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Brain MRI signatures across sex and CSF
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The relationship between cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease and neurodegenerative effects is not fully understood.
This study investigates neurodegeneration patterns across CSF Alzheimer’s disease biomarker groups, the association of brain volumes with
CSF amyloid and tau status and sex differences in these relationships in a clinical neurology sample. MRI and CSF Alzheimer’s disease bio-
markers data were analysed in 306 patients of the Mass General Brigham healthcare system aged 50+ (mean age = 68.4 + 8.8 years; 43.1%
female), who had lumbar punctures within 1 year of clinical MRI scans. We first analysed neurodegeneration patterns across four biomarker
groups: 60 controls (A—T—&CUj; amyloid negative, tau negative, cognitively unimpaired), 25 A+T— (amyloid positive, tau negative), 121 A
+T+ (amyloid positive, tau positive) and 100 other dementia (A—T—&CI; amyloid negative, tau negative, cognitively impaired). Second, we
examined volumetric associations with amyloid (amyloid positive, tau negative versus control) and tau in the presence of amyloid (amyloid
positive, tau positive versus amyloid positive, tau negative) across 52 brain areas. Third, we examined sex differences in these relationships.
Finally, we validated core analyses across three independent datasets—NACC (National Alzheimer’s Coordinating Center), ADNI
(Alzheimer’s Disease Neuroimaging Initiative) and EPAD (European Prevention of Alzheimer’s Dementia)—totalling 3137 participants,
and performed meta-analyses to obtain more robust estimates. We observed distinct neurodegeneration patterns across biomarker groups,
with disrupted connectivity (brain volume covariance networks) in amyloid positive and other dementia groups, while amyloid and tau
negative, cognitively unimpaired controls exhibited the most connected network. Amyloid was associated with subcortical, cerebellar
and brainstem atrophy, with consistent association observations in the thalamus and amygdala across all four datasets. Tau in the presence
of amyloid demonstrated general brain shrinkage through enlargement of extracerebral CSF, alongside unexpected ventricle shrinkages.
Sex-based analyses revealed that A+T+ (amyloid positive, tau positive) had lower sex differences in connectivity patterns compared with
other groups. Sex differences were also noted in amyloid-related ventricular volume changes. This study reveals how amyloid and tau affect
brain connectivity and volume across sex and CSF biomarker groups, emphasizing global brain changes and sex differences. By leveraging
automated pipelines and advanced MRI and biomarker analyses, we extracted meaningful and replicable findings from heterogeneous clin-
ical samples from real-world data. The meta-analyses across four datasets enhance the generalizability of our results.
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Introduction

Amyloid and tau are hallmark pathologies of Alzheimer’s
disease'” and have been identified as core biomarkers for
Alzheimer’s disease diagnosis, according to the most recent
diagnostic criteria published by the Alzheimer’s Association.’
The measurement of amyloid and tau in CSF, which demon-
strates comparable performance to positron emission tomog-
raphy (PET) imaging,*® is becoming increasingly widespread
for Alzheimer’s disease diagnosis. However, the relationship
between CSF biomarkers and brain neurodegeneration pat-
terns has not yet been fully explored.

Many studies have examined the associations between
core Alzheimer’s disease biomarkers and brain atrophy, pri-
marily focusing on amyloid and tau deposition measured by
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PET imaging. These studies have shown complex relation-
ships between amyloid and brain structure. For instance, glo-
bal amyloid deposition often correlates with hippocampal
atrophy,””® while regional amyloid deposition can show
positive,” 89 or no correlation® with brain atrophy,
depending on the brain region. In contrast, tau-related atro-

negative

phy more consistently aligns with the distribution of neuro-
fibrillary tangles observed in post-mortem studies,'®'?
especially in the medial temporal lobe’”. While PET imaging
can reveal both total and regional insoluble, fibrillar amyloid
and tau accumulation,'® less is known about how CSF
Alzheimer’s disease biomarkers,*'*'> which reflect net pro-

duction and clearance rates of soluble amyloid and tau
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species, relate to brain atrophy. Some studies have found that
CSF tau is associated with hippocampal atrophy, while CSF
amyloid is not.'® Others have reported associations between
both core biomarkers and hippocampal atrophy'”'® or with
whole brain volume—amyloid in controls and p-tau in
Alzheimer’s disease dementia.'” CSF amyloid, not p-tau,
was also associated with ventricular enlargement in preclin-
ical Alzheimer’s disease.?*?

The revised Alzheimer’s disease diagnostic criteria high-
light that amyloidosis is essentially a prerequisite of
Alzheimer’s disease tauopathy,® underscoring the need to
study how brain volumes associate with tau in the presence
of amyloid. However, only a few studies have investigated
the combined effects of CSF amyloid and p-tau on brain vo-
lumes, and these were limited to cognitively unimpaired
populations. For instance, one study found that elevated
p-tau was associated with smaller volumes of the hippo-
campus, amygdala and entorhinal cortex only in amyloid
positive individuals.?* Another study reported that indivi-
duals with amyloid positivity had higher regional volumes
compared with controls without neurodegeneration.”’
Additionally, the impact of CSF Alzheimer’s disease bio-
marker groups on grey matter structural connectivity
(aka. morphometric connectome) remains underexplored.
Although one study identified associations between amyl-
oid status, p-tau levels and structural connectivity metrics
such as clustering coefficients,?® there has been no direct
comparison across groups defined by distinct CSF bio-
marker groups. Furthermore, despite evidence that amyl-
oid affects hippocampal volume more in females than in
males,”” sex differences in brain volumes across CSF
Alzheimer’s disease biomarker groups have been under-
studied. Understanding how amyloid and tau pathology
differently influence brain volumes in males and females
could advance personalized diagnostic and treatment
approaches.

In this study, we first examined differences in neurodegen-
eration patterns across four CSF Alzheimer’s disease bio-
marker groups: (i) control group defined as A-T-&CU
(amyloid negative, tau negative, cognitively unimpaired);
(ii) A+T— (amyloid positive, tau negative); (iii) A+T+ (amyl-
oid positive, tau positive) and (iv) A—T—&CI (amyloid nega-
tive, tau negative, cognitive impairment due to other
non-Alzheimer’s disease conditions). We then investigated
the association of brain volumes with amyloid (A+T— versus
control) and tau in the presence of amyloid (A+T+ versus
A+T-). Finally, we examined sex-based variations in brain
volumes across CSF Alzheimer’s disease biomarker groups.
Core analyses were conducted using biomarker, clinical
and imaging data from participants in the MIND
(MassGeneral Institute for Neurodegenerative Diseases)
research biobank of the Mass General Brigham (MGB)
healthcare system and replicated in three independent sam-
ples from the NACC (National Alzheimer’s Coordinating
Center),”® the ADNI (Alzheimer’s Disease Neuroimaging
Initiative)*” and the EPAD (European Prevention of
Alzheimer’s Dementia)>? studies.
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Materials and methods

All image data were pre-existing clinical images from the
MGB patient database that are within 1 year of the date of
patients’ lumbar puncture, aged 50 years old or above and
without early onset autosomal dominant Alzheimer’s disease
(n=328). Brain segmentation and volume calculation were
performed via the SynthSeg+ pipeline—a deep learning algo-
rithm®' for volumetric segmentation of clinical brain images
with various contrast and resolutions into subcortical areas,
cortical areas, ventricles, cerebellum, brain stem and extra-
cerebral CSF. SynthSeg+ detects its own segmentation fail-
ures (e.g. due to insufficient field of view or image quality)
via quality control (QC) scores that are automatically esti-
mated for each of the aforementioned regions. The QC
scores are defined between zero and one; images with aver-
age QC scores from all subcortical regions being above
0.65 were kept. If a patient had multiple clinical images in
the same session, we calculated the average brain volume
of all images satisfying the QC constraint as the final brain
volume for the patient. Volume from each brain area were
adjusted with the intracranial volume (estimated by
SynthSeg+) by division. To reduce the number of variables
and improve the robustness of the regression by minimizing
overfitting, we combined all bilateral volumes; we also calcu-
lated prefrontal cortex volumes by combining all prefrontal
subregions, yielding volumes for a total of 52 brain regions.

