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Abstract
Background.   Accurate prognosis of glioblastoma is crucial for better-informed treatment decisions, potentially 
leading to improved disease management. We investigated whether clinical variables, tumor size, and location, 
can serve as prognostic factors.
Methods.   A retrospective, multicenter study enrolled 1318 adult patients with histopathologically confirmed gli-
oblastoma undergoing first-time surgery, with survival censored for 188 patients. Pre-operative brain MRIs were 
used to compute tumor size and derive advanced radiological features describing tumor location, later refined by 
expert-based opinion. Post-operative MRIs were used to measure the enhancing residual tumor volume. The prog-
nostic quality of all variables, measurements, and features was assessed as inputs of three survival regression 
models (CoxPH, Random Survival Forests, DeepSurv) to predict overall survival, under five timepoints of patient 
treatment: onset presentation, assessment by multidisciplinary board, intervention planning, post-intervention 
evaluation, and chemoradiotherapy planning. Model evaluation was performed with the C-index, Brier Score over 
Time, and Integrated Brier Score.
Results.   Multivariable Cox analysis identified most clinical variables and tumor size as strong predictors of patient 
survival, with varying hazard ratios across timepoints. DeepSurv was consistently the top performing model under 
all possible inputs and at all timepoints, yielding mean test C-index scores ranging from 61.71% to 70.29%, and 
mean Integrated Brier Scores ranging from 8.57% to 7.63%.
Conclusion.   Clinical variables, tumor size, and location carry prognostic value for the overall survival of patients 
with glioblastoma. The best predictive performance was observed under a Deep Survival model using all variables 
at the stage of chemoradiotherapy planning.

Key Points

•	 An automated pipeline for predicting overall survival regression in glioblastoma was 
developed.

•	 Clinical variables, tumor size, and expert-selected features were assessed as prognostic 
factors.

•	 Deep Survival network yielded the best performance.

Estimating overall survival of glioblastoma patients 
using clinical variables, tumor size, and location  
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Glioblastoma is the most aggressive brain tumor,1 as-
sociated with low median survival rates.2 Despite treat-
ment development, significant challenges persist. 
The need for an accurate prognosis in patients with 
glioblastoma is of critical importance, as it facilitates 
better-informed treatment decisions, and guides deci-
sion making, potentially leading to improved disease 
management. Additionally, variations in patient popu-
lations hinder cross-study comparisons, and a reliable 
prognostic model can help alleviate such challenges by 
providing a better understanding of patient individual 
profiles, thereby mitigating the effects of case-mix var-
iability. Despite advances in statistical learning methods 
and medical image processing, which have assisted to 
significant improvement of patient outcomes in many 
diseases, the prognosis of glioblastoma at the individual 
level is challenging due to the high heterogeneity of the 
disease. Glioblastomas are characterized by high varia-
bility of patient survival times and a limited set of prog-
nostic factors associated with the overall survival of 
patients.

Survival regression methods model survival proba-
bility functions across time periods and identify factors 
that carry prognostic value for patient outcomes. In ad-
dition, they incorporate censored patients in such ana-
lyses, where the exact time of survival remains unknown, 
which is particularly common in clinical studies. A few 
clinical variables were identified through survival regres-
sion as predictors for the overall survival of patients diag-
nosed with glioblastoma, including but not limited to the 
patient age3 and Karnofsky Performance Status (KPS) 
score4 at disease presentation, extent of surgical resec-
tion,5 MGMT (O6-methylguanine-DNA methyltransferase) 
promoter methylation,6 radiotherapy administration and 
chemotherapy status,7 and patient’s sex.8 Furthermore, by 
incorporating volumetric and spatial data from Magnetic 
Resonance Imaging (MRI) scans, both the tumor size9 and 
location10 were highlighted as prognostic factors, with the 
presence of necrotic tumor core11 and peritumoral edema12 
associated with lower survival rates.

Radiological features obtained through imaging 
studies were also employed to model the survival of 
patients with glioblastoma,13 where machine learning 
techniques were applied in conjunction with such fea-
tures, due to their ability to model interactions between 
the variables of the input space, and inherently select 
those more relevant to the survival regression task. 

Two prominent feature extraction approaches are the 
radiomics,14 which represent general features derived 
from multi-modal MR images, and the Raidionics15,16 
software, formerly known as Glioblastoma Surgery 
Imaging—Reporting And Data System (GSI-RADS). 
Raidionics provides segmentation masks and auto-
matic reports for glioblastomas, lower-grade gliomas, 
meningiomas, and metastases. The automatic reporting 
component of Raidionics describes the tumor location 
and measures tumor overlap with atlas-based regions 
of the brain. Recent studies focused on subset feature 
selection from the set of radiomics,17 where the time 
of survival was modeled either as a discrete18 (short-, 
mid-, and long-term survival) or continuous19 outcome. 
Ranging from statistical regression20 to deep-learning-
based feature extraction,21 radiomics seemed to offer 
additive predictive value, compared to approaches 
using clinical variables exclusively. Despite their broad 
use, which extends beyond survival regression, vul-
nerabilities of radiomics have been discussed in terms 
of limited reproducibility22 and instability attributed to 
high inter-rater variability23 across different tumor sites, 
therefore questioning the generalization ability of such 
methods. In contrast, associating the information rep-
resented by the features extracted from Raidionics with 
the prognosis of patient survival in glioblastoma re-
mains unexplored.

