEP proposes a new angle for video game procedural content generation, and
for this reason we need to assess how it compares to the established practice for PCG
. This motivates our first research question:

RQ: How does Spuhorep perform with respect to the current practice for PCG?

To answer RQ1, we had to identify the most relevant and close work in the
PCQG literature. We identify the work by Gallota et al. [5] as the most representative
benchmark for our study. Indeed, Gallota et al. proposed a hybrid Evolutionary
Algorithm for generating NPCs, which combines an L-system with a Feasible
Infeasible Two Population Evolutionary Algorithm. We choose Gallota et al. as PCG
baseline because (1) it is of the same nature of IMHOTEP (i.e. it uses evolutionary
computation), (2) it is specific for spaceships that can play the role of bosses which
is comparable to the content of our case study, and (3) it achieves the best state-of-
the-art results for this type of content.

Moreover, since we are the first to propose the use of a simulation-based
objective function to guide the search for transplantation it is natural to compare
it with the established practice in the software transplantation field, which instead
relies on the use of a test suite to guide the transplantation. This motivates our second
research question:

RQ;: To what extend using a simulation-based objective function to guide the
transplantation is more effective than a test-based one for IMHOTEP?

To answer RQ2 we empirically compare IMHOTEP guided by the simulation-

based objective function described in Section 4.2.6 (which we refer to as Syunorep)

5.1. EXPERIMENTAL DESIGN 100

with a test-based variant of IMHOTEP (which we refer to as Tj,porep). Specifically,
Timhotep uses an objective function based on the number of test cases that are passed
by the transplanted software. The reason for considering this variant is that in
traditional software transplantation the best results have been achieved by using
the test suite as the objective function. In order, to run Tjpozep, the Kromaia’s
developers provided us with a test suite relevant to the game, consisting of a total of
243 tests selected based on their domain knowledge. Therefore the value of Tyuprep’s
objective function was computed by running each individual through the 243 tests,
recording the number of tests passed and normalizing this value in a scale of [0, 1].
An individual which passes the 243 tests will obtain an objective function score of 1,
on the contrary if it does not pass any test it will obtain an objective function score of
0. As in Syuporep» €ach individual also needs to constitute a valid boss (i.e., solution),
receiving a score of O if it does not represent a valid one according to the run-time

interpreter (see Section 4.2.6).

5.1.2 Methodology

Figure 5.1 provides an overview of the process we followed to empirically assess
IMHOTEP and answer RQs 1 and 2 for the Kromaia’s case study. The top (white
background) part shows the assets of the game itself (content) and the game develop-
ment (test suite) that are used by the approaches. The middle (grey background) part
shows inputs and outputs for each of the approaches compared herein. The bottom

(white background) part shows the evaluation criteria used to assess the results.

5.1.3 Algorithms’ Settings

As described in Section 4.2, developers need to select host and donors as input for
IMHOTEP. In our empirical study, Kromaia’s developers identified as hosts five
different bosses (i.e., Vermis, Teuthus, Argos, Orion, and Maia), which constitute
the full set of original bosses from Kromaia. While, as donors, they considered all
Kromaia’s scenarios and were able to identify 129 organs within them. Each host
has more than a thousand model elements, while donor’s organs have an average of

255 model elements. Then we run IMHOTEPwith the parameters shown in Table 5.1.

5.1. EXPERIMENTAL DESIGN 101

Kromaia Video Game Content Kromaia

NPCs Test-Suite
Scenarios | Bosses |

N
[Kromaia Developers]

v @
Organs 3
'ﬁ Iv 7
PCT Input PCG Input
I
v
Imhotep Imhotep 15
(Simulation (Test -
-based) -based) J SBPCG]
v v
Bosses (Hosts’) || Bosses (Hosts’) Bosses
v
\L Evaluati(;lln

Video Game Research’s Automated
Measurement (QDuration)

v
[Focus Group]

Simulated Player

Figure 5.1: Overview of the evaluation process.

We established the stop condition at 2 minutes and 30 seconds, ensuring enough time
to obtain suitable solutions.? At the end of the evolutionary process, each organ was
successfully transplanted to each boss by IMHOTEP, which provided the developers
with a total of 645 new bosses (5 hosts * 129 organs) (note we obtain 645 solutions
from Spuporep and 645 from Tyuporep)-

We executed the SBPCG benchmark by using the parameters presented by the
original work and for a total of 129 times for each one of the 5 different hosts, so to
obtain the same number of generated individuals (i.e. 645).

For all approaches we executed 30 independent runs to account for random

variation [230]. Hence, we performed a total of 58,050 independent runs (645%3*30)

The focus of this paper is not to tune the values to improve the performance of the approaches
when applied to a specific problem, but rather to compare their performance in terms of solution
quality on a level playing field.

5.1. EXPERIMENTAL DESIGN 102

Table 5.1: IMHOTEP parameter settings

Parameter description Value

Stopping criterion 2m 30s
Population size 100
Number of parents 2

Number of offspring 2
Crossover probability 1
Mutation probability 1/150

for our experiment.

The implementation uses the Java(TM) SE Runtime Environment (JDK 1.8) and
Java as the programming language. All experiments were run using two PCs with
the following specifications: Intel Core 17-8750H, 16GB; and 2x Intel(R) Xeon(R)
CPU X5660, 64GB.

5.1.4 Evaluation Measures

To compare the solutions provided by the SBPCG benchmark and the two variants
of IMHOTEP (i.e. Spunotep a0d Tipporep), We rely on the concept of game quality
and its automated measurement through simulated players. The results by Browne
et al. demonstrated the validity of this approach, which is now widely accepted
in the research community [229]. Therefore, we need two ingredients to run our
experiment: The simulated player and the automated measurement.

The simulated player, developed by the developers of Kromaia, possesses the
ability to mimic human player behaviour. Our approach incorporates their algorithm,
utilizing it to simulate battles between the generated bosses and the simulated player.
Within these simulations, the simulated player confronts the boss, strategically
targeting and destroying its weak points. Meanwhile, the boss operates in accordance
with its anatomical structure, behavioural patterns, and attack/defensive dynamics,
aiming to overcome the simulated player. Both entities within the simulation actively
strive to emerge victorious, eschewing draws or ties, and ensuring a definitive win.

The automated measurement is Qpyrarion Which was proven to achieve good
results [229]. The duration of duels between simulated players and bosses units is
expected to be around a certain optimal value. For the Kromaia case study, through

tests and questionnaires with players, the developers determined that concentration

5.1. EXPERIMENTAL DESIGN 103

and engagement for an average boss reach their peak at approximately 10 minutes
(Toptimar)» whereas the maximum accepted time was estimated to be 20 minutes
(2% Toprimar)- Significant deviations from that reference value are good design-flaw
indicators: short games are probably too easy; and duels that go on a lot longer than
expected tend to make players lose interest. The criterion Qpyrarion 1S @ measure
of the average difference between the duration of each duel (7;) and the desired,

optimal duration (7o psimar):

Duzels ‘TOptimal _Td|

TOpf imal

d=1
ion = 1— 5.1
QDumnon No.ofDuels ()

Based on the equation above, the higher the Op,4sion Of a given approach, the

better the solutions it produced.

5.1.5 Statistical Analysis

To measure whether there is any statistical significance difference between the results
obtained by the different approaches we perform the Wilcoxon Ranked-Sum test
(a.k.a. Mann—Whitney U test) [231] setting the confidence limit, ¢, at 0.05, and
applying the Bonferroni correction (a/K, where K is the number of hypotheses)
when multiple hypotheses are tested. We performed a one-sided test since we are
interested in knowing if our proposed approach, Sy,porep, Would be better than the
others. In such a case, the one-sided p-value interpretation would be straightforward.
Specifically, for RQ1 we test the following null hypothesis: The distribution of
Oburation values produced by Sppporep is not better than that produced by the SBPCG
benchmark. If the test rejects the Null Hypothesis, the alternative hypothesis would
be accepted: The distribution of Qpuration values produced by Syuporep is better than
that produced by the SBPCG benchmark. Similarly for RQ2 we test the following
null hypothesis: The distribution of Qpuration values produced by Sipporep is not better
than that produced by Typporep. If the test rejects the Null Hypothesis, the alternative
hypothesis would be accepted: The distribution of Qpuration values produced by
Simhotep 1S better than that produced by Tyupotep-

We consider the effect size to assess whether the statistical significance has

5.2. RESULTS 104

practical significance [232]. We use the Vargha and Delaney’s A, non-parametric
effect size measure, as it is recommended to use a standardised measure when not all
samples are normally distributed [232], as in our case. A, measures the probability
that an algorithm A yields greater values for a given performance measure M than
another algorithm B, based on the following equation: A, = (R;/m - (m + 1)/2)/n,
where R is the rank sum of the first data group we are comparing, and m and n are the
number of observations in the first and second data sample, respectively. Values be-
tween (0.44,0.56) represent negligible differences, values between [0.56,0.64) and
(0.36,0.44] represent small differences, values between [0.64,0.71) and (0.29,0.44]
represent medium differences, values between [0.0,0.29] and [0.71, 1.0] represent

large differences.

5.2 Results

In this section, we present the results obtained by running IMHOTEP and the SBPCG
benchmark on Kromaia. Table 5.2a shows the mean values and standard deviations
for Opuration for each IMHOTEP variant and the SBPCG benchmark, while Figure 5.2
shows the results in form of boxplots, grouped per host (i.e., the boss of Kromaia
used in our experiment, namely Argos, Maia, Orion, Teuthus, and Vermis) and
overall. Each boxplot represents the distribution of Qp,,qrion Values (obtained as
average of 30 independent runs) for each of the 645 solutions obtained from trans-
plantation IMHOTEP (Syuhotep and Tpporep) and SBPCG. We can observe that both
variants (Symnorep and Tpuporep) Obtained better results than the SBPCG benchmark.
Specifically, Syunorep yielded the best results, followed by Tjp0ep and then SBPCG.
The variants obtained an average value of 44.85% in Qpuyration, With Spuporep being
the variant that obtained the best results overall (53.31% in Opuration)- Timhotep
obtained 36.39% in the overall Qpyarion, Which also outperformed SBPCG. SBPCG
obtained the worst Qpyrarion- Overall, the results reveal that leveraging simulations
as objective function pays off in the context of PCT, yielding 1.5x better results than

the Tuhorep and 2.5x better results than the SBPCG benchmark.

When analysing whether there is statistical significant differences among the

5.2. RESULTS 105

Table 5.2: RQ1-RQ2. (a) Mean value and standard deviation for Qpyqrion Obtained by each
approach per boss and overall. (b) Wilcoxon test and Vargha-Delaney A, results
obtained by comparing Siunorep Vs. SBPCG (RQ1) and Spnorep VS. Timhorep
(RQ2) per boss and overall. Aj,: Large — L.

(a) Mean and standard deviation (b) Wilcoxon / Alz
Slmhorep Tlmhntep SBPCG RQ1 RQ2
Boss Mean + StDev Mean 4+ StDe Mean + StDe Boss p—Value | Ay p—Value | Ay,

Argos 4392 +£930 32.174+6.94 20.15+1.86 Argos 3.25x1072/0.99 (L) 1.28x107'8/0.85 (L)
Maia 43.08 £12.09 29.52+9.34 843+ 1.81 Maia 3.25x1003/1.0(L) 6.64x10°'8/0.85 (L)
Orion 4886 £8.69 31.414+6.83 32.97+0.85 Orion 4.01x1073/0.98 (L) 4.95x10722/0.95 (L)
Teuthus 60.78 £7.38 46.33 £10.54 19.53 + 1.88 Teuthus 3.25x1072/1.0(L) 3.60x107!8/0.87 (L)
Vermis 69.90 & 10.52 42.50 = 12.96 25.48 +3.31 Vermis 3.25x10723/1.0(L) 8.86x10723/0.95 (L)
Overall 5331 +14.26 36.39 £11.72 21.31 £8.32 Overall 1.41x107197/0.98 (L) 6.58x10723/0.82 (L)

results obtained by S;,40rep and Base. We found that the obtained p-values for
Obpuration are always lower than 4.01x10~2 (see Table 5.2b). This is below the
significance threshold value, so we can comfortably state that Sy,uperep provides
significant better values for Qpyqrion With respect to Base. We also observe that all
the A12 effect size values are large (see Table 5.2b), thus confirming the practical
magnitude of such a difference. Thus, we conclude that: Answer to RQ; Synozep
performance far surpasses SBPCG with statistically significant difference and large
effect size in all cases, exhibiting a remarkable overall enhancement of 250% over

SBPCG.

As for the comparison between Sy,porep and Tyuporep (RQ2), we observe that all
the p-values achieved when comparing the Qpyarion distributions provided by the
two IMHOTEP variants are smaller than the significance threshold, thus indicating
that the difference in solution quality is statistically significant in favour of Syn0zep-
and always with a large A12 effect size (see Table 5.2b). Therefore, we conclude
that: Answer to RQ2 S;u01¢p provides significantly better results than 77,0z in
the context of automated content generation through transplantation, with a large
effect size in all cases examined. The efficacy of Syporep demonstrates a 150%

enhancement overall compared to the outcomes of Tpozep-

0.8

0.6

0.4

0.2

VERMIS (Host)

TEUTHUS (Host)
0 1.0

5.3. DISCUSSION

ARGOS (Host)

ORION (Host)

MAIA (Host)

106

OVERALL

i
&

0.8

0.6

0.4

0.2

@0 oo

o

=

0.8

0.2

i

0.8

0.6

0.4

0.2

oo

0.8

0.6

0.8

wod

ano o @

- °

=

0.0 T T T .0 T T T .0 T T T .0 T T T 0.0 T T T .0 T T T
Simulation Test SBPCG Simulation Test SBPCGV Simulation Test SBPCGV Simulation Test SBPCG Simulation Test SBPCG Simulation Test SBPCG

Figure 5.2: Results of IMHOTEP (Spnorep and Tymnorep) and the SBPCG benchmark in terms
of QDuration~

5.3 Discussion

To begin with, our work revolves around the transplantation of organs between two
very different types of content in video games: scenarios and bosses. One may
wonder why not transplanting organs between contents of the same type, such as
between bosses. Technically, it should also be a smaller challenge to transplant
organs among the same type of content due to the similarities and shared structures.
However, video games put the focus on fun, which is many times achieved by
avoiding repetition. Since the number of bosses is usually very limited in video
games, transplanting between bosses could lead to repetition, hurting fun and creating
negative play experiences for the players. In contrast, scenarios provide an abundant
and promising source of organs that can withstand repetition, since it is frequent
for a relevant portion of a scenario to not be explored by a player during a game:
while players spend most of the time playing within scenarios, the focus of scenarios
on completing goals combined with their sheer extension renders them difficult to
explore in full. Hence, reusing between bosses and scenarios is more original and
relevant for fun.

Since transplanting an organ to a host contributes to generating new desirable
content, one might consider performing more than one transplant on the same host
to continue creating novel content. In its current state, our approach allows for
only one organ to be transplanted at a time, but it should be possible to repeatedly

transplant the same organ onto the same host, or to consider chains of transplants

5.3. DISCUSSION 107

where desirable combinations of organs can be identified and transplanted in bulk into
a host. However, upon analysing the results, we have detected various interactions

between organs that may help guide an approach that considered multiple transplants:

Organ dependencies occur when an organ requires for another organ to be present
in the host to work properly. For instance, a spike weapon must be mounted on a hull
belonging to the body of a boss and cannot appear by itself. In other words, a spike
weapon organ depends on the existence of a hull organ to be able to be included in

the boss.

Organ incompatibilities happen when an organ should not appear in the host under
any circumstances. For instance, consider attaching a black hole organ to a hull
belonging to the boss. The black hole organ destroys everything it touches, so it
would instantly end the boss without triggering the end condition for the game, since
the battle is considered as completed only when the player is the one responsible for
ending the boss. This would actively block player progress, which is undesirable for

the game.

Organ synergies are found when the functionality of an organ benefits from the
existence of another organ in the host. For instance, adding one or more weapons
to a hull where a weak spot is located protects the boss from the player, building a

more interesting challenge.

Organ discordances take place when the functionality of an organ is hindered by
the existence of another organ in the host. For instance, annexing a hull with a
mobile arm to another hull with a laser may cause the laser beam to be intermittently

blocked, decreasing its attack capabilities.

So far, the literature on software transplantation does not tackle or even identify
interactions between organs. Studying these organ interactions is a line of work
to advance the concept of transplantation both in video games and in the general
software domain. As part of our evaluation(see Figure 5.1), we also carried out an
informal focus group where we surveyed two developers from Entalto [233] and
two developers from Kraken Empire [234]. All of them are seasoned video game

developers who devote most of their working hours to realising the software behind

5.4. THREATS TO VALIDITY 108

different commercial games. We asked them to express anonymously their content
preferences, presenting them with the Kromaia’s new content produced by either
IMHOTEP or by the SBPCG benchmark (note that the source of the generated content
was masked to the developers to avoid influencing their answer, i.e. they did not
how the content was generated). The results showed an unanimous preference for
IMHOTEP-generated content. Furthermore, they indicated that they would use it as
primary content for the game rather than secondary.? Until now, previous PCG work
has generated only results used as secondary content. In that sense, the possibility
of using generated content as primary content represents an advancement in PCG.
Developers justify this choice by arguing that the content generated by IMHOTEP
aligns better with the vision of the game, whereas the SBPCG-generated content
feels more random in purpose even when reusing content that was created within
the context and vision of the game by the developers. These results have been
confirmed in a subsequent larger empirical user-study [26] dedicated to compare
content generated via IMHOTEP (more generally referred to as content reuse) and
traditional search-based procedural content generation. In fact, this study reveled
that developers favour the transplantation approach as they feel that it enhances
the underlying content and yields superior outcomes compared to PCG [26]. The
developers acknowledged content reuse in form of transplants as a natural progression
of the initial original content, while PCG was unfavorably labeled as content that

lacked the touch of professional developers.

