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Abstract

Transcriptomics and proteomics are high-throughput methods that assay gene expression 
and protein abundance in a biological sample at a given point in time. These datasets 
feature high dimensionality and technical noise which are routinely addressed using 
various computational methods. In particular, gene set enrichment is commonly used for 
measuring how enriched expression is for functionally defined subsets of the gene/protein 
profile, whereas imputation handles the replacement of missing data with predicted values.

In this thesis, I review the prior art of these methods and identify pitfalls that warrant 
investigation. I then introduce novel methods, GeneFunnel and ImputeFinder, with freely 
available software implementations (https://github.com/eturkes/genefunnel and 
https://github.com/eturkes/imputefinder) that attempt to address these pitfalls without 
imposing performance bottlenecks, stringent assumptions, or unintuitive reasoning. 
Although ImputeFinder did not have a comparable equivalent, GeneFunnel was 
benchmarked against leading methods in both synthetic and real-world data, showing 
superior analytic and computational performance across all metrics. An interactive web 
viewer of these benchmarks is available at https://data.duff-lab.org/app/genefunnel-
benchmarks-viewer. 

I deploy the methods in a real-world context by developing a pipeline for characterising 
neurofibrillary tangle-bearing neurons in Alzheimer’s Disease. A previously available 
dataset of human post-mortem tissue, where tangle-bearing neurons were isolated from 
non-tangle-bearing neurons and subject to transcriptomic profiling, was reanalysed 
alongside a similarly designed in-house dataset that profiled proteins. The integrated 
analysis is complemented by interactive network visualisations and a web-based viewer, 
allowing in-depth exploration of the results at https://data.duff-lab.org/app/tangle-bearing-
neurons-viewer.

The analysis focused on uncovering major drivers of biological pathways upregulated in 
tangle-bearing neurons in both the transcriptomic and proteomic datasets, identifying the 
pathway hubs NEFM, APP, SQSTM1, HSP90AA1, YWHAE, WASF1, CNTNAP1, and 
GOT2. Using informatics and literature review, I investigate the contribution of these hubs 
to distinct functional domains, laying the groundwork for a unified model of the 
pathophysiology of tangle-bearing neurons in Alzheimer’s Disease.

https://data.duff-lab.org/app/tangle-bearing-neurons-viewer
https://data.duff-lab.org/app/tangle-bearing-neurons-viewer
https://data.duff-lab.org/app/genefunnel-benchmarks-viewer
https://data.duff-lab.org/app/genefunnel-benchmarks-viewer
https://github.com/eturkes/imputefinder
https://github.com/eturkes/genefunnel
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Impact Statement

The present work evaluates existing methods in the analysis of transcriptomics and 
proteomics data, highlighting problematic areas that are widespread and offering solutions. 
I focus on gene set enrichment and imputation methods in particular. Regarding gene set 
enrichment, I examine and address six primary issues. 1) the handling of missing and 
lowly expressed features. 2) consideration of dependencies between samples, between 
features, and interactions across the two. 3) retention of statistical properties of the input 
data. 4) consideration of complexity and assumptions. 5) compatibility with downstream 
handling of data and interpretation. 6) speed and scalability. Regarding imputation, I 
examine and address two primary issues. 1) detection and handling of mixed types of 
missing values within a dataset (e.g. missing at random vs. missing not at random). 2) 
incorporation of comparison group information to retain features with missing values of 
probable biological origin. For each of these methods, I provide software solutions for the 
named issues, GeneFunnel and ImputeFinder respectively.

In addition to benchmarking performed in a controlled manner across real and synthetic 
data, I apply these methods to datasets generated to investigate the molecular changes 
that occur in the context of neurons harbouring neurofibrillary tangles, one of two hallmark 
pathological features in Alzheimer’s Disease. One dataset, generated in-house, utilises 
laser-capture microdissection (LCM) to isolate tangle-bearing neurons from non-tangle-
bearing neurons within patient donors for proteomics profiling. Another dataset, previously 
available, utilises fluorescence-activated cell sorting (FACS) to sort tangle-bearing and 
non-tangle-neurons within patient donors for single-cell transcriptomics profiling. 
Application of the aforementioned gene set enrichment and imputation methods were 
additionally supplemented with general exploratory work, bespoke network analyses, and 
web development, facilitating deeper investigation and easier exploration.

Use of the newly developed methods were effective in tackling technical issues inherent to 
datasets of these nature, and improved biological interpretation of the processed data. 
These complementary datasets, covering both genes and proteins, are a highly valuable 
resource for understanding the molecular changes that occur in the neurofibrillary tangle-
bearing neurons that define Alzheimer’s Disease. I demonstrate recapitulation of known 
and hypothesised mechanisms underlying this pathological feature and prioritise a set of 
eight hub gene/proteins that may concisely, but comprehensively, represent the major 
drivers of distinct disease processes. In order to provide longevity and accession of these 
results, a web viewer is provided that allows generation of custom figures and searching of 
statistical information.
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Aims

This project aims to fully utilise highly dimensional data in targeted experimental contexts 
to better understand molecular processes in Alzheimer’s Disease, specifically those that 
take place in neurons harbouring neurofibrillary tangles. In order to do so, research focus 
was directed towards computational methods development. In initial analyses of the 
datasets, a variety of issues were encountered that introduced obstacles in forming 
reliable conclusions. One set of issues concerned quality control, specifically the handling 
of missing values in proteomics data when using imputation. Due to the nature of 
experiments that isolate single-cells with specific pathology, a higher degree of technical 
noise was observed in comparison to conventional omics datasets, and attempts to 
address this using existing methods proved inadequate. The second set of issues relate to 
downstream analysis of the processed data when using gene set enrichment. I found that 
existing methods introduced biases and assumptions that either directed attention towards 
a narrow subset of changes while neglecting others, or produced results that were difficult 
to reason with altogether.

By creating generalised open-source software solutions in R and C++ to address these 
issues, I intend to not only advance understanding of these datasets and the Alzheimer’s 
Disease field, but increase the availability of tools in the informatics space. The design 
decisions of these software also help inform and highlight prevalent issues in data 
processing, some of which I argue to be overlooked in most analyses. I demonstrate the 
utility of these tools, both in the real-world context they were developed for, and in 
synthetic datasets covering a wide range of hypothetical scenarios. These experiments are 
supplemented with bespoke network analyses and web viewers, allowing for easy 
exploration of output through custom figure generation and data search.

Because neurofibrillary tangles arise in a cell-type specific manner, single-cell methods are 
ideal for comparing tangle-bearing from non-tangle-bearing neurons. The technical 
challenge of these particular experiments mean that the availability of high-quality 
transcriptomics and proteomics data is highly limited, and therefore I aimed to perform a 
comprehensive characterisation of this crucial but insufficiently explored comparison. An 
additional aim was to replicate and expand upon existing datasets, prompting an in-house 
laser-capture microdissection experiment where tangle-bearing and non-tangle-bearing 
neurons within patient donors were isolated for proteomics profiling.

This thesis covers the following key questions:

 Applied to the transcriptomic and proteomic datasets at hand that compare 
neurofibrillary tangle-bearing and non-tangle-bearing neurons, how effective are 
existing computational pipelines for processing the data?

 More generally, what deficiencies and unaddressed problems can be identified in 
the methods comprising these pipelines?
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 What solutions, if any, can be envisioned to address these issues and what are the 
limitations and drawbacks of such solutions?

 When using the most suitable methods available, including those novel to this work, 
what are the molecular changes taking place between tangle-bearing and non-
tangle-bearing neurons on the transcriptomic and proteomic level?

 How do these molecular changes compare with existing literature and what 
directions do they suggest for future research and validation?

Hypothesis

 Existing computational methods for transcriptomics and proteomics have 
drawbacks that make their application inadequate for the datasets of interest that 
compare neurofibrillary tangle-bearing neurons against non-tangle-bearing neurons 
in Alzheimer’s Disease post-mortem tissue.

 Tangle-bearing neurons, compared to non-tangle-bearing neurons, exhibit 
significant changes on the transcriptomic and proteomic level across a range of 
biological pathways, some of which have been described by previous literature, 
others of which are novel or relatively unexplored given the novelty of these 
datasets and the application of newly developed computational methods.
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1. Introduction

Transcriptomics and proteomics describe high-throughput methods that measure gene 
expression and protein abundance, respectively. The suffix specifies their categorisation 
under the greater umbrella of “omics” approaches, which broadly encompass any form of 
high-throughput molecular information gathered from a biological sample. For example, 
the original omics method, genomics, focuses on examination and comparison of precise 
nucleotide sequences from the DNA of samples of interest. A method like 
phosphoproteomics however, measures not protein abundance per se, but quantifies a 
reaction known as phosphorylation that takes place at various locations along a protein’s 
structure. As these examples show, omics covers a wide variety of assays, some quite 
basic to biology, others more nuanced. These assays play a crucial role in advancing our 
understanding of diseases like Alzheimer’s Disease (AD) and the development of more 
effective treatments.

While omics approaches in AD can provide detailed molecular profiles, it is important to 
consider the context. A long-standing question is whether tau tangles act as a primary 
driver of neuronal loss or arise as a downstream consequence of earlier events. Biomarker 
studies suggest that Aβ deposition, synaptic dysfunction, and other molecular changes 
often precede detectable tau aggregation. On the other hand, the existence of primary 
tauopathies, such as progressive supranuclear palsy and corticobasal degeneration, 
shows that tau aggregation alone can initiate neurodegeneration. Moreover, in Alzheimer’s 
disease, subtle changes in tau may occur before overt tangle formation, with recent 
evidence suggesting these changes taking place before amyloid deposition, raising the 
possibility that tau contributes to disease initiation as well as progression. Ultimately 
however, there is insufficient evidence to determine whether tau tangles are a cause or a 
consequence of AD. For the purposes of this thesis, tau aggregation is assumed to occur 
downstream of amyloid pathology in most cases, though is likely the more significant 
contributor to overt neurodegeneration. This is likely the more common interpretation in 
current Alzheimer’s research, although it is not universally held.

For the purposes of methods development, the analysis was carried out in AD tissue, 
which contains both 3-repeat (3R) and 4-repeat (4R) tau isoforms. Simpler tauopathies 
such as Pick’s disease (3R) or progressive supranuclear palsy (4R) are single-isoform and 
primary tauopathies, occurring in the absence of Aβ deposition and other co-pathologies. 
While these models offer greater biochemical uniformity, they do not reflect the mixed tau 
isoform composition or the multi-pathology environment of AD. The aim of this work was to 
develop and apply methods in the specific context of neurofibrillary tangle-bearing neurons 
as they occur in AD, where tau pathology coexists and interacts with other factors such as 
Aβ. Using this model ensured that the computational framework was optimised for the 
unique characteristics of Alzheimer’s pathology, which would not be captured in single-
isoform primary tauopathies.
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Understanding tau pathology in AD also requires consideration of which neuronal 
populations are most affected and why. Selective vulnerability refers to the tendency of 
specific neuronal populations to be affected earlier or more severely by pathological 
processes than others within the same brain region. This may be determined by intrinsic 
factors such as molecular properties of certain populations or their connectivity, as well as 
extrinsic influences from the surrounding environment. In the context of AD, identifying the 
molecular features associated with selective vulnerability could help clarify why certain 
neurons develop tau pathology and degenerate while others remain relatively preserved. 
However, in post-mortem studies there is a potential for survivor bias, whereby the cells 
available for analysis may represent those that have resisted pathology for longer, and 
thus may reflect resilience rather than true vulnerability. Interpreting molecular differences 
between cell populations therefore requires caution, with consideration of whether 
observed features are drivers of degeneration or markers of survival.

