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Abstract—This study investigates a fluid antenna (FA)-enabled
multi-static integrated sensing and communication (ISAC) sys-
tem. Within this system, multiple transmit access points (TAPs)
are employed to transmit ISAC signals, enabling simultaneous
downlink communication and target sensing. At the same time,
there is a receive access point (RAP) to capture the reflected
sensing signals for target detection. All of the TAPs are equipped
with FAs to leverage the spatial degree of freedom. We formulate
a maximization problem of the worst-case detection probability
of designated targets subject to the communication constraints
of the users, to optimize both the beamforming matrix and
antenna position vector (APV) of each TAP. To address the non-
convexity of the problem, we use an alternating optimization
approach over two subproblems: (1) beamforming optimization,
and (2) optimization of APVs. For the first subproblem, we use
the semi-definite relaxation (SDR) method to derive the optimal
beamforming vectors given fixed APVs. Then the latter is solved
by the second-order Taylor series expansion to approximate the
function related to the APVs in a convex form. Simulation results
demonstrate that the adoption of FA significantly enhances the
sensing performance of our proposed system. Also, the proposed
cooperative multi-static ISAC system coordinates communication
and sensing tasks across various TAPs effectively, underscoring
its potential for improving overall system performance.

Index Terms—Fluid antenna system (FAS), integrated sensing
and communication (ISAC), antenna position vector optimization,
beamforming matrix optimization.

I. INTRODUCTION

ITH the rapid advances paving the way for the sixth
W generation (6G), communication systems are evolving
into sophisticated networks designed to deliver ubiquitous and
intelligent connectivity for all devices and applications [1], [2].
This progression aims to enable seamless, smart interactions
across a wide range of technologies and industries, fostering an
era of pervasive intelligence. The emergence of technologies,
such as connected autonomous vehicles (CAVs) and unmanned
aerial vehicles (UAVs), means that 6G systems not only meet
the increased demand for data throughput and reliability but
also fulfil stringent requirements for low-latency communica-
tions and high-precision sensing. However, employing diverse
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software and hardware platforms and spectrum resources for
both communication and sensing poses additional challenges
to the already constrained network resources. Fortunately, re-
cent advancements in multiple-input multiple-output (MIMO)
technology [3], [4] indicate that high-resolution sensing can
be accomplished by utilizing communication signals [5]. This
approach offers a promising solution for enhancing sensing
accuracy without necessitating additional spectrum resources
or complex hardware. As a consequence, it is feasible to design
integrated wireless networks capable of simultaneously per-
forming both communication and sensing tasks, i.e., integrated
sensing and communication (ISAC) [6]. The core principle
of ISAC is predicated on the shared utilization of hardware
platforms and signal processing modules to efficiently execute
both communication and sensing operations [7].

In recent years, much progress has been made for ISAC,
particularly in areas such as waveform design and signal pro-
cessing. Notably, [8] investigated the interaction between the
downlink base station (BS) and MIMO radar in a coexisting
system, proposing two approaches for achieving simultaneous
sensing and communication. One approach involves utilizing
distinct antenna arrays designed with a null-space technique
for sensing signals. Another approach is to employ a shared
waveform, which has garnered broader acceptance due to its
efficiency and practicality. Building on these advancements, a
joint transmission model was developed in [9], [10]. This mod-
el enables simultaneous beam steering toward both targets and
users by transmitting an integrated signal combining sensing
and data transmission waveforms. Moreover, the authors of
[11] enhanced the sensing performance of ISAC system by
jointly optimizing parameters such as beamforming and the
duration of non-orthogonal multiple access transmission.

To mitigate sensing uncertainties arising from fading and
interference in mono-static ISAC systems, multi-static ISAC
systems have attracted significant interest. These systems en-
hance robustness against environmental variations and improve
overall system reliability through coordinated deployment of
multiple access points. For instance, [12] introduced a multi-
static architecture where users serve as uplink sensing points,
thereby augmenting the downlink detection capabilities of the
BS. To fully exploit these advantages, recent studies such as
[13], [14], [15], [16] elaborated on two key mechanisms: trans-
mit access points (TAPs) transmitting ISAC signals for both
communication and target detection, and receive access points
(RAPs) capturing the reflected signals that are subsequently
processed by a central controller (CC). Furthermore, [17]
proposed a multi-static ISAC system oriented towards edge
intelligence, which minimized the overall power consumption
by jointly optimizing sensing beamforming, offloading trans-



mission beamforming, and multi-station sensing scheduling.

However, in conventional ISAC systems, fixed-position an-
tennas are used for both sensing and communication tasks.
Although beamforming matrix optimization can enhance either
sensing or communication performance, the spatial rigidity of
static antenna deployments restricts their ability to harness
available degrees of freedom (DoFs) across continuous spatial
ranges, resulting in suboptimal spatial diversity [18]. Also,
these fixed-position antennas greatly limit sensing resolution,
as this performance heavily depends on the geometric con-
figuration of the antenna array. Consequently, it is essential to
explore antenna position vector (APV) optimization techniques
to enhance the spatial diversity within wireless channels. Fluid
antenna (FA) systems [19], [20], [21], [22], sometimes referred
to as movable antenna (MA) systems [23], provide a viable
solution by providing additional DoFs in beamforming through
dynamic APV [24], [25], [26]. By enabling dynamic antenna
repositioning within predefined regions utilizing technologies
such as [27], [28], [29], [30], FA systems imitate having many
distributed antennas over a given space, fully utilizing the
entire spatial region. This results in higher angular resolution
without the need for additional antenna elements, thereby
maximizing cost-effectiveness and performance.

