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Critically ill children who require inter-hospital transfers to paediatric intensive care units are sicker
than other admissions and have higher mortality rates. Current transport practice primarily relies on
early clinical assessments within the initial hours of transport. Real-time mortality risk during transport
is lacking due to the absence of data-driven assessment tools. Addressing this gap, our research
introduces the PROMPT (Patient-centred Real-time Outcome monitoring and Mortality PredicTion),
an explainable end-to-end machine learning pipeline to forecast 30-day mortality risks. The PROMPT
integrates continuous time-series vital signs and medical records with episode-specific transport data
to provide real-time mortality prediction. The results demonstrated that with PROMPT, both the
random forest and logistic regression models achieved the best performance with AUROC 0.83 (95%
Cl: 0.79-0.86) and 0.81 (95% ClI: 0.76-0.85), respectively. The proposed model has demonstrated
proof-of-principle in predicting mortality risk in transported children and providing individual-level

model interpretability during inter-hospital transports.

Studies have shown that centralising specialised paediatric critical care in fewer
centres has clear benefits. This approach helps deliver high-quality care at a
lower cost while improving patient health outcomes". Following the estab-
lishment of regional Paediatric Intensive Care Units (PICUs) in the United
Kingdom, specialised Paediatric Critical Care Transport teams (PCCT's) were
also developed. In England and Wales, 29 PICUj offer critical care services to
over 11 million children under the age of 18°. The majority of transfers from
other hospitals to PICUs are stabilised and transferred by PCCTs'. Despite
being staffed by specialised and experienced paediatric clinicians, PCCTs face
significant challenges in transporting critically ill children from acute general
hospitals to PICUs, due to clinical complexity, staff-resource limitations, and
time constraints in a small and extreme environment™.

Ensuring the safe transport of critically ill children to tertiary PICU
centres is difficult, even for PCCT professionals. They often face challenges
because transport conditions can change quickly, requiring them to act fast in
response to any emergencies’, such as the acute deterioration of a child’s
condition in a moving ambulance. Critically ill children are particularly vul-
nerable to preventable adverse events during inter-hospital transports, with

incidents affecting up to 22% of such transfers®’. Transported children exhibit
longer PICU stays and a mortality rate of approximately 8% when requiring
advanced care in tertiary PICUs, a figure higher than the mortality rate of other
admissions’. With the development of digital and Artificial Intelligence (AI)
technology, smart algorithms can predict critically ill patients’ outcomes for
earlier intervention'’"">. However, existing solutions that have been offered are
primarily suitable for static ICUs and not for mobile environments. The key
difference in mobile environments is the dynamic and unpredictable nature of
patients, which introduces unique clinical and logistical challenges, such as
wide range of severities of illness, varying environmental factors, limited space,
and the need for continuous monitoring and rapid response during
transit”*"*. Therefore, PCCTs call for innovative and digital solutions to
effectively mitigate these specific challenges in mobile critical care settings".
During transport tasks, the team usually monitors bedside vital sign
displays to spot unusual readings, such as prolonged drops in blood pressure
or oxygen levels. Although continuous monitoring aids in identifying subtle
physiological changes, the lack of real-time explanations complicates the
understanding of multi-variable risk factors, compromising their capability
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to make immediate decisions'®. Furthermore, while mortality indices like
the Paediatric Index of Mortality 3 (PIM3) are very useful to estimate
mortality risk made during early stabilisation, they only provide a “snap-
shot” of a patient’s condition, failing to capture dynamic progression during
transport'”™". The real-time accuracy of mortality scores may be affected by
the severity and interventions that occur post-stabilisation in the intensive
care setting7. Therefore, the literature demands the development of diverse
data-driven and Al-empowered solutions to the assessment of illness
severity within the intensive care setting”**.

Recent studies demonstrated the potential of Machine Learning (ML)
and deep learning in predicting clinical outcomes through clinical data
analysis™". For example, Sundrani et al. utilised deep learning to develop a
model for predicting patient mortality based on continuous physiological
data from emergency departments”. Lee et al. proposed a ML model to
forecast postoperative mortality for surgical risk assessment with multi-
centre validation™, and Hilton et al. introduced an ML pipelines to predict
outcomes, including length of hospital stay and mortality rates’'. Aiming to
early recognise sepsis, Boussina assessed the impact of a deep-learning
model for the early prediction of sepsis on patient outcomes™. Although
these models have shown promise, their reliance on Electronic Health
Records (EHR) or intermittently collected vital sign data limits their
applicability to the real-time decision-making support system in the
transport environment. Another challenge is that these models are often
difficult to interpret, which makes it harder to provide personalised prog-
nosis predictions for patients from different groups™ .

In this work, we introduce PROMPT (Patient-centred Real-time
Outcome monitoring and Mortality PredicTion), an explainable ML
pipeline designed to dynamically assess severity of illness and 30-day
mortality prediction for critically ill children during inter-hospital

transports to the PICUs. The contributions of the research are
three-fold:

1. We develop an end-to-end ML-based pipeline for predicting the 30-
day mortality risk of transported critically ill children by incorporating
continuous vital signs, EHR, and transport episode data;

2. Using real-time patient and transport data, the pipeline provides
dynamic risks throughout the transport, supporting interventions and
treatments;

3. Predicted risks using the PROMPT can be explained at the individual
level within a variable time window, detailing how variable features
influence the model output.

In prior research”, we investigated the distribution and progression of
continuous vital sign data during inter-hospital transports by applying
Z-scores to standardise the vital signs of children across different age groups.
In this work, we transform the standardised data to clinical knowledge using
machine learning models that could be deployable on edge devices™,
facilitating an easier interpretation of variations and decision making of
interventions for PCCTs during transport.