1.1 Transcriptomics

1.1.1Overview

Gene expression can be defined as the initiation of the sequence of steps that ultimately 
result in a functional gene product, typically, but not exclusively limited to, proteins 
(Buccitelli & Selbach, 2020). The initiating step itself is typically defined to be transcription 
which entails the production of an mRNA (messenger RNA) product that consists of a 
nucleotide sequence complementary to the DNA sequence of the gene being transcribed. 
From this mRNA, the next step, at a high-level, is called translation, where the mRNA 
sequence is translated into instructions that allow for the assembly of a corresponding 
protein product. Although a number of sometimes highly complex steps can take place 
surrounding these events, this two-step process defines what is known as the central 
dogma of molecular biology, where genetic information originates in DNA, is transcribed to 
mRNA, and is then translated into proteins. As proteins are the main functional units of the 
cells that make up an organism, measures of its abundance and the expression of genes 
that typically result in their production are among the most important functional readouts of 
a sample in molecular biology.

Figure 1.
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Figure 1: Schematic of the passage of genetic information from the genome to proteome. 
Genetic information is encoded in DNA and goes through the high-level processes of 
transcription and translation, as well as other less general processes, in the production of 
a protein, the main functional unit of a cell. The interaction of these processes across the  
genome and with external factors such as the environment is responsible for an 
organism’s phenotype or observable characteristics. Figure reproduced from (Buccitelli & 
Selbach, 2020).

1.1.2Polymerase Chain Reaction

As an omics approach, transcriptomics methods are high-throughput assays that attempt 
to quantify the abundance of mRNA “transcripts” that result from gene expression. The 
threshold for high-throughput is not clearly defined, though it is commonly agreed that 
such a method should at least aim for an unbiased readout of the genome. Quantitative 
measures of gene expression have existed since the 1990s with the development of RT-
qPCR (real-time quantitative polymerase chain reaction) and quickly became ubiquitous 
(Bustin, 2000; Heid et al., 1996). However, RT-qPCR and derivative methods rely on the 
use of florescent probes for readout, posing significant spectroscopic challenges for 
multiplexing. Therefore, a single experiment has the capacity to cover distinct genes on 
the order of dozens, a minuscule fraction of the 20,000 or so genes in the human genome, 
not counting the tens of thousands of additional gene products outside the protein-coding 
genome (Venter et al., 2001). Such methods may not qualify as an omics approach due to 
the necessity of selection of genes of interest. It should be noted however, that in recent 
years, advances in gene measurement in-situ, that is, directly taking place on a tissue of 
interest, have begun to make possible panels that now cover thousands of distinct genes, 
with the eventual goal of covering the genome with fluorescent tag approaches (Janesick 
et al., 2023; R. Ke et al., 2013). These methods operate on similar principles as RT-qPCR 
albeit are more specifically related to FISH (fluorescence in-situ hybridisation), the central 
difference being that signal is read directly from probes that remain bound to their target 
in-situ, rather than from dissociated amplification products of the original mRNA.

1.1.3Microarray Technology

In between the development gap of multiplexing RT-qPCR and FISH approaches, RNA 
microarrays emerged as a significant disruptive technology, and potentially satisfy 
conditions to be called the earliest transcriptomics method. Demonstrated in 1995 covering 
45 unique transcripts (Schena et al., 1995), by 2002 the technology had already been well 
commercialised with Affymetrix’s seminal GeneChip U133 product covering 39,000 
transcripts derived from the 2001 draft of the human genome (Constans, 2002). The years 
that followed saw an explosion in usage and development of microarrays across research, 
clinical, and commercial sectors (see Figure 2) (Lenoir & Giannella, 2006). Coupled with 
the explosion of throughput offered by microarrays, this time period also saw the 
emergence of software designed specifically for the idiosyncrasies of microarray data 
(Dudoit et al., 2003).
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Figure 2.

Figure 2: The number of published microarray articles by subject from 1998 to 2004. The 
increase in publications following the commercialisation of microarray technology 
sometime around the millennium is evident. Figure reproduced from (Lenoir & Giannella, 
2006).

Microarrays fall within the category of multiplex lab-on-chip systems, in other words, 
miniature assays capable of measuring a wide variety of biological parameters 
simultaneously (Pham, 2018). Microarrays in particular are 2D arrays usually printed on 
glass or silicone, originally for the purpose of detecting mutations in a single or multiple 
genes, but was quickly expanded to include detection of transcripts, proteins, metabolites, 
and many others. The core operating principle is hybridisation, similarly to FISH. On each 
chip are many so-called spots, up to tens of thousands by the early 2000s and in recent 
years hundreds of thousands (Wöhrle et al., 2020). Each spot contains a unique set of 
florescently-tagged probes that hybridise selectively to the target of interest. Though the 
fluorescent dyes themselves are not unique between spots, the issue of spectral overlap 
hampering multiplexing in FISH-like methods is solved due to the physical distances 
between spots, with the trade-off being loss of spatial information. It is also possible to 
incorporate multiple dyes into each spot to allow comparisons between multiple samples 
on a single chip, with two being the convention and up to four having been demonstrated 
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(Staal et al., 2005). Furthermore, in the case of detecting RNA, a reverse transcription step 
typically takes place as in PCR, where the probes are in fact primers for the amplification 
of RNA into florescently-tagged cDNA (complementary DNA). These desirable properties, 
as well as relatively low cost of usage after only a few years of development ($200 to 
$1,200 per chip commercially, and less than $150 from university core facilities 
(Rubenstein, 2002)), led to the quick dominance of microarrays as the transcriptomics 
method of the 2000s.

Figure 3.

Figure 3: Schematic overview of the use of microarray for measuring gene expression. 
Shown are the general steps for construction of microarrays, sample preparation including 
hybridisation and conversion of RNA to fluorescently-tagged cDNA, and use of a laser-
based scanner to detect fluorescence intensity in each dye to quantify differences between 
samples for each transcript included in the array. Figure reproduced from (Majtán et al., 
2004).

1.1.4Sanger Sequencing

As the new millennium neared the end of its first decade, sequencing technology, where 
DNA and RNA sequences are resolved per base pair rather than the hybridisation-based 
approach of binding of complementary sequences, began to see massive advancements 
(Shendure & Ji, 2008). The foundations of sequencing is said to have been laid as early as 
1977, with the introduction of Sanger sequencing by Frederick Sanger (Sanger et al., 
1977). Until the late 2000s, this remained the gold standard for sequencing genomes and 
was famously used to create the first draft of the complete human genome in the year 
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2000 by the Human Genome Project (International Human Genome Sequencing 
Consortium et al., 2001). While crucial to biological research, the 13 year project, costing 
$2.7 billion dollars, highlighted painful inefficiencies in the cost and throughput of Sanger 
sequencing for projects of this scale (Lewin et al., 2018).

One of the major limitations of Sanger sequencing is the fact that the process can only be 
carried out on sequences of between 600 and 1,000 base pairs in length, thus requiring 
fragmentation of the DNA of interest as the initiating step (Kircher & Kelso, 2010; 
Shendure & Ji, 2008). These fragments are then amplified in one of two ways. So-called 
“shotgun sequencing”, is useful when sequencing de novo, in other words, when 
sequencing is taking place in an organism that has never been sequenced before. It 
involves random fragmentation of the DNA followed by incorporation or cloning into the 
DNA of an actively reproducing bacterial species, typically E. coli. Another approach is to 
use PCR, where a primer flanking the target fragment combined with DNA polymerase 
allows rapid synthesis of cDNA complementary to the fragment; this requires some a priori 
knowledge of the target in order to design the primer.

Once the random fragments are amplified, a reaction takes place that labels the last 
nucleotide on the 3’ end with one of four fluorophores, indicating whether the nucleotide is 
the chemical base adenine, cytosine, guanine, or thymine (A, C, G, or T). Finally, the 
fragments are sorted by molecular weight, a proxy for length, contemporarily using 
capillary electrophoresis. By scanning fluorophores of the sorted fragments, and repeating 
this process many times, it is then possible to sequence a genome. Essential to scaling 
Sanger sequencing, capillary electrophoresis remains a significant bottleneck. Though 
there exist systems for the processing of up to 384 sequences in parallel, such systems 
are rare (Kircher & Kelso, 2010). The more conventional 96-capillary systems are capable 
of sequencing about 6 million base pairs of DNA per day; at this rate the 3 billion base 
pairs of the human genome would take around 500 days.

Figure 4.
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Figure 4: Schematic overview of Sanger sequencing. DNA is first randomly fragmented 
and amplified (shown is the shotgun sequencing approach using cloning for de novo 
sequences). A unique fluorophore is appended to the fragments for each possible 
nucleotide. Finally the fragments are sorted by weight and the sequence is assembled by 
reading out the fluorophores. Figure reproduced from (Kircher & Kelso, 2010).

1.1.5Next-generation Sequencing

By the end of the 2000s, an improvement to the Sanger method called pyrosequencing 
saw commercialism by several large companies such as Illumina, dawning the era known 
as next-generation sequencing (NGS) or massively-parallel sequencing (MPS) that would 
underlie the most popular methods used today (Heather & Chain, 2016). Both Sanger and 
pyrosequencing share in common the sequence-by-synthesis (SBS) principle, that is the 
synthesis of cDNA and reading of the sequence in a base-wise manner (Uhlen & Quake, 
2023). Rather than using fluorophores and electrophoresis, pyrosequencing works through 
the real-time conversion of pyrophosphate into ATP. As cDNA is synthesized, each of the 
four possible nucleotides are added one base at a time, extending the strand. The match 
of a nucleotide complementary to the target produces a base pair, releasing 
pyrophosphate which is then converted to ATP using ATP sulfurylase in the reaction 
mixture. Finally, ATP is used as a substrate for luciferase, a luminescent reaction that 
occurs in proportion to the amount of pyrophosphate (Nyrén & Lundin, 1985). This can be 
used to determine each nucleotide in the strand sequence, including those that are 
repeated. Commercialism of this approach broke through the unsolved bottlenecks of 
Sanger sequencing, and it is now possible to sequence a human genome in a day for less 
than $1,000, in stark contrast to the 13 years and nearly $3 billion spent by the Human 
Genome Project up until 2001 (Uhlen & Quake, 2023).

Figure 5.
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Figure 5: Simplified schematic of pyrosequencing. The diagram illustrates steps following 
the initial fragmentation step that is shared with Sanger sequencing. Each of the 
nucleotides are introduced to the DNA template mix, and those that are complementary to 
the template are incorporated into the growing synthesis strand, allowing a luciferase 
signal to be read from the released pyrophosphate. Figure reproduced from (Rybicka et 
al., 2016).

With high-throughput solutions for sequencing now widely available by the late 2000s, 
many researchers began to embrace this modality over microarray as the de facto gene 
expression method. The hybridisation basis of microarray necessitates a priori knowledge 
of the genes for quantification and detection is limited to the sequences defined by the 
probes deployed. In comparison, sequencing is applicable to cases where the genome of 
the target species is unavailable, as well as nuanced events such as RNA editing events 
or differential isoform usage (Malone & Oliver, 2011). Nevertheless, microarrays remain in 
usage today for its maturity and cost-effectiveness in answering targeted questions.

It can also be argued that biases related to microarray, at least in conventional usage for 
quantification of gene expression in well-annotated genes, have been largely solved, while 
those in sequencing continue to be an active area of research. Sources of variation in 
microarrays have been understood to be largely related to the manufacture of equipment 
and the conditions between labs; for instance differences between laser scanners or 
degradation of fluorescent dyes in relation to ozone (Malone & Oliver, 2011). Meanwhile, 
one of the most problematic issues that plague sequencing is that of sequencing depth. In 
regards to RNA sequencing (RNAseq), the reading of greater numbers of transcripts is 
required to capture the gene expression of more lowly expressed genes, inflating the costs 
of an experiment. This problem is exacerbated in the presence of very highly expressed 
genes, which compete for reads. The other major issue is heterogeneity in coverage along 
a transcript, for example the tendency for sequencing to underestimate GC-rich and poor 
fragments (Risso et al., 2011). This and other phenomena are not observed with 
microarrays and though many normalisation methods have been developed to address the 
issues of RNAseq, each have such nuanced advantages and trade-offs that tools have 
been developed just for their selection on a per-dataset basis (Scheepbouwer et al., 2023).

Figure 6.
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Figure 6: Correlation between microarray intensity and RNAseq reads in matched samples 
from D. pseudoobscura. The two assays show a near linear relationship, though 
microarray appears to saturate signal at higher intensity and have sensitivity for a number 
of genes of low intensity that could not be detected through RNAseq. Figure reproduced 
from (Malone & Oliver, 2011).

