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Abstract

Game Software Engineering (GSE) is a specialized branch of Software Engineering

dedicated to the development of video games. Unlike traditional software, video

game development presents unique challenges, including the management of di-

verse artefacts, differing development paces, limited code reuse, and difficulties

in automated testing. Research in GSE has grown significantly since 2010, with

contributions appearing in top Software Engineering venues.

Video games are complex products that blend art and programming, requiring

input from designers, programmers, and audio engineers. The industry has rapidly

expanded, with a wide variety of titles driving economic growth and cultural influ-

ence. However, all games share a common challenge: the immense need for content.

Large-scale productions require vast amounts of high-quality assets, leading to costly

and time-intensive development cycles. Smaller teams, constrained by limited re-

sources, must carefully balance ambition and feasibility, while games designed for

specialized purposes are restricted by domain-specific content requirements.

To address these challenges, researchers have explored Procedural Content

Generation (PCG), an approach that automates or semi-automates the creation of

game assets. This thesis introduces a novel technique, Procedural Content Trans-

plantation (PCT), which applies Software Transplantation principles to PCG. In

software, transplantation involves extracting functional components from one system

and integrating them into another. Traditionally, it has been used for program repair,

testing, security, and functionality enhancements. Applied to content generation,

PCT extracts functional content from a game to integrate it into another content of a

game.
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PCT employs a search-based algorithm to identify and integrate suitable content

fragments from existing games into new contexts, mitigating the challenges of

manual content creation. To validate this approach, we designed and implemented the

first search-based transplantation algorithm for video game content. Our evaluation,

conducted in collaboration with a commercial game studio, assessed the effectiveness

of PCT in generating non-playable characters (NPCs) and compared its results with

a standard PCG method from the literature.
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Chapter 1

Introduction

Game Software Engineering (GSE) [10] is a branch of Software Engineering which

focuses on the development of video games. GSE specifically tackles the challenges

arising from the fact that video games present characteristics that differentiate their

development and maintenance from the development and maintenance of classic

software [11, 12]. For example, developers contribute to video games vs. non-

games by working on different kind of artefacts, develop and maintain artefacts

at a difference pace [11], find it more difficult to reuse their code [11] and adopt

automated testing [12]. The interest in GSE research has witness a continuous growth

since 2010 [13], with several GSE work published in the most renewed SE venues

including ICSE, FSE, MODELS, ASE [14].

Video games are complex software products where art and coding are combined

during the development process to conform the final product. The industrial scene

of video games development has seen a rapid expansion in the last decades, with

video games becoming an economic motor and a worldwide phenomenon that has

captured the general interest of all sectors of the population globally [15].

The industry of video games development can be split into three main different

branches: AAA games, indie games, and serious games. The main players in the

field develop AAA video games, which are produced and distributed by mid-sized

or major publishers [16]. These games are typically more complex than other types

of games, and have high development and marketing budgets, while being mainly

constrained by time factors in the form of deadlines and firm release dates. On the
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other side of the spectrum, it is possible to find the so-called indie games, created by

individuals or smaller video game studios that lack the financial and technical support

of a large game publisher. While indie games benefit from unbridled creativity, they

often struggle with funding and issues typically associated to small development

teams such as having a constrained extension or undesired functionality due to

limited testing. Serious games are designed not only to entertain, but to also instruct,

inform, or educate the players. We can find examples of serious games in Non-

Governmental Organizations that develop games to raise awareness about societal

issues, medical research associations that do so to simulate complex operations, or

top-valued tech companies that use gamification to instruct new recruits in their

processes. These games are usually restricted to the scope of their respective domain,

and can vary wildly in their goals, complexity, and development times.

Regardless of the differences in their development goals and processes, all these

games share a common issue in the form of their need for content. Nowadays, the

creation of video games is a creative process that involves experts from many different

crafts, including artists, designers, programmers, and audio engineers, among many

other disciplines. Without the aesthetic components that create immersive game

environments, the music scores and sound effects that evoke feelings and create

memorable game experiences, or the interactive elements that the players can use as

tools within the game, there can be no game at all.

Of all games, AAA games are usually the ones that require the most content

both in amount and variety, often resulting in a long, manual, repetitive, and very

costly content creation effort that is carried out by large amounts of game developers.

On the other hand, in indie games, content creation is a delicate process constrained

to the capabilities of the team. While being too ambitious with game content can

cause delays in a project or even result in failure to publish a game, being too lax

with the content can render a game unsuccessful. For small game studios, as it may

happen with any start-up company, both scenarios can be deadly due to the limited

available funding. Serious games are in the same spot as indie games with regard to

their limits in content creation, but often for different reasons. In the case of serious
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games, their very nature narrows their scope and their target players, and restricts

the creation of content to that which is strictly necessary within the domain of the

application. While this may be seen as beneficial, it is more often than not a severe

hindrance in development, since the specificity of content often calls for unique

solutions involving usually unavailable domain experts.

To tackle these development challenges, researchers have focused their efforts

towards Procedural Content Generation [17], a field of work that has gained traction

in the last decades. Procedural Content Generation (PCG) [1] is defined as the

automated production of different components of video game. Through PCG, video

game software engineers generate components and aspects of video games in an

automated or semi-automated fashion, which is a more competitive approach than

doing so through the traditional manual development process.

This thesis address the need for content from a new perspective applying

Software Transplantation into Procedural Content Generation, which we named

Procedural Content Transplantation (PCT). In medicine, transplantation is a pro-

cedure in which cells, tissues, or organs of an individual are replaced by those of

another individual, or the same person [18]. In software, researchers understand

transplantation as a procedure in which a fragment (organ) of a software element

(donor) is transferred into another software element (host) [19]. Software transplan-

tation has been successful for different tasks: program repair [20, 21], testing [22],

security [23], and functionality improvements [24].

We rely on a search-based algorithm as the process of transplantation involves

connecting the boundaries of the donor organ with those of the host, and with

multiple potential connection points available from the donor, the search space

created by the combination of boundaries and host is simply too vast to be thoroughly

explored through brute force methods. Moreover, search-based approaches have

been successfully applied for traditional software transplantation [19].

To show the viability of procedural content generation via transplantation

we designed and realised the first ever search-based transplantation algorithm for

video-game procedural content, dubbed IMHOTEP, and evaluated its effectiveness in
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generating non-playable characters (NPCs) for the commercial video-game Kromaia.

Our approach is named after IMHOTEP, who is considered by many to have written

the Edwin Smith Papyrus (the oldest known manual of surgery).

To evaluate our proposal we have carried out an industrial case study in collabo-

ration with the developers of the commercial video game Kromaia1, and we have

empirically assessed and compared the content generated by our approach and a

PCG technique from the literature.

1.1 Motivation for Transplantation
While Procedural Content Generation (PCG) offers automated means to address the

increasing demand for game content, most existing approaches rely on generating

new artefacts from scratch. These methods often struggle to balance quality, diversity,

and believability, particularly in content-heavy domains such as AAA or serious

games. Moreover, many PCG techniques operate within tightly constrained rule

systems or generative grammars, which can inadvertently limit the richness of the

produced artefacts compared to manually crafted ones.

Transplantation provides a complementary perspective by leveraging existing

game content as reusable building blocks. Instead of reinventing content anew,

transplantation transfers functional or aesthetic fragments from a donor artefact into

a host artefact, enabling the creation of novel yet coherent game elements. This

process offers several advantages:

• Reuse of Proven Content: Borrowing from content that has already been de-

signed, tested, and integrated into a game ensures higher quality and reliability

compared to generating completely new assets.

• Reduction of Development Costs: By transplanting fragments, studios can

mitigate the high costs of manual asset creation, especially in contexts with

limited resources such as indie or serious game development.

• Increased Variety: Transplantation allows recombination of existing artefacts

1See the official PlayStation trailer to learn more about Kromaia: https://youtu.be/
EhsejJBp8Go

https://youtu.be/EhsejJBp8Go
https://youtu.be/EhsejJBp8Go
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in unforeseen ways, expanding the design space while preserving consistency

within the game world.

• Empowering Developers: Unlike black-box generative methods, transplanta-

tion is not only an automated process but also a tool for developers. It gives

them greater power over the generation process by allowing them to guide

what gets reused, where it is placed, and how it is adapted. This balance

between automation and human oversight ensures that the resulting content

aligns with the creative vision of the development team.

• Bridging Manual and Automated Processes: Unlike purely generative meth-

ods, transplantation strikes a middle ground between handcrafted content and

automated generation, enabling developers to retain creative control while

benefiting from automation.

In essence, transplantation reframes the challenge of PCG: rather than asking

“how do we generate new content?”, it asks “how can we adapt and reuse existing

content to create something new?”. This shift aligns well with the realities of video

game development, where assets are plentiful but costly to produce, and where

creativity often emerges from the recombination of familiar patterns.

1.2 Contributions
The main contributions of the current PhD research are:

1. A comprehensive survey about the current state of Search-Based PCG

(SBPCG) that also provides insights for future directions in this field (Chap-

ter 3).

2. IMHOTEP, a Procedural Content Transplantation technique (Chapter 4).

3. An empirical study on the use of IMHOTEP in an industrial video game (Chap-

ter 5).

4. A controlled experiment with humans to assess IMHOTEP and a PCG technique

(Chapter 6).
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1.3 Publications
The following publications are the work presented in this PhD thesis:

1. The Quest for Content: A Survey of Search-Based Procedural Content

Generation for Video Games currently under review in ACM Surveys 2 and

available on arXiv [25];

2. Game Software Engineering: A Controlled Experiment Comparing Auto-

mated Content Generation Techniques [26] was published in ESEM 2024

Technical Papers Track (Chapter 6), and received the Best Paper Award on its

category. It has also won the Best Video-Presentation on the ‘2ª Happy Hour

de la Red AI4Software’ from Red de Investigación en Inteligencia Artificial

Aplicada al Proceso de Desarrollo Software;

3. Video Game Procedural Content Generation Through Software Trans-

plantation [27] was published in ICSE (SEIP) 2025 (Chapter 4, 5);

During my PhD I undertook additional research that is not part of this thesis:

1. Evaluating Explanations for Software Patches Generated by Large Lan-

guage Models [28] was published in SSBSE 2023.

2. Search-based Negative Prompt Optimisation for Text-to-Image Genera-

tion [29] was published in EvoMUSART 2025.

1.4 Roadmap
This thesis is organized as following: Chapter 2 discuss the relevant background

knowledge for our automated software transplantation in procedural content genera-

tion work. Chapter 3 presents the literature review undertaken as part of this thesis

on Search-based Procedural Content Generation. Chapter 4 presents our automated

software transplantation approach. Chapter 5 presents an empirical evaluation of

our approach. Chapter 6 presents our controlled experiment comparing automated

content generation techniques. Chapter 7 discusses the outcomes of the thesis and

future lines of work, thus concluding the content for this thesis.
2https://dl.acm.org/journal/csur



Chapter 2

Background

This chapter provides the reader with an overview of relevant topics for our search-

based transplantation algorithm for video-game procedural content.

First, we put our work in the context of Procedural Content Generation (Sec-

tion 2.1), and more precisely into Search-Based Procedural Content Generation

(Section 2.2). Next, we introduce the state-of-the-art of Automated Software Trans-

plantation (Section 2.3).

Finally, we provide some clarifications about Video-game Development (Sec-

tion 2.5) to understand Kromaia. Kromaia (Section 2.6) is the industrial video-game

used for the empirical study and the controlled experiment of this thesis.

2.1 Procedural Content Generation
Procedural Content Generation (PCG) refers to the automation or semi-automation

of the generation of content in video games. By content, we refer to every aspect of a

game. This definition is broad given the large amount of content that a game usually

needs, starting from the environment till the inner system logic of the game. To that

extent, the literature groups the content in different content types [1]; game bits,

game space, game system, game scenarios, game design, and derived content. Game

bits, game space, game system, game scenarios, and game design, refer to elements

inside the game such as vegetation [30] or sound [31] (game bits), environment

or terrain [32] (game space), Non-Playable Characters [33] (game system), levels

or puzzles [34, 35] (game scenarios), and rules or restrictions [36] (game design).
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Derived content, on the other hand, is all the content that are generated because of a

game, like videos of player experiences playing a game.

PCG can be carried out in two different manners, corresponding to two different

stages of the lifetime of a game. Hence, offline PCG refers to content generated

before the release of a game (at design time), and online PCG refers to content

generated on the fly while the game is being played (at run-time).

PCG is a large field spanning many algorithms [37], which can be grouped

in three main categories according to the survey of PCG techniques by Barriga et

al. [38]: Traditional methods [39] that generate content under a procedure without

evaluation; Machine Learning methods (PCGML) [40, 41, 42] that train models

to generate new content; and Search-Based methods (SBPCG) [1, 2] that generate

content through a search on a predefined space guided by a meta-heuristic using one

or more objective functions.

Our work falls in the SBPCG category and it generates content of the NPC type.

In the context of NPC generation using SBPCG, Ripamonti et al. [43] developed a

novel approach to generate monsters adapted to players, considering the monster with

more death rate the preferred by the player. To evaluate the monsters, they recreated

an environment with the main aspects from a MMORPG 1 game. Pereira et al. [44]

and later extended by Viana et al. [33] seek for generating enemies that meet a

difficulty criteria. Pereira et al. and Viana et al. use the same research academic game

in their experimental designs. Blasco et al. [45] focuses on generating spaceship

enemies that are comparable to the ones manually created by developers. To generate

spaceships, Gallota et al. [5] used a combination of Lindenmayer systems [46] and

evolutionary algorithm. Gallota et al. as well as Blasco et al. use a commercial video

game in their evaluation.

In the context of ML, to the best of our knowledge there is a gap in the generation

of NPC. ML research focus on other aspects of video games, such AI [47] or

graphical aesthetics [48]. The motivation of our work comes from the limitations that

we detected in previous work. Previous work focused on speeding up development

1Massive Multiplayer Online Role-Playing Games
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Table 2.1: Definitions of the key components for Search-Based Procedural Content Genera-
tion (SBPGC).

Name Short Description

Encoding
Direct Less genotype-to-phenotype complexity

conversion
Indirect Requires human effort on creating the con-

version system genotype-to-phenotype

Objective Function

Direct - Theory
Driven

The developers assess with their opinion to
elaborate the objective function

Direct - Data
Driven

The objective function is based on infor-
mation about relevant parameters extracted
from artefacts

Simulation -
Static

The simulator agent does not change during
the simulation

Simulation - Dy-
namic

The simulator agent learns during the simu-
lation

Interactive - Im-
plicit

Players are outright asked for their opinions

Interactive - Ex-
plicit

Data is indirectly extracted or inferred from
the observation of the actions of the players
and the results of those actions

time. However, the influence of the developers on the generated content was limited.

The generated content depended on randomness resulting on generated content not

aligned with the intention of the developers. As a result, the generated content was

either not used or used as secondary content.

2.2 Search-Based Procedural Content Generation
Search-Based Procedural Content Generation is a field of the more general Search-

Based Software Engineering (SBSE) research area [49, 50] .

SBSE seeks to reformulate Software Engineering problems as ‘search problems’.

Given a search space of a particular problem, a search-based approach can look

for an optimal or near optimal solution within a set of candidate solutions. The

next paragraphs describe the most commonly used algorithms in SBSE (which are

also summarised in Table 2.1), and how the two key ingredients of SBSE (namely

representation and objective function) have been being applied in SBPCG.

Within the main algorithms used for SBSE, we find local search algorithms,
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single-objective evolutionary algorithms, and multi-objective evolutionary algo-

rithms [49, 50]. Local search algorithms receive a set of candidate solutions as input,

and then determine one of the candidate solutions as the starting point for the search.

In order to perform the search, they then iteratively move to a neighbour solution

which slightly differs from the current solution and evaluate the new candidate so-

lution according to the fitness function. Single-objective evolutionary algorithms

use mechanisms inspired by the Darwinian concept of evolution. Evolutionary al-

gorithms apply genetic operations such as the crossover or mutation of individuals

over the candidate solutions to obtain new populations of candidate solutions, which

are then evaluated according to a fitness function that targets a single objective.

Multi-objective evolutionary algorithms work through the same Darwinian principles

and genetic operations to search for the best candidate within a search space, but

evaluate the candidate populations according to objective functions that consider

more than one goal.

A search-based approach needs a representation of the particular problem that

an algorithm can understand to perform the search (i.e. encoding). Regarding the

representation of the problem, we find two main components, the genotype and the

phenotype. The genotype is the data structure that the algorithm will process, and the

phenotype is the data structure that will handle the evaluation part of the search. In

other words, a phenotype is a conversion from a genotype. Based on the difficulty of

the conversion from genotype to phenotype, we refer to ‘direct encoding’ or ‘indirect

encoding’. A direct encoding implies less genotype-to-phenotype complexity conver-

sion than an indirect encoding, which requires a more complex conversion system.

While an indirect encoding requires more human effort on creating the conversion

system, it also provides freedom to represent the content. In SBPCG, an example

of a direct encoding is a grid where each cell represents an element of the content.

An evolutionary algorithm is capable of interpreting the grid and evolve it, and the

final phenotype can be extrapolated just by looking at the genotype. An example

of indirect encoding is a list of the details of the different elements that compose

the content. A vector representing that list of details is likely to be evolved by an
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evolutionary algorithm. However, there is a need for interpreting the details of the

elements in the vector to generate the phenotype.

Finally, a search-based approach needs an objective function (or fitness function)

that guides the search towards an optimal solution.

Regarding the objective function, SBPCG differentiates between three different

types [2]: direct, simulation, and interactive. Direct objective functions are those that

are based on the available knowledge of developers (that is, the developers themselves

participate in the assessment of the objective function). Direct objective functions

can be either theory-driven (meaning that the opinion of the developers is directly

leveraged) or data-driven (meaning that information about relevant parameters is

extracted from artefacts like questionnaires or player models). Simulation objective

functions replicate real situations to estimate the behaviour of real players. Work in

this area focuses mainly on developing more human-like agents, bots, and AIs to be

used by objective functions. Simulation objective functions can be static, where the

simulator agent does not change during the simulation, or dynamic, where agents

that learn during simulation are used. Finally, interactive objective functions are

those that involve players in the composition of the objective function. Incorporating

human expertise in the objective function constitutes a broad research area itself,

named human-in-the-loop [51, 52], which studies how to incorporate humans into the

algorithm process. In SBPCG, interactive objective functions can be either explicit,

when players are outright asked for their opinions, or implicit, when the data is

indirectly extracted or inferred from the observation of the actions of the players and

the results of those actions.

2.3 Automated Software Transplantation

Automated Software Transplantation (AST) is a technique that involves extracting

functional components from one software system and integrating them into another.

This process allows the reuse of code across different applications while handling

differences in dependencies, architectures, and execution environments. AST has

been applied for automated program repair, testing, security and functionality im-
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provements.

On functionality transplantation, Miles et al. [53] and Petke et al. [54] proposed

the first approaches that transplant software code in a same program (assuming that

different versions of the programs are considered a same program). This seminal

work has inspired follow up research to perform Automated Software Transplantation

between different programs [19], or even different programming languages [55] and

platforms [56], as summarised below. When transplanting within a same program,

there is no need for adapters (i.e. alterations in organ or host to adapt the organ to fit

into the host).

Sidiroglou-Douskos et al. [57] proposed a technique that divides the donor

program by specific functionality, each piece is called a ‘shard’. The approach insert

the shard into the host without modifications, that is, the work from Sidiroglou-

Douskos does not use adapters either.

On the other hand, Maras et al. [58] proposed a three step general approach,

without implementing it, which applies feature localization to identify the organ;

then code analysis and adaptation, and finally feature integration.

Wang et al. [59] instead of using feature localization, takes as inputs the desired

type signature of the organ and a natural language description of its functionality.

With that, the approach called Hunter uses any existing code search engine to search

for a method to transplant in a database of software repositories. Further, Hunter

generates adapter functions to transform the types from the desired type signature

into the type signatures of the candidate functions.

Allamanis et al.’s SMARTPASTE [60] takes the organ and replace variable

names with holes, the approach using a deep neural network fills the holes. Allamanis

et al. [60] use Gated Graph Neural Networks [61] to predict the correct variable

name in an expression.

Unlike Allamanis et al., who puts holes into the organ, Lu et al. [62] introduced

program slicing where the host is provided with a draft of the code with holes, or

natural language comments. Similarly to Wang et al. [59] , program splicing looks

into a database of programs to identify a relevant code to the current transplant task.
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Finally, the approach selects the more suitable result found to fill the holes in the

draft.

Barr et al. propose µSCALPEL [19], an automatic code transplant tool that uses

genetic programming and testing to transplant code from one program to another.

µSCALPEL uses test cases to define and maintain functionalities, small changes

are made to the transplanted code, and code that does not aid in passing tests can be

discarded, reducing the code to its minimal functioning form.

Subsequently, Marginean et al. proposes τSCALPEL [55] to achieve the trans-

plantation between different programs and programming languages. Kwon et al.

propose CPR [56] that transplants an entire program between different platforms.

CPR realizes software transplantation by synthesizing a platform independent pro-

gram from a platform dependent program.

To synthesis the platform independent program, CPR uses PIEtrace [63] to

construct a set of trace programs, which captures the control flow path and the data

dependencies observed during a concrete execution, and replaces all the platform

dependencies with the concrete values that it observed during the concrete execution.

Finally, CPR merges all these trace programs together to handle any input, by

replacing the concrete values observed during the executions, with input variables.

2.4 General Software Development vs Game Software

Development
From a software engineer’s perspective, general software development and game

development share foundational skills—like coding, debugging, and design patterns,

but they differ significantly in goals and workflows. General software is typically

built to solve real-world problems, prioritizing functionality, usability, and long-term

maintainability. Whether it’s a banking app or a logistics dashboard, the focus

is on delivering reliable tools that perform clearly defined tasks, often following

standardized architectures like MVC or microservices.

Game development, in contrast, aims to create immersive and emotionally

engaging experiences. This shift in purpose demands a real-time performance
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focus, which adds unique constraints around graphics, physics, and user input.

Game developers rely on specialized engines like Unity or Unreal, use lower-level

programming techniques for optimization, and architect systems around game loops

and data-driven models such as Entity-Component-System (ECS). The work blends

technical skill with artistic sensibility, where changes are often driven by gameplay

feel rather than functional requirements.

Testing and collaboration also differ greatly. General software emphasizes

automated testing—unit, integration, and end-to-end—to ensure reliability and re-

gressions. In game development, testing is more experiential, relying heavily on

manual playtesting, balancing, and user feedback. Furthermore, game development

is highly interdisciplinary: engineers work closely with artists, sound designers,

and narrative teams to bring the game world to life, requiring tools and systems to

accommodate rapidly evolving creative input.

Overall, while both domains require disciplined engineering, game development

introduces unique challenges that revolve around performance, storytelling, user

experience, and cross-functional creativity. General software is built to be stable

and scalable; games are built to be felt. A software engineer moving between the

two must shift not only their technical focus but also their mindset—from solving

problems to shaping experiences.

2.5 Model-Based Game Software Development

Video games are pieces of software that, like any other software, need to be designed,

developed, and maintained over time. However, there are some particularities of

video games that make them differ from traditional software, such as the artistic

component of the video-game, the complexity of the rendering pipelines, the het-

erogeneous nature of video game development teams, and the abstract nature of the

final purpose of a video game: fun [11, 64]. Hence, video games present character-

istics that differentiate their development and maintenance from the development

and maintenance of classic software. Examples of these differences can be found

in how video game developers must contribute to the implementation of different
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kinds of artifacts (e.g., shaders, meshes, or prefabs) or in the challenges they face

when locating bugs or reusing code [11, 64]. Nowadays, most video games are

developed by means of game engines. Game engines are development environments

that integrate a graphics engine and a physics engine as well as tools for both to

accelerate development. The most popular ones are Unity and Unreal Engine, but it

is also possible for a studio to make its own specific engine (e.g., CryEngine [65]).

One key artefact of game engines are software models. Unreal proposes its own

modeling language (Unreal Blueprints) [66], Unity proposes Unity Visual Script-

ing [67], and a recent survey in Model-Driven Game Development [68] reveals that

UML and Domain Specific Language (DSL) models are also being adopted by devel-

opment teams. Developers can use the software models to create video game content

instead of using the traditional coding approach. While code allows for more control

over the content, software models raise the abstraction level, thus promoting the use

of domain terms and minimizing implementation and technological details. Through

software models, developers are freed from a significant part of the implementation

details of physics and graphics, and can focus on the content of the game itself (see

Figure 2.1).

Video Game Content (NPCs, weapons, levels, ...)

Game Engine (Unreal, Unity, CryEngine, O3DE, ...)

Code
Software
Models

Graphics Engine Physics Engine

Assets
Prefabs Shaders

Meshes ...

Libraries (OpenGL, Vulkan, OGRE, Bullet, ...)

Figure 2.1: Overview of video game artefacts.

One of the challenges in software development is the environment used, as

each environment and programming languages has unique characteristics. Software

models, and more precisely Model Driven Engineering, study how to alleviate

this problem by approaching software development from a platform-independent

perspective through models. Video game developers must deal with this challenge as

well and has motivated the research that combine software models and the domain
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of video games.

The 2010 survey of Software Engineering Research for Computer Games [13]

identified only one work that applied Model-Driven Development to video

games [69]. That work coined the term “Model-Driven Game Development” and

presented a first approach to 2D game prototyping through Model-Driven Develop-

ment. Specifically, they used UML classes and state diagrams that were extended

with stereotypes, and a model-to-code transformation to generate C++ code.

More recent work presents work that intended to minimize errors, time, and cost

in multi-platform video game development and maintenance [70, 71, 72], or suggest

the use of business process models as the modelling language for video games [73].

In the intersection between software models and evolutionary computation,

Williams et al. [74] use an evolutionary algorithm to search for desirable game

character behaviours in a text-based video game that plays unattended combats

and that outputs an outcome result. The character behaviour is defined using a

Domain-Specific Language. The combats are managed internally and are only driven

by behaviour parameters, without taking into account a spatial environment, real-

time representation, or visual feedback (which takes into consideration the physical

interaction of the characters, variation in the properties, etc.).