CSF data were obtained from the MIND biobanking study. In
this study initiated in 2015, all patients who underwent
lumbar puncture in the outpatient Neurology Clinical of
Massachusetts General Hospital are approached for consent
to bank excess or additional (5cc) CSF for research purposes.
CSF levels of Af340, Af342 and p-Taul81 were measured at
the MIND Biomarker Core using Euroimmun immunoassays
(Liibeck, Germany), as previously described.**** Amyloid sta-
tus was determined using ABR (A342/40 ratio), with a thresh-
old of ABR (A842/40 ratio) < 0.082 indicating A+ (amyloid
positive), and ABR (Af$42/40 ratio) > 0.082 indicating A—
(amyloid negative). Tau status was based on p-Taul81 levels,
with concentrations >41.8 pg/mL classified as T+ (tau posi-
tive), and concentrations <41.8 pg/mL classified as T— (tau
negative). These thresholds were derived in-house using sam-
ples from cognitively unimpaired individuals (72 = 358) and in-
dividuals with a clinical diagnosis of Alzheimer’s disease
verified by CSF Alzheimer’s disease biomarkers in clinical test-
ing (Athena ADmark; 7z = 155) and were set at the point where
the sensitivity and specificity were equal (91% sensitivity and
specificity for both assays). Our control group, classified as hav-
ing normal Alzheimer’s disease biomarkers, was determined as
A—T- (amyloid negative, tau negative) and clinically diagnosed
as cognitively unimpaired. The other dementia group was clas-
sified as having normal Alzheimer’s disease biomarkers (A—T—,
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amyloid negative, tau negative) but with cognitive impairment.
Cognitive assessments were conducted by a neurologist and
psychiatrist specializing in Alzheimer’s disease and related de-
mentia (ADRD) diagnosis through a systematic chart review.

All analyses and plots, except for the structural covariance
network (SCN) analyses and functional network corres-
pondence analyses, were performed using R (version 4.2.1).

All analyses were conducted in each of the four CSF Alzheimer’s
disease biomarker groups—control (amyloid negative, tau nega-
tive, cognitively unimpaired), A+T— (amyloid positive, tau nega-
tive), A+T+ (amyloid positive, tau positive) and other dementia
(amyloid negative, tau negative, cognitive impairments)—
separately. These analyses included correlation analyses, SCN
analyses, high-dimensional clustering, unitary analyses, valid-
ation with three independent datasets, meta-analyses and func-
tional network correspondence. To examine sex differences in
patterns of neurodegeneration and brain volumes associated
with each CSF Alzheimer’s disease biomarker group, we per-
formed the same analyses separately for males and females.

To study the relationships between brain volumes, we first
carried out partial bivariate Pearson correlations using the
‘pcor’ function in the ‘ppcor’ package (version 1.1). These
controlled for age and sex, covering brain volume measure-
ments in patients 50 years and older. We performed the cor-
relation analyses for distinct CSF Alzheimer’s disease
biomarker groups and then converted all correlation coeffi-
cients to Fisher z-scores for easier group comparisons. The
results were plotted using the ‘heatmap’ function in the R
‘ComplexHeatmap’ package (version 2.15.1).

To elucidate the organizational patterns of the brain volumes,
we analysed the SCN of brain volume. In this context, connect-
ivity refers to the degree to which the volumes of various brain
regions co-vary, indicating coordinated growth or atrophy pat-
terns among these regions. Our analyses aimed to explore both
the local and global organizational principles of the brain, offer-
ing insights into how brain regions co-vary in size across indivi-
duals with and without Alzheimer’s disease pathology. These
included the global clustering coefficients, which shed light on
the network’s tendency to form tightly-knit groups (clusters)
by evaluating the extent of clustering among nodes (brain re-
gions). We also examined the path length, providing insight
into the average shortest distance between all pairs of nodes, of-
fering insight into the network’s overall navigability and effi-
ciency in communication across the entire brain. Global
efficiency was assessed to understand the effectiveness of
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information exchange across the entire network by evaluating
how efficiently information is integrated globally. On a more
granular level, we measured the nodal degree to determine the
number of direct connections each individual node (brain re-
gion) has within the network, indicating its level of connectivity,
alongside nodal clustering coefficients and nodal efficiency,
which respectively evaluate the propensity for local clustering
around individual nodes (brain regions) and their efficiency in
facilitating information flow. We also measured small-
worldness, calculated by dividing the global clustering coeffi-
cients by the average path length. This ratio reflects the efficiency
of the network in balancing local clustering with short paths for
global communication, where higher values indicate a more op-
timal small-world structure, characterized by efficient informa-
tion transfer both locally and across the network. The analyses
were conducted for each of the distinct CSF Alzheimer’s disease
biomarker groups. To ensure meaningful computation of path
length and to avoid infinite values resulting from disconnected
networks, we retained the top 35 % of the strongest connections
in the adjacency matrix, thereby ensuring that the SCN was fully
connected. Non-parametric Wilcoxon tests were applied to
compare SCN metrics between CSF Alzheimer’s disease bio-
marker groups due to non-Gaussian data distributions, with
correction for multiple comparisons. All SCN metrics were cal-
culated using ‘bet’ package (version 0.6.0) and visualized with
‘nilearn’ package (version 0.10.2) from Python 3.10.13.

To explore the high-dimensional, non-linear relationships
among brain volumes, we used the ‘umap’ package (version
0.2.10.0) to create UMAP (uniform manifold approximation
and projection) visualizations. These projections were gener-
ated for the entire brain to capture global volumetric patterns,
as well as separately for each brain lobe, subcortical grey matter
and other individual structures. UMAP clusters were generated
for each CSF Alzheimer’s disease biomarker group, and the first
two UMAP components (UMAP1 and UMAP2) were used for
visualization, as they capture the most meaningful variation in
the data while preserving local and global structures in a low-
dimensional space. To compare clustering across different brain
regions based on CSF Alzheimer’s disease biomarkers, we calcu-
lated the SGCC (standardized global clustering coefficient).
This distance-based metric is calculated by taking the difference
between the average distance between points in different groups
(between-category distance) and the average distance between
points within the same category (within-category distance).
This difference is then divided by the larger of the two average
distances, yielding a value between —1 and 1. A value of 1 indi-
cates that brain volumes are well-separated by CSF Alzheimer’s
disease biomarker groups, with strong clustering within their
own category and poor overlap with neighbouring groups, sug-
gesting a clear distinction between groups. A value of 0 indicates
that brain volumes are positioned near the boundary between
two groups, suggesting ambiguity in clustering, while a negative
value suggests that brain volumes may be incorrectly grouped,
as they are closer to a neighbouring biomarker category than
their own.
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All analyses were conducted for amyloid status—A+T—
(amyloid positive, tau negative) versus control (amyloid nega-
tive, tau negative, cognitively unimpaired)—and tau in the
presence of amyloid—A+T+ (amyloid positive, tau positive)
versus A+T— (amyloid positive, tau negative)—separately.