Results

Study cohort

A total of 6470 transport episodes were conducted by the Children’s Acute
Transport Service (CATS), a London-based regional PCCT service, from
July 2016 to May 2021”. Over the study period, approximately 30% of
transports were eligible and included in analysis, during which vital sign data
were archived throughout inter-hospital transports. The reduction in the
dataset size was attributed to several factors, including technical difficulties
and the unavailability of devices, leading to the exclusion of data. Figure 1

Fig. 1 | Diagram of patient screening and elig-
ibility criteria. In total, 1242 non-repeated paedia-
tric inter-hospital transports conducted by the
CATS team between 2016 and 2021 were included.

Accepted emergency transports
ICU children of all ages

6,470
288 Excluded
o Children > 18
o Missing values in EHR
o Corrupted transport records
\ 4

Transported ICU children with
linked EHR and transport episodes

6,182
4,940 Excluded
N o No vital sign data archived
o Unmatched vital sign data files
o Unclear mortality outcome
\ 4

1,242 Included
with clear EHR, transport records
and mortality outcome

1,168 survived

74 died
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describes the flowchart of patient screening and eligibility. Patients over the
age of 18, those without any archived vital sign monitoring files, and records
with an excessive number of missing values in Electronic Health Records
(EHR) and primary outcomes were excluded from further analysis. Finally,
the study focused on 1242 non-repeated paediatric inter-hospital transports
conducted by CATS between 2016 and 2021.

Model performance
Employing PROMPT pipeline, five ML models - Random Forest (RF),
Logistic Regression (LR), Extreme Gradient Boosting Distributed
Gradient-boosted Decision Tree (XGBoost), Convolutional Neural Net-
work (CNN), and Light Gradient Boosting Machine (LightGBM) - all
exhibited varied yet promising performance in predicting 30-day mor-
tality risk within the validation cohorts (shown in Fig. 2). The area under
the receiver operating characteristic curve (AUROC), Matthews correla-
tion coefficient (MCC), average precision (AP), and other performance
metrics are summarised in Table 1. The detailed meanings and inter-
pretations of these performance metrics are explained in Supplementary
Table 1 online.

Benefiting from the learning ability of PROMPT, ML models sig-
nificantly increased AUROC and MCC for predicting 30-day mortality
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Fig. 2 | Evaluation of predictive performance using machine learning models
within the PROMOT framework. Compared to PIM3, both machine learning
models demonstrate improved predictive performance, as indicated by the mean
AUROC and 95% confidence intervals. Random Forest (RF) and Logistic Regression
(LR) exhibit the best performance among the models. AUROC Area Under the
Receiver Operating Characteristic Curve.

compared to the traditional method, indicating good discrimination
between children who died and those who survived at 30 days. The RF
model achieved the highest AUROC of 0.83 (95% Confidence Interval
(CI): 0.79-0.86), while Logistic Regression (LR) also showed a com-
mendable AUROC of 0.81 (95% CI: 0.76-0.85). This was true for 48-
hour mortality prediction also (RF mode AUROC 0.81, 95% CI
0.75-0.88). In comparison, the XGBoost, CNN, and LightGBM models
were slightly less accurate, with AUROCs of 0.78, 0.77, and 0.77,
respectively. Furthermore, their average precision scores (<0.35) fell
short of those achieved by RF (0.40 (95% CI: 0.34-0.46)) and LR (0.40
(95% CI: 0.34-0.45)). RF and LR exhibited superior performance across
different recall levels. As expected, ML models showed a significantly
greater capability in predicting 48 h and 30-day mortality compared to
the standard PIM3 score, which achieved a lower AUROC of 0.71 (95%
CI: 0.66-0.76), F1-score of 0.21 (95% CI: 0.11-0.31), and MCC of 0.07
(95% CI: 0.02-0.13).

Effect of features on prediction performance

The correlation analysis depicted in Fig. 3a indicates significant associations
among the eight important features within four ML models. These eight
features were chosen for their consistent ranking as highly influential across
various machine learning models. A prominent positive correlation is
observed between age and weight (0.95). Additionally, the PIM3 metric is
positively correlated with the Critical Incident label - CI_label - (0.32),
knowing that patients with elevated PIM3 scores are likely to have a higher
risk of health-related deterioration during transport. In contrast, a negative
correlation of —0.31 exists between age and the Power Spectral Density
(PSD) of temperature (TEMP_PSD).

Figure 3b compares the impact of selected eight features on the pre-
dictions generated by four ML algorithms. The features, including PIM3,
weight, and vasoactive interventions (Vaso_type), are identified as having a
significant influence on the predictive accuracy of the models. While LR
tends to distribute importance more evenly among the features, ensemble
techniques such as RF, XGBoost, and LightGBM demonstrate a hetero-
geneous importance distribution, offering insights into the varied sig-
nificance of features across models. We further derived the feature
importance scores within the best-performing RF model (refer to Supple-
mentary Figs. 1 and 2 online).