Another work that focuses on the intersection between software models and

evolutionary computation is Avida-MDE [75], which generates state machines that

describe the behaviour of one of the classes of a software system (Adaptive Flood

Warning System case study). The resulting state machines comply with developer

requirements (scenarios for adaptation). Instead of generating whole models, Avida-

MDE extends already existing models (object models and state machines) with

new state machines that support new scenarios. The work in Goldsby and Cheng

et al. [75] does not report the size of the generated state machines; however, the ones

shown in the paper are around 50 model elements, which is significantly smaller

than the more than 1000 model elements of the models of a commercial video game

such as Kromaia.

The work mentioned above focus on generating new content from models,
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which differs with our proposal of using MDE to transplant model fragments between

models.

2.6 The Kromaia Video Game

In this section we introduce Kromaia, the commercial video game investigated, in

collaboration with its developers, in the empirical study and the controlled experiment

presented in this thesis.

Each level of Kromaia consists of a three-dimensional space in which a player-

controlled spaceship has to fly from a starting point to a target destination, reaching

the goal before being destroyed. The gameplay experience involves exploring floating

structures, avoiding asteroids, and finding items along the route, while basic enemies

try to damage the spaceship by firing projectiles. If the player manages to reach

the destination, the ultimate antagonist corresponding to that level (which is called

boss) appears and must be defeated in order for the player to complete the level.

Kromaia’s boss is the NPCs target content that we aim to automatically create via

PCT. Bosses can be built either using C++ code or software models. The upper part

of Figure 2.2 depicts a boss fight scenario in which the player-controlled ship (item A

in the figure) is battling the NPC Serpent (item B in the figure), which is the final boss

that must be defeated to complete Level 1. The bottom part of Figure 2.2 illustrates

the two possible development approaches for the Serpent boss (model-driven Vs.

code-centric).

Even though Figure 2.2 shows excerpts of the implementation of the Serpent

both in the form of software models and code, it is not necessary to realize both in

order to implement this content. Developers can mix both technologies by developing

different parts of the boss using one or the other approach indistinctly, but they are

also free to implement the content using software models exclusively or to do so

purely via code. However, the heterogeneous nature of video game development

teams - comprised mainly of programmers [76], but also counting game designers,

artists, UI designers, and QA engineers within their ranks - possibly favours the

use of software models over code thanks to the higher abstraction level of the
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Figure 2.2: Model-Driven Development vs. Code-Centric Development in the context of
Kromaia

former (combined with their detachment from more technical implementation details)

which empowers less tech-focused roles to embrace a more active participation in

development tasks. Also, previous work [77] showed that video game developers

make fewer mistakes and are more efficient when working with models rather than

code.

In Kromaia, the elements of the game are created through software models,
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and more specifically, through the Shooter Definition Model Language (SDML).

SDML is a DSL model for the video game domain that defines aspects that are

included in video game entities: the anatomical structure (including their components,

physical properties, and connections); the amount and distribution of vulnerable

parts, weapons, and defences; and the movement behaviours associated to the whole

body or its parts. SDML has concepts such as hulls, links, weak points, weapons,

and AI components, and allows for the development of all types of video game

content, such as bosses, enemies, or environmental elements. The models are

created using SDML and interpreted at runtime to generate the corresponding game

entities. In other words, software models created using SDML are translated into

C++ objects at runtime using an interpreter integrated into the game engine [45].

More information on the SDML model can be found on-line at https://youtu.

be/Vp3Zt4qXkoY.

2.7 Conclusion

To the best of our knowledge this thesis propose the first automated software trans-

plantation approach in the field of content generation for video games. Our proposal

allows the transplantation between different types of content. More precisely, in this

thesis, we transplant organs from scenarios to NPCs. We have demonstrated that in

this context a simulation-based objective function yield superior outcomes compared

to the test-based objective function that previously attained the most favourable

results in traditional software engineering transplantation (µSCALPEL [55]).

A previous work from us also generated NPCs using SBSE [45], speeding up

development time. However, in our previous work the influence of the developers

on the generated content was limited. The generated NPC depended on randomness

resulting on generated NPCs not aligned with the intention of the developers. As

a result, the generated content was either not used or used as secondary content.

In fact, the limitations of our previous work were the inspiration for moving to

transplantation. The transplant-based approach of this work keeps control in the

hands of the developers (who choose the organ to transplant) and helps to explore

https://youtu.be/Vp3Zt4qXkoY
https://youtu.be/Vp3Zt4qXkoY
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the latent content that exists in the video game.

Our research introduces a fresh perspective on content generation through the

use of transplantation, which sets it apart from traditional procedural content gener-

ation (PCG) methods. Transplantation enables the seamless integration of various

content types, facilitating in our work the transplant of elements from scenarios to

NPCs.



Chapter 3

Literature Review

3.1 Introduction
This chapter surveys the current state of Search-Based PCG (SBPCG) and provide

insights for future directions in this field. The ultimate aims is to encourage further

applications of Search-Based Software Engineering to Game Software Engineering

as we may have just scratched the surface of its application in this area. In the

following subsection we further detail the scope of our survey.

3.1.1 Scope

Traditional methods include diverse methods, such as pseudo-random number gener-

ators, cellular automata, generative grammars, fractals, or noise. Developers must

design an approach for a specific type of content which produces useful elements

for that type of content without an evaluation or a learning process. Thus, TM do

not follow diverse content, and require human domain-specific knowledge. The

generation of vegetation is probably the most successful case of video game PCG

through Traditional Methods, with the development of tools such as SpeedTree [78].

The usage of SpeedTree in games, both AAA games and indie games, is widespread.

SpeedTree was first launched in 2002, and since then there has been no similar suc-

cessful tool. Traditional methods have mostly been used for offline generation; we

found no references to TM online generation. The fact that they have been restricted

to offline use hinders their use for replay-ability1.

1The potential for continuing playing after the first completion of a game.
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Machine Learning methods train models to generate content based on training

data, thus reducing the need for human domain-specific knowledge. ML online

generation is still not widespread, most of the work on ML is offline generation.

The use of ML methods for PCG (PCGML) was recently reviewed in 2018 by

Summerville et al. [40], who could not identify any successful case study used by

the industry. One of the open challenges of using PCGML is the lack of training

content, which is not always accessible, thus requiring additional effort from the

development team to create the training content in advance. While the use of Deep

Learning (a subfield of ML) has provided some advances in PCGML as reviewed by

Liu et al. [41], its application to PCG is still limited by two main factors. First, DL

approaches resist the specification and enforcement of explicit constraints, such as

setting up the number of rooms in a dungeon. Constraints are important for game

developers to achieve their vision of the content. Furthermore, DL has issues with

the interpretation of results [79], making it difficult for developers to understand

the design patterns that appear in the generated content. The understandability of

the patterns beneath the content is important for the development, since it allows

developers to generate the content exactly as expected in the design. This is perhaps

less of a problem in AAA and indie games, where creativity is encouraged to a

certain degree, but a major issue for serious games.

Search-based methods do not suffer from the limitations of TM, and are there-

fore less expensive to apply for many types of content. SB methods also do not

suffer from the limitations of ML methods, since they are easier to constrain and

provide more accessible explanations of the generated results. In fact, some of the

weaknesses of other methods become a strength in SB methods. For instance, in

SB methods, the objective function can use constraints to guide the search. SB

approaches for PCG generate content that is evaluated within the algorithm prior to

its use. During the evaluation phase, content is appraised to decide whether to use it,

discard it, or recombine its building blocks to generate further content.

The scope of this survey puts the focus on SB methods, since they mitigate or

outright remove a series of limitations suffered by TM and ML methods alike. In
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2010, Togelius et al. [2] surveyed SB methods for PCG (SBPCG) reviewing the very

first research work in this field. They identified several research challenges for SB

methods: Suitability of the generated content, avoidance of catastrophic failure, and

improvement of the key components of the SB methods.

Our study reveals that in 2025 many of those challenges are still open, whereas

new types of contents and concepts have appeared such as surprise search [3] or

quality diversity [80]. Thus, making this field an exciting avenue for future research.

In this chapter we survey the current state of SBPCG by analysing a total of

121 articles, published between 2010 and 2023, that have applied at least one Search-

Based method to procedural content generation. Based on the analysis of this article

we evolve previous taxonomies [2, 1] in a new one, which is able to capture the most

recent content proposed in the literature, we describe the current work according to

this taxonomy, and conclude by providing insights for future directions in this field.

3.2 Survey Methodology
This survey gathers and categorizes research work published in the field of PCG

for Game Software Engineering. More precisely, this work puts the focus on the

context of SBPCG. In the following subsections, we present our search methodology

in detail, along with a description on the selected publications.

3.2.1 Search Methodology

Inspired by Martin et al. [81], our search methodology follows three steps: First we

perform a preliminary search followed by a repository search, then we apply the

selection criteria, and finally, we conduct a snowballing process.

Our preliminary search has two goals. The first one is to assess whether there

is a sufficient amount of publications in this field since the latest survey on Search-

Based PCG [2] from 2011. The second one is to define the keywords that will

be used for the repository search. The results of the preliminary search define the

following keywords: ( ‘pcg’ OR ‘automatic generation’ OR ‘procedural’ ) AND (

‘videogame’ OR ‘game’ ) AND ( ‘search-based’ OR ‘evolutionary’ OR ‘genetic’ OR

‘local search’ OR ‘tabu search’ OR ‘Monte Carlo Tree Search’ OR ‘mcts’ )
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We conduct the repository search on Scopus, a database that indexes papers from

ACM, IEEE, Springer and Elsevier, among others. We have gathered publications

from 2011 to 2023, since the last survey on Search-Based PCG [2] released on 2011,

which covers work published until 2010. We restrict the publications based on the

words defined during the preliminary search. We run the query on the title of the

article, the abstract and the keywords associated to each publication.

The inclusion criteria used in this survey ensure that the publications present

Search-Based algorithms with the aim of generating content in the area of video

games. For example hybrid approaches such as ‘Neuroevolution’, that is, the use

of an evolutionary algorithm to evolve a neural network (or any other ML method)

that will create the content, are not included. Similarly, approaches that evolve other

agents assessing content rather than creating it, are not included either. To verify that

the publications found during our search meet the inclusion criteria, we examine the

publications by applying the following three stages process:

1. Title: we remove publications that are clearly irrelevant from the title.

2. Abstract: we inspect the abstract and remove publications that are clearly

irrelevant according to the scope defined in Section 3.1.1.

3. Body: publications that pass the previous two steps are excluded if their

content is not relevant to the scope of this survey (Section 3.1.1)

The publications studied in this survey are the result of the application of this

selection process. Sections 3.4 to 3.8 discuss in detail the studied publications.

To reduce the risk of missing relevant publications from the literature, we

apply one level of backwards snowballing [82]. More precisely, we inspect the

publications cited in the related work of each publication that passed the previous

selection process.

In addition, we request feedback from the authors of the work included in our

survey, as done in previous surveys [81].
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Table 3.1: Number of publications retrieved at each step of our literature search.

Step Number of publications Added publications
Preliminary search 318 107
Snowballing 196 13
Author feedback 1 1

3.2.2 Selected Publications

Table 3.1 provides the number of publications we retrieved at each stage of our

search, and specifies the number articles that at each step meet the inclusion criteria

for this survey, and were therefore included in the survey.

As a result of the examination of 498 publications, we retained 121 unique

publications that are in the scope of our survey, i.e., articles describing content

generation for video games by applying at least one SB technique. These 121

publications have been published in 43 different venues. The list is available in our

online appendix 2, along with a classification of the publication venues according to

the CORE ranking portal 3, and the JCR ranking portal 4.

3.2.3 Threats to Validity

To mitigate the threat of missing relevant information in our literature survey we

undertook a number of mitigation actions, as detailed below. 0po-Two authors exam-

ined all articles independently, in order to ensure reliability and reduce researcher

bias. The results were compared at the end of the process, and any inconsistency was

resolved by a joint analysis and discussion. Moreover, to ensure that our survey is

comprehensive and accurate, we contacted the authors of the publications collected.

We asked them to check whether our description about their work is correct. Based

on their feedback, we revise our survey as well as included 1 additional publication.

We carefully describe the search process we followed and make additional data

available in our online appendix, so that future studies can reproduce, replicate, and

extend our work.

2https://solar.cs.ucl.ac.uk/os/sbpcg/Venues.xlsx
3https://www.core.edu.au/conference-portal
4https://jcr.clarivate.com/jcr/home

https://solar.cs.ucl.ac.uk/os/sbpcg/Venues.xlsx
https://www.core.edu.au/conference-portal
https://jcr.clarivate.com/jcr/home
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3.3 SBPCG Taxonomy

The main aim of creating an SBPCG taxonomy is to correctly identifying and

classify the different type of contents that have been described in published work on

SBPCG. This taxonomy is then used to discuss each of the articles within a given

category. This will ease the analysis and comparison of work aiming at automatically

generating new type of content. In this section, we explain the methodology by

which we construct the taxonomy that we use to classify existing SBPCG work.

Figure 3.1 summarizes the steps we followed elaborating the taxonomy. In

Step 1, Harmonizing, we analysed the taxonomies from two previous studies and

looked for similarities, thus getting a starting point for an harmonized taxonomy.

Then in Step 2, Test of time, we create a preliminary categorisation of the work

that we analyse in our survey. We then expand this categorization by including

additional subcategories to better reflect the current state of the work in SBPCG

in Step 3, Subdividing. Finally, in Step 4, Check Empty Categories, we analysed

why some types of contents that was discussed in the previous surveys, have not

been subsequently get any traction in SBPCG, thereby leading us to the removal of

some categories. Further details for each of the steps are provided in the following

paragraphs.

Previous PCG surveys have adopted a similar approach, by proposing their own

taxonomy. Our taxonomy stems from the analysis of these previous work, and also

includes new types of content according to the needs of newer articles published

from 2011 to 2023. Specifically, we used two surveys (namely Togelius et al. [2] and

Hendrikx et al. [1]) as the starting point for our taxonomy as they are more generic

and cover more types of content than other surveys [40, 41]. Togelius et al. [2]

focused on Search-Based techniques (as we do) proposed till 2011; while the 2013

survey by Hendrikx et al. [1] focused on the most common and some emerging

techniques for PCG (including 11 Search-Based ones). Table 3.2 summarise and

compare the two previous surveys and our own by specifying their publication venue,

the publication time frame of the articles discussed by each survey, and their main
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Figure 3.1: Summary of the process we followed to construct a taxonomy of procedural
content categories. We started from two existing taxonomies ([1, 2]).

Table 3.2: Summary of the three surveys.

Authors Published in Cover articles from Number of articles Focus
Togelius et al. [2] ToG 2005 - 2010 25 SBPCG
Hendrikx et al. [1] TOMM 1991 - 2011 80 PCG
This survey under review 2011 - 2023 118 SBPCG

focus5.

In the following paragraphs, we explain the taxonomies used in both the previous

surveys, and the process we followed to derive the one we use in this survey.

Togelius et al. [2] divided SBPCG content into two categories: considering

whether the content was necessary, that is, whether the content was needed for a

game to be played, or optional, that is, whether the content was not strictly needed

for the game to be played and could be avoided during gameplay. The types of

content on each category may vary depending on their purpose in a game. This

survey built the taxonomy considering research articles published until 2010.

Hendrikx et al. [1] proposed a more structured classification for PCG methods.

Instead of constructing their taxonomy from the results of a literature search, they

asked themselves about the contents of a game. Then, they looked into the different

types of content to analyse the techniques applied within each category.

We have studied the detailed descriptions of both taxonomies, appreciating

significant similarities between them (see Fig. 3.1 Step 1). Both taxonomies overlap

in 10 out of 12 types of content of the sub-classification of the taxonomy of Togelius

et al. [2]. More precisely, there are three types of content with the same name

5These information have been extrapolated from the content of the surveys, as they are not
explicitly discussed in the surveys.
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Figure 3.2: Structure of our proposed taxonomy of procedural content categories. The
subcategories highlighted in grey are those that have been introduced in this
taxonomy based on the articles we found, thus extending previous existing
taxonomies.

(buildings, puzzles and levels) in both taxonomies, and we argue that vegetation

subsumes trees, indoor maps subsumes maps, outdoor maps subsumes terrains,

storytelling is equivalent to storyboards, story is equivalent to narrative, and system

design subsume rules and mechanics.

To build a first version of our taxonomy we start from the those of Hendrikx

et al.. Although their focus is different from ours, their taxonomy is more compre-

hensive than those by Togelius et al.’s one, and we observe that it better fits the more

recent articles we found in our search till 2023. We augment this taxonomy with

three types of content from the taxonomy of Togelius et al. (i.e., weapons, tracks, and

camera control) because we found recent articles that tackle those types of content.

Weapons fit in game bits, tracks fit in game scenarios, and camera control fits in

game design.

Then, we analysed our literature search results and categorised the articles

found according to this preliminary taxonomy (see Fig. 3.1 Step 2). Such an analysis

pointed out two aspects that must be taken into account in devising our new taxonomy:

difference in the amount of work related to different type of content, and decaying

vs. emerging type of content. Firstly, the number of work within the different

types of content vary significantly (see Fig. 3.1 Step 3). In particular, there are two

types of content (levels and indoor maps) that independently comprise more work
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Figure 3.3: Evolution of the categories on each step of the process to construct our taxonomy.

than those presented by the rest of the types of content combined. Looking into

those types of content we have identified differences over the content that allow

a further sub-categorization. We therefore propose a further sub-categorization of

levels, indoor maps, and puzzles. To that extent, we have divided levels into the

timeline, room, and dungeon subcategories; indoor maps into the shooter maps,

strategic maps, and floor subcategories; and puzzles into the physics and mazes

subcategories (see Fig. 3.2). We argue that this new classification is better adapted to

the current research in SBPCG. Secondly, one of the general categories mentioned

above (i.e. derived content) and half of the types of content defined in the taxonomy

subcategories have not been tackled in the last decade by SBPCG works. The derived

content category addresses the generation of content after the development of a game.

This type of content is usually related with the interaction of players with a game.

Derived content is out of our scope as we relate to the generation of content for a

game before its release or during its gameplay.

From the analysis of the literature we also noticed that there are types of content

that have not been tackled by SBPCG. To speculate about the reason (see Fig. 3.1

Step 4), we have examined two more recent surveys of PCG [40, 41], which tackle
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PCG from the point of view of PCGML. PCGML handles patterns better as it is

based on learning, while SBPCG needs a manual configuration of the constraints

in order to be able to follow patterns. Maybe there are types of content that require

so much effort in the form of constraints that researchers resort on learning the

constraints.

In the last ten years there are types of content that have not been tackled by

neither SBPCG nor PCGML (i.e. buildings, behaviour, elements, water, ecosystems,

road networks, urban environments and world design). We ran an informal search

in Google Scholar for each type of content, in order to understand these types of

content, with the following query: ‘procedural generation’ + < type of content >.

The results show that works that study these types of content are addressed through

Traditional Methods, such as, noise generators, fractal structures or L-systems [83].

Here we find an opportunity for SBPCG and PCGML. TM approaches have been

successful but we did not find arguments proving their efficiency over SBPCG or

PCGML techniques.

Further explanation about the general categories, types of content, and sub-

categories can be found within the following sections, which compose the survey

per se. The Game Bits Section (Section 3.4) addresses textures, sounds, weapons,

and vegetation. The Game Space Section (Section 3.5) addresses indoor maps (and

their subcategories into shooter maps, strategic maps, and floors) and outdoor maps.

The Game Systems Section (Section 3.6) addresses non-playable characters. The

Game Scenarios Section (Section 3.7) addresses puzzles (and their subcategories

into mazes and physics), levels (and their subcategories into timeline, room, and

dungeon), tracks, and stories. The Game Design Section (Section 3.8) addresses

system design and camera control. In the online appendix 6, we list the articles dis-

cussed in this survey by reporting on their publication year and venue, the two main

characteristic of the search-based approach (i.e. encoding and objective function)

and content type they investigate (see Figure 3.2).

6https://solar.cs.ucl.ac.uk/os/sbpcg.html

https://solar.cs.ucl.ac.uk/os/sbpcg.html
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3.4 Game Bits
We start our survey by discussing Game Bits. Game bits are the smallest units of

game content, or in other words, the most basic pieces that can be used to build a

game. Game bits on their own, that is, when considered independently and out of the

context of a particular game, do not hold any value for the players of the game. In

that sense, game bits are the most basic building blocks that are in turn used by the

developers of a game to generate other types of content. For instance, textures are

one of many different game bits that can be used to construct game scenarios. We

analyse work with respect to textures, sounds, weapons and vegetation. Textures are

the images and materials of the elements of a game. Textures are in accordance with

the artistic style of the game. Sounds encompass the music and sound effects of a

game. Music is an important element to create the game atmosphere. Sound effects

report feedback to the player regarding their actions or changes in the environment.

Weapons are game bits that are used by the players to face adversities in a game.

Vegetation creates an aesthetic engaging environment. In addition, this game bit

help players as hiding place, as raw material, or guide players about directions and

climate changes.

3.4.1 Texture

Textures have been mainly addressed by the Graphical Computation community [84].

The generation of textures for video games tackle a wide range of challenges. For

instance, there are work that generate the shape of the elements of a game [85].

Kowalski et al. [85] generated novel shapes for chess-like games motivated by previ-

ous work related to chess-like games that used the rules of chess to generate novel

games (see Section 3.8.1). Their work tackled the generation of the whole collection

of pieces for a game, as well as each individual piece separately. The evaluation

indicated that keeping the balance between the collection and the individuals moved

the results towards one of the objectives.

Other work have tackled the generation of textures by evolving the colour

palette [86] or the complex materials [87] that compose an element of a game.

Players tend to associate the appearance of an element of a game with its aim, that
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means, that a change in the appearance of an element of a game would affect the

perspective of the player. Liapis [86] studied the use of an evolutionary approach to

modify the colour palette of Pokémon keeping their shape. The new colour would fit

those Pokémon into different Pokémon categories just by their appearance.

Brown et al. [88] evolves camouflages patterns for game assets. Inspired by a

real military uniform pattern, a genetic algorithm is able to generate new patterns

assessed by the environment. The evaluation used computational vision observation

of the pattern in the environment, and assessed its capacity to camouflages. They

also conducted a human evaluation that corroborated the blend capacity assessed

previously by a computer.

The work on textures shows how the search in a large space leads to provide

new ideas over this type of content, and the human evaluation corroborated how new

content would be feasible in a video game.

3.4.2 Sound

The application of algorithms for sound composition tasks is not a new challenge.

Research in algorithmic composition started in the last decade and has a long his-

tory [89]. Its application on games is not new either [90]. After the survey of

Togelius et al. [2], Plans et al. [31] brought Experience-Driven PCG and sound to-

gether. Plans et al. generated music based on the experience of players while playing.

The actions of players are the inputs of the approach, and affect the music at runtime.

Their results sustained the idea that music affects gameplay.

A key factor over the sounds is the effect on the players, generating new sound

content seems to require some human verification. This may be the reason why there

is not so much SBPCG work on this type of content.

3.4.3 Weapons

Previous work on procedural generation of weapons tackled the challenge through

approaches guided by human players [91, 92, 93]. The authors of these work

developed a 2D commercial game where the weapons were generated based on

the interaction of the players with the game. More precisely, the game generated
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weapons based on how often the players interacted with a weapon in particular.

McDuffe et al. [94] also applied an interactive objective function for generating

weapons. In contrast to the work referenced in the prior paragraph, McDuffe et al.

generated weapons for an academic 3D multiplayer game. The weapons were evolved

through the study of implicit evaluations of each weapon provided by players. The

measured factors were the time that players had equipped each weapon and the

number of kills obtained by players with each weapon. From the point of view of the

developers, the results suggested that the approach generated interesting weapons.

Inspired by the work of McDuffe et al. [94], Gravina et al. [95] introduced a

weapon generation approach for a 3D commercial game. They evolved weapons

with the aim of obtaining balanced weapons, where balance was calculated through

an objective function that contemplated the distribution of kills of each weapon. In

addition, they applied the same objective function to evolve and improve existing

weapons. In contrast to the work by McDuffe et al. [94], the objective function

simulated matches among bots, which did not need rendering to do the simulation

thus accelerating the evaluation. The authors also ran an experiment with human

players to assess the quality of the generated weapons. The received feedback

showed that the approach generated weapons that were interesting, fun to play, and

balanced.

Based on their previous work, Gravina et al. [3] continued with the generation

of balanced and effective weapons, where balance still considered the distribution of

kills of a weapon and effectiveness considered whether a weapon could actually kill

an enemy or not. Throughout the paper, they explored the usage of a constrained

surprise search approach to generate weapons. Constrained surprise search is a

Feasible Infeasible-2population constrained optimization algorithm which looks for

“surprising” results, that is, diversity on the output. Gravina et al. [3] compared the

performance of their approach against a single-objective search approach and a con-

strained random search approach. The comparison exposed that the objective search

approach obtained more feasible results than the other two approaches. However,

the surprise search approach obtained more diversity in the results than the other two
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Figure 3.4: Example of weapons evolved via constrained surprise search (source [3]).

approaches. Overall, the results of this work highlighted that the constrained surprise

search approach was capable of quickly and reliably generating diverse weapons.

We observe a successful use of on-line generation for weapons where the search

is guided through players feedback to create the content that would suit those players.

On the other hand, weapons generation has moved also towards generating diverse

content that could be unexpected and not only suiting players preferences.

3.4.4 Vegetation

Vegetation includes wherever plants appear in any digital environment, including

indoor plants. Vegetable, like any digital object, can be interactive or not. To date,

almost all vegetation is noninteractive. The importance of detail representation of

vegetation, depends heavily on the target realism of the game and the resolution of

the hardware. Empirically, vegetation is well-suited for TM: certainly, the game

industry has overwhelming voted for it with their keyboards for it to date. Evidently,

the industry deems the coarse-grained realisation of vegetation satisfactory. The
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canonical TM is SpeedTree, which provides a development environment to create

and modify vegetation, as well as a wide catalogue. The development environment

allows the user to visualize the vegetation in different seasons, and to add wind, and

light, among the different options. SpeedTree is widely used in cinema and video

games, two of the most popular 3D game engines [96] (Unity and Unreal) integrate

it. Perhaps, TM’s success has stymied ML work in the space; in any case, we are

unaware of any PCGML for vegetation.