5.4 'Threats to Validity

To tackle possible threats to the validity of our work, we follow the classification

suggested by De Oliveira et al. [235].

5.4.1 Conclusion Validity

To minimize not accounting for random variation, we run each of the approach

(i.e. Spmnoteps Timhorepand SBPCG) 30 times. Also, we make sure to assess the same

3Primary content is that which conforms an essential part of the experience of the players, while
secondary content is that which does not directly affect the main experience but contributes to creating
the atmosphere of the game (for instance, distant decoration).

5.4. THREATS TO VALIDITY 109

number of solutions (i.e. 645 new bosses) for each of the approaches, so to make the
comparison fair. In order to address the lack of good descriptive statistics, we present
the standard deviation and a box-plot of the results. We also applied statistical
significance tests (Mann-Whitney U) and effect size measurements (Alz) following
accepted guidelines [230]. We tackled the lack of a meaningful comparison baseline
by comparing IMHOTEP to a recent and most relevant Search-Based PCG approach

as a benchmark, as detailed in Section 6.1.

5.4.2 Internal Validity

We provide the source code and the artefacts used in our experiments to allow for
reproduction and replication and avoid the lack of discussion on code instrumentation.
We handled the lack of real problem instances by using a commercial video game
as the case study for our evaluation and by working closely with its developers in
a real-world industrial setting. Likewise, the problem artefacts (donor, organs and
hosts) were directly obtained from the video game developers and the documentation

itself.

5.4.3 Construct Validity

To prevent the lack of assessing the validity of cost measures, we made a fair
comparison between the two variants of our approach and the SBPCG benchmark.
Furthermore, we used a metric for the evaluation that has been widely adopted and

validated by the research community [229].

5.4.4 External Validity

To mitigate the lack of generalization threat, we designed our approach to be generic
and applicable not only to our industrial case study but also for generating content in
other different video games. To apply IMHOTEP to another case study, it is necessary
an encoding for the transplantation of the content, and leverage the NPCs to obtain
the simulation of the objective function. To avoid the lack of a clear object selection
strategy in our experiment, we have selected the instances from a commercial video
game, which represents real-world instances. In fact, IMHOTEP can be applied where

NPCs are available. NPCs are usually available in popular game genres such as

5.4. THREATS TO VALIDITY 110

car games (rival drivers), FPS games (bots), or RTS games (rival generals). For
those cases were there is no NPC, the developers should ponder the trade-off of
the cost of developing the NPCs and the benefits of generating content with our
approach. Our approach should be replicated with other video games before assuring

its generalization.

Chapter 6

Controlled Experiment

While theoretical frameworks as we have seen in previous chapters provide a founda-
tional understanding, empirical studies offer the necessary validation and refinement,
which is crucial for effective implementations. As in other disciplines dealing with
human behaviour (e.g., social sciences or psychology), empirical research allows
building a reliable knowledge base in software engineering [236, 237]. By empiri-
cally investigating the user experience of video game techniques, researchers can
unveil both the strengths and limitations of existing approaches, paving the way
for advancements that align more closely with the diverse needs and preferences of
developers and players. Through rigorous experimentation and analysis, empirical
studies serve as the cornerstone for fostering innovation and pushing the boundaries

of what is achievable within video game techniques.

There are studies that establish the particularities of the study of the quality of
video games compared to other software developments [238]. Video games have
characteristics that are difficult to measure and define, such as ‘fun’ or ‘entertain-
ment’. Thus, it makes automating tests challenging due to the multitude of options
available to players. Moreover, it is considered that the users under study must have
specific characteristics and that not random profiles can be useful in the testing of
this type of artefacts.

In this chapter, we aim to empirically assess and compare content generated by
two different content generation techniques along with two different user profiles

(players and developers). We study two automated approaches for generating content,

112

namely Procedural Content Generation (PCG) and Procedural Content Transplan-
tation (PCT), and whether their use has an impact on the quality of the generated
content. We do so by analyzing the commercial video game Kromaia released on
PlayStation 4 and Steam. Specifically, we invite participants (developers and players)
to play with content generated by PCG and PCT in the game, and then evaluate
their experience in terms of video game specific percieved quality measures, namely
‘difficulty’, ‘design’,‘fun’, and ‘immersiveness’[6]. Participants were not told how
the content was generated. We conducted three distinct sessions, one for players
and the other two for developers, in order to investigate whether the profile of the
participants assessing video games influences their perception. A total of 44 partici-
pants took part in the experiment, assessing the generated content in two scenarios
of the game. The results show that the participants perceive the content generated
by PCT to be of superior quality in comparison to the content generated by PCG:
PCT obtained better results than PCG in 77% of the cases based on difficulty, in 34%

cases for design, in 28% cases for fun and 5% for immersiveness.

Our findings challenge three prevailing trends in Game Software Engineering
(GSE). Firstly, there is a perception that content reuse leads to repetitive game con-
tent, which is typically frowned upon by developers. However, our research indicates
that subjects actually prefer content generated through PCT. Secondly, previous
content generation experiments have involved only the players, neglecting the input
of developers. Our results demonstrate no significant differences between players
and developers. This suggests that the input of developers is also relevant for content
generation. Furthermore, developers are shown to provide more detailed feedback.
Lastly, 73% of previous content generation experiments have missed important
factors such as hypotheses formulation, statistical analysis, or the inclusion of a repli-
cation package. We have not found any reasons for neglecting the aforementioned
practices, and hence, our work encompasses all of the above - including replication,
which has been overlooked in 100% of previous studies. We hope that our research

will inspire future research in GSE to comply with empirical best practices.

6.1. EXPERIMENTAL DESIGN 113

6.1 Experimental Design

In this section we present the experiment design following Wohlin’s guidelines [237]

for reporting software engineering experiments.

6.1.1 Objective

The research objective has been organized using the Goal Question Metric (GQM)
template to define the objectives originally presented by Basili and Rombach [239].
Our goal is to analyze different techniques for content generation, namely Procedural
Content Generation (PCG) and Procedural Content Transplantation (PCT), for the
purpose of comparison, with respect to perceived quality; from the point of view
of of more and less experienced players and developers; in the context of content

generation for an existing video game.

6.1.2 Research Questions and Hypotheses

The research questions and null hypotheses are as follows:

RQI - Does the Technique used to automatically generate software in video
games impact the perceived Quality of the game? The corresponding null hypothesis
is Hy 1: The Technique does not have an effect on the perceived Quality of the game.

RQ?2 - Do evaluators with different profiles evaluate the quality of the game
differently? The corresponding null hypothesis is Hy: The Evaluator’s profile
does not have an effect on the evaluation of the Quality of the game.

The hypotheses are formulated as two-tailed, as this is the first time these RQs are

studied and there is no reason to assume that one approach is better than the other.

6.1.3 Variables

In this study, the factor under investigation is the content generation technique
(Technique) used to automatically generate content, i.e., final bosses, for an existing
video game. There are two alternatives: PCG or PCT, which are the two different
techniques used to generate a final boss that will be played with and evaluated by dif-
ferent kind of human participants. Since the goal of this experiment is to evaluate the
effects of using different techniques to generate content for an existing commercial

video game, we selected response variables related to the quality perceived by partic-

6.1. EXPERIMENTAL DESIGN 114

Table 6.1: Response variables and correspondent items in the evaluation questionnaire

Response variable Related Items in the evaluation questionnaire

Boss difficulty Iteml. I think the boss difficulty is high

Item?2. The boss is perfectly integrated in the game

Item3. 1 liked the design and behavior of the boss

Item4. The boss I fought seemed to me to have a good balance
between difficulty and playability

Design

Item5. 1 enjoyed playing against the boss
Fun Item6. When the time was up, I was disappointed that
I could not continue playing against the boss

Item’7. At no time did I want to give up while facing the boss
Immersiveness Item8. At some point I was so involved that I wanted to
talk directly to the video game

ipants playing the generated content. We selected Quality as the response variable
to evaluate the effects of using different procedural content generation techniques
in a commercial video game. We decomposed the analysis of quality into different
dimensions: difficulty, design, fun and immersiveness, based on previous work [6].
To evaluate difficulty we used three response variables: Game duration, Won
rate and Boss difficulty. Game duration is the average time spent by each participant
in their games. The value of this variable was calculated by dividing the time each
participant spent playing with a boss by the number of games played against that
boss. Won rate is the percentage of games won by a player out of all games played
against a boss, calculated by dividing the number of games won by the number of
games played against a boss. We measured Boss difficulty based on the participant’s
answers to an explicit question about the difficulty of the game in a 7-item Likert-
type questionnaire with different items. Different items in this questionnaire were
used to measure the response variables Design, Fun, and Immersiveness. Each of
these variables correspond to specific items in the questionnaire. The participants
rated their degree of agreement with the statements of each item, with a value of
1 corresponding to totally disagree and 7 to totally agree. We average the scores
obtained for these items to obtain the value for each variable. Table 6.1 shows the
specific items of the questionnaire, used for the calculation of each of these response

variables.

6.1. EXPERIMENTAL DESIGN 115

For the evaluation of each boss in the game, the participants also answered
an open-ended question in which they could provide additional comments. We
considered two response variables to quantify the qualitative information contained
in these comments: Comment length, defined from the number of characters in the
comment, and Comment type. To define the type of comment, the comments were
classified into five categories by assigning them a numerical value from 0O to 4: 0, no
comments; 1, comments not related to the evaluation of the boss; 2, comments on
the difficulty of the boss evaluated; 3, comparisons between the bosses played; and

4, detailed analysis of the evaluation.

In order to establish the different evaluator profiles among the participants,
we conducted different sessions of the experiment with specific groups of partici-
pants: potential players and experienced developers. In addition, a demographic
questionnaire was designed to take into account the degree of experience both play-
ing and developing video games, in particular, playing video games with similar
characteristics to the one being evaluated. The groupings of participants in sessions
by participant profile (player or developer) and the participants’ responses to the
demographic questionnaire were used to define three blocking variables: Profile,
Game development, and Gamer profile. The objective was to analyze whether and
how the experience in video game development and the profile as a player could

influence the evaluation of the quality of the game elements.

The blocking variable Profile has two alternatives, player or developer, depend-
ing on the previous grouping of participants in sessions by profile. This variable also
allows the study of the differences between the sessions held and the demographic
profiles of the participants. To define the alternatives for the blocking variable
Game development, the weekly hours that the participants dedicated to developing
software for video games were taken into account. The variable will have two
alternatives: 1, for participants who do not dedicate more than 10 hours per week
to developing video games, and 2, for those who dedicate 10 hours or more to
developing video games each week. The blocking variable Gamer profile is used to

distinguish participants with a player profile that is closer to the target audience of

6.1. EXPERIMENTAL DESIGN 116

the video game being analyzed from participants with less related profiles, such as
casual players or those who are not interested in video games. In order to define the
alternatives of Gamer profile we considered the scores given by the participants to

the following questions:

1. How many hours do you play video games per week? (1, Less than 5; 2,
between 6 and 10; 3 between 11 and 20; 4, between 31 and 30; 5, between 31
and 40; and 6 more than 40.)

2. How would you rate your overall experience with video games (knowledge,
playing time, skills)? (1, No experience; 2, Little experience; 3, Medium

experience; 4, Very experienced; and 5, Expert in the area)

3. How would you rate your overall experience with shooter video games (Exam-
ples: Call Of Duty, Doom, Quake)? (1, No experience; 2, Little experience; 3,

Medium experience; 4, Very experienced; and 5, Expert in the area)

4. What difficulty do you usually choose when playing video games? (1, Easy; 2,
Normal; 3, Hard; 4, Extreme)

We defined three alternatives for the variable Gamer profile according to the
sum of the scores given by the participants to the questions: 1, for participants
scoring no more than 33% of the 20 possible points, 2 for participants scoring
between 33% and 66% of the possible points and 3, for participants scoring 66% or
more of the possible points. Participants in the third alternative of the variable could
be considered the most similar to the target audience of the game, while participants

in the first alternative would represent participants more distant from this audience.

6.1.4 Design

We chose a Two-Treament crossover design with two sequences using two different
evaluation tasks: T1, evaluate a boss created using PCT, and T2, evaluate a boss
created using PCG. The participants were randomly divided into two groups (G1 and

G2). In the first period of the experiment, the participants of G1 perform T1 and the

6.1. EXPERIMENTAL DESIGN 117

Period 1 Period 2
\/PQ)

Sl Group 1 /Pl TaSk 1
Sequence 1 ;‘% _|

S2
Sequence 2

Figure 6.1: Two-Treament crossover design of our experiment.

participants of G2 perform T2. In the second period, the participants of G1 perform

T2 and the participants of G2 perform T1.

This repeated measure design enhances the experiment’s sensitivity, as noted
by Vegas et al. [240]. Considering the same participant evaluating both alternatives,
between-participant differences are controlled, thus improving the experiment’s
robustness regarding variation among participants. By using two different sequences
(G1 evaluating PCT first and PCG afterwards, and G2 evaluating PCG first and
PCT afterwards) the design counterbalances some of the effects caused by using
the alternatives of the factor in a specific order (i.e., learning effect, fatigue). We
study the effects of the factors period, sequence, and participant to validate of this

experiment.

To verify the experiment design, we conducted a pilot study with two partici-
pants. The pilot study facilitated an estimate of the time required to complete the
tasks and questionnaires, the identification of typographical and semantic errors, and
the testing of the online environment used to create the experiment. The participants

in the pilot study did not participate in the experiment.

6.1. EXPERIMENTAL DESIGN 118

6.1.5 Participants

We selected the participants using convenience sampling [237]. A total of 46 partici-
pants with different knowledge about developing and playing video games performed
the experiment, but only 44 decided to submit their answers and confirmed their
agreement to be part of this study. In this study, the participants included 12 pro-
fessionals related with video game development and 34 third year undergraduate
students who are taking a course in Software Quality from different technology
programs at a higher education institution (Universidad San Jorge). In particular,
part of those students are specifically studying video games design and development.

The experiment was conducted by two instructors. During the experiment,
one of the instructors gave instructions and managed the focus groups, and both

instructors clarified doubts and took notes.

6.1.6 Experimental Objects

Figure 6.2: (A) PCG boss. (B) PCT boss.

In the experiment, the participants evaluate content (bosses created for an
existing video game). Participants must defeat these bosses by piloting and shooting
from a spaceship. Figure 6.2 shows the spaceship used by the player and the two
bosses used during the experiment. The player’s spaceship is highlighted in orange
(see 1 of Figure 6.2), while the bosses are in black and green (see 2 of Figure 6.2).
The scenario where the player fights the boss is the grey part, and the white balls are

projectiles exchanged between the player’s spaceship and the boss. The two bosses

6.1. EXPERIMENTAL DESIGN 119

shown in Figure 6.2 (PCG boss and PCT boss) are the two best bosses obtained with
PCG and PCT according to the game’s development team.

For the execution of this experiment, a video game engineer who was involved
in the development of the game developed a test scenario based on scenarios from
the original game. In this scenario, the participants of the experiment can (1) learn
how to operate the game controls, (2) learn how to fight an original boss from the
game, and (3) fight the bosses that they will have to evaluate.

For data collection, we prepared two forms using Microsoft Forms (one for

each experimental sequence) with the following sections:

1. An informed consent form that the participants must review and accept volun-
tarily. It clearly explains what the experiment consists of and that the personal

data will not be collected.

2. A demographic questionnaire that was used for characterizing the sample and

defining the blocking variables.

3. Specific information on how to download and use the game’s test environment
that will be used to perform the experiment, and instructions on how to use the

game environment.

4. Specific instructions on how to access the boss fight and the evaluation ques-
tionnaire about the game experience against the boss. This section was repeated
three times in the questionnaires, once for each boss played by the participants:
first against the original boss, and then against the two bosses generated with

the techniques we compared (PCG and PCT).

The experimental objects used in this experiment (the test scenario, the gener-
ated bosses, and the forms used for the questionnaires), as well as the results and the

statistical analysis, are available in the replication package at .

6.1.7 Experimental Procedure

The experiment was carried out in three different sessions. In the first session, the

experiment was conducted face-to-face with the group of students. In the second

6.1. EXPERIMENTAL DESIGN 120

N\ / N
Explanation of S1 Group 1
experiment (\ ... :
—'— % '
I ' ‘ 3
Test S
Instructions and environment -
access to online > to learn —» Focus group
FORM about the
| video game S2
Fill in demographic | |
questionnaire Analysis of the

~— @@

results

Figure 6.3: Our experimental procedure.

and third sessions, the experiment was conducted online with professionals. During
the online session, all participants joined the same video conference via Microsoft
Teams, and the chat session was used to share information or clarify doubts. The
experiment was scheduled to last for 100 minutes and was conducted based on the

experimental procedure described below:

1. An instructor explained the context of the experiment, the parts of the session
and clarified that the experiment was not a test of the participants’ abilities. (5

min)

2. The participants received clear instructions on where to find the links to access
the forms for participating in the experiment and about the structure of these
forms. The participants were randomly divided into two groups (G1 and G2).