1.1.6Single-cell Sequencing

In spite of the roadblocks unique to NGS, its throughput and suitability for exploring de 
novo structures have led to the technology’s staying power. The benefit of further 
developments have been incremental advancements in sequencing sensitivity and 
accuracy but also larger leaps in the multiplexing and resolution of samples. Easily the 
most influential has been the development of single-cell sequencing (scRNAseq). The 
earliest example dates back to 2009, when Tang and colleagues managed to sequence 
mRNA from a single cell, detecting 75% more genes than from a microarray approach 
(Tang et al., 2009). The years that follow would see a proliferation of competing single-cell 
technologies, often differing wildly in approach (see Figure 7). Some companies such as 
10x Genomics would centre focus around these technologies, while consortiums would 
form to create large atlases that aim to sample every type of cell in an organism. In 2013, 
single-cell sequencing would be named the “Method of the Year” by Nature (“Method of the 
Year 2013,” 2014).

Figure 7.

Figure 7: Rough timeline of the advancements in single-cell technologies. The latest 
technologies not only aim to preserve single-cell resolution but also resolution of the 
spatial localisation of the cell. Figure reproduced from (Aldridge & Teichmann, 2020).

The most popular single-cell technology, and the one used in this thesis, is droplet-based 
scRNAseq. Here, water-in-oil droplets encapsulate cells as they are passed through a 
microfluidics device, at frequencies of tens of thousands of droplets per second and 
scaling to millions of droplets (Salomon et al., 2019; X. Zhang et al., 2019). Several 
competing implementations exist today, the most ubiquitous being inDrop, Drop-seq, and 
10X Genomics Chromium. All three share in common similar principles for encapsulation 
by droplets, as well as introduction of regents as droplets are passed. Crucially, they all 
feature usage of cell barcodes and unique molecular identifiers (UMIs). Cell barcodes are 
unique and predefined nucleotide sequences introduced to each droplet through gel beads 
that become associated with the cDNA that is reverse transcribed from the mRNA. UMIs 
are random sequences incorporated into the first strand of cDNA synthesis, such that all 
following cDNA that are PCR amplified carry the same UMI. The combination of these 
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modifications allow for the assignment of reads to a specific cell and the handling of PCR 
bias by distinguishing transcript abundance due to PCR as opposed to abundance due to 
gene expression. While each of these features are not necessarily unique to droplet based 
single-cell transcriptomics, their strengths and compatibility with the relatively 
straightforward technology cemented the method’s success.

Figure 8.
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Figure 8: Comparison of three popular droplet-based scRNAseq pipelines. All share in 
common the use of barcodes for differentiating cells and UMIs for mitigating PCR bias. 
Figure reproduced from (X. Zhang et al., 2019).

1.1.7Spatial and Long-read Sequencing

Today, the transcriptomics field is at a turning point in combining advantages of previously 
disparate technologies. These new methods aim to provide spatial localisation of 
transcripts, single-cell resolution, and genome-wide coverage; encompassed by a class of 
technologies dubbed spatially resolved transcriptomics (SRT), which would also go on to 
be named method of the year in 2021 (Marx, 2021). Perhaps the final missing layer is 
another method of the year called long-read sequencing (Marx, 2023). As already 
mentioned, a common limitation of all sequencing methods since the days of Sanger 
sequencing is the inability to process fragments longer than 150-200 basepairs. Long-read 
sequencing overcomes this, though at the cost of massively increased error rate which 
remains a significant problem area today. Methods such as spatial transcriptomics and 
long-read sequencing remain out of scope for this thesis work, which utilises single-cell 
sequencing data, however, their importance for future research in Alzheimer’s Disease and 
other fields cannot be understated.

Figure 9.

Figure 9: Illustrated schematic of the slide mounting process for spatial sequencing, 
accompanied by a simulated visualization of the data output from a spatial transcriptomics 
experiment. Figure reproduced from (Shireman et al., 2023).
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1.2 Proteomics

1.2.1Overview

The biological relevance of proteomics also cannot be understated, as proteins are a 
closer functional readout of an organism than transcripts. The most common application of 
proteomics is to measure the abundance of different proteins in a sample of tissue. This is 
conventionally carried out using mass spectrometry (MS), an instrument that measures 
mass-to-charge (m/z) values and signal intensities of ions (Shuken, 2023). In most 
experiments, the machine operates on peptides, smaller chains of amino acids that 
together form the structure of a protein. In such kinds of bottom-up approaches, proteins 
are digested into peptide fragments using proteases and then further broken down into a 
gas phrase of ions. These ions are sprayed into the mass spectrometer which measures 
their electrical properties. The data is compared to a database of peptide MS information, 
identified, and used to infer the likely protein composition of the sample.

Figure 10.

Figure 10: High-level schematic of the basic steps of conventional bottom-up mass 
spectrometry proteomics. Proteases are used to break down proteins into peptides, which 
are then ionised. Mass-to-charge or m/z values of the ions are measured by the 
spectrometer and are the primary data source for the identification of peptide intensities. 
The protein composition of the sample can then be deduced from the individual peptides. 
Figure reproduced from (Shuken, 2023).

Use of mass spectrometry in proteomics is said to have taken off in 1989, when 
electrospray ionisation became available and could be used to vaporise proteins (Fenn et 
al., 1989; Mann, 2016), eventually leading to a Nobel Prize in Chemistry in 2002. Prior to 
this development, methods used chemical peptide-sequencing methods like Edman 
degradation, which was limited in capability for the analysis of very small amounts of 
peptides in complex mixtures. The new method brought sensitivity to the femtomole level. 
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While the first wide-scale analysis using electrospray ionisation covered only 19 peptides 
(Hunt et al., 1992), in a period of 25 years the coverage would increase 1000-fold. This 
largely due to the assistance of large databases for MS/MS spectra, which continues to be 
the main driving force behind the power of mass spectrometry for proteomics today.

1.2.2Mass Spectrometry

Three components comprise all mass spectrometers: the source of ions, the mass 
analyser, and the detector (Sinha & Mann, 2020). In order for peptides or proteins to be 
compatible with these components, they must be converted into a gaseous phase of ions. 
Through a process still not fully understood, liquid containing peptide or protein are passed 
through a small opening set to a high voltage of about 2-4 kV using high-performance 
liquid chromatography (HLPC), promoting the disintegration of the liquid contents into ions, 
which are then passed into the mass analyser for separation by their m/z values. 
Quadrupole mass analysers, by far the most common type of analyser, operate on the 
principal of accelerating ions and measuring their trajectories along a quadrupole, an 
arrangement of electrically charged metallic rods within a vacuum (Wilkinson, 2021). A 
TOF or time-of-flight quadrupole analyser captures velocity differences on the order of sub-
microseconds between acceleration at 20 kV and arrival time at the detector. In contrast, 
an Orbitrap quadrupole analyser uses oscillation frequency rather than velocity, as ions 
move along a metal spindle. Before arriving at the detector, ions may also undergo 
fragmentation in a special quadrupole known as a collision cell. This produces what is 
known as MS2 spectra, which some methods use to supplement the MS1 spectra that is 
produced from unfragmented ions being read by the detector (T. Huang et al., 2020).
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Figure 11.

Figure 11: Components of a typical mass spectrometry machine. Proteins or peptides are 
passed to the machine through HPLC (high-performance liquid chromatography) allowing 
electrospray ionisation to take place. Following a series of quadrupoles, m/z values and 
signal intensities of the ions are recorded at the detector. Figure adapted from (Sinha & 
Mann, 2020).
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1.2.3Top-down vs. Bottom-up

Mass spectrometry proteomics can be approached from either a top-down or bottom-up 
perspective (Roberts et al., 2024). Significantly less common due to technical challenges, 
top-down approaches pass complete unfragmented proteins into the detector. State-of-the-
art methods are still considered underdeveloped compared to bottom-up proteomics, but 
offer the promise of resolving proteoforms – variations of protein structure that include 
post-translational modifications (PTMs) and other de novo or genetically defined variants. 
A significant technological development enabling the feasibility of top-down proteomics 
was the incorporation of MALDI or matrix-assisted laser desorption/ionization (Hillenkamp 
et al., 1991). Compounds of larger molecular mass are traditionally difficult to ionise but 
with MALDI they are embedded in a matrix compound calibrated to absorb the 
wavelengths of laser light used to trigger the ionisation process.

Figure 12.

Figure 12: Schematic comparing bottom-up and top-down approaches to mass 
spectrometry proteomics. Whereas top-down approaches aim to maintain intact protein 
structure as it passes to the detector, bottom-up approaches incorporate a cleavage step 
to operate on the level of peptides. Figure adapted from (Roberts et al., 2024).

1.2.4Labeled vs. Label-free Quantification

A categorisation that applies to both bottom-up and top-down approaches is whether the 
method uses label-free quantification (LFQ) or is label-based, the difference pertaining to 
the deconvolution of samples before quantification (Guo et al., 2022; Z. Wang et al., 2021). 
By labelling samples before separation of proteins/peptides during liquid chromatography, 
multiple samples can be multiplexed into a single run. The most popular approaches are 
those that use isobaric chemical labelling such as TMT (tandem mass tag) and iTRAQ 
(isobaric tag for absolute and relative quantification) (Sivanich et al., 2022). These 
methods bind the tag to sterotypical residues such as proline-rich areas of the N-terminus, 
limiting interference with the quantification and fragmentation functionality of the mass 
spectrometer. Isobaric chemical groups are those that differ negligibly in terms of 
molecular mass but have identifiable differences in their atomic structure, making them 
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ideal for labelling while reducing unwanted analytical impact. TMT and iTRAQ label 
peptides/proteins after extracting from the samples of interest, but when working with cell 
cultures, labelling can also take place as the cultures are grown. This is the basis of the 
popular method SILAC (stable isotope labelling by amino acids in cell culture) (Mann, 
2006). Considered a metabolic rather than chemical approach, SILAC may allow for more 
complete and consistent labelling.

Figure 13.

Figure 13: Schematic comparing three of the most popular label-based proteomic 
methods. Whereas iTRAQ and TMT apply isobaric tags to isolated proteins and peptides, 
SILAC uses tags in the media which cells are grown. Figure adapted from 
https://www.creative-proteomics.com/pdf/Comparison-of-Three-Label-based-
Quantification-Techniques-iTRAQ-TMT-and-SILAC.pdf.

1.2.5Data-dependent vs. Independent Acquisition

Bottom-up, label-free quantification approaches are usually divided into two main 
implementations, DDA or data-dependent acquisition and DIA or data-independent 
acquisition (Guan et al., 2020). DDA is the older of the two and considered a gold standard 
approach for proteomics. The key difference between the two methods lie in how peptides 
are selected for fragmentation as well as MS2 data collection before peptide entry into the 
collision cell. DDA fragmentation uses a subset of the peptide data, selected by automated 
peak selection of ion intensity. By doing so, the selection criteria operates in a data-
dependent manner. In contrast, DIA approaches set predefined m/z windows to partition 
peptides which are then batched together for MS2 detection.
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Figure 14.

Figure 14: Comparison of DDA and DIA proteomics. The notable difference is the selection 
of peptides for MS2. DDA selects a subset of peptides on the basis of ion intensity peaks 
in a manner dependent on MS1 data. DIA on the other hand, passes all peptides to MS2 
and partitions the peptides using predefined m/z windows. Figure reproduced from (Ward 
et al., 2024).

Since MS2 data from DIA methods cover a wider spectrum of peptides, the general 
consensus is that it outperforms DDA in terms of quantification reproducibility, specificity, 
accuracy, and situations of low protein availability; this has been demonstrated in 
experiments using “gold standard” samples where proteins have been spiked-in (Barkovits 
et al., 2020; Willems et al., 2021). Nonetheless, there is debate over the validity of such 
claims, largely owing to the fundamentally different analysis approaches utilised by the two 
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methods. DDA conventionally resolves proteins from peptides using a sequence database 
search while DIA depends on spectral library searches. However, it is possible to perform 
a DDA experiment using spectral library, and a controlled experiment by (Fernández-Costa 
et al., 2020) showed that DIA and DDA perform comparably when doing so. Though 
overall DIA still maintained a slight edge in terms of reproducibility, the authors argue that 
spectral library searches better optimised for DDA may eliminate the gap. Indeed, DDA 
offers the potential for operational efficiency, as the peptide selection approach attempts to 
minimise redundant peptide ion selection and increase depth of protein coverage 
(Bateman et al., 2014).