The uniformity of TM vegetation, TM’s weakness, inspired one group of

SBPCG researchers to look to improve the diversity of noninteractive vegetation.

Mora et al. [30] has proposed a novel, SBPCG approach to generate vegetation.

Their approach uses an evolutionary algorithm to simulate the life cycle of the

flora. Universe 51 game is a planetary exploration game, one with photo realistic

environments which enhance the fun and interest of exploring an alien landscape.

The authors integrated their flora generator into Universe 51 and play-tested it. Their

goal is to increase the naturalness of a digital environment by simulating change in

the flora. There are two big questions unaddressed by Mora et al., the computational

cost of adding this dynamism, and the benefit in terms of player satisfaction. Perhaps

this is why, at the time of writing, no game publisher has adopted it.

Interactive flora is even less explored. To our knowledge, there is only one

game that does so. Petalz [97], a game which allows players to interact with flowers

creating new content. Interactive objects, by definition, as noted in the introduction,

have behaviours, which, in turn, introduce constraints, like weight, that are well-

suited for SBPCG.

Flora generation has been dominated by TM techniques, however there is no

evidence that prove why other techniques have not gained a similar widespread.

Answering the two open questions that we have aroused could enlighten the reason.

3.5 Game Space

Game spaces (or maps) are the environments of a game, that is, a one-, two-, or

three-dimensional area that can be filled with game bits in a relative position and
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direction. Game spaces do not specify linear gameplay, meaning that they do not

need a start and end point. We can distinguish two main types of game spaces:

outdoor and indoor maps. Outdoor maps are large spaces, usually with different

ecosystems, that require a certain amount of time to traverse. In these spaces it

is common to use vehicles or teleport systems. Specific to outdoor maps is the

topography of their terrain, which is a depiction of the elevation of the map. Most

works in the field of outdoor maps deal with the topography of the terrain of the map,

and often referred to it just as terrain. Indoor maps are maps that are contained in

a limited space within which the player can move. For example, shooter maps rely

on buildings and objects to create suitable combat spaces, while strategic maps are

designed to require the management of different kinds of assets in real-time. The

assets are the different kinds of units, resources, buildings, and any other video game

elements that a player can position, manoeuvrer, manage, or otherwise control during

play.

3.5.1 Outdoor Maps (Terrains)

In 2009, Frade et al. [32] coined the term Genetic Terrain Programming (GTP),

which refers to the use of SBPCG in order to generate terrain for video games.

Their approach used an interactive objective function that involved humans to guide

the search. The results highlighted two limitations regarding user fatigue and the

inability to perform zoom over the generated pieces of terrain.

In order to address these limitations, Frade et al. continued their work with a new

version of GTP, named Automated Genetic Terrain Programming (GTPa) [98, 99].

These works modified their previous approach to tackle these limitations by avoiding

user fatigue and enabling the zoom feature over the generated terrain. In order

to avoid user fatigue, the authors proposed two distinct direct objective functions,

guided by different objectives in each of the two works, that did not involve humans.

In 2012, the same authors combined the two functions from their GTPa previous

work into a new direct objective function that was the result of the sum of the

formerly individual objectives [4]. The approach decreased overlaps in the results,

but generated terrain with smaller amplitude. The results were released in an open
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Figure 3.5: Screenshot of Chapas video game where the terrain was generated online by a
TP (source [4]).

database7 for future research purposes [100].

In 2016, Pech et al. [101] proposed a novel approach for generating terrains

by incorporating elements into pre-existent terrains. To incorporate those elements,

Pech et al. [101] introduced the use of an architectural element in the objective

function, which is isovist. An isovist is the volume of a space visible from a given

point in space. Through this perspective, Pech et al. [101] were able to introduce

elements such as hidden areas in a terrain. This novel approach benefited terrains

that were previously unplayable.

Terrains generation has evolved from the use of an interactive objective function

to a direct objective function to avoid user fatigue. It is interesting to notice that there

is no comparison between the use of an interactive objective function or a direct

objective function, and it gives an opportunity to explore simulation-based objective

function to address the issue of user fatigue.

7https://sourceforge.net/projects/tps-db/

https://sourceforge.net/projects/tps-db/
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3.5.2 Indoor Maps

3.5.2.1 Shooter Maps

The previous SBPCG survey [2] shows that SBPCG work addressed the challenges

of generating content as tracks for racing games, rules for board games, weapons for

space shooters, levels for platform games and maps for real-time strategy games. The

work of Cardamone et al. [102] is the first to address the challenge of generating First

Person Shooter (FPS) maps. Despite FPS is one of the most popular game genres,

only three studies [103, 104, 105] investigated FPS games before, by targeting the

generation of a new form of content; that is, generating the behaviour of Non-Playable

Characters.

Maps are the heart and soul of FPS games. Cardamone et al. [102] argue that

generating FPS maps poses a bigger challenge than generating maps for other games.

They also acknowledge that FPS maps should favor gameplays that reward skillful

use of complex tactics, and force players to vary their tactics so they cannot use the

same patent trick all the time to win.

Outside of PCG, researchers have analysed FPS maps and proposed design

patterns for FPS maps [106]. These design patterns might be useful for guiding

the automated search of new FPS maps. Nevertheless, Cardamone et al. [102] do

not leverage the former design patterns but rely on bots for the objective function

instead.

The work of Cardamone et al. [102] generated complete and playable FPS maps

for Cube 2 8, an open-source game from 2004. They learned that direct encoding

works better than indirect encoding for this kind of map. However, they point out two

main limitations of their work: (1) the dependency on the control logic of the default

bots of the game, and (2) the lack of validation by players, that is, they evaluate the

maps in terms of synthetic measures (fighting time and map space), but they do not

claim that their measures correspond with human players’ judgments.

Three years later, Lanzi et al. [107] revisited the challenge of generating maps

for FPS. Their work shares the encoding, the case study, and the synthetic evaluation

8http://sauerbraten.org

http://sauerbraten.org
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with the work of Cardamone et al. [102]. Nevertheless, Lanzi et al. [107] aimed for

a different goal. Whereas Cardamone et al. addressed fast-paced action maps, Lanzi

et al. addressed match balanced maps. Balancing a match between two players is

one of the seminal problems of video game development. To do so, Lanzi et al. [107]

proposed a novel objective function computed on the basis of the statistics collected

from a simulated match between two bots. Their work succeeded, in three scenarios,

generating maps that balanced the match between pairs of bots with different skills.

Olsted et al. [108] brought human players to the work of Cardamone et al. [102].

The novelty of their work was the use of human players as objective function.

Humans played the maps and used votes to rank them. The approach was evaluated

in an academic context with the FPSEvolver video game, a video game developed by

the authors for the evaluation. Almost every player agreed that the maps improved

in quality as they played. However, players expressed that maps felt quite flat in

comparison to maps of real games such as the popular Counter-Strike and Call of

Duty.

Loiacono et al. [109, 110] were the first to explore multi-objective algorithms

for generating FPS maps. As in previous work, they use the same encoding as

Cardamone et al. [102] and Lanzi et al. [107] (i.e. a static simulation through bots

to guide the search) and the same case study (i.e. Cube 2). However, Loiacono

et al. [110] collect statistics from the simulation for multi-objective search. Their

objectives are the balance of the map, the pacing on which the players are engaged in

fights, the average length of kill streaks, the fighting time, the shooting time, ability

of loose enemy’s sight during fight and loose enemy’s sight enough time to stop the

fight. Their evaluation suggest that multi-objective evolution can provide a good

insight of what happen with human players. The same objectives computed using

bots and evaluated with human players provide significant agreement.

Shooter map generation approaches have addressed several challenges, starting

with the use of single and multi objective search algorithms. They have also used

simulation and interactive objective functions. Finally, their evaluations used both

academic and commercial video games. One of the works unveil players concern
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that the content felt quite flat, and this issue seems to remain unaddressed in the

literature.

3.5.2.2 Strategic Maps

In the previous SBPCG survey [2], it is possible to appreciate that SBPCG works

tackled map generation for strategic games. Those work generated strategic maps

at the scale of academic games [111, 112]. Togelius et al. [111, 112], authors

of those works, used a semi-direct encoding, crossover and mutation operators,

and a five-objective function. The objectives were obtained individually for each

game, and were derived from the play style and rules of each specific game under

evaluation. Four of these objectives (surface, asymmetry, resource distance, and

resource clustering) were of the direct type, and the fifth (A* base distance) was of

the simulation type. In 2013, Togelius et al. [113] extended their previous work with

further experiments and included human players in the evaluation. Human players

appreciated that the asymmetry objective generated unbalanced maps.

In the last ten years, SBPCG moved from academic strategic games to commer-

cial strategic games. Lara-Cabrera et al. [114] were the first that generated strategic

maps at the scale of commercial games (in particular, they did so for Planet Wars,

an indie game). To do that, they went beyond the state of the art by leveraging

bot-based simulations to guide the search [114, 115]. Specifically, they identified

the indicators that should be monitored during the simulation to calculate the objec-

tive function [116, 117]. Those indicators, once again specific to the game being

evaluated, addressed map balancing (territorial imbalance, growth imbalance, and

enemy imbalance), resource management dynamism (game length, conquering rate,

reconquering rate, and peak difference), and player confrontations (battle rate and

destroyed enemies). These works claimed that they successfully generated strategic

maps, however, none of them involved humans in the evaluation to evaluate the qual-

ity of the results or to find out whether the results were aligned with the expectations

of the players.

In 2013, Lara-Cabrera et al. continued their work on strategic maps from a

different perspective: The aesthetics of strategic maps [118, 119, 120], that is, the
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spatial distribution of the elements of the map and their features (size and number

of elements). In contrast to their previous work, the authors based their research

on direct objectives through which they assessed the geometric, morphological,

and topological properties of the maps with the purpose of generating procedural

content related to aesthetic aspects of the game. The results of these works were

evaluated through the usage of automated and semi-automated techniques along with

the support of a human expert. Contrary to previous work [116, 117], the evaluation

of these approaches intended to measure the degree of the quality of the aesthetics of

the maps according to the defined objectives, with the aim of studying whether the

generated maps were aligned with the expectations of the players.

The aesthetics of strategic maps have also been addressed by other authors

before. Through a constructive method, Johnson et al. [121] used a Cellular Au-

tomata (CA) algorithm for generating maps. A CA algorithm is a discrete model

with self-organizing properties that consists of a grid containing cells that can exist

within a finite number of states. The algorithm works by setting a state in each

cell of the grid and traversing the grid through an iterative process. However, CA

algorithms lack control and cannot be easily adapted for generating other maps. For

this reason, Mahlmann et al. [122] generated maps using a search-based approach

that incorporated a control mechanism to the CA algorithm approach. To that extent,

they use a direct objective function that generates maps for an abstract version of

another strategic game (Dune 2).

The most recent work by Lara-Cabrera et al. [123] is the first one that tackled

level balancing for a 3D academic strategic game (i.e. Paintbol). The authors defined

a balanced level as a level that does not provide an initial advantage for one of the

two participating teams over the opposing team. In contrast to their previous work

on balancing content [114] (with a simulation objective function), Lara-Cabrera

et al. [123] used an indirect encoding and a direct objective function that analysed

the defensiveness, ranking, and dispersion indicators. Those indicators generated

balanced levels based on the results of the objective function. The results of this

work suggested that, by applying different parameters in the evolutionary algorithm,
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better maps were generated. In particular, the rank and elitist selection methods

generated better maps than roulette selection according to the measured indicators.

Other authors also tackled the generation of balanced maps [124, 125, 126, 127].

Those approaches used search-based techniques to obtain the balanced maps rather

than generating them from scratch. Barros et al. [124] balanced the maps through the

initial position of the players. Kowalski et al. [125] and Franco et al. [126] evolved

the positions of the assets that would be placed in the map. Ma et al. [127] also

placed the assets in the map, but using a multi-objective approach The results by

Barros et al. [124], by Kowalski et al. [125] , by Franco et al. [126], and by Ma

et al. [127] generated playable and balanced maps.

One of the main goals in strategic map generation is the balance in the maps gen-

erated. Several approaches have addressed this goal from different perspectives (e.g.,

different representations and objective functions) but only one work has provided a

human evaluation that concludes that asymmetry does not work for balanced maps.

The other main goal addressed by strategic map generation is based on the aesthetics

of the maps. We find it interesting that contrary to the balance goal, researchers have

taken into account human expectations but they have only investigated the use of

direct objective functions.

3.6 Game Systems

Game systems bring the virtual worlds of video games closer to the human world

in order to provide the players with a sense of immersion. This is achieved through

complex models that include, among others, entity behaviours, also known as Non-

Playable Characters or NPCs. NPCs are essential for the experience of the players,

since they generate the illusion of a virtual world along with the opportunity to create

interactions between the environment and the players.

In 2013, Guarneri et al. [128] described an approach to automatic generate NPC

monsters through an evolutionary algorithm. The goal of the approach was to obtain

a diversity set of new monsters from a starting population defined by the developer.

This approach was later applied by Norton et al. [129] on another video game genre.
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With the same goal, Ripamonti et al. [43] developed a novel approach to generate

monsters adapted to players. This approach records the number of times a player kill

each type of monster, considering the monster with more death rate the preferred by

the player. The evaluation used a simulation to test the generated monsters, meeting

authors’ expectations on diversity, coherence, and difficulty.

Pereira et al. [44] instead of diversity seek for generating enemies that meet a

difficulty criteria. In that sense, the objective function looks for enemies that are

closer to the difficulty stated in the search. The results with human players indicates

that the generated content matched the desired difficulty. Viana et al. [33] extended

the work by Pereira et al. [44] introducing quality diversity methods, to improve

the diversity of the enemies generated. As Pereira et al., the results show how the

generated content matched the desired difficulty.

In 2021, Blasco et al. [45] looked for generating, and later improving [130],

spaceship enemies which quality is comparable to manually content created by

developers. The approach has a novelty as they worked with software models,

instead of code. Model-Driven Engineering has the ability to provide an abstraction

level in the development process. The results show how the approach was capable

to generate content comparable to the manually created by developers in 5 hours,

compared to ten months that took to the developers. On other hand, to generate also

spaceships, Gallota et al. [5] used a combination of Lindenmayer systems [46] and

evolutionary algorithm. Their results suggest that the approach generated spaceships

that meet some human preferences.

Some work in the literature tackle battle formations on games where the player

must defeat a coordinated group of NPC enemies. Players do not find challenge

on the static strategy behind battle formations, as they just learn the optimal way

to win. Thus, Ruela et al. [131, 132, 133] presented a co-evolutionary approach

for generating balanced and challenging battle formations. They evaluated the

effectiveness of their proposal offline (i.e., outside the game itself) by comparing

the search-based generated battle formations against the battle formations built by

human players. The results showed how the generated battle formations could win
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Figure 3.6: In-game screenshot of a spaceship generated using the approach by Gallota
et al. [5] (source [5]).

against the formations of active players, improving the challenge for the players.

A novel work in the literature by Brown et al. [134] proposed a generative

approach towards city discovery in four different role playing video games based on

the social structures and networks of the NPCs. As a result, the designed algorithm

devised the placement of cities and NPCs based on the intern complex relationships of

NPCs in order to generate a more realistic video game environment. The evaluation

showed the approach to be human competitive.

Most of the work on this type of content focus on enemies NPC, and only one

of them on social aspects of NPCs, which provides space to explore more types

of NPCs. On other hand, an interesting strategy has been presented by the use of

Model-Driven Engineering to generate new content, that could be likely extended to

more content types in future work.

3.7 Game Scenarios

Game scenarios describe the goals of a game, and the way and order in which game

events unfold. Normally, the events of a game are set in motion as a result of partial

or total completion of the game goals, as well as through the interaction between
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the players and the game. Game scenarios are described by game developers, and

are often transparent to the players of the game. Game scenarios can be classified

into three different types of content: puzzles, tracks, levels, and stories. Puzzles

are problems to which the player must find a solution. The solution can be based

on previous knowledge or on a systematic exploration of the space of the possible

solutions embedded in the problem. Puzzles can be found in a wide variety of game

genres. Some different kinds of puzzles are mazes and physics. Mazes are puzzles

defined as a network of paths and hedges through which the player has to find a way.

Physics puzzles introduce the laws of the physics into games. Players need to apply

the laws of physics for the sake of solving the problem. Tracks are cyclical game

scenarios, and are usually found in racing games. Levels are logical separators that

enable advancement within the different sequences of a game. The advancement is

often based on the successful completion of game objectives by the player. Levels

can take up many different forms as follows: Rooms are levels where the players

must interact with a set of game elements available within a particular section of a

game; Dungeons are levels composed by a succession of rooms. The player must

pass through the different rooms to complete the goals of the level, Timelines are

levels that are linearly designed and are usually found in platform games. Stories

are the narrative elements that compound the game. Stories present the events of

the game to the player affecting directly their experience. The following paragraphs

discuss the relevant search-based research work in each area.

3.7.1 Puzzles

3.7.1.1 Mazes

A previous work on maze generation by Ashlock et al. [135] presented an evolution-

ary approach to generate mazes. In the approach, the authors used a direct encoding

and a simulation-based and direct theory-driven objective function. In 2011, the same

authors [136] proposed new types of encodings (direct, chromatic, indirect positive,

and indirect negative) and features that could be used to construct the objective

function. Their results showed that the different encodings and objective functions

were feasible, and that the selection of one of them would depend on the desired type
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of maze.

In the same year, Ashlock et al. [137] presented a work that can generate mazes

with two possible solutions, depending on the character that addresses the challenge,

named as dual mazes. In this approach, the authors used features for the objective

functions from previous work [136], but modified the chromatic and indirect positive

encodings. The results suggested that the direct encoding generated more diverse

mazes and that the indirect encoding found better solutions according to the objective

function. Based on this work, McGuinness et al. [138, 139] generated large mazes

using small mazes as tiles. The novelty of these works [138, 139] resided in the

objective function, which was adapted in order to provide the developers with more

control over the tiles and the final maze. McGuinness et al. evaluated the results of

their work by using their approaches to generate large mazes according to designs

provided by developers.

In 2012, McGuiness [140] ran an experiment to statistically compare different

encodings from previous work [139]. The author argued that the encoding is an

important factor to the final visual representation of the mazes. The results suggest

that the visual representation of the mazes is very different depending on the encod-

ing, even when the mazes are similar according to the measurements that the author

used in the analysis. More recently, McGuinness [141] built up on previous work by

incorporating a direct encoding and features from previous studies in the objective

function. In this work, McGuinness [141] tackled maze generation with a novel

search-based approach adapted from the Monte Carlo Tree Search technique. The

results revealed that the mazes generated through this approach were intuitive and

qualitatively different from those generate by using only evolutionary computation.

Approaches other than evolutionary computation or Monte Carlo Tree Search

have also been applied in the last decade. First, Kim et al. [142, 143] proposed a

search-based approach to generate ‘perfect’ mazes, that is, mazes with no loops or

inaccessible areas. The approach takes as input the desired metrics for the maze and

selects the algorithm that better suit the metrics in order to generate the mazes. Once

the mazes are generated they are evaluated by the desired metrics and by a set of
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measure metrics. The difference between the values obtained by the mazes for the

desired metrics and for the measure metrics act as the objective function and as the

stop criteria for the search. Secondly, Pech et al. [144, 145] proposed an approach

based on the evolution of Cellular Automata (CA) rules that would be in charge of

the generation of mazes. The authors argued that evolving CA rules is faster than

evolving mazes, because their proposed CA was able to generate a variety of mazes

that met the set of rules evolved.

The work on mazes appeared in the literature since the last survey has focused

their effort on the representation of the maze problem. This work point out how

different types of representation are feasible to generate mazes, but depending on the

encoding the results will vary, and while the generated content may be similar based

on measurements it can still exhibit visual differences. One open challenge within

maze generation is the validation with humans in commercial video games.

3.7.1.2 Physics

Physics-based puzzles are a type of content that has not been tackled by SBPCG

before 2013. Shaker et al. [17] are the pioneers in this area. They proposed an

evolutionary algorithm based on a indirect encoding and a direct objective function.

Their results suggested that this technique generated promising puzzles to be played.

Afterwards, Ferreira et al. [146, 147] also presented an evolutionary algorithm for

generating physics-based puzzles. However, the encoding and objective function by

Ferreira et al. [146, 147] differ from those proposed by Shaker et al. [17]. Ferreira

et al. [146, 147] used a direct encoding and simulation in the objective function,

with the main purpose of stability. The results showed that their approach generated

stable puzzles.

Kaidan et al. [148] extended these prior work, modifying the objective function

to adjust the levels according to the player. Kaidan et al. did a preliminary validation

with human players. In a subsequent work, Ferreira et al. [6] built upon their

previous work in the field [147]. In contrast to the work by Kaidan et al. [148],

their approach improved the encoding to allow for more features, such as duplicated

blocks. Moreover, the objective function for their approach also took into account
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Figure 3.7: Example of levels generated with the GA of Ferreira et al. [6] (source [6]).

the feasibility of a puzzle, not only its stability. The results showed that the approach

generated relevant puzzles for the first episode of the game used as case study (i.e.

Angry Birds).

The direct encoding used in previous work limited the structure of the puz-

zles [148]. Due to this limitation, Calle et al. [149] proposed a novel evolutionary

approach to generate stable free form puzzles. In order to reduce the cost to eval-

uate the objective function, before the simulation, a candidate needed to meet two

criteria (distance to the ground and overlapping of blocks). Their results highlighted

that SBPCG had potential for generating physics-based puzzles, and the need for

problem-specific knowledge. Lately, the same authors [150, 151] reduced the cost

to evaluate the simulations of the objective function through the usage of a physics

engine instead of a game engine.

In contrast with the work mentioned above, other authors [152, 153] tackled

the n-body physics problem. To that extent, they proposed an evolutionary approach

which generated puzzles according to a given difficulty (easy, medium or hard). The

approach by Lara et al. [152] presented three different objective functions, based on
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different criteria (intersections, gravitational acceleration, and simulations), and a

preliminary analysis was run with human players. The results suggested that none

of the three objective functions rated the difficulty of the generated content in the

same manner as human players did. Lopez-Rodriguez et al. [153] further validate

the work by Lara et al. with human players. They found out that the automated

approach tended to rate the generated content as higher difficulty when compared to

the difficulty ratings provided by the human players.

Physics is a novel type of content that we have identified in our survey. It has

gained enough attention and several authors have investigated the use of different

encodings and objective functions. Some authors recommend the use of indirect

encoding to avoid structure limitations on the puzzles. A work with human validation

noticed how human and the approach differed over the difficulty of the generated

physics puzzles. Further investigating the reason behind this difference could lead to

interesting insights.

3.7.2 Tracks

Some work in the field of tracks [154, 155], included in the previous survey [2],

tackled track generation through an evolutionary algorithm that generated racing

tracks for an academic 2D racing game. In order to generate the racing tracks, the

authors based their approaches on a bot-simulation objective function to guide the

search.

More recent works, such as the one presented by Loiacono et al. [156], aimed to

optimize the fun value of the game through the maximization of the potential diversity

of race tracks in the game, namely, through the maximization of the differences

between the available race tracks in the game. The diversity of a particular race

track was assessed by a multi-objective function that measured the curvature of

the track through a direct objective, and the speed profile of the track through

a simulation objective. Loiacono et al. performed a preliminary validation with

humans, which suggested that there is a statistically significant alignment between

the results provided by the approach presented and the preferences of human players.

Prasetya et al. [157] also worked towards the optimization of the fun of a game
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Figure 3.8: Architecture of TrackGen (source [7]).

through its tracks. They differed from the work of Loiacono et al. mainly in two

aspects. Firstly, they used a semi-direct encoding instead of an indirect encoding.

Secondly, they compared the performance of two different search algorithms (Tabu

Search versus a Genetic Algorithm). Among the two search algorithms, the Genetic

Algorithm had less average generation time than Tabu Search. Prasetya et al. per-

formed an evaluation with humans comparing the tracks generated by their approach

against man-made tracks. Their results suggested that the generated tracks were

measured up to man-made tracks in terms of the measured fun.

With the aim of aligning content generation results with the preferences of the

human users of a game, Cardamone et al. [158, 7] were the first to introduce an inter-

active objective function in the track generation process. Through their approach, a

population of tracks was generated by an Evolutionary Algorithm. The Evolutionary

Algorithm was guided through the assessment of the tracks, provided by human

participants after each iteration of the algorithm. After the experiment, humans stated

improvements in the quality of the tracks, and that the process produced interesting

tracks.
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The work in tracks share a common goal, that is ‘fun’. In order to achieve this

objective, human intervention is present either in the evaluation or in the objective

function.

3.7.3 Levels

3.7.3.1 Rooms

We have noticed the need of this subcategory because in the last ten years, the

amount of works that fall into this type of content ,and the diversity of techniques

(such as Evolutionary Algorithms [159], Multi-objective Algorithms [160], Quality

Diversity [161]), has increased. As an example, in 2012, Togelius et al. [162]

proposed a preliminary approach that tackled this type of content through a hybrid

approach that used Evolutionary Algorithms and Answer Set Programming (ASP),

which has been used before for system design generation [163]. However, in more

recent work, the core of the generation of this type of content has shifted towards the

usage of the General Video Game AI (GVGAI) framework. Two main elements are

used to build this framework: (1) the Video Game Descriptive Language, and (2) the

General Video Game Playing Competition. The Video Game Descriptive Language

(VGDL) [164] is a textual description language that has been used to represent two-

dimensional games. The General Video Game Playing Competition [165], which

started in 2014, is an event that explores the challenge of creating controllers for

general video game play, where a single agent must be able to play many different

games. The GVGAI framework provides a series of different games based on VGDL,

as well as the game-independent agents to play the generated room levels for those

games.

Neufeld et al. [166] used an Evolutionary Algorithm to evolve the rules used by

a room generator from GVGAI based on ASP. These rooms were evaluated through

a simulation objective function that calculated the difference of average scores

obtained by vanilla Monte Carlo Tree Search and a random player. Their results

showcased the benefits of the approach, however, Drageset et al. [167] identified the

computational cost of translating VGDL games into ASP rules as a drawback. Hence,

Drageset et al. proposed a purely evolutionary approach, named Meta Generator,
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based on a more elaborated simulation-based objective function that uses three of the

agents provided by GVGAI. The evaluation compared the Meta Generator against

both random and constructive generators using the same objective function. The

results highlighted that the Meta Generator obtained higher scores for the objective

function than the other generators.