(10 min)

3. The participants accessed the online form, and they read and confirmed having
read the information about the experiment, the data treatment of their personal
information, and the voluntary nature of their participation before accessing

the questionnaires and tasks of the experiment. (5 min)

4. The participants completed a demographic questionnaire. (5 min)

5. The participants received specific information on how to download, navigate
through the files (see Figure 6.4), and use the test environment that will be used

to conduct the experiment. They downloaded and used the test environment to

6.1. EXPERIMENTAL DESIGN 121

learn how to pilot the ship they will had to use to fight different bosses during

the experiment. (15 min)

6. The participants received specific instructions on how to access a fight with
an original boss of the game. After playing against the boss as many times
as desired, the participants completed the evaluation questionnaire about the

experience of playing against the original boss. (15 min)

7. The participants performed the first task. They received specific instructions
on how to access a fight with the boss to evaluate. The participants of G1
played against the boss generated with RGC while the participants of G2
played against the boss generated with PCG. After playing as many times as
desired against the assigned boss, all participants completed the evaluation

questionnaire about the game experience against the boss played. (15 min)

8. The participants performed the second task. They received instructions on how
to access a fight with the boss to evaluate. The participants of G1 played against
the boss generated with PCG while the participants of G2 played against the
boss generated with PCT. After playing as many times as desired against the
assigned boss, all participants completed the evaluation questionnaire about

the game experience against the boss played. (15 min)

9. One instructor conducted a focus group interview (see Table 6.2 about the

tasks, while the other instructor took notes. (15 minutes)

10. Finally, a researcher analyzed the results.

6.1.8 Analysis Procedure
We have chosen the Linear Mixed Model (LMM) [241] for the statistical data

analysis. LMM handles correlated data resulting from repeated measures, and it
allows us to study the effects of factors that intervene in a crossover design (period,
sequence, or participant) and the effects of other blocking variables (e.g., in our

experiment, profile, game development practice, and gamer profile) [240]. In the

6.1. EXPERIMENTAL DESIGN 122

Table 6.2: Focus group questions.

Question

Question 1 Do your results match those of the simulators?

Question 2 Do you consider that there is an objective way to measure which is
the best boss? which one(s)?

Question 3 Do you consider it necessary to have a specific profile to be able
to evaluate the quality of a video game? Which one? Does it
depend on the development phase of the video game you are in
(design/implementation/testing/deployment/maintenance)?

Question 4 Do you consider that the questionnaire they have made takes into
account the profile of the subject who completes it?

Question 5 Have you noticed any difference between the content generated by
the two techniques applied?

-

-

5 2 Content

hypotheses tes

=2

: O

5 2 Launcher

5 2 0-CONTROL 5 2 1-ENTRENA 5 2 2-ORIGINAL
MIENTO.bat .bat

5 A 3-PCT.bat 5 A 4-PCG.bat

Figure 6.4: Files provided for the experiment.

ting, we applied the Type III test of fixed effects with unstructured

repeated covariance. This test enables LMM to produce the exact F-values and

p-values for each response variable and each fixed factor.

In this study, Technique was defined as a fixed-repeated factor to identify the

differences between using PCG or PCT, and the participants were defined as a random

factor (1|Subj)

to reflect the repeated measures design. The response variables (RV)

for this test were as follows: Game duration, Won rate, Boss difficulty, Design, Fun,

6.1. EXPERIMENTAL DESIGN 123

and Immersiveness, which were related to participants’ perceived quality of the boss;
Comment length and Comment type, which were used to determine differences in

participants’ comments.

In order to take into account the potential effects of factors that intervene in a
crossover design in determining the main effect of Technique, we considered Group
to be fixed factor with two alternatives: G1 and G2, corresponding to the two different
sequences in which the bosses are evaluated. The first group of participants (G1)
played and evaluated the boss generated with RGC, and then played and evaluated
the boss generated with PCG. The second group of participants (G2) played and
evaluated the boss generated with PCG, and then played and evaluated the boss
generated with RGC.

In order to explore the potential effects of the blocking variables related to
the evaluators’ profile to determine the variability in the response variables, in the
statistical model we also considered as fixed factors the blocking variables Profile,
Game development, and Gamer profile and the combination of this variables with

the principal factor Technique.

We tested different statistical models in order to find out which factors or
blocking variables, in addition to Technique, could best explain the changes in the
response variables. Some of these statistical models are described mathematically in
Formula 6.1. The starting statistical model (Model 0) reflects the main factor used in
this experiment, Technique (Tech.)and the random factor (1|Subj). We also tested
other statistical models (e.g., Model 1, Model 2, and Model 3) that included the one
or more of the additional fixed factors (AF) considered in the experiment (Group,
Profile, Game development, or Gamer profile) or their interactions with the factor

Technique (Tech. * AF) which could have effects on the response variables.

(Model0) RV ~ Tech.+(1|Subj.)

(Model1) RV ~ Tech.+AF+Tech.xAF+(1|Subj.) 6.)
(Model2) RV ~ Tech+AF+AFR+CF+AF,+(1|Subj.)

(Model3) RV ~ Tech.+AF\+AFy+Tech.xAF\+(1|Subj.)

6.1. EXPERIMENTAL DESIGN 124

The statistical model fit of the tested models for each variable was evaluated
based on goodness of fit measures such as Akaike’s information criterion (AIC) and
Schwarz’s Bayesian Information Criterion (BIC). The model with the smallest AIC
or BIC is considered to be the best fitting model [242, 243]. The assumption for
applying LMM is the normality of the residuals of the response variables. To verify
this normality, we used Kolmogorov-Smirnov and Shapiro-Wilk tests as well as
visual inspections of the histograms and normal Q-Q plots. To describe the changes
in each response variable, we selected the statistical model that satisfied the normality

of residuals and also obtained the smallest AIC or BIC value.

To quantify the differences in the response variables due to the fixed factors
considered, we calculated the Cohen d value [244], which is the standardized differ-
ence between the means of the response variables for each factor alternative. Values
of Cohen d between 0.2 and 0.3 indicate a small effect, values around 0.5 indicate
a medium effect and values greater than 0.8 indicate a large effect. We selected

histograms and boxplots to describe the results graphically.

To verify that the group of measures associated with each response variable or
fixed factor is consistent, we applied Principal Components Analysis (PCA) to the
set of measures collected from the task sheets. PCA allows analyzing the structure of
the correlations in a set of variables, identifying and establishing subsets of variables
that have something in common with each other, but not with the rest. PCA produces
components, which are new random variables that summarize the patterns of each
subset of variables and are not correlated with each other [245, 246]. If the group
of measures selected to define a variable (e.g., the results of items 2, 3, and 4 to
define variable Design) are in a single PCA component, the information from the
measures is correlated and can be reduced to one variable, which would support
the consistency of the proposed grouping of measures. On the other hand, if the
measures used to define different variables are in different PCA components, we
can interpret that they explain different aspects of the information contained in the

measures and that there is no strong correlation between them.

6.2. RESULTS 125

6.2 Results

Principal Component Analysis (PCA) is a non-parametric method that starts from
the diagonalization of the correlation matrix of a set of metrics. PCA was applied to
the set of measures used to define the different response variables and factors of this
work. In this work we applied PCA twice, one to the measures used to define the
blocking variables, and another to the measures used to define the response variables.
The results of this PCA executions are in the replication package. To determine
the convenience of the application of PCA, we followed the recommendations of
Tabachnick and Fidell [245] and Hair et al. [246] based on the factorability of the
correlation matrix: the determinant of the correlation matrix of the factors considered
is 0.019 (greater than 0.00001), the matrix is positive definite, the KMO index is
0.717 (greater than 0.7), and the p-value of 0.000 in the Bartlett sphericity test rejects
that the correlation matrix is the identity matrix. To improve the interpretation of the
components, a Varimax rotation with Kaiser normalization was performed [245, 246].
Each component extracted by PCA is a new random variable that summarizes the
information of a subset of variables [245, 246]. In general terms, the extracted PCA
components were consistent with the subsets of measures selected to define each

variable.

The application of PCA to the measures used to define the response variables
produced four components. The first component groups mainly the responses to the
questions used to define the Design and Fun response variables, implying similar
results in both variables. The second component groups the response variables
related to the comments made by the subjects. The third component groups Won
rate and Boss Difficulty, and the fourth component represents the Game duration.
The responses to the questions used to define immersiveness were part of all of the

previous PCA components, but they did not define clearly a single factor.

The application of PCA to the measures used to define the blocking variables
Profile, Developing games, and Gamer Profile, produced two components, one
defined mainly by the factor Profile and the other grouping the responses to the

questions used to define Gamer Profile. The variability of the factor Developing

6.2. RESULTS 126

Table 6.3: Mean and standard deviation (it + &) values of the dependent variables for the
factor (Technique) in each alternative of the fixed factors. The light, medium and
dark gray highlight indicates a small, medium or large effect.

Profile Developing Games Gamer Profile Group
Non Target Gl G2

Technique

More than Less than Target

Players - Developers |y nyeek 10 b/Week Audience U™ Audience (PCT-PCG) (PCG-PCT)

G PCT 4184323 4384152 4.05+3.27 4.57£1.95 4.57+4.36 3224222 5334277 4164293 4324283

Duf:z’fon PCG 2.1942.02 1.54+0.55 2.39+£2.06 1.34+0.68 1.58+0.54 2.01+1.38 2.13+2.34 2214228 1.79+0.93
All 3.1242.61 3.18+2.85 2.96+1.83 3.2242.83 2.95+2.18 3.07+3.33 2.62+1.92 3.73+3 3.194£2.77 3.05+2.44

PCT 0.33+£0.39 0.29+0.33 034039 0362035 0+£0 025+£032 0.5+£039 0414038 0.224+0.34

Won rate PCG 07404 073404 064042 094026 040 0.68+036 095+0.16 0.76+04 0.66+0.39
All 0.524+0.43 0.52+£0.43 0.51+0.42 0.45+0.43 0.63+0.41 [INOEONINOFGCEORNOZ2EOB7] 0.59+0.42 0.44:+0.42

Boss PCT 528+1.59 5754191 5394173 5.44+1.63 2.8+148 5.86+1.42 5.61+138 548+£131 5.33+£2.03

Diﬁ;’j;lty PCG 28442 3.5842.31 3.614225 2064134 624179 343£1.96 172409 2.9642.16 3.144+2.06

All 4234223 4.06+2.17 4.67+£2.35 4.542.18 3.75£2.26 4.542.37 4.64+£2.09 3.67+2.28 4.2242.18 4.24+23

PCT [4.724£1.66 4.531+1.64 522+1.66 4.63+1.79 4.88+1.42 4.6+2.23 4.73+1.7 4.74+1.54 4.17+1.61 5.32+1.53
Design PCG|3.53£1.47 3.54+148 35+1.5 3.67£1.45 329+1.51 3.27+£1.46 3.57+1.4 3.56+1.62 33+1.47 3.78%+1.45

All 4.13+1.67 4.04+1.63 436+1.78 4.15+1.69 4.08+£1.65 3.93+1.91 4.15+1.64 4.15+1.67 | 3.74%£1.59 4.55%1.67

PCT 4.35£1.99 4.13+£2.05 4.96+1.76 4.18+£1.98 4.66+£2.03 4.242.17 4.29+£1.96 4.474+2.09 4.09+£1.92 4.644+2.07
Fun PCG| 3.4£1.81 3.3841.89 3.46+1.67 3.39+1.73 3.41+£2.01 2.1+1.34 3.57+1.65 3.56+2.04 3.04+1.8 3.79+1.79

All 3.88£1.95 3.754+1.99 4.214+1.85 3.79+1.89 4.03+£2.09 3.1542.03 3.93+1.82 4.01£2.09 3.57+1.91 4.21£1.96

PCT 4.35+1.98 4.0942.16 5.04+1.23 4.11£1.96 4.78+£2.01 3.6+1.98 4.43+1.75 4.47+2.28 4.17+1.84 4.55+2.16
Immersiveness PCG 4.16+1.81 4.06+1.78 4.42+£1.94 4.16+1.66 4.164+2.1 3.442.27 4.38+1.58 4.11+1.97 4.07£1.71 4.26+1.94

All 4264189 4.08+1.96 4.73+£1.62 4.13+£1.8 4.47+2.04 [3.542.01 441£1.65 4294+2.11 4.12+1.76 4.414+2.03
PCT 200.54+275 1204136 4154417 2054321 193+£177 121£164 202+357 221+193 236+346 161+167

CZ”}Z?Z’ PCG 1774223 864807 336+156 160156 144155 123+170 177+170 136:£133 148172 1604135

Al 201+275 |OSEM2NNB7SEBINY 1824251 168165 1224157 189+£273 1794169 1924274 161+150
Commens PCT 268£1.55 241416 3424117 2644159 2754153 1.6£182 23816 333£119 2614162 2764151
”T"V';:" PCG 2.55£1.62 1.94:£1.63 3.67£1.16 232417 256£1.71 1.6£2.19 2.38£175 2.67+1.5 2.09+1.62 2.76+1.73

All 2684155 EH7EGSHEEIE 248164 26616 |NCEIONZSSEIGISEINAN 255162 276161

games, related to video game development time, is represented by the two previ-
ous components to similar degrees. This means that the variability it contains is
explained by both factors, but not only by one of them. We decided to include the
factor separately in the statistical analysis even though this result confirms positive

correlations with the other two factors under consideration.

6.2.1 Changes in the Response Variables

There were differences in the means and standard deviations of all of the response
variables related with the boss quality perceived by the subjects depending on which
Technique was used to create the played boss. However, the differences in Im-
mersiveness were small and there were also no large differences due to the factor
Technique in the variables related to the subjects’ comments. Table 6.3 shows the
values for the mean and standard deviation of all the response variables considered
(Game duration, Won rate, Fun, Boss difficulty, Design, Fun, Immersiveness, Com-

ment length, and Comment type) for each one of the Techniques compared: PCG

6.2. RESULTS 127

and PCT, and for each one of the alternatives of the blocking variables and factors
considered as fixed factors in the statistical analysis: Profile, with two alternatives
(Players and Developers); for Developing games with two alternatives: subjects who
perform video game development tasks for less than 10h per week (<10h/week) and
subjects who dedicate more than 10 hours per week to these activities (>10h/week);
Gamer Profile, with three alternatives: subjects with a player profile close to the
target public of the game in which the evaluated bosses are contextualized (3), sub-
jects with a player profile neutral (2) and subjects with a profile far removed from
the target audience (1); and Group, whose two alternatives reflect the sequence in
which subjects have played and evaluated the bosses generated with each technique
(G1: PCT-PCG, G2: PCG-PCT). Note that Table 6.3 also shows the values of means
and standard deviations by combination of the factor Technique with these variables.
This allows us to illustrate both the effects that these variables have on the evaluation
of a boss and the effects that they can have on the evaluation of the differences of
bosses performed with different techniques. In Table 6.3 the pairs of values are
shaded according to the effect size of their differences. The darker the shade, the
larger the difference in the values of the response variables across the alternatives
of the factors and blocking variables considered. Additionally, the italicised text

highlights the statistically significant comparisons.

To quantify the differences in the response variables due to each factor or
blocking variable, we analyzed the Cohen d values. Table 6.4 shows the Cohen d
values of the response variables for all of the fixed factors considered in the statistical
analysis. Positive values indicate differences in favor of the first alternative of the
factors and negative values indicate differences in favor of the second alternative
of the factor. Values indicating a small, medium or large effect due to a factor are
highlighted in light, medium and dark gray, respectively. In the case of the blocking
variable Gamer Profile, with three alternatives, the table shows the Cohen d values
of all two-to-two comparisons of these alternatives. The values are shown in an order
triad, where the Cohen d values between alternatives 1 and 2, 1 and 3, and 2 and 3 of

the blocking variable are shown in this order.

6.2. RESULTS 128

Table 6.4: Cohen d values for the response variables for each fixed factor. Gamer Profile:
1=Non Target audience, 2=Neutral, and 3=Target audience.

Technique Profile Developing Games
(PCT vs (Players vs (< 10h/week vs
PCG) Developers) > 10h/week)

Game - 0.086 0.103 (0.203,-0.213,-0.448) 0.051
duration

Won rate [JNSI024N 0.010 -0.434 (F1:265,-2:166,-0.667) 0.353

Boss
difficulty - -0.272 0.339 (-0.067,0.363,0.448) -0.009

Gamer Profile Group
(1vs2, 1vs3, 2vs3) (GlvsG2)

Design 0.760 -0.194 0.039 (-0.128,-0.125,0.002) | -0.497
Fun 0.501 -0.235 20.125 (-0.418,-0.417,-0.044) -0.335
Immersiveness 0.102 -0.347 -0.177 (-0.527,-0.379,0.060) -0.151
Comment 0.209 0.061 (-0.261,0.338,0.046) 0.141
Length

Comment

Type 0.168 - -0.541 (-0.460,501936}-0.405) -0.257

The effect size of a factor measure through the Cohen d value is related to the
percentage of non-overlap between the distributions of the response variables for
each alternative of the factor. Higher effect size correspond with greater percentages
of non-overlap and larger differences. The histograms in Figure 6.5 illustrate the
differences in Won Rate (left), Design (center),and Immersiveness (right) depending
on the Technique use to generate the boss evaluated. In the Won Rate histogram, the
non-overlapping parts are around 39%, which corresponds to a very large effect size
and to a Cohen d value of more than 1. In the Design histogram, the non-overlapping
parts are around 30%, which corresponds to a large effect size and to a Cohen d
value of around 0.8. However, in the Immersiveness histogram, the non-overlapping
parts are around 5%, which corresponds to a negligible effect size and to a Cohen d
value around 0.