To test the cross-sectional association of brain volumes and
CSF Alzheimer’s disease core biomarkers, we conducted lo-
gistic regression for each brain volume separately, adjusting
for age and sex. The analyses were conducted using the ‘glm’
function in the ‘stats’ package (version 4.2.1). Brain volumes
that showed statistically significant differences (uncorrected
P <0.05) between comparison groups were selected as fea-
tures for the machine learning model. Comparison groups
include: A+T— (amyloid positive, tau negative) versus con-
trol (amyloid negative, tau negative-cognitively unimpaired)
and A+T+ (amyloid positive, tau positive) versus A+T—
(amyloid positive, tau negative).

Our binary classification method to ascertain participants’
Alzheimer’s disease core biomarkers’ status leveraged four clas-
sifiers: LASSO (least absolute shrinkage and selection operator)
logistic regression, ridge logistic regression, Firth logistic regres-
sion and random forest. These classifiers were chosen for their
capability to assess feature importance. Logistic regressions’
feature importance was determined by the size of standardized
coefficients, while for the random forest, it was based on the
permutation-based mean decrease in accuracy (MDA).

The MRI datasets contained intracranial volume-adjusted
52 brain volumes which were first scaled to have a mean of
0 and a standard deviation of 1. We divided the data into a
training set (75 %) and a held-out test set (25%) for each clas-
sifier. The models were trained using three times repeated
3-fold cross-validation, ensuring that each fold had a similar
proportion of positive cases (about 59% in the amyloid status
classification and 58% in the tau status classification). Model
performance was determined by the cross-validation mean
performance, scrutinizing their positivity detection accuracy.

For the logistic regression, we implemented either L1 regu-
larization (LASSQO), L2 regularization (ridge) or Firth’s logistic
regression to avoid overfitting and address bias in small sam-
ples. The regularization strength (i.e. lambda) for L1 and L2
regularization was fine-tuned from 0.001 to 0.1 in 0.001 incre-
ments, using the same repeated 3-fold cross-validation process
where a subset of the training data in each fold was used. This
helped pinpoint the optimal regularization level, allowing the
model to select features that exhibit a strong relationship with
predictors. Firth’s logistic regression was utilized to reduce
bias in parameter estimates, particularly useful for small sample
sizes and rare events, by adjusting the likelihood function to
provide more accurate estimates. For Firth’s logistic regression,
the maximum number of iterations was set to 100 for both the
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penalized likelihood control and the logistic regression control
to ensure convergence. The random forest classifier underwent
a grid search, also using the same repeated 3-fold cross-
validation process, to optimize the number of predictors at
each split, ranging from 1 to 10 in increments of 1. We fixed
the tree count at 500, using all the features in the model.
Trees were grown to maximum depth, with each using a boot-
strap sample of about 63.2% of the training data. The resam-
pling method was implemented in the models to ensure a
balance of different classes. Note that the decision thresholds
in our models were set to the default value of 0.5, meaning
that the provided accuracy, sensitivity and specificity in the ta-
ble are based on this standard threshold without any adjust-
ments to balance false positives and false negatives. This
modelling was executed with R’s ‘caret’ and ‘logistf’ package.

For both the logistic regression and random forest classi-
fiers, we evaluated the accuracy of the predictions by calcu-
lating the AUROC (area under the receiver operating
curve) and its 95% confidence intervals, which were esti-
mated using 2000 bootstrap samples. We also assessed the
sensitivity and specificity of the test set. The same machine
learning techniques were implemented to differentiate be-
tween individuals based on their amyloid and tau biomarker
statuses, classifying them according to their respective posi-
tivity. Multiple metrics were evaluated.

Validation allowed us to evaluate the generalizability of the
associations of CSF Alzheimer’s disease biomarkers—‘A’
(amyloid) and ‘T’ (tau)—with brain volumes across different
assay techniques in the different samples. See ‘Methods—
validation datasets’ in the Supplementary Material for de-
tails of the three validation datasets.

To synthesize findings across datasets, we conducted a
random-effects meta-analysis, which accounts for variability
in effect sizes between datasets, on brain volume features signifi-
cantly associated with core Alzheimer’s disease biomarkers in
at least one dataset. Using the ‘rma’ function from the ‘metafor’
package®* (version 4.6-0) with restricted maximum-likelihood
estimation (REML), we calculated pooled effect sizes and asso-
ciated statistics for each relevant feature. We applied multiple
comparison corrections to ensure the robustness of findings
across these features. This approach aggregated results from
multiple studies, offering a quantitative summary of overall ef-
fects and their variability. By identifying consistent patterns
across datasets, the meta-analysis enhanced our understanding
of reliable structural indicators of Alzheimer’s disease path-
ology, providing a more robust assessment of brain changes as-
sociated with Alzheimer’s disease biomarkers.

We used brain volumes significantly associated with
Alzheimer’s disease core biomarkers from meta-analyses to ex-
plore their relationship with established functional networks.
By applying the NCT*® (Network Correspondence Toolbox,
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‘cbig_network_correspondence’ package version 0.2.1) in
Python, we quantified the spatial overlap between these volumes
and networks using Dice coefficients and evaluated statistical
significance through spin tests. This analysis revealed the over-
lap between structural changes and functional networks, pro-
viding insights into the potential neural substrates underlying
Alzheimer’s disease pathology and its clinical manifestations.

All statistical tests were two-tailed unless otherwise noted,
with a = 0.05 set for significance. Residual and diagnostic plots
were examined where applicable to ensure model assumptions
(e.g. linearity in the logit for logistic regressions, homoscedas-
ticity for correlation analyses), and non-parametric methods
(e.g. Wilcoxon tests) were used for non-Gaussian data;
multiple comparison corrections were applied for network me-
trics and other comparisons as detailed in each subsection.
Randomization and blinding were not applicable given the ob-
servational design, and the experimental unit was the individ-
ual participant (each contributing a single set of brain volume
measures to avoid pseudo-replication). No post hoc power
analyses were performed, and repeated cross-validation was
employed to optimize hyperparameters and assess predictive
accuracy for logistic regression and machine learning models.
Exact P-values and 95% confidence intervals are provided in
the Results section.

Results

The MGB dataset, used as a discovery set, comprised 306 pa-
tients (excluding the 22 A—T+ cases), all 50 years of age or old-
er, selected from the MGB healthcare system. Details of the
patient selection process are illustrated in Fig. 1, the age distri-
bution of the participants is shown in Supplementary Fig. 1.
The average age of the study population was 68.4 + 8.8 years,
with 43.1% being female. The majority of the patients identi-
fied as White (93.8%) and not Hispanic or Latino (89.2%).
17.0% of the participants had 12 years or fewer of education,
6.5% had 13-16 years of education and 61.4% had attained
17 years or more of education. In terms of CSF Alzheimer’s dis-
ease biomarker group, 19.6% (7= 60) of the patients were
cognitively unimpaired non-Alzheimer’s disease control (i.e.
A-T- or amyloid negative, tau negative), 8.2% (n=25)
were A+T— (amyloid positive, tau negative), 39.5%
(n = 121) were A+T+ (amyloid positive, tau positive) and
32.7% (n=100) were A—T— (amyloid negative, tau negative)
biomarker with CI (cognitive impairment). There were no
missing data on age or sex. However, race data were missing
for 3.3% of patients, ethnicity for 7.5 % and educational back-
ground for 15.0%. There were no gaps in the data for brain vo-
lumes. For more detailed information, refer to Table 1. For
information on the demographic characteristics in the valid-
ation datasets, refer to Supplementary Table 1A-C. The clinic-
al characteristics of the A—T—&CI (amyloid negative, tau
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Figure | The MGB dataset. Consort diagram of the patient
selection process. ATN, amyloid/tau/neurodegeneration; AD,
Alzheimer’s disease; w/o, without; qc, quality control.

negative, cognitive impairment) group are summarized in
Supplementary Table 1D.