Individual-level dynamic risk assessment over transport

The dynamic health severity risk prediction can be visually represented
and explained for a specific patient at any given time. Figure 4 illustrates a
representative case from the holdout test cohort. This patient was a male
newborn diagnosed with metabolic acidosis. He was transferred from the
general hospital to the PICU with a PIM3 score of 0.014 when the

Table 1 | Comparison of model performance in the holdout test data for mortality prediction

Models® AUROC" mcc PPV NPV Recall F4-score AP

RF 0.83 (0.79-0.86) 0.33(0.29-0.37)  0.59(0.57-0.61)  0.98(0.98-0.99)  0.79(0.77-0.82)  0.60 (0.56-0.62) 0.40 (0.34-0.46)
LR 0.81 (0.76-0.85) 0.34(0.29-0.38)  0.50(0.58-0.60)  0.98 (0.98-0.98)  0.80(0.76-0.84)  0.60 (0.57-0.63) 0.40 (0.34-0.45)
XGboost 0.78 (0.74-0.82) 0.32(0.27-0.38)  0.60(0.57-0.63)  0.98 (0.97-0.99)  0.77 (0.74-0.80)  0.59 (0.55-0.63) 0.32 (0.27-0.37)
CNN 0.77 (0.72-0.82) 0.31(0.25-0.36) 0.58 (0.56-0.59) 0.98 (0.97-0.99) 0.78 (0.74-0.81) 0.59 (0.53-0.61) 0.25(0.19-0.32)
LightGBM 0.77 (0.72-0.82) 0.31(0.25-0.37) 0.59 (0.57-0.62) 0.98 (0.98-0.98) 0.76 (0.73-0.79) 0.60(0.55-0.63) 0.35 (0.29-0.40)
PIM3 0.71 (0.66-0.76) 0.07 (0.02-0.13) 0.46 (0.37-0.55) 0.97 (0.96-0.99) 0.56 (0.53-0.59) 0.21(0.11-0.31) 0.33(0.28-0.38)
RF-48h° 0.81 (0.75-0.88) 0.20 (0.23-0.35)  0.57 (0.54-0.58)  0.99 (0.99-0.99)  0.86 (0.80-0.91)  0.56 (0.52-0.61) 0.15 (0.09-0.21)
PIM3-48h 0.72(0.62-0.0.83)  0.12(0.07-0.18)  0.52 (0.51-0.54)  0.99 (0.98-0.99)  0.65(0.59-0.72)  0.47 (0.42-0.52) 0.24 (0.12-0.37)

*RF Random Forest, LR Logistic Regression, XGboost Extreme Gradient Boosting Distributed Gradient-boosted Decision Tree, CNN Convolutional Neural Network, LightGBM Light Gradient Boosting

Machine, PIM3 Paediatric Index of Mortality 3.

SAUROC Area Under the Receiver Operating Characteristics Curve, MCC Matthew Correlation Coefficient, PPV Positive Predictive value, NPV Negative Predictive Value, AP Average Precision, 95% CI95%

Confidence Interval.

°48h denotes mortality prediction within 48 hours of PICU admission. Unless otherwise specified, all other models represent 30-day mortality prediction performance.
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Fig. 3 | Statistical analysis of top features used in machine learning models.

a Heatmap illustrates the Pearson’s correlation coefficients among categorical and
continuous features in machine learning models. Red colours indicate stronger
positive relationships, while blue colours denote stronger negative relationships.
Numbers indicate positive or negative values of correlation coefficients. b Scaled
importance rank of top eight features in four machine learning models (i.e., RF, LR,
XGBoost, and LightGBM) for mortality prediction. Circle size corresponds to
relative importance, while different colours represent feature importance across four
models. CI_label Critical Incident label, PSD Power Spectral Density.

transport team arrived at the patient’s bedside. The retrieval team
undertook invasive ventilation, re-intubation, repositioning of the endo-
tracheal tube, initiated vasopressors, and prostaglandin infusion to the
patient pre-transport. This patient died within 30 days after arrival at the
destination PICU centre.

In this case, the patient’s mortality risk remains relatively low
during the initial phase of inter-hospital transport, yet escalating as the
journey nears its handover. It is observed that HR increases sig-
nificantly at the 140th minute, with the patient demonstrating
instability in the period from 150 to 180 min. We analysed the influ-
ence of feature variables on model predictions at the junctures of
heightened risk (Fig. 4b). A combination of relatively low SBP and
declining SpO, drive the prediction towards non-survival, despite the
administration of vasoactive support. Conversely, normal body tem-
perature and DBP levels contribute to lowering the risk towards sur-
vival. Throughout the transport, the derived variables of SpO, (ID 1,2,3
in Fig. 4c) predominantly influence the mortality prediction towards
non-survival. In this case, we note that age, ventilation type, and critical
incident type have relatively minor impacts on the model prediction

(the patient did not experience any critical incidents during the
transport), which aligns with the feature importance ranking using the
RF model (shown in Fig. 3b).

Comparing PROMPT with PIM3 in 30-day mortality prediction
after inter-hospital transports to PICUs

The proposed PROMPT leverages enriched data characteristics obtained
from continuous vital signs and EHR data collected during inter-hospital
transports. This wealth of information enables an improved performance in
tracking and predicting patients’ severity of illness during transport (Fig. 2).
In contrast, current transport practices typically rely on the single time
point-based PIM3 assessment, which is conducted during the early hours of
arrival.

Figure 5 demonstrates the mortality prediction capabilities of our
model using a holdout test cohort, comparing it against the PIM3. In this
example, the best-performing RF model offers a more evenly distributed
mortality risk score. It successfully identifies three patients at high risk of
mortality, who, despite having low PIM3 scores (<0.1 for two patients and
<0.25 for one), were collected during transport. In contrast, the PIM3 scores
mostly cluster below 0.15, suggesting a lower mortality risk, yet failing to
account for critical incidents during transport that could significantly
impact patient outcomes within 30 days post-transport, as indicated in”".
The analysis of patients with predicted risks lower than their PIM3 scores (as
shown in the Supplementary Fig. 3 online) demonstrates that the developed
model exhibits improved performance in identifying low-risk cases. The
clustering of points (patients) and reduced variability in predicted risks
highlight its improved accuracy and consistency compared to PIM3. These
findings validate the model’s superior predictive performance in scenarios
involving patients with lower risks of mortality, effectively minimizing false
positives.