Figure 15.

Figure 15: Comparison of coefficients of variation of DDA and DIA approaches with 
different database search methods in controlled samples. While DIA remains more 
reproducible, DDA methods are greatly improved by referencing ions through a spectral 
library rather than the convention of a sequence database. Figure reproduced from 
(Fernández-Costa et al., 2020).

1.2.6Targeted Proteomics

The methods discussed thus far all aim to capture an unbiased survey of the proteome 
however, targeted approaches have also been developed for the analysis of singular or a 
subset of proteins (Borràs & Sabidó, 2017). These methods typically build off of existing 
mass spectrometry protocols but filter acquisition to the ions of interest, as is the case in 
selected ion monitoring or SIM. Besides improvements in the sensitivity for proteins of 
interest, targeted proteomics is ideal for studying proteoform variations such as post-
translational modifications. Furthermore, it is more amenable for the derivation of absolute 
quantification, such the concentration of biomarkers in plasma (Uchida et al., 2013). It is 
predicted that with future developments, the distinction between targeted and unbiased 
proteomics will blur, as peptides become targetable on an individual basis but also in a 
highly multiplexed fashion (Kang et al., 2017).
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1.2.7Spatial Proteomics

In an analogous trend to the transcriptomics world, proteomics has been making way 
towards facilitating spatial resolution of the proteome, also garnering a Nature Method of 
the Year for 2024 (“Method of the Year 2024,” 2024). One of the more popular methods is 
imaging mass cytometry (IMC) (Baharlou et al., 2019), where the tissue is coated with 
metal isotope-tagged antibodies and then ablated with a laser. The aerosolised and 
ionised matter is then fed into the mass cytometer for protein quantification. Using the 
isotopes, the location of the proteins can be mapped back to their coordinates on the 
original tissue. A variation of this method includes mass spectrometry imaging (MSI) (H. 
Zhang et al., 2023), where the ionised tissue is instead quantified using a mass 
spectrometer, consistent with conventional proteomics. This garners the advantage of 
building off the wealth of work in that area, in addition to the capacity for analysing 
complex proteoform structure such as post-translational modifications. Another method, 
more similar to the approaches popularised in spatial transcriptomics, is cyclic 
immunofluorescence (cycIF) (J. Lin et al., 2016), where antibodies targeting a panel of 
proteins are applied in a series of cycles and imaged. CycIF is currently able to achieve 
greater resolutions than IMC and MIBI but does not utilise mass spectrometry, limiting its 
application when analysing complex proteoforms. Finally, laser-capture microdissection 
(LCM), discussed in greater detail in later sections due to its use in this thesis work, brings 
forward the possibility of immunohistochemical staining on tissue followed by the precision 
extraction of single-cells, when can then be profiled using standard mass spectrometry, as 
well as transcriptomic methods. It is predicted that with future developments, spatial 
proteomics will be able to sample the entire proteome, including features such as PTMs, at 
a single-cell and spatially resolved resolution. Combined with spatial transcriptomics and 
epigenetics, holistic and fine-grained maps of physiology and disease may open the doors 
for a great leap in basic research and translational medicine.

Figure 16.

Figure 16: Schematic of the workflow of imaging mass cytometry (IMC). Tissue labelled 
with metal isotope-tagged antibodies is laser-ablated, allowing spatial quantification of 
proteins through a mass cytometer. Figure reproduced from (Giesen et al., 2014).
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1.3 Alzheimer’s Disease

1.3.1Overview

Alzheimer’s Disease (AD) is the most common tauopathy and form of dementia, 
accounting for 50-60% of the estimated 40-50 million dementia cases worldwide (Nichols 
et al., 2019), and is expected to almost double in prevalence every 20 years (Prince et al., 
2013). The tauopathies are a class of neurodegenerative disorders characterised by the 
aggregation of pathological forms of microtubule-associated protein tau, encoded by the 
MAPT gene (Arendt et al., 2016; Spillantini et al., 1997). There remains no approved drugs 
that directly target tau at this time, though 164 trials assessing 127 drugs were underway 
as of 2024 (Cummings et al., 2024). Clinical presentation of the tauopathies vary 
(Josephs, 2017), but generally include some aspect of dementia, defined loosely as the 
progressive reduction in cognition and ability to live independently (Prince et al., 2013).  
The range of phenotypes among tauopathies is likely driven by their remarkable 
heterogeneity in spatial-temporal progression, cell-type specific effects, and predominant 
tau species, as exemplified in Figures 17 and 18.

Figure 17.

Figure 17: Table demonstrating the neuropathological heterogeneity among various 
tauopathies. Figure reproduced from (Götz et al., 2019).
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Figure 18.

Figure 18: Immunohistochemistry in human post-mortem brain tissue showing the most 
common types of tau inclusions and the particular tauopathy that they are characteristic of. 
Figure reproduced from (Uemura et al., 2020).

AD is classified as a secondary tauopathy, as it features depositions of extracellular 
amyloid-beta (Aβ) plaques, derived from the APP gene, in addition to intraneuronal tau 
neurofibrillary tangles (NFTs) (Masters et al., 2015; Scheltens et al., 2021).  AD can be 
divided into familial and sporadic forms as well as early and late-onset forms (EOAD and 
LOAD, respectively), distinguished by onset before or after age 65. While EOAD and 
LOAD are both largely sporadic, EOAD has a higher incidence of autosomal dominant 
mutations in APP, PSEN1, or PSEN2 as well as rare variants in risk genes, and accounts 
for about 5% of all AD cases (Mendez, 2012; W. Zhang et al., 2020).  Sex differences are 
also present in AD, with women reported as having 1.17 times the male prevalence rate 
(Nichols et al., 2019).

1.3.2Amyloid Cascade Hypothesis

The amyloid cascade hypothesis (Hardy & Higgins, 1992; Selkoe & Hardy, 2016), first 
proposed in the early 1990s, remains one of the most widely studied models for the 
pathogenesis of AD. It proposes that the overproduction or impaired clearance of Aβ 
peptides results in their aggregation into insoluble plaques, which disrupts neural 
communication and triggers neuroinflammation. As a consequence, tau proteins undergo 
hyperphosphorylation, causing them to form NFTs that compromise the structural integrity 
of neurons and impede intracellular transport mechanisms.  However, this hypothesis is 
not without criticism and there is evidence suggesting that NFTs deposition precedes Aβ 
plaques by as much as 10 years (Arnsten et al., 2020). Moreover, the primary tauopathies, 
which posit tau as the sole aggregate, suggest that tau alone is sufficient for pathogenesis.
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Figure 19.

Figure 19: Diagram of the hypothesised pathophysiology of AD from the perspective of the 
amyloid cascade hypothesis. Shown also are trialled treatments that have been introduced 
to target various stage points of the disease pathway. Figure reproduced from (Panza et 
al., 2019).

1.3.3Amyloid-beta Structure and Function

Aβ is generated through the proteolytic processing of amyloid precursor protein (APP), a 
transmembrane glycoprotein, via a sequential cleavage mechanism involving β-secretase 
and γ-secretase. The γ-secretase complex, which utilises presenilin 1 or 2 (PSEN1 or 
PSEN2) as its catalytic subunit, produces Aβ peptides of varying lengths, with Aβ40 and 
Aβ42 being the most abundant forms (G. Chen et al., 2017). Both APP and PSEN 
mutations are commonly associated with Familial Alzheimer’s Disease (FAD), and may 
contribute to excessive Aβ accumulation through various pathways, such as promoting Aβ 
generation and disrupting autophagic degradation processes (Chong et al., 2018; Weggen 
& Beher, 2012). However, the underlying causes of Sporadic Alzheimer's Disease (SAD), 
which comprise over 90% of cases, remain less clear. It has been suggested that 
abnormal post-translational modifications of the amyloid-β peptide enhance its 
neurotoxicity and promote aggregation, potentially triggering or accelerating the 
progression of SAD (Barykin et al., 2017). Additionally, genetic risk factors, particularly the 
apolipoprotein E (APOE) ε4 allele, play a significant role in the risk of developing SAD. 
Individuals carrying a single APOE ε4 allele face a 2 to 3-fold increased risk, while those 
with two copies experience up to a 15-fold greater likelihood of developing the disease 
(Yamazaki et al., 2019). Additionally, various other genetic risk factors, along with 
cardiovascular conditions such as diabetes and hypercholesterolemia, and lifestyle factors 
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including diet and sleep, have been the focus of extensive research in recent years for 
their potential influence on Aβ metabolism in SAD (Oomens et al., 2021).

1.3.4Amyloid-Tau Interaction

Data thus far suggest that the interplay between Aβ and tau aggregation, along with its 
impact on neuronal function, is a widespread and significant phenomenon (Busche & 
Hyman, 2020). Aβ has been shown to promote the formation of tau oligomers, with both 
amyloid plaques and soluble Aβ contributing to the spread and aggregation of paired 
helical filament (PHF) tau (He et al., 2018). Furthermore, Aβ exposure renders tau more 
resistant to protease degradation (De Strooper, 2010). This suggests that Aβ induces 
structural changes in tau, potentially through post-translational modifications, 
conformational shifts, or oligomerisation. Although multiple studies have suggested that 
pathological Aβ and tau aggregates can co-localise within neurons and synaptic terminals 
(Manczak & Reddy, 2013), others have shown in human tissue and mouse models that 
such co-localisations occur in less than 0.02% synapses (Pickett et al., 2019). Another 
possibility is that Aβ and tau influence each other indirectly by disrupting neuronal 
processes such as kinase regulation, glial activation, and neuroinflammatory responses 
(Busche & Hyman, 2020). Being a multifactorial disease, in addition to the central roles of 
Aβ and tau, a range of other factors may play a role in AD pathology, including 
acetylcholine depletion, chronic neuroinflammation, oxidative stress, disruptions in metal 
ion homeostasis, glutamatergic dysregulation, insulin resistance, alterations in the gut 
microbiome, impaired cholesterol metabolism, mitochondrial dysfunction, and defects in 
autophagy (J. Zhang et al., 2024).
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Figure 20.

Figure 20: Schematic outlining the range of diverse mechanisms implicated in the 
pathology AD. The causality and interactions between them remain unclear, raising 
significant challenges in the development of effective treatments. Figure reproduced from 
(J. Zhang et al., 2024).

1.3.5Tau Structure and Function

Tau is an intrinsically disordered protein (IDP) that lacks a stable three-dimensional 
structure under physiological conditions, allowing it to associate freely with microtubules 
(Stelzl et al., 2022). The human tau protein is encoded by the MAPT gene located on 
chromosome 17, and through alternative splicing, it produces six isoforms in the adult 
brain (Strang et al., 2019). These isoforms vary based on the inclusion or exclusion of 
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exons 2, 3, and 10, resulting in differences in the number of microtubule-binding repeat 
domains, either three (3R) or four (4R). The balance between these isoforms is 
developmentally regulated and is crucial for normal neuronal function. Alterations in this 
balance have been implicated in various neurodegenerative disorders beyond AD 
(Buchholz & Zempel, 2024).

Figure 21.

Figure 21. The six brain-specific human tau isoforms produced through alternative splicing 
of of exons 2, 3, and 10. Tau can be structured into four distinct domains, of which the 
isoforms are defined by differences in the N-terminal projection domain and the C-terminal 
MT-binding domain. Figure reproduced from (Buchholz & Zempel, 2024).