According to the Cohen d values of the response variables for Technique (first
column of Table 6.4), we can affirm that the effect size of this factor for Game
Duration, Won rate, and Boss Difficulty was large, with Cohen d values of 0.941,
-1.024 and 1.248, respectively. The signs of these values indicate that the subjects’

Game duration were longer with the PCT boss than with the PCG boss, but that the

6.2. RESULTS 129

Legend:]
TECHNIQUE | WONRATE o .| oesien

43 RrecG 1
3 pCG

IMMERSIVENESS >~

BY PROFILE

BY GAMER PROFILE
BY GROUP
I3

Figure 6.5: Histograms with normal distributions and box plots for Won Rate, Design and
Immersiveness, with boxplots by the alternatives of Gamer Profile, Group and
Profile respectively

Won rate is significantly lower, they win less often because the Boss difficulty of the
PCT boss is higher than the PCG boss. The effect size of the factor Technique in
favor of the PCT boss was medium for Design and Fun and negligible for the rest of
variables with Cohen d values of less or around 0.2. Table 6.4 also shows the Cohen
d values of the response variables for the fixed factors considered in the statistical
analysis. The first six rows of the table show how the blocking variables has no
effects on all the response variables related to the quality perceived by subjects and

that these effects are only large in the case of Gamer Profile for Won rate.

The bottom part of Figure 6.5 shows ten pairs of box plots, arranged in rows and
columns, illustrating the differences in Won Rate, Design, and Immersiveness due to
some of the fixed factors considered. The first row of pairs of box plots corresponds
to all of the subjects, and illustrates the differences in the response variables due
to Technique. The following rows corresponds to the alternatives of the blocking
variables considered in each response variable, and illustrates the differences due to
this variable and its combination with Technique. The boxplots in the bottom left of
Fig. 6.5 illustrate the large effects of the factors Technique and the blocking variable
Gamer Profile in Won rate. The box plots in the bottom right of Fig. 6.5 illustrate
the negligible effects of Technique (All subjects), and the medium effects of Gamer
Profile in Immersiveness. The blocks of boxplots by fixed factor, after the first row

of boxplots, also show the absence of differences of the blocking variables combined

6.2. RESULTS 130

with Technique, since the differences between one boss and the other do not depend
on the alternative of the variable considered. For Won rate, in all alternatives, the
won rate is higher or equal with the PCG boss than with the PCT boss, but for Design
or Immersiveness, PCT boss outperforms PCG boss.

The forth column of Table 6.4 shows that the blocking variable Gamer Profile
has effects in all the response variables except in Design. Cohen d values of Won
rate, Fun or Immersiveness indicate that subjects with a profile farther away to
the target audience (Alternative 1 of the variable) have a much lower Won rate
than subjects closer from the target audience, in fact they didn’t actually win any
games (see the sixth column of the second row of Table 6.3). Subjects with non
target audience profile also score worse on Fun or Immersiveness variables. In Fun
and Immersiveness the differences between alternatives 2 and 3, neutral subjects or
subjects closer to the target audience respectively, are negligible.

The values of the second column of Table 6.4 shown that the factor Profile
has large effects on Comment length and Comment type in favor of developers.
Developers made longer and better quality comments than players. The Cohen d
values of the last two rows of the table, corresponding to the variables related to the
quality of the subjects’ comments, indicate that the best comments also come from
subjects who spend more time developing games and from subjects with a gamer

profile that is closer to the target audience.

6.2.2 Hypothesis Testing and Response to the Research Questions

The statistical linear mixed models used to explain the statistical significance of the
changes in the response variables are different for each one of them. We selected
the statistical models that obtained higher values for the AIC and BIC fit statistics
from among all those that do verify the normality of the residuals. In addition, the
use of the Linear Mixed Model (LMM) test assumed that residuals must be normally
distributed. All of the residuals, except the ones carried out for Game duration and
Comment length, obtained a p-value greater than 0.05 with the normality test. We
obtained normally distributed residuals for Game duration and Comment length by

using neperian logarithm transformation and cubic root transformation respectively.

6.2. RESULTS 131

For the statistical analysis of this variables with LMM, we used RV = In(Comment

length) and RV = /Commentlength in formula (1). For the rest of the variables, RV

is equal to their value.

Table 6.5 shows the results of the Type III fixed effects test for each of the
response variables or transformations, and for each fixed factor of the statistical
model used in each case. Factors or combinations of factors that are not present in
the statistical model selected to explain the variable are marked with the value NA or
are not included in the table. Values indicating significant differences are shaded in
grey. According to the results show in Table 6.5, not all the fixed factors included in
the statistical models that explain the response variables produce significant changes

in them. For example, to explain the variable Game duration, the statistical model

used on the transformation of the variable (RV = /Commentlength) was RV ~
Tech.+DevGames+GamerP+Tech. * DevGames+(1|Subj.) with the fixed factors
Technique, Developing Games, and Gamer Profile, and the combination of factor
Technique and Developing Games, but there are significant differences in the
response variable only for the factor Technique and the combination Technique and
Developing Games. The changes in the Game duration due to the Technique used
to create the boss being played are statistically significant, just as there are significant
differences between the differences between the time spent playing each boss (RCT
or PCT) as a function of the time spent developing video games (the alternatives
of Developing games. As shown by the means and standard deviations of the time
spent playing each boss as a function of the time spent developing video games (see
Table 6.3 first three rows of third column), subjects who spend less time developing
software played more time with the PCT boss and less time with the PCG boss than
the time that subjects who spend more time developing video games spent playing

with the same bosses.

Answer to RQI1. For all the response variables related to the quality perceived
by subjects, except for Immersiveness, the differences due to Technique were
statistically significant with p values of less than 0.05. Therefore, we can answer

our first research question RQ1 rejecting our first null hypothesis, Hy ;. The two

6.2. RESULTS 132

techniques compared in the experiment, PCT and PCG, result in bosses with different
quality perceived by the subjects, and it can be concluded that the Technique has
effects on the perceived Quality of the game. The effect size and direction of
these differences previously described, suggest that the subjects perceive the boss
generated by PCT to be of superior quality in comparison to the one generated with

PCG.

Answer to RQ2. With regard to the second research question, RQ2, the answer
is that the null hypothesis Hp > cannot be completely rejected. Our results cannot
confirm that the Evaluator’s profile, represented by Profile, Developing Games,
and Gamer Profile, has a significant effect on the evaluation of the Quality of a
game. The results indicated that no significant changes were observed in the majority
of the response variables used to evaluate the quality of bosses. The only statistically
significant changes were observed in the comments made by the subjects and in the

won rate.

Not all of the factors and blocking variables considered in the statistical analysis
cause statistically significant differences in the response variables. In fact, for the
blocking variables related to the evaluators profile, Profile, Developing Games, and
Gamer Profile, no statistically significant differences were confirmed in any of the
response variables related to the quality perceived by subjects, with the exception of
Won rate and Game duration. The p-value of less than 0.001 for Gamer Profile in
Won rate confirms the statistical significance that could be inferred in the previous
subsection from the large effect size of the differences in the response variable due
to Gamer Profile. Subjects who were the furthest from the target audience of the
game did not win their games, while the closer the Gamer profile was to the target
audience, the more the Won rate increased. However, there were not significant
differences due to Gamer Profile, nor due to Profile or Developing games, in the

evaluation of Boss difficulty, Design, Fun, or Immersiveness.

However, there are statistically significant changes in the variables related to the
subjects’ comments due to the blocking variables Profile and Gamer Profile. The p

values of less than 0.05 for Comment length and Comment type in the last two rows

6.3. DISCUSSION 133

of the second and fourth columns of Table 6.5, confirm the statistical significance
of these differences. Developers and subjects with a gamer profile that is closer to
the target audience made statistically significant longer and better quality comments

than players or, in particular, subjects further away from the game’s target audience.

Table 6.5: Results of the Type III test of fixed effects for each response variable and factor,
or factor’s interactions. NA=Not Applicable

Technique Profile Developing Games Gamer Profile

Tech.*P: Tech.* Tech.*G P Tech.*
(Tech.) (DevGames) (GamerP) Group Tech.*Profile Tech.*DevGames Tech.*GamerP Tech.*Group

In(Game Duration) [F=43.369 ; p=<.001 NA 0.818:p=0.371 F=1.44; p=0.25 NA NA F=6.585; p=0.014 NA NA
Won rate F=38.542 ; p=<.001 F=1.884;p=0.178 NA F=26.034; p=<.001 F=3.322; p=0.076 NA NA NA NA
Boss Difficulty | F=30.358; p=<.001 F=1.299; p=0.261 NA F=2.281;p=0.116 F=0.203; p=0.655 NA NA NA NA
Design F=16.445; p=<.001 F=0.257;p=0.615 F=0.575;p=0453 F=0.081:p=0.922 |F=4.301; p=0.045 NA NA NA NA
Fun F=8.199; p=0.007 NA NA F=0.666;p=0.519 NA NA NA F=0.696; p=0.504 NA
Immersiveness F=0.702; p=0.407 F=1.064;p=0.309 F=0.004;p=0.952 F=0.534;p=0.59 F=0.145; p=0.706 NA NA NA NA
/CommeniLength F=2.108 ; p= 0.154 [F=27.315; p=<.001 F=2.104 ;p=0.155 | F=3.784; p=0.031 NA NA NA NA NA

Comment Type F=1.455; p=0.234 |F=18.069;p=<.001 F=3.564 :p=0.067 F=7.959;p=0.001 F=2.692; p=0.109 NA NA NA NA

6.3 Discussion

In the context of video games, reuse is not perceived as a completely positive practice.
In fact, developers fear that reusing might be perceived as repetitive by players. On
the other hand, the stochastic nature of PCG is perceived positively as an extension
in the range of the creativity space for new content. Our experiment shows that this
negative view of reuse is not aligned with the results. On the contrary, our results
reinforce the PCT path, which boosts the latent content and leads to better results
than PCG. During the focus group, subjects agreed that PCT was a natural evolution
of the original content. In contrast, PCG was negatively classified as content that did
not appear to have been developed by professional developers.

Previous studies considered only players as the subjects of the experiments.
In our experiment, we go one step beyond and analyse the differences between
players and developers. For researchers, it can be difficult to find developers to run
experiments. However, that could not be the case for development studios. For
instance, a large studio can enroll developers from different projects. This is relevant
for studios because they put a lot of effort into enrolling players (not developers)
for their games. It may seem paradoxical that it is hard to find players, but the
experience of testing parts of a game in development is not the same as testing a
full game as the developers in the focus group pointed out. Our experiment reveals

that there are no relevant differences in terms of statistical values between players

6.4. THREATS TO VALIDITY 134

and developers, suggesting that studios can leverage their developers. Furthermore,
when it comes to feedback developers provided more beneficial feedback as the
focus group acknowledged.

This experiment combines the specific quality aspects of video games (‘design’,
‘difficulty’, ‘fun’, and ‘immersiveness’) and the rigorousness of more traditional
software work. This includes the provisioning of a replication package, something
that no previous works did. One may think that the complexity of video games
makes it difficult to design packages for replication. Nevertheless, we expect that
our work along with the replication package will serve as a basis and inspiration for

future researchers of the GSE community.

6.4 Threats to Validity

We use the classification provided by Wohlin et al. [237].

6.4.1 Conclusion Validity

We mitigated possible threats due to low statistical power by using a confidence in-
terval of 95% for the statistical analysis. We also mitigated the reliability of measures
by computing the evaluation measures directly from the data sheets automatically
generated from the on-line questionnaire answers provided by the participants. Fi-
nally, we use an identical procedure in all the sessions of the experiment, to mitigate

for possible threats arising from the reliability of treatment implementation.

6.4.2 Internal Validity

To mitigate the instrumentation threat, we conducted a pilot study to verify the design
and the instrumentation of our study. The interactions with selection threat may
affect the internal validity because there were subjects who had different levels of
experience and, in general, different levels of knowledge of the video game domain.
To mitigate this threat, the treatments were applied randomly and the statistical
analysis includes the analysis of blocking variables related to participants’ profile.
The effects of the design factors, sequence and period, also have been included in
the statistical analysis though the analysis of the factors Group (Sequence) and

Technique*Group (Period). Only the variable Design had significant changes due

6.4. THREATS TO VALIDITY 135

to the factor Group. The effect of this factor is medium with a Cohen d value of
-0.497 in favor of subjects who play first with the PCG boss and after that with
the PCT boss. The subjects in this group (G2, PCG-PCT) demonstrated a greater
appreciation for the design of both bosses, both the PCT boss and the PCG boss, than
the subjects in the group that carried out the experiment with the other sequence (G1,
PCT-PCG). However, both groups value the design of the PCT bosses better than
the PCG bosses. The box plots in the bottom center of Fig. 6.5 illustrate the effects
of the factor Group and its combination with Technique in Design. The voluntary
nature of participation also poses a selection threat, which we mitigated by inviting
professional developers and students from a course whose content was in line with

the experiment activities to avoid issues with student motivation.

6.4.3 Construct Validity

All of the measurements were affected by Mono-method bias. To mitigate this
threat we mechanized the measures as much as possible by means of correction
templates. The experiment may suffer from the mono-operation bias threat since
we only compare two representative bosses of each technique.In order to mitigate
the author bias threat, the tasks were extracted from a commercial video game
and the bosses were selected by Kromaia’s experts as the most representative of
those obtained after the application of the two techniques compared. To weaken the
evaluation apprehension threat, at the beginning of the experiment, the instructor
explained to the participants that the experiment was not a test of their abilities, and
that neither participation nor results would affect their grades in the course where

the experiment took place.

6.4.4 External Validity

The interaction of selection and treatment may pose a threat to our experiment
because a different number of participants took part in each alternative of the blocking
variables, and players are more represented than developers. The domain threat
occurs because the experiment has been conducted in a specific domain (video game)

and for a very specific type of game, a spacial shooter. Other experiments using

6.5. RELATED WORK 136

Table 6.6: Overview of related work. Evaluation: generated content (A), variants of the proposed
algorithm (VA), generated content compared to a baseline (C). Measures: Design (De),
Difficulty (Diff), Fun (F), Immersiveness (I).

Hypotheses StatisticalReplication

Work Year EvaluationMeasures ~ Formulation Analysis Package Sample
Cardamone et al. [158] 2011 VA De X X X 5 players
Plans et al. [31] 2012 A F X v X 31 players
Adrian et al. [192] 2013 VA De, Diff, F X X X 22 players
Dahlskog et al. [197] 2013 VA De, Diff, F X X X 24 players
Togelius et al. [113] 2013 A De, Diff, F v v X 147 players
Gravina et al. [95] 2015 A F X X X 35 players
Kaidan et al. [148] 2015 VA De X X X 12 players
Olsted et al. [108] 2015 VA De X X X 13 players
Prasetya et al. [157] 2016 C F X X X 33 players
Ferreira et al. [6] 2017 VA De, Diff,F 1 X v X 139 players
Charity et al. [176] 2020 A De, Diff X X X 2 players
Lopez-Rodriguez et al. [153]2020 VA Diff X X X 30 players
Kraner et al. [159] 2021 A De X X X 5 players
Pereira et al. [44] 2021 C Diff, F X v X 16 players
Brown et al. [88] 2022 A De X X X 35 players

PCGyvs 32 players +
Our work 2024 PCT De, Diff, F, 1 v v v 12 developers

different games should be performed in the future to further generalise our findings.
We have carefully described our methodology and made a replication package
publicly available in order to enable other researchers to replicate, reproduce and

extend our study.

6.5 Related work

In this section we describe previous work involving human participants to assess
automatically generated video game content, specifically focusing on the empirical
elements of their experiments. We refer the reader to previous surveys in the field
of automated content generation [2, 1, 25] to learn more about the latest trends and
approaches to generate video game content.

Experimentation in Software Engineering is a practice that has been studied for
decades [239]. Researchers have adopted established guidelines to be rigorous [237],
such as hypotheses formulation, statistical analysis, or including a replication pack-
age. However, this has not always been the case for experimentation involving
video games engineering, especially in the area of automated content generation., as

explained below.

6.5. RELATED WORK 137

Video game content generation is a large field [37]. The types of generated
content are diverse, such as vegetation [30], sound [31], terrain [32], Non-Playable
Characters [33], dungeons [34], puzzles [35], or even the rules of a game [36].
However, it is difficult to find experiments with human participants that compare ap-
proaches [13]. Table 6.6 summarises this work. We observe that previous evaluations
involving human participants mainly explore the quality of the content generated by
one proposal [88, 113] or different variants of a same proposal [192, 44]. On the
other hand, work such as the ones by Pereira et al. [180] and by Prasetya et al. [157]
compared the content generated by their proposal against a baseline (see Evaluation
in Table 6.6). Our work is the first that involves human participants to carry out a
thorough comparison of two different previously proposed techniques generating

content for video games.