In this study, we pose the following questions: Can 
Raidionics features effectively model survival of patients 
diagnosed with glioblastoma? and What is the additive 
value of Raidionics to the simple use of recorded patient 
clinical variables? Additionally, How do state-of-the-art 
survival regression methods compare in estimating 
overall survival of glioblastoma patients? To address 
these questions, we combined advanced radiological 
features extracted from Raidionics with automatic tumor 
volumetric measurements and patient clinical vari-
ables to form three sets of input variables, and trained 
independent survival regression models on five con-
secutive timepoints: initial disease presentation, assess-
ment by multidisciplinary board, intervention planning, 
post-intervention assessment, and chemoradiotherapy 
planning. We performed cross-validation using a multi-
center dataset of glioblastoma patients with multi-
parametric MRI and clinical follow-up and assessed all 
combinations of input variables, prediction models, and 
timepoints.

Importance of the Study

Accurate prognosis of glioblastoma is critical for creating 
realistic expectations to patients, and guiding treatment 
choices, allowing for improved disease management. This 
study develops a computational framework for predicting 
the overall survival of patients with glioblastoma. By 
integrating clinical and imaging data, our approach 
provides personalized prognosis at any point during 
the disease course, from the onset to post-operative 

chemoradiotherapy planning. Additionally, we provide in-
sights on the prognostic value of clinical variables, tumor 
size, and location. Overall, our study design employs a 
fully-automated pipeline, flexible in integrating different 
data sources at various timepoints of patient treatment, 
to support informed decision-making, possibly improving 
quality of life outcomes. This could potentially lead to a 
generalized tool for survival prediction in glioblastoma.
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Materials and Methods

Data

This multi-center, retrospective study was conducted in 
accordance with the Declaration of Helsinki. The study 
protocol was approved by the Medical Ethics Review 
Committee of VU University Medical Center (IRB00002991, 
2014.336). Written informed consent was obtained from pa-
tients as required for each participating hospital.

We identified 1615 patients of at least 18 years old with 
a newly diagnosed glioblastoma at first-time surgery 
(tumor resection or biopsy) between January 2012 and 
December 2018, with the majority of patients stemming 
from a previous study, and including patients treated in 
the years of 2012 and 201315 originating from 12 different 
sites in Europe and the US. The patient selection process 
was based on the availability of a pre-operative MRI (for 
all patients) and a post-operative MRI (for tumor resection 
patients) acquired within 72 hours after surgery. Clinical 
variables were recorded, and pre-treatment structural MR 
scans were acquired for all study participants. For those 
undergoing surgical tumor resection, post-operative struc-
tural MR scans acquired within 72 hours after surgery were 
additionally included. This time window aligns with the 
National Comprehensive Cancer Network (NCCN) recom-
mendations, to distinguish between enhancing residual 
tumor and enhancement caused by post-surgical changes. 
Overall, imaging data were acquired using MR scanners 
from various manufacturers, including Philips, Siemens, 
GE, and Toshiba and with various field strengths, including 
1T, 1.5T, and 3T. Although scan protocols were standardized 
within each center, such variations may introduce differ-
ences in image quality and contrast characteristics, thereby 
reflecting a real-world clinical setting, and enhancing the 
generalizability of potential findings to routine practice. 
Survival outcomes were measured from surgical interven-
tion (tumor resection or biopsy) to death or last follow-up. 
The acquisition protocols for all participating centers have 
been previously described in detail.15

Study-specific exclusion criteria focused on the fea-
sibility of volumetric tumor measurements in the pre-
intervention and post-operative scans, where we deployed 
two segmentation networks. The pre-intervention segmen-
tation network24 requires the availability of at least the 
post-contrast T1-weighted (T1ce) scan, whereas the post-
operative segmentation network requires the concurrent 
availability of both the pre-contrast T1-weighted (T1w) and 
T1ce scans.25 We excluded from any subsequent analyses 
all patients for whom the pre-intervention T1ce scan was 
missing, and all tumor resection patients who had any of 
the required post-operative scans missing. Totally, this ex-
clusion process resulted in the removal of n = 297 patients, 
resulting in a final cohort of N = 1318 patients for analysis.

Clinical Variables

Recorded clinical variables of study participants included 
the patient’s sex, age, and KPS score at disease presenta-
tion and post-intervention, the intervention type (surgery 

or biopsy), and whether patients were treated with chemo-
therapy and/or radiotherapy. Almost all clinical variables 
were categorical, except for patient age, which was treated 
as a continuous variable. KPS scores were initially re-
ported on a 10-point scale. However, a unit change in such 
scores is non-linear26 and does not have the same effect on 
describing the patient status. As in previous studies,27 we 
aggregated the KPS scores on a 3-point scale. KPS scores 
were stratified into three groups: less than 50, between 50 
and 70, and more than 70. The remaining categorical vari-
ables were considered binary.

Not all variables had been recorded for all patients, due 
to several reasons such as differences in the imaging and 
clinical variables acquisition process in different centers. 
To compensate for missing observations, we performed 
feature imputation. Patient age was missing for just 5 pa-
tients (0.4% of the dataset) and followed a non-normal 
distribution, therefore, we applied median value imputa-
tion. For missing categorical variables, we deployed in-
dependent Random Forest classifiers—using three-class 
models for KPS scores, and binary models for the re-
maining categorical variables—fitted on each case on the 
subset of patients for whom all variables were recorded.

Volumetric Tumor Measurements

The final predictive models for survival were em-
ployed in a fully-automated fashion to reduce the time 
required to annotate tumor segmentation masks and 
eliminate rater variability. A recent study has also 
demonstrated that there is no statistically significant 
difference between using manual or automatic tumor 
volumetric measurements on glioblastoma survival re-
gression.27 Therefore, we employed two independent 
nnU-Net-based28 segmentation networks, segmenting 
the pre-intervention and post-operative tumor.