Zafar et al. [168] also proposed an evolutionary approach, more precisely, a

Feasible Infeasible Two Population algorithm which differ from previous work in

the metrics used for the objective function, measuring aesthetics and the difficulty

of the rooms. Their results suggested that the levels obtained were aesthetically

and challenging. With the same aim, Petrovas et al. [169, 170] proposed a genetic

approach, with a complex direct fitness function, Combined Compromise Solution.

Another proposal from Zafar et al. [171] used design patterns to generate rooms.

The approach selected patterns from a collection of design patterns and used them

as input for the evolutionary process. The objective function also included a factor

in the equation related to design patterns. The experiments were run with different

agents from GVGAI, and concluded that the agents had better performance on rooms

generated with design patterns.

Walton et al. [172] addressed the room generation from the perspective of the

developers instead of the player. Their proposed approach takes as input a level

designed by the developer, and uses a Feasible Infeasible Two Population algorithm

to generate new levels. This approach was evaluated by developers judging its

capacity to facilitate their job. The developers found more inspiring the results from

the evolutionary algorithm than random generation. However, the approach lacks of

diversity, which limits its use.

In order to tackle this issue, which is common to different approaches, a novel

evolutionary strategy, named Illumination Algorithm [173], was exploited. Illumina-

tion Algorithms find high performing solutions in different sections of the search

space instead of maximizing one solution as evolutionary algorithms usually do.

Charity et al. [174] incorporated this idea in their approach, and used the mechanics

from some of the games provided by the GVGAI framework to create multiple,
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relatively high quality states for a GVG-AI level that demonstrate combinatorial

variations of a game’s mechanics. Their results showed that this approach gener-

ated satisfactory rooms with a single mechanic or with a controlled combination of

mechanics.

The use of Quality Diversity methods has grown also in the field of room gen-

erations. Green et al. [161] introduced Constrained MAP-Elites, generating rooms

based on different human play-styles called ‘Personas’. Using Personas to generate

content can encourage a player towards new challenges. Alvarez et al. [175] and

Charity et al. [176] proposed a co-creative approach, where MAP-Elites approach

proposes new rooms and users guide the generative process. Users can also modify

the generated content influencing the evolutionary process.

In contrast with the work study above, Bhaumik et al. [177] were curious about

the performance of more Search-Based strategies. Due to that reason, Bhaumik

et al. [177] compared eight different search-based algorithms, including Tree Search

Algorithms and Optimization Algorithms. Those algorithms include Breadth First

Search, Depth First Search, Greedy Best First Search, Monte Carlo Tree Search, Hill

Climbing, Simulated Annealing, Evolution Strategy, and Genetic Algorithm. Their

results suggest that Optimization Algorithms generally performs faster than Tree

Search Algorithms.

More recently, Bailly et al. [178] proposed the inclusion of Wave Function

Collapse (WFC) into a genetic algorithm. They introduce WFC to generate rooms

targeting specific play experiences. Their approach used a simulation to measure

novelty, safety, and complexity of the generated rooms. The results compare those

metrics within a pure genetic search, a brute force search, and their genetic WFC

approach, obtaining this last the highest fitness.

Most of the work in this category is related to the General Video Game AI,

and its interest on the General Video Game Playing Competition. However, after

a human-based evaluation unveiled that the generated content lacks of diversity,

researchers seems to have moved towards addressing this issue. This also suggests

that a human evaluation is strongly recommended for all the approaches based on
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diversity.

3.7.3.2 Dungeons

Dungeons play an important role in video games. In the last ten years, the interest

has not decreased. One of the challenges of generating dungeons is the reduction

of the generation time. Pereira et al. [179] claimed that a tree structure reduce the

need for validation and fixing time that graph/grid approaches required, such as

the one proposed by Valtchanov et al. [8]. Later, Pereira et al. [180] conducted an

experiment with human players to validate the generated dungeons. The results

showed that the dungeons were enjoyable and challenging.

Font et al. [181] used a graph approach to reduce the generation time, which

differs from the work by Valtchanov et al. [8] for two aspects. First, the approach

used a context-free grammar representation to avoid the generation of syntactically

non-valid individuals. Secondly, Font et al. [181] reduced the search space by

dividing the approach in two steps: Generating the structure of the dungeon first,

and the detailed elements that are more time consuming, such as monsters or chests,

afterwards.

Another challenge in the generation of dungeons is the diversity of the results.

Tackling this challenge, Ruela et al. [182, 183, 184] proposed a single-objective

approach, which later derived into a multi-objective approach due to the fact that a

single-objective approach that combines different objectives tends to prioritize one in

detriment of the others. Melotti et al. [185] proposed a variation of a multi-objective

approach combined with Deluged Novelty Search Local Competition, which sep-

arated the search space into niches, allowing for the control of the differentiating

characteristics of the niches through a distance function.

On a different perspective, Liapis [186] addressed dungeon generation using

intertwining segments as representation. And, inspired by Liapis representation,

Viana et al. [187] generate dungeons using barriers as novelty, which are mechanics

that force players to follow a path. The diversity of the dungeons are measured

by map linearity, mission linearity, leniency, and path redundancy. Their results

analysed through expressive range suggest that the approach achieve the diversity on
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Figure 3.9: Example map generated for the Multi-Region Map Experiment - different re-
gions colored (source [8]).

dungeons generation.

In addition to diversity, Ruela et al. [184] designed an experiment to compare

the performance of four well-known algorithms against their own algorithm. They

concluded that it is not possible to define an overall winner algorithm, and that the

use of each algorithm will depend on designer preferences. The baseline algorithms

were: Improved Strength Pareto Evolutionary Algorithm (SPEA2), Pareto Archived

Evolution Strategy (PAES), Non-dominated Sorting Genetic Algorithm II (NSGA-II),

and Multi-objective Cellular (MOCell). The main limitation of the novel algorithm

proposed by the authors was its time consumption, which limited its usage to offline
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PCG.

To scale up the resources of a game, Brown et al. [188, 189] proposed the

integration of a dungeon editor that players can use into a commercial game. The

proposed search-based approach generated different rooms within a space and then

connected the rooms. The connection was possible due to the hard constraint that

each new room must overlap with an existing one. This work serves as an indicative

that hard constraints are an advantage that search-based methods provide as we

mention in the ML constraints (Section 3.1). Brown et al. also allowed the integration

of objects and enemies into the dungeon. A Petri net method filled the dungeon with

objects, and a second evolutionary approach placed enemies throughout the dungeon.

On other hand, Harisa and Tai [190] generate dungeon levels for based on game

designer preferences of game pacing. The experiments showed the error between the

designer preferences and the generated content with results between 1.16-18.53%.

The work on dungeon generation has identified two challenges for this type of

content. First the need to reduce the generation time, and secondly the diversity of

results. Due to those challenges the generation of dungeons has mainly remained an

offline generation. However, there is work on online generation, which makes use of

hard constraints in the approach. There is no outcome from online approaches about

generation time or diversity.

3.7.3.3 Timeline

Most of the work under this category used a well known platformer video game as a

case study, Infinite Mario Bros, which is a clone of Super Mario Bros. However, we

have decided to name this subcategory as ‘Timeline levels’ because a more general

name provides the potential of covering a wide range of genres, such as platform

games, runner games, or endless games. Shaker et al. [191] is a good example of a

generic approach of this category. The approach generated linearly the sequence of

actions for different games. They validated the approach simulating the sequences.

An advantage of the timeline levels is that they reflect the difficulty curve of

games. A difficulty curve is a graphical representation of how the difficulty fluctuates

during the game. Several approaches has addressed this challenge on platformer
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games [192, 193, 194]. Adrian et al. [192] was the first one that used the difficulty

curve designed by developers as objective function. The experiments showed that

the difficulty curve of the generated timeline levels were close to the designed

difficulty curve. A preliminary validation with 22 players supported the similarity

with handmade timeline levels. Inspired by Adrian et al., Atmaja et al. [195] applied

the same idea into a scrolled vertically shooter game. Moghada et al. [193] also

generate the rhythm of the level, fitness with difficulty curve by human.

Different representation approaches has been studied for timeline levels, more

precisely for Mario Bros. In 2011, Mourato et al. [196] found out that the use of a

grid as a detailed representation of timeline levels had the risk of consuming substan-

tial resources. To reduce the consumption of resources, Dahlskog et al. [197, 198]

divided Mario Bros levels into vertical slices. Each slide was a micro-patterns that

they extracted from the original video game. The combination of the slides generated

the resultant timeline levels, named as ‘scenes’. Dahlskoget al. [198] validated

the approach finding in the generated scenes combinations of micro-patterns that

expressed meso-patterns that were originally in the game. Later, Green et al. [199]

‘stitched’ the scenes generating long timeline levels. In 2022, Moradi et al. [200]

introduced Estimation Distribution Algorithm to also create meso-patterns.

Based on the work of Dahlskog et al., Green et al. [201] generated scenes that

served as tutorials for a specific mechanic. The approach used a feasible infeasible

two population algorithm with two objectives function. The infeasible population

objective function measured the aesthetics, e.g. a pipe on Mario Bros requires two

consecutive slides. The feasible objective function compared the performance of

two agents, a ‘perfect’ agent and a limitated agent. When the limitated agent failed

on completing the level, it meant that a special mechanic is needed, and therefore

the level could be a tutorial. Khalifa et al. [202] compared three approaches which

generate timeline levels for one mechanic, including the work of Green et al. [201].

They results showed that the approach that guarantee the mechanic on the scene had

three disadvantages: It was the slowest approach, required human intervention, and

relied on agents failures.
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We have seen that in more recent years, new techniques such as illumination

techniques (see Section 3.7.3.1) have appeared. Warriar et al. [203] presented a first

attempt of Illuminated approach for platform video games. The results highlighted

three opportunities for improvement: A more visual human-designed aesthetic levels,

better features that define fun, diversity and controllability on the content, and how

to keep a computationally low consumption with an entire map of playable levels.

In this direction, Withington [80] presented a preliminary comparison of Quality

Diversity algorithms MAP-Elites [173] and SHINE [204], however neither approach

stood out above the other.

Research on timeline generation has worked towards three different aspects.

The first one is the use of a difficulty curve designed by developers to approximate

the generated content to the desire curve. Second is the effect of using different

representations. The last one is seeking diversity over the results. These three aspects

has been addressed separately, where future work it is needed to investigate their

combination.

3.7.4 Stories

Addressing the generation of stories is a complex task for procedural content gen-

eration. The reason is the difficulty to obtain a cohesive story from evolutionary

operators. However, the use of trees or grammars with small pieces of stories are

known to work well together [205]. Based on the use of trees and the recent works

to reach diversity through Search-Based PCG, Fredericks et al. [206] introduced a

novel idea that combines those two elements into a genetic improvement algorithm.

The work is still under development, and currently lacks of evaluation. In this di-

rection, Alvarez et al. [207] and De Lima et al. [208] has also generated narrative

quests making use of grammars [207], and trees [208].

By the hand of Alvarez et al. [209, 210] Quality diversity methods has also

been applied in stories generation. Alvarez et al. [175] first proposed a co-creative

approach to generate rooms (See 3.7.3.1) that has been adapted and applied for

stories [210].

Even with the difficulties that stories present to PCG, novel ideas have been
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applied for this type of content. Most of the work move toward achieving diversity

in the results.

3.8 Game Design
Game design is the core of a game. Game design defines the gameplay of a game

by conceiving and designing its rules and structure. A change in game design could

generate a whole new game. Game design decisions affect all the content in the

previous sections. We can further distinguish game design into two aspects: (1)

System design, which refers to the rules and mechanics that define a game; (2)

Camera control, which refers to the placement and behavior of the camera in the

game, or in other words, how the player will visualize and experience the game.

3.8.1 System Design

As seen in the previous SBPCG survey [2], system design has been addressed by

different approaches.

Browne [36] presented the Ludi system, which used Evolutionary Computation

combined with a simulation-based objective function, with the aim of measuring

aesthetic aspects of the game. This system led to the first fully computer-invented

games to be commercially published. Togelius et al. [211] introduced the concept

of ‘fun’ measurement through a Hill-Climbing approach. Both approaches used

simulation-based objective functions that have been used in recent works to tackle

system design from different points of view.

Aligned with the work by Togelius et al., Halim et al. [212] guided the search

with the aim of optimizing entertainment. The objective function measurements

included the duration of game, the intelligence required to play the game, the

dynamism exhibited by the pieces, and the usability of the play area. Halim et al.

validated their approach by conducting two experiments: one with a neural network-

based AI to measure controller learning ability, and another with human users to

measure the entertainment provided by the game. The results suggested that the

evolved games were more interesting and better than the randomly generated games.

Kowalski et al. [9, 213] proposed different approaches to generate games based
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Figure 3.10: One of the evolved games presented by Kowalski et al. [9] (source [9]).

on chess. In 2015, Kowalski et al. [9] presented an objective function based on

simulation to generate playable and balanced games. A hand-made evaluation

function analyzed the playout histories and checked the balance, game tree size,

pieces importance, and complexity of the game rules. In 2016, Kowalski et al. [213]

generated games that were closer to chess and more constrained than those generated

by their previous work. The objective function increased the number of agents

in the simulation, representing players with various degrees of intelligence. The

experiment had two parts; the first compared the different agents of the simulation,

and the second compared the results with human-made chess-like games. The results

showed that the approach obtained playable and balanced games that were similar to

the high quality human-made games.

In 2023, Volden et al. [214] proposed a genetic algorithm to generate rules for

a kindergarten serious game. The approach measures the difficulty of the game with

the generated rules. Their results approximated the target difficulty.



3.9. FUTURE DIRECTIONS 76

In recent years, three different goals have been addressed by System Design

approaches. First, tackling aesthetics, secondly, optimizing entertainment, and last,

playability and balance. The latest search strategies rely on Quality Diversity, which

is a promising opportunity for generating this type of content.

3.8.2 Camera Control

Previous work on automatic generation of camera control content [215, 216] showed

that the search space of this type of content is rough to be explored. In addition, it

has also been highlighted that the objective function for generating camera control

content is computationally expensive, which reduces the number of evaluations

available for the search process.

Preuss et al. [217] addressed automatic camera control through a niching and

restart Evolutionary Algorithm. Niching extends Evolutionary Algorithms to multi-

modal domains, locating multiple optimum candidates where the Evolutionary Algo-

rithm loses population diversity, converging to a unique solution. Convergence is

an issue that Preuss et al. tackled through a restart mechanism when the approach

reached this point. Preuss et al. improved their previous approach [218] by adding a

constraint that reduced search space, which is one of the problems in content genera-

tion of automatic camera control. Their evaluation compared their approach with

the state-of-the-art algorithms. Their results suggested that their novel approach and

another similar approach (CMA-ES) performed better than other prior approaches.

The novel approaches to camera control perform better than the previous ap-

proaches, at least in academic settings, which makes it interesting to further assess

the performance of commercial games.

3.9 Future Directions
Throughout the pages of this section, we analyse the different research challenges that

are open in the field of work of PCG for video games. To that extent, the following

subsections present the challenges, their reason to be, and the open problems for

each challenge, as well as recommendations and potential future research lines in

the identified areas.
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Figure 3.11: Number of articles published per year for each category of the taxonomy
studied in this survey.
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3.9.1 Content Opportunities

Our survey has shown that the number of publications is not balanced across the

content types. In Figure 3.11, we show the number of articles published per year

that tackle the generation of content for each category analysed in our survey. While

Game Scenarios and Game Spaces arise as the most popular content types, it is

also possible to identify three exceptionally unpopular content types: Game Bits,

Game Systems, and Game Design. Regarding the Game Bits category (Section

3.4), which comprises the most basic building blocks of a game, we find a total

of 8 works. Within the category, we find the textures (4 works), sound (a single

work), weapons (3 works), and vegetation (a single work) subcategories. Regarding

the Game Systems category (Section 3.6), which deals with bringing virtual worlds

closer to the human world through the study of NPCs, we find a total of 11 works.

Finally, regarding the Game Design category (Section 3.8), which defines the core of

a game in the form of its rules and structures, we find again a total of 4 works dealing



3.9. FUTURE DIRECTIONS 78

with system design (3 works) and camera control (a single work). The study of

sounds and camera control are, then, the most neglected content types among already

unpopular categories. However, we could not find a clear reasoning coming from the

community for the lack of work in those particular areas, so we can only speculate

why they are being neglected. Games and video game genres appearing in a recent

report on the status of the video game industry9 include those types of content, so

their necessity in video game development becomes apparent. As a matter of fact, we

have considered that some of these content types have been neglected because they

are considered too important and integral to the success of a video game: interactions

with NPCs, for instance, help players with video game immersion; and poor sound

effects can lead to a worsening of the user experience, which can in turn lead to poor

reviews and poor sales as a ultimate consequence. This may be a reason that calls

for a special treatment, and for a careful development by hand. We also theorize that

there may be too much diversity in the possible outcomes of PCG in those areas,

which makes it easier for researchers to focus on other content types.

In any case, the existence of fewer studies in those areas implies that there are

less improvements on the current complexity of their generation process and on the

complexity of the needed constraints. This issue could in turn mislead the directions

of researchers that favour other content types, since the current state of research

makes it possible to believe that Search-Based approaches are not suitable for these

content types even when nothing appears to indicate that those areas are harder to

generate through SBPCG than other content types. In that sense, we believe that

these content types should not go unnoticed by the research community any longer.

Even if there is an inherent diversity to the content, many SBPCG approaches allow

constraints to the objective function or different degrees of customization that may

be useful to tailor the results to the necessities of each case study. In addition, as

already discussed, details as textures, sounds, or interactions with NPCs are essential

to captivate players and provide quality to a video game. A game that lacks these

content types is directly headed to a failure. Hence, the procedural generation of

9https://www.wepc.com/news/video-game-statistics/

https://www.wepc.com/news/video-game-statistics/
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these content types could not only help with the economic cost and time to market

of a video game, but also with the outright feasibility of a game where developers

lack the means to build some of these content types.

Finally, regarding the suitability of SBPCG for these content types, we want

to encourage researchers to avoid steering their research to those fields of work

that are already explored, and raise awareness about the opportunities of research

in the field. In particular, we recommend to revisit approaches that have proven

their potential towards PCG applications, and to explore their application towards

researching the neglected content types. Overall, we recommend to approach all

content types equally, as they are equally important for the development of a video

game.

3.9.2 Online PCG

The content of a video game can be added at two different points of the development

process. Those two points are either before the release of the game, offline generation,

or during play, online generation. Most of the works presented in this survey work

with offline generation approaches. We speculate the reason behind this lies in

the content generation time issue: the current reality is that approaches take too

much time to generate content to be viable in online contexts. This problem affects

offline generation to a lesser extent because there is more flexibility with the time for

content generation during the development process. This issue will stand for online

content generation as long as approaches lack the necessary speed to not paralyze

the experience of the player.

The content generation time issue finds its roots mainly in the inefficiency

of the approaches and the computational resources that those approaches use. As

an example, approaches that use an indirect representation of the content require

less resources, however, indirect representations require a transformation process

that turns the indirect representation used in the approaches into the final content

that is incorporated in the video game. On the other hand, simulation objective

functions require more time than direct objective functions. Games that actually

use online generation do so through the combination of preexisting elements, with



3.9. FUTURE DIRECTIONS 80

the disadvantage that the content is then limited to designs that have already been

established by the developers offline.

The challenge lies in the application of current approaches to online generation.

To that extent, it would be necessary to identify applicability problems of current ap-

proaches, improve the necessary generation times, and optimize the device resources

used by a game to dedicate more computing time to the generation of content. In

addition, to study these issues with a greater level of detail, it becomes necessary to

know the time that takes to generate the content. However, most of the presented

works in our survey do not provide the times associated to the generation time. We

recommend to report the generation time in the results of future work in this field.

Finally, we believe that it would be possible to reduce or even avoid these

challenges through the usage of remote servers. Ideally, the remote servers would

run the approaches while the players play the game, generating the content in parallel.

In theory, this would allow for online generation while the players make full usage of

their playing time. Exploring the usage of remote server SBPCG for online content

generation has been largely neglected in research in the field, save for works in

tracks [158] that explores remote generation of content, and hence, it remains a

promising direction for solving the challenge.

3.9.3 Solvability, Playability, Fairness, and Diversity

Through the literature in the field we identify solvability, playability, fairness, and

diversity as the measurements that identify the basis of player expectations towards a

game. Solvability is understood as the characteristic that defines whether a problem

presented in the game content can be completed or solved (e.g. going from point A

to point B in a level). Playability is understood as the measurement that defines the

extent to which content can be exploited by human players. Fairness deals with the

perception of the player when dealing with content (e.g. distribution of resources

in a strategy game, or the probability of an event occurring in the game). Diversity

describes the variety of the content so that players do not receive similar content. All

of these factors affect the overall feelings of players towards a game, and influence

the decision on whether to keep playing or not. For instance, it is important for a



3.9. FUTURE DIRECTIONS 81

game to be challenging but not impossible to finish, and unfair game mechanisms

generate frustration in players.

Due to the reasons listed above, these measurements are commonly used to

evaluate the results produced by approaches and to guide them in procedural content

generation. However, they are not the only means to evaluate the results of the

objective functions in the available research. To that extent, we have observed

multiple research directions regarding the objective function in use for the evaluation

of the generated contents. In that sense, while some works produce objective function

scores based on the above metrics, other works retrieve their evaluation from the

behaviour of simulators that intend to substitute human players, and finally, the

works that obtain the best results in the literature make direct use of humans as the

objective function function in what is known as interactive objective function.

While interactive objective function leads to the results better aligned with

the expectations of players, it is still not a perfectly adequate objective function.

As a result of experimentation, human participants tend to fatigue, which leads to

a worsening of the objective function over time and a ceiling effect in the results

that hinders the potential of research in the field. In addition, the fatigue of human

participants limits the application of approaches to advanced or complex case studies,

which we can observe in the fact that most of the studies in this field evaluate the

approaches over severely tailored academic case studies.

As a potential research direction, we recommend revisiting objective functions

and their application to the research field. In that sense, we believe that researchers

should explore improvements to interactive objective function through the incorpora-

tion of mechanisms to avoid fatigue. To that extent, it would be possible to explore

hybrid objective functions that combine metrics or simulators (or both) with interac-

tive objective function. The combination would see metrics or simulators working

for a while on their own, guiding approaches towards preliminary results that could

be assessed afterwards by human hands. Exposing humans to short interactions with

an evolutionary approach at suitable times would avoid fatigue, thus allowing the

application of the approaches to the more complex industrial case studies, opening



3.9. FUTURE DIRECTIONS 82

promising lines of research in real-world environments.

In addition to the above, in the case of offline generation, if results are not

satisfactory, it is possible to generate new content or involve developers to refine the

content manually. This is not possible for online content generation. Moreover, the

prior survey [2] expressed concerns with the limitation of diversity that may be caused

by approaches looking for the best possible results. To overcome this limitation,

research in the past few years has seen a surge in quality diversity approaches [219],

a young and promising field that has attracted the attention of PCG researchers (on

categories such as weapons, strategic maps, timeline or rooms), and is yet to be

applied to several content types in both offline and online generation. A hybrid

objective function that combines different measurements with human evaluation,

along with the possible generation of content in remote servers mentioned as part of

another future direction (Section 3.9.2), would help with the evaluation of content

generated online, and with the acquisition of feedback directly from the players, who

are the best source of information for indicating the viability and diversity of the

generated content.

3.9.4 Bricolage

The main goal of PCG is to help developers during the development process of the

content of a game. However, not all generated contents are fit to be directly included

in a game. In that sense, the content that is created, stored, but never used creates

a waste of resources. In addition, discarded content becomes a potential source of

frustration for developers, who may evaluate those contents in terms of working

hours, or even see them as promising ideas thrown away, only unfeasible because

of the amount of time that it would take to fix them by hand so that the content can

make the cut into the game.

However, we could tackle this issue from a new angle, considering the contents

discarded after a content generation process as material that can be potentially used to

refine and adapt the process to generate suitable content for the game. To that extent,

it would be possible to consider content as a sum of components rather than as a

whole, and to evaluate the suitability of each component for the game independently.



3.9. FUTURE DIRECTIONS 83

In that way, it would be possible to explore the reuse of components from existent

content to novel content, thus avoiding waste of resources and the frustration of the

developers.

The reuse of components would also not be limited to discarded content, on

the contrary, it would be possible to take into account components coming from

all the existing content for a video game. For instance, reuse of components could

leverage components from content that is under development in order to generate

refined versions or variants of the content during the development process, allowing

developers to have a wider choice of content. Reuse of components could also use

components from content that has been already approved into a game, gaining access

to a library of components that count with the endorsement of the developers of

the game. In addition, though the usage of reuse of components, developers could

be more involved with the generation process, choosing their favored components

to refine the directions of the approaches. Our recommendation for this research

direction is to build approaches, both for online and offline PCG, that take developer

involvement into consideration and that empower the reuse of components of the

existing content.

3.9.5 Statistical Rigor

We have identified two common practices towards evaluating the presented ap-

proaches. The first of them is the usage of an objective function as a measure to

evaluate the outcomes and reliability of the approaches. However, trusting the ob-

jective function requires a prior evaluation of the objective function, and causes the

reliability of content generation systems to fall on the reliability of the objective

function. The second one is to present the approaches to events in order to compare

their efficiency. In this case, the results of the approaches are set against each other,

limiting the comparisons between approaches to the rules of the event and not specific

measurements. In such scenarios, it becomes necessary to improve the execution of

the approaches and their comparison. In that sense, it would be advantageous to have

a baseline that enables a fair comparison between works and equal opportunities for

progress in the community, as well as a fair comparison of certain aspects that could
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not be compared otherwise.

In addition to the above, the criteria followed by events as a means of evalua-

tion is not uniform. While some events leverage results from bots to evaluate the

approaches, the usage of feedback provided by real players is gaining momentum in

the field in the form of interactive objective function. We can find an example of the

latter in an event where a jury provides an assessment of the results of an approach

based on the performance of players. Many good practices in this field of work,

such as A-B testing, could be leveraged to build hybrid interactive systems that help

with the involvement of players and developers while avoiding fatigue. Overall, we

advocate for building approaches that allow practitioners and developers alike to get

closer to the target public, to ensure that the generated content can live up to the

expectations of players.