To examine brain volume atrophy patterns among different
CSF Alzheimer’s disease biomarker groups, we conducted
partial bivariate Pearson correlations of brain volumes for
each group, adjusting for age and sex (Fig. 2A). The control
group exhibited the most well-correlated structural network,
whereas the A—T—&CI (amyloid negative, tau negative, cog-
nitive impairment) group and the Alzheimer’s disease groups
with biomarker categories indicating only amyloid pathology
(A+T—, amyloid positive, tau negative) or both amyloid and
tau pathology (A+T+, amyloid positive, tau positive) demon-
strated distinct correlation patterns, though these were weak-
er compared with the control group. These qualitative
differences suggest disruptions in structural connectivity asso-
ciated with AD-related pathologies.

Further SCN analysis highlighted differences between the
groups with and without Alzheimer’s disease pathology
(Table 2). Specifically, the control group displayed significantly
higher small-worldness than the A+T+ (amyloid positive, tau
positive) groups (pFDRs = 0.018), indicating a more efficient
network balance between local clustering and global integra-
tion. This suggests that the control group’s brain networks are
better organized for specialized processing and effective com-
munication across regions. Visualization of the strongest
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Table | Summary statistics of the demographic characteristics in the MGB dataset

Total Control

Characteristics (n=306) (n=60; 19.6%)

A+T—
(n=25; 8.2%)

A+T+
(n=121; 39.5%)

A-T-&ClI
(n=100; 32.7%)

Age, mean (SD), years

68.4 (8.8) 63.1 (9)

Sex, N (%)

Female 132 (43.1) 34 (56.7)

Male 174 (56.9) 26 (43.3)
Race, N (%)

White 287 (93.8) 55(91.7)

Black or AA 5(1.6) 2(3.3)

Asian 3(1.0) 0 (0.0

Al or AN 1(0.3) I (1.7)

Not available 10 (3.3) 2 (3.3)
Ethnicity, N (%)

Not Hispanic or Latino 273 (89.2) 55 (91.7)

Hispanic or Latino 10 (3.3) 3 (5.0)

Not available 23 (7.5) 2 (3.3)
Education, N (%)

<12 years 52 (17.0) 13 (21.7)

13—16 years 20 (6.5) 8 (13.3)

17+ years 188 (61.4) 34 (56.7)

Not available 46 (15.0) 5(83)

74.8 (9.4) 69.2 (8.2) 68.9 (7.8)
12 (48.0) 46 (38.0) 40 (40.0)
13 (52.0) 75 (62.0) 60 (60.0)
23 (92.0) 116 (95.9) 93 (93.0)

0(0.0) 1 (0.8) 2 (2.0)
0(0.0) 1 (0.8) 2 (2.0)
0(0.0) 0(0.0) 0(0.0)
2 (8.0) 3(25) 3(3.0)
21 (84.0) 103 (85.1) 94 (94.0)
| (4.0) 4(33) 2 (2.0)
3 (12.0) 14 (11.6) 4(4.0)
4(16.0) 15 (12.4) 20 (20.0)
0(0.0) 8 (6.6) 4(4.0)
18 (72.0) 76 (62.8) 60 (60)
3(12.0) 22 (182) 16 (16.0)

The mean age of this cohort was 68.4 + 8.8 years old, and 43.1% were women. A majority of the cohort identify as White (93.8%) and not Hispanic or Latino (89.2%). 17.0% of the
participants had 12 years or fewer of education, 6.5% had 13—16 years of education and 61.4% had attained 17 years or more of education. In terms of CSF Alzheimer’s disease

biomarker group, 19.6% (n = 60) were control (i.e. A—T—&cognitively unimpaired), 8.2% (n = 25) of the patients were A+T—, 39.5% (n = 121) were A+T+ and 32.7% (n = 100) were
A-T—-&CI. AA, African American; Al, American Indian; AN, Alaska Native; A+T—, amyloid positive, tau negative; A+T+, amyloid positive, tau positive; A—T—&Cl, amyloid negative, tau

negative and cognitive impaired; MGB, Mass General Brigham.

connections in brain regions with the highest nodal degree
(Fig. 2B) reinforced these results, showing that the control group
had more direct connections between parietal regions and sub-
cortical grey matters than the A+ T+ (amyloid positive, tau posi-
tive) group. Conversely, the control group appears to have less
connections between occipital regions and temporal regions, as
well as between occipital regions and subcortical grey matter
than the other groups. Note that ‘connection’ here refers to
structural covariance between two brain regions, reflecting
how the volumes of these regions co-vary across individuals.

The global clustering of brain volumes by CSF Alzheimer’s
disease biomarker group (visualized using UMAP in Fig. 2C)
revealed a higher SGCC (SGCC=0.09) at the whole brain
level compared with specific subregions, such as subcortical
grey matter (SGCC=0.075), parietal lobe (SGCC = 0.044)
and temporal lobe (SGCC =0.026).

For amyloid status in the MGB dataset, we identified six sig-
nificantly associated brain regions (unadjusted P < 0.05), in-
cluding subcortical areas (e.g. amygdala, thalamus, ventral
diencephalon), the cerebellum (cerebellar white matter and
cortex) and the brainstem (Fig. 3A, Supplementary Fig. 2).
Using these significant features to predict amyloid status, a
ridge logistic regression model achieved the best performance
with an AUROC of 0.795 (95% CI: [0.788, 0.802]) and a
sensitivity of 0.67 at specificity of 0.87. The ventral

diencephalon, thalamus and cerebellum cortex emerged as
the features with the highest predictive power (Fig. 3B and C).
Validation across three independent datasets partially con-
firmed the findings in the discovery sample (MGB). The amyg-
dala and thalamus demonstrated significance across all four
datasets (Fig. 3D and E). Next, we performed meta-analysis
on brain regions with significant associations with amyloid
in at least one dataset. Meta-analyses conducted across four
datasets confirmed significant associations in 14 brain areas
(Supplementary Fig. 3 and Table 2). Dice coefficient tests
were then performed on the amyloid-associated regions identi-
fied from the meta-analyses, comparing them with functional
networks from commonly used atlases. This analysis revealed
significant overlap with dorsal attention A, control C and vis-
ual association networks (Fig. 3F, Supplementary Fig. 4),
which are key functional systems involved in attention regula-
tion, executive control and visual processing, respectively.

For tau status in the presence of amyloid, we only identified
two significant features, which were lateral ventricle and ex-
tracerebral CSF (Fig. 4A, Supplementary Fig. 5). Ridge logis-
tic regression model yielded the best performance utilizing
these significant features for predicting tau status in the pres-
ence of amyloid, withan AUROC of 0.694 (95% CI: 0.686—
0.702) and a sensitivity of 0.73 at specificity of 0.5.