FA systems not only show significant potential for wireless
communication systems, but also can play an important role in
enhancing ISAC capabilities. The authors of [31] summarized
the advantages of FA-enabled ISAC systems, including en-
hanced spectral efficiency, flexible and precise beamforming,
and adjustable signal coverage ranges. Moreover, [31] inves-
tigated the problem of minimizing the total transmit power
in an FA-enabled full-duplex ISAC system, where the BS
is equipped with both a receiving FA and a transmitting
FA. Concurrently, [32], [33], [34] introduced an FA-enabled
ISAC framework that simultaneously optimizes the transmit
beamforming matrix and port selection by reconfiguring FA
positions across predefined ports, thereby maximizing spatial
diversity gains for dual-functional performance enhancement.
Later, [35] studied a dual-FA architecture where both BS
and users are equipped with FA, and jointly optimized the
transmit beamforming matrix and APV to maximize commu-
nication rates while meeting the sensing beampattern gain and
transmission power requirements of the BS. The integration
of FA with other emerging paradigms further expands ISAC
capabilities. For example, [36] developed an ISAC system
augmented by both FA and reconfigurable intelligent surfaces
(RIS), which overcomes coverage limitations in non-line-of-
sight (NLOS) environments through joint optimization of the
beamforming matrix at the BS, the reflection coefficients on
the RIS, and the APV. Additionally, [37] proposed a deep
reinforcement learning framework to address the non-convex
problem of jointly optimizing the beamforming matrix and
APV, establishing an end-to-end learning architecture that
circumvents the limitations of traditional convex relaxation
methods.

However, while existing studies [12], [13], [14], [15], [16],
[17] on fixed-position antenna multi-static ISAC systems
achieved cooperative sensing, there rigid antenna configura-
tions prevented dynamic reconfiguration of the sensing ge-

ometry. Although emerging FA-enabled ISAC systems [31],
[32], [33], [34], [35], [36], [37] enhanced dual-functional
performance by optimizing antenna positions, current ap-
proaches primarily focused on single-target detection scenarios
and implemented FAs at a single TAP, failing to exploit
the multi-target detection capacity of FA-enabled multi-static
ISAC systems. Consequently, two critical challenges remain
unaddressed: the scalability of sensing optimization for multi-
target scenarios and the coordination across distributed TAPs.

Building on the discussion above, we focus on designing

optimal solutions and efficient algorithms for the FA-enabled
multi-static ISAC system where multiple TAPs collaboratively
transmit dual-functional ISAC signals to simultaneously exe-
cute joint downlink communication and multi-target sensing
operations. At the same time, a RAP captures the reflected
sensing signals for multi-target detection. Moreover, we adopt
the full synchronization framework between RAP and TAPs
described in [38]. This synchronization paradigm, also used in
[39], constitutes the fundamental operational prerequisite for
our cross-node cooperative processing framework. Additional-
ly, Table I presents a comparative analysis of existing methods
and our proposed solution.

The key contributions of this work are threefold:

o Firstly, to address the limitations of conventional multi-
static ISAC systems, particularly the restricted spatial D-
oFs and limited beamforming flexibility caused by fixed-
position antennas, which significantly constrain sensing
resolution in multi-target scenarios, we propose equipping
all TAPs with FA technology. This approach enables
continuous reconfiguration of antenna positions within a
predefined one-dimensional (1D) linear domain, thereby
allowing for dynamic optimization of APVs to adapt
varying channel conditions and geometric constraints.
Moreover, the introduction of FA technology effectively
addresses the issue of angle ambiguity that arises in
multi-target sensing with fixed-position antennas, there-
by achieving higher-resolution sensing performance. By
leveraging the continuous position tunability offered by
FAs, we can achieve narrower beamwidths and more fo-
cused energy steering toward multi-target simultaneously.

o Secondly, to reconcile the competing demands of mul-
tiuser communication and multi-target detection, we con-
struct an optimization problem that co-optimizes two crit-
ical design parameters: transmit beamforming matrices
and APVs. Our aim is to maximize the worst-case de-
tection probability for designated targets, constrained by
a signal-to-interference-plus-noise ratio (SINR) threshold
for all users, the power budget at each TAP, and the APVs
boundaries. However, the APV optimization is a challeng-
ing problem, which arises from nonlinear dependence on
communication channels and steering vectors of targets
relative to the APVs, and the strong coupling between the
beamforming matrices and APVs. Therefore, we propose
a two-stage alternating optimization (AO) algorithm that
decouples the joint design into sequential subproblems.
In the first stage, the beamforming subproblem leverages
semi-definite relaxation (SDR) to simultaneously address
SINR constraints and maximize multi-target detection



TABLE 1
COMPARATIVE ANALYSIS OF EXISTING METHODS AND PROPOSED SOLUTION

Category

Key Contributions

Limitations vs. Our Work

Fixed-Position Antenna Multi-Static
ISAC [12], [13], [14], [15], [16], [17]

Cooperative sensing-communication,
multi-node joint beamforming

Unable to reconfigure antenna
dynamically, limited angular
resolution for close-spaced targets

FA-Enabled Communication
[24], [25], [26], [27], [28], [29], [30]

FA-enabled DoF for MIMO
capacity, APV algorithms

No ISAC integration: focus
solely on communication

Single-Node FA-Enabled ISAC
[31], [32], [33], [34], [35], [36], [37]

Joint sensing-communication
tradeoff, enhance performance via FA

Multi-target sensing unsupported,
no multi-TAP coordination

probability under fixed APVs; In the second stage, the
APVs subproblem employs a novel second-order Tay-
lor approximation to convexify the highly non-convex,
position-dependent steering vector expressions that arise
from multi-TAP coordination given fixed beamforming
matrices. This approach enables simultaneous multi-
target sensing and multi-user communication.