While this comparison highlights the potential advantages of incor-
porating trajectory data into real-time risk assessments, we acknowledge
that the differing data inputs between the two models necessitate a careful
interpretation of their comparative analysis. Further, the explainability of
the PROMPT facilitates ML model transparency in explaining feature
influences on model output over various time windows (Fig. 4).

Discussion

To the best of our knowledge, our study is among the first to investigate the
utilisation of continuous physiological variables gathered during inter-
hospital transports to the PICUs, in conjunction with EHR and specific
transport episode data, to forecast 30-day mortality in critically ill children.
In this work, we introduced an explainable ML pipeline named PROMPT to
predict 30-day mortality risk using waveform vital signs, EHR, and trans-
port episode data. Using PROMPT, ML models were trained on a dataset
comprising 21 static EHR variables and derived features from Z-scores of
vital signs for over 1200 ICU patients transported by the CATS in Central
London from July 2016 to May 2021. The findings of our study demon-
strated the superiority of PROMPT in predicting mortality using ML
models in mortality prediction (Table 1) and model interpretability at the
individual level (Fig. 4). We propose that this approach could enhance the
identification of patients at risk of 30-day mortality upon arrival at the
PICUs and could be continuously applied to provide real-time estimates of
severity of illness during transport.

Another innovation of PROMPT lies in its ability to interpret the
evolving risks of mortality with a time window for individual patients during
transport (An example user interface of this “co-pilot” dashboard is shown
in Fig. 4). While previous studies have concentrated on enhancing the
predictive performance of ML models, they frequently overlook the
importance of clinicians understanding how these models, which often
function as “black boxes,” impact patient vital sign trends as well as risks
over time. Using patient health and transport records, the PROMPT can
dynamically assess the impact of health changes on personalised risk pre-
dictions. This study presents a real-time risk assessment score using SHAP
values that updates within a 10-min (or shorter) time window, dynamically
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Fig. 4 | Example of co-pilot dashboard visualisation of dynamic predicted severity
of illness risks and the impact of features on model prediction for a patient.

a Plots real-time risk scores (depicted in red with triangle symbols) derived from the
best-performing random forest model, employing SHapley Additive exPlanations
(SHAP) analysis over the transport duration with 10-minute intervals. The left axis
represents the magnitude of Z-scores of vital signs, while the right axis displays
SHAP values. A higher SHAP value suggests an increased probability of the model
predicting mortality. Numbers are used to identify the features; b explains the
influence of each feature on the risk prediction for a specific time window. Features

highlighted in red drive the risk prediction to the non-survival outcome; features in
blue drive the prediction to the survival outcome; ¢ summarised pivotal transition
moments caused by a specific feature (identified by a unique ID) which drives
predictions from survival to non-survival. These moments, marked by IDs in

a, indicate time points where patient outcomes are likely to deteriorate. The tran-
sition from survival to non-survival is symbolised by a color change from blue to red.
Further, we have observed certain static variables change from blue to red, with
further explanation provided in the Discussion section.
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Fig. 5 | Scatter plot of patient-level mortality risk predictions using the best-
performing RF and PIM3 models. Each point represents a patient, where the
orange colour indicates that the particular patient died and the blue colour indicates
that the patient survived. (RF random forest, PIM3 Paediatric Index of Mortality 3).

adjusting SHAP values throughout transport, as depicted in Fig. 4a.
Moreover, the effects of features on patient outcomes (non-survival or
survival) are elucidated in Fig. 4b, c at the individual level. This “co-pilot”
dashboard dynamically tracks individual risk development trends over time,
providing insights into sharp increases in risk. It has the potential to raise
alerts by explaining the underlying causes at the feature level, highlighting
which features are contributing to the changes and how they impact health
stability. Besides, This Al solution builds on our previous study, which used
Z-scores to normalize vital signs in paediatric patients, effectively mini-
mizing age-related variations in age groups. By leveraging this approach, the

basic statistics values (such as mean, max, and min) of Z-scores of vital signs
informs transport clinicians about the degree of vital sign deviation from
normal levels. These measures improve the transparency of the proposed Al
tool by providing clinicians with explainable results and an illustrative
dashboard interface. This approach demonstrates significant potential in
helping transport teams quickly identify elevated risks in mobile settings.

The PROMPT facilitates the interpretation of how features influence
mortality prediction using SHAP values. It was found that certain char-
acteristics, such as SpO, and vasoactive medication types, shift their impact
from predicting survival to non-survival depending on the time point
considered. This variability extends to other features like PIM3, weight, and
the maximum temperature value (Fig. 4c, b), which can alternately con-
tribute to predictions of both outcomes. This fluctuation underscores the
complexity of interactions between features and the model over time,
echoing findings from a similar study by Thorsen et al.”. The observed
variations likely stem from the model’s ability to discern complex, non-
linear relationships and patterns among the various feature variables. The
model dynamically refines its predictions by adjusting the influence of
specific features based on their interactions with others. This adaptability
makes PROMPT more comprehensive for mortality prediction compared
to snapshot-based measurements like PIM3*, which are often measured by
the PCCT's from the time of initial patient contact within first hours at the
referral hospital.