http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf210#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf210#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf210#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf210#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf210#supplementary-data
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A Correlation of brain volumes in each CSF AD biomarker category
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Figure 2 Neurodegeneration patterns and morphometric connectome across CSF Alzheimer’s disease biomarker groups in
the MGB dataset. Patterns of neurodegeneration in different CSF biomarker categories in the MGB dataset. (A) Partial bivariate Pearson
correlation of brain volumes in the control group (N = 60), A+T— group (N =25), A+T+ group (N=121) and the A—T—&ClI group (N = 100).
Compared with groups with positive Alzheimer’s disease biomarkers or cognitive impairment, the control group exhibited more distinct and
robustly correlated clusters. Colour annotations above and to the left of each figure represent the brain regions’ categories (i.e. subcortical area,
cortical area, cerebellum, ventricle, brain stem and extracerebral CSF). All correlation coefficients were adjusted for age and sex and were Fisher
transformed. (B) Visualization of the SCN from the top 10% strongest connections from each group of distinct CSF biomarker categories. The
control group had more connections between subcortical and parietal regions, contributing to greater small-worldness than the A+T+ group
(pFDR = 0.018, Wilcoxon test), indicating a more integrated network structure. Yet, there appear to be less direct connections between occipital
regions and temporal regions as well as between occipital regions and subcortical grey matters in the control group compared with the other three
groups. Yellow circle: A+T—, A+T+ and A—T—&CI groups had more connections between occipital lobe and temporal lobe, as well as occipital
lobe and subcortical grey matter than the control and A—T—&ClI groups. Blue circle: control had more direct connection between parietal lobe
and subcortical grey matters. Note: Connection patterns were based on visual inspection only; no statistical comparisons were conducted for
regional edge differences. (C) UMAP of whole brain and subregions (N = 306) characterized by CSF biomarker categories. The SGCC quantifies
separation between categories, with higher positive values indicating greater separation. The global clustering coefficient at the whole brain level
(SGCC =0.09) was higher than that in subregions (SGCC: 0.026—0.075). Each data point represents the brain volume of an individual participant
projected into the UMAP 2D space. AD, Alzheimer’s disease; A+T—, amyloid positive, tau negative; A+T+, amyloid positive, tau positive; A—T—&Cl,
amyloid negative, tau negative and cognitive impaired; UMAP, uniform manifold approximation and projection; MGB, Mass General Brigham; L, left
hemisphere; R, right hemisphere; pFDR, false discovery rate-corrected P-value.
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A Brain volume: A+T- vs. Control (age >= 50 y/o) B Feature importance ranking

Positive
Negative
§ cerebellum cortex .
C ROC curve of the amyloid prediction model *g
DL cerebellum white matter
AUROC: 0.795 (95% CI: 0.788 — 0.802)
QLT
@
5 0751 -
=
= 0.50-
j=) .
S 025 Domain |- @
3 Subcortical Area 0.0 02 04 06
= 0.00- l Cerebellum Importance
000 025 050 075 1.00 ' Brain Stem

False Positive Rate

D Overlap of amyloid-associated brain volumes E Count of amyloid-associated brain volumes

across four datasets Overlap
Positive
4
3
2
1
Mixed
& -1
i~ -2
-3
-4
Negative
F Functional networks overlap with
amyloid-associated brain volumes
= *
%?‘ ‘p 0.012 <
% 5 8 & ® &
e N
%, % 2ES & % N
4, Q-@mmo"q 5 B p=0.04
amabmf” (0 A F.ff isud" ontPgy 5 VisAssogs
'|A :“ 4 Defaulta B %
tro e G )
i T SR N S
&8 52 %, p=0035 2 e
& % g% © %]
¢ £ 5§ = I
,%;}'\‘\ F ®
Networks © Shaefer2018 400-ROI Shen2013 368-ROI

with Yeo2011 17 networks ~ with 8 networks

p < 0.05*

Brain Area

across four datasets

recuneus
cerebral white matter

lateral ventricle
inferior lateral ventricle
3rd ventricle
supramarginal
posteriorcingulate
pericalcarine
middletemporal
lingual
inferiortemporal
inferiorparietal
fusiform
entorhinal
cuneus

bankssts

csf

brain stem

cerebellum white matter
cerebellum cortex
transversetemporal
superiorparietal
rostra\antenorcmfgulate
prefrontal
parahippocampal
paracentral
medialorbitofrontal
lateraloccipital
caudalmiddlefrontal
caudalanteriorcingulate

Association

B Positive
= N Negative

= ;

mm Domain

. Brain Stem

- B Cerebellum

s || Cortical Area

s [ Extra Cerebral CSF
Subcortical Area
4th ventricle = M ventricle

1 4

Number of Datasets

=]
N
w

Figure 3 Brain volumes associated with amyloid. (A) Brain areas associated with amyloid status. Significant brain volumes linked to amyloid
status using logistic regression in individuals aged 50+ in the MGB dataset (N: A+T— =25, Control = 60), adjusted for age, sex and intracranial
volume (ICV). Beta (log odds): brain stem = —0.512, P = 0.043; thalamus = —0.650, P = 0.03; amygdala = —0.681, P=0.017; ventral DC = —0.857,
P =10.02; cerebellum cortex = —0.937, P =0.01 |; cerebellum white matter = —1.200, P = 0.005. y/o, year old. (B) Feature importance ranking. Top
predictors of amyloid status in the ridge logistic regression model for patients aged 50+. The x-axis (Importance) indicates the magnitude of each
feature’s standardized coefficient, with features scaled before model fitting and importance values scaled from 0 to | for visualization. (C) Model

(continued)



Brain volumes and Alzheimer’s biomarkers

Extracerebral CSF showed higher predictive power than lat-
eral ventricle in terms of feature importance ranking (Fig. 4B
and C).

Validation across three independent datasets confirmed the
findings in the MGB discovery sample; extracerebral CSF and
the lateral ventricle were significant in three datasets (Fig. 4D
and E). This observed overlap informed the selection of brain
regions for meta-analyses, focusing on those with significant
associations with tau in at least one dataset. Next, we per-
formed meta-analysis on brain regions with significant asso-
ciations with p-tau in at least one dataset (Supplementary
Fig. 6 and Table 3). Dice coefficient tests were then applied
to these regions, comparing them with functional networks
from commonly used atlases. This analysis revealed signifi-
cant overlaps: increased brain volumes were associated with
the somatomotor networks (Fig. 4F, Supplementary Fig. 7),
while decreased brain volumes were associated with language
and auditory networks (Fig. 4F, Supplementary Fig. 8).

To examine neurodegeneration patterns between sexes
across CSF Alzheimer’s disease biomarker groups, we first
conducted sex-stratified partial bivariate Pearson correla-
tions of brain volumes for each group, adjusting for age
(Fig. 5A-D). Sex differences in brain volume clustering pat-
terns were clear in the control, A+T— and A—-T—&CI groups
(Fig. 5A, Band D), while the A+T+ group revealed less prom-
inent sex difference (Fig. 5C).

Next, SCN analyses revealed no significant sex difference in
any groups (Ps > 0.005; Supplementary Table 4) although net-
work visualization exhibited stronger connections near occipi-
tal lobe in female A+T— and male A+T+ groups (Fig. SE and F).

UMAP visualization (Fig. 5G) of global brain volume clus-
tering by sex across CSF Alzheimer’s disease biomarker
groups revealed sex-based clustering in subcortical grey

Figure 3 Continued
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matter for control (SGCC = 0.004), A+T— (SGCC=0.019)
and A-T-&CI (S§GCC=0.064). Additionally, sex cluster-
ing was observed at the whole brain level in control, A+T+
and A—T—&CI in the parietal for control and A-T—-&CI
groups, in the temporal lobe for all groups and in the occipi-
tal lobe for A+T— and A+T+ groups (Supplementary Fig. 9).
No sex clustering was detected in the frontal lobe.

Sex-differentiated brain volumes were observed across CSF
Alzheimer’s disease biomarker groups. In the A+T— group, fe-
males had larger volumes overlapping with the default mode
network A (involved in autobiographical and prospective
memory>°), while males exhibited larger volumes in the frontal
and parietal lobes, overlapping with the control network B (as-
sociated with executive functions and cognitive control)
(Fig. 6A—C, Supplementary Fig. 10 and Table 5). In the A+T+
group, females showed larger volumes in temporal and visual
networks (involved in memory and visual processing), while
males had overlaps with the default mode network B (linked
to Theory of Mind***”) (Fig. 6D-F, Supplementary Fig. 11
and Table 6). Additional analyses across the other dementia
and control groups showed sex differences, with further details
provided in Supplementary Fig. 12.