« Finally, we present simulation results evaluating the sens-
ing performance gains of the proposed system. Through
comparative analysis with the conventional fixed-position
antenna ISAC baseline under diverse scenarios, the nu-
merical results demonstrate that the FA-enabled architec-
ture significantly improves the sensing performance com-
pared to fixed-position antenna architectures, validating
the superiority of dynamic APV optimization. Specif-
ically, simulation results demonstrate that FA-enabled
system with M = 12 antennas outperform fixed-position
systems with M = 16 antennas. Moreover, in the case
of closely spaced targets, only the FA-enabled system
successfully resolves both targets, whereas fixed-position
antenna system fails to distinguish them. Furthermore, it
is evident that the cooperative beamforming framework
achieves sensing-communication resource utilization effi-
ciency, demonstrating effective cross-functional task co-
ordination among distributed TAPs.

The remaining content is organized as follows. Section II in-
troduces the system model of the considered framework. Then
Section IIT develops the AO algorithm for joint beamforming
design and APV coordination, discusses its convergence prop-
erties and also provides computational complexity analysis.
Simulation results are presented and analyzed in Section IV,
offering insights into the efficacy of the proposed approaches.
Finally, Section V concludes this paper.

Notation: Matrices and vectors are represented using bold-
face uppercase symbols (e.g., B), and boldface lowercase sym-
bols (e.g., b), respectively. Statistical expectation is denoted
by E (). The operator diag (-) generates a diagonal matrix
from its vector argument. The /; and l» norms of a vector
are indicated by || - ||1 and || - ||2, respectively. Furthermore,
| - | and £ denote the magnitude and phase of a complex
number, respectively. The trace operation is denoted by tr (-).
The superscripts (-) and ()" indicate the transpose and
Hermitian transpose operations for matrices, respectively. The
identity matrix is represented by I. The function rank (M)
indicates the rank of matrix M. The notation M > 0 denotes
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Fig. 1.

The FA-enabled multi-static ISAC system architecture.

that the matrix M is positive semi-definite.

II. SYSTEM MODEL
A. System Setting

Consider a downlink transmission scenario implemented in
an FA-enabled multi-static ISAC system, whose architecture
is illustrated in Fig. 1. The proposed system is composed of
T TAPs, each equipped with M FAs, and a RAP equipped
with N fixed-position receive antennas specifically designed
for capturing the reflected signals from sensing targets. This
integrated framework is designed to simultaneously detect IR
point-like targets, while guaranteeing communication service
to K users with single-antenna. We represent the sets of TAPs,
targets, and users with 7 = {1,...,T}, R = {1,...,R},
and X = {1,...,K}, respectively. Each FA module ex-
hibits continuous mobility along a predefined 1D linear track
of length D during operation. Adopting a two-dimensional
(2D) coordinate system, the positions of the t-th TAP, the
RAP, and the r-th target are given by c1; = (@14,Y1.4)s
co = (%0,%0), and 2, = (X2, Y2,), respectively. We define
Pr,m € [0, D] as the position of the m-th FA in the ¢-th TAP.
The complete spatial configuration is encapsulated in the APV
Pt = [Pt1,Pt.2,-- -, P, to be optimized.

Define s[l] = [s1[I],...,sx [I]]" € CE*1, [ € L as the
information-bearing signals for all K users over L transmis-
sion blocks, where [ € {1,..., L} indexes the communication



time slots. These signals satisfy the normalized power con-
straint %IE (ssH ) = I. To guarantee sufficient spatial DoFs
for multi-user beamforming, we impose the constraint that
the number of antennas per TAP should not be less than the
number of users, i.e., M > K [40]. Given that TAPs are
interconnected via backhaul links, the signal vector s [I] can
be reliably shared across all the TAPs and the RAP prior to
transmission. However, the signal vector remains unknown a
priori to the users. Building upon the key insight from [41],
it is observed that introducing dedicated sensing signals leads
to their vanishing contribution in the optimal solution due to
mutual interference under the considered system constraints.
As such, our framework strategically omits dedicated sensing
signals and exploits solely the information-bearing waveforms
for joint sensing and communication operations. This design
philosophy fully harnesses the inherent dual utility of ISAC
that simultaneously achieves both communication and sensing
without requiring additional spectral resources or signaling
overhead.

Let W, = [wy 1, Wi 2,..., W k] € CM*E be the transmit
beamforming matrix at the ¢-th TAP, where each column vector
wy 1, denotes the adaptive beamforming coefficients allocated
to the k-th user. Under this configuration, the ISAC signal of
the ¢-th TAP after beamforming is formulated as

K
Xo[l] = wisk[l] = Wis[l] € CM*2 (1)
k=1

The transmit power at each TAP is constrained by
IXe[l]* = tr (WeW) < By te T, 0)

with P, the maximum transmit power for the ¢-th TAP.

B. Communication Model

Using a geometric line-of-sight (LoS) propagation model',
the channel vector between the ¢-th TAP and the k-th user is
formulated as

hy i = ot ra1 (Pt,Or,k) € CMX17 3)

where g, j, represents the channel propagation gain, and 0 j
denotes the azimuth angle of the k-th user relative to the
antenna array at the ¢-th TAP. The steering vector a; (p¢, *),
which characterizes transmit steering vector, is defined as

. 9m . om . T
a; (pt, *): [ej 2pia sm(*)7 o ,eJ 2% py ar sin(x) G(CMXI, 4)

with A standing for the carrier wavelength.