With PROMPT, our ML models, designed for inter-hospital transport
of critically ill children to PICUs, address a critical gap largely overlooked in
previous studies: providing real-time mortality risk prediction during the
transport phase. This contrasts with the retrospective analyses often per-
formed in other studies that rely on static data or data collected in a more
controlled environment. Our models demonstrate performance metrics
that are equivalent or comparable to those reported in existing studies. For
instance, Kim et al.”, utilizing a gradient boosting decision tree model,
reported an AUROC of 0.83 for predicting mortality 60 h before death with
hourly vital sign measurements. Our study achieved an AUROC of 0.83 for
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predicting 30-day mortality post-PICU admission, emphasising the pre-
dictive power of our approach in the dynamic and often chaotic environ-
ment of inter-hospital transport. Similarly, while Feng et al.** achieved an
AUROC of 0.897 in early-stage mortality risk assessment among preterm
infants in PICUs using deep learning models, our CNN model reported an
AUROC of 0.77. Moreover, Lee et al." achieved an AUROC of 0.906 using a
RF model for mortality prediction within PICUs; our study recorded an
AUROC of 0.83 using the same RF model but PROMPT pipeline. The
difference in performance can be attributed to the distinct contexts of each
study. The dynamic nature of the transport environment, with its inherent
variability in patient conditions and data quality, presents unique challenges
that impact the model’s predictive accuracy. Despite the lower AUROC, our
data pipeline focuses on real-time prediction and interoperability during
transport. PROMPT integrates diverse data types, including continuous
time-series vital signs and static clinical data, to offer dynamic and inter-
pretable risk assessments that can inform immediate clinical interventions
during transport.

Numerous studies have demonstrated the potential of ensemble
learning to enhance robustness and predictive performance in critical care
settings"'. Building on the PROMPT framework, we utilized RF, XGBoost,
and LightGBM as base models, leveraging their optimized hyperparameters
from prior tuning, and employed LR as the meta-model to combine their
predictions”. The results indicate that stacking achieved performance
comparable to the best-performing individual machine learning models in
our dataset, aligning with findings reported in a similar study". Prithula also
reported an AUROC of 0.72 using the CatBoost model*, while our pro-
posed PROMOT pipeline with RF achieved a higher AUROC of 0.83.
Similarly, their findings indicated that both the RF and CatBoost classifiers
demonstrated the highest performance, whereas the stacking ensemble
model showed reduced effectiveness. This trend aligns with our study, in
which the RF model achieved the highest performance. However, con-
sidering the critical need for low-latency, low-complexity, and real-time
explainability - essential for the transport team’s dynamic requirements and
future integration into an edge-computing device on an ambulance - we
prioritized the use of individual models in this study.

Patients in transports between hospitals, particularly critically ill chil-
dren, present a unique challenge due to the often incomplete understanding
of their underlying diagnoses and the severity of their conditions at the onset
of transport”. The transport episode is characterised by the acute man-
agement of life-threatening conditions and stabilisation efforts, contrasting
with the regulated environment of in-hospital care aimed at ongoing
management and recovery’ . The distinctive challenges of data variability
and quality inherent in transport settings may influence the comparability of
accuracy metrics.

To address the practical and technical challenges involved in
transporting critically ill paediatric patients, we have created an easy-
to-understand, end-to-end data pipeline powered by ML models.
This pipeline incorporates conventional models, such as RF and
CNN, to assess the 30-day mortality risk. Our initial investigations
into Long Short-Term Memory (LSTM) models, known for their
adeptness at handling sequential data®, revealed performance var-
iances. These inconsistencies were linked to the high dimensionality
of the feature set and prevalent missing values in the initial vital signs
data, which impeded their ability to consistently surpass the per-
formance of RE or CNN models*’. Moreover, the urgent and time-
sensitive nature of patient transport demands models that can offer
real-time predictions while minimising computational complexity.
The necessity for reliable, real-time predictions in remote contexts -
where models must often operate independently of continuous Wi-Fi
or internet access - suggests a preference for light models in terms of
complexity. These models stand out for their lower computational
requirements, enabling timely and efficient deployment on devices
capable of operating in edge-computing modes within ambulances.
Considering the envisioned practical deployment scenarios, it is
paramount to choose models that exhibit clear advantages in such

environments'’. Due to their relatively low computational demands
and robustness, traditional models provide significant benefits over
LSTM or other transformer-based models, which require more
computational power and may not align well with the constraints of
mobile and remote settings*.

Using a 10-minute interval in our dynamic risk prediction model
allows us to strike a balance between providing detailed insights and
maintaining fast computation when assessing the 30-day mortality risk.
This approach ensures that the model remains clinically relevant without
sacrificing efficiency. The purpose of this interval duration is to detect
important and meaningful changes in a patient’s condition, such as fluc-
tuations in vital signs or the effects of interventions or medications, while
minimising the computational burden that comes with more frequent
updates. Moreover, this time frame coincides with the standard procedure
in medical practice, where a 10-minute period is deemed adequate for
detecting significant changes in a patient’s condition without inundating
healthcare professionals with excessive data®". Crucially, this timeframe
provides adaptability, enabling modifications based on developing medical
knowledge or specific situation requirements, guaranteeing that our model
stays up-to-date and capable of meeting the demands of immediate clinical
decision-making™.