Moreover, meta-analyses with multiple comparison cor-
rections revealed a significant sex difference in the associ-
ation between inferior lateral ventricle volume and amyloid
status. Specifically, males in the A+T— group exhibited sig-
nificantly greater enlargement of the inferior lateral ventri-
cles compared with females when contrasted with the
control group (8=-0.28, pFDR =0.005) (Supplementary
Fig. 13). However, no sex difference was observed in the as-
sociation with tau in the presence of amyloid.

Discussion

In this study, we examined neurodegeneration patterns
across four CSF Alzheimer’s disease biomarker groups. We
found disrupted connectivity (brain volume covariance

performance. AUROC of the ridge logistic regression model for predicting amyloid status in patients aged 50+ (N: A+T— = |9, Control = 45;
AUROC =0.795, 95% ClI: [0.788, 0.802], sensitivity = 0.67 at specificity = 0.87). AUROC, area under receiving operating characteristic; Cl, confidence
interval. (D) Brain visualization. Overlay of significant brain areas from logistic regression tests across datasets for individuals aged 50+. Darker
colours indicate greater overlap (numbers show dataset counts per region); purple indicates mixed associations (positive in some datasets,
negative in others). (E) Significant brain areas in logistic regression tests by dataset. A stacked bar plot displaying the count of brain areas showing
significant associations across all four datasets, coloured by the association direction (positive/negative). The red box highlights the two brain areas
that were significant in all datasets, indicating consistent associations. (F) Functional network overlap. Spin tests of significant brain regions from
meta-analyses and functional networks revealed significant overlaps with control C (Dice = 0.08, P =0.035), dorsal attention A (Dice =0.16,

P =0.012) and visual associated networks (Dice = 0.19, P = 0.04), indicating consistent amyloid-associated brain volume patterns. ROI, region of
interest. Network abbreviations correspond to the functional networks: DorsAttnA/B, dorsal attention network A/B; VisualA/B, visual network
A/B; DefaultA/B, default mode network A/B; ControlA/B/C, frontoparietal control network A/B/C; SalVenAttnA/B, salience/ventral attention
network A/B; SomatomotorA/B, somatomotor network A/B; LimbicA/B, limbic network A/B; TempPar, temporoparietal network; VisAssoc,
visual association network; Default, default mode network (general); SalSubcor, salience/subcortical network; Motor, motor network; FrontPar,
frontal-parietal network; MedFront, medial frontal network; InsuB, insular/brainstem network. Asterisks (*) indicate networks with significant
overlap. The P-value was based on the spin test permutations of the Dice coefficients. (A) and (D) show sagittal views of cortical areas (left) and
coronal, sagittal and sectional views of subcortical and white matter areas (right). A+T—, amyloid positive, tau negative.


http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaf210#supplementary-data
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Figure 4 Brain volumes associated with tau in the presence of amyloid. (A) Brain areas associated with tau status. Significant brain volumes
linked to tau status using logistic regression in amyloid-positive individuals aged 50+ in the MGB dataset (N: A+T+ = |21, A+T— = 25), adjusted for age,
sex and intracranial volume (ICV). Beta (log odds): CSF = 0.668, P = 0.006; lateral ventricle = —0.545, P = 0.009. y/o, year old. (B) Feature importance
ranking. Top predictors of tau status in the ridge logistic regression model for patients aged 50+. The x-axis (Importance) indicates the magnitude of
each feature’s standardized coefficient, with features z-scored before model fitting and importance values scaled from 0 to | for visualization. (C)
Model performance. AUROC of the random forest model for predicting amyloid status in patients aged 50+ (N: A+T—=19, A+T+=91; AUROC =
0.694, 95% ClI: [0.686, 0.702], sensitivity = 0.73 at specificity = 0.5). ROC, receiving operating characteristic; AUROC, area under receiving operating
characteristic; Cl, confidence interval. (D) Brain visualization. Overlay of significant brain areas from logistic regression tests across datasets for
individuals aged 50+. Darker colours indicate greater overlap (numbers show dataset counts per region); purple indicates mixed associations (positive
in some datasets, negative in others). (E) Significant brain areas logistic regression tests by dataset. A stacked bar plot displaying the count of brain areas
showing significant associations across all four datasets, coloured by the association direction (positive/negative). (F) Functional network overlap. Spin
tests of significant brain regions from meta-analyses and functional networks revealed significant overlaps of tau-associated brain volumes in the
presence of amyloid revealed with somatomotor A (increased volumes; Dice =0.26, P=0.01 |) and language (decreased volumes; Dice =0.17, P=
0.004) and auditory networks (decreased volumes; Dice =0.17, P=0.049). RO, region of interest. Network abbreviations correspond to the
functional networks: SomatomotorA/B, somatomotor network A/B; VisualA/B/2, visual network A/B/2; DorsAttn, dorsal attention network; Default,
default mode network; ControlA/B/C, frontoparietal control network A/B/C; SalVenAttnA/B, salience/ventral attention network A/B; LimbicA/B,
limbic network A/B; TempPar, temporoparietal network; FrontPar, frontal-parietal network; VentMulti, ventral multimodal network; PostMulti,
posterior multimodal network; CingOperc, cingulo-opercular network; OrbitAffective, orbitofrontal/affective network; Auditory, auditory network;
Language, language network. Asterisks (*) indicate networks with significant overlap. The P-value was based on the spin test permutations of the Dice
coefficients. (A) and (D) show sagittal views of cortical areas (left) and coronal, sagittal and sectional views of subcortical and white matter areas (right).
A+T—, amyloid positive, tau negative; A+T+, amyloid positive, tau positive.
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Figure 5 Sex differences in neurodegeneration patterns across CSF Alzheimer’s disease biomarker groups in the MGB
dataset. (A-D) Brain volume correlations by sex: partial bivariate Pearson correlations of brain volumes in males and females within each CSF
biomarker group: (A) Control group (N =60), (B) A+T— group (N =25), (C) A+T+ (N=121) group and (D) the A—T—&CI group (N = 100).
Different connectivity patterns were observed between sexes across all groups. Brain regions are colour-coded (subcortical, cortical, cerebellum,
ventricle, brain stem and extracerebral CSF). Correlations are adjusted for age and Fisher transformed. (E and F) SCNs in A+T+ group:
Visualization of the top 10% strongest connections in males and females. Connection patterns were based on visual inspection only; no statistical
comparisons were conducted for regional edge differences. (E) Female-specific patterns: More connections between the occipital and parietal
lobes (yellow circle). (F) Male-specific patterns: More connections between the occipital lobe and subcortical grey matter (yellow circle). (G)
Subcortical grey matter clustering by sex. UMAP visualization shows sex-based clustering of subcortical grey matter volumes in control, A+T— and
A—T—-&ClI groups, but not in the A+T+ group. A+T—, amyloid positive, tau negative; A+T+, amyloid positive tau positive; A—T—&Cl, amyloid
negative, tau negative and cognitive impaired; UMAP, uniform manifold approximation and projection; MGB, Mass General Brigham; L, left
hemisphere; R, right hemisphere.