Finally, through this survey, we found out that many studies refer to artifacts and

results not publicly available, which severely hinders research replication. Following

the principles of open science10 to which the general Software Engineering commu-

nity adheres to, we strongly recommend the publication of prototypes, approaches,

artefacts, and research results. This would not only help with research replication, but

it would also influence the growth of the community and the rigor of the presented

research.

3.9.6 Industrial Content

The majority of the studies presented in this survey focuses on academic games or

academic environments as case study (see Figure 3.12). Those academical games

are clones of industrial games, simplifications or prototype versions of original

games. Academic environments are environments built explicitly for the research

purposes of the researchers. Plenty of research questions arise from the observed

scenario: Is there a need of more detailed generators? Is it difficult to adapt the

representations used in research to industrial content? Is the content of industrial

games more complex, making the quality of the generated content insufficient in

industrial scenarios? Whatever the case, the reality is that research in the field

10https://github.com/acmsigsoft/open-science-policies

https://github.com/acmsigsoft/open-science-policies
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Figure 3.12: Percentage of articles where the case study involves academic games, academic
environments or commercial games.
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is rarely applied to real-world video games. With such a scenario, the research

community remains disconnected from the industry, causing poor communication of

results between the novelties in SBPCG research and the final target users of those

approaches, the players. In other words, current research results do not reach players.

For example, Ruela et al. [131, 132, 133] could not empirically assess their proposal

involving humans due to the lack of access to the original game developers, and the

effort and time that human players would have had to put in for evaluation

This issue leads to what we believe is one of the major opportunities for research

in the field. If we are able to avoid this disconnection by applying the approaches

to real-world industrial case studies, we might be able to obtain feedback from

players, which might represent a very large and very valuable source of information

for developers and researchers alike. This source of information could be used to

guide automated approaches and to manually refine the generated content. However,

in order to apply the approaches to industrial content, we must avoid fatigue. In

addition to the exploration of hybrid interactive approaches, in blockbuster games

with millions of active players, it would also be possible to research mechanisms to

share the fatigue load of the fitness function. To that extent, our recommendation is

to identify the necessities of developers working in industrial contexts, and to adapt

the proposed approaches so that they can work over commercial content.
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3.9.7 Interaction between SBPCG and other techniques

Throughout the survey, we have focused on pure SBPCG approaches that generate

content. However, there exist work that tackle PCG through the interaction between

SBPCG and other techniques, specifically ML-based techniques. In the recent

years the interaction between SBPCG and PCGML has gained interest due to a

new research line called latent variable evolution [220]. Latent Space (LS) [221]

allows to learn the shape of search spaces where later the approach can search more

effectively. This is important, for example, for online PCG, where the time of the

search matters. On the other end, Quality Diversity (QD), a novel research field

in SBPCG, has already gain attention from the PCGML community exploring the

interaction between QD and LS [222].

3.10 Conclusion

The high demand for video game content has led to an increased interest in PCG, and

its investigation has gained momentum in the past decades. Throughout the pages of

this chapter, we have surveyed the updates in the state-of-the-art stemming from the

10-year gap since the last surveys in PCG for video games were published. To that

extent, we have built a taxonomy based on the two prior surveys [2, 1], and gathered

and categorized novel research in SBPCG. As a result, we have reported herein on

new work in Game Bits, Game Space, Game Systems, Game Scenarios, and Game

Design. Despite the undeniable advances in research in the field, we consider that

there are still many unexplored topics, and that some of the research challenges and

recommendations proposed 10 years ago are yet to be studied in depth. Through

our work, we have identified plenty of open research challenges regarding content

opportunities, the speed of online PCG, the characteristics (solvability, playability,

fairness, and diversity) of the generated content, the possibilities enabled by content

bricolage, the inclusion of statistical rigor in this field of research, and the need for

applying research to industrial content. Along with the open research challenges,

we have presented recommendations and identified several potential future research

lines in the areas under study. Overall, this survey presents a concentrated and
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comphrensive report on the latest work in SBPCG , effectively assessing the status of

research in the field and providing a renewed point of view for the ongoing discussion

over SBPCG in video games.



Chapter 4

Our Proposal: Imhotep

4.1 Introduction

In this chapter, we propose a new angle to tackle video games content generation

inspired by transplantation techniques [19], which we named Procedural Content

Transplantation (PCT).

Current PCG approaches work as follows: developers provide initial content

(usually human-generated content) into an algorithm to work with. Afterwards, the

algorithm (Traditional, Machine Learning, or Search-Based methods) will generate

new content. Only a few traditional methods have succeeded in providing tools

used by the industry to randomly generate vegetation (e.g., SpeedTree in Unreal and

Unity).

Our PCT proposal introduces for the first time the transplantation metaphor

for video-games. In our approach, the developers of a game will select an organ

(a fragment of video game content) from a donor (video game content), and a host

(another video game content) that will receive the organ. The organ and the host

will serve as inputs for a transplantation algorithm that will generate new content

for the game by automatically combining the organ and the host. Our hypothesis

is that our transplantation approach can release latent content that results from

combining fragments of existing content. Furthermore, our transplantation approach

provides more control to developers in comparison to current PCG approaches that

are solely based on random generation, leading to results that are closer to developers’
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expectations.

Moreover, we propose the use of video game simulations (SImhotep) to guide the

search, based on the intuition that it is possible to harness video games’ NPCs to run

simulations that provide data to asses the transplantation.1

To the best of our knowledge, this is the first work that leverages transplantation

to generate video game content, obtaining more favourable solutions than current

SBPCG in an industrial setting. In summary:

• Our results show that procedural content generation through transplant (i.e.

PCT) has significantly outperformed classic content generation in the evalua-

tion of this work, opening a new road towards tackling content generation.

• Our transplantation approach has produced the highest number of success-

ful transplants, to date - almost double than those found in previous work.

Moreover, the transplants are carried out in an real-world industrial context in

contrast to the academic context of other work.

• Our work returns control to the hands of the developers through organ selection.

The generated content is more in line with the intent of developers, as discussed

in the focus group.

• Our work reveals that harnessing simulations rather than test suites leads

to significantly better results. This may empower software transplantation

researchers to reconsider the usage of test suites in their work.

• Our analysis of the results reveals interactions between organs that are a

promising line of research to advance the field of software transplants.

For replicability, reproducibility and extension of our work, we made

IMHOTEP’s source code and the data of our study publicly available at https:

//github.com/SOLAR-group/IMHOTEP.
1In fact, within video games, it is typical to find NPCs that serve as companions to the player,

adversaries to defeat, or inhabitants of the virtual world. These NPCs have pre-programmed be-
haviours that could be used in game simulations. For instance, in a first-person shooter game (like the
renowned Doom video game), NPCs explore the game scenarios in search of weapons and power-ups
to engage in combat with other NPCs or the player.

https://github.com/SOLAR-group/IMHOTEP
https://github.com/SOLAR-group/IMHOTEP
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4.2 Our Proposal: IMHOTEP

This section explains how IMHOTEP makes use of evolutionary computation [223]

and software models to transplant organs within the current content of video games

to create new content (i.e., Kromaia bosses in our case study). To facilitate the

comprehension, we also provide the reader with an example of transplantation for

a simplified version of a Kromaia ‘boss’ inspired by the ‘Serpent’ boss shown

in Figure 2.2 with letter B. Given the popularity of software models for video-

game development (see Section 2.5), we designed IMHOTEP to work with models.

Although our running example uses the SDML models of Kromaia, our approach is

generic and can be used with other modelling languages because it exploits the idea

of boundaries between model elements.

Figure 4.1 shows an overview of IMHOTEP. On the left is the input to our

approach selected by the developers, namely the organ to be transplanted from the

donor and the host to which the organ will be transplanted (input selection 4.2.1).

Afterwards, IMHOTEP automatically detects the points of the organ that allows the

transplantation (Boundary detection 4.2.2) and the points where the organ can be

inserted into the host (Boundary mapping 4.2.3). To initialize the population of

the evolutionary algorithm, the organ is cloned and transplanted to a random point

(Initialize population 4.2.4). Genetic operations generate potential solutions for

transplantation (Genetic operations 4.2.5), while the objective function assesses the

quality of all of these potential solutions (Objective funtion 4.2.6). This process of

generating and assessing is repeated until a specific stop condition is met. When the

evolutionary algorithm finishes the execution, we obtain a ranked list based on the

given objective function of the best transplants between organ and host. Next, we

describe in more detail each step of IMHOTEP.

4.2.1 Input selection

IMHOTEP allows the developers to identify a source model content (donor) with

the organ (a fragment of the source model content) that will be transplanted, and

a target model content (host). Donor, organ and host will be strictly related to the

meta-model used by each context where IMHOTEP wants to be applied.
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Figure 4.1: Overview of IMHOTEP, our proposal for PCT.

In our running example we present a simplified version of the meta-model, and

the corresponding concrete syntax of the model (see Figure 4.2 Metamodel) from

Kromaia. In such model ‘Hulls’ serve as the structural framework that define the

anatomical composition of the models. For example, the boss presented in Figure 2.2

(identified as ‘B’) has its body built by hulls. ‘Weak points’ are conceptual elements

that possess the vulnerability to be harmed. ‘Weapons’ are tangible items capable

of causing harm through direct contact, such as discharging projectiles like bullets.

Hulls, weak points, and weapons are attached between them through ‘Links’.

In our example, the source donor model is a simplified version of the original

Kromaia ‘boss’ ‘Serpent’. Figure 4.2 Input Donor shows the graphical representation

of the donor’s model . It also shows with dashed lines the elements selected as organ.

The host is a model of a regular enemy that could appear in Kromaia. Figure 4.2

Input Host shows the graphical representation of the host model.

4.2.2 Boundary detection

To transplant an organ into a host we need to find a way to connect them. To this end

we exploit the boundaries between the model elements of the organ and the host. The

study of boundaries between elements in software models has been ongoing for over

ten years, with the aim of managing variability within models [224, 225]. A boundary

is a connection point capable of connecting two distinct model elements within a

model. The connection is restricted by the rules of the metamodel. In the simplified

example in Figure 4.2 Metamodel, the Source and Target meta-relationships are the

boundaries between the model elements of the models conforming to that metamodel.

In other model languages, there will be other meta-relationships with other names

that will be the boundaries.
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Figure 4.2: Overview of IMHOTEP on a running example.

IMHOTEP automatically identifies the boundaries of the selected organ, and all

the boundaries of the host. In our running example, the boundaries of the organ are

the connection points between donor and host. The elements that connect with the

rest of the donor are H, K, and Q. Figure 4.2 Boundary detection Donor shows the

donor, differentiating each element of the model with a letter from A to S, and the

selected organ (namely, H, I, J, K, N, O, P, Q) with its boundaries (which are b11 for

the H element; b16 for the K element, and b25 for the Q element). While, the host

boundaries are all the points where its model elements connect. Figure 4.2 Boundary

detection Host shows all the boundaries of the host of our running example: The

host has a total of 19 boundaries identified by a tag from ba to bs.

4.2.3 Boundary mapping

In the boundary mapping step, IMHOTEP determines a mapping between the organ

and the host boundaries. For each boundary in the organ, IMHOTEP considers all

compatible boundaries of the host, including the possibility of not connecting the

boundary to the host boundaries. The boundary compatibility is determined by the

metamodel.

The table on the Figure 4.2 Boundary mapping shows a boundary mapping

between the organ and the host of the running example. The boundary b11 is a
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boundary from a ‘Link’ from the model and according to the metamodel it can

connect to any ‘Hull’, ‘Weapon’, and ‘Weak Point’. The boundaries b16 and b25 are

both ‘Hulls’ and they can connect with any ‘Link’.

4.2.4 Initialize population

In evolutionary algorithms, a population is a collection of possible solutions for a

problem. The encoding is the problem representation that an algorithm is capable to

understand.

In our work, the encoding requires a binary vector that represents the organ

in the donor, and the boundary mapping (see Figure 4.2 Encoding). In the binary

vector, each element from the model is a position in the vector. If a position in the

vector has a ‘1’, it means that the element from the model is part of the organ. On

the other hand, each boundary from the organ gets assigned a compatible boundary

from the host. The initial population of IMHOTEP contains individuals composed by

the host and the organ placed in a random position (i.e. a random mapping between

the organ boundaries and the compatible organ boundaries).

4.2.5 Genetic operators

IMHOTEP uses traditional genetic operators (namely, selection, crossover, and muta-

tion) to generate new individuals (i.e. candidate solutions). Specifically, we use the

ranking selection, which ranks the individuals based on the objective function and

retains the top ones in the current population. We use a single, random, cut-point

crossover, which selects two parent solutions at random, and determines a cut point

uniformly at random to split them into two sub-vectors. Then, the crossover creates

two children solutions by combining the first part of the first parent with the second

part of the second parent for the first child, and the first part of the second parent with

the second part of the first parent for the second child. Finally, the new offspring is

mutated by changing any value of the encoding uniformly at random with a certain

probability. Figure 4.2 Output shows an example of new individuals that could

results from our running example. For simplicity, these individuals have unaltered

organs, but illustrate different boundary mappings between organ and host.
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4.2.6 Objective function

Our work proposes to harness video games’ NPCs to run simulations that provide

data to assess the transplants (i.e. to compute the value of the objective function

assessing the quality of each transplant). Specifically, we propose to use the content

generated via transplantation (each individual in the population) into a simulation

of the video game. Such a simulation produces a data trace of the events that have

occurred. Using the data from the trace, we can check how well aligned are the

events with the intention of the developers. In our case study, the simulation is a duel

between a spaceship and a boss. The simulation generates data about the duel, such

as the damage inflicted. The intention of the developers may be that the duel ends

with the victory of the spaceship with a remaining life of less than 10%. Our proposal

does not require ad hoc development of simulations. In fact the simulations leverage

mainly the NPCs (but also more video game elements, such as scenarios or items

like weapons or powerups),which are usually developed anyway during for most

types of video games. In other words, NPCs are integral components of most video

game genres such as First-Person Shooter, Real-Time Strategy, or Racing Games.

This use of simulations has two advantages: it makes the use of simulations cheaper

(i.e. it does not involve additional development costs) and it facilitates fidelity to the

video game compared to ad hoc development.

In our case study, IMHOTEP compute the objective function value for each

individual in the population, through a simulation of a game battle between the

boss generated via transplantation (i.e. the candidate solution, also referred to as

Host’) and an NPC spaceship. Since all these elements, as well as the scenarios

and items such as weapons or powerups already belong to the game itself, no extra

development is needed to run the simulation. Note that from now we can refer to

the simulation-based version of IMHOTEP as SImhotep, to differentiate it from a more

traditional objective function based on test-suite-compliance (referred as to TImhotep

herein).

Once a simulation is executed, we need a way to quantify its quality. One thing

that differentiates video games from traditional software is that the basic requirement
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of video games is ‘fun’. ‘Fun’ is an abstract concept and the developers are in

charge of interpreting it when creating a game. In fact, different developers may

have different interpretations, also depending on the intended users of a given video

game. For some, ‘fun’ is achieved with a difficult game that is very rewarding when

progress is made (e.g., Dark Souls [226]), while for others, ‘fun’ is achieved by

effortlessly killing enemies (e.g., Dynasty Warriors [227]). Therefore, we argue that

such an intent is key for the evaluation of new generated content. Hence, to evaluate

the quality of the candidate solutions generated by IMHOTEP we take into account the

percentage of simulated player victories (FVictory) and the percentage of simulated

player health left once the player wins a duel (FHealth), which are commonly used

metrics in the literature. Specifically, we compute FVictory and FHealth according to

Blasco et al. [45], as described below:

FVictory is calculated as the difference between the number of human player

victories (VP) and the optimal number of victories (33%, according to the developers

of Kromaia and their criteria) (VOptimal):

FVictory = 1− (|VOptimal −VP | /VOptimal) (4.1)

FHealth, which refers to completed duels that end in spaceship victories, is

the average difference between the spaceship’s health percentage once the duel is

over (ΘP) and the optimal health level that the spaceship should have at that point

(ΘOptimal , 20%, according to the developers):

FHealth = 1− (
VP

∑
d=1

(| ΘOptimal −ΘP) |/ΘOptimal)/VP (4.2)

The FVictory and FHealth criteria are combined (i.e. averaged) in the objective

function FOverall which guides the evolutionary search, as follows:

FOverall = min

(
Validity,

N

∑
i=1

Fi/N

)
(4.3)

where Validity is a crucial part to take into account the validity of newly generated
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models by using a run-time interpreter which is already part of the game. In fact,

such validation step is needed to discard models with inconsistencies. When a model

is stated as non-valid by the interpreter the value of Validity will be 0. FOverall value

is the minimum between Validity and the average value of FVictory and FHealth, thus

it can assume a value in [0, 1].

To execute TImhotep, the Kromaia developers supplied a domain-specific test

suite comprising 243 test cases, selected based on their expert knowledge of the

system. The objective function of TImhotep was evaluated by subjecting each individ-

ual to all 243 tests, recording the number of successful outcomes, and subsequently

normalizing this value to the interval [0, 1]. Accordingly, an individual passing all

tests attains an objective function score of 1, whereas an individual failing all tests

receives a score of 0.

4.2.7 Software engineering reflections and tooling requirements

IMHOTEP is a novel system for Procedural Content Transplantation (PCT), de-

signed to automate the reuse of game content by transplanting functional fragments

(organs) from one game element (donor) into another (host). Grounded in software

engineering principles, it addresses the high cost and complexity of manual content

creation while positioning itself as both a technical tool and a methodological contri-

bution to Game Software Engineering, emphasizing reuse, abstraction, and empirical

validation.

The process begins with knowledge elicitation, where transplant candidates

are defined. A donor provides the source model, an organ represents the reusable

fragment, and a host is the target model that integrates the organ. This step ensures

that transplantations are meaningful and contextually relevant, establishing the

foundation for automated integration.

Integration is then performed through transplantation, where IMHOTEP uses

boundary detection and mapping to identify how content fragments can be em-

bedded into hosts. This approach mirrors software engineering practices such as

interface matching and component integration, ensuring compatibility between donor

fragments and host systems. By automating this process, IMHOTEP applies model-
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driven engineering and design exploration to streamline the generation of playable

content.

To ensure quality, IMHOTEP employs simulation-based evaluation rather than

relying solely on static test suites. In-game simulations measure metrics such as

victory rate and player health to assess how well transplanted content aligns with

design goals. This reflects runtime validation and feedback-driven refinement, similar

to practices found in DevOps and continuous integration/continuous deployment

(CI/CD).

The implementation of IMHOTEP within a game development context requires

careful consideration and adaptation to the specific needs of each project. Since

the application of IMHOTEP is highly dependent on context, development teams

must begin by defining an appropriate meta-model. This meta-model establishes the

foundational rules and structures that will govern the integration process. The donor,

organ, and host models must all adhere strictly to the rules of the defined meta-model

in order to ensure consistency and compatibility throughout the system.

Once the meta-model has been defined, the development team must determine

how organs are selected and how encoding and boundary functionalities are applied.

These design decisions directly influence the operation of the evolutionary algorithm,

which requires further customization to align with the chosen encoding scheme.

Adaptations are also necessary for the genetic operations and the objective function,

ensuring that they function effectively within the defined parameters of the project.

Together, these steps allow IMHOTEP to be integrated seamlessly into game devel-

opment workflows while remaining flexible enough to accommodate varying project

requirements.



Chapter 5

Empirical Evaluation

In the previous chapter, we introduced our proposed approach, named IMHOTEP. In

this chapter, we present the evaluation performed to validate our proposal.

To evaluate IMHOTEP we have carried out an industrial case study in collabora-

tion with the developers of the commercial video game Kromaia1. Kromaia has been

released on PC, PlayStation, and translated to eight different languages. In particular,

in the Kromaia case study, we were able to assess the effectiveness of IMHOTEP to

transplant 129 different organs extracted from the scenarios of Kromaia into five of

its NPCs bosses that act as hosts, generating new video game bosses, for a total of

645 successful transplants. This is higher than previous work in the literature, which

achieved at most 327 successful transplants [228].

We compare the quality of the 645 bosses generated by using IMHOTEP to the

same number of bosses generate by using a search-based PCG approach from the

literature [5], which is the most relevant state-of-the-art of a comparable nature, and

those generated by a variant of IMHOTEP that uses test-suite as objective function

(namely, TImhotep), in line with the traditional software transplantation literature. To

perform the comparison, we rely on the concept of game quality and its automated

measurement, which is widely accepted in practice [229].

The results show that, out of the three approaches, the content generated through

the IMHOTEP obtains the best results: It yields 1.5x better results than TImhotep and

2.5x better results than baseline. The statistical analysis shows that the differences

1See the official PlayStation trailer to learn more about Kromaia: https://youtu.be/
EhsejJBp8Go

https://youtu.be/EhsejJBp8Go
https://youtu.be/EhsejJBp8Go
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are statistically significant, and the magnitude of improvement is always large.

5.1 Experimental Design
In this section we explain the design of the experiments we perform to empirically

evaluate IMHOTEP by using the commercial video game Kromaia. We present the

research questions that we aim to answer, the evaluation method, and the implemen-

tation details.

5.1.1 Research Questions

IMHOTEP proposes a new angle for video game procedural content generation, and

for this reason we need to assess how it compares to the established practice for PCG

. This motivates our first research question:

RQ1: How does SImhotep perform with respect to the current practice for PCG?

To answer RQ1, we had to identify the most relevant and close work in the

PCG literature. We identify the work by Gallota et al. [5] as the most representative

benchmark for our study. Indeed, Gallota et al. proposed a hybrid Evolutionary

Algorithm for generating NPCs, which combines an L-system with a Feasible

Infeasible Two Population Evolutionary Algorithm. We choose Gallota et al. as PCG

baseline because (1) it is of the same nature of IMHOTEP (i.e. it uses evolutionary

computation), (2) it is specific for spaceships that can play the role of bosses which

is comparable to the content of our case study, and (3) it achieves the best state-of-

the-art results for this type of content.

Moreover, since we are the first to propose the use of a simulation-based

objective function to guide the search for transplantation it is natural to compare

it with the established practice in the software transplantation field, which instead

relies on the use of a test suite to guide the transplantation. This motivates our second

research question:

RQ2: To what extend using a simulation-based objective function to guide the

transplantation is more effective than a test-based one for IMHOTEP?

To answer RQ2 we empirically compare IMHOTEP guided by the simulation-

based objective function described in Section 4.2.6 (which we refer to as SImhotep)
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with a test-based variant of IMHOTEP (which we refer to as TImhotep). Specifically,

TImhotep uses an objective function based on the number of test cases that are passed

by the transplanted software. The reason for considering this variant is that in

traditional software transplantation the best results have been achieved by using

the test suite as the objective function. In order, to run TImhotep, the Kromaia’s

developers provided us with a test suite relevant to the game, consisting of a total of

243 tests selected based on their domain knowledge. Therefore the value of TImhotep’s

objective function was computed by running each individual through the 243 tests,

recording the number of tests passed and normalizing this value in a scale of [0, 1].

An individual which passes the 243 tests will obtain an objective function score of 1,

on the contrary if it does not pass any test it will obtain an objective function score of

0. As in SImhotep, each individual also needs to constitute a valid boss (i.e., solution),

receiving a score of 0 if it does not represent a valid one according to the run-time

interpreter (see Section 4.2.6).

5.1.2 Methodology

Figure 5.1 provides an overview of the process we followed to empirically assess

IMHOTEP and answer RQs 1 and 2 for the Kromaia’s case study. The top (white

background) part shows the assets of the game itself (content) and the game develop-

ment (test suite) that are used by the approaches. The middle (grey background) part

shows inputs and outputs for each of the approaches compared herein. The bottom

(white background) part shows the evaluation criteria used to assess the results.

5.1.3 Algorithms’ Settings

As described in Section 4.2, developers need to select host and donors as input for

IMHOTEP. In our empirical study, Kromaia’s developers identified as hosts five

different bosses (i.e., Vermis, Teuthus, Argos, Orion, and Maia), which constitute

the full set of original bosses from Kromaia. While, as donors, they considered all

Kromaia’s scenarios and were able to identify 129 organs within them. Each host

has more than a thousand model elements, while donor’s organs have an average of

255 model elements. Then we run IMHOTEPwith the parameters shown in Table 5.1.
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Figure 5.1: Overview of the evaluation process.

We established the stop condition at 2 minutes and 30 seconds, ensuring enough time

to obtain suitable solutions.2 At the end of the evolutionary process, each organ was

successfully transplanted to each boss by IMHOTEP, which provided the developers

with a total of 645 new bosses (5 hosts * 129 organs) (note we obtain 645 solutions

from SImhotep and 645 from TImhotep).

We executed the SBPCG benchmark by using the parameters presented by the

original work and for a total of 129 times for each one of the 5 different hosts, so to

obtain the same number of generated individuals (i.e. 645).

For all approaches we executed 30 independent runs to account for random

variation [230]. Hence, we performed a total of 58,050 independent runs (645*3*30)

2The focus of this paper is not to tune the values to improve the performance of the approaches
when applied to a specific problem, but rather to compare their performance in terms of solution
quality on a level playing field.
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Table 5.1: IMHOTEP parameter settings

Parameter description Value
Stopping criterion 2m 30s
Population size 100
Number of parents 2
Number of offspring 2
Crossover probability 1
Mutation probability 1/150

for our experiment.

The implementation uses the Java(TM) SE Runtime Environment (JDK 1.8) and

Java as the programming language. All experiments were run using two PCs with

the following specifications: Intel Core i7-8750H, 16GB; and 2x Intel(R) Xeon(R)

CPU X5660, 64GB.

5.1.4 Evaluation Measures

To compare the solutions provided by the SBPCG benchmark and the two variants

of IMHOTEP (i.e. SImhotep and TImhotep), we rely on the concept of game quality

and its automated measurement through simulated players. The results by Browne

et al. demonstrated the validity of this approach, which is now widely accepted

in the research community [229]. Therefore, we need two ingredients to run our

experiment: The simulated player and the automated measurement.

The simulated player, developed by the developers of Kromaia, possesses the

ability to mimic human player behaviour. Our approach incorporates their algorithm,

utilizing it to simulate battles between the generated bosses and the simulated player.