Our analysis investigated the association between actual transport time
(journey time on the road) and 30-day mortality outcomes. Despite the
intuitive expectation that longer transport times might negatively influence
patient survival, “transport time” was not among the top-ranked features in
our model (see Supplementary Fig. 4 online). Specifically, it was ranked 34th
in correlation with 30-day mortality predictions, suggesting a weak asso-
ciation between the two variables. This aligns with findings from prior
studies*** that reported no significant impact of longer transport times on
patient outcomes, such as 30-day mortality or hospital length of stay.
Additionally, this finding is consistent with research conducted by our
group, which revealed no conclusive evidence that reducing time-to-bedside
significantly improves the 30-day survival rate for critically ill children*.
While the actual transport time was analysed, incorporating the estimated
transport time as a feature, particularly in the context of resource optimi-
zation or geographic challenges, could offer potential useful insights into its
potential impact on patient outcomes using AL

In our investigation, we identified several potential limitations. First, a
significant challenge was the inconsistent capture of vital sign data during
patient transport. Often, recording of vital signs began only upon the
medical team’s arrival at the patient’s location and ceased prior to the
patient’s admission to the PICU. This inconsistency, combined with the lack
of standardisation in monitoring different vital signs, presented a con-
siderable obstacle in precisely predicting mortality risks within the usual
monitoring periods. Furthermore, not all transported children had their
data comprehensively recorded, leading to concerns about the representa-
tiveness of our sample. Despite efforts to validate the comparability of
patient characteristics within our cohort against the broader transported
population, the potential for selection bias remains. Additionally, the limited
generalisability due to the model being developed and validated within a
single institution and over a specific period (i.e., 2016-2021) is acknowl-
edged. While the model was effective in leveraging meaningful clinical
features and high-frequency vital signs for prediction, the variation in
standard-of-care practices across different institutions might require
model adjustments or re-training to preserve its accuracy and
applicability. For instance, our dataset documented the PIM3 score
at/around the time the CATS team arrived at the patient bedside. The
transport phase included logging of critical incidents. The challenge
of integrating and analysing data from multiple sources for model
validation underscores the significant infrastructural and logistical
challenges in extending the model’s application to a wider clinical
context. This limitation underlines the necessity for future research
to focus on improving the model’s adaptability and validating its
performance in varied healthcare settings to ensure its gen-
eralisability and efficacy in clinical decision-making.
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Another limitation pertains to the interpretability and causal impli-
cations of model predictions. While the study endeavoured to enhance
model interpretability, it is vital to recognise that the associations identified
between specific features and health severity risks, such as 30-day mortality
post-arrival at destination PICUs, are correlative rather than causative. This
distinction implies that modifying a feature significantly influencing the
model’s prediction does not guarantee an altered patient risk or outcome.
For example, the identification of certain clinical interventions or critical
incidents in a patient’s history might correlate with increased risk scores,
yet altering these based on model suggestions alone, without considering the
clinical context, could prove imprudent. This emphasises the importance of
incorporating clinical judgement and expertise into model refinement,
aiming for further research to investigate how these predictive models can
support clinical decision-making effectively, without solely dictating patient
care strategies, particularly in the exigent and variable transport environ-
ments. Although obtaining new data for validation is challenging, we are
actively working to address these limitations. This includes collaborating
with other institutions to replicate our data extraction methods and using
more recent data from our own institution for further validation. These
efforts aim to improve the model’s generalisability and practical value.

One potential limitation is the generalizability of the proposed method
across different ethnicities, as the study population is primarily drawn from
south-east England. This may affect the model’s applicability to populations
with diverse demographic and clinical characteristics in other regions or
countries. Limited access to geographically diverse datasets remains a
challenge. To address this, efforts are underway to expand the dataset by
incorporating cohorts from south-east England and other parts in the UK,
while also exploring collaborations with external institutions to enhance
data diversity.

Future work will focus on seamlessly integrating this tool into edge-
computing devices on ambulances, leveraging its low computational com-
plexity and near real-time response capabilities, prior to rigorous clinical
validation. By providing dynamic risk scores and pinpointing specific vital
signs driving changes in risk, the tool enables transport teams to rapidly
identify and address high-risk situations, ensuring reliable, real-time func-
tionality even in resource-limited environments. Furthermore, once con-
nected to secure cloud services, the tool can support seamless handovers by
delivering comprehensive, time-stamped patient data and risk trends
directly to destination hospitals. This ensures that receiving clinicians have
immediate access to actionable information, enabling accurate prioritization
of interventions, streamlined triaging, and improved outcomes for critically
ill children. Extensive validation studies are planned to rigorously evaluate
the tool’s performance in real-world clinical settings, ensuring its reliability
and effectiveness in enhancing paediatric care.

Methods

Study population and data sources

This retrospective cohort includes 1242 patients who were transported from
general hospitals to PICUs in central London, with at least 10 min of
archived vital signs data. The medical and vital sign information of all
patients collected between July 2016 to May 2021 were used for model
development. Table 2 presents the characteristics of overall transported
patients and study cohort. The study cohort comprised children with a
median age of 8 months (Interquartile Range, IQR: 0-53 months), pre-
dominantly diagnosed with respiratory (34.8%) and cardiovascular condi-
tions (25.7%). The median PIM3 predicted mortality risk was 3.3% (IQR:
2-4.9). Critical incidents during transport, either due to patient deteriora-
tion or equipment malfunction, were reported in 14.9% of cases. Out of the
1242 patients, 1168 survived and 74 died within 30 days of PICU admission
(20 died within 48 h of PICU admission). The median transport time was
206 min (IQR: 160-258 min). A median of 1.12 (IQR: 0.69-1.73) mon-
itoring hours per patient was collected from the study population, totalling
1722.53 h of vital signs monitoring data. This cohort’s EHR and vital signs
data were utilised in the development of ML models (Fig. 6 describes study
overview and methodology).