In terms of measures, studies have been conducted to examine the distinc-
tive characteristics of video games [238]. We observe that previous studies
have investigated player preferences and perceptions regarding various aspects
of video games [238]; this accounts for the use of different measures including
design [148, 108], difficulty [153, 180], or fun [31, 157]. Another aspect of video
games is the user engagement and immersion, which plays crucial roles in shap-
ing the overall gaming experience [247] (see Measures in Table 6.6). Our work
consider all these measures. Previous work have only asked players to evaluate
content, i.e., they have not considered the perception of developers (see Sample in
Table 6.6). In contrast, we study both the players assessment and the point of view of
professional video game developers, and their differences when assessing the quality
of the generated content. User empirical studies in PCG often employ a variety
of methodologies to explore user experiences. These methodologies include user
surveys [6], interviews [159], and usability testing [172]. Each method offers unique
insights into different aspects of user interaction, such as user preferences, emotional

responses, and usability issues.

Finally, none of the previous works adopt best practices for empirical studies,

which are instead widely adopted in general software engineering research. In fact,

6.6. CONCLUSION 138

73% of the studies have neither hypotheses and validity, statistical analysis, or repli-
cation package (see Hypotheses Formulation, Statistical Analysis, and Replication
Package columns of Table 6.6). Our work aims to compare the generated content
with empirical rigor. To do so, we adopted the commonly followed guidelines for

Software Engineering Research [248].

6.6 Conclusion

Until now, the majority of content generation experiments in game software engineer-
ing have failed to conform to best practices for Software Engineering research (e.g.,
hypothesis and validity, statistical analysis, or replication package). Our research
integrates the quality measures embraced by the video game community with the
well-established practices of empirical software engineering research. Our results
challenge the current dogma by highlighting that content reuse provides advantages
towards content generation. Additionally, our findings unlock new possibilities for
engaging developers in experimental endeavors. Ultimately, our work can encourage
for the empirical game software engineering community to align with the established

empirical practices in general software engineering research.

Chapter 7

Conclusions

This chapter serves as the concluding section of this PhD thesis, which has introduced
our automated software transplantation methodology implemented in IMHOTEP for

the generation of video game content.

In Chapter 3, we conducted a comprehensive survey of the state of search-based
procedural content generation (SBPCG). Building on two earlier surveys [2, 1], we
proposed a refined taxonomy to systematically classify recent research. This effort
allowed us to document progress across Game Bits, Game Space, Game Systems,
Game Scenarios, and Game Design, while also revealing that many challenges
remain unresolved. Issues such as the efficiency of online PCG, the solvability,
fairness, and diversity of generated content, the potential of bricolage, and the use
of statistical rigor continue to require deeper investigation. By identifying both
achievements and gaps, this chapter provides the foundation for introducing and
evaluating our own approach, IMHOTEP.

In Chapter 4, we present a novel technique for Procedural Content Transplanta-
tion (PCT) that reimagines PCG through the metaphor of software transplantation.
Instead of generating content entirely from scratch, developers can now treat game
content as organs to be transplanted from a donor into a host. This approach opens
the door to questioning how transplantation compares to established PCG practices
and whether it can produce higher-quality or more diverse results.

Chapter 5 advances this idea where we demonstrate the large-scale application

of IMHOTEP in a commercial video game, successfully performing 645 transplants

7.1. FUTURE WORK 140

across diverse content types. Beyond confirming the feasibility of transplantation,
we enhanced the method with a simulation-based objective function that guides the
search more effectively than traditional test-based strategies. This improvement in-
vites reflection on whether simulation-based evaluations are better suited to capturing
gameplay dynamics and producing superior results. We also highlight the potential
of co-evolving both transplants and their simulations, by varying NPCs, items, or
scenarios, to better understand the contexts in which transplanted content excels and

to support cross-game transplantation.

Finally, in Chapter 6, we introduce a controlled experiment with human partici-
pants designed to assess IMHOTEP alongside an existing PCG technique. This study
extends the evaluation beyond technical performance to consider perceived quality:
does the underlying content generation method influence how players experience the
game? Our findings show that content reuse and transplantation can indeed shape
perceptions of quality. Moreover, we observed that evaluators with different back-
grounds assessed the generated content in distinct ways, underscoring the importance

of accounting for diverse perspectives when validating PCG techniques.

Together, these chapters provide a coherent narrative: a broad survey of the
field (Contribution 1), the proposal of a novel technique (Contribution 2), its em-
pirical validation in an industrial context (Contribution 3), and its assessment with
human participants (Contribution 4). By addressing how transplantation compares to
current practices, whether simulation-based objectives improve effectiveness, how
generation techniques affect perceived quality, and how evaluator profiles influ-
ence judgments, this research advances both the theory and practice of PCG while

grounding the field more firmly in rigorous empirical methods.

7.1 Future Work

The findings of this study highlight both the promise and the current limitations of
IMHOTERP, pointing to several important opportunities for future research. While
the controlled evaluation provided valuable evidence of feasibility and potential

impact, broader investigations are required to understand how the approach can scale,

7.1. FUTURE WORK 141

adapt, and integrate into real-world game development environments. The following
directions outline key areas where further work could extend and strengthen the

contributions of this research.

While this work provides valuable insights through controlled evaluation involv-
ing both players and developers, several avenues remain for future exploration. One
key limitation is the lack of direct developer feedback on the usability, integration,
and long-term adoption of IMHOTEP within real-world workflows. Although the
initial findings suggest promise, further studies are needed to assess its acceptance
among professional developers, particularly regarding cost, workflow compatibility,
and maintainability. Dedicated usability studies, interviews, or field deployments
would offer deeper insights into developers’ needs and expectations, guiding re-
finements that better support seamless integration into existing game development

pipelines.

Another limitation concerns the evaluation context. The current study focused
on a single game, produced by a single company, and centered on a specific boss
encounter. While this scope was justified given the complexity of the domain and
practical constraints of in-depth experimentation, it limits the generalizability of
the findings. Future work should expand evaluations to encompass multiple games,
diverse development teams, and a wider range of gameplay scenarios. Such efforts
would help validate the adaptability and robustness of the approach across varied
development contexts, thereby strengthening its practical relevance and potential

impact.

In addition, the rise of Generative Al presents new opportunities and challenges
for PCG. Many state-of-the-art generative approaches rely on large training datasets
to produce high-quality and diverse outputs, which can be difficult to obtain in the
context of bespoke game development. PCT offers a compelling complement by
enabling a wide range of content to be generated from relatively limited resources.
By systematically reusing and adapting existing assets, it could provide training
data for generative models or function as a lightweight alternative when large-scale

data collection is infeasible. Exploring this intersection between transplantation

7.1. FUTURE WORK 142

and generative methods represents a promising avenue for broadening the creative
capacity of procedural content generation while reducing dependency on massive
datasets.

Finally, the challenge of scaling evaluations, especially those that involve sub-
jective judgments of content quality, suggests opportunities for alternative method-
ologies. Crowdsourcing offers a compelling avenue, for instance through the release
of free demo versions featuring automatically generated content. This would allow
the collection of large-scale player feedback in naturalistic settings, capturing diverse
perspectives and engagement patterns. Beyond validating perceived quality, such
large-scale evaluations could also reveal edge cases, inform design improvements,

and ultimately enhance the robustness of the content generation system.

Appendix A

Summary of surveyed papers

144

Ref Year Venue Encoding Objective Function ~ Content
GAME BITS

[85] 2018 EvoApplications Indirect Direct - Theory Textures
Driven

[86] 2018 EvoApplications Indirect Direct - Theory Textures
Driven

[87] 2020 Multimedia Indirect Direct - Theory Textures

Tools and Appli- Driven
cations

[88] 2023 ToG Indirect Direct - Theory Textures
Driven

[31] 2012 T-CIAIG Indirect Interactive - Implicit Sound

[94] 2013 PCGames Indirect Interactive - Implicit Weapons

[95] 2015 CIG Indirect Simulation - Static Weapons

[3] 2016 GEM Indirect Direct - Theory Weapons
Driven

[30] 2021 CISTI Indirect Direct - Theory Vegetation
Driven

GAME SPACE

[4] 2012 Soft Computing Indirect Direct - Theory Terrains
Driven

[100] 2012 CIG Indirect Direct - Theory Terrains
Driven

[101] 2016 EvoCOP Indirect Direct - Theory Terrains
Driven

[102] 2011 EvoCOP Direct and Simulation - Static Shooter

Indirect and Direct - Theory Maps

Driven

145

[107] 2014 CIG Direct Simulation - Static Shooter
Maps
[108] 2015 CEC Direct Interactive - Explicit Shooter
Maps
[109] 2017 CIG Direct Simulation - Static Shooter
Maps
[110] 2018 TOG Direct Simulation - Static Shooter
and Interactive - Ex- Maps
plicit
[114] 2012 GAME-ON Indirect Simulation - Static Strategic
Maps
[122] 2012 EvoCOP Indirect Direct - Theory Strategic
Driven Maps
[113] 2013 Genet. Program. Indirect Direct - Theory Strategic
Evolvable Mach. Driven Maps
[249] 2013 GECCO Direct Direct - Theory Strategic
Driven Maps
[115] 2013 EvoCOP Indirect Simulation - Static Strategic
Maps
[116] 2013 LSSC Indirect Simulation - Static Strategic
Maps
[118] 2013 SEED Indirect Direct - Theory Strategic
Driven Maps
[117] 2014 Natural Comput- Indirect Simulation - Static Strategic
ing Maps
[119] 2014 CEC Indirect Direct - Theory Strategic
Driven Maps
[120] 2014 Entertainment Indirect Direct - Theory Strategic
Computing Driven Maps
[124] 2015 CEC Indirect Direct - Theory Strategic
Driven Maps

146

[250] 2015 CEC Indirect Direct - Theory Strategic
Driven Maps
[123] 2017 CoSECivi Indirect Direct - Theory Strategic
Driven Maps
[125] 2018 CIG Indirect Direct - Theory Strategic
Driven Maps
[199] 2020 CoG Indirect Simulation - Static Strategic
Maps
[127] 2021 TETCI Indirect Direct - Theory Strategic
Driven Maps
GAME SYSTEM
[131] 2012 SBGames Direct Simulation - Static Entity Be-
haviour
[128] 2013 ECAL Indirect Direct - Theory Entity Be-
Driven haviour
[132] 2014 SBGames Direct Simulation - Static Entity Be-
haviour
[129] 2017 GHITALY Indirect Direct - Theory Entity Be-
Driven haviour
[133] 2017 Soft Computing Direct Simulation - Static Entity Be-
haviour
[134] 2020 CEC Indirect Direct - Theory Entity Be-
Driven haviour
[43] 2021 Multimed. Tools Indirect Interactive - Implicit Entity Be-
Appl. haviour
[45] 2021 JSS Indirect Simulation - Static Entity Be-
haviour
[44] 2021 SBGames Indirect Direct - Theory Entity Be-
Driven haviour
[5] 2022 GECCO Indirect Direct - Theory Entity Be-
Driven haviour

147

[33] 2022 CoG Indirect Direct - Theory Entity Be-
Driven haviour
[130] 2023 Multimed. Tools. Indirect Simulation - Static Entity Be-
Appl. haviour
GAME SCENARIOS
[136] 2011 T-CIAIG Direct and Direct - Theory Mazes
Indirect Driven and Simula-
tion - Static
[137] 2011 Computational Indirect and Direct - Theory Mazes
Intelligence Direct Driven
Magazine
[138] 2011 CEC Direct and Direct - Theory Mazes
Indirect Driven
[139] 2011 CIG Direct and Direct - Theory Mazes
Indirect Driven
[140] 2012 CIG Direct and Direct - Theory Mazes
Indirect Driven
[144] 2015 ACALCI Direct and Direct - Theory Mazes
Indirect Driven
[142] 2015 CGAMES Direct Direct - Theory Mazes
Driven
[145] 2016 Connection Sci- Direct and Direct - Theory Mazes
ence Indirect Driven
[141] 2016 CEC Direct Direct - Theory Mazes
Driven
[143] 2018 IIAI-AAI Direct Direct - Theory Mazes
Driven
[17] 2013 CIG Indirect Direct - Theory Physics
Driven
[146] 2014 ACE Direct Simulation -Static Physics

148

[147] 2014 CIG Direct Simulation - Static Physics
[148] 2015 GCCE Indirect Interactive - Implicit Physics
[152] 2016 EvoCOP Indirect Direct - Theory Physics
Driven and Simula-
tion - Static
[6] 2017 T-CIAIG Direct Simulation - Static Physics
[149] 2019 EvoApplications Indirect Direct - Theory Physics
Driven and Simula-
tion - Static
[150] 2019 1JCCI Indirect Simulation - Static Physics
[151] 2019 GECCO Direct Simulation - Static Physics
[153] 2020 OLA Direct Direct - Theory Physics
driven and Simula-
tion - Static
[156] 2011 T-CIAIG Indirect Simulation - Static Tracks
[158] 2011 GECCO Indirect Interactive - Explicit Tracks
[7] 2015 Applied Soft Indirect Interactive - Explicit Tracks
Computing
[157] 2016 I1JEEI Indirect Direct - Theory Tracks
Driven
[162] 2012 PCGames PCG Indirect Simulation - Static Rooms
Workshop
[166] 2015 CEEC Indirect Simulation - Static Rooms
[167] 2019 CoG Direct Simulation - Static Rooms
[171] 2019 ICGA Indirect Direct - Theory Rooms
Driven
[168] 2020 Applied Soft Direct Simulation - Static ~ Rooms
Computing
[174] 2020 FDG Direct Simulation - Static Rooms
[174] 2020 CoG Direct Simulation - Static Rooms

149

[175] 2020 ToG Direct Interactive - Explicit Rooms
[177] 2020 AIIDE Indirect Direct - Theory Rooms
Driven
[160] 2021 ISSSR Direct Simulation - Static Rooms
[159] 2021 NT Indirect Direct - Theory Rooms
Driven
[172] 2021 ToG Direct Direct - Data Driven Rooms
[126] 2022 SBGames Indirect Direct - Theory Rooms
Driven
[161] 2022 FDG Direct Simulation - Static Rooms
[169] 2022 Appliad Science Direct Direct - Theory Rooms
Driven
[170] 2022 SIC Direct Direct - Theory Rooms
Driven
[178] 2023 ToG Indirect Simulation - Static Rooms
[8] 2012 ICPS Indirect Direct - Theory Dungeon
Driven
[181] 2016 EvoCOP Indirect Direct - Theory Dungeon
Driven
[188] 2017 CEEC Indirect Direct - Theory Dungeon
Driven
[186] 2017 GECCO Indirect Direct - Theory Dungeon
Driven
[189] 2018 Computers Indirect Direct - Theory Dungeon
Driven
[179] 2018 Computation Indirect Direct - Theory Dungeon
CEC Driven
[182] 2018 CIG Direct Direct - Theory Dungeon
Driven
[183] 2018 SBGames Indirect Direct - Theory Dungeon

Driven

150

[185] 2018 ToG Direct Direct - Theory Dungeon
Driven
[184] 2020 Applied Intelli- Direct Direct - Theory Dungeon
gence Driven
[180] 2021 Expert Syst. Indirect Simulation - Static Dungeon
Appl.
[187] 2022 Applied Soft Direct Direct - Theory Dungeon
Computing Driven
[196] 2011 ACE Direct Direct -Theory Timeline
Driven
[192] 2013 CIG Indirect Direct - Theory Timeline
Driven
[197] 2013 DPG Indirect Direct - Theory Timeline
Driven
[198] 2014 EvoCOP Indirect Direct - Theory Timeline
Driven
[191] 2015 EvoCOP Indirect Simulation - Static Timeline
[193] 2017 CSIEC Indirect Direct - Theory Timeline
[201] 2018 FDG Indirect Direct - Theory and Timeline
Simulation - Static
[194] 2018 EECSI Indirect Direct - Theory Timeline
[202] 2019 GECCO Indirect Simulation - Static ~ Timeline
[203] 2019 CoG Indirect Simulation - Static Timeline
[195] 2020 JPCS Indirect Simulation - Static Timeline
[80] 2020 GECCO Direct Simulation - Static Timeline
[200] 2022 Genet. Program. Indirect Direct - Theory Timeline
Evolvable Mach. Driven
[206] 2021 GI Indirect Direct - Theory Stories
Driven
[207] 2021 FDG Indirect Direct - Theory Stories

Driven

151

[210] 2022 FDG Indirect Direct - Theory Stories
Driven
[209] 2022 FDG Indirect Direct - Theory Stories
Driven
[208] 2022 Entertain. Com- Indirect Direct - Theory Stories
put. Driven
GAME DESIGN
[212] 2014 DJAIT Indirect Simulation - Static System De-
sign
[9] 2015 Indirect Simulation - Static System De-
sign
[213] 2016 EvoCOP Arxiv Indirect Simulation - Static System De-
sign
[214] 2023 CoG Direct Simulation - Static System De-
sign
[217] 2012 EvoCOP Indirect Direct - Theory Camera

Control

Bibliography

[1]

Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru
Iosup. Procedural content generation for games: A survey. ACM Transactions
on Multimedia Computing, Communications and Applications, 9(1):1-22,
2013.

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. Search-based procedural content generation: A taxonomy and survey.
IEEE Transactions on Computational Intelligence and Al in Games, 3(3):172—
186, 2011.

Daniele Gravina, Antonios Liapis, and Georgios N Yannakakis. Constrained
surprise search for content generation. In Conference on Computational

Intelligence and Games, pages 1-8. IEEE, 2016.

Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. Automatic

evolution of programs for procedural generation of terrains for video games.

Soft Computing, 16(11):1893-1914, 2012.