Within these simulations, the simulated player confronts the boss, strategically

targeting and destroying its weak points. Meanwhile, the boss operates in accordance

with its anatomical structure, behavioural patterns, and attack/defensive dynamics,

aiming to overcome the simulated player. Both entities within the simulation actively

strive to emerge victorious, eschewing draws or ties, and ensuring a definitive win.

The automated measurement is QDuration which was proven to achieve good

results [229]. The duration of duels between simulated players and bosses units is

expected to be around a certain optimal value. For the Kromaia case study, through

tests and questionnaires with players, the developers determined that concentration
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and engagement for an average boss reach their peak at approximately 10 minutes

(TOptimal), whereas the maximum accepted time was estimated to be 20 minutes

(2∗TOptimal). Significant deviations from that reference value are good design-flaw

indicators: short games are probably too easy; and duels that go on a lot longer than

expected tend to make players lose interest. The criterion QDuration is a measure

of the average difference between the duration of each duel (Td) and the desired,

optimal duration (TOptimal):

QDuration = 1−

Duels
∑

d=1

|TOptimal−Td |
TOptimal

No.o f Duels
(5.1)

Based on the equation above, the higher the QDuration of a given approach, the

better the solutions it produced.

5.1.5 Statistical Analysis

To measure whether there is any statistical significance difference between the results

obtained by the different approaches we perform the Wilcoxon Ranked-Sum test

(a.k.a. Mann–Whitney U test) [231] setting the confidence limit, α , at 0.05, and

applying the Bonferroni correction (α/K, where K is the number of hypotheses)

when multiple hypotheses are tested. We performed a one-sided test since we are

interested in knowing if our proposed approach, SImhotep, would be better than the

others. In such a case, the one-sided p-value interpretation would be straightforward.

Specifically, for RQ1 we test the following null hypothesis: The distribution of

QDuration values produced by SImhotep is not better than that produced by the SBPCG

benchmark. If the test rejects the Null Hypothesis, the alternative hypothesis would

be accepted: The distribution of QDuration values produced by SImhotep is better than

that produced by the SBPCG benchmark. Similarly for RQ2 we test the following

null hypothesis: The distribution of QDuration values produced by SImhotep is not better

than that produced by TImhotep. If the test rejects the Null Hypothesis, the alternative

hypothesis would be accepted: The distribution of QDuration values produced by

SImhotep is better than that produced by TImhotep.

We consider the effect size to assess whether the statistical significance has
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practical significance [232]. We use the Vargha and Delaney’s Â12 non-parametric

effect size measure, as it is recommended to use a standardised measure when not all

samples are normally distributed [232], as in our case. Â12 measures the probability

that an algorithm A yields greater values for a given performance measure M than

another algorithm B, based on the following equation: Â12 = (R1/m - (m + 1)/2)/n,

where R1 is the rank sum of the first data group we are comparing, and m and n are the

number of observations in the first and second data sample, respectively. Values be-

tween (0.44,0.56) represent negligible differences, values between [0.56,0.64) and

(0.36,0.44] represent small differences, values between [0.64,0.71) and (0.29,0.44]

represent medium differences, values between [0.0,0.29] and [0.71,1.0] represent

large differences.

5.2 Results

In this section, we present the results obtained by running IMHOTEP and the SBPCG

benchmark on Kromaia. Table 5.2a shows the mean values and standard deviations

for QDuration for each IMHOTEP variant and the SBPCG benchmark, while Figure 5.2

shows the results in form of boxplots, grouped per host (i.e., the boss of Kromaia

used in our experiment, namely Argos, Maia, Orion, Teuthus, and Vermis) and

overall. Each boxplot represents the distribution of QDuration values (obtained as

average of 30 independent runs) for each of the 645 solutions obtained from trans-

plantation IMHOTEP (SImhotep and TImhotep) and SBPCG. We can observe that both

variants (SImhotep and TImhotep) obtained better results than the SBPCG benchmark.

Specifically, SImhotep yielded the best results, followed by TImhotep and then SBPCG.

The variants obtained an average value of 44.85% in QDuration, with SImhotep being

the variant that obtained the best results overall (53.31% in QDuration). TImhotep

obtained 36.39% in the overall QDuration, which also outperformed SBPCG. SBPCG

obtained the worst QDuration. Overall, the results reveal that leveraging simulations

as objective function pays off in the context of PCT, yielding 1.5x better results than

the TImhotep and 2.5x better results than the SBPCG benchmark.

When analysing whether there is statistical significant differences among the
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Table 5.2: RQ1-RQ2. (a) Mean value and standard deviation for QDuration obtained by each
approach per boss and overall. (b) Wilcoxon test and Vargha-Delaney Â12 results
obtained by comparing SImhotep Vs. SBPCG (RQ1) and SImhotep Vs. TImhotep
(RQ2) per boss and overall. Â12: Large – L.

(a) Mean and standard deviation

SImhotep TImhotep SBPCG

Boss Mean ± StDev Mean ± StDe Mean ± StDe

Argos 43.92 ± 9.30 32.17 ± 6.94 20.15 ± 1.86
Maia 43.08 ± 12.09 29.52 ± 9.34 8.43 ± 1.81
Orion 48.86 ± 8.69 31.41 ± 6.83 32.97 ± 0.85
Teuthus 60.78 ± 7.38 46.33 ± 10.54 19.53 ± 1.88
Vermis 69.90 ± 10.52 42.50 ± 12.96 25.48 ± 3.31
Overall 53.31 ± 14.26 36.39 ± 11.72 21.31 ± 8.32

(b) Wilcoxon / Â12

RQ1 RQ2

Boss p−Value / Â12 p−Value / Â12

Argos 3.25x10−23 / 0.99 (L) 1.28x10−18 / 0.85 (L)
Maia 3.25x10−23 / 1.0 (L) 6.64x10−18 / 0.85 (L)
Orion 4.01x10−23 / 0.98 (L) 4.95x10−22 / 0.95 (L)
Teuthus 3.25x10−23 / 1.0 (L) 3.60x10−18 / 0.87 (L)
Vermis 3.25x10−23 / 1.0 (L) 8.86x10−23 / 0.95 (L)
Overall 1.41x10−107 / 0.98 (L) 6.58x10−93 / 0.82 (L)

results obtained by SImhotep and Base. We found that the obtained p-values for

QDuration are always lower than 4.01x10−23 (see Table 5.2b). This is below the

significance threshold value, so we can comfortably state that SImhotep provides

significant better values for QDuration with respect to Base. We also observe that all

the A12 effect size values are large (see Table 5.2b), thus confirming the practical

magnitude of such a difference. Thus, we conclude that: Answer to RQ1 SImhotep

performance far surpasses SBPCG with statistically significant difference and large

effect size in all cases, exhibiting a remarkable overall enhancement of 250% over

SBPCG.

As for the comparison between SImhotep and TImhotep (RQ2), we observe that all

the p-values achieved when comparing the QDuration distributions provided by the

two IMHOTEP variants are smaller than the significance threshold, thus indicating

that the difference in solution quality is statistically significant in favour of SImhotep,

and always with a large A12 effect size (see Table 5.2b). Therefore, we conclude

that: Answer to RQ2 SImhotep provides significantly better results than TImhotep in

the context of automated content generation through transplantation, with a large

effect size in all cases examined. The efficacy of SImhotep demonstrates a 150%

enhancement overall compared to the outcomes of TImhotep.
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Figure 5.2: Results of IMHOTEP (SImhotep and TImhotep) and the SBPCG benchmark in terms
of QDuration.

5.3 Discussion
To begin with, our work revolves around the transplantation of organs between two

very different types of content in video games: scenarios and bosses. One may

wonder why not transplanting organs between contents of the same type, such as

between bosses. Technically, it should also be a smaller challenge to transplant

organs among the same type of content due to the similarities and shared structures.

However, video games put the focus on fun, which is many times achieved by

avoiding repetition. Since the number of bosses is usually very limited in video

games, transplanting between bosses could lead to repetition, hurting fun and creating

negative play experiences for the players. In contrast, scenarios provide an abundant

and promising source of organs that can withstand repetition, since it is frequent

for a relevant portion of a scenario to not be explored by a player during a game:

while players spend most of the time playing within scenarios, the focus of scenarios

on completing goals combined with their sheer extension renders them difficult to

explore in full. Hence, reusing between bosses and scenarios is more original and

relevant for fun.

Since transplanting an organ to a host contributes to generating new desirable

content, one might consider performing more than one transplant on the same host

to continue creating novel content. In its current state, our approach allows for

only one organ to be transplanted at a time, but it should be possible to repeatedly

transplant the same organ onto the same host, or to consider chains of transplants
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where desirable combinations of organs can be identified and transplanted in bulk into

a host. However, upon analysing the results, we have detected various interactions

between organs that may help guide an approach that considered multiple transplants:

Organ dependencies occur when an organ requires for another organ to be present

in the host to work properly. For instance, a spike weapon must be mounted on a hull

belonging to the body of a boss and cannot appear by itself. In other words, a spike

weapon organ depends on the existence of a hull organ to be able to be included in

the boss.

Organ incompatibilities happen when an organ should not appear in the host under

any circumstances. For instance, consider attaching a black hole organ to a hull

belonging to the boss. The black hole organ destroys everything it touches, so it

would instantly end the boss without triggering the end condition for the game, since

the battle is considered as completed only when the player is the one responsible for

ending the boss. This would actively block player progress, which is undesirable for

the game.

Organ synergies are found when the functionality of an organ benefits from the

existence of another organ in the host. For instance, adding one or more weapons

to a hull where a weak spot is located protects the boss from the player, building a

more interesting challenge.

Organ discordances take place when the functionality of an organ is hindered by

the existence of another organ in the host. For instance, annexing a hull with a

mobile arm to another hull with a laser may cause the laser beam to be intermittently

blocked, decreasing its attack capabilities.

So far, the literature on software transplantation does not tackle or even identify

interactions between organs. Studying these organ interactions is a line of work

to advance the concept of transplantation both in video games and in the general

software domain. As part of our evaluation(see Figure 5.1), we also carried out an

informal focus group where we surveyed two developers from Entalto [233] and

two developers from Kraken Empire [234]. All of them are seasoned video game

developers who devote most of their working hours to realising the software behind
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different commercial games. We asked them to express anonymously their content

preferences, presenting them with the Kromaia’s new content produced by either

IMHOTEP or by the SBPCG benchmark (note that the source of the generated content

was masked to the developers to avoid influencing their answer, i.e. they did not

how the content was generated). The results showed an unanimous preference for

IMHOTEP-generated content. Furthermore, they indicated that they would use it as

primary content for the game rather than secondary.3 Until now, previous PCG work

has generated only results used as secondary content. In that sense, the possibility

of using generated content as primary content represents an advancement in PCG.

Developers justify this choice by arguing that the content generated by IMHOTEP

aligns better with the vision of the game, whereas the SBPCG-generated content

feels more random in purpose even when reusing content that was created within

the context and vision of the game by the developers. These results have been

confirmed in a subsequent larger empirical user-study [26] dedicated to compare

content generated via IMHOTEP (more generally referred to as content reuse) and

traditional search-based procedural content generation. In fact, this study reveled

that developers favour the transplantation approach as they feel that it enhances

the underlying content and yields superior outcomes compared to PCG [26]. The

developers acknowledged content reuse in form of transplants as a natural progression

of the initial original content, while PCG was unfavorably labeled as content that

lacked the touch of professional developers.

5.4 Threats to Validity
To tackle possible threats to the validity of our work, we follow the classification

suggested by De Oliveira et al. [235].

5.4.1 Conclusion Validity

To minimize not accounting for random variation, we run each of the approach

(i.e. SImhotep, TImhotepand SBPCG) 30 times. Also, we make sure to assess the same

3Primary content is that which conforms an essential part of the experience of the players, while
secondary content is that which does not directly affect the main experience but contributes to creating
the atmosphere of the game (for instance, distant decoration).
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number of solutions (i.e. 645 new bosses) for each of the approaches, so to make the

comparison fair. In order to address the lack of good descriptive statistics, we present

the standard deviation and a box-plot of the results. We also applied statistical

significance tests (Mann-Whitney U) and effect size measurements (Â12) following

accepted guidelines [230]. We tackled the lack of a meaningful comparison baseline

by comparing IMHOTEP to a recent and most relevant Search-Based PCG approach

as a benchmark, as detailed in Section 6.1.

5.4.2 Internal Validity

We provide the source code and the artefacts used in our experiments to allow for

reproduction and replication and avoid the lack of discussion on code instrumentation.

We handled the lack of real problem instances by using a commercial video game

as the case study for our evaluation and by working closely with its developers in

a real-world industrial setting. Likewise, the problem artefacts (donor, organs and

hosts) were directly obtained from the video game developers and the documentation

itself.

5.4.3 Construct Validity

To prevent the lack of assessing the validity of cost measures, we made a fair

comparison between the two variants of our approach and the SBPCG benchmark.

Furthermore, we used a metric for the evaluation that has been widely adopted and

validated by the research community [229].

5.4.4 External Validity

To mitigate the lack of generalization threat, we designed our approach to be generic

and applicable not only to our industrial case study but also for generating content in

other different video games. To apply IMHOTEP to another case study, it is necessary

an encoding for the transplantation of the content, and leverage the NPCs to obtain

the simulation of the objective function. To avoid the lack of a clear object selection

strategy in our experiment, we have selected the instances from a commercial video

game, which represents real-world instances. In fact, IMHOTEP can be applied where

NPCs are available. NPCs are usually available in popular game genres such as
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car games (rival drivers), FPS games (bots), or RTS games (rival generals). For

those cases were there is no NPC, the developers should ponder the trade-off of

the cost of developing the NPCs and the benefits of generating content with our

approach. Our approach should be replicated with other video games before assuring

its generalization.



Chapter 6

Controlled Experiment

While theoretical frameworks as we have seen in previous chapters provide a founda-

tional understanding, empirical studies offer the necessary validation and refinement,

which is crucial for effective implementations. As in other disciplines dealing with

human behaviour (e.g., social sciences or psychology), empirical research allows

building a reliable knowledge base in software engineering [236, 237]. By empiri-

cally investigating the user experience of video game techniques, researchers can

unveil both the strengths and limitations of existing approaches, paving the way

for advancements that align more closely with the diverse needs and preferences of

developers and players. Through rigorous experimentation and analysis, empirical

studies serve as the cornerstone for fostering innovation and pushing the boundaries

of what is achievable within video game techniques.

There are studies that establish the particularities of the study of the quality of

video games compared to other software developments [238]. Video games have

characteristics that are difficult to measure and define, such as ‘fun’ or ‘entertain-

ment’. Thus, it makes automating tests challenging due to the multitude of options

available to players. Moreover, it is considered that the users under study must have

specific characteristics and that not random profiles can be useful in the testing of

this type of artefacts.

In this chapter, we aim to empirically assess and compare content generated by

two different content generation techniques along with two different user profiles

(players and developers). We study two automated approaches for generating content,
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namely Procedural Content Generation (PCG) and Procedural Content Transplan-

tation (PCT), and whether their use has an impact on the quality of the generated

content. We do so by analyzing the commercial video game Kromaia released on

PlayStation 4 and Steam. Specifically, we invite participants (developers and players)

to play with content generated by PCG and PCT in the game, and then evaluate

their experience in terms of video game specific percieved quality measures, namely

‘difficulty’, ‘design’,‘fun’, and ‘immersiveness’[6]. Participants were not told how

the content was generated. We conducted three distinct sessions, one for players

and the other two for developers, in order to investigate whether the profile of the

participants assessing video games influences their perception. A total of 44 partici-

pants took part in the experiment, assessing the generated content in two scenarios

of the game. The results show that the participants perceive the content generated

by PCT to be of superior quality in comparison to the content generated by PCG:

PCT obtained better results than PCG in 77% of the cases based on difficulty, in 34%

cases for design, in 28% cases for fun and 5% for immersiveness.

Our findings challenge three prevailing trends in Game Software Engineering

(GSE). Firstly, there is a perception that content reuse leads to repetitive game con-

tent, which is typically frowned upon by developers. However, our research indicates

that subjects actually prefer content generated through PCT. Secondly, previous

content generation experiments have involved only the players, neglecting the input

of developers. Our results demonstrate no significant differences between players

and developers. This suggests that the input of developers is also relevant for content

generation. Furthermore, developers are shown to provide more detailed feedback.

Lastly, 73% of previous content generation experiments have missed important

factors such as hypotheses formulation, statistical analysis, or the inclusion of a repli-

cation package. We have not found any reasons for neglecting the aforementioned

practices, and hence, our work encompasses all of the above - including replication,

which has been overlooked in 100% of previous studies. We hope that our research

will inspire future research in GSE to comply with empirical best practices.
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6.1 Experimental Design
In this section we present the experiment design following Wohlin’s guidelines [237]

for reporting software engineering experiments.

6.1.1 Objective

The research objective has been organized using the Goal Question Metric (GQM)

template to define the objectives originally presented by Basili and Rombach [239].

Our goal is to analyze different techniques for content generation, namely Procedural

Content Generation (PCG) and Procedural Content Transplantation (PCT), for the

purpose of comparison, with respect to perceived quality; from the point of view

of of more and less experienced players and developers; in the context of content

generation for an existing video game.

6.1.2 Research Questions and Hypotheses

The research questions and null hypotheses are as follows:

RQ1 - Does the Technique used to automatically generate software in video

games impact the perceived Quality of the game? The corresponding null hypothesis

is H0,1: The Technique does not have an effect on the perceived Quality of the game.

RQ2 - Do evaluators with different profiles evaluate the quality of the game

differently? The corresponding null hypothesis is H0,2: The Evaluator’s profile

does not have an effect on the evaluation of the Quality of the game.

The hypotheses are formulated as two-tailed, as this is the first time these RQs are

studied and there is no reason to assume that one approach is better than the other.

6.1.3 Variables

In this study, the factor under investigation is the content generation technique

(Technique) used to automatically generate content, i.e., final bosses, for an existing

video game. There are two alternatives: PCG or PCT, which are the two different

techniques used to generate a final boss that will be played with and evaluated by dif-

ferent kind of human participants. Since the goal of this experiment is to evaluate the

effects of using different techniques to generate content for an existing commercial

video game, we selected response variables related to the quality perceived by partic-
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Table 6.1: Response variables and correspondent items in the evaluation questionnaire

Response variable Related Items in the evaluation questionnaire

Boss difficulty Item1. I think the boss difficulty is high

Design

Item2. The boss is perfectly integrated in the game
Item3. I liked the design and behavior of the boss
Item4. The boss I fought seemed to me to have a good balance
between difficulty and playability

Fun
Item5. I enjoyed playing against the boss
Item6. When the time was up, I was disappointed that
I could not continue playing against the boss

Immersiveness
Item7. At no time did I want to give up while facing the boss
Item8. At some point I was so involved that I wanted to
talk directly to the video game

ipants playing the generated content. We selected Quality as the response variable

to evaluate the effects of using different procedural content generation techniques

in a commercial video game. We decomposed the analysis of quality into different

dimensions: difficulty, design, fun and immersiveness, based on previous work [6].

To evaluate difficulty we used three response variables: Game duration, Won

rate and Boss difficulty. Game duration is the average time spent by each participant

in their games. The value of this variable was calculated by dividing the time each

participant spent playing with a boss by the number of games played against that

boss. Won rate is the percentage of games won by a player out of all games played

against a boss, calculated by dividing the number of games won by the number of

games played against a boss. We measured Boss difficulty based on the participant’s

answers to an explicit question about the difficulty of the game in a 7-item Likert-

type questionnaire with different items. Different items in this questionnaire were

used to measure the response variables Design, Fun, and Immersiveness. Each of

these variables correspond to specific items in the questionnaire. The participants

rated their degree of agreement with the statements of each item, with a value of

1 corresponding to totally disagree and 7 to totally agree. We average the scores

obtained for these items to obtain the value for each variable. Table 6.1 shows the

specific items of the questionnaire, used for the calculation of each of these response

variables.
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For the evaluation of each boss in the game, the participants also answered

an open-ended question in which they could provide additional comments. We

considered two response variables to quantify the qualitative information contained

in these comments: Comment length, defined from the number of characters in the

comment, and Comment type. To define the type of comment, the comments were

classified into five categories by assigning them a numerical value from 0 to 4: 0, no

comments; 1, comments not related to the evaluation of the boss; 2, comments on

the difficulty of the boss evaluated; 3, comparisons between the bosses played; and

4, detailed analysis of the evaluation.

In order to establish the different evaluator profiles among the participants,

we conducted different sessions of the experiment with specific groups of partici-

pants: potential players and experienced developers. In addition, a demographic

questionnaire was designed to take into account the degree of experience both play-

ing and developing video games, in particular, playing video games with similar

characteristics to the one being evaluated. The groupings of participants in sessions

by participant profile (player or developer) and the participants’ responses to the

demographic questionnaire were used to define three blocking variables: Profile,

Game development, and Gamer profile. The objective was to analyze whether and

how the experience in video game development and the profile as a player could

influence the evaluation of the quality of the game elements.

The blocking variable Profile has two alternatives, player or developer, depend-

ing on the previous grouping of participants in sessions by profile. This variable also

allows the study of the differences between the sessions held and the demographic

profiles of the participants. To define the alternatives for the blocking variable

Game development, the weekly hours that the participants dedicated to developing

software for video games were taken into account. The variable will have two

alternatives: 1, for participants who do not dedicate more than 10 hours per week

to developing video games, and 2, for those who dedicate 10 hours or more to

developing video games each week. The blocking variable Gamer profile is used to

distinguish participants with a player profile that is closer to the target audience of
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the video game being analyzed from participants with less related profiles, such as

casual players or those who are not interested in video games. In order to define the

alternatives of Gamer profile we considered the scores given by the participants to

the following questions:

1. How many hours do you play video games per week? (1, Less than 5; 2,

between 6 and 10; 3 between 11 and 20; 4, between 31 and 30; 5, between 31

and 40; and 6 more than 40.)

2. How would you rate your overall experience with video games (knowledge,

playing time, skills)? (1, No experience; 2, Little experience; 3, Medium

experience; 4, Very experienced; and 5, Expert in the area)

3. How would you rate your overall experience with shooter video games (Exam-

ples: Call Of Duty, Doom, Quake)? (1, No experience; 2, Little experience; 3,

Medium experience; 4, Very experienced; and 5, Expert in the area)

4. What difficulty do you usually choose when playing video games? (1, Easy; 2,

Normal; 3, Hard; 4, Extreme)

We defined three alternatives for the variable Gamer profile according to the

sum of the scores given by the participants to the questions: 1, for participants

scoring no more than 33% of the 20 possible points, 2 for participants scoring

between 33% and 66% of the possible points and 3, for participants scoring 66% or

more of the possible points. Participants in the third alternative of the variable could

be considered the most similar to the target audience of the game, while participants

in the first alternative would represent participants more distant from this audience.

6.1.4 Design

We chose a Two-Treament crossover design with two sequences using two different

evaluation tasks: T1, evaluate a boss created using PCT, and T2, evaluate a boss

created using PCG. The participants were randomly divided into two groups (G1 and

G2). In the first period of the experiment, the participants of G1 perform T1 and the
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Figure 6.1: Two-Treament crossover design of our experiment.

participants of G2 perform T2. In the second period, the participants of G1 perform

T2 and the participants of G2 perform T1.

This repeated measure design enhances the experiment’s sensitivity, as noted

by Vegas et al. [240]. Considering the same participant evaluating both alternatives,

between-participant differences are controlled, thus improving the experiment’s

robustness regarding variation among participants. By using two different sequences

(G1 evaluating PCT first and PCG afterwards, and G2 evaluating PCG first and

PCT afterwards) the design counterbalances some of the effects caused by using

the alternatives of the factor in a specific order (i.e., learning effect, fatigue). We

study the effects of the factors period, sequence, and participant to validate of this

experiment.

To verify the experiment design, we conducted a pilot study with two partici-

pants. The pilot study facilitated an estimate of the time required to complete the

tasks and questionnaires, the identification of typographical and semantic errors, and

the testing of the online environment used to create the experiment. The participants

in the pilot study did not participate in the experiment.



6.1. EXPERIMENTAL DESIGN 118

6.1.5 Participants

We selected the participants using convenience sampling [237]. A total of 46 partici-

pants with different knowledge about developing and playing video games performed

the experiment, but only 44 decided to submit their answers and confirmed their

agreement to be part of this study. In this study, the participants included 12 pro-

fessionals related with video game development and 34 third year undergraduate

students who are taking a course in Software Quality from different technology

programs at a higher education institution (Universidad San Jorge). In particular,

part of those students are specifically studying video games design and development.

The experiment was conducted by two instructors. During the experiment,

one of the instructors gave instructions and managed the focus groups, and both

instructors clarified doubts and took notes.

6.1.6 Experimental Objects

Figure 6.2: (A) PCG boss. (B) PCT boss.

In the experiment, the participants evaluate content (bosses created for an

existing video game). Participants must defeat these bosses by piloting and shooting

from a spaceship. Figure 6.2 shows the spaceship used by the player and the two

bosses used during the experiment. The player’s spaceship is highlighted in orange

(see 1 of Figure 6.2), while the bosses are in black and green (see 2 of Figure 6.2).

The scenario where the player fights the boss is the grey part, and the white balls are

projectiles exchanged between the player’s spaceship and the boss. The two bosses
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shown in Figure 6.2 (PCG boss and PCT boss) are the two best bosses obtained with

PCG and PCT according to the game’s development team.

For the execution of this experiment, a video game engineer who was involved

in the development of the game developed a test scenario based on scenarios from

the original game. In this scenario, the participants of the experiment can (1) learn

how to operate the game controls, (2) learn how to fight an original boss from the

game, and (3) fight the bosses that they will have to evaluate.

For data collection, we prepared two forms using Microsoft Forms (one for

each experimental sequence) with the following sections:

1. An informed consent form that the participants must review and accept volun-

tarily. It clearly explains what the experiment consists of and that the personal

data will not be collected.

2. A demographic questionnaire that was used for characterizing the sample and

defining the blocking variables.

3. Specific information on how to download and use the game’s test environment

that will be used to perform the experiment, and instructions on how to use the

game environment.