Table 2| Characteristics of demographics, clinical results, and
transport episodes of overall transported patients and study
population

Characteristics® All transported

patients (n =6182)

Patients analysed in
this study (n = 1242)

Age, months/years

<1 m (newborn) 2145 (34.7%) 471 (37.9%)
1-<12 m (infant) 1270 (20.5%) 254 (20.5%)
1-<4y (pre-school child) 1148 (18.6%) 218 (17.6%)
4-<11 y (school child) 976 (15.8%) 180 (14.5%)
11-<18 y (adolescent) 643 (10.4%) 119 (9.5%)
Gender

Male 3449 (55.8%) 574 (46.2%)
Diagnosis group

Respiratory 2220 (35.9%) 432 (34.8%)
Cardiovascular 1409 (22.8%) 319 (25.7%)
Neurological 1069 (17.3%) 229 (18.4%)
Infection 625 (10.1%) 80 (6.4%)
Gastrointestinal 461 (7.5%) 55 (4.4%)
Trauma 321 (5.2%) 16 (1.3%)
Others 76 (1.2%) 111 (9.0%)
PIM3 predicted mortality risk®

<1% 392 (6.3%) 75 (6.0%)
1%-<3% 2282 (36.9%) 422 (33.9%)
3%-<5% 2022 (32.7%) 433 (34.9%)
5%-<10% 1016 (16.4%) 219 (17.6%)
10%-<15% 194 (3.0%) 39 (3.2%)
15%-<30% 171 (2.8%) 31 (2.5%)
>30% 105 (1.7%) 23 (1.9%)
Invasive ventilation

Yes 4208 (68.1%) 889 (72.4%)

Vasoactive agent infusion

Yes 1792 (28.9%) 390 (31.4%)
Inhaled nitric oxide

Yes 198 (3.2%) 31 (2.5%)
Critical incident®

Patient or Equipment 824 (13.3%) 186 (14.9%)

related

Overall transport time, minutes®

<180 2203 (35.6%) 403 (32.5%)
180-360 3744 (60.6%) 804 (64.7%)
>360 235 (3.8%) 35 (2.8%)

“Data are n (%). Patients with multiple transports are excluded.

*The PIM3 score was measured at first face-to-face contact with the transport team, usually within
the first hour of the stabilisation phase at the patient’s bedside.

“Patient or equipment related critical incidents occurred during transports are associated with
adverse events in transported children.

9Overall transport time consists of stabilisation time, patient journey time and handover time.

Data collection and processing

The collected data comprised categorical and numerical datasets (Table 3).
Patient demographic information, including age, gender, diagnosis group,
along with clinical data such as the use of invasive mechanical ventilation
and vasoactive drugs were gathered during inter-hospital transports. PIM3
score was calculated using variables collected at/around the time the CATS
team arrived at the patient bedside. Numerical data included physiological
variables: systolic blood pressure (SBP), diastolic blood pressure (DBP),
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Fig. 6 | Overview and methodology of PROMPT: from raw data to explainable
clinical decision-making support. a Raw data extracted from PICU were filtered
using the inclusion and exclusion criteria. Clinically implausible values were
removed, and raw data were pre-processed following data exploratory analysis.
Cleaned data were converted to standardised data using the Z-score approach.

b Imputation was applied to fill in missing values in vital signs time-series data using
variable-specific methods for every time point. ¢ Sliding window extraction scheme
was performed to extract balanced samples to mitigate the problem of mining
imbalanced datasets (samples extracted from deceased patients are minority class).
Static features (i.e., EHR and transport episode data) and statistical features
extracted from high-frequency data (i.e., physiological time-series data) were

integrated into feature vectors. Each feature vector represents one patient’s char-
acteristics for a specific period. d Balanced samples were employed to train the
binary machine learning models, and the predicted mortality risk probabilities were
fused to generate the 30-day mortality risk score in validated patients. e The
modelling performance was evaluated using widely used metrics for evaluation of
machine learning models on imbalanced datasets such as Area Under the Receiver
Operating Characteristic Curve (AUROC), Recall, Matthews Correlation Coeffi-
cient (MCC) and recall, etc. f SHapley Additive exPlanations (SHAP) algorithm was
employed to explain features that drive individual-specific predictions and visualise
SHAP risk scores in real-time during transport.
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Table 3 | List of collected EHR and vital signs data in the study cohort

Category EHR and vital signs data Data type Range Missing (%)?

Patient demographics Age, weight, gender Categorical 0,1

Medical diagnosis Primary disease diagnosis, paediatric index of mortality 3, critical incidents® Categorical 0,1

Interventions® ECMO, mechanical ventilation, vasoactive medicines, Inhale nitric oxide intervention ~ Categorical 0,1

Vital signs Heart rate (bpm), Numerical [0,300] 2.85
Systolic BP (mmHg), Numerical [0,270] 9.25
Diastolic BP (mmHg), Numerical [0,250] 9.30
Mean BP (mmHg), Numerical [0,250] 8.76
Respiratory rate (breaths/min), Numerical [0,180] 3.11
SpO, (%) Numerical [0,100] 2.87
Body temperature (°C) Numerical [20,45] 12.5

“Missing rates in the collected data were calculated after data extraction and initial data cleaning processes generated from the data registry.
“Critical incident during paediatric transport refers to an unexpected event or situation that arises while transporting a paediatric patient, which poses a significant risk to the patient’s health or well-being due

to patient-related deterioration or medical equipment failures.

“Intervention records represent care support administered by the paediatric critical care transport teams.

mean blood pressure (MBP), heart rate (HR), respiratory rate (RR), per-
ipheral capillary oxygen saturation (SpO,), and body temperature, which
were continuously monitored and automatically recorded on the EHR
throughout the transport. The vital signs of critically ill patients, char-
acterised by their high frequency, were extracted and processed by a data
engineering team within the CATS transport team and at the transport
destination hospitals.