The pre-operative automated segmentation network24 
was trained with a sparsified learning approach,29 offering 
flexibility under missing sequences. Up to four sequences 
can be used: the T1ce, T1w, T2-weighted (T2w), and 
T2-Fluid-Attenuated-Inversion-Recovery (FLAIR). However, 
for pre-operative scans, the only inclusion criterion was 
the availability of the T1ce scan. Segmentation masks are 
provided for three classes: enhancing tumor, necrotic 
core, and peritumoral non-enhancing tissue. For optimal 
enhancing residual tumor segmentation performance, the 
post-operative segmentation network25 requires the avail-
ability of both the T1ce and T1w scans.

Similar pre-processing protocols were applied for input 
images of both networks. Pre-operatively, N4 bias field 
correction was followed by registration to the SRI atlas,30 
using the T1ce scan as reference, and skull-stripping was 
applied using the HD-BET method.31 Lastly, Z-score nor-
malization was applied based on voxel values within the 
brain mask. Post-operatively, the same steps were applied 
with the exception of bias field correction. Predicted seg-
mentation masks were resampled back to native space, 
where volumetric measurements took place. Volumetric 
residual tumor measurements could not be calculated 
for patients who received a biopsy, given the absence of 
post-operative MRI scans. For those patients, we reused 
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the pre-intervention tumor volume to align the data in the 
same format as tumor resection patients.

Advanced Radiological Features

Raidionics15,16 is a pre- and post-operative central nervous 
system tumor segmentation and standardized reporting 
software. In glioblastoma, Raidionics has shown robust 
performance in predicting segmentation masks,32 after-
wards used to determine features such as the expected 
extent of resection, based on glioblastoma resection prob-
ability maps,33 tumor laterality, multifocality, and location. 
Location is defined via overlap with brain regions based 
on several brain coordinates systems and parcellations, in-
cluding the MNI space,34 Yeo7 resting-state networks,35 and 
the BCB atlas,36 allowing for a detailed analysis of how the 
tumor interacts with these regions and its consequent im-
pact on brain function. While Raidionics can extract tumor 
segmentation masks and afterwards employ them for 
standardized reporting, a segmentation mask can be pro-
vided to the software beforehand, and feature computation 
is based on the submitted mask instead. In our study, we 
extracted Raidionics features using the pre-intervention 
T1ce scan in native space as reference, and the predicted 
segmentation masks of the enhancing tumor and necrotic 
tumor core, by combining these compartments to a single 
mask representing the volume of the glioblastoma tumor 
core.

Timepoints of Patient Treatment

Predictive models will be applicable at any stage of patient 
treatment, from initial diagnosis to chemoradiotherapy 
planning after surgical intervention. Moving deeper into 
this timeline, extra information becomes available with re-
gards to the recording of clinical variables and acquisition 
of MRI scans.

The following timepoints were indentified for survival 
analysis:

1.	 First visit: demographic characteristics of the patient 
(sex, age) along with the pre-treatment KPS score are 
recorded.

2.	 Board meeting: a multidisciplinary board discusses the 
status of the patient, using pre-intervention MRI scans.

3.	 Surgical planning: a decision is made on the type of in-
tervention: resection or biopsy.

4.	 Surgical outcome: for patients undergoing tumor resec-
tion, a post-operative MRI scan for patients is acquired. 
Post-intervention KPS score is recorded for all patients.

5.	 Chemoradiotherapy planning: a decision is made on 
whether patients will be treated with adjuvant therapies 
(chemotherapy and/or radiotherapy).

Three sets of inputs were used at all timepoints:

1.	 Clinical variables.
2.	 Volumetric measurements of the pre- and post-

intervention tumor.
3.	 Advanced radiological features computed by Raidionics.

We considered an incremental use of inputs. Clinical vari-
ables were used as a base model. When using volumetric 
measurements, we assumed the availability of clinical vari-
ables too. When using Raidionics features, both clinical 
variables and volumetric measurements were assumed 
available. Clinical variables of “First visit” and “Board 
meeting” overlap, as no new information of patients’ char-
acteristics becomes available when moving between them. 
What changes is the availability of pre-intervention MR im-
aging, which allows to compute corresponding tumor vol-
umes and Raidionics features.

Survival Regression Models

We used the following survival regression methods:

1.	 Cox Proportional Hazards (CoxPH).
2.	 Random Survival Forests (RSFs).
3.	 Deep Survival network (DeepSurv).

The CoxPH model is a semi-parametric model widely used 
in survival analysis.37 It models a hazard function h that 
assumes the effect of each covariate in the model’s input 
vector over time is constant. RSFs38 is a non-parametric, 
non-linear model, serving as an extension of Random 
Forests, where an ensemble of “survival trees” is created 
using bootstrap and splitting criteria adapted for survival 
data. Survival probabilities are aggregated from all trees 
to estimate overall survival. DeepSurv39 is a deep-learning-
based extension of CoxPH.

By design, all three selected methods inherently handle 
censored data. CoxPH uses a partial-likelihood function 
during optimization to order the recorded survival of par-
ticipants, and account for censorship by including sam-
ples up to the timeline they were studied for, to generate 
a risk function over time. RSFs incorporate censored data 
by creating individual survival trees that include them up 
to censorship time, while excluding them by survival trees 
that examine later dates. By modifying the CoxPH partial-
likelihood function, DeepSurv allows it to be incorporated 
in the optimization process of a multi-layer perceptron.

Figure 1 shows an overview of our survival regression 
pipelines.