4. Specific instructions on how to access the boss fight and the evaluation ques-

tionnaire about the game experience against the boss. This section was repeated

three times in the questionnaires, once for each boss played by the participants:

first against the original boss, and then against the two bosses generated with

the techniques we compared (PCG and PCT).

The experimental objects used in this experiment (the test scenario, the gener-

ated bosses, and the forms used for the questionnaires), as well as the results and the

statistical analysis, are available in the replication package at .

6.1.7 Experimental Procedure

The experiment was carried out in three different sessions. In the first session, the

experiment was conducted face-to-face with the group of students. In the second
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Figure 6.3: Our experimental procedure.

and third sessions, the experiment was conducted online with professionals. During

the online session, all participants joined the same video conference via Microsoft

Teams, and the chat session was used to share information or clarify doubts. The

experiment was scheduled to last for 100 minutes and was conducted based on the

experimental procedure described below:

1. An instructor explained the context of the experiment, the parts of the session

and clarified that the experiment was not a test of the participants’ abilities. (5

min)

2. The participants received clear instructions on where to find the links to access

the forms for participating in the experiment and about the structure of these

forms. The participants were randomly divided into two groups (G1 and G2).

(10 min)

3. The participants accessed the online form, and they read and confirmed having

read the information about the experiment, the data treatment of their personal

information, and the voluntary nature of their participation before accessing

the questionnaires and tasks of the experiment. (5 min)

4. The participants completed a demographic questionnaire. (5 min)

5. The participants received specific information on how to download, navigate

through the files (see Figure 6.4), and use the test environment that will be used

to conduct the experiment. They downloaded and used the test environment to
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learn how to pilot the ship they will had to use to fight different bosses during

the experiment. (15 min)

6. The participants received specific instructions on how to access a fight with

an original boss of the game. After playing against the boss as many times

as desired, the participants completed the evaluation questionnaire about the

experience of playing against the original boss. (15 min)

7. The participants performed the first task. They received specific instructions

on how to access a fight with the boss to evaluate. The participants of G1

played against the boss generated with RGC while the participants of G2

played against the boss generated with PCG. After playing as many times as

desired against the assigned boss, all participants completed the evaluation

questionnaire about the game experience against the boss played. (15 min)

8. The participants performed the second task. They received instructions on how

to access a fight with the boss to evaluate. The participants of G1 played against

the boss generated with PCG while the participants of G2 played against the

boss generated with PCT. After playing as many times as desired against the

assigned boss, all participants completed the evaluation questionnaire about

the game experience against the boss played. (15 min)

9. One instructor conducted a focus group interview (see Table 6.2 about the

tasks, while the other instructor took notes. (15 minutes)

10. Finally, a researcher analyzed the results.

6.1.8 Analysis Procedure

We have chosen the Linear Mixed Model (LMM) [241] for the statistical data

analysis. LMM handles correlated data resulting from repeated measures, and it

allows us to study the effects of factors that intervene in a crossover design (period,

sequence, or participant) and the effects of other blocking variables (e.g., in our

experiment, profile, game development practice, and gamer profile) [240]. In the
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Table 6.2: Focus group questions.

Question

Question 1 Do your results match those of the simulators?
Question 2 Do you consider that there is an objective way to measure which is

the best boss? which one(s)?
Question 3 Do you consider it necessary to have a specific profile to be able

to evaluate the quality of a video game? Which one? Does it
depend on the development phase of the video game you are in
(design/implementation/testing/deployment/maintenance)?

Question 4 Do you consider that the questionnaire they have made takes into
account the profile of the subject who completes it?

Question 5 Have you noticed any difference between the content generated by
the two techniques applied?

Figure 6.4: Files provided for the experiment.

hypotheses testing, we applied the Type III test of fixed effects with unstructured

repeated covariance. This test enables LMM to produce the exact F-values and

p-values for each response variable and each fixed factor.

In this study, Technique was defined as a fixed-repeated factor to identify the

differences between using PCG or PCT, and the participants were defined as a random

factor (1|Sub j) to reflect the repeated measures design. The response variables (RV)

for this test were as follows: Game duration, Won rate, Boss difficulty, Design, Fun,
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and Immersiveness, which were related to participants’ perceived quality of the boss;

Comment length and Comment type, which were used to determine differences in

participants’ comments.

In order to take into account the potential effects of factors that intervene in a

crossover design in determining the main effect of Technique, we considered Group

to be fixed factor with two alternatives: G1 and G2, corresponding to the two different

sequences in which the bosses are evaluated. The first group of participants (G1)

played and evaluated the boss generated with RGC, and then played and evaluated

the boss generated with PCG. The second group of participants (G2) played and

evaluated the boss generated with PCG, and then played and evaluated the boss

generated with RGC.

In order to explore the potential effects of the blocking variables related to

the evaluators’ profile to determine the variability in the response variables, in the

statistical model we also considered as fixed factors the blocking variables Profile,

Game development, and Gamer profile and the combination of this variables with

the principal factor Technique.

We tested different statistical models in order to find out which factors or

blocking variables, in addition to Technique, could best explain the changes in the

response variables. Some of these statistical models are described mathematically in

Formula 6.1. The starting statistical model (Model 0) reflects the main factor used in

this experiment, Technique ( Tech.)and the random factor (1|Sub j). We also tested

other statistical models (e.g., Model 1, Model 2, and Model 3) that included the one

or more of the additional fixed factors (AF) considered in the experiment (Group,

Profile, Game development, or Gamer profile) or their interactions with the factor

Technique (Tech.∗AF) which could have effects on the response variables.

(Model 0) RV ∼ Tech.+(1|Sub j.)

(Model 1) RV ∼ Tech.+AF+Tech.∗AF+(1|Sub j.)

(Model 2) RV ∼ Tech.+AF1+AF2+CF3+AF4+(1|Sub j.)

(Model 3) RV ∼ Tech.+AF1+AF2+Tech.∗AF1+(1|Sub j.)

(6.1)
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The statistical model fit of the tested models for each variable was evaluated

based on goodness of fit measures such as Akaike’s information criterion (AIC) and

Schwarz’s Bayesian Information Criterion (BIC). The model with the smallest AIC

or BIC is considered to be the best fitting model [242, 243]. The assumption for

applying LMM is the normality of the residuals of the response variables. To verify

this normality, we used Kolmogorov-Smirnov and Shapiro-Wilk tests as well as

visual inspections of the histograms and normal Q-Q plots. To describe the changes

in each response variable, we selected the statistical model that satisfied the normality

of residuals and also obtained the smallest AIC or BIC value.

To quantify the differences in the response variables due to the fixed factors

considered, we calculated the Cohen d value [244], which is the standardized differ-

ence between the means of the response variables for each factor alternative. Values

of Cohen d between 0.2 and 0.3 indicate a small effect, values around 0.5 indicate

a medium effect and values greater than 0.8 indicate a large effect. We selected

histograms and boxplots to describe the results graphically.

To verify that the group of measures associated with each response variable or

fixed factor is consistent, we applied Principal Components Analysis (PCA) to the

set of measures collected from the task sheets. PCA allows analyzing the structure of

the correlations in a set of variables, identifying and establishing subsets of variables

that have something in common with each other, but not with the rest. PCA produces

components, which are new random variables that summarize the patterns of each

subset of variables and are not correlated with each other [245, 246]. If the group

of measures selected to define a variable (e.g., the results of items 2, 3, and 4 to

define variable Design) are in a single PCA component, the information from the

measures is correlated and can be reduced to one variable, which would support

the consistency of the proposed grouping of measures. On the other hand, if the

measures used to define different variables are in different PCA components, we

can interpret that they explain different aspects of the information contained in the

measures and that there is no strong correlation between them.
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6.2 Results

Principal Component Analysis (PCA) is a non-parametric method that starts from

the diagonalization of the correlation matrix of a set of metrics. PCA was applied to

the set of measures used to define the different response variables and factors of this

work. In this work we applied PCA twice, one to the measures used to define the

blocking variables, and another to the measures used to define the response variables.

The results of this PCA executions are in the replication package. To determine

the convenience of the application of PCA, we followed the recommendations of

Tabachnick and Fidell [245] and Hair et al. [246] based on the factorability of the

correlation matrix: the determinant of the correlation matrix of the factors considered

is 0.019 (greater than 0.00001), the matrix is positive definite, the KMO index is

0.717 (greater than 0.7), and the p-value of 0.000 in the Bartlett sphericity test rejects

that the correlation matrix is the identity matrix. To improve the interpretation of the

components, a Varimax rotation with Kaiser normalization was performed [245, 246].

Each component extracted by PCA is a new random variable that summarizes the

information of a subset of variables [245, 246]. In general terms, the extracted PCA

components were consistent with the subsets of measures selected to define each

variable.

The application of PCA to the measures used to define the response variables

produced four components. The first component groups mainly the responses to the

questions used to define the Design and Fun response variables, implying similar

results in both variables. The second component groups the response variables

related to the comments made by the subjects. The third component groups Won

rate and Boss Difficulty, and the fourth component represents the Game duration.

The responses to the questions used to define immersiveness were part of all of the

previous PCA components, but they did not define clearly a single factor.

The application of PCA to the measures used to define the blocking variables

Profile, Developing games, and Gamer Profile, produced two components, one

defined mainly by the factor Profile and the other grouping the responses to the

questions used to define Gamer Profile. The variability of the factor Developing
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Table 6.3: Mean and standard deviation (µ ±σ ) values of the dependent variables for the
factor (Technique) in each alternative of the fixed factors. The light, medium and
dark gray highlight indicates a small, medium or large effect.

Technique Profile Developing Games Gamer Profile Group

Players Developers
More than
10 h/Week

Less than
10 h/Week

Target
Audience Neutral

Non Target
Audience

G1
(PCT-PCG)

G2
(PCG-PCT)

Game
Duration

PCT 4.24±2.85 4.18±3.23 4.38±1.52 4.05±3.27 4.57±1.95 4.57±4.36 3.22±2.22 5.33±2.77 4.16±2.93 4.32±2.83
PCG 2.01±1.76 2.19±2.02 1.54±0.55 2.39±2.06 1.34±0.68 1.58±0.54 2.01±1.38 2.13±2.34 2.21±2.28 1.79±0.93

All 3.12±2.61 3.18±2.85 2.96±1.83 3.22±2.83 2.95±2.18 3.07±3.33 2.62±1.92 3.73±3 3.19±2.77 3.05±2.44

Won rate
PCT 0.32±0.37 0.33±0.39 0.29±0.33 0.3±0.39 0.36±0.35 0±0 0.25±0.32 0.5±0.39 0.41±0.38 0.22±0.34
PCG 0.71±0.39 0.7±0.4 0.73±0.4 0.6±0.42 0.9±0.26 0±0 0.68±0.36 0.95±0.16 0.76±0.4 0.66±0.39

All 0.52±0.43 0.52±0.43 0.51±0.42 0.45±0.43 0.63±0.41 0±0 0.46±0.4 0.72±0.37 0.59±0.42 0.44±0.42

Boss
Difficulty

PCT 5.41±1.68 5.28±1.59 5.75±1.91 5.39±1.73 5.44±1.63 2.8±1.48 5.86±1.42 5.61±1.38 5.48±1.31 5.33±2.03
PCG 3.05±2.09 2.84±2 3.58±2.31 3.61±2.25 2.06±1.34 6.2±1.79 3.43±1.96 1.72±0.9 2.96±2.16 3.14±2.06

All 4.23±2.23 4.06±2.17 4.67±2.35 4.5±2.18 3.75±2.26 4.5±2.37 4.64±2.09 3.67±2.28 4.22±2.18 4.24±2.3

Design
PCT 4.72±1.66 4.53±1.64 5.22±1.66 4.63±1.79 4.88±1.42 4.6±2.23 4.73±1.7 4.74±1.54 4.17±1.61 5.32±1.53
PCG 3.53±1.47 3.54±1.48 3.5±1.5 3.67±1.45 3.29±1.51 3.27±1.46 3.57±1.4 3.56±1.62 3.3±1.47 3.78±1.45

All 4.13±1.67 4.04±1.63 4.36±1.78 4.15±1.69 4.08±1.65 3.93±1.91 4.15±1.64 4.15±1.67 3.74±1.59 4.55±1.67

Fun
PCT 4.35±1.99 4.13±2.05 4.96±1.76 4.18±1.98 4.66±2.03 4.2±2.17 4.29±1.96 4.47±2.09 4.09±1.92 4.64±2.07
PCG 3.4±1.81 3.38±1.89 3.46±1.67 3.39±1.73 3.41±2.01 2.1±1.34 3.57±1.65 3.56±2.04 3.04±1.8 3.79±1.79

All 3.88±1.95 3.75±1.99 4.21±1.85 3.79±1.89 4.03±2.09 3.15±2.03 3.93±1.82 4.01±2.09 3.57±1.91 4.21±1.96

Immersiveness
PCT 4.35±1.98 4.09±2.16 5.04±1.23 4.11±1.96 4.78±2.01 3.6±1.98 4.43±1.75 4.47±2.28 4.17±1.84 4.55±2.16
PCG 4.16±1.81 4.06±1.78 4.42±1.94 4.16±1.66 4.16±2.1 3.4±2.27 4.38±1.58 4.11±1.97 4.07±1.71 4.26±1.94

All 4.26±1.89 4.08±1.96 4.73±1.62 4.13±1.8 4.47±2.04 3.5±2.01 4.41±1.65 4.29±2.11 4.12±1.76 4.41±2.03

Comment
Length

PCT 200.5±275 120±136 415±417 205±321 193±177 121±164 202±357 221±193 236±346 161±167
PCG 177±223 86±807 336±156 160±156 144±155 123±170 177±170 136±133 148±172 160±135

All 201±275 103±112 375±311 182±251 168±165 122±157 189±273 179±169 192±274 161±150

Comment
Type

PCT 2.68±1.55 2.41±1.6 3.42±1.17 2.64±1.59 2.75±1.53 1.6±1.82 2.38±1.6 3.33±1.19 2.61±1.62 2.76±1.51
PCG 2.55±1.62 1.94±1.63 3.67±1.16 2.32±1.7 2.56±1.71 1.6±2.19 2.38±1.75 2.67±1.5 2.09±1.62 2.76±1.73

All 2.68±1.55 2.17±1.62 3.54±1.14 2.48±1.64 2.66±1.6 1.6±1.9 2.38±1.65 3±1.37 2.35±1.62 2.76±1.61

games, related to video game development time, is represented by the two previ-

ous components to similar degrees. This means that the variability it contains is

explained by both factors, but not only by one of them. We decided to include the

factor separately in the statistical analysis even though this result confirms positive

correlations with the other two factors under consideration.

6.2.1 Changes in the Response Variables

There were differences in the means and standard deviations of all of the response

variables related with the boss quality perceived by the subjects depending on which

Technique was used to create the played boss. However, the differences in Im-

mersiveness were small and there were also no large differences due to the factor

Technique in the variables related to the subjects’ comments. Table 6.3 shows the

values for the mean and standard deviation of all the response variables considered

(Game duration, Won rate, Fun, Boss difficulty, Design, Fun, Immersiveness, Com-

ment length, and Comment type) for each one of the Techniques compared: PCG
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and PCT, and for each one of the alternatives of the blocking variables and factors

considered as fixed factors in the statistical analysis: Profile, with two alternatives

(Players and Developers); for Developing games with two alternatives: subjects who

perform video game development tasks for less than 10h per week (<10h/week) and

subjects who dedicate more than 10 hours per week to these activities (>10h/week);

Gamer Profile, with three alternatives: subjects with a player profile close to the

target public of the game in which the evaluated bosses are contextualized (3), sub-

jects with a player profile neutral (2) and subjects with a profile far removed from

the target audience (1); and Group, whose two alternatives reflect the sequence in

which subjects have played and evaluated the bosses generated with each technique

(G1: PCT-PCG, G2: PCG-PCT). Note that Table 6.3 also shows the values of means

and standard deviations by combination of the factor Technique with these variables.

This allows us to illustrate both the effects that these variables have on the evaluation

of a boss and the effects that they can have on the evaluation of the differences of

bosses performed with different techniques. In Table 6.3 the pairs of values are

shaded according to the effect size of their differences. The darker the shade, the

larger the difference in the values of the response variables across the alternatives

of the factors and blocking variables considered. Additionally, the italicised text

highlights the statistically significant comparisons.

To quantify the differences in the response variables due to each factor or

blocking variable, we analyzed the Cohen d values. Table 6.4 shows the Cohen d

values of the response variables for all of the fixed factors considered in the statistical

analysis. Positive values indicate differences in favor of the first alternative of the

factors and negative values indicate differences in favor of the second alternative

of the factor. Values indicating a small, medium or large effect due to a factor are

highlighted in light, medium and dark gray, respectively. In the case of the blocking

variable Gamer Profile, with three alternatives, the table shows the Cohen d values

of all two-to-two comparisons of these alternatives. The values are shown in an order

triad, where the Cohen d values between alternatives 1 and 2, 1 and 3, and 2 and 3 of

the blocking variable are shown in this order.
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Table 6.4: Cohen d values for the response variables for each fixed factor. Gamer Profile:
1=Non Target audience, 2=Neutral, and 3=Target audience.

Technique
(PCT vs

PCG)

Profile
(Players vs
Developers)

Developing Games
(< 10h/week vs
≥ 10h/week)

Gamer Profile
(1vs2, 1vs3, 2vs3)

Group
(G1vsG2)

Game
duration 0.941 0.086 0.103 (0.203,-0.213,-0.448) 0.051

Won rate -1.024 0.010 -0.434 (-1.265,-2.166,-0.667) 0.353

Boss
difficulty 1.248 -0.272 0.339 (-0.067,0.363,0.448) -0.009

Design 0.760 -0.194 0.039 (-0.128,-0.125,0.002) -0.497

Fun 0.501 -0.235 -0.125 (-0.418,-0.417,-0.044) -0.335

Immersiveness 0.102 -0.347 -0.177 (-0.527,-0.379,0.060) -0.151

Comment
Length 0.209 -1.456 0.061 (-0.261,0.338,0.046) 0.141

Comment
Type 0.168 -0.910 -0.541 (-0.460,-0.936,-0.405) -0.257

The effect size of a factor measure through the Cohen d value is related to the

percentage of non-overlap between the distributions of the response variables for

each alternative of the factor. Higher effect size correspond with greater percentages

of non-overlap and larger differences. The histograms in Figure 6.5 illustrate the

differences in Won Rate (left), Design (center),and Immersiveness (right) depending

on the Technique use to generate the boss evaluated. In the Won Rate histogram, the

non-overlapping parts are around 39%, which corresponds to a very large effect size

and to a Cohen d value of more than 1. In the Design histogram, the non-overlapping

parts are around 30%, which corresponds to a large effect size and to a Cohen d

value of around 0.8. However, in the Immersiveness histogram, the non-overlapping

parts are around 5%, which corresponds to a negligible effect size and to a Cohen d

value around 0.

According to the Cohen d values of the response variables for Technique (first

column of Table 6.4), we can affirm that the effect size of this factor for Game

Duration, Won rate, and Boss Difficulty was large, with Cohen d values of 0.941,

-1.024 and 1.248, respectively. The signs of these values indicate that the subjects’

Game duration were longer with the PCT boss than with the PCG boss, but that the
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Figure 6.5: Histograms with normal distributions and box plots for Won Rate, Design and
Immersiveness, with boxplots by the alternatives of Gamer Profile, Group and
Profile respectively

Won rate is significantly lower, they win less often because the Boss difficulty of the

PCT boss is higher than the PCG boss. The effect size of the factor Technique in

favor of the PCT boss was medium for Design and Fun and negligible for the rest of

variables with Cohen d values of less or around 0.2. Table 6.4 also shows the Cohen

d values of the response variables for the fixed factors considered in the statistical

analysis. The first six rows of the table show how the blocking variables has no

effects on all the response variables related to the quality perceived by subjects and

that these effects are only large in the case of Gamer Profile for Won rate.

The bottom part of Figure 6.5 shows ten pairs of box plots, arranged in rows and

columns, illustrating the differences in Won Rate, Design, and Immersiveness due to

some of the fixed factors considered. The first row of pairs of box plots corresponds

to all of the subjects, and illustrates the differences in the response variables due

to Technique. The following rows corresponds to the alternatives of the blocking

variables considered in each response variable, and illustrates the differences due to

this variable and its combination with Technique. The boxplots in the bottom left of

Fig. 6.5 illustrate the large effects of the factors Technique and the blocking variable

Gamer Profile in Won rate. The box plots in the bottom right of Fig. 6.5 illustrate

the negligible effects of Technique (All subjects), and the medium effects of Gamer

Profile in Immersiveness. The blocks of boxplots by fixed factor, after the first row

of boxplots, also show the absence of differences of the blocking variables combined
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with Technique, since the differences between one boss and the other do not depend

on the alternative of the variable considered. For Won rate, in all alternatives, the

won rate is higher or equal with the PCG boss than with the PCT boss, but for Design

or Immersiveness, PCT boss outperforms PCG boss.

The forth column of Table 6.4 shows that the blocking variable Gamer Profile

has effects in all the response variables except in Design. Cohen d values of Won

rate, Fun or Immersiveness indicate that subjects with a profile farther away to

the target audience (Alternative 1 of the variable) have a much lower Won rate

than subjects closer from the target audience, in fact they didn’t actually win any

games (see the sixth column of the second row of Table 6.3). Subjects with non

target audience profile also score worse on Fun or Immersiveness variables. In Fun

and Immersiveness the differences between alternatives 2 and 3, neutral subjects or

subjects closer to the target audience respectively, are negligible.

The values of the second column of Table 6.4 shown that the factor Profile

has large effects on Comment length and Comment type in favor of developers.

Developers made longer and better quality comments than players. The Cohen d

values of the last two rows of the table, corresponding to the variables related to the

quality of the subjects’ comments, indicate that the best comments also come from

subjects who spend more time developing games and from subjects with a gamer

profile that is closer to the target audience.

6.2.2 Hypothesis Testing and Response to the Research Questions

The statistical linear mixed models used to explain the statistical significance of the

changes in the response variables are different for each one of them. We selected

the statistical models that obtained higher values for the AIC and BIC fit statistics

from among all those that do verify the normality of the residuals. In addition, the

use of the Linear Mixed Model (LMM) test assumed that residuals must be normally

distributed. All of the residuals, except the ones carried out for Game duration and

Comment length, obtained a p-value greater than 0.05 with the normality test. We

obtained normally distributed residuals for Game duration and Comment length by

using neperian logarithm transformation and cubic root transformation respectively.
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For the statistical analysis of this variables with LMM, we used RV = ln(Comment

length) and RV = 3
√

Commentlength in formula (1). For the rest of the variables, RV

is equal to their value.

Table 6.5 shows the results of the Type III fixed effects test for each of the

response variables or transformations, and for each fixed factor of the statistical

model used in each case. Factors or combinations of factors that are not present in

the statistical model selected to explain the variable are marked with the value NA or

are not included in the table. Values indicating significant differences are shaded in

grey. According to the results show in Table 6.5, not all the fixed factors included in

the statistical models that explain the response variables produce significant changes

in them. For example, to explain the variable Game duration, the statistical model

used on the transformation of the variable (RV = 3
√

Commentlength) was RV ∼

Tech.+DevGames+GamerP+Tech. ∗ DevGames+(1|Sub j.) with the fixed factors

Technique, Developing Games, and Gamer Profile, and the combination of factor

Technique and Developing Games, but there are significant differences in the

response variable only for the factor Technique and the combination Technique and

Developing Games. The changes in the Game duration due to the Technique used

to create the boss being played are statistically significant, just as there are significant

differences between the differences between the time spent playing each boss (RCT

or PCT) as a function of the time spent developing video games (the alternatives

of Developing games. As shown by the means and standard deviations of the time

spent playing each boss as a function of the time spent developing video games (see

Table 6.3 first three rows of third column), subjects who spend less time developing

software played more time with the PCT boss and less time with the PCG boss than

the time that subjects who spend more time developing video games spent playing

with the same bosses.

Answer to RQ1. For all the response variables related to the quality perceived

by subjects, except for Immersiveness, the differences due to Technique were

statistically significant with p values of less than 0.05. Therefore, we can answer

our first research question RQ1 rejecting our first null hypothesis, H0,1. The two
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techniques compared in the experiment, PCT and PCG, result in bosses with different

quality perceived by the subjects, and it can be concluded that the Technique has

effects on the perceived Quality of the game. The effect size and direction of

these differences previously described, suggest that the subjects perceive the boss

generated by PCT to be of superior quality in comparison to the one generated with

PCG.

Answer to RQ2. With regard to the second research question, RQ2, the answer

is that the null hypothesis H0,2 cannot be completely rejected. Our results cannot

confirm that the Evaluator’s profile, represented by Profile, Developing Games,

and Gamer Profile, has a significant effect on the evaluation of the Quality of a

game. The results indicated that no significant changes were observed in the majority

of the response variables used to evaluate the quality of bosses. The only statistically

significant changes were observed in the comments made by the subjects and in the

won rate.

Not all of the factors and blocking variables considered in the statistical analysis

cause statistically significant differences in the response variables. In fact, for the

blocking variables related to the evaluators profile, Profile, Developing Games, and

Gamer Profile, no statistically significant differences were confirmed in any of the

response variables related to the quality perceived by subjects, with the exception of

Won rate and Game duration. The p-value of less than 0.001 for Gamer Profile in

Won rate confirms the statistical significance that could be inferred in the previous

subsection from the large effect size of the differences in the response variable due

to Gamer Profile. Subjects who were the furthest from the target audience of the

game did not win their games, while the closer the Gamer profile was to the target

audience, the more the Won rate increased. However, there were not significant

differences due to Gamer Profile, nor due to Profile or Developing games, in the

evaluation of Boss difficulty, Design, Fun, or Immersiveness.

However, there are statistically significant changes in the variables related to the

subjects’ comments due to the blocking variables Profile and Gamer Profile. The p

values of less than 0.05 for Comment length and Comment type in the last two rows
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of the second and fourth columns of Table 6.5, confirm the statistical significance

of these differences. Developers and subjects with a gamer profile that is closer to

the target audience made statistically significant longer and better quality comments

than players or, in particular, subjects further away from the game’s target audience.