1.3.6Pathological Tau Accumulation

Tau protein follows a well-defined pattern of accumulation over time and across brain 
regions, closely mirroring the progression of clinical symptoms. This strong correlation 
makes tau a highly specific pathological indicator in Alzheimer's Disease (Braak & Braak, 
1991; Malpas et al., 2020). Tau is primarily localised alongside microtubules in neuronal 
axons, though it is also detected at reduced levels in dendrites, the soma, and certain glial 
cells (Kanaan, 2024). Tau also contains multiple phosphorylation sites distributed across 
its N-terminal, C-terminal, and repeat domains, with their regulation dependent on the 
interplay between various kinases and phosphatases to preserve normal neuronal function 
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(Drummond et al., 2020). In pathological conditions, dysregulated kinase and phosphatase 
activity causes tau to become hyperphosphorylated. This modification weakens tau’s 
affinity for microtubules, leading to its dissociation and subsequent structural alterations. 
Mislocalised tau begins to accumulate, forming oligomers, PHFs, and NFTs within the cell 
body and dendrites (Goedert et al., 1991). These pathological changes progressively 
disrupt neuronal function, ultimately resulting in cell death (Alonso et al., 2018; Schneider 
et al., 1999). Pathological tau can manifest as a variety of forms, as can be seen in Figure 
22, with mature PHF1-positive tangles being the form most conventionally associated with 
advanced Alzheimer’s Disease (Moloney et al., 2021).

Figure 22.

Figure 22. Various types of neurofibrillary tangle morphologies visualised through 
immunohistochemistry in human post-mortem AD tissue. Shown in all images is the CA1 
subregion of the hippocampus. Figure reproduced from (Moloney et al., 2021).

1.3.7Tau Post-translational Modifications

In addition to hyperphosphorylation, several other post-translational modifications of tau 
protein have been implicated in the promotion of tau aggregation and enhancement of its 
neurotoxicity. Proteolytic cleavage of tau, known as truncation, generates tau fragments 
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that are prone to aggregation (Boyarko & Hook, 2021). Glycosylation, the enzymatic 
addition of sugar moieties, and glycation, the non-enzymatic attachment of sugars, both 
influence tau's propensity to aggregate. Glycation, in particular, has been shown to 
promote tau polymerization and stabilise aggregated forms, contributing to NFT formation 
(Alquezar et al., 2021). The attachment of small ubiquitin-like modifier (SUMO) proteins to 
tau, termed sumoylation, also affects its solubility and degradation. Sumoylation has been 
observed to decrease tau solubility, potentially facilitating its aggregation and accumulation 
within neurons (H.-B. Luo et al., 2014).

Figure 23.

Figure 23: Relative frequency of various PTMs potentially and confirmed to be modified in 
tau. The contribution of each PTM to the toxicity and dysfunction of tau is a complex and 
highly active area of research. Figure reproduced from (Alquezar et al., 2021).

1.3.8Amyloid and Tau Staging

AD follows a well characterized and stereotyped spatial/temporal pattern of Aβ and NFT 
deposition, which have formed the basis of several widely used staging schemes. Shown 
in Figure 24 are regional distributions of Thal staging for Aβ (Thal et al., 2002) and Braak 
staging for NFTs (Braak & Braak, 1991), where increasing stage generally corresponds 
with progression of the disease. The initial involvement of these two aggregates are 
notably different, with Aβ first appearing across diffuse areas of the neocortex, while NFTs 
are first found in the entorhinal cortex (EC, seen in more detail in Figure 25). With 
progression, Aβ plaques rapidly infiltrate the EC and hippocampus, while NFTs spread to 
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large pyramidal neurons of the CA1 hippocampal subregion and subiculum, the CA3, 
and later begin to appear in neocortical areas. Toward end stages of the disease, most 
neo and allocortical areas become involved, with the relative sparing of only the brainstem 
and cerebellum. Note however the very early appearance of NFTs in the locus coeruleus 
of the brainstem, the pathological relevance of which remains a matter of debate due to its 
ubiquity in non-demented individuals (K. Zhu et al., 2019).

Figure 24.

Figure 24: Top, Thal staging for Abeta. Bottom, Braak staging for NFTs. Figure reproduced 
from (Jouanne et al., 2017).

Figure 25.

Figure 25: AT8 staining for pathological hyperphosphorylated tau in paraffin-embedded 
hemisphere sections, demonstrating the initial involvement of areas near the EC followed 
by involvement of the hippocampus and neocortex. Figure reproduced from (Kretzschmar, 
2009).
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1.3.9Cell Death and Atrophy

Though no explicit staging system exists for tracking cell death and atrophy in AD, NFT 
aggregation is often a strong correlate of these endpoints and is a widely used to identify 
cells that have become directly involved in AD (Del Tredici & Braak, 2020). In Figure 26, 
there is a robust inverse relationship between the density of pathological tau and neuron 
count (Furcila et al., 2019). Figure 26 also demonstrates the defining feature of selective 
vulnerability – that certain regions/cell-types are preferentially affected over others. In this 
figure, the CA1 exhibits a markedly higher degree of both NFT density and cell loss 
compared to the CA3, a feature first described in the original Braak staging paper and 
replicated since (Braak & Braak, 1991; Mrdjen et al., 2019). It may also be the case that 
long-range and sparsely or unmyelinated axons (Braak et al., 2006) and those that are and 
that are neurofilament-rich (B. M. Morrison et al., 1998) are particularly vulnerable to AD.

Figure 26.

Figure 26: Immunohistochemical staining of hippocampal sections from human AD post-
mortem tissue. Left, two stains for different conformations of pathological tau. Right, two 
stains marking the location of neuronal nuclei (top) and neuronal cell bodies (bottom). 
Figure adapted from (Furcila et al., 2019).
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1.3.10 Selective Vulnerability

As reviewed in (Mrdjen et al., 2019), a number of regions/cell-types have been identified 
as being selectively vulnerable to NFTs in AD (see Figure 27). There is a fairly specific cell-
type identified at the site of initial involvement, these being Reelin-expressing EC layer II 
pyramidal neurons (Chin et al., 2007; Stranahan & Mattson, 2010). High interest in the EC 
from a disease and functional standpoint have led to fine-grained efforts to map out cell-
types in the EC and have begun to reveal the diverse population of subtypes in this region 
(Kobro‐Flatmoen & Witter, 2019).  For example, Reelin-expressing layer II neurons in the 
lateral EC (LEC) are characterised by distinct fan-shaped dendritic morphology while 
similar neurons in the medial EC (MEC) are more stellate in shape (Witter et al., 2017).  
Interestingly, recent work has shown that both subtypes locally innervate neurons of the 
same subtype only sparsely, instead preferring disynaptic inhibitory coupling, where 
excitation of one neuron indirectly inhibits another neuron through an intermediate 
inhibitory neuron (Nilssen et al., 2018). This mode of communication may have relevance 
to the early stages of AD, as Aβ has been shown to perturb normal neural network activity, 
in particular those related to inhibitory control (Y. Xu et al., 2020).

Figure 27.

Figure 27: Summary of a literature review of regions and cell-types shown to be selectively 
vulnerability in Alzheimer’s Disease. Figure reproduced from (Mrdjen et al., 2019).
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Although extensive characterization of selectively vulnerable cell-types on the subtype 
level will be the way forward in unravelling the nature of this phenomena, it is notable that 
on a broad level, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons 
are generally vulnerable and resilient to NFTs in AD, respectively.  Using tissue from 
human AD donors and the EC-tau mouse model of AD tau pathology (L. Liu et al., 2012), it 
has been previously shown that the misfolded tau antibody MC1 co-localises with 
excitatory but not inhibitory neurons, even at advanced Braak stage and age (Fu et al., 
2019).  Performing co-expression network analysis on publicly available single-cell 
RNAseq (scRNAseq) datasets, the authors identified that this difference is driven by the 
aggregation protector BAG3, which is more highly expressed in inhibitory vs. excitatory 
neurons in normal physiological conditions. The authors then validated its protective role 
by overexpressing the gene in excitatory neurons where they observed an attenuation in 
tau accumulation, demonstrating how intrinsic differences in gene expression can affect 
the relative vulnerability of a cell-type.

Figure 28.

Figure 28: MC1 co-localisation in immunostained sections with excitatory neuron markers 
(TBR1, SATB2) and inhibitory neuron markers (CALB2, SST, PVALB). Left, human AD 
brains at Braak V-VI (BA9). Right, EC-tau mice at 30+ months age (MEC). Figure adapted 
from (Fu et al., 2019).
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1.3.11 Cell and Non-cell Autonomous Factors

The mechanisms that may underlie selective vulnerability can be divided into two groups: 
cell-autonomous factors, those that operate independently for each cell, and non-cell-
autonomous factors, those that are dependent on the status of other cells. AD has been 
observed to manifest through the contribution of both factors (Acosta et al., 2018; Z.-T. 
Wang et al., 2020). Many mechanisms considered to be cell-autonomous fall under the 
umbrella of homeostatically regulated processes. And in the context of selective 
vulnerability, researchers have explored cellular differences in the regulation of processes 
that include oxidative stress, metabolic and energy demands, intracellular calcium levels, 
excitotoxicity, proteolytic stress and protein folding, inflammatory reactions, unconventional 
translation, and ageing (Fu et al., 2018; Gan et al., 2018; Muddapu et al., 2020). Non-cell-
autonomous processes on the other hand, are primarily associated with the transsynaptic 
spread of pathological proteins from one cell to another (Vogels et al., 2019), but also 
includes factors such as vasculature, inflammation, immune response, blood-brain barrier 
disruptions, and glial biology (Henstridge et al., 2019; Saxena & Caroni, 2011).

1.3.12 Circuit Dynamics and Connectivity

Circuit dynamics and anatomical connectivity are another important consideration, 
particularly when considering the prion-like properties of NFTs. Differentially vulnerable 
regions innervate one another in a laminar fashion through the trisynaptic loop (Amaral & 
Witter, 1989) (see Figure 28), wherein EC layer II neurons input into the DG and CA3 via 
the perforant path. The CA1 is then innervated by the CA3 through Schaffer collatorals, in 
addition to less prominent input from other sources including the EC (Witter & Moser, 
2006).  From the CA1, the subiculum is innervated through Alvear fibers. The EC, DG, and 
CA3 also project within themselves and the DG additionally projects to the CA3 through 
mossy fibres. It is notable that although the EC does project to the CA1 directly and 
indirectly, supporting transsynaptic models of tau spread, the also innervated CA3 and DG 
do not appear to accumulate tangles until later stages of AD. Additionally, there is evidence 
that the CA3 becomes hyperactive in AD (Haberman et al., 2017), which may be a 
mechanism for CA1 excitotoxicity. Interestingly, in a normal physiological state, overall 
CA1 firing rate is higher than that of the CA3 (Mizuseki et al., 2012), but this relationship 
reverses in ageing (Kanak et al., 2013; Oh et al., 2016).
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Figure 29.

Figure 29: Synaptic connections of the hippocampus and EC, highlighting the trisynaptic 
loop. The particular connectivity of these regions may underlie the basis of the prion 
hypothesis and transynaptic spread of tau in Alzheimer’s Disease and other tauopathies. 
Figure reproduced from (Mrdjen et al., 2019).

1.3.13 Cellular Disease Response

Studies in disease states reveal that regions and cell-types that are selectively vulnerable 
differ in their disease response. For example, in rodent studies using AD models, CA1 
neurons, compared to later affected hippocampal areas, exhibit higher ROS and 
superoxide production (X. Wang et al., 2005; Wilde et al., 2002), a greater abundance of 
nearby activated glial cells (Rodríguez et al., 2013), differential expression of NMDA 
receptors including overexpression of the apoptosis-inducing NR2B subunit (Z. Liu et al., 
2012), high Ca2+ influx through L-type voltage gated calcium channels (L-VGCC) (Y. Wang 
& Mattson, 2014), an upregulation of kinases such as PRKCB and MAPK1 alongside a 
downregulation of phosphatases 1 and 2 (Gerschutz et al., 2014), and impaired 
autophagic lysosome function (Bordi et al., 2016). Likewise, in human subjects, MRI 
studies of individuals with AD and MCI have shown preferential atrophy and blood-brain 
barrier breakdown in the CA1 (Montagne et al., 2016), and its been demonstrated that 
earlier affected cells carry a greater proportion of 3R rather than 4R tau inclusions (Hara et 
al., 2013; Iseki et al., 2006).  Research in ageing and other stressful conditions have also 
produced valuable insights for investigating selective vulnerability in AD. In rodents, 
neurons from the CA1, compared to CA3 neurons, show a greater reduction of calbindin 
during ageing (Potier et al., 1994), and exhibit more severe mitochondrial damage post-
ischemia (Radenovic et al., 2011) and from calcium-induced mitochondrial swelling 
(Mattiasson et al., 2003).  Similarly, the CA1 undergoes greater calcium influx and calcium 
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deposition into mitochondrial from prolonged glutamate stimulation (Stanika et al., 2010). 
These specific examples are hardly exhaustive of the totality of research in this area, and 
aim to merely highlight the wide breath of findings that remain challenging to contextualise. 