Then the received signal at the k-th user is composed of

IThe LoS propagation model is adopted in this work, as ISAC systems
commonly operate in high-frequency bands such as millimeter-wave, where
the channel between the BS and the user is typically dominated by the LoS
path [42]. Moreover, the LoS model can be extended to a more general field-
response-based channel model that incorporates multiple propagation paths
[43]. The optimization algorithms developed in this paper are also applicable
to such generalized scenarios.

three distinct components, given by
T
yr 1] = thfkwt,ksk [+
t=1

T K
SO wfiweesi 401, (5)

t=1k'=1
k' #k

where n. [l] is the additive white Gaussian noise (AWGN),
modeled as CN (0, Uﬁ). The first term represents the desired
signal component intended for the k-th user, incorporating
contributions from all the TAPs. The second term accounts
for the interference from the other users, which arises due
to the superposition of signals intended for different users.
Therefore, the SINR for the k-th user is derived as

2
T H
i1 ’ht,kwt7k‘
Tk =

n T K
Zt:l Z k=1

K #£k

(6)

5 .
+o02

H
ht,kwtyk/

C. Sensing Model

The sensing channel gains for both the transmission link
from the t-th TAP to the r-th target and the echo link from
the r-th target to the RAP are given by

(0%
Qpp = —————, )
lle1,t — 2.l
(0%
Qp = ————, ®)
llco = car

where o denotes the reference channel power at 1 meter. By
leveraging prior knowledge of the signals through backhaul
links, the direct link between the ¢-th TAP and the RAP can be
effectively canceled. Thus, the echo sensing signals of the RAP
from the r-th target can be formulated as the superposition of
the bi-static sensing links, which is given by

T
Zy m = Z vV at,rarﬂt,raQ (¢r) a{{ (pt, (Pt,r) W;s [l]
t=1

+n.[l], 9

where ng ~ CN (O7 0'52 I N) is the AWGN vector with variance
082, B¢, denotes the complex reflection coefficient of the r-th
target, ¢, and ¢, , are the azimuth angles of the r-th target
with respect to the RAP and the ¢-th TAP, respectively, and
T

as (%) = {17 - _7ej(N—1)zT"dsin(*):| c CNx1 (10)
is the receive steering vector with d = % spacing between
adjacent uniform linear array (ULA) elements at the RAP.

D. FA Model

The antenna elements at the TAPs continuously move along
predefined linear tracks. Depending on the implementation
method, a minimum inter-element separation constraint may
be enforced to mitigate the mutual coupling phenomenon
between adjacent fluid antennas. These constraints can be
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Fig. 2. The FA model for the t-th TAP.

mathematically expressed as

p:eED, teT,

(11)
Dt m — Ptom—1] > Do, m=2,3,....M, t€T,

where Dy indicates the required minimum separation between
neighboring antennas, and D represents the spatial range. The
FA model at the ¢-th TAP is depicted in Fig. 2.

III. BEAMFORMING AND APV OPTIMIZATION

In this section, we establish a methodological framework for
multi-target sensing optimization. First, we construct a max-
min problem to maximize the worst-case detection probability
for specified sensing targets > under the system constraints.
Subsequently, we develop an AO algorithm, where the transmit
beamforming matrices and APVs are iteratively optimized.
Finally, analyses regarding convergence behavior and compu-
tational complexity are rigorously established.

A. Problem Formulation

We adopt the co-optimization of beamforming matrices and
APVs with the aim of maximizing the worst-case detection
probability Pp (r) across all targets, while meeting the SINR
constraints for the users, the power budget of the TAPs, and
the physical constraints of the FAs, which is formulated as

Py :  max minPp(r) (12a)
{Wt7pt}t€T reER

st. v >,k e, (12b)

tr (W,W/) <P,teT, (12¢)

(11,

where I is the minimum SINR threshold for each user.

For the r-th potential target, the detection probability Pp ()
exhibits a monotonic relationship with the sensing signal-to-
noise ratio (SNR) p (r), as established in [14], [16]. The SNR
for the r-th target is formulated as

p(r)=

T

Z LNo? ‘Bt,r|2 afl (pt7 @t,r) Wth{a1 (Pt7 <Pt,r) (13)
port lere — el [lco — 2,0 || 02

2Upon receiving the signals, the RAP employs matched filters tuned
to the unique propagation delay profiles in order to separate composite
reflections from multiple TAPs. After spatial isolation through adaptive receive
beamforming (Eq. (22) in [16]), the reflections corresponding to each target
are combined. Joint target detection is then performed using a square law
detector, as derived in Section IV of [16] through binary hypothesis testing.

Leveraging this monotonicity property, the original detection
probability maximization can be equivalently transformed into
SNR maximization.

. . . 2
Then by ignoring the constant scaling factor LJ;/? , we

obtain the simplified optimization problem, formulated as

P,: max min

T
Cerat! Pr, o) WeW i ay e, 910
{W¢,pt},er TER ; rdy (p T t (p T,

s.t. (11), (12b), (120),

‘Bt 7‘|2 .
where = : encapsulates the combined
Ctr l[er,i—e2,r*lleo—c, . |I? P

effects of target radar cross section (RCS) and bi-static range
attenuation.

To facilitate optimization, we reformulate the problem P
through the introduction of an auxiliary variable £ to homog-
enize the max-min objective, where the equivalent epigraph
form is given by

Ps: max £ (14a)

{thpt}teva

T
s.t. Z Ceral’ e, o) WeW Tay (pr, 1) > €, 7€R, (14b)
t=1
(11), (12b), (12¢).

The challenge in P; stems from the non-convex coupling
between beamforming matrices {W;}, ., and APVs {p; },. -
To overcome this, we adopt an AO algorithm to iteratively
address the problem Ps5, where each iteration updates a single
variable subset while maintaining all other subsets fixed at
their values obtained in the preceding iteration.