EHR and vital signs are frequently collected in mobile settings,
leading to the presence of abnormal records and missing values, often
resulting from medical staff errors or unexpected observation disruptions
due to acute treatment. To address these issues, we utilised imputation and
filtering methods for outliers, missing values, and diverse feature ranges
(Fig. 6b). Our method also included data cleaning to standardise the
variability in each physiological signal and remove outliers or invalid data.
This process was critical because the initial recordings of vital signs fell
within specific ranges rather than discrete values (refer to Supplementary
Table 2 online).

In the data pre-processing stage, we standardised vital signs using the
Z-score approach for all patients. This normalisation is particularly
important in paediatric populations, where vital signs such as blood pressure
and heart rate exhibit significant variability and age-dependent ranges. By
normalising the vital signs, we mitigate age-related variability in vital signs,
leading to more reliable model training and evaluation based on relative
deviations rather than widely varying age-specific vital sign data. A com-
prehensive description of our Z-score standardisation method is detailed in
our preliminary retrospective study”’.

The study adhered to the protocols of the Data Research, Innovation,
and Virtual Environments (DRIVE) unit at Great Ormond Street Hospital
(GOSH), ensuring compliance with ethical guidelines for processing patient
data. All data handling was conducted within the secure Digital Research
Environment™ and underwent both de-identification and anonymization
processes. Additionally, access to the de-identified patient and transport
records was strictly controlled.

Feature generation

In the PICU setting, mortality events are infrequent relative to survival cases.
Our study revealed a 30-day PICU mortality rate of approximately 6% (1.6%
mortality within 48 h), indicating a significant class imbalance. To address
this, we employed a sliding time window technique (with a duration of
10 min and a step size of 50 data points) to augment the minority class by
extracting samples from deceased cohort. For most classes, we just use non-
overlapping sliding time window to generate samples from survival patients.
In this case, the number of samples with deceased patients are approxi-
mately equal to that of samples with surviving patients (Fig. 6¢c).

Subsequent to the application of the sliding window technique, features
were generated from the samples (10 min of Z-scores) as inputs. EHR data
were used as static features, including demographics, medical support
information, and clinical scores. For the continuous Z-scores of vital signs,
thirteen types of features were generated for each time window, encom-
passing statistical measures such as mean, standard deviation, and entropy
measures™. These features, derived from both EHR and Z-scores of vital
signs, were assembled into a comprehensive feature set (refer to Supple-

mentary Table 3 online).

Development of the model

The model’s development incorporated five foundational individual ML
models (i.e., RF, LR, XGBoost, CNN and LightGBM). The principal focus
was on predicting mortality within 30 days post-admission to the PICU after
inter-hospital transport. The patients were divided using the holdout
method, allocating 90% to the training dataset and 10% to the holdout
dataset through random sampling. Meanwhile, the approximate death rate
of 6% observed in the original dataset was maintained in both the training
and holdout datasets. In preparing samples for training and testing, positive
samples were derived from all deceased patients using a sliding time window
approach, ensuring an approximate equal number of positive and negative
samples to mitigate the imbalanced learning. Negative samples were
extracted from all surviving patients (without the sliding method). We
rigorously ensured that no sample data from the same patient was shared
between the training and test sets, thereby preventing data leakage and
maintaining the integrity of the validation process.

Throughout the training phase, a sample-wise approach was applied to
train the classifiers, enabling the models to learn patterns from patient
samples. Samples extracted from patients allocated to the training dataset
were used for model training, and a five-fold cross-validation was employed
to fine-tune the model hyperparameters. During the cross-validation pro-
cess, a random search approach was applied to systematically explore
combinations of key hyperparameters in different machine learning models.
The optimal parameters were selected based on the highest average per-
formance across the folds, using metrics such as AUROC to balance sen-
sitivity and specificity. To predict patient-level mortality risk, the mortality
risk probabilities of all available samples predicted from ML models from
the same patient were averaged (Fig. 6d).

Model evaluation

Model performance was assessed using several metrics, including the
AUROC, MCC, AP, Positive Predictive Value (PPV), and Negative Pre-
dictive Value (NPV) (Fig. 6e). These metrics provided a comprehensive
evaluation of the models’ ability to differentiate between survivors and non-
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survivors in an unbalanced dataset. The performance of the classifiers was
compared against that of the PIM3.

Model prediction explanation

We employed a SHAP algorithm to explain our model prediction”’. SHAP
values partition the prediction result of every sample into the contribution of
each constituent feature value - it explains the contribution of each feature
value that drive model prediction™. This approach not only reveals the
impact of feature values on the model’s predictions but also facilitates an
understanding of how changes in these values influence clinical outcomes
(Supplementary Fig. 5 online). By focusing on the RF model, we demon-
strated the application of SHAP values in visualising patient-specific con-
tinuous risk predictions and the contributory role of individual features
within the context of their interactions, thereby offering insights into real-
time health risk trends over transport time (Fig. 6f). An explanation of
SHAP value changes and their influence on model predictions is provided in
Supplementary Table 4 online.

Ethics consideration

Formal ethical approval was waived since data were collected as part of
routine care and anonymized before analysis, which was covered by generic
research database approval (17/LO/0008) from the London - South East
Research Ethics Committee.

Data availability

The data that support the findings of this study are available from Children’s
Acute Transport Service and Great Ormond Street Hospital in London.
Restrictions apply to the availability of these data, which were used under
license for this study. Data are available from the corresponding author with
the permission of Great Ormond Street Hospital.

Code availability

Analysis code used in this project is available at Zenodo: https://zenodo.org/
records/11283103. This study uses Python (v3.10.9) for the analysis, and the
versions of the libraries (e.g., SHAP, NumPy, Pandas, scikit-learn, and
Seaborn) are detailed in Supplementary Table 5 online.
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