Roberto Gallotta, Kai Arulkumaran, and LB Soros. Evolving spaceships with
a hybrid I-system constrained optimisation evolutionary algorithm. In GECCO
'22: Proceedings of the Genetic and Evolutionary Computation Conference

Companion, pages 711-714, 2022.

Lucas Nascimento Ferreira and Claudio Fabiano Motta Toledo. Tanager: A
generator of feasible and engaging levels for angry birds. IEEE Transactions

on Games, 10(3):304-316, 2017.

[7]

[8]

[9]

[10]

[11]

[12]

[16]

Bibliography 153

Luigi Cardamone, Pier Luca Lanzi, and Daniele Loiacono. Trackgen: An in-
teractive track generator for torcs and speed-dreams. Applied Soft Computing,

28:550-558, 2015.

Valtchan Valtchanov and Joseph Alexander Brown. Evolving dungeon crawler
levels with relative placement. In Fifth International C* Conference on

Computer Science and Software Engineering, pages 27-35, 2012.

Jakub Kowalski and Marek Szykuta. Procedural content generation for gdl

descriptions of simplified boardgames. arXiv:1508.00212, 2015.
Mike McShaffry. Game coding complete. Cengage Learning, 2009.

Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bac-
chelli. How is video game development different from software development
in open source? In Proceedings of the 15th International Conference on

Mining Software Repositories, pages 392—-402, 2018.

Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan.
Cowboys, ankle sprains, and keepers of quality: How is video game develop-
ment different from software development? In 36¢h International Conference
on Software Engineering, ICSE 2014, page 1-11, New York, NY, USA, 2014.

Association for Computing Machinery.

Apostolos Ampatzoglou and Ioannis Stamelos. Software engineering re-

search for computer games: A systematic review. Information and Software

Technology, 52(9):888-901, 2010.
http://www.gamesoftwareengineering. com.

Benjamin Engelstétter and Michael R Ward. Video games become more

mainstream. Entertainment Computing, 42:100494, 2022.

Colin Charles Mathews and Nia Wearn. How are modern video games

marketed? The computer Games Journal, 5(1-2):23-37, 2016.

http://www.gamesoftwareengineering.com

[17]

[22]

[24]

Bibliography 154

Mohammad Shaker, Mhd Hasan Sarhan, Ola Al Naameh, Noor Shaker, and
Julian Togelius. Automatic generation and analysis of physics-based puzzle

games. In Conference on Computational Inteligence in Games, pages 1-8.

IEEE, 2013.

Melina Farshbafnadi, Sepideh Razi, and Nima Rezaei. Chapter 7 - transplanta-
tion. In Nima Rezaei, editor, Clinical Immunology, pages 599-674. Academic

Press, 2023.

Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
Automated software transplantation. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis, pages 257-269, 2015.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In 2009 IEEE 3 1st
International Conference on Software Engineering, pages 364-374. IEEE,
20009.

Stelios Sidiroglou-Douskos, Eric Lahtinen, and Martin Rinard. Automatic

error elimination by multi-application code transfer. 2014.

Tianyi Zhang and Miryung Kim. Automated transplantation and differential
testing for clones. In 2017 IEEE/ACM 39th International Conference on
Software Engineering, pages 665-676. IEEE, 2017.

Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. Malware detection in
adversarial settings: Exploiting feature evolutions and confusions in android
apps. In Proceedings of the 33rd Annual Computer Security Applications
Conference, pages 288-302, 2017.

Stelios Sidiroglou-Douskos, Eric Lahtinen, Anthony Eden, Fan Long, and
Martin Rinard. Codecarboncopy. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 95-105, 2017.

[25]

[28]

Bibliography 155

Mar Zamorano, Carlos Cetina, and Federica Sarro. The quest for content: A

survey of search-based procedural content generation for video games. arXiv

preprint arXiv:2311.04710, 2023.

Mar Zamorano, Africa Domingo, Carlos Cetina, and Federica Sarro. Game
software engineering: A controlled experiment comparing automated content
generation techniques. In Proceedings of the 18th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pages

302-313, 2024.

Maria Del Mar Zamorano Lépez, Daniel Blasco, Carlos Cetina, and Federica
Sarro. Video game procedural content generation through software trans-
plantation. In International Conference on Software Engineering: Software

Engineering in Practice. IEEE/ACM, 2025.

Dominik Sobania, Alina Geiger, James Callan, Alexander Brownlee, Carol
Hanna, Rebecca Moussa, Mar Zamorano Lopez, Justyna Petke, and Feder-
ica Sarro. Evaluating explanations for software patches generated by large
language models. In International Symposium on Search Based Software

Engineering, pages 147—-152. Springer, 2023.

Guillermo Iglesias, Mar Zamorano, and Federica Sarro. Search-based negative
prompt optimisation for text-to-image generation. In /4th International

Conference on Artificial Intelligence in Music, Sound, Art and Design, 2025.

Carlos Mora, Sandra Jardim, and Jorge Valente. Flora generation and evolution
algorithm for virtual environments. In 16th Iberian Conference on Information

Systems and Technologies, pages 1-6. IEEE, 2021.

David Plans and Davide Morelli. Experience-driven procedural music genera-
tion for games. IEEE Transactions on Computational Intelligence and Al in

Games, 4(3):192-198, 2012.

[32]

[37]

Bibliography 156

Miguel Frade, Francisco Fernandéz de Vega, and Carlos Cotta. Breeding
terrains with genetic terrain programming: the evolution of terrain generators.

International Journal of Computer Games Technology, 2009, 2009.

Breno MF Viana, Leonardo T Pereira, and Claudio FM Toledo. Illuminating
the space of enemies through map-elites. In IEEE Conference on Games,

pages 17-24. IEEE, 2022.

Breno MF Viana and Selan R dos Santos. A survey of procedural dungeon
generation. In 2019 [8th Brazilian Symposium on Computer Games and

Digital Entertainment, pages 29-38. IEEE, 2019.

Edirlei Soares de Lima, Bruno Feij6, and Antonio L Furtado. Procedural
generation of quests for games using genetic algorithms and automated plan-
ning. In Brazilian Symposium on Computer Games and Digital Entertainment,

pages 144-153, 2019.

Cameron Bolitho Browne. Automatic generation and evaluation of recombi-

nation games. PhD thesis, Queensland University of Technology, 2008.

Georgios N Yannakakis and Julian Togelius. Artificial intelligence and games,

volume 2. Springer, 2018.

Nicolas A. Barriga. A Short Introduction to Procedural Content Generation
Algorithms for Videogames. International Journal on Artificial Intelligence

Tools, 28(2):1-11, 2019.

Jonas Freiknecht and Wolfgang Effelsberg. A survey on the procedural gen-
eration of virtual worlds. Multimodal Technologies and Interaction, 1(4):27,

2017.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgard,
Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural
Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games, 10(3):257-270, 2018.

[41]

[43]

[44]

[47]

[48]

Bibliography 157

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yan-
nakakis, and Julian Togelius. Deep learning for procedural content generation.

Neural Computing and Applications, 33(1):19-37, 2021.

Konstantinos Souchleris, George K Sidiropoulos, and George A Papakostas.
Reinforcement learning in game industry—review, prospects and challenges.

Applied Sciences, 13(4):2443, 2023.

Laura Anna Ripamonti, Federico Distefano, Marco Trubian, Dario Maggiorini,
and Davide Gadia. Dragon: diversity regulated adaptive generator online.

Multimedia Tools and Applications, 80(26):34933-34969, 2021.

Leonardo T Pereira, Breno MF Viana, and Claudio FM Toledo. Procedural
enemy generation through parallel evolutionary algorithm. In 20th Brazilian

Symposium on Computer Games and Digital Entertainment, pages 126—135.

IEEE, 2021.

Daniel Blasco, Jaime Font, Mar Zamorano, and Carlos Cetina. An evolution-
ary approach for generating software models: The case of kromaia in game

software engineering. Journal of Systems and Software, 171:110804, 2021.

Aristid Lindenmayer. Mathematical models for cellular interactions in devel-
opment i. filaments with one-sided inputs. Journal of Theoretical Biology,

18(3):280-299, 1968.

Michele Brocchini, Marco Mameli, Emanuele Balloni, Laura Della Sciucca,
Luca Rossi, Marina Paolanti, Emanuele Frontoni, and Primo Zingaretti. Mon-
ster: A deep learning-based system for the automatic generation of gaming

assets. In International Conference on Image Analysis and Processing, pages

280-290. Springer, 2022.

Ruizhe Li, Masanori Nakayama, and Issei Fujishiro. Automatic generation of
3d natural anime-like non-player characters with machine learning. In 2020

International Conference on Cyberworlds, pages 110-116. IEEE, 2020.

[49]

[53]

[57]

Bibliography 158

Mark Harman and Bryan F Jones. Search-based software engineering. Infor-

mation and software Technology, 43(14):833-839, 2001.

Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based
software engineering: Trends, techniques and applications. ACM Computing

Surveys, 45(1):1-61, 2012.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and
Liang He. A survey of human-in-the-loop for machine learning. Future

Generation Computer Systems, 2022.

Jan Kruse, Andy M Connor, and Stefan Marks. Evaluation of a multi-agent
“human-in-the-loop” game design system. ACM Transactions on Interactive

Intelligent Systems, 12(3):1-26, 2022.

Craig Miles, Arun Lakhotia, and Andrew Walenstein. In situ reuse of logically
extracted functional components. Journal in Computer Virology, 8:73—84,

2012.

Justyna Petke, Mark Harman, William B Langdon, and Westley Weimer.
Using genetic improvement and code transplants to specialise a c++ program

to a problem class. In European Conference on Genetic Programming, pages

137-149. Springer, 2014.

Alexandru Marginean. Automated Software Transplantation. PhD thesis,
UCL (University College London), 2021.

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and
Dongyan Xu. Cpr: cross platform binary code reuse via platform independent
trace program. In Proceedings of the 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages 158-169, 2017.

Stelios Sidiroglou-Douskos, Eli Davis, and Martin Rinard. Horizontal code

transfer via program fracture and recombination. 2015.

[58]

[59]

[60]

[62]

[66]

Bibliography 159

Josip Maras, Maja Stula, and Ivica Crnkovi¢. Towards specifying pragmatic
software reuse. In Proceedings of the 2015 European Conference on Software

Architecture Workshops, pages 1-4, 2015.

Yuepeng Wang, Yu Feng, Ruben Martins, Arati Kaushik, Isil Dillig, and
Steven P Reiss. Hunter: next-generation code reuse for java. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 1028—1032, 2016.

Miltiadis Allamanis and Marc Brockschmidt. Smartpaste: Learning to adapt

source code. arXiv preprint arXiv:1705.07867, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

Yanxin Lu, Swarat Chaudhuri, Chris Jermaine, and David Melski. Program
splicing. In Proceedings of the 40th International Conference on Software
Engineering, pages 338-349, 2018.

Yonghwi Kwon, Xiangyu Zhang, and Dongyan Xu. Pietrace: Platform inde-
pendent executable trace. In 2013 28th IEEE/ACM International Conference
on Automated Software Engineering, pages 48-58. IEEE, 2013.

Jorge Chueca, Javier Veron, Jaime Font, Francisca Pérez, and Carlos Cetina.
The consolidation of game software engineering: A systematic literature re-
view of software engineering for industry-scale computer games. Information

and Software Technology, page 107330, 2023.

CryEngine. Cryengine. https://www.cryengine.com. Accessed:
01/02/24.

Unreal Blueprint. Unreal blueprint. https://docs.unrealengine.
com/4.27/en-US/ProgrammingAndScripting/Blueprints/
GettingStarted/. Accessed: 01/02/24.

https://www.cryengine.com
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/

[67]

[68]

[72]

[73]

[74]

Bibliography 160

Unity Scripting. Unity scripting. https://unity.com/features/

unity-visual-scripting. Accessed: 01/02/24.

Meng Zhu and Alf Inge Wang. Model-driven game development: A literature
review. ACM Computing Surveys, 52(6):1-32, 2019.

Emanuel Montero Reyno and José A Carsi Cubel. Automatic prototyping
in model-driven game development. Computers in Entertainment, 7(2):1-9,

2009.

Edward Rolando Nuiez-Valdez, Vicente Garcia-Diaz, Juan Manuel Cueva
Lovelle, Yago Séez Achaerandio, and Rubén Gonzalez-Crespo. A model-
driven approach to generate and deploy videogames on multiple platforms.
Journal of Ambient Intelligence and Humanized Computing, 8(3):435-447,
2017.

Edward Rolando Nuiiez-Valdez, Oscar Sanjuan, Begona Cristina Pelayo
Garcia-Bustelo, Juan Manuel Cueva-Lovelle, and Guillermo Infante Hernan-
dez. Gadedall: developing multi-platform videogames based on domain
specific languages and model driven engineering. International Journal of

Interactive Multimedia and Artificial Intelligence, 2013.

Muhammad Usman, Muhammad Zohaib Igbal, and Muhammad Uzair Khan.
A product-line model-driven engineering approach for generating feature-

based mobile applications. Journal of Systems and Software, 123:1-32, 2017.

Jaime Solis-Martinez, Jordan Pascual Espada, Natalia Garcia-Menéndez,
B. Cristina Pelayo Garcia-Bustelo, and Juan Manuel Cueva Lovelle. VGPM:
using business process modeling for videogame modeling and code generation

in multiple platforms. Computer Standards & Interfaces, 42:42-52, 2015.

James R Williams, Simon Poulding, Louis M Rose, Richard F Paige, and

Fiona AC Polack. Identifying desirable game character behaviours through

https://unity.com/features/unity-visual-scripting
https://unity.com/features/unity-visual-scripting

[76]

[78]

[82]

Bibliography 161

the application of evolutionary algorithms to model-driven engineering meta-

models. In International Symposium on Search Based Software Engineering,

pages 112-126. Springer, 2011.

Heather J Goldsby and Betty HC Cheng. Automatically generating behavioral
models of adaptive systems to address uncertainty. In International Confer-
ence on Model Driven Engineering Languages and Systems, pages 568—583.
Springer, 2008.

SlashData. State of the developer nation 23rd edition. [Online; accessed

18-December-2023].

Africa Domingo, Jorge Echeverria, Oscar Pastor, and Carlos Cetina. Evalu-
ating the benefits of model-driven development: empirical evaluation paper.

In International Conference on Advanced Information Systems Engineering,

pages 353-367. Springer, 2020.

Speed Tree. Speed tree. https://store.speedtree.com. Accessed:
01/02/24.

Erika Puiutta and Eric MSP Veith. Explainable reinforcement learning: A
survey. In International Cross-Domain Conference for Machine Learning and

Knowledge Extraction, pages 77-95. Springer, 2020.

Oliver Withington. Illuminating super mario bros: quality-diversity within
platformer level generation. In GECCO ’20: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 223-224, 2020.

William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
A survey of app store analysis for software engineering. IEEE Transactions

on Software Engineering, 43(9):817-847, 2016.

Claes Wohlin. Guidelines for snowballing in systematic literature studies and

a replication in software engineering. In /8th International Conference on

https://store.speedtree.com

[85]

[91]

Bibliography 162

Evaluation and Assessment in Software Engineering, EASE ’14, pages 1-10.
ACM, 2014.

Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. A survey

on procedural modelling for virtual worlds. Computer Graphics Forum,

33(6):31-50, 2014.

Karl Sims. Artificial evolution for computer graphics. In /8th Conference on

Computer Graphics and Interactive techniques, pages 319-328, 1991.

Jakub Kowalski, Antonios Liapis, and Lukasz Zarczyniski. Mapping chess
aesthetics onto procedurally generated chess-like games. In International
Conference on the Applications of Evolutionary Computation, pages 325-341.

Springer, 2018.

Antonios Liapis. Recomposing the pokémon color palette. In International
Conference on the Applications of Evolutionary Computation, pages 308-324.

Springer, 2018.

Alessio Bernardi, Davide Gadia, Dario Maggiorini, Claudio Enrico Palazzi,
and Laura Anna Ripamonti. Procedural generation of materials for real-time

rendering. Multimedia Tools and Applications, pages 1-22, 2020.

Joseph Alexander Brown and Marco Scirea. Evolving woodland camouflage.

IEEE Transactions on Games, 2022.

Hanna Jérveldinen. Algorithmic musical composition. In Seminar on Content
Creation Art@ Science. University of Technology, Laboratory of Acoustics

and Audio Signal ..., 2000.

Karen Collins. An introduction to procedural music in video games. Contem-

porary Music Review, 28(1):5-15, 2009.

Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. Evolving content in
the galactic arms race video game. In IEEE Symposium on Computational

Intelligence and Games, pages 241-248. IEEE, 2009.

[92]

[94]

[95]

[99]

Bibliography 163

Erin Jonathan Hastings, Ratan K Guha, and Kenneth O Stanley. Automatic
content generation in the galactic arms race video game. IEEE Transactions

on Computational Intelligence and Al in Games, 1(4):245-263, 2009.

Erin J Hastings and Kenneth O Stanley. Interactive genetic engineering of
evolved video game content. In Workshop on Procedural Content Generation

in Games, pages 1-4, 2010.

Eric McDuffee and Alex Pantaleev. Team blockhead wars: Generating fps
weapons in a multiplayer environment. In Second Workshop on Procedural

Content Generation in Games, 2013.

Daniele Gravina and Daniele Loiacono. Procedural weapons generation for

unreal tournament 1ii. In Games Entertainment Media Conference, pages 1-8.