B. Updating Transmit Beamforming Matrix

The beamforming vectors {Wiy},.r cx involve inner
products, resulting in a quadratic optimization problem. To
tackle this computational complexity, we apply the SDR tech-
nique to convexify the formulation. Specifically, we construct
auxiliary matrix variables as

Vt,k = Wt7kWtI:I]g7 te T,k' € IC, (15)
and reformulate the channel matrices as
H; =h by}, te T kek. (16)

Through this transformation, the SINR constraint for the k-th
user can be rewritten as

T T K
Ztr (H; x Vig) — Z Z Dtr (H 1, Vip) > T2 (17)
t=1 t=1 Iz::;}c

Subsequently, by fixing the APVs and employing the SDR



technique, P5 can be reformulated as

: max (18a)
! Vekz=0} e pex € £

s.t. tr (Vt) S Pt,t S T, (18b)

rank (V) =1,t € T,k € K, (18¢)
T

Z Ctﬂ‘a{{ (pta (pt,r) Vtal (pt? @t,r) Z 57 e R7 (18(.1)
t=1
a7,

where V; = Zszl V.. But due to the rank-1 constraints

(18c), P4 remains non-convex. To obtain a tractable convex

approximation, P, is relaxed through dropping the rank-1

constraints on {Vyi}, 7 . Which gives
P5 ' {Vtvktg;?exrke)cxg f

s.t. (17), (18b), (18d).

19)

This relaxed formulation constitutes a typical semi-definite
program (SDP) problem that can be solved using convex
optimization toolboxes, such as CVX [44].

Evidently, if the optimal solutions {VZ & to prob-

: . teT,kek
lem P; satisfy the condition

rank (V;k.) =1teT, kek, (20)

those simultaneously attain optimality for P,. In the case
where the rank-1 condition is not met, the Gaussian random-
ization methods [45] can be used to provide a rank-1 approx-
imation. Following this approach, the optimal beamforming

vectors {w;* & can be obtained as described in [46],

. teT ke
which can be formulated as

* * -1/2 *
wiy = (W Vi) Vi hte T ke k. @)

C. Updating APV

To start with, we reformulate constraint (12b) into a more
tractable form, i.e.,

T
2i-1

T K
Zt:l Z )’:,’;;

H
ht,kwmk‘

2T

2
+ o5

H
ht,kwt,k’

T T
=T "hf, Vish s =Y hf} (Vi= Vi) by >0}

t=1 t=1
T
= Z |«Qt,k‘2 a{{ (pt, Ot.x) Uy pan (P, O 1) > 01217 (22)
t=1
where
U= 1+ V= Vite T, ke k. (23)

However, the constraint (22) is neither convex nor concave
with respect to {p; } . To tackle this limitation, we construct
a convex surrogate function to locally approximate the original
function by adopting the second-order Taylor series expan-
sion, with detailed derivations provided in [23]. Specifically,
given a local point p;, the second-order Taylor expansion of

all (pt,0:1) Uppar (pr, 01 1) is

afl (s, 0;%) Uppar (P, Or i) >
f(pepe) = ptTAt,kpt + 2bt,thT +cke (24)

The detailed expressions of A, j, by , and ¢; j are provided in
(25) at the bottom of the next page, where U, j, [m, n] denotes
the (m,n)-th element of U, ;. Thus, the constraint (22) can
be reformulated as
T
Z ‘Qt,k|2 (p?At,kpt + 2bt,kpf + Ct,k) > 0121, ke K. (26)
t=1
Subsequently, we extend the Taylor approximation scheme
to constraint (18d). For a given local point p;, the second-order
Taylor expansion of all (p;, ¢:.,.) Viay (pt, 1) is

a{{ (Pt, ¢t,r) Viar (Pe, orr) >
§(pe|Pe) = P DioPr + 260,07 + qir. (27)

The detailed formulas of Dy ., e;,, and ¢, are provided in
(29) at the bottom of the next page, where V; [m, n] denotes
the (m,n)-th element of V. Through this convexification, the
constraint (18d) can be reformulated as

T
> Cir (PIDiapi +200,0] +qrr) =& ER. (29)
=1
As such, the resultant optimization problem becomes
Ps: max I3 (30)

{pt}t€T7£
st (11), (26), (28),

which constitutes a convex quadratically constrained quadratic
program (QCQP) that is computationally tractable and can be
efficiently solved using CVX.

By adopting the AO algorithm, the details of the pro-
posed algorithm are summarized in Algorithm 1°, where
Jmax denotes the maximum number of iterations, j is the
iteration index, and u represents the convergence threshold.
Specifically, in step 3, we solve problem Ps to optimize
the beamforming matrices {V}, o given the APVs
{Pt}4c7- Subsequently, in step 4, we optimize {p;},., by
solving problem Ps with {V, .} teT hek fixed. The overall
algorithm iteratively solves problems P and P within a loop,
aiming to asymptotically converge to an optimal solution to

Py. The initial values for {pg°>} _ are calculated by
te

o _ D 2D MD
P My M1 M1
where the positions of the FAs are uniformly spaced with

an interval of MLH between adjacent elements to minimize
mutual coupling effects among them.

],teT, 31

3The joint optimization problem Pj is inherently non-convex due to the
coupled variables, the non-convex max-min SNR objective function and SINR
constraints, as well as the combinatorial aspect introduced by the minimum
antenna separation constraint. Consequently, computing the globally optimal
solution is computationally intractable for practical system sizes. To address
this challenge, the proposed AO algorithm is designed to find a locally optimal
solution.



Algorithm 1 Alternating Optimization Algorithm.