1.3.14 Studies of Neurofibrillary Tangle-bearing Neurons

A few studies using human AD post-mortem tissue have attempted to dissect individual 
neurons containing NFTs for further study using transcriptomics and proteomics, the 
approach of interest in this thesis work. The earliest found instance of this kind of work 
dates from (Ginsberg et al., 2000), where hippocampal sections underwent 
immunostaining to distinguish CA1 neurons containing tangles from those free of 
pathology for isolation and subsequent RNA amplification. NFT-bearing neurons were 
detected using the PHF1 antibody, whereas neurons without tangles were identified by 
staining for non-phosphorylated neurofilament proteins using the RMdO20 antibody. 
Large-scale cDNA GDA arrays were probed using radiolabelled RNA derived from single-
cell isolates, comprising 20 NFT-bearing and 20 normal CA1 neurons. These neurons 
originated from five AD donors and five control donors, with samples pooled in groups of 
four neurons per array.

Among their findings, in CA1 neurons with NFTs, there was significant downregulation of 
mRNAs encoding protein phosphatase subunits, including subunits of PP1 and PP2A. 
Although mRNA expression for many tau-associated kinases such as CAM kinase, CDK2, 
and CDK5 remained unchanged, reductions were noted in the mRNA levels for GSK-3β, 
ERK1, and ERK2. Similar decreases were observed for cytoskeletal proteins, including all 
neurofilament subunits and β-tubulin, whereas β-actin, microtubule-associated proteins 
(MAP2, MAP1B), and tau isoforms remained unaffected. Additionally, NFTs were 
associated with decreased expression of mRNAs for proteins involved in synaptic 
transmission, notably the AMPA receptor subunits GluR1 and GluR2, as well as the NMDA 
receptor subunit NR2B. Several presynaptic vesicle related proteins, including 
synaptophysin, synaptotagmin, and synuclein also exhibited reduced mRNA expression in 
NFT-bearing CA1 neurons.

It was several years before a similarly designed study by (Dunckley et al., 2006) was 
carried out to study NFT-bearing neurons in AD. Like the proteomics dataset generated as 
part of this thesis work, the authors employed laser-capture microdissection (LCM), a 
technique that precisely isolates individual cells or cell populations from heterogeneous 
tissues using targeted laser ablation under microscopic visualisation. They used this 
method to selectively extract neurons containing neurofibrillary tangles, as well as 
histopathologically unaffected neurons, from layer II stellate cell islands in the entorhinal 
cortex of 19 individuals diagnosed with AD. RNA was subsequently obtained from these 
isolated neurons for use in microarray analyses. To uncover genes linked to NFT 
pathology, the authors conducted permutational paired t-tests, directly comparing matched 
samples of NFT-bearing and non-NFT neurons from each AD patient.
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Figure 30.

Figure 30: Heatmaps showing genes identified as significantly dysregulated, comparing 
matched pairs of neurons containing neurofibrillary tangles with those histopathologically 
unaffected. Each column represents an individual matched pair, with the leftmost heat map 
displaying data from the primary analysis performed using Affymetrix U133A arrays, and 
the right heat map representing corresponding findings from the subsequent validation 
dataset. Figure reproduced from (Dunckley et al., 2006).
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The authors further validated initial findings from the expression analyses using 
immunohistochemistry, selecting genes based on their established roles in AD pathology 
or relevance to implicated biological processes. Specifically they validated upregulation in 
NFT-bearing neurons for the genes Apolipoprotein J (APOJ), casein kinase 2, beta 
polypeptide (CSNK2B), tissue inhibitor of metalloproteinase 3 (TIMP3), interleukin-1 
receptor-associated kinase 1 (IRAK1), CD44 antigen, and member of the RAS oncogene 
superfamily RAP2A. Although of far lesser focus, they also validated downregulation of a 
few candidates, Calpain 7 (CAPN7) and p21-activated kinase 7 (PAK7). The authors 
conclude that the identified genes appear to be involved in a broad array of cellular 
processes, suggesting a diverse molecular landscape underlying Alzheimer's Disease 
pathology, and noted the difficultly in formulating an integrated model of NFT 
pathogenesis.

Studies of a similar kind experienced a dearth in research activity and no further work 
isolating tangle-bearing neurons for transcriptomic and proteomic analysis could be found 
until a pivotal study available as a preprint in 2020 and formally published in 2022 (Otero-
Garcia et al., 2022), which is reanalysed as part of this thesis work. Here, the authors 
establish a novel protocol for high-throughput isolation using fluorescence-activated cell 
sorting sorting (FACS) followed by RNA sequencing of single neuronal somas from human 
AD post-mortem cortical tissue. Using the pathological hyperphosphorylated tau antibody 
AT8, NFT-bearing and non-NFT-bearing neurons were isolated within each of 8 donors, 
and analysis was performed to identify both shared and cell-type-specific molecular 
signatures associated with NFT-bearing neurons. Specific details of the methodology and 
associated dataset is explained in-depth in Section 2.1. 

The study identified neuronal subtypes particularly susceptible to NFT pathology, notably 
the superficial-layer neurons expressing CUX2 and deeper-layer neurons expressing 
RORB and PCP4. Immunohistochemical validation confirmed these findings. 
Transcriptomic analysis revealed substantial upregulation of genes associated with 
synaptic functions, including CALM1, ATP1B1, GRIN2B, CDK5R1, SYT4, CANX, and 
RTN4, as well as those linked to cytoskeletal structure and microtubule dynamics such as 
ACTG1, TUBB2A, PLPPR4, MAP1A, ENC1, and STMN2. Additionally, consistent 
upregulation was observed for stress-response genes, including JUN and ATF4, as well as 
the chaperone HSP90AA1, lysosomal protein PSAP, and genes related to iron 
metabolism, FTL and FTH1. Notably, APP and PRNP, implicated in amyloid pathology, 
were upregulated across multiple neuronal clusters, though PRNP expression showed 
variability.

Further analysis aimed at uncovering transcriptional regulatory mechanisms identified 
shared regulatory networks across affected neuronal subtypes, prominently involving 
REST, a transcription factor previously linked to neuronal function, ageing, and Alzheimer’s 
Disease pathology. Commonly enriched functional pathways included synaptic 
transmission, calcium signalling, microtubule assembly and transport, axonal and dendritic 
structural remodelling, and intracellular trafficking pathways (Figure 31). Interestingly, 
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pathways directly related to apoptosis and neuronal cell death were less prominently 
enriched and showed a balanced representation of pro and anti-apoptotic regulators, 
including downregulation of FAIM2 and MIF and upregulation of ATF4, BAD, BNIP3, and 
HIF1A. Additionally, genes implicated in mitochondrial permeability transition were found 
upregulated, notably BAD, BNIP3, HSPA1A, and multiple members of the 14-3-3 family of 
phospho-serine/threonine-binding proteins (YWHAE, YWHAH, YWHAG, YWHAZ, 
YWHAB).

Figure 31.

Figure 31: Shared and distinct pathways altered in terms of transcriptome across several 
excitatory neuron cell-types found to harbour NFTs in the prefrontal cortex of AD patient 
donors. A) summarises the approach taken to identify pathways that are either broadly 
shared or uniquely enriched in neuronal subtypes most vulnerable to NFTs, focusing on 
five clusters characterised by high cell counts and pronounced NFT accumulation. B) 
illustrates the Gene Ontology (GO) biological processes significantly enriched when 
comparing NFT-containing neurons to those free of NFT pathology within each cluster, 
visualised as Manhattan plots generated by g:profiler. C) provides a functional enrichment 
map in which each node represents a GO biological process, colour-coded according to 
neuronal subtype cluster, to highlight both overlapping and subtype-specific functional 
contributions, with related gene sets grouped by thematic clusters. Figure reproduced from 
(Otero-Garcia et al., 2022).
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Around the same time as the original preprint of (Otero-Garcia et al., 2022) was the 
publication of a study that used LCM with mass spectrometry to analyse tangle-bearing 
neurons, similarly to the in-house dataset of this thesis work, and possibly the first of its 
kind to perform this experiment to assay the proteome (Hondius et al., 2021). In this study, 
neurons with GVD (granulovacuolar degeneration) or NFTs were separately isolated from 
post-mortem hippocampal tissue of AD patients (n = 12), using laser-capture 
microdissection guided by immunohistochemical markers casein kinase (CK)1δ for GVD 
and phosphorylated tau (AT8) for NFTs. Additionally, control neurons were similarly 
isolated from cognitively normal subjects (n = 12). Proteomic profiling via label-free LC-
MS/MS was then conducted on these neuron populations, of which 115 proteins showed 
significantly altered abundances in GVD-containing neurons, whereas 197 proteins were 
differentially expressed in NFT-bearing neurons compared to controls. Functional 
categorisation of the significantly altered proteins in GVD neurons indicated involvement in 
several key biological processes, notably protein folding, proteasomal degradation, 
endolysosomal pathways, cytoskeletal integrity, RNA processing, and glycolytic 
metabolism. Interestingly, NFT-bearing neurons shared many of these functional 
alterations but additionally exhibited pronounced reductions in ribosomal proteins and 
further disruptions in protein folding-related factors.

The current body of research examining NFT pathology and selective neuronal 
vulnerability in Alzheimer's Disease remains relatively sparse, highlighting a critical gap in 
our understanding of the disease’s underlying mechanisms. Existing studies underscore 
the complexity and variety of molecular, cellular, and anatomical factors influencing why 
certain neurons succumb to NFT pathology while others remain resilient. Expanding this 
understanding will necessitate rigorous replication of current findings across diverse 
patient cohorts to validate the reproducibility and generalisability of observed effects. Such 
goal represents the motivation for the current thesis work, which takes a comprehensive 
multi-modal approach by integrating the high-quality transcriptomic data by (Otero-Garcia 
et al., 2022) with an in-house LCM proteomics dataset. While the work of (Hondius et al., 
2021) presents another LCM proteomics dataset, with a similar aim, of crucial difference is 
their decision to use control non-tangle-bearing neurons from a separate non-demented 
donor population. Unlike the other studies in this section, this does not facilitate a within-
donor analysis, and therefore the effects of tangle-bearing pathology is necessarily 
confounded with the general effects of AD. As a result, our group elected to create our own 
dataset, focused more specifically on NFTs solely and not GVD or other pathologies, and 
with a within-donor experimental design like the dataset from (Otero-Garcia et al., 2022) 
that it would be integrated with.
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2. Methods

This thesis focuses on two datasets, one publicly available, and another generated in 
house. The publicly available dataset was published by (Otero-Garcia et al., 2022), where 
the authors established techniques for high-throughput isolation and transcriptomic 
analysis of individual neuronal somas containing NFTs from human AD brains. The other 
uses laser capture microdissection combined with mass spectrometry for a proteomic 
analysis of NFTs from human AD brains. In both datasets, neurofibrillary tangles were 
identified with the same antibody, mouse monoclonal AT8 (anti-phospho-Tau [Ser202, 
Thr205], ThermoFisher Cat# MN1020). AT8 recognises tau when phosphorylated at 
Ser202 and Thr205, is not isoform-specific (binds 3R and 4R tau when the epitope is 
phosphorylated), and is widely used to detect pretangles and tangles in Alzheimer’s 
disease tissue. Each dataset was processed with a custom computational pipeline. 
Conventional procedures are detailed in this Methods section while analysis-specific 
developments are presented throughout Sections 3-5.