Statistical Analysis

We employed two commonly used evaluation metrics 
in survival regression: the concordance index (C-index) 
and Brier Score over time. The C-index is a ranking-based 
metric, where assigned risk scores of patients are compared 
together, whereas the Brier Score at a given timepoint 
t measures the distance between the predicted survival 
probability and true survival of a patient. Brier Scores can 
be aggregated across the whole timeframe of the study, re-
ported as the Integrated Brier Score (IBS). To evaluate the 
prognostic value of clinical variables, volumetric meas-
urements, and radiological features, we conducted Cox 
multivariable regression analysis (calculating hazard ratios 
and respective P-values) using the lifelines package, and 
implemented all survival regression models using the 



N
eu

ro-O
n

colog
y 

A
d

van
ces

5Ferles et al.: Estimating overall survival of glioblastoma patients

PySurvival package, both using Python 3.7. We also com-
pared the differences in patient characteristics between the 
tumor resection and biopsy groups using Mann–Whitney 
U tests. Finally, we conducted Wilcoxon signed rank tests 
to examine whether there was a significant difference in 

predictive performance when using different sets of input 
features (for instance, when using advanced radiological 
features compared to using clinical variables and volu-
metric tumor measurements), irrespective of the chosen 
method or timepoint, across all repeats of cross-validation. 
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Figure 1.  Survival regression pipeline overview. Part A: Pre-processing steps (green box) entail i) the selection of clinical variables depending 
on the timepoint under examination (left), ii) the automatic measurement of the pre and post-treatment tumor volumes with nnU-Nets (right), and 
iii) calculation of the Raidionics features on the pre-treatment scan using the predicted segmentation mask as reference followed by feature 
reduction based on expert criteria. Part B: We identify distinct yet incremental timepoints (purple box) of the patient treatment pipeline i.e. any 
information considered available at timepoint #1 is also considered available at timepoints #2-#5 etc. At each timepoint we apply three sets of 
inputs: a base model input including clinical variables only, a + volumetric measurements model input that incorporates the automatic 
measurements on top of the clinical variables, and a + radiological features model input that combines the clinical variables and volumetric 
measurements with the subset of selected Raidionics features, Part C: Three survival regression model (cyan box) are applied in a 5-fold cross-
validation scheme to estimate the prognosis of patients with glioblastoma: The semi-parametric Cox proportional hazards model (CoxPH), the 
Random Survival Forests model (RSF), and the Deep Survival network (DeepSurv). Under these three model definitions, we display in respect 
the independent hazards of clinical variables, survival tree instance, and optimal network configuration decided via hyperparameter grid search 
for the Chemoradiotherapy Planning timepoint. Part D: Survival prognosis (orange box) on new unseen patients. We use the overall predicted 
survival curve of hold-out patients accumulated across all five folds which can be also seen in higher resolution in Figure 3, compared with the 
Kaplan-Meier estimate of the true survival for the same patients.
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Table 1.  Recorded clinical variables, and calculated measurements of study participants.

Category Variables Training/validation
set (n = 1318)

# Missing 
observa-
tions
n (%)

Age (years), median (IQR) 63.7 (55-70) 5 (0.4%)

Sex 3 (0.2%)

 � Female n (%) 522 (39.6%)

 � Male n (%) 793 (60.2%)

KPS pre-op 366 (27.8%)

 � >= 80 n (%) 624 (47.3%)

 � >=50, < 80 n (%) 316 (24%)

 < 50 n (%) 12 (0.9%)

Intervention 0 (0%)

 � Resection n (%) 1053 (79.9%)

 � Biopsy n (%) 265 (20.1%)

KPS post-op 162 (12.3%)

 � >= 80 n (%) 684 (51.9%)

 � >=50, < 80 n (%) 407 (30.9%)

 < 50 n (%) 65 (4.9%)

Post-op chemotherapy 61 (4.6%)

 � Yes n (%) 697 (52.9%)

 � No n (%) 560 (42.5%)

Post-op radiotherapy 82 (6.2%)

 � Yes n (%) 906 (68.7%)

 � No n (%) 330 (25.1%)

Pre-op peritumoral non-enhancing
tissue volume (mL), median (IQR)

97.03 (51.88-146.83) 0 (0%)

Pre-op necrotic core volume (mL),
median (IQR)

8.58 (2.52-20.73) 0 (0%)

Pre-op enhancing tumor volume (mL), median (IQR) 19.77 (10.21-33.04) 0 (0%)

Post-op enhancing residual volume (mL), median (IQR) 2.15 (0.41-8.81) 265 (20.1%)

Multifocality 0 (0%)

 � Yes n (%) 239 (18.13%)

 � No n (%) 1079 (81.87%)

Midline crossing 0 (0%)

 � Yes n (%) 359 (27.24%)

 � No n (%) 959 (72.76%)

Laterality Index mean ± SD 31.99 ± 34.04 0 (0%)

Temporal lobe overlap (%) mean ± SD 32.08 ± 35.78 0 (0%)

Frontal lobe overlap (%) mean ± SD 18.31 ± 27.22 0 (0%)

Parietal lobe overlap (%) mean ± SD 2.89 ± 10.55 0 (0%)

Occipital lobe overlap (%) mean ± SD 5.11 ± 8.79 0 (0%)

Deep gray matter overlap (%) mean ± SD 6.58 ± 12.96 0 (0%)

Cortico-spinal tract overlap (%)
mean ± SD

49.88 ± 21.41 0 (0%)

Yeo7 atlas overlap (%) mean ± SD 49.21 ± 39.53 0 (0%)

Survival days, median (IQR) 365 (171-650) 188 (14.3%)

Censorship 0 (0%)

 � Yes n (%) 1130 (85.7%)

 � No n (%) 188 (14.3%)

Abbreviations: KPS, Karnofsky Performance Status; SD, Standard Deviation; IQR, Interquartile Range.
The positive sex class is assigned to female patients. The positive class for intervention type is assigned to tumor resection.
Laterality Index may range from -1 to 1.
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Predictive performance was compared both in terms of 
C-index and IBS(R1.10). We conducted extra Wilcoxon 
signed rank tests to examine whether there was a signifi-
cant difference between the use of different models, irre-
spective of timepoint and input features, comparing CoxPH 
with RSF, CoxPH with DeepSurv, and CoxPH with DeepSurv, 
in terms of C-index performance. A significance level of 5% 
was used to assess statistical significance. More details on 
evaluation metrics and software implementation are pro-
vided in the Supplementary Material.