Input: {at ks Ot, k}tGT ek’ {Ct s Pt k}t€T reRr’ {Pt}teT’
D DO’ >\ On, Os, F Hy ]max

Output: {Wt,k}teT’ke){’ {pt}tET'
(0) - according to (31), £

1: Initialize {pt ), W j=1.
teT _
2: for j < jmax or [€@) — €01 > 1 do

3: Solve problem F5; with {p,ﬁjﬁl)} - to obtain
te
V(j)} :
{ b S et ke
4: Solve problem Ps with {Vﬁjlz} to obtain
teT ke

(j)} )
{pt, teT and 5,
JjeJ+1

§Wg;
end for
Obtain {w; 1}, 7 .o, through (21).

return {wtvk}teT,keK’ {Pt}icr

R A

D. Convergence Analysis
Proposition 1. The optimization objective £ to problem Ps

is non-decreasing throughout the whole iteration process in
the proposed AO algorithm, i.e.,

¢ <{W§j)}t€7" {pgj)}teT)
> ¢ ({WE"‘”}M, {pﬁj‘”}tg) S )

This property ensures that the objective function value mono-
tonically non-decreases with each iteration, thereby ensuring
the convergence stability of the proposed algorithm.

Proof: See Appendix A. |

E. Complexity Analysis

The computational complexity of the proposed AO

algorithm applied to solve problem Ps; is primarily
contributed by two main parts: solving problem P; for
{Wi},c+ and solving problem Ps for {p;}, ;. For the first
part, it includes T'K matrix variables of size M x M, and
T + K + R linear constraints. Using interior point methods,
this subproblem requires O (\/ TKMlog(1/ 5)) iterations to
converge, where ¢ is the stopping tolerance. Each iteration
requires at most O (T*K3M®+TK (T + K + R) M?)
flops [47]. Therefore, the complexity for this part
is O ((T3.5K3.5M6.5 + T1.5K1.5M2.5R) log (1/5))
Similarly, the second part follows a similar pattern but
with different parameters. Specifically, the complexity is
O ((T35M35 + T MK + T M'*R) log (1/¢)).
As a consequence, combining both parts and accounting
for the maximum number of iterations jn,ax, the overall
computational complexity of the proposed AO algorithm is
O (jmax ((TB.SKS.SMG.S 4 T1.5K1.5M2.5R) log (1/5)))

IV. SIMULATION RESULTS

The
eters.
T =
the 1-st,

simulation setup includes the following param-
The FA-enabled multi-static ISAC system has
3 TAPs and a RAP, with the locations of
2-nd, 3-rd TAPs, and the RAP being (0,0),

M M
Ay =1, diag -0 ), bealnl=ui . Y [Upk [m, nl| (Beo—Brm) =k Y [Urk [m,nl|sin (gek (Bens Bem)) (252)
m=1 m=1
M M 1
ciw=»_ > |Upk[m,n]] {cos (91.% (Bens Be.m)) + e S0 91k (Bens Bem)) (P = Prom) = 5 (Pro = Prm)” |, (25b)
m=1n=1
2 M
’lquk = T sin (0t7]€) 7ut7k = |an—1 |Ut,k [m 1 Z |Ut k m 2 Z |Ut k m M” (25C)
9tk (Pen, Ptom) = Utk (Drn — Perm) + LUk [m, n] . (25d)
M M
Dt,T:_uir (diag (Vt) - ‘Vt|) ; €tr —Ut Z m n Pt,n—ﬁt,m) — U Z \Vt [ma n]\ sin (gt,r (ﬁt,n,ﬁt,m)) , (29a)
m=1 m=1
M M 1
qt,r - Z Z ‘Vt [m; TL” |:COS (gt,r (ﬁt,naﬁt,m)) + ut,r Sil’l (gt,r (ﬁt,nvﬁt,m)) (ﬁt,n - ﬁt,m) - gu?,r (ﬁt,n - ﬁt,m)z ) (29b)
m=1n=1
21
U, = Tsm (pe.r) [Z [V [m,1]] Z [V [m,2]] Z [V [m, M]| (29¢)
gt,r (ﬁt,naiﬁt,m) = ut,r (pt,n - pt,m) + th [m, n] . (29d)
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TABLE I

The 2D locations of the TAPs, RAP, users and the targets.

ANGULAR RELATIONSHIP BETWEEN TAPS AND USERS/TARGETS.

0,1 =51.3402°

01 —24.0647°

03,1 =380.8667°

010 =—b1.3402°

0.5 —80.8667°

0.5 —24.0647°

30171 =—12.8043°

0.1 ——38.7834°

P31 =12.1508°

P1,2= 18.4349°

Y22 =-20.1039°

¥©3,2 =53.7940°

p1,3=0°

(p2,3=—065.2087°

©3.3—=65.2087°

(25v/3 — 50v/2sin(7/12),50v/2sin(7/12) + 25), (25v/3 —
50v/2sin(/12), —50+/2sin(7/12) — 25), and (150,0), re-
spectively. Additionally, we set K = 2 and R = 3, with
positions being (40, 50) and (40, —50) for the 1-st and 2-nd
users, and (110, —25), (75,25), and (45,0) for the 1-st, 2-
nd, and 3-rd targets. The locations of TAPs, RAP, users, and
targets are illustrated in Fig. 3. The RAP is equipped with
N = 20 receive antennas. In the communication model, we
set 02 = 0 dBm, and the average channel power gain is given
by ot = wtw; ,Z , where w; is the average channel power
gain, 7 denotes the pathloss exponents, and o, j, represents
the distance between the ¢-th TAP and the k-th user. For the
sensing model, the complex reflection coefficient 3, follows
the Swerling-I model [48], suitable for static or slow-moving
targets. The FA configuration sets the wavelength A = 0.01 m,
minimum spacing Dy = A/2, and maximum range D = M\
[23], [35]. Furthermore, the angle relationship between TAPs
and users/targets are provided in Table II, while the value of
! = is detailed in Table IIL.

ller,e—ca,|I*lco—c2

A. Performance of FA-enabled Bi-static ISAC System

Firstly, we study an FA-enabled bi-static ISAC system with
a single TAP. Based on the aforementioned setup, Fig. 4 char-
acterizes the empirical convergence properties of Algorithm
1, where the proposed algorithm achieves stable convergence
within 50 iterations. Notably, the monotonic ascent of the ob-
jective value validates the effectiveness of our AO framework.