2.1 FACS-sorted Single-soma RNA Sequencing

The method published by (Otero-Garcia et al., 2022) introduced a novel protocol for high-
throughput fluorescence-activated cell sorting (FACS) and RNA sequencing of individual 
neuronal somas containing NFTs from human AD brains. Their approach enabled the 
quantification of NFT susceptibility and neuronal loss across 20 distinct neocortical 
subtypes, revealing both common and cell-type-specific molecular signatures. A schematic 
overview of the approach taken is visualised in Figure 32.

Figure 32.

Figure 32: Schematic of the processing approach of NFT-bearing and non-NFT-bearing 
neurons derived within AD patient post-mortem cortical tissue. The authors used FACS 
with the AT8 antibody to separate the neuron populations, which then underwent a 
modified single-soma transcriptomics pipeline. The authors analysed the data with several 
aims, including selective vulnerability to tau aggregation, molecular signatures of NFT 
susceptibility, and cell-type-specific and shared expression changes in the neurons. Figure 
adapted from (Otero-Garcia et al., 2022).
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The protocol described by the authors is summarised as follows. Fresh-frozen human 
brain tissue samples were first sourced from publicly available repositories (UCLA-Easton 
Center, the NIH Neurobiobank, and the Stanford Alzheimer Disease Research Center). 
The AD cohort for single-soma transcriptomic analysis included eight donors (five females, 
three males) who had been diagnosed with dementia and met the criteria for AD 
neuropathology. All AD cases had a Braak stage of VI/VI and an ABC score of A3B3C3. 
Donor ages ranged from 66 to 93 years, with a mean of 76.9 ± 12.4 years. The 
postmortem interval (PMI) varied between 1 and 33 hours, with averages of 12.8 ± 7.6 
hours. RNA integrity number (RIN) values ranged from 5.7 to 7.8, with mean scores of 6.5 
± 0.4 for AD samples.

Figure 33.

Figure 33: Sample profile of the AD donors included in this study. All NFT vs. non-NFT 
neurons were sampled within the same subject. Figure adapted from (Otero-Garcia et al., 
2022).

Brain tissue blocks were brought from -80°C to -12°C to facilitate the dissection of thick 
sections (approximately 500 μm). For each experiment, a cortical section weighing around 
200 mg was extracted. White matter and leptomeninges were removed, and the remaining 
tissue was finely chopped into fragments smaller than 1 mm³ using a razor blade. RNA 
quality was evaluated from a 10 mg sample using the RNeasy kit (Qiagen, Cat#74134), 
following the manufacturer’s protocol. The RNA integrity number (RIN) was measured 
using an Agilent Bioanalyzer 2100 RNA Nano chip (Agilent Technologies, Cat#5067-1511), 
following the manufacturer’s protocol. To minimize RNA degradation during soma isolation, 
all processing steps were carried out on ice under RNase-free conditions.

Tissue homogenization was performed using a Potter-Elvehjem tissue grinder, which 
features a wider clearance (0.1–0.15 mm) between the pestle and tube compared to 
grinders commonly used for nuclear dissociation. This design allows for more effective 
dissociation of intact somas while minimizing mechanical damage. Each tissue sample 
was processed in 2.4 mL of homogenization buffer and 0.2 U/mL RNase inhibitor. The 
resulting homogenate was filtered through a 100-μm cell strainer and then divided into two 
1.5-mL Eppendorf tubes for further processing.



53

The sample underwent further purification using iodixanol gradient centrifugation. The 
resulting supernatant was aspirated and discarded, while the pellet was gently 
resuspended in 200 μL of chilled homogenization buffer. All homogenates were then 
pooled into a single tube, and the total volume was measured and adjusted to 450 μL with 
homogenization buffer. To achieve a final iodixanol concentration of 21%, an equal volume 
of 42% iodixanol medium was added and mixed via pipetting. This mixture was layered 
onto 900 μL of pre-chilled 25% iodixanol medium in a 2-mL Eppendorf tube. The gradient 
was then centrifuged at 8,000 × g for 15 minutes at 4°C, causing intact neuronal somas to 
sediment at the bottom, while the upper layers contained myelin and cellular debris. The 
top fraction and supernatant were removed to avoid contamination of the soma-enriched 
pellet.

To resuspend the pellet, 50 μL of immunostaining buffer and 0.2 U/mL RNase inhibitor was 
added, followed by transfer into a fresh tube. The sample was then resuspended to a final 
volume of 200 μL in immunostaining buffer and incubated at 4°C for 15 minutes with gentle 
rocking. Primary antibodies were then introduced, including a mouse monoclonal anti-
phospho-Tau (Ser202, Thr205) antibody (AT8, 1:150, ThermoFisher Cat#MN1020) and a 
rabbit polyclonal anti-MAP2 antibody (1:40, MilliporeSigma Cat#AB5622), and the 
suspension was incubated for an additional 40 minutes at 4°C. Following primary antibody 
incubation, 500 μL of immunostaining buffer was added, and the samples were mixed 
before being centrifuged at 400 × g for 5 minutes at 4°C. The supernatant was removed, 
and the pellet was resuspended in 600 μL of immunostaining buffer. For secondary 
staining, Alexa Fluor-conjugated antibodies were added, including goat anti-mouse Alexa 
Fluor 350 (1:500) and goat anti-rabbit Alexa Fluor 647 (1:500), along with a nuclear stain 
(SYTOX Green, 1:40,000). The solution was incubated at 4°C for 30 minutes with gentle 
rocking.

High-quality samples were characterised by a suspension primarily composed of individual 
neuronal somas and free nuclei, with minimal aggregation and cellular debris. The 
proportion of cells retaining well-preserved somas ranged from 20% to 50% of the total 
sample. On average, processing 100 mg of cerebral cortex tissue yielded approximately 
0.5 to 1.5 million intact somas. FACS was utilised to isolate individual neuronal somas 
containing tau aggregates. Sorting was conducted using either a BD FACSAria II or a 
Sony SH800S, equipped with four excitation lasers (488 nm, 405 nm, 638 nm, and 561 
nm). Single soma suspensions were isolated from Brodmann area 9 (BA9) of Braak stage 
VI AD donors (n = 4). To isolate and profile neurons containing pathological tau 
aggregates, AT8 was chosen as the primary marker. Two populations of the populations 
were used for my re-analysis, neuronal somas with tau aggregates (MAP2 /⁺ AT8 ) from AD⁺  
brains, and adjacent neurons without detectable tau pathology (MAP2 /AT8 ) from the ⁺ ⁻
same AD samples.

FACS gating was established using a series of sequentially applied parameters to 
accurately identify and isolate target cell populations. Side scatter (SSC) area was plotted 
against SYTOX Green to distinguish intact cells from debris and dead cells. Alexa Fluor 
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350 was plotted against Alexa Fluor 647 to differentiate subpopulations based on tau 
pathology and neuronal identity. The parameters were adjusted to exclude the smallest 
particles and large aggregates, ensuring that only intact neuronal somas were analysed. 
To minimize background signal and reduce the risk of false positives from non-specific 
binding or autofluorescence, a series of controls were included, consisting of unstained 
cells, samples treated with only secondary antibodies, and those labelled with individual 
primary antibodies. Sample acquisition was also kept below 30% droplet occupancy. The 
number of somas recovered ranged from 1,600 to 37,000 for AT8  neurons and over ⁺
300,000 for MAP2  neurons.⁺

Figure 34.

Figure 34: Example of the FACS gating approach used to separate neuronal populations 
based on florescence of Sytox Green and the MAP2 and AT8 antibodies. Figure adapted 
from (Otero-Garcia et al., 2022).

Single-soma mRNA capture and library preparation was conducted using the 10x 
Genomics Chromium Single Cell 3’ v2 or v3 platforms. Cell counts were determined using 
a hemocytometer, and cell integrity was assessed via fluorescence microscopy. The 
number of cells loaded per experiment ranged from 1,400 to 11,000, with an upper limit of 
5,000 cells per sample. Subsequent steps followed the manufacturer’s protocols. The 
number of PCR cycles used for cDNA amplification ranged from 13 to 15. For library 
construction, the sample index PCR cycles were set between 12 and 13, adjusted based 
on the quantified cDNA input. Paired-end libraries were sequenced using the Illumina 
NovaSeq 6000 platform. Libraries derived from AD donors were pooled and processed 
together within a single sequencing run. Sample concentrations were normalised based on 
the total number of cells to ensure uniform read distribution across all samples. Each cell 
was sequenced at an average depth of 72,000 reads, achieving an approximate 
sequencing saturation of 85%. Paired-end sequencing data were processed using the Cell 
Ranger software suite (version 3.1) from 10x Genomics. The Cell Ranger count pipeline 
was employed with default settings to align reads to the prebuilt GRCh38 reference 
genome, as well as to perform quality control steps, including filtering, barcode 
identification, and unique molecular identifier (UMI) quantification.
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Figure 35.

Figure 35: Outcome of the protocol employed by the authors which obtained 38,465 NFT-
free somas and 24,660 NFT-bearing somas. The authors demonstrate that each 
population had a similar number of median UMIs, which were of sufficient quality for 
analysis. Both populations also reveal a variety of subcell-types within the neuronal 
populations, of which separation of clusters was finer-grained in the NFT-free population. 
Figure adapted from (Otero-Garcia et al., 2022).



56

2.2 Laser-capture Microdissection Mass Spectrometry

In addition to the publicly available dataset, a dataset was created in-house to supplement 
the transcriptional changes with proteomics. In order to separate tangle-bearing neurons 
we used laser capture microdissection (LCM), a method that uses a precise laser to cut 
out cells or areas of tissue from sections of previously stained tissue. Using human post-
mortem AD brain tissue from the BA9 region, the tissue was stained with AT8 
(phosphorylated tau) to identify tangle-bearing neurons and counterstained with cresyl-
violet, aimed at showing the morphology of neurons. Individual AT8-positive or cresyl 
violet-positive (AT8-negative) neurons were dissected from sections that were 8 μm in 
thickness. While this thickness does not exceed the diameter of a neuronal soma, the 
possibility of capturing material from adjacent cells in the z-plane cannot be fully excluded 
due to the nature of the technique. However, proteomic profiling indicated an enrichment 
for neuronal proteins, with the majority of proteins identified as mapping to neuronal 
populations when analysed in tandem with the single-soma FACS RNA-sequencing 
dataset. Although cells were selected on a single-cell basis, due to the detection limits of 
mass spectrometry, a minimum of 300 cells of the same type and from the same donor 
were pooled together, to ensure adequate starting material. Label-free proteomic analysis 
was then performed using the ultrasensitive timsTOF pro mass spectrometry, through a 
collaboration with Raja Nirujogi in Dundee University. The data acquisition was carried out 
by Dr Martha Foiani (part of the Duff lab) whereas I performed the analysis. Ten 
pathologically confirmed Alzheimer’s Disease cases were acquired from Queen Square 
Brain Bank, UCL. AD cases met current diagnostic criteria (Braak & Braak, 1991; 
McKhann et al., 2011; Montine et al., 2012; Thal et al., 2002), all reaching a final ABC 
score of A3B3C3.

Figure 36.
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Figure 36: Generalised diagram of the LCM workflow. A tissue section is placed on a glass 
slide, and an LCM cap with a transfer film is carefully aligned over the target region. A 
laser pulse is then applied, selectively activating the transfer film, causing cells within the 
designated area to adhere to the cap. As the cap is lifted, the captured cells detach from 
the slide, while the remaining tissue section remains intact. Figure reproduced from 
(Budimlija et al., 2005).