Advanced Radiological Features Dimensionality 
Reduction

In initial experiments, we observed that while using the 
raw set of the Raidionics features with CoxPH and RSFs, 
it was difficult to deliver performance comparable to the 
performance of sparser models (in terms of C-index or 
IBS) using only clinical variables and volumetric meas-
urements. The same observation was made for DeepSurv. 
Theoretically, since DeepSurv is based on a multi-layer 
perceptron, hidden layers of appropriate size should model 
relationships between the raw input variables effectively, 
delivering a better estimate of patient survival. Performing 
a comprehensive hyperparameter tuning on the number of 
hidden layers and number of units per layer did not result 
in a DeepSurv instance that could outperform its counter-
parts trained without using Raidionics.

We thus considered dimensionality reduction of the input 
space, exploring Independent and Principal Component 
Analysis, and the “Maximum Relevance Minimum 
Redundancy” method. Lastly, we also asked for expert 
opinion in proposing features relevant with better or worse 
prognosis. Results showed that expert-selected features de-
livered the overall best performance in terms of C-index 
score, and thus opted for their use. Expert-selected features 
include the use of a tumor laterality index, ranging from −1 
(left laterality) to + 1 (right laterality), and two binary indices 
describing tumor multifocality and midline crossing. In pre-
intervention timepoints, the expected Resection Index in 
percentage was additionally selected, and was afterwards ex-
cluded in post-intervention timepoints, where the true meas-
urement of the residual tumor volume becomes available. 
Additionally, seven measurements of tumor overlap with 
the (1) occipital, parietal, temporal, and frontal lobes (MNI 
space), (2) deep gray matter brain regions (MNI space), (3) 
cortico-spinal tract (BCB atlas), and (4) functional areas (Yeo7 
atlas) were computed in percentage. In particular, we opted 
for the use of a single value, representing the total overlap 
of the tumor with such brain areas. To calculate overlaps, we 
aggregated the individual overlap values from Raidionics. 
For instance, for the total overlap between the tumor location 
and functional areas, we aggregated the overlap values of 
the tumor with each one of the seven resting-state networks 
defined by the Yeo7 atlas. Detailed statistics of these features 
can be found in Table 1 under ‘Advanced radiological features.

Training Specifications for the Survival 
Regression Models

Given the absence of external datasets, we employed a re-
peated, stratified five-fold cross-validation, performed 5 
times. Our stratification target was two-fold: for each train/test 
split, we ensured balanced ratios of censored/uncensored 

patients, and short-, mid-, and long-term survival patients.40 
Patients with survival up to 10 months were considered short-
term survival patients, whereas patients who survived more 
than 15 months were considered long-term survival patients. 
Mid-term survival referred to patients with recorded survival 
between 10 and 15 months. While we focused on survival re-
gression rather than classification, we used these categories 
in our stratification to maintain a distributed range of survival 
periods across the training data. Five train/test pairs were cre-
ated per repeat, to simulate real-word data distributions.

For each experiment (unique combination of timepoint, 
inputs, and survival regression model), models were 
trained independently with each of the three input con-
figurations, and afterwards assessed primarily by C-index 
performance in their respective testing data. Model in-
stances yielding highest mean C-index performance are 
reported, afterwards assessed by IBS score performance in 
addition (Supplementary Tables 8 and 9).

Results

Patient Characteristics

Following application of the inclusion criteria, 1318 (81.3% 
of the original population) patients were selected for this 
study, out of whom 188 patients (14.3%) were censored. 
Median age of participants was 63.7 years (IQR 55–70) with 
median survival of 365 days (IQR 171–650). Median size of 
the pre-treatment tumor core (enhancing tumor and ne-
crotic core) was 30.76 ml (IQR 14.88–54.17), whereas for 
patients receiving surgery the median enhancing residual 
tumor size was 2.15 ml (IQR 0.41–8.81). A subset of 603 pa-
tients were treated (45.8%) with both chemotherapy and 
radiotherapy. A total of 906 patients (68.7%) were treated 
with radiotherapy, with radiotherapy status missing for 
61 (4.6%) patients of the dataset. A total of 697 patients 
(52.9%) were treated with chemotherapy, with chemo-
therapy status missing for 82 (6.2%) patients of the dataset. 
An additional sensitivity analysis (details given in the 
Supplementary Material) excluding one of the participating 
centers reporting a small percentage of patients receiving 
standard care showed the same performance trends as the 
ones reported for the original study. Detailed patient char-
acteristics are presented in Table 1.

Tumor resection was performed on 1053 (79.9%) pa-
tients, whereas 265 (20.1%) patients received a biopsy. 
Patients in the resection group were younger than biopsy 
patients, with a median age of 63 compared to 66 years 
(IQR 54–69 vs. 57–73, P < .05). The resection group also had 
higher median pre-intervention tumor core volumes (32.68 
mL vs. 24.74 mL, IQR 15.5–57.58 vs. 11.75–39.26, P < .05), 
and a significantly better survival prognosis, with a median 
survival of 411 days (IQR 228–657) compared to 158 days 
(IQR 66–284) for patients who received a biopsy (P < .05).