Subsequently, we conducted simulations to investigate the
variation of sensing performance (denoted by &) with respect
to the feasible region D of FAs (expressed in multiples of the
wavelength \) for M € {8,12,16}. To quantify beamforming
precision, we define the beampattern B (py, 1) at the ¢-th TAP,

TABLE III
VALUE OF 1

ller,e=e2,r[*lleo—ca,r|*”

r=1 r=2 r=3
=110.3532x 1077 | 0.2560 x 10~7 | 0.4479 x 10~7
t=210.3780 x 10~7 | 0.5644 x 10~" | 0.3987 x 10~7
t=3 ] 0.5945 x 107 | 0.2233 x 107 | 0.3987 x 107
115 x107
11r
10.5
10 [
up
9.5
9l
8.5
0 10 20 30 40 50 60 70
Number of iterations
Fig. 4. The convergence performance of the proposed AO algorithm with

the first TAP, M =16, ' =5 dB, and P =5 W.

which is defined as

%(ptaw) = Ha{{(Ptﬂ/J)Wt|

where 1) indicates the steering angle relative to the antenna
array. From Fig. 5 (a), we find that the sensing performance &
monotonically increases with the feasible region D, primarily
due to the increased flexibility in optimizing the FA positions
within a larger feasible region. As shown in Fig. 5(b), this
narrows the beam-width of the main lobe, thereby concen-
trating energy and improving angular resolution for sensing.
Additionally, Figs. 5(a) and (c) reveal that increasing the
antenna number can enhance the sensing performance, attribut-
ed to higher spatial diversity and array gain. Through joint
beamforming optimization, the beam energy can be focused
more effectively toward desired directions, further enhancing
sensing performance. These results collectively demonstrate
that both the FA feasible region and the antenna count are
critical factors in achieving superior sensing performance.

To analyze the impact of TAP positions on sensing perfor-
mance, we show the transmit beampatterns for three different
TAPs under varying antenna counts and configuration schemes
in Fig. 6. We use the half-wavelength antenna spacing as the
baseline scheme, labeled as “HWA”. As shown in Fig. 6(a), the
first TAP necessitates stronger beam energy allocation for both
users to satisfy the minimum SINR requirements. However, the
second TAP, being closer to the first user, requires minimal
beam energy to satisfy the communication needs for this user,
but higher energy for the distant second user, as shown in
Fig. 6(b). A similar beam energy allocation pattern applies

2 (33)
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to the third TAP, as depicted in Fig. 6(c). These resource
allocation patterns align with the spatial distribution revealed
in Fig. 3 and Table II. Additionally, referring to Table III, it is
revealed that targets with larger combined path distances (i.e.,
llci: — c2r]?lco — €2.+]|? ) demand increased beam energy
to maximize the minimum sensing performance.

Furthermore, as evidenced by Fig. 6, we see that the FA
scheme achieves significantly better sensing performance than
the baseline scheme, and both the FA and HWA schemes
exhibit improved sensing performance with increasing number
of antennas. Specifically, under certain conditions, the FA
scheme with M = 12 achieves superior sensing performance
compared to the HWA scheme with M = 16 in Fig. 6(a).

However, when the second user and the third target are in
close angular proximity, only the FA scheme with M = 16
successfully resolves both directions with distinct beam peaks
at the second TAP, as shown in Fig. 6(b). In contrast, the HWA
scheme with M = 16 shows only one beam peak near these
angular positions, demonstrating its fundamental limitation in
spatial discrimination. This contrast highlights that the FA
scheme not only enhances spatial resolution compared to
the HWA scheme, but also increases the DoFs through its
flexible antenna architecture. Although Fig. 6(c) shows an
anomalous case where the HWA scheme with M = 8 exhibits
a higher beam peak at the third target location compared to

-10
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(a) The performance of sensing versus the feasible region of FAs under different numbers of antennas
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Fig. 6. The transmit beampatterns achieved by (a) the first TAP, (b) the second TAP, (c) the third TAP with I' = 5 dB, and P, =5 W.
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other schemes, this localized enhancement comes at the cost
of degraded overall system performance. The apparent peak
elevation actually results from the HWA'’s inadequate spatial
resolution at lower antenna counts, causing beam energy
dispersion that fails to support multi-target optimization.

B. Performance of FA-enabled Multi-Static ISAC System

Next, we perform a comprehensive evaluation of the sensing
capabilities in an FA-enabled multi-static ISAC system. As
demonstrated in Figs. 7 and 8, the collaborative sensing mech-
anism among multiple TAPs reveals significant beam pattern
diversity compared to conventional bi-static configurations.
Notably, as indicated in Fig. 7, with M = 16 antennas, the first
and second users’ communication requirements are fulfilled by
the second and third TAPs, respectively, no matter whether the
FA or HWA scheme is employed. This coordinated resource
allocation results from the joint optimization of sensing and
communication tasks in multi-TAP systems. Specifically, the
second and third TAPs allocate more power to satisfy the
communication demands of their respective users, taking into
account the distance between the users and the TAPs. For sens-
ing performance analysis under the FA scheme, the first TAP
primarily generates three distinct beam peaks across different
target directions, with the highest peak directed towards the
third target. Consequently, the sensing performance for the
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third target is predominantly achieved by the first TAP. The
second TAP shows significant peaks for the second and third
targets, while the third TAP exhibits notable peaks for the first
and second targets.