Table 6.5: Results of the Type III test of fixed effects for each response variable and factor,
or factor’s interactions. NA=Not Applicable

Technique
(Tech.) Profile Developing Games

(DevGames)
Gamer Profile

(GamerP) Group Tech.*Profile Tech.*DevGames Tech.*GamerP Tech.*Group

ln(Game Duration) F=43.369 ; p=<.001 NA 0.818;p=0.371 F=1.44; p=0.25 NA NA F=6.585; p=0.014 NA NA
Won rate F=38.542 ; p=<.001 F=1.884; p=0.178 NA F=26.034; p=<.001 F=3.322; p=0.076 NA NA NA NA
Boss Difficulty F=30.358; p=<.001 F=1.299; p=0.261 NA F=2.281; p=0.116 F=0.203; p=0.655 NA NA NA NA
Design F=16.445; p=<.001 F=0.257; p=0.615 F=0.575; p=0.453 F=0.081;p=0.922 F=4.301 ; p=0.045 NA NA NA NA
Fun F=8.199; p=0.007 NA NA F=0.666;p=0.519 NA NA NA F=0.696; p=0.504 NA
Immersiveness F=0.702; p=0.407 F=1.064;p=0.309 F=0.004; p=0.952 F=0.534;p=0.59 F=0.145; p=0.706 NA NA NA NA
3
√

CommentLength F=2.108 ; p= 0.154 F=27.315; p=<.001 F=2.104 ;p=0.155 F=3.784 ; p=0.031 NA NA NA NA NA
Comment Type F=1.455; p= 0.234 F=18.069;p=<.001 F=3.564 ;p=0.067 F=7.959;p=0.001 F=2.692; p=0.109 NA NA NA NA

6.3 Discussion
In the context of video games, reuse is not perceived as a completely positive practice.

In fact, developers fear that reusing might be perceived as repetitive by players. On

the other hand, the stochastic nature of PCG is perceived positively as an extension

in the range of the creativity space for new content. Our experiment shows that this

negative view of reuse is not aligned with the results. On the contrary, our results

reinforce the PCT path, which boosts the latent content and leads to better results

than PCG. During the focus group, subjects agreed that PCT was a natural evolution

of the original content. In contrast, PCG was negatively classified as content that did

not appear to have been developed by professional developers.

Previous studies considered only players as the subjects of the experiments.

In our experiment, we go one step beyond and analyse the differences between

players and developers. For researchers, it can be difficult to find developers to run

experiments. However, that could not be the case for development studios. For

instance, a large studio can enroll developers from different projects. This is relevant

for studios because they put a lot of effort into enrolling players (not developers)

for their games. It may seem paradoxical that it is hard to find players, but the

experience of testing parts of a game in development is not the same as testing a

full game as the developers in the focus group pointed out. Our experiment reveals

that there are no relevant differences in terms of statistical values between players
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and developers, suggesting that studios can leverage their developers. Furthermore,

when it comes to feedback developers provided more beneficial feedback as the

focus group acknowledged.

This experiment combines the specific quality aspects of video games (‘design’,

‘difficulty’, ‘fun’, and ‘immersiveness’) and the rigorousness of more traditional

software work. This includes the provisioning of a replication package, something

that no previous works did. One may think that the complexity of video games

makes it difficult to design packages for replication. Nevertheless, we expect that

our work along with the replication package will serve as a basis and inspiration for

future researchers of the GSE community.

6.4 Threats to Validity
We use the classification provided by Wohlin et al. [237].

6.4.1 Conclusion Validity

We mitigated possible threats due to low statistical power by using a confidence in-

terval of 95% for the statistical analysis. We also mitigated the reliability of measures

by computing the evaluation measures directly from the data sheets automatically

generated from the on-line questionnaire answers provided by the participants. Fi-

nally, we use an identical procedure in all the sessions of the experiment, to mitigate

for possible threats arising from the reliability of treatment implementation.

6.4.2 Internal Validity

To mitigate the instrumentation threat, we conducted a pilot study to verify the design

and the instrumentation of our study. The interactions with selection threat may

affect the internal validity because there were subjects who had different levels of

experience and, in general, different levels of knowledge of the video game domain.

To mitigate this threat, the treatments were applied randomly and the statistical

analysis includes the analysis of blocking variables related to participants’ profile.

The effects of the design factors, sequence and period, also have been included in

the statistical analysis though the analysis of the factors Group (Sequence) and

Technique*Group (Period). Only the variable Design had significant changes due
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to the factor Group. The effect of this factor is medium with a Cohen d value of

-0.497 in favor of subjects who play first with the PCG boss and after that with

the PCT boss. The subjects in this group (G2, PCG-PCT) demonstrated a greater

appreciation for the design of both bosses, both the PCT boss and the PCG boss, than

the subjects in the group that carried out the experiment with the other sequence (G1,

PCT-PCG). However, both groups value the design of the PCT bosses better than

the PCG bosses. The box plots in the bottom center of Fig. 6.5 illustrate the effects

of the factor Group and its combination with Technique in Design. The voluntary

nature of participation also poses a selection threat, which we mitigated by inviting

professional developers and students from a course whose content was in line with

the experiment activities to avoid issues with student motivation.

6.4.3 Construct Validity

All of the measurements were affected by Mono-method bias. To mitigate this

threat we mechanized the measures as much as possible by means of correction

templates. The experiment may suffer from the mono-operation bias threat since

we only compare two representative bosses of each technique.In order to mitigate

the author bias threat, the tasks were extracted from a commercial video game

and the bosses were selected by Kromaia’s experts as the most representative of

those obtained after the application of the two techniques compared. To weaken the

evaluation apprehension threat, at the beginning of the experiment, the instructor

explained to the participants that the experiment was not a test of their abilities, and

that neither participation nor results would affect their grades in the course where

the experiment took place.

6.4.4 External Validity

The interaction of selection and treatment may pose a threat to our experiment

because a different number of participants took part in each alternative of the blocking

variables, and players are more represented than developers. The domain threat

occurs because the experiment has been conducted in a specific domain (video game)

and for a very specific type of game, a spacial shooter. Other experiments using
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Table 6.6: Overview of related work. Evaluation: generated content (A), variants of the proposed
algorithm (VA), generated content compared to a baseline (C). Measures: Design (De),
Difficulty (Diff), Fun (F), Immersiveness (I).

Work Year EvaluationMeasures
Hypotheses
Formulation

Statistical
Analysis

Replication
Package Sample

Cardamone et al. [158] 2011 VA De ✗ ✗ ✗ 5 players
Plans et al. [31] 2012 A F ✗ ✓ ✗ 31 players
Adrian et al. [192] 2013 VA De, Diff, F ✗ ✗ ✗ 22 players
Dahlskog et al. [197] 2013 VA De, Diff, F ✗ ✗ ✗ 24 players
Togelius et al. [113] 2013 A De, Diff, F ✓ ✓ ✗ 147 players
Gravina et al. [95] 2015 A F ✗ ✗ ✗ 35 players
Kaidan et al. [148] 2015 VA De ✗ ✗ ✗ 12 players
Olsted et al. [108] 2015 VA De ✗ ✗ ✗ 13 players
Prasetya et al. [157] 2016 C F ✗ ✗ ✗ 33 players
Ferreira et al. [6] 2017 VA De, Diff, F, I ✗ ✓ ✗ 139 players
Charity et al. [176] 2020 A De, Diff ✗ ✗ ✗ 2 players
Lopez-Rodriguez et al. [153]2020 VA Diff ✗ ✗ ✗ 30 players
Kraner et al. [159] 2021 A De ✗ ✗ ✗ 5 players
Pereira et al. [44] 2021 C Diff, F ✗ ✓ ✗ 16 players
Brown et al. [88] 2022 A De ✗ ✗ ✗ 35 players

Our work 2024
PCGvs

PCT De, Diff, F, I ✓ ✓ ✓
32 players +

12 developers

different games should be performed in the future to further generalise our findings.

We have carefully described our methodology and made a replication package

publicly available in order to enable other researchers to replicate, reproduce and

extend our study.

6.5 Related work
In this section we describe previous work involving human participants to assess

automatically generated video game content, specifically focusing on the empirical

elements of their experiments. We refer the reader to previous surveys in the field

of automated content generation [2, 1, 25] to learn more about the latest trends and

approaches to generate video game content.

Experimentation in Software Engineering is a practice that has been studied for

decades [239]. Researchers have adopted established guidelines to be rigorous [237],

such as hypotheses formulation, statistical analysis, or including a replication pack-

age. However, this has not always been the case for experimentation involving

video games engineering, especially in the area of automated content generation., as

explained below.
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Video game content generation is a large field [37]. The types of generated

content are diverse, such as vegetation [30], sound [31], terrain [32], Non-Playable

Characters [33], dungeons [34], puzzles [35], or even the rules of a game [36].

However, it is difficult to find experiments with human participants that compare ap-

proaches [13]. Table 6.6 summarises this work. We observe that previous evaluations

involving human participants mainly explore the quality of the content generated by

one proposal [88, 113] or different variants of a same proposal [192, 44]. On the

other hand, work such as the ones by Pereira et al. [180] and by Prasetya et al. [157]

compared the content generated by their proposal against a baseline (see Evaluation

in Table 6.6). Our work is the first that involves human participants to carry out a

thorough comparison of two different previously proposed techniques generating

content for video games.

In terms of measures, studies have been conducted to examine the distinc-

tive characteristics of video games [238]. We observe that previous studies

have investigated player preferences and perceptions regarding various aspects

of video games [238]; this accounts for the use of different measures including

design [148, 108], difficulty [153, 180], or fun [31, 157]. Another aspect of video

games is the user engagement and immersion, which plays crucial roles in shap-

ing the overall gaming experience [247] (see Measures in Table 6.6). Our work

consider all these measures. Previous work have only asked players to evaluate

content, i.e., they have not considered the perception of developers (see Sample in

Table 6.6). In contrast, we study both the players assessment and the point of view of

professional video game developers, and their differences when assessing the quality

of the generated content. User empirical studies in PCG often employ a variety

of methodologies to explore user experiences. These methodologies include user

surveys [6], interviews [159], and usability testing [172]. Each method offers unique

insights into different aspects of user interaction, such as user preferences, emotional

responses, and usability issues.

Finally, none of the previous works adopt best practices for empirical studies,

which are instead widely adopted in general software engineering research. In fact,
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73% of the studies have neither hypotheses and validity, statistical analysis, or repli-

cation package (see Hypotheses Formulation, Statistical Analysis, and Replication

Package columns of Table 6.6). Our work aims to compare the generated content

with empirical rigor. To do so, we adopted the commonly followed guidelines for

Software Engineering Research [248].

6.6 Conclusion
Until now, the majority of content generation experiments in game software engineer-

ing have failed to conform to best practices for Software Engineering research (e.g.,

hypothesis and validity, statistical analysis, or replication package). Our research

integrates the quality measures embraced by the video game community with the

well-established practices of empirical software engineering research. Our results

challenge the current dogma by highlighting that content reuse provides advantages

towards content generation. Additionally, our findings unlock new possibilities for

engaging developers in experimental endeavors. Ultimately, our work can encourage

for the empirical game software engineering community to align with the established

empirical practices in general software engineering research.



Chapter 7

Conclusions

This chapter serves as the concluding section of this PhD thesis, which has introduced

our automated software transplantation methodology implemented in IMHOTEP for

the generation of video game content.

In Chapter 3, we conducted a comprehensive survey of the state of search-based

procedural content generation (SBPCG). Building on two earlier surveys [2, 1], we

proposed a refined taxonomy to systematically classify recent research. This effort

allowed us to document progress across Game Bits, Game Space, Game Systems,

Game Scenarios, and Game Design, while also revealing that many challenges

remain unresolved. Issues such as the efficiency of online PCG, the solvability,

fairness, and diversity of generated content, the potential of bricolage, and the use

of statistical rigor continue to require deeper investigation. By identifying both

achievements and gaps, this chapter provides the foundation for introducing and

evaluating our own approach, IMHOTEP.

In Chapter 4, we present a novel technique for Procedural Content Transplanta-

tion (PCT) that reimagines PCG through the metaphor of software transplantation.

Instead of generating content entirely from scratch, developers can now treat game

content as organs to be transplanted from a donor into a host. This approach opens

the door to questioning how transplantation compares to established PCG practices

and whether it can produce higher-quality or more diverse results.

Chapter 5 advances this idea where we demonstrate the large-scale application

of IMHOTEP in a commercial video game, successfully performing 645 transplants
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across diverse content types. Beyond confirming the feasibility of transplantation,

we enhanced the method with a simulation-based objective function that guides the

search more effectively than traditional test-based strategies. This improvement in-

vites reflection on whether simulation-based evaluations are better suited to capturing

gameplay dynamics and producing superior results. We also highlight the potential

of co-evolving both transplants and their simulations, by varying NPCs, items, or

scenarios, to better understand the contexts in which transplanted content excels and

to support cross-game transplantation.

Finally, in Chapter 6, we introduce a controlled experiment with human partici-

pants designed to assess IMHOTEP alongside an existing PCG technique. This study

extends the evaluation beyond technical performance to consider perceived quality:

does the underlying content generation method influence how players experience the

game? Our findings show that content reuse and transplantation can indeed shape

perceptions of quality. Moreover, we observed that evaluators with different back-

grounds assessed the generated content in distinct ways, underscoring the importance

of accounting for diverse perspectives when validating PCG techniques.

Together, these chapters provide a coherent narrative: a broad survey of the

field (Contribution 1), the proposal of a novel technique (Contribution 2), its em-

pirical validation in an industrial context (Contribution 3), and its assessment with

human participants (Contribution 4). By addressing how transplantation compares to

current practices, whether simulation-based objectives improve effectiveness, how

generation techniques affect perceived quality, and how evaluator profiles influ-

ence judgments, this research advances both the theory and practice of PCG while

grounding the field more firmly in rigorous empirical methods.

7.1 Future Work

The findings of this study highlight both the promise and the current limitations of

IMHOTEP, pointing to several important opportunities for future research. While

the controlled evaluation provided valuable evidence of feasibility and potential

impact, broader investigations are required to understand how the approach can scale,
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adapt, and integrate into real-world game development environments. The following

directions outline key areas where further work could extend and strengthen the

contributions of this research.

While this work provides valuable insights through controlled evaluation involv-

ing both players and developers, several avenues remain for future exploration. One

key limitation is the lack of direct developer feedback on the usability, integration,

and long-term adoption of IMHOTEP within real-world workflows. Although the

initial findings suggest promise, further studies are needed to assess its acceptance

among professional developers, particularly regarding cost, workflow compatibility,

and maintainability. Dedicated usability studies, interviews, or field deployments

would offer deeper insights into developers’ needs and expectations, guiding re-

finements that better support seamless integration into existing game development

pipelines.

Another limitation concerns the evaluation context. The current study focused

on a single game, produced by a single company, and centered on a specific boss

encounter. While this scope was justified given the complexity of the domain and

practical constraints of in-depth experimentation, it limits the generalizability of

the findings. Future work should expand evaluations to encompass multiple games,

diverse development teams, and a wider range of gameplay scenarios. Such efforts

would help validate the adaptability and robustness of the approach across varied

development contexts, thereby strengthening its practical relevance and potential

impact.

In addition, the rise of Generative AI presents new opportunities and challenges

for PCG. Many state-of-the-art generative approaches rely on large training datasets

to produce high-quality and diverse outputs, which can be difficult to obtain in the

context of bespoke game development. PCT offers a compelling complement by

enabling a wide range of content to be generated from relatively limited resources.

By systematically reusing and adapting existing assets, it could provide training

data for generative models or function as a lightweight alternative when large-scale

data collection is infeasible. Exploring this intersection between transplantation
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and generative methods represents a promising avenue for broadening the creative

capacity of procedural content generation while reducing dependency on massive

datasets.

Finally, the challenge of scaling evaluations, especially those that involve sub-

jective judgments of content quality, suggests opportunities for alternative method-

ologies. Crowdsourcing offers a compelling avenue, for instance through the release

of free demo versions featuring automatically generated content. This would allow

the collection of large-scale player feedback in naturalistic settings, capturing diverse

perspectives and engagement patterns. Beyond validating perceived quality, such

large-scale evaluations could also reveal edge cases, inform design improvements,

and ultimately enhance the robustness of the content generation system.
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Summary of surveyed papers



144

Ref Year Venue Encoding Objective Function Content

GAME BITS

[85] 2018 EvoApplications Indirect Direct - Theory

Driven

Textures

[86] 2018 EvoApplications Indirect Direct - Theory

Driven

Textures

[87] 2020 Multimedia

Tools and Appli-

cations

Indirect Direct - Theory

Driven

Textures

[88] 2023 ToG Indirect Direct - Theory

Driven

Textures

[31] 2012 T-CIAIG Indirect Interactive - Implicit Sound

[94] 2013 PCGames Indirect Interactive - Implicit Weapons

[95] 2015 CIG Indirect Simulation - Static Weapons

[3] 2016 GEM Indirect Direct - Theory

Driven

Weapons

[30] 2021 CISTI Indirect Direct - Theory

Driven

Vegetation

GAME SPACE

[4] 2012 Soft Computing Indirect Direct - Theory

Driven

Terrains

[100] 2012 CIG Indirect Direct - Theory

Driven

Terrains

[101] 2016 EvoCOP Indirect Direct - Theory

Driven

Terrains

[102] 2011 EvoCOP Direct and

Indirect

Simulation - Static

and Direct - Theory

Driven

Shooter

Maps
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[107] 2014 CIG Direct Simulation - Static Shooter

Maps

[108] 2015 CEC Direct Interactive - Explicit Shooter

Maps

[109] 2017 CIG Direct Simulation - Static Shooter

Maps

[110] 2018 TOG Direct Simulation - Static

and Interactive - Ex-

plicit

Shooter

Maps

[114] 2012 GAME-ON Indirect Simulation - Static Strategic

Maps

[122] 2012 EvoCOP Indirect Direct - Theory

Driven

Strategic

Maps

[113] 2013 Genet. Program.

Evolvable Mach.

Indirect Direct - Theory

Driven

Strategic

Maps

[249] 2013 GECCO Direct Direct - Theory

Driven

Strategic

Maps

[115] 2013 EvoCOP Indirect Simulation - Static Strategic

Maps

[116] 2013 LSSC Indirect Simulation - Static Strategic

Maps

[118] 2013 SEED Indirect Direct - Theory

Driven

Strategic

Maps

[117] 2014 Natural Comput-

ing

Indirect Simulation - Static Strategic

Maps

[119] 2014 CEC Indirect Direct - Theory

Driven

Strategic

Maps

[120] 2014 Entertainment

Computing

Indirect Direct - Theory

Driven

Strategic

Maps

[124] 2015 CEC Indirect Direct - Theory

Driven

Strategic

Maps
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[250] 2015 CEC Indirect Direct - Theory

Driven

Strategic

Maps

[123] 2017 CoSECivi Indirect Direct - Theory

Driven

Strategic

Maps

[125] 2018 CIG Indirect Direct - Theory

Driven

Strategic

Maps

[199] 2020 CoG Indirect Simulation - Static Strategic

Maps

[127] 2021 TETCI Indirect Direct - Theory

Driven

Strategic

Maps

GAME SYSTEM

[131] 2012 SBGames Direct Simulation - Static Entity Be-

haviour

[128] 2013 ECAL Indirect Direct - Theory

Driven

Entity Be-

haviour

[132] 2014 SBGames Direct Simulation - Static Entity Be-

haviour

[129] 2017 GHITALY Indirect Direct - Theory

Driven

Entity Be-

haviour

[133] 2017 Soft Computing Direct Simulation - Static Entity Be-

haviour

[134] 2020 CEC Indirect Direct - Theory

Driven

Entity Be-

haviour

[43] 2021 Multimed. Tools

Appl.

Indirect Interactive - Implicit Entity Be-

haviour

[45] 2021 JSS Indirect Simulation - Static Entity Be-

haviour

[44] 2021 SBGames Indirect Direct - Theory

Driven

Entity Be-

haviour

[5] 2022 GECCO Indirect Direct - Theory

Driven

Entity Be-

haviour
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[33] 2022 CoG Indirect Direct - Theory

Driven

Entity Be-

haviour

[130] 2023 Multimed. Tools.

Appl.

Indirect Simulation - Static Entity Be-

haviour

GAME SCENARIOS

[136] 2011 T-CIAIG Direct and

Indirect

Direct - Theory

Driven and Simula-

tion - Static

Mazes

[137] 2011 Computational

Intelligence

Magazine

Indirect and

Direct

Direct - Theory

Driven

Mazes

[138] 2011 CEC Direct and

Indirect

Direct - Theory

Driven

Mazes

[139] 2011 CIG Direct and

Indirect

Direct - Theory

Driven

Mazes

[140] 2012 CIG Direct and

Indirect

Direct - Theory

Driven

Mazes

[144] 2015 ACALCI Direct and

Indirect

Direct - Theory

Driven

Mazes

[142] 2015 CGAMES Direct Direct - Theory

Driven

Mazes

[145] 2016 Connection Sci-

ence

Direct and

Indirect

Direct - Theory

Driven

Mazes

[141] 2016 CEC Direct Direct - Theory

Driven

Mazes

[143] 2018 IIAI-AAI Direct Direct - Theory

Driven

Mazes

[17] 2013 CIG Indirect Direct - Theory

Driven

Physics

[146] 2014 ACE Direct Simulation -Static Physics
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[147] 2014 CIG Direct Simulation - Static Physics

[148] 2015 GCCE Indirect Interactive - Implicit Physics

[152] 2016 EvoCOP Indirect Direct - Theory

Driven and Simula-

tion - Static

Physics

[6] 2017 T-CIAIG Direct Simulation - Static Physics

[149] 2019 EvoApplications Indirect Direct - Theory

Driven and Simula-

tion - Static

Physics

[150] 2019 IJCCI Indirect Simulation - Static Physics

[151] 2019 GECCO Direct Simulation - Static Physics

[153] 2020 OLA Direct Direct - Theory

driven and Simula-

tion - Static

Physics

[156] 2011 T-CIAIG Indirect Simulation - Static Tracks

[158] 2011 GECCO Indirect Interactive - Explicit Tracks

[7] 2015 Applied Soft

Computing

Indirect Interactive - Explicit Tracks

[157] 2016 IJEEI Indirect Direct - Theory

Driven

Tracks

[162] 2012 PCGames PCG

Workshop

Indirect Simulation - Static Rooms

[166] 2015 CEEC Indirect Simulation - Static Rooms

[167] 2019 CoG Direct Simulation - Static Rooms

[171] 2019 ICGA Indirect Direct - Theory

Driven

Rooms

[168] 2020 Applied Soft

Computing

Direct Simulation - Static Rooms

[174] 2020 FDG Direct Simulation - Static Rooms

[174] 2020 CoG Direct Simulation - Static Rooms
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[175] 2020 ToG Direct Interactive - Explicit Rooms

[177] 2020 AIIDE Indirect Direct - Theory

Driven

Rooms

[160] 2021 ISSSR Direct Simulation - Static Rooms

[159] 2021 NT Indirect Direct - Theory

Driven

Rooms

[172] 2021 ToG Direct Direct - Data Driven Rooms

[126] 2022 SBGames Indirect Direct - Theory

Driven

Rooms

[161] 2022 FDG Direct Simulation - Static Rooms

[169] 2022 Appliad Science Direct Direct - Theory

Driven

Rooms

[170] 2022 SIC Direct Direct - Theory

Driven

Rooms

[178] 2023 ToG Indirect Simulation - Static Rooms

[8] 2012 ICPS Indirect Direct - Theory

Driven

Dungeon

[181] 2016 EvoCOP Indirect Direct - Theory

Driven

Dungeon

[188] 2017 CEEC Indirect Direct - Theory

Driven

Dungeon

[186] 2017 GECCO Indirect Direct - Theory

Driven

Dungeon

[189] 2018 Computers Indirect Direct - Theory

Driven

Dungeon

[179] 2018 Computation

CEC

Indirect Direct - Theory

Driven

Dungeon

[182] 2018 CIG Direct Direct - Theory

Driven

Dungeon

[183] 2018 SBGames Indirect Direct - Theory

Driven

Dungeon
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[185] 2018 ToG Direct Direct - Theory

Driven

Dungeon

[184] 2020 Applied Intelli-

gence

Direct Direct - Theory

Driven

Dungeon

[180] 2021 Expert Syst.

Appl.

Indirect Simulation - Static Dungeon

[187] 2022 Applied Soft

Computing

Direct Direct - Theory

Driven

Dungeon

[196] 2011 ACE Direct Direct -Theory

Driven

Timeline

[192] 2013 CIG Indirect Direct - Theory

Driven

Timeline

[197] 2013 DPG Indirect Direct - Theory

Driven

Timeline

[198] 2014 EvoCOP Indirect Direct - Theory

Driven

Timeline

[191] 2015 EvoCOP Indirect Simulation - Static Timeline

[193] 2017 CSIEC Indirect Direct - Theory Timeline

[201] 2018 FDG Indirect Direct - Theory and

Simulation - Static

Timeline

[194] 2018 EECSI Indirect Direct - Theory Timeline

[202] 2019 GECCO Indirect Simulation - Static Timeline

[203] 2019 CoG Indirect Simulation - Static Timeline

[195] 2020 JPCS Indirect Simulation - Static Timeline

[80] 2020 GECCO Direct Simulation - Static Timeline

[200] 2022 Genet. Program.

Evolvable Mach.

Indirect Direct - Theory

Driven

Timeline

[206] 2021 GI Indirect Direct - Theory

Driven

Stories

[207] 2021 FDG Indirect Direct - Theory

Driven

Stories
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[210] 2022 FDG Indirect Direct - Theory

Driven

Stories

[209] 2022 FDG Indirect Direct - Theory

Driven

Stories

[208] 2022 Entertain. Com-

put.

Indirect Direct - Theory

Driven

Stories

GAME DESIGN

[212] 2014 IJAIT Indirect Simulation - Static System De-

sign

[9] 2015 Indirect Simulation - Static System De-

sign

[213] 2016 EvoCOP Arxiv Indirect Simulation - Static System De-

sign

[214] 2023 CoG Direct Simulation - Static System De-

sign

[217] 2012 EvoCOP Indirect Direct - Theory Camera

Control
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ing aesthetic maps for a real time strategy game. 2013.
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[153] Carlos López-Rodrı́guez, Antonio J Fernández-Leiva, Raúl Lara-Cabrera,
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