Prognostic Value of Individual Variables

We computed the hazard ratios HR of input variables sep-
arately at each timepoint, as the relative importance of 
variables may change over time, when more information 
becomes available.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
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Regarding clinical variables at “First Visit,” older patient 
age at disease presentation was associated with shorter 
patient survival (HR = 1.03, 95% CI [1.02, 1.03], P < .005). 
Conversely, higher KPS scores (HR = 0.7, 95% CI [0.62, 0.79], 
P < .005) and female sex (HR = 0.85, 95% CI [0.75, 0.95], 
P < .01) were associated with longer survival prognosis. 
After pre-intervention volumetric tumor measurements 
were added at “Board Meeting,” larger enhancing tumor 
volume (HR = 1.01, 95% CI [1.01, 1.02], P < .005) was asso-
ciated with shorter survival, whereas larger necrotic core 
volume (HR =0.99, 95% CI [0.99, 1.00], P < .005) was asso-
ciated with longer survival. Clinical variables retained the 
above-mentioned association, albeit with lower prognostic 
value, and additionally decreased statistical significance 
for patient sex. In “Surgical Planning,” the type of inter-
vention yielded the strongest prognostic value compared 
among all variables (HR = 0.36, 95% CI [0.31, 0.42], P < 
.005), demonstrating better prognosis for tumor resection 
patients. The remaining variables displayed lower prog-
nostic values, while some displayed high P-values. This 
trend was subsequently observed across all timepoints. 
Post-intervention, larger enhancing residual volume (HR 
= 1.02, 95% CI [1.02, 1.03], P < .005) was associated with 
shorter survival, whereas higher post-treatment KPS score 
(HR = 0.78, 95% CI [0.67, 0.91], P < .005) was associated with 
longer survival. Lastly, at “Chemoradiotherapy Planning,” 
undergoing chemotherapy (HR = 0.78, 95% CI [0.67, 0.91], 
P < .005), and radiotherapy (HR = 0.67, 95% CI [0.58, 0.77], 
P < .005) treatment were both associated with longer 
survival.

We examined hazard ratios of advanced radiological 
features when initially computed at the “Board Meeting” 
timepoint. Bigger overlap of the brain tumor with the func-
tional networks defined by Yeo (HR = 0.99, 95% CI [0.99 
0.99], P < .005) was associated with longer patient sur-
vival, whereas bigger overlap with the deep gray matter 
(HR = 1.02, 95% CI [1.00 1.04], P = .01) was associated with 
shorter patient survival and multifocal tumors were asso-
ciated with shorter survival (HR = 1.49, 95% CI [1.27 1.75], 
P < .005). While for overlap-based variables such as the 
“Yeo7 atlas overlap” the changes in HR values may appear 
modest at first. Since overlap is treated as a continuous 
variable; such HR values reflect the effect per one-unit 
increase in overlap. Scaled to a larger change in overlap 
such as 10%, the corresponding HR values for the “Yeo7 
atlas overlap” and “Deep gray matter overlap” become 
0.99¹⁰ ≈ 0.904 and 1.02¹⁰ ≈ 1.22, indicating a 9.6% reduction 
and a 22% increase in hazard, respectively. Lastly, of the re-
maining features, a few displayed HR values equal to 1.00, 
whereas the Laterality and Resection indexes showed wide 
confidence intervals and high p-values, indicating non-
statistically significant contribution. Supplementary Tables 
2 to 7 provide detailed CoxPH model results for the prog-
nostic value of all variables over timepoints.

Survival Regression Model Performance

Average C-index performance across all 36 experiments, 
repeated 5 times is summarized in Figure 2. DeepSurv 
outperformed both CoxPH (P < .005) and RSFs (P < .005) 
across all experiments, indicating that models more 

capable of capturing non-linear interactions between 
variables of the input space, can deliver better predictive 
performance. However, this difference was higher at the 
earliest timepoint, and reduced at following timepoints. 
Given that the set of radiological features was the same, 
the significance of the clinical variables to the predic-
tion task is highlighted. Specifically, the simple addition 
of the “Intervention” variable at “Surgical Planning,” in-
creased the performance of both CoxPH and RSFs by 
more than 3%, reducing the performance gap between 
these models and DeepSurv. Post-intervention, adding 
the enhancing residual tumor measurement, and, later on, 
chemoradiotherapy status further added predictive power 
in the survival regression models.

In addition, we examined whether there was statistically 
significant difference in C-index performance, between 
using the Raidionics features on top of clinical variables 
and volumetric tumor measurements. We collected re-
sults across all repeats of cross-validation, timepoint, and 
model selection, generating 300 unique values in total 
for C-index and IBS for each input selection of Clinical 
variables, + Volumetric measurements, and + Advanced 
radiological features. We then performed Wilcoxon 
signed rank tests, comparing C-index and IBS results be-
tween Clinical variables and + Volumetric measurements, 
Clinical variables and + Advanced radiological features, 
and between + Volumetric measurements and + Advanced 
radiological features. The results of all rank tests showed 
statistically significant improvement when using volu-
metric measurements in addition to clinical variables 
(P < .005 for both C-index and IBS comparison), when 
using Raidionics features and volumetric measurements 
in addition to clinical variables (P < .005 for both C-index 
and IBS comparison), and when using Raidionics features 
in addition to volumetric measurements and clinical vari-
ables (P < .005 for both C-index and IBS comparison).