IEEE, 2015.

Marcus Toftedahl and Henrik Engstrom. A taxonomy of game engines and
the tools that drive the industry. In Proceedings of DiGRA 2019 Conference:
Game, Play and the Emerging Ludo-Mix, 2019.

Sebastian Risi, Joel Lehman, David B D’ Ambrosio, Ryan Hall, and Kenneth O
Stanley. Petalz: Search-based procedural content generation for the casual

gamer. IEEFE Transactions on Computational Intelligence and Al in Games,

8(3):244-255, 2015.

Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. Evolution
of artificial terrains for video games based on accessibility. In European
Conference on the Applications of Evolutionary Computation, pages 90-99.

Springer, 2010.

Miguel Frade, F Fernandez de Vega, and Carlos Cotta. Evolution of artificial
terrains for video games based on obstacles edge length. In IEEE Congress

on Evolutionary Computation, pages 1-8. IEEE, 2010.

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Bibliography 164

Miguel Frade, F Fernandez de Vega, and Carlos Cotta. Aesthetic terrain
programs database for creativity assessment. In Conference on Computational

Intelligence and Games, pages 350-354. IEEE, 2012.

Andrew Pech, Chiou-Peng Lam, Philip Hingston, and Martin Masek. Using
isovists to evolve terrains with gameplay elements. In European Conference
on the Applications of Evolutionary Computation, pages 636—652. Springer,
2016.

Luigi Cardamone, Georgios N Yannakakis, Julian Togelius, and Pier Luca
Lanzi. Evolving interesting maps for a first person shooter. In European
Conference on the Applications of Evolutionary Computation, pages 63—72.

Springer, 2011.

Nicholas Cole, Sushil J Louis, and Chris Miles. Using a genetic algorithm to
tune first-person shooter bots. In 2004 Congress on Evolutionary Computation,

volume 1, pages 139-145. IEEE, 2004.

Bernard Gorman, Christian Thurau, Christian Bauckhage, and Mark
Humphrys. Believability testing and bayesian imitation in interactive com-

puter games. In International Conference on Simulation of Adaptive Behavior,

pages 655-666. Springer, 2006.

Niels Van Hoorn, Julian Togelius, and Jurgen Schmidhuber. Hierarchical
controller learning in a first-person shooter. In 2009 IEEE Symposium on

Computational Intelligence and Games, pages 294-301. IEEE, 2009.

Kenneth Hullett and Jim Whitehead. Design patterns in fps levels. In Fifth

International Conference on the Foundations of Digital Games, pages 78-85,

2010.

Pier Luca Lanzi, Daniele Loiacono, and Riccardo Stucchi. Evolving maps
for match balancing in first person shooters. In 2014 IEEE Conference on

Computational Intelligence and Games, pages 1-8. IEEE, 2014.

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Bibliography 165

Peter Thorup @lsted, Benjamin Ma, and Sebastian Risi. Interactive evolution

of levels for a competitive multiplayer fps. In IEEE Congress on Evolutionary

Computation, pages 1527-1534. IEEE, 2015.

Daniele Loiacono and Luca Arnaboldi. Fight or flight: Evolving maps for cube
2 to foster a fleeing behavior. In 2017 IEEE Conference on Computational
Intelligence and Games, pages 199-206. IEEE, 2017.

Daniele Loiacono and Luca Arnaboldi. Multiobjective evolutionary map
design for cube 2: Sauerbraten. IEEE Transactions on Games, 11(1):36-47,
2018.

Julian Togelius, Mike Preuss, and Georgios N Yannakakis. Towards multi-
objective procedural map generation. In Workshop on Procedural Content

Generation in Games, pages 1-8, 2010.

Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan
Hagelbick, and Georgios N Yannakakis. Multiobjective exploration of the
starcraft map space. In IEEE Conference on Computational Intelligence and

Games, pages 265-272. IEEE, 2010.

Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan
Hagelbick, Georgios N Yannakakis, and Corrado Grappiolo. Controllable pro-
cedural map generation via multiobjective evolution. Genetic Programming

and Evolvable Machines, 14(2):245-277, 2013.

Radl Lara-Cabrera, Carlos Cotta, and Antonio J Fernandez-Leiva. Procedural
map generation for a rts game. In /3th International GAME-ON Conference
on Intelligent Games and Simulation, pages 53-58. Malaga (Spain): Eurosis,
2012.

Raul Lara-Cabrera, Carlos Cotta, and Antonio J Fernandez-Leiva. A proce-
dural balanced map generator with self-adaptive complexity for the real-time
strategy game planet wars. In European Conference on the Applications of

Evolutionary Computation, pages 274-283. Springer, 2013.

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Bibliography 166

Ratl Lara-Cabrera, Carlos Cotta, and Antonio J Fernandez-Leiva. Using
self-adaptive evolutionary algorithms to evolve dynamism-oriented maps for a
real time strategy game. In International Conference on Large-Scale Scientific

Computing, pages 256-263. Springer, 2013.

Raadl Lara-Cabrera, Carlos Cotta, and Antonio J Fernandez-Leiva. On balance
and dynamism in procedural content generation with self-adaptive evolution-

ary algorithms. Natural Computing, 13(2):157-168, 2014.

Radl Lara-Cabrera, Carlos Cotta, Antonio José Fernandez-Leiva, et al. Evolv-

ing aesthetic maps for a real time strategy game. 2013.

Raul Lara-Cabrera, Carlos Cotta, and Antonio J Fernidndez-Leiva. A self-
adaptive evolutionary approach to the evolution of aesthetic maps for a rts
game. In Congress on Evolutionary Computation, pages 298-304. IEEE,
2014.

Raul Lara-Cabrera, Carlos Cotta, and AJ Fernandez-Leiva. Geometrical
vs topological measures for the evolution of aesthetic maps in a rts game.

Entertainment Computing, 5(4):251-258, 2014.

Lawrence Johnson, Georgios N Yannakakis, and Julian Togelius. Cellular
automata for real-time generation of infinite cave levels. In Workshop on

Procedural Content Generation in Games, pages 1-4, 2010.

Tobias Mahlmann, Julian Togelius, and Georgios N Yannakakis. Spicing up
map generation. In European Conference on the Applications of Evolutionary

Computation, pages 224-233. Springer, 2012.

Ratl Lara-Cabrera, Victor Rodriguez-Fernandez, Javier Paz-Sedano, and
David Camacho. Procedural generation of balanced levels for a 3d paintball
game. In Congreso de la Sociedad Espariola para las Ciencias del Videojuego,

pages 43-55, 2017.

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Bibliography 167

Gabriella AB Barros and Julian Togelius. Balanced civilization map gener-

ation based on open data. In IEEE Congress on Evolutionary Computation,

pages 1482-1489. IEEE, 2015.

Jakub Kowalski, Radostaw Miernik, Piotr Pytlik, Maciej Pawlikowski,
Krzysztof Piecuch, and Jakub Sekowski. Strategic features and terrain gen-
eration for balanced heroes of might and magic iii maps. In Conference on

Computational Intelligence and Games, pages 1-8. IEEE, 2018.

Artur OR Franco, Wellington Franco, José GR Maia, and Miguel Franklin.
Generating rooms using generative grammars and genetic algorithms. In 2/st

Brazilian Symposium on Computer Games and Digital Entertainment, pages

1-6. IEEE, 2022.

Lianbo Ma, Shi Cheng, Mingli Shi, and Yinan Guo. Angle-based multi-
objective evolutionary algorithm based on pruning-power indicator for game
map generation. IEEE Transactions on Emerging Topics in Computational

Intelligence, 6(2):341-354, 2021.

Andrea Guarneri, Dario Maggiorini, Laura Ripamonti, and Marco Trubian.
Golem: generator of life embedded into mmos. In /2th European Conference

on Artificial Life, pages 585-592. MIT press, 2013.

Daniele Norton, Laura Anna Ripamonti, Mario Ornaghi, Davide Gadia, and
Dario Maggiorini. Monsters of darwin: A strategic game based on artificial
intelligence and genetic algorithms. In CEUR Workshop Proceedings, volume

1956. CEUR-WS, 2017.

Daniel Blasco, Jaime Font, Francisca Pérez, and Carlos Cetina. Procedural
content improvement of game bosses with an evolutionary algorithm. Multi-

media Tools and Applications, 82(7):10277-10309, 2023.

André Siqueira Ruela and Frederico Gadelha Guimaraes. Evolving battle
formations in massively multiplayer online strategy games. In Brazilian

Symposium on Games and Digital Entertainment, pages 49-55, 2012.

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

Bibliography 168

André Siqueira Ruela and Frederico Gadelha Guimaraes. Coevolutionary
procedural generation of battle formations in massively multiplayer online
strategy games. In 2014 Brazilian Symposium on Computer Games and

Digital Entertainment, pages 89-98. IEEE, 2014.

André Siqueira Ruela and Frederico Gadelha Guimardes. Procedural genera-
tion of non-player characters in massively multiplayer online strategy games.

Soft Computing, 21(23):7005-7020, 2017.

Joseph Alexander Brown, Daniel Ashlock, Sheridan Houghten, and Angelo
Romualdo. Evolutionary graph compression and diffusion methods for city
discovery in role playing games. In IEEE Congress on Evolutionary Compu-

tation, pages 1-8. IEEE, 2020.

Daniel Ashlock. Automatic generation of game elements via evolution. In
IEEE Conference on Computational Intelligence and Games, pages 289-296.
IEEE, 2010.

Daniel Ashlock, Colin Lee, and Cameron McGuinness. Search-based proce-
dural generation of maze-like levels. IEEE Transactions on Computational

Intelligence and Al in Games, 3(3):260-273, 2011.

Daniel Ashlock, Colin Lee, and Cameron McGuinness. Simultaneous dual
level creation for games. IEEE Computational Intelligence Magazine, 6(2):26—
37, 2011.

Cameron McGuinness and Daniel Ashlock. Decomposing the level generation
problem with tiles. In Congress of Evolutionary Computation, pages 849—-856.
IEEE, 2011.

Cameron McGuinness and Daniel Ashlock. Incorporating required structure
into tiles. In Conference on Computational Intelligence and Games, pages

16-23. IEEE, 2011.

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Bibliography 169

Cameron McGuinness. Statistical analyses of representation choice in level

generation. In Conference on Computational Intelligence and Games, pages

312-319. IEEE, 2012.

Cameron McGuinness. Multiple pass monte carlo tree search. In Congress on

Evolutionary Computation, pages 1555-1561. IEEE, 2016.

Paul Hyunjin Kim and Roger Crawfis. The quest for the perfect perfect-maze.
In 2015 Computer Games: Al, Animation, Mobile, Multimedia, Educational
and Serious Games, pages 65—72. IEEE, 2015.

Paul Hyunjin Kim and Roger Crawfis. Intelligent maze generation based on
topological constraints. In 7¢h International Congress on Advanced Applied

Informatics, pages 867-872. IEEE, 2018.

Andrew Pech, Philip Hingston, Martin Masek, and Chiou Peng Lam. Evolv-
ing cellular automata for maze generation. In Australasian Conference on

Artificial Life and Computational Intelligence, pages 112—124. Springer, 2015.

Andrew Pech, Martin Masek, Chiou-Peng Lam, and Philip Hingston. Game
level layout generation using evolved cellular automata. Connection Science,

28(1):63-82, 2016.

Lucas Ferreira and Claudio Toledo. Generating levels for physics-based
puzzle games with estimation of distribution algorithms. In //th Conference

on Advances in Computer Entertainment Technology, pages 1-6, 2014.

Lucas Ferreira and Claudio Toledo. A search-based approach for generating
angry birds levels. In Conference on Computational Intelligence and Games,

pages 1-8. IEEE, 2014.

Misaki Kaidan, Chun Yin Chu, Tomohiro Harada, and Ruck Thawonmas.
Procedural generation of angry birds levels that adapt to the player’s skills
using genetic algorithm. In 4th Global Conference on Consumer Electronics,

pages 535-536. IEEE, 2015.

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Bibliography 170

Laura Calle, Juan J Merelo, Antonio Mora-Garcia, and José-Mario Garcia-
Valdez. Free form evolution for angry birds level generation. In International
Conference on the Applications of Evolutionary Computation, pages 125-140.

Springer, 2019.

Laura Calle, Juan Julidan Merelo Guervés, Mario Garcia Valdez, and Anto-
nio Mora Garcia. Speeding up evaluation of structures for the angry birds
game. In [1th International Joint Conference on Computational Intelligence,

pages 237-244, 2019.

Laura Calle, Juan-Julidn Merelo-Guervés, Antonio Mora-Garcia, and
Mario Garcia Valdez. Improved free form evolution for angry birds structures.
In GECCO ’19: Proceedings of the Genetic and Evolutionary Computation
Conference, pages 133-134, 2019.

Rail Lara-Cabrera, Alejandro Gutierrez-Alcoba, and Antonio J Fernandez-
Leiva. A spatially-structured pcg method for content diversity in a physics-
based simulation game. In European Conference on the Applications of

Evolutionary Computation, pages 653—668. Springer, 2016.

Carlos Lopez-Rodriguez, Antonio J Fernandez-Leiva, Raul Lara-Cabrera,
Antonio M Mora, and Pablo Garcia-Sanchez. Checking the difficulty of
evolutionary-generated maps in a n-body inspired mobile game. In Interna-
tional Conference on Optimization and Learning, pages 206-215. Springer,

2020.

Julian Togelius, Renzo De Nardi, and Simon M Lucas. Making racing fun

through player modeling and track evolution. 2006.

Julian Togelius, Renzo De Nardi, and Simon M Lucas. Towards automatic
personalised content creation for racing games. In IEEE Symposium on

Computational Intelligence and Games, pages 252-259. IEEE, 2007.

Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Automatic track

generation for high-end racing games using evolutionary computation. /EEE

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Bibliography 171

Transactions on Computational Intelligence and Al in Games, 3(3):245-259,
2011.

Hafizh Adi Prasetya and Nur Ulfa Maulidevi. Search-based procedural content
generation for race tracks in video games. International Journal on Electrical

Engineering & Informatics, 8(4), 2016.

Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Interactive evolu-
tion for the procedural generation of tracks in a high-end racing game. In 13tk

Conference on Genetic and Evolutionary Computation, pages 395-402, 2011.

Vid Kraner, Iztok Fister Jr, and Lucija Brezo¢nik. Procedural content genera-
tion of custom tower defense game using genetic algorithms. In International

Conference “New Technologies, Development and Applications”, pages 493—

503. Springer, 2021.

Zixuan Deng and Yanping Xiang. Roads to what we want: A game generator
based on reverse design. In 7th International Symposium on System and

Software Reliability, pages 198-205. IEEE, 2021.

Michael Cerny Green, Ahmed Khalifa, and Julian Togelius. Persona-driven
dominant/submissive map (pdsm) generation for tutorials. In /7th Interna-

tional Conference on the Foundations of Digital Games, pages 1-10, 2022.

Julian Togelius, Trondur Justinussen, and Anders Hartzen. Compositional
procedural content generation. In The Third Workshop on Procedural Content

Generation in Games, pages 1-4, 2012.

Adam M Smith and Michael Mateas. Variations forever: Flexibly generat-
ing rulesets from a sculptable design space of mini-games. In 2010 IEEE
Conference on Computational Intelligence and Games, pages 273-280. IEEE,
2010.

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Bibliography 172

Tom Schaul. A video game description language for model-based or interac-

tive learning. In Conference on Computational Intelligence in Games, pages

1-8. IEEE, 2013.

Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul,
Simon M Lucas, Adrien Couétoux, Jerry Lee, Chong-U Lim, and Tommy
Thompson. The 2014 general video game playing competition. /EEE Trans-
actions on Computational Intelligence and Al in Games, 8(3):229-243, 2015.

Xenija Neufeld, Sanaz Mostaghim, and Diego Perez-Liebana. Procedural
level generation with answer set programming for general video game playing.
In 2015 7th Computer Science and Electronic Engineering Conference, pages
207-212. IEEE, 2015.

Olve Drageset, Mark HM Winands, Raluca D Gaina, and Diego Perez-Liebana.
Optimising level generators for general video game ai. In IEEE Conference

on Games, pages 1-8. IEEE, 2019.

Adeel Zafar, Hasan Mujtaba, and Mirza Omer Beg. Search-based procedural
content generation for gvg-lg. Applied Soft Computing, 86:105909, 2020.

Aurimas Petrovas and Romualdas Bausys. Procedural video game scene
generation by genetic and neutrosophic waspas algorithms. Applied Sciences,

12(2):772, 2022.

Aurimas Petrovas, Romualdas BauSys, Edmundas Kazimieras Zavadskas, and
Florentin Smarandache. Generation of creative game scene patterns by the

neutrosophic genetic cocoso method. Studies in Informatics and Control,

31(4):5-11, 2022.

Adeel Zafar, Hasan Mujtaba, Mirza Tauseef Baig, and Mirza Omer Beg. Using
patterns as objectives for general video game level generation. ICGA Journal,

41(2):66-77, 2019.

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Bibliography 173

Sean Walton, Alma Rahat, and James Stovold. Evaluating mixed-initiative

procedural level design tools using a triple-blind mixed-method user study.

IEEE Transactions on Games, 2021.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping

elites. arXiv:1504.04909, 2015.

Megan Charity, Michael Cerny Green, Ahmed Khalifa, and Julian Togelius.
Mech-elites: Illuminating the mechanic space of gvg-ai. In International

Conference on the Foundations of Digital Games, pages 1-10, 2020.

Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. Interactive
constrained map-elites: Analysis and evaluation of the expressiveness of the

feature dimensions. IEEE Transactions on Games, 14(2):202-211, 2020.

Megan Charity, Ahmed Khalifa, and Julian Togelius. Baba is y’all: Collab-
orative mixed-initiative level design. In IEEE Conference on Games, pages

542-549. IEEE, 2020.

Debosmita Bhaumik, Ahmed Khalifa, Michael Green, and Julian Togelius.
Tree search versus optimization approaches for map generation. In AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment,

volume 16, pages 24-30, 2020.

Raphael Bailly and Guillaume Levieux. Genetic-wfc: Extending wave func-
tion collapse with genetic search. IEEE Transactions on Games, 15(1):36-45,
2023.

Leonardo T Pereira, Paulo VS Prado, and Claudio Toledo. Evolving dungeon

maps with locked door missions. In Congress on Evolutionary Computation,

pages 1-8. IEEE, 2018.

Leonardo Tortoro Pereira, Paulo Victor de Souza Prado, Rafael Miranda Lopes,

and Claudio Fabiano Motta Toledo. Procedural generation of dungeons’ maps

[181]

[182]

[183]

[184]

[185]

[186]

[187]

Bibliography 174

and locked-door missions through an evolutionary algorithm validated with

players. Expert Systems with Applications, 180:115009, 2021.

Jose M Font, Roberto Izquierdo, Daniel Manrique, and Julian Togelius. Con-
strained level generation through grammar-based evolutionary algorithms.
In European Conference on the Applications of Evolutionary Computation,

pages 558-573. Springer, 2016.

André Siqueira Ruela and Karina Valdivia Delgado. Scale-free evolutionary
level generation. In Conference on Computational Intelligence and Games,

pages 1-8. IEEE, 2018.

André Siqueira Ruela and Karina Valdivia Delgado. Evolving lock-and-key
puzzles based on nonlinear player progression and level exploration. Brazilian
Symposium on Computer Games and Digital Entertainment, pages 651-654,
2018.

André Siqueira Ruela, Karina Valdivia Delgado, and Jodo Bernardes. A multi-
objective evolutionary approach for the nonlinear scale-free level problem.

Applied Intelligence, 50(12):4223-4240, 2020.

Alexandre Santos Melotti and Carlos Henrique Valerio de Moraes. Evolving
roguelike dungeons with deluged novelty search local competition. IEEE

Transactions on Games, 11(2):173-182, 2018.

Antonios Liapis. Multi-segment evolution of dungeon game levels. In GECCO
"17: Proceedings of the Genetic and Evolutionary Computation Conference,

pages 203-210, 2017.

Breno MF Viana, Leonardo T Pereira, Claudio FM Toledo, Selan R dos
Santos, and Silvia MDM Maia. Feasible—infeasible two-population genetic

algorithm to evolve dungeon levels with dependencies in barrier mechanics.

Applied Soft Computing, 119:108586, 2022.

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

Bibliography 175

Joseph Alexander Brown, Bulat Lutfullin, and Pavel Oreshin. Procedural
content generation of level layouts for hotline miami. In 2017 9th Computer

Science and Electronic Engineering, pages 106-111. IEEE, 2017.

Joseph Alexander Brown, Bulat Lutfullin, Pavel Oreshin, and Ilya Pyatkin.
Levels for hotline miami 2: Wrong number using procedural content genera-

tions. Computers, 7(2):22, 2018.

Ardiawan Bagus Harisa and Wen-Kai Tai. Pacing-based procedural dungeon
level generation: Alternating level creation to meet designer’s expectations.
International Journal of Computing and Digital Systems, 12(1):401-416,
2022.

Mohammad Shaker, Noor Shaker, Julian Togelius, and Mohamed Abou-
Zleikha. A progressive approach to content generation. In European Con-
Jference on the Applications of Evolutionary Computation, pages 381-393.

Springer, 2015.

Diaz-Furlong Hector Adrian and Solis-Gonzalez Cosio Ana Luisa. An ap-
proach to level design using procedural content generation and difficulty
curves. In Conference on Computational Inteligence in Games, pages 1-8.

IEEE, 2013.

Arman Balali Moghadam and Marjan Kuchaki Rafsanjani. A genetic approach
in procedural content generation for platformer games level creation. In 2017
2nd Conference on Swarm Intelligence and Evolutionary Computation, pages

141-146. IEEE, 2017.

Ali Sofyan Kholimi, Ahmad Hamdani, and Lailatul Husniah. Automatic
game world generation for platformer games using genetic algorithm. In 5tk

International Conference on Electrical Engineering, Computer Science and

Informatics, pages 495-498. IEEE, 2018.

Pratama Wirya Atmaja, Sugiarto, and Eka Prakarsa Mandyartha. Difficulty

curve-based procedural generation of scrolling shooter enemy formations.

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

Bibliography 176

In Journal of Physics: Conference Series, volume 1569, page 022049. IOP
Publishing, 2020.

Fausto Mourato, Manuel Préspero dos Santos, and Fernando Birra. Automatic
level generation for platform videogames using genetic algorithms. In 8tk In-
ternational Conference on Advances in Computer Entertainment Technology,

pages 1-8, 2011.

Steve Dahlskog and Julian Togelius. Patterns as objectives for level generation.

In Design Patterns in Games. ACM Digital Library, 2013.

Steve Dahlskog and Julian Togelius. Procedural content generation using
patterns as objectives. In European Conference on the Applications of Evolu-

tionary Computation, pages 325-336. Springer, 2014.

Michael Cerny Green, Luvneesh Mugrai, Ahmed Khalifa, and Julian To-
gelius. Mario level generation from mechanics using scene stitching. In /EEE

Conference on Games, pages 49-56. IEEE, 2020.

Arash Moradi Karkaj and Shahriar Lotfi. Using estimation of distribution algo-
rithm for procedural content generation in video games. Genetic Programming

and Evolvable Machines, 23(4):495-533, 2022.

Michael Cerny Green, Ahmed Khalifa, Gabriella AB Barros, Andy Nealen,
and Julian Togelius. Generating levels that teach mechanics. In /3th In-

ternational Conference on the Foundations of Digital Games, pages 1-8,

2018.

Ahmed Khalifa, Michael Cerny Green, Gabriella Barros, and Julian Togelius.
Intentional computational level design. In GECCO ’19: Proceedings of the

Genetic and Evolutionary Computation Conference, pages 796—803, 2019.

Vivek R Warriar, Carmen Ugarte, John R Woodward, and Laurissa Tokarchuk.
Playmapper: [lluminating design spaces of platform games. In IEEE Confer-
ence on Games, pages 1-4. IEEE, 2019.

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

Bibliography 177

Davy Smith, Laurissa Tokarchuk, and Geraint Wiggins. Rapid phenotypic
landscape exploration through hierarchical spatial partitioning. In Interna-
tional Conference on Parallel Problem Solving from Nature, pages 911-920.

Springer, 2016.

Stacey Mason, Ceri Stagg, and Noah Wardrip-Fruin. Lume: a system for pro-
cedural story generation. In /4th International Conference on the Foundations

of Digital Games, pages 1-9, 2019.

Erik M Fredericks and Byron DeVries. (genetically) improving novelty in
procedural story generation. In IEEE/ACM International Workshop on Genetic
Improvement, pages 39—-40. IEEE, 2021.

Alberto Alvarez, Eric Grevillius, Elin Olsson, and Jose Font. Questgram
[qg]: Toward a mixed-initiative quest generation tool. In /6¢h International

Conference on the Foundations of Digital Games, pages 1-10, 2021.

Edirlei Soares de Lima, Bruno Feijo, and Antonio L. Furtado. Procedural gen-
eration of branching quests for games. Entertainment Computing, 43:100491,

2022.

Alberto Alvarez and Jose Font. Tropetwist: Trope-based narrative structure
generation. In 17th International Conference on the Foundations of Digital

Games, pages 1-8, 2022.

Alberto Alvarez, Jose Font, and Julian Togelius. Story designer: Towards
a mixed-initiative tool to create narrative structures. In /7th International

Conference on the Foundations of Digital Games, pages 1-9, 2022.

Julian Togelius and Jurgen Schmidhuber. An experiment in automatic game
design. In IEEE Symposium On Computational Intelligence and Games, pages
111-118. IEEE, 2008.

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

Bibliography 178

Zahid Halim, Abdul Rauf Baig, and Kashif Zafar. Evolutionary search in
the space of rules for creation of new two-player board games. International

Journal on Artificial Intelligence Tools, 23(02):1350028, 2014.

Jakub Kowalski and Marek Szykuta. Evolving chess-like games using relative
algorithm performance profiles. In European Conference on the Applications

of Evolutionary Computation, pages 574-589. Springer, 2016.

Thomas Volden, Djordje Grbic, and Paolo Burelli. Procedurally generating
rules to adapt difficulty for narrative puzzle games. In 2023 IEEE Conference
on Games, pages 1-4. IEEE, 2023.

Paolo Burelli and Georgios N Yannakakis. Combining local and global
optimisation for virtual camera control. In IEEE Conference on Computational

Intelligence and Games, pages 403—410. IEEE, 2010.

Paolo Burelli and Georgios N Yannakakis. Global search for occlusion
minimisation in virtual camera control. In /IEEE Congress on Evolutionary

Computation, pages 1-8. IEEE, 2010.

Mike Preuss, Paolo Burelli, and Georgios N Yannakakis. Diversified vir-
tual camera composition. In European Conference on the Applications of

Evolutionary Computation, pages 265-274. Springer, 2012.

Mike Preuss. Niching the cma-es via nearest-better clustering. In [2th

Conference on Genetic and Evolutionary Computation, pages 1711-1718,
2010.

Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Geor-
gios N Yannakakis. Procedural content generation through quality diversity.

In IEEE Conference on Games, pages 1-8. IEEE, 2019.

Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and

Sebastian Risi. Evolving mario levels in the latent space of a deep convolu-

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

Bibliography 179

tional generative adversarial network. In GECCO ’18: Proceedings of the

Genetic and Evolutionary Computation Conference, pages 221-228, 2018.

Philip Bontrager, Aditi Roy, Julian Togelius, Nasir Memon, and Arun Ross.
Deepmasterprints: Generating masterprints for dictionary attacks via latent
variable evolution. In 9th International Conference on Biometrics Theory,

Applications and Systems, pages 1-9. IEEE, 2018.

Matthew C Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian To-
gelius, Amy K Hoover, and Stefanos Nikolaidis. [lluminating mario scenes in
the latent space of a generative adversarial network. In AAAI Conference on

Artificial Intelligence, volume 35, pages 5922-5930, 2021.

Dumitru Dumitrescu, Beatrice Lazzerini, Lakhmi C Jain, and Alexandra

Dumitrescu. Evolutionary computation. CRC press, 2000.

@ystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. Cvl: com-
mon variability language. In Proceedings of the 16th International Software

Product Line Conference-Volume 2, pages 266267, 2012.

@ystein Haugen, Birger Mgller-Pedersen, Jon Oldevik, Ggran K Olsen, and
Andreas Svendsen. Adding standardized variability to domain specific lan-
guages. In 2008 12th International Software Product Line Conference, pages
139-148. IEEE, 2008.

Keza MacDonald. Tough love: On dark souls’ difficulty. https://www.
eurogamer.net/tough—-love-on-dark-souls—-difficulty,

2019. Accessed: 01/02/24.

Zachery Oliver. Dynasty warriors = dumb fun. https://
theologygaming.com/dynasty-warriors—dumb—-fun/, 2013.
Accessed: 01/02/24.

Brittany Reid, Christoph Treude, and Markus Wagner. Optimising the fit of

stack overflow code snippets into existing code. In GECCO ’20: Proceedings

https://www.eurogamer.net/tough-love-on-dark-souls-difficulty
https://www.eurogamer.net/tough-love-on-dark-souls-difficulty
https://theologygaming.com/dynasty-warriors-dumb-fun/
https://theologygaming.com/dynasty-warriors-dumb-fun/

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

Bibliography 180

of the Genetic and Evolutionary Computation Conference, pages 1945-1953,
2020.

Cameron Browne and Frederic Maire. Evolutionary game design. /EEE

Transactions on Computational Intelligence and Al in Games, 2(1):1-16,

2010.

Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an
empirical investigation in search-based software engineering. Empirical

Software Engineering, 18:594-623, 2013.

Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The Annals of Mathematical

Statistics, pages 50-60, 1947.

Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Software Testing,

Verification and Reliability, 24(3):219-250, 2014.

Entalto Studios. https://www.entaltostudios.com/. Accessed:
01/02/24.

Kraken Empire. https://www.krakenempire.com/. Accessed:

01/02/24.

Marcio Barros and Arilo Neto. Threats to validity in search-based software

engineering empirical studies. RelaTe-DIA, 5, 01 2011.

Walter F Tichy. Should computer scientists experiment more? Computer,

31(5):32-40, 1998.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell,
and Anders Wesslén. Experimentation in software engineering. Springer

Science & Business Media, 2012.

https://www.entaltostudios.com/
https://www.krakenempire.com/

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

Bibliography 181

Ronnie ES Santos, Cleyton VC Magalhaes, Luiz Fernando Capretz, Jorge S
Correia-Neto, Fabio QB da Silva, and Abdelrahman Saher. Computer games
are serious business and so is their quality: particularities of software testing in
game development from the perspective of practitioners. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 1-10, 2018.

Victor R. Basili and H. Dieter Rombach. The tame project: Towards
improvement-oriented software environments. IEEE Transactions on Software

Engineering, 1988.

Sira Vegas, Cecilia Apa, and Natalia Juristo. Crossover designs in software
engineering experiments: Benefits and perils. IEEE Transactions on Software

Engineering, 42(2):120-135, 2015.

Brady T West, Kathleen B Welch, and Andrzej T Galecki. Linear mixed
models: a practical guide using statistical software. Chapman and Hall/CRC,
2014.

Evrim Itir Karac, Burak Turhan, and Natalia Juristo. A Controlled Experiment
with Novice Developers on the Impact of Task Description Granularity on
Software Quality in Test-Driven Development. IEEE Transactions on Software

Engineering, 2019.

Africa Domingo, Jorge Echeverria, Oscar Pastor, and Carlos Cetina. Com-
paring uml-based and dsl-based modeling from subjective and objective per-
spectives. In International Conference on Advanced Information Systems

Engineering, pages 483—498. Springer, 2021.

Jacob Cohen. Statistical power for the social sciences. Hillsdale, NJ: Laurence

Erlbaum and Associates, 1988.

Barbara G Tabachnick, Linda S Fidell, and Jodie B Ullman. Using multivariate

statistics, volume 5. Pearson Boston, MA, 2007.

[246]

[247]

[248]

[249]

[250]

Bibliography 182

J. Hair, R. Anderson, B. Black, and B. Babin. Multivariate Data Analysis.

Pearson Education, 2016.

Charlene Jennett, Anna L Cox, Paul Cairns, Samira Dhoparee, Andrew Epps,
Tim Tijs, and Alison Walton. Measuring and defining the experience of immer-
sion in games. International journal of human-computer studies, 66(9):641—

661, 2008.

Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica
Diaz, Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio
Filieri, et al. Empirical standards for software engineering research. arXiv

preprint arXiv:2010.03525, 2020.

Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Enhancements
to constrained novelty search: Two-population novelty search for generating
game content. In /5th Conference on Genetic and Evolutionary Computation,

pages 343-350, 2013.

Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Constrained
novelty search: A study on game content generation. Evolutionary Computa-

tion, 23(1):101-129, 2015.

	Introduction
	Motivation for Transplantation
	Contributions
	Publications
	Roadmap

	Background
	Procedural Content Generation
	Search-Based Procedural Content Generation
	Automated Software Transplantation
	General Software Development vs Game Software Development
	Model-Based Game Software Development
	The Kromaia Video Game
	Conclusion

	Literature Review
	Introduction
	Scope

	Survey Methodology
	Search Methodology
	Selected Publications
	Threats to Validity

	SBPCG Taxonomy
	Game Bits
	Texture
	Sound
	Weapons
	Vegetation

	Game Space
	Outdoor Maps (Terrains)
	Indoor Maps

	Game Systems
	Game Scenarios
	Puzzles
	Tracks
	Levels
	Stories

	Game Design
	System Design
	Camera Control

	Future Directions
	Content Opportunities
	Online PCG
	Solvability, Playability, Fairness, and Diversity
	Bricolage
	Statistical Rigor
	Industrial Content
	Interaction between SBPCG and other techniques

	Conclusion

	Our Proposal: Imhotep
	Introduction
	Our Proposal: 1!Imhotep
	Input selection
	Boundary detection
	Boundary mapping
	Initialize population
	Genetic operators
	Objective function
	Software engineering reflections and tooling requirements

	Empirical Evaluation
	Experimental Design
	Research Questions
	Methodology
	Algorithms' Settings
	Evaluation Measures
	Statistical Analysis

	Results
	Discussion
	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Controlled Experiment
	Experimental Design
	Objective
	Research Questions and Hypotheses
	Variables
	Design
	Participants
	Experimental Objects
	Experimental Procedure
	Analysis Procedure

	Results
	Changes in the Response Variables
	Hypothesis Testing and Response to the Research Questions

	Discussion
	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Related work
	Conclusion

	Conclusions
	Future Work

	Appendices
	Summary of surveyed papers
	Bibliography