A Overlap of sex-differentiated brain volumes B Sex-differentiated brain volumes in A+T-

in A+T- across four datasets )
brain stem
Female > Male cerebellum cortex
supramarginal
4 superiortemporal
parsorbitalis
3 parahippocampal
bankssts

Mixed cerebellum white matter
lransversetemﬁaora\

-1 temporalpole
-2 . prefrontal
posteriorcingulate

-3 _pericalcarine
middletemporal
lingual
_lateraloccipital
isthmuscingulate
insula

fusiform
entorhinal

“J .‘Fﬁ. {{-"( :F"'-’_’

i~ 3
e

Female < Male

>

ssociation

Positive
Negative

Brain Area

C Functional network overlap with brain volumes
showing sex differences in A+T-

Female > Male Female

inferior lateral ventricle
Male 3rd ventricle
superiorparietal
superiorfrontal
rostralanteriorcingulate
prei-cengra} | L=
ostcentra
parstriangularis . Cen?bellum
inferiorparietal [T Cortical Area

cerebral white matter — [ Extra Cerebral CSF

A

Domain
rain Stem

> o caudalanteriorcingulate EE— -
oNES % ““‘,? FRaALN csf m— .\S/ubcorltlcal Area
ol “ o _—— ntri
e \09-"@, 59%6 K S LR lateral ventricle mmmm 8 ¥ SN
TEf53 % & §317% % o 1 2 3
- o — g 0.037 Number of Datasets
p=0.016* > p =0.037*

= Yan2023 400-ROI with ™ Yeo 2011 17 networks
Kong2021 17 networks

E o i = e
D Overlap of brain volumes with sex Sex-differentiated brain volumes in A+T+

Difference in A+T+ across four datasets temporalpole [em—
brain stem
Female > Male cerebellum cortex m——
parahippocampal
4 isthmuscingulate n  ——
fnsula E————
3 fUSIerrq E—
9 entorhinal I
1 bankssts I
f———
. |
Mixed inferior lateral ventricle T ———
& =l rd ventricle T ——
{ -%- ) cerebellum white matter ——
1’1 Y ¥ -2 transversetempora| —
\j!%.{ superiortemporal ——
w W -3 posteriorcingulate ————
-4 @ ntral  —
o _ parsorbitalis E——
Fomale<vale < TGS B
F Functional networks overlap with brain vol = B
caugaaimi etronia Yo Jid
. un |or'_|a ne Or S overiap wi rain volumes g Co — Association
with sex difference in A+T+ o
Female > Male Female < Male f mmsss Wl Negative
vy, o= ¢, p=0.025 supra_mlgir inal w—
p=004* 2 3T o - 0.04* %, o & superiorfrontal =
S 3T oy rostSHARGIAT: |
Foey X u@e\"a PR Mg, %, pre lonls mem  Domain
P Sty FrontPar %, pa sequgﬁ e _ Brain Stem
remotor 00 Visuaig mediaiorbitofrontal s Il Cerebellum
ingual i
Hat\dsm; ,’% Perg pefautC inferjortemp%rm mmm | Cortical Area
\\&\" Soc™ W caudalanteriorcingulate mmm [l Extra Cerebral CSF
F Fg ’6% £ o7 & === __Subcortical Area
¥ £ g & lateral ventricle wmm [l Ventricle
p=0001+ & © £y Afh ventncle mem
™ Gordon2017 17 networks # Shaefer2018 400-ROI with g 1 2 3 3
p < 0.05*, p <0.01** Kong2021 17 networks Number of Datasets

Figure 6 Sex-differentiated brain regions in A+T— and A+T+ groups. (A) Overlap of sex-differentiated brain volumes in A+T—.
Visualization of overlapping regions across four datasets. A+T—, amyloid positive, tau negative. (B) Count of sex-differentiated brain volumes in A+T—.
Stacked bar plot showing the count of significant brain volumes in individuals aged 50+, coloured by association direction (Female > Male or Male >
Female). (C) Functional network overlap in A+T—. Spin tests of significant brain regions from meta-analyses and functional networks revealed
significant overlap with default A network (larger brain volumes in females; Dice =0.21, P=0.016) and control B network (larger brain volumes in
males; Dice =0.13, P=0.037). (D) Overlap of sex-differentiated brain volumes in A+T+. Visualization of overlapping regions across four datasets.
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networks) in groups with Alzheimer’s disease pathology
(A+T—, amyloid positive, tau negative; A+T+, amyloid posi-
tive, tau positive) and other non-Alzheimer’s disease demen-
tias (A—T—-&CI, amyloid negative, tau negative, cognitive
impairment), while the control group had the most con-
nected structural network and exhibited significantly higher
small-worldness compared with the A+T+ (amyloid positive,
tau positive) group. High-dimensional clustering analysis
showed that whole brain volumes demonstrated more separ-
ation between groups than subregions. We also identified as-
sociations between brain region volumes and amyloid and tau
in the presence of amyloid, with subcortical, cerebellar and
brainstem atrophy linked to amyloid, including the ventral di-
encephalon, thalamus and cerebellum cortex showing the
highest predictive power. The amygdala and thalamus had
consistent cross-dataset associations. For tau in the presence
of amyloid, we mostly identified brain volume changes that
reflect the whole brain shrinkage, with the lateral ventricle
(negative, unexpected) and extracerebral CSF (positive) being
the most predictive. High overlap was found across datasets
in these two regions. Finally, we revealed distinct sex-based
variations in brain volumes in all biomarker groups but no
significant difference in connectivity (brain volume covari-
ance networks) across any group. High-dimensional analysis
also identified distinct sex-based clustering patterns.

This study builds upon previous research by leveraging
a large dataset from the MGB healthcare system, validated
with three public datasets, totalling 3443 participants.
This sample size is significantly larger than prior studies,
which often focused on a smaller number of brain regions
such as the hippocampus,'®'® and included fewer
participants'¢172%23:38-40 By aqsessing 52 brain subregions,
we were able to capture a more comprehensive view of struc-
tural brain changes across the whole brain and across a broader
spectrum of Alzheimer’s disease. We also accounted for varia-
tions in CSF assay methods across the datasets, leading to
more robust and generalizable findings. We focused on core
Alzheimer’s disease biomarkers,? especially tau in the presence
of amyloid, which, to our knowledge, has not been directly

Figure 6 Continued
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studied in relation to CSF Alzheimer’s disease biomarkers and
brain volume.

Our results highlight significant disruptions in brain
network connectivity (brain volume covariance networks)
associated with Alzheimer’s disease pathology and other de-
mentias, with the control group showing the most connected
network. This higher small-worldness in controls may sup-
port cognitive resilience and preserved brain function during
aging. The greater differences observed in whole brain vo-
lumes across the four groups compared with subregions sug-
gest widespread structural changes, rather than localized
effects, across the Alzheimer’s disease CSF biomarker groups.
Our study also emphasized the importance of examining glo-
bal structural connectivity when assessing dementia.

Further, our study contributes to resolving discrepancies
in prior research concerning the relationship between CSF
Alzheimer’s disease biomarkers and brain volume.'®!? We
identified consistent amyloid-related structural changes,
such as those in the thalamus and amygdala, areas known
to be affected early by amyloid accumulation.*'*** Despite
the small sample size of 25 participants in the A+T— group
within the discovery set, our three independent validation
sets consistently supported these findings. Regarding the ac-
cumbens, while amyloid-associated atrophy has not been
directly reported, it may result from cholinergic neuronal
loss in the basal forebrain, which is closely linked to amyloid
accumulation through the cholinergic pathway.** Thalamus
atrophy has also been observed in Alzheimer’s disease,*
which may be part of this broader neurodegenerative pat-
tern. Additionally, brain regions showing greater variability
across datasets may reflect patterns specific to each dataset.
For instance, cerebellum and brainstem atrophy were asso-
ciated with amyloid only in the MGB dataset but have
been reported in post-mortem studies.*”™** The MGB dataset
includes patients at more advanced disease stages compared
with other datasets like ADNI and EPAD, suggesting that co-
hort characteristics, such as disease severity, may influence
the observed associations. Furthermore, regions showing sig-
nificant volume reduction in amyloid-positive individuals