Quality of Predicted Survival Probability 
Functions

Figure 3 presents three panels describing the quality of 
the predicted survival probability functions generated 
from five independent DeepSurv networks trained during 
“Chemoradiotherapy Planning,” using advanced radio-
logical features. The mean survival probability with a 95% 
confidence interval of the predictions across the five test 
datasets is displayed, along with a comparison between 
predicted probabilities and the Kaplan–Meier estimate 
of the true survival probability function in the top row. 
Bottom panel displays the Brier Score over Time of the pre-
dictions aggregated on the five test folds, with each point 
representing the mean Brier Score at that time unit across 
each fold. By survival probability definition, predicted and 
ground-truth probabilities are equal to 1 on day 0, which 
is the beginning of the study. As time progresses, survival 
probabilities begin to diverge, leading to non-zero Brier 
Scores that capture the model’s prediction error over time. 
The narrow width of the confidence intervals indicates low 
uncertainty/high confidence of model predictions. This un-
certainty increases slightly midway through the study, 
which can be clearly observed for the same timeframe in 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
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Brier scores, where the distance between the predicted and 
true survival probability functions peaked slightly above 
0.2(20%). This timeframe encompasses the majority of our 
participants, whereas in later days Brier scores decrease, 
indicating better survival prognosis for remaining patients. 
Overall, IBS performance (7.63%) indicates good predictive 
power of the DeepSurv networks. The overlap between the 
estimate of the true survival probability and the predicted 
survival probability functions shows that the models cap-
tured the general survival trends of the dataset well, further 
backing this observation. Examples of predicted survival 
probability functions for individual participants of the study 
can be seen in Figure 4, for “Board Meeting” and all inputs; 
one patient per survival category is included.

Discussion

The present study examined predictors of the overall sur-
vival of patients diagnosed with glioblastoma, using a 
combination of clinical variables and measurements of 
tumor volume and location in the brain at various patient 
treatment timepoints. A multi-center dataset was utilized, 
along with three commonly employed survival regression 
methods, and expert opinion was employed to propose a 
set of tumor location-based features, possibly associated 
with better or worse prognosis. This information was used 

in addition to the clinical variables and tumor size, where 
the additional prognostic value of these features was 
investigated.

The main findings of our study show that Raidionics fea-
tures enhance the performance of predictive models, irre-
spective of the chosen method. Experiments incorporating 
advanced radiological features in model inputs consist-
ently yielded the best performance at all timepoints. This 
effect was stronger at earlier stages of patient treatment, 
where three clinical variables with high prognostic value, 
that is, the intervention type, and post-operative chemo-
therapy and radiotherapy status, were unavailable. This 
suggests that clinical variables are extremely relevant to 
patient overall survival with glioblastoma, accounting for 
approximately 93% to 97% of the best predictive perfor-
mance across timepoints, which is further backed by com-
puted hazard ratios from multivariable Cox regression 
analysis. Thus, the sole use of clinical variables can prog-
nosticate patient survival reasonably well in the absence of 
imaging-related information. However, adding tumor size 
and location leads to more accurate estimates of overall 
survival rates. Results also suggest that proper feature 
selection is more important than model selection, consid-
ering that models trained with expert-selected features 
yielded better prognostic performance than those trained 
with the raw Raidionics features.

Expanding on the findings of the Cox multivariable 
analysis, most computed values for the hazard ratios of 
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Figure 2.  C-index performance for all experiments. Each row represents a unique timepoint, starting from’Board Meeting’ at the top row which 
occurs earlier in a patient’s treatment timeline and moving further in time till the last timepoint, i.e.’Chemoradiotherapy Planning’ at the bottom. 
At each timepoint, three barplots of distinct colors are presented per survival regression model: Clinical variables (magenta), + Volumetric meas-
urements (purple), and + Radiological features (orange). From left to right, we display the performance of the CoxPH, RSF, and DeepSurv models. 
Exact performance with two-digit precision, is displayed at the top of each bar.
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variables and features across timepoints, align well with 
expectations. Our results confirm previous findings that 
larger pre-intervention9 and post-intervention41 tumor vol-
umes, multifocal tumors,4 older patient age,3 and higher 
tumor overlap with functionally relevant brain areas like 
the frontal lobe42 and deep gray matter43 are linked with 
shorter survival. Conversely, our results demonstrate 
that higher KPS scores (before4 and after44 intervention) 
and aggressive treatments (tumor resection6 and/or che-
motherapy,6 and/or radiotherapy45) are associated with 
longer survival. However, two computed values stand out 
as they show counter-intuitive association with longer sur-
vival: larger size of the pre-intervention tumor necrotic 

core (despite the established link between higher ne-
crosis to tumor volume ratio and worse prognosis11,46) 
and higher overlap with functional areas of the brain as 
defined by the total overlap with Yeo’s resting-state net-
works. For the latter, brain tumors affecting these areas 
can potentially lead to earlier diagnosis due to patients 
seeking medical attention sooner, given earlier expres-
sion of symptoms. Additionally, treatment of tumors with 
higher overlaps with such areas might be more aggressive 
compared to the rest. We investigated this further by as-
sociating such higher overlap with smaller residual vol-
umes and more patients being treated with chemotherapy 
and radiotherapy (additional details are provided in the 
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patient treatment on each individual test fold.
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Supplementary Material). Regarding the link between 
better prognosis and larger pre-intervention necrotic core 
volume, we investigated whether the latter was inversely 
proportional to either pre-intervention enhancing tumor 
size and/or enhancing residual tumor size, which was not 

the case. We then proceeded with subset analysis and 
introducing interaction terms in the Cox multivariable 
analysis, yet the outcome did not explain this association 
either. Therefore, this remains an area for future explora-
tion and research.