Serial sections of formalin-fixed paraffin embedded 8 µm thickness were cut using a 
microtome and mounted onto glass slides. Slides were stained for AT8 and counterstained 
for cresyl-violet (Nissl staining), in order to separate cortical layers in the BA9 region of the 
cortex. Sections were deparaffinised by immersion in three changes of xylene and 
rehydrated with three steps of absolute alcohol, for 3 minute each. Endogenous peroxide 
activity was inhibited using methanol and 0.3% H2O2 for 10 minutes, followed by tissue 
immersion in PBS for at least 10 minutes. Sections underwent antigen retrieval, which was 
performed by placing slides for 10 minutes in citrate buffer (0.45 g citric acid, 5.8 g tri-
sodium citrate, 2 litres deionised H2O, pH 6.0) and heated in a microwave. Non-specific 
protein binding was blocked by submerging slides in 10% milk in PBS (0.5 M pH 7.2) for 
30 minutes at RT. Following a washing step, tissue sections were incubated in AT8-
biotinylated antibody at 4°C overnight. Following several steps of washing, sections were 
incubated in avidin-biotin complex (ABC, DAKO) incubation for 30 minutes. Binding of the 
antibodies was visualised by submerging slides in 3,3-Di-aminobenzidine (DAB, Sigma) 
activated by H2O2 (500 μg/100 mL PBS. Neuronal cell morphology was obtained through 
cresyl-violet acetate counterstain (Sigma). 

Figure 37.
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Figure 37: Schematic overview of the sampling procedure. Each cap pooled together 300 
neurons from the same donor and of the same population (tangle-bearing vs. non-tangle-
bearing), with 4 technical replicates per donor, across 10 AD donors. Created with 
BioRender.com.

Following the completion of staining, slides were air-dried before being promptly 
processed for laser microdissection. Laser capture microdissection was carried out using a 
Leica DM6000B laser capture microdissection microscope. To minimise contamination 
from adjacent cells, cutting outlines were carefully traced around each individual neuron, 
separating two distinct populations: those with AT8 staining and those without. Cresyl 
violet allows for the identification of layer II neurons in the cortex, so careful attention was 
put into capturing only layer II tau-bearing and non-tau-bearing-neurons, as they are the 
earliest affected neurons in AD. 300 AT8 positive/negative cells (4 technical replicates and 
10 biological replicates) were cut and collected in the lids of separate 0.2 mL Eppendorf 
tubes containing 10µL of RIPA buffer for protein digestion. Samples were briefly spun 
down (20 seconds) at maximum speed and an additional 10µL of RIPA were added to the 
tube. Samples were stored at -80ºC until shipment to Scotland.

Samples were processed in Dundee according to an optimised protocol, based on 
(Hughes et al., 2019). Samples were solubilised in 2% (m/v) SDS buffer for an unbiased 
protein retrieval followed by high power Bioruptor-based sonication with 15 cycles each 
cycle with 30 sec ON and 30 sec OFF. Samples were reduced by adding 5mM DTT 
incubated at 56oC for 30 min and alkylated by adding 20mM Iodoacetamide incubated in 
dark for 30 min. Further, SP3 (single-pot solid-phase- enhanced sample preparation) 
workflow was employed, allowing protein purification, removal of SDS and on-bead trypsin 
digestion, prior to LC-MS/MS analysis. EvoSep LC system with disposable trap columns 
were used to circumvent carry-over between samples. MS data was acquired with the 
highly sensitive timsTOF pro mass spectrometer by employing dia-PASEF (Data 
Independent Acquisition Parallel Accumulation and Serial Fragmentation) strategy to 
achieve near 100% duty cycle, which increased the sensitivity and coverage of proteomes 
derived from lower number of neuronal cells (Meier et al., 2018). Raw MS data was 
processed for database searches using DIA-NN 1.8 version as library free direct DIA 
strategy by allowing default settings against human Uniprot database.
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Figure 38.

Case # Braak 
stage

Sex Age  at 
death

Age at 
symptom 
onset

PMI (h) Fixed 
hemispher
e

Pathologi
cal 
diagnosis

1 VI F 63 48 20 Left AD

2 VI F 63 59 24 Left AD

3 VI F 64 64 32 Left AD

4 VI F 65 56 49 Left AD

5 VI F 68 52 13 Left AD

6 VI M 68 52 9 Left AD

7 VI M 69 65 20 Left AD

8 VI M 69 52 12 Left AD

9 VI M 69 58 7 Left AD

10 VI M 86 72 10 Left AD

Clinical 
diagnosis

APOE 
status

TDP43 
limbic

Thal B&B 
tau

CERAD A B C ABC AD 
level

AD 33 No 5 6 3 3 3 3 A3B3C3 High

CBS due to AD #N/A No 5 6 3 3 3 3 A3B3C3 High

AD #N/A No 5 6 3 3 3 3 A3B3C3 High

AD #N/A No 5 6 3 3 3 3 A3B3C3 High

Pick's disease or 
frontal variant of 
FTD, bvFTD

34 No 5 6 3 3 3 3 A3B3C3 High

Sporadic young 
onsect AD

#N/A No 5 6 3 3 3 3 A3B3C3 High

CBS #N/A No 5 3 3 3 3 A3B3C3 High

AD 33 No 5 6 3 3 3 3 A3B3C3 High

PPA (FTD) #N/A No 5 6 3 3 3 3 A3B3C3 High

nfvPPA (FTD) #N/A No 5 5 3 3 3 3 A3B3C3 High

Figure 38: Table of clinical data of cases. All cases were acquired from Queen Square 
Brain Bank, UCL.



60

2.3 Analysis Organisation and Reproducibility

2.3.1Data Hosting and Version Control

Both datasets underwent custom computational analysis pipelines based on best practices 
and tailored to suit the dataset at hand. Each pipeline is documented with reproducible 
instructions at the following links: https://github.com/eturkes/otero-garcia-2022-ssRNAseq, 
https://github.com/eturkes/NFT-LCM-N8. In order to ensure reproducibility and provenance 
of the analysis, all code was closely version controlled using Git. Git is a distributed 
version control system designed to track changes in code, facilitate collaboration, and 
manage software development projects efficiently. Github was used to host the code, 
which is a cloud-based platform that provides hosting for Git repositories, enabling 
developers to collaborate on projects, track changes, and manage version control. 
Because Github does not support hosting of large files, all raw data and results are stored 
in Dropbox at the following link: 
https://www.dropbox.com/scl/fo/dx1xmpdvq8paam9ujrte3/AMUozK4aieT9fLPaCxHQsj0?
rlkey=k1f74ght8299gz87pxjbuc3sb&st=uqccic97&dl=0. Finally, all code was licensed 
under the GNU General License Version 3 (GPLv3), a widely used open-source software 
license that ensures users have the freedom to run, modify, and distribute software.

2.3.2Docker and Singularity

In order to enhance reproducibility of the analyses, Docker and Singularity was used to 
control the analysis environments. Docker is a container system available on Linux 
systems, harnessing the power of cgroups to create isolated namespaces (Merkel, 2014). 
This allows for lightweight virtualisation where full Linux distributions can be quickly be 
created and destroyed. These containers are usually used in an ephemeral and read-only 
manner, where there are guarantees in place that the environment is unchanged 
regardless of the host system. Using a Dockerfile, programming language versions and 
packages can be explicitly defined, for example R 4.3.3 in this analysis, running in an 
Ubuntu 24.04 environment. Because Docker requires root privileges on the host machine, 
a script to run the environment under Singularity is also provided. Singularity is an 
alternative container management system that can run Docker containers without root 
privilages, for that reason it has become popular in the high-performance computing (HPC) 
space (Kurtzer et al., 2017). After building the Docker and Singularity containers locally, 
they were uploaded to Docker Hub and Singularity Hub. These sites allow for the easy 
download of pre-built containers, ensuring users run the same environment as originally 
used in the analysis. Instructions for pulling these pre-built images are provided in the 
Github README of each analysis.

https://www.dropbox.com/scl/fo/dx1xmpdvq8paam9ujrte3/AMUozK4aieT9fLPaCxHQsj0?rlkey=k1f74ght8299gz87pxjbuc3sb&st=uqccic97&dl=0
https://www.dropbox.com/scl/fo/dx1xmpdvq8paam9ujrte3/AMUozK4aieT9fLPaCxHQsj0?rlkey=k1f74ght8299gz87pxjbuc3sb&st=uqccic97&dl=0
https://github.com/eturkes/otero-garcia-2022-ssRNAseq
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Figure 39.

Figure 39: Screenshot of the Dockerfile hosted on the Github of one of the analyses. The 
Dockerfile builds off of a publicly available container from Docker Hub housing R version 
4.3.3 and specifies the installation of several operating system and R packages.

2.3.3R Markdown

R Markdown was used for organisation and documentation of all code, alongside a small 
utilities file in plain R (R Core Team, 2022). R Markdown is among the recent data analysis 
friendly formats such as Jupyter Notebooks that allow documentation and image 
visualisation directly alongside code (Allaire et al., 2022; Xie et al., 2018, 2020). R 
Markdown supports a wide variety of outputs including Word documents, PDF, and HTML 
documents. I opted to used HTML to harness interactive features when viewed in a web 
browser. The R Markdown files were organised in a modular and iterative manner. For 
example, the first R Markdown file to be run within a directory is suffixed with 01, to imply 
that its run precedes others. Because some calculations are computationally expensive, 
the process also uses on-disk caching. A helper script is provided to run all files in 
sequence, alongside another command to spin up a Dockerised R Studio environment for 
interactive analysis. These can be run locally, or on a remote server using a reverse SSH 
proxy (instructions provided in Github repository).
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Figure 40.

Figure 40: Excerpt of the run_all script written in R for one of the analyses, demonstrating 
the modular nature of the R Markdown documents.

Figure 41.
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Figure 41: Excerpt of an R Markdown file used in one of the analyses. R Markdown allows 
for the incorporation of code directly in a document which can support plain text, images, 
and interactive elements through a Javascript backend. After writing an R Markdown file, it 
can be compiled, producing a standalone HTML file that can be easily distributed. 
Precompiled R Markdown documents are provided for all analyses in the Dropbox link.

Figure 42.

Figure 42: RStudio Server environment provided with the analysis. Using the 
Docker/Singularity images in the Github repositories, users can download an identical R 
Studio environment as that used in the analysis, allowing for easy inspection of the data 
and replication of results. From here, the R Markdown files can be recompiled if desired.

2.3.4Gene / Protein Identifiers

Finally, in all analyses, ENSEMBL IDs were preferred over gene symbols for all internal 
processing where possible. ENSEMBL IDs provide the benefit of unique unchanging 
identifiers whereas symbols, while more easily human-interpretable, can be obsoleted or 
ambiguous. After internal processing, ENSEMBL IDs were converted to their closest gene 
symbol for visualisations and other results. Interchange between the identifiers was done 
as needed to facilitate the analysis.
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2.4 Single-cell RNA Sequencing Preprocessing

2.4.1Data Cleaning

The authors of (Otero-Garcia et al., 2022) provide a preprocessed Seurat object, which is 
a standard format for R-based single-cell transcriptomics analysis (Butler et al., 2018; Hao 
et al., 2021, 2024; Satija et al., 2015; Stuart et al., 2019). These objects however held data 
far downstream in their processing pipeline. For greater control over the analysis, I opted 
to work with the Cell Ranger h5 files available at the article’s GEO accession location 
(GSE129308). Cell Ranger h5 files are Hierarchical Data Format (HDF5) files generated 
by 10x Genomics Cell Ranger pipeline, used for storing processed scRNAseq data 
(Satpathy et al., 2019). These files contain structured information such as gene expression 
matrices, barcodes, and UMI counts. Commonly, two types of h5 files are produced: 
filtered_feature_bc_matrix.h5, which contains high-confidence cell-associated data, and 
raw_feature_bc_matrix.h5, which includes all droplets, including those likely devoid of any 
cells. The h5 files were provided in a granular manner, with a unique file for each donor by 
condition (for example Donor 1, AT8 positive). My pipeline was written to operate on each 
h5 file individually, with an R Markdown file for each h5 file. The initial step of each 
analysis was to load the h5 file into a fresh Seurat object.

2.4.2Quality Control

A distinctive feature of droplet-based data is the absence of prior information about 
whether a given library (represented by a cell barcode) originates from a droplet containing 
a cell or from an empty droplet. Consequently, distinguishing genuine cells from empty 
droplets must rely solely on observed expression profiles. This task is