As a result, the sensing performance for the first and
second targets is primarily supported by the third and second
TAPs, respectively. These observations are consistent with the
comprehensive distance data provided in Table III. In contrast,
under the HWA scheme, despite the directions of the maximum
beam peaks for each TAP matching those listed in Table III, its
fixed-position antennas restrict their ability to narrow the main
beam-width and enhance resolution as effectively as the FA
scheme. This restriction limits the HWA scheme’s ability to
achieve beam peaks at closely spaced directions. For instance,
as seen in Fig. 7(c), while the FA scheme achieves beam peaks
at both second and third targets, HWA only shows one peak
at the third target. The FA scheme’s adaptability in adjusting
its beam pattern enables it to maintain high resolution and
performance, even for targets that are closely positioned.

However, when M = 8, the beampatterns exhibit distinct
trends, as illustrated in Fig. 8. In this configuration, the sensing
performance for the third target is not exclusively provided
by the first TAP but jointly supported by the second and
third TAPs, owing to a comprehensive consideration of system
constraints. The decrease in the number of antennas results
in diminished spatial resolution, causing the beam peaks for

-E-HWAM=8 —E—FAM=8
HWA M=12 FAM=12
-4 -HWAM=16 —4—FAM=16
~

Fig. 9. The performance of sensing versus I'" under different numbers of
antennas with P =1 W.

both targets and users to be less sharply defined compared
to M = 16. Nevertheless, the FA scheme maintains superior
performance compared to the HWA scheme.

Then, Fig. 9 demonstrates the relationship between sensing
performance and the user SINR values. The results indicate
that sensing performance decreases as the user SINR increases.
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Specifically, at I' = 16 dB, none of the configurations with
M = 8 (for both the FA and HWA schemes) provide a feasible
solution. Evidently, the configuration with M = 12 using the
FA scheme achieves better performance than the one with
M = 16 using the HWA scheme.

Furthermore, Fig. 10 quantitatively demonstrates the advan-
tages of multi-static ISAC system by contrasting collaborative
and standalone setups under various critical system parameter-
s. We begin by introducing the parameter P,,,x. In multi-static
ISAC system, Pp,.x represents the total transmit power across
all TAPs, expressed as Ppax = ZthlPt. In contrast, for
the bi-static ISAC system, P ,x corresponds to the transmit
power of each individual TAP, i.e., Ppax = P;,t € T. This
unified definition ensures fair power allocation and enables an
equitable performance comparison between the two system
architectures. Fig. 10 (a) shows that sensing performance
improves with an increased number of antennas across all
considered schemes. When operating under the same total
transmit power Py,,x, the collaborative TAP configuration

achieves superior performance over single-TAP systems by
exploiting the spatial diversity offered by distributed TAPs.
Notably, although performance differences exist between TAP-
1 and TAP-2 in standalone mode, these differences diminish
significantly as the number of antennas increases. Further
analysis reveals the limitations of bi-static ISAC system. TAP-
1 fails to produce feasible solutions when the number of anten-
nas falls below M = 12, whereas TAP-2 becomes infeasible
at M = 14. This highlights the intrinsic benefit of multi-
TAP coordination in mitigating the constraints imposed on
individual nodes. Similarly, Fig. 10 (b) illustrates monotonic
improvement in sensing performance with increasing total
transmit power Pp.x across all schemes. Consistent with the
trend observed in Fig. 10 (a), collaborative TAP configurations
consistently outperform single-TAP systems under identical
antenna settings. Importantly, none of the bi-static schemes
meet the required communication constraints at transmit pow-
ers below 3 W, highlighting the fundamental power limitations
of bi-static systems in the absence of cooperative gains.

V. CONCLUSION

This paper explored an FA-enabled multi-static ISAC sys-
tem designed to coordinate multi-TAP for collaborative down-
link communication and sensing tasks through ISAC signal
transmission. A RAP was deployed to capture the reflected
sensing signals for target detection. To fully exploit the spatial
DoFs provided by the antennas, all TAPs were equipped with
FAs. Subsequently, we formulated an optimization problem to
maximize the worst-case detection probability for designated
targets while satisfying system constraints. To address this
non-convex problem, we introduced an AO algorithm that
decomposed the problem into two subproblems: optimizing
the beamforming matrix and optimizing the APV. For the
beamforming matrix optimization, we applied SDR techniques
to derive an optimal solution with the fixed APVs. For APV
optimization, we adopted a second-order Taylor series expan-
sion to approximate the function of APVs, achieving convexity
and determining the optimal antenna positions. Numerical sim-
ulations confirmed that the FA scheme significantly enhances
the performance of our multi-static ISAC system, substantially
outperforming fixed-position configurations. Furthermore, the
proposed cooperative multi-static ISAC system demonstrated
effective coordination between communication and sensing
tasks across different TAPs, highlighting its potential to im-
prove overall system efficiency and performance.

APPENDIX

A. Proof of Proposition 1

In the j-th iteration for solving problem Ps, the following
inequality holds for the objective function:

¢ <{W§j)}teT ’ {pij_l)}teT> (CZI)
; ({Wﬁ“)}m,{pij”}m) J>1 G4



where (c1) holds because

13 {W,E] )} , {pij _1)} > is maximized in step
teT teT

3. Similarly, in the j-th iteration for solving problem FPs, we

obtain the following inequality for the objective function:

() o))
¢ ({Wﬁ”}m, {pﬁjl)}m) L J>169)

inequality

3 {ng)} ) {pgj)} is maximized in step 4.
teT teT

Combining both results from (34) and (35), we conclude that

f(fwin) (e, ) 2
; ({Wﬁ"‘”}tg,{pﬁj‘”}tg) J> 166

This implies that the sequence

W(j)} { m} )} : onical
{f({ t S er P wer) f 18 monotonically

non-decreasing and converges to its maximum value under
the proposed AO framework.

inequality

where ca) is valid since
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