(E) Count of sex-differentiated brain volumes in A+T+. Stacked bar plot showing significant regions for individuals aged 50+, with colours
indicating association direction. The red box highlights the consistently significant brain area (temporal pole) across all datasets. A+T+, amyloid
positive, tau positive. (F) Functional network overlap in A+T+. Spin tests of significant brain regions from meta-analyses and functional networks
revealed overlap with anterior medial temporal lobe (larger brain volumes in females; Dice = 0.16, P = 0.04), posterior medial temporal lobe
(larger brain volumes in females; Dice = 0.019, P=0.001) and medial visual networks (larger brain volumes in females; Dice = 0.012, P = 0.044) and
default B network (larger brain volumes in males; Dice =0.017, P =0.025). Network abbreviations correspond to the functional networks:
DefaultA/B/C, default mode network A/B/C; ControlA/B/C, frontoparietal control network A/B/C; VisualA/B/2, visual network A/B/2;
DorsAttnA/B, dorsal attention network A/B; SalVenAttnA/B, salience/ventral attention network A/B; SomatomotorA/B, somatomotor network
A/B; LimbicA/B, limbic network A/B; TempPar, temporoparietal network; Language, language network; Auditory, auditory network; VentMulti,
ventral multimodal network; PostMulti, posterior multimodal network; VisualCs, visual central strip network; VisualCb, visual cerebellar network;
CingOperc, cingulo-opercular network; OrbitAffective, orbitofrontal/affective network; MedVis, medial visual network; LatVis, lateral visual
network; Context, contextual association network; ParMemory, parietal memory network; FrontPar, frontal-parietal network; Premotor,
premotor network; PostMTL, posterior medial temporal lobe network; TLMN, temporal lobe midline network; FootSM, HandSM, FaceSM,
somatomotor subregions (foot, hand, face). Asterisks indicate networks with significant overlap. The P-value was based on the spin test
permutations of the Dice coefficients. In (A) and (D), darker colours indicate greater overlap (numbers show dataset counts per region); purple
indicates mixed associations (positive in some datasets, negative in others).
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overlap with multiple functional networks. This is supported
by cognitive tasks highly associated with amyloid status,
such as picture sequence memory (involving the DMN, con-
trol and visual networks)*° and list sorting working memory
(engaging control and attention networks).’°

In contrast, we primarily observed general shrinkage of the
whole brain (i.e. increase of extracerebral CSF>'*?) for tau in
the presence of amyloid. Meta-analyses revealed that there
was an increase in volumes in the occipital and parietal regions
and a decrease in ventricular size associated with tau in the pres-
ence of amyloid. The observed ventricular shrinkage is particu-
larly puzzling, as it contradicts the expected ventricular dilation
typically associated with neurodegeneration. This counter-
intuitive relationship may reflect heterogeneity in disease stages
and/or the presence of mixed pathologies. Additionally, accur-
ately estimating brain volumes from T;-weighted MRIs may
present challenges in cases of significant neurodegeneration.
As brain tissue shrinks and CSF volume increases, partial vol-
ume effects can occur—where individual voxels contain a mix-
ture of CSF and atrophied brain tissue—thereby reducing
contrast and complicating precise measurements. Moreover,
severe neurodegeneration and elevated CSF volumes may dilute
protein concentrations, potentially skewing biomarker values.
Interestingly, the volume increases we observed in occipital re-
gions (A+T+ versus A+T—, adjusted for intracranial brain vol-
ume), such as the cuneus, pericalcarine and lingual gyrus, are
consistent with previous studies reporting enhanced functional
connectivity in these areas among Alzheimer’s disease pa-
tients.”>>* We performed visual inspections of multiple MRIs
to confirm the automated image segmentations, but the ob-
served decrease in ventricle size remained. These results warrant
further investigation into the complex interactions between tau,
amyloid and brain structure.

Our findings on sex differences in brain volumes revealed
complex but distinct patterns across CSF Alzheimer’s disease
biomarkers. Interestingly, the A+T+ group appears to have
less prominent sex differences than other groups, which indi-
cates that sex differences in brain atrophy may vary across dif-
ferent stages of Alzheimer’s disease. In the A+T— group, we
observed sex-based clustering in the subcortical grey matter,
temporal and occipital lobes, with males showing larger vo-
lumes in regions (e.g. middle and superior temporal gyri, su-
pramarginal gyrus) linked to executive function (i.e. control B
subnetwork’?), while females had larger volumes in areas re-
lated to autobiographical and prospective memory>® (DMN
A subnetwork,’® e.g. temporal pole, parahippocampal areas,
posterior cingulate cortex). These results align with previous
findings that females may have greater cognitive reserve,
though experiencing more rapid cognitive decline®” including
executive function,?”*® particularly at higher amyloid levels.
In the A+T+ group, we observed sex-based clustering in oc-
cipital areas and at the whole brain level, with females exhi-
biting larger volumes in the temporal pole cross-datasets.
Further, our meta-analyses revealed that sex differences in
the enlargement of inferior lateral ventricles are particularly
associated with amyloid, in line with previous findings that
ventricular enlargement is more associated with CSF amyloid
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than p-tau.”®*"?3 It is important to note that multiple com-
parison corrections were applied to the meta-analyses to re-
duce the risk of false positives. Additionally, recent findings
suggest that CSF glial reactivity may also be related to sex dif-
ferences in preclinical Alzheimer’s disease groups.’’
Specifically, women showed increased amyloid burden and
CSF p-tau levels with elevated CSF glial markers, while men
with higher tau burden exhibited lower hippocampal vo-
lumes with increased CSF glial reactivity. These results indi-
cate that CSF glial reactivity may help explain some of the
variations in the relationships between CSF Alzheimer’s dis-
ease biomarkers and brain structure observed across datasets,
suggesting a valuable direction for future research.

Limitations

This study has several limitations. First, the slice thickness of
clinical images posed challenges for calculating other morpho-
metric measures, particularly cortical thickness. Previous stud-
ies have shown that tau is more strongly associated with
cortical thinning than hippocampal volume, while the reverse
is true for amyloid in preclinical Alzheimer’s disease.>” Thus, it
is possible that tau in the presence of amyloid may exhibit more
consistent and widespread associations with cortical thickness
than amyloid alone. Second, we employed a cross-sectional de-
sign to examine the association between brain volume and CSF
Alzheimer’s disease biomarkers. Future longitudinal studies
will be necessary to fully track how brain volume changes
with these biomarkers over time. Third, the average education
level of our participants was higher than that of the general
population, which may limit the generalizability of our find-
ings to less educated populations. This potential bias should
be considered when interpreting our results. Lastly, hormone
therapy, known to affect the volumes of several brain regions
including the hippocampus and frontal lobe,*” was not con-
sistently recorded across all datasets.

Conclusions

In this comprehensive study of neurodegeneration patterns
across CSF Alzheimer’s disease biomarker groups, we lever-
aged a dataset from the MGB healthcare system, validated
with three public datasets, totalling 3443 participants. OQur
findings revealed disrupted connectivity in groups with
Alzheimer’s disease pathology and other dementias, contrast-
ing with the well-connected networks in the control group.
Whole brain volumes showed greater differences between
groups than subregions, emphasizing the importance of global
structural analysis in the assessment of neurodegenerative pat-
terns. We identified consistent amyloid-related structural
changes in amygdala and thalamus, while tau in the presence
of amyloid showed extracerebral CSF enlargement and unex-
pected ventricular shrinkage. There were pronounced differ-
ences between sexes in brain volumes within each CSF
Alzheimer’s disease biomarker group, but no significant
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differences were observed in connectivity between sexes. These
findings enhance our understanding of Alzheimer’s disease neu-
rodegeneration patterns and demonstrate the effectiveness of
automated analyses on real-world datasets.

Supplementary material

Supplementary material is available at Brain Communications
online.
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