Predicted survival curves for short-, mid-, and long-term survival test survival test cases
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Figure 4.  Prognosis of survival curves for patients recorded with short-term (top row), mid-term (middle row), and long-term (bottom row) sur-
vival. At each row, from left to right we display a 2D axial slice of the pre-intervention T1ce scan and the same slice with the predicted segmen-
tation mask overlayed (red: peritumoral non-enhancing tissue, blue: enhancing tumor, and green: necrotic tumor core). At the right-most place 
of each row, we depict the predicted survival curves from all DeepSurv models trained on the ’Board Meeting’ timepoint using different sets of 
input features (magenta: Clinical Variables, purple: + Volumetric measurements, and orange: + Advanced radiological features). Short-term 
survival: 63-year-old male biopsy patient with a frontal lobe tumor (72.62% overlap) and a pre-intervention KPS score of 60, pre-intervention 
enhancing tumor volume of 64.39 ml, and a survival time of 158 days. Mid-term survival: 69-year old male with a temporal lobe tumor, a pre-
intervention KPS score of 90, pre-operative enhancing tumor volume of 24.86 ml, an enhancing residual tumor volume of 7.8 ml, and a survival time 
of 420 days. The patient was treated with both chemotherapy and radiotherapy after tumor resection Long-term survival: 65 year-old male 
patient with a pre-treatment KPS score of 100, pre-operative enhancing tumor volume of 10.53 ml, an enhancing residual tumor volume of 0.032 ml, 
and a survival time of 1008 days. The patient was treated with both chemotherapy and radiotherapy after tumor resection, while the pre-operative 
tumor had a 76.87% overlap with brain functional areas.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaf154#supplementary-data
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Survival studies on patients diagnosed with diffuse 
gliomas have mostly focused on the integration of clinical 
variables and radiomics features in the same predictive 
model. Similar to ours, a few studies have tried to associate 
tumor location with patient survival, either by fitting tradi-
tional survival regression and deep-learning-based models 
to the survival regression task,47 or by associating specific 
atlas-based areas with short-, mid-, and long-term sur-
vival.48 While results are not directly comparable due to the 
use of different datasets, which also vary in their handling 
of censored patients, most studies report C-indices in the 
vicinity between 60% and 70%20 for glioblastoma datasets. 
With the additional inclusion of low-grade gliomas47 and 
by predicting the survival probability in months,49 reported 
C-indices might exceed 70%. Such modifications simplify the 
task of overall survival regression, as low-grade gliomas are 
associated with longer survival, whereas predicting survival 
in months allows for higher precision in predictions. Notably, 
the reported C-index should not be confused with the com-
parison between the predicted survival curve and the true 
survival curve. The C-index is a ranking-based metric that 
demonstrates how well we can order patient risk scores cor-
rectly, whereas the predicted survival curve demonstrates 
whether a model captures the survival trends correctly.

Our study also comes with certain limitations. One limi-
tation was that for various reasons, including but not lim-
ited to different protocols in recording of clinical variables, 
individual observations were missing for subsets of study 
participants. Since we assumed full availability of clinical 
variables in our model design, we applied feature imputa-
tion to mitigate this situation, using independent models 
trained and validated on subsets without missing observa-
tions. While imputation can introduce potential biases and 
distortions (eg, loss of variability, overfitting), the survival 
regression models captured survival trends effectively on 
their respective, unseen test data. Furthermore, certain 
prognostic factors known to impact survival outcomes 
(MGMT status, IDH mutation, or detailed information on 
chemoradiotherapy regimens) were missing for the vast 
majority of study participants. In such cases, feature impu-
tation from a few known observations to many unknown 
ones would entail the risk of imputing mostly incorrect 
values, severely affecting predictive performance. Notably, 
the predictive performance of our models increased in 
post-operative timepoints, suggesting that our choice of 
survival regression model training was effective, even in 
the absence of this information. Our methodological de-
sign allows for the incorporation of additional variables in 
the input space, thereby enabling future studies to examine 
them and potentially predict clinical outcomes with greater 
accuracy (R1.3). Another limitation was the absence of an 
external survival dataset. Prior to carrying out experiments, 
we did consider the exclusion of a single center from model 
training and its use as an internal test dataset. However, 
there was no clear candidate among the participating cen-
ters, since we could not guarantee that results would be 
unaffected by non-recorded clinical variables. The distri-
bution of patients across centers was also non-uniform, 
which could potentially introduce bias when computing av-
erage survival regression metrics. Alternatively, selecting a 
random subset of patients to leave out as an independent 
validation cohort could introduce potential biases in 

our analysis. Consequently, a repeated five-fold cross-
validation scheme was chosen to minimize the impact of 
any specific selection of data. Given the magnitude of the 
dataset, we regard it as representative of a real world set-
ting, and deem our trained models generalizable to the task.

Apropos of future considerations, while for patients 
who underwent tumor resection the T1ce scans were at 
our disposal and we did extract the corresponding re-
sidual tumor masks, we did not consider the use of post-
operative Raidionics features for our analysis, to avoid the 
convolution of the input space with repeated values for bi-
opsy patients. Post-operative tumor location and overlap 
with brain areas have been discussed with relation to pa-
tient survival,50 demonstrating promising results. Thus, by 
solely focusing on tumor resection patients, future studies 
can explore this information. Moreover, we did not inves-
tigate the direct use of MRI scans on the input space, while 
through the use of deep convolutional neural networks 
(CNNs) as feature extractors, raw MRI-based features 
could potentially carry prognostic value for the survival 
prediction task. In BraTS survival challenges,40 MRI scans 
have been often used for survival category classification, 
but rarely for predicting survival probability functions. 
Even in such studies, they either focused on generating 
new predictors for survival49 or used CNNs for extra pre-
processing and feature extraction prior to employing RSFs. 
Thus, directly training CNN models in overall survival re-
gression remains an open area for exploration.

In conclusion, our retrospective study harnessed clinical 
and imaging data, collected from multiple centers in Europe 
and the US, and demonstrated the value of incorporating 
advanced radiological features in overall survival prognosis 
for patients diagnosed with glioblastoma at various stages 
of treatment. Despite certain limitations, our results show 
that model predictions improve when imaging information 
from MRI scans is added, particularly at earlier stages of pa-
tient monitoring. DeepSurv was found to be the most accu-
rate method across timepoints, yielding higher predictive 
performance and better capturing survival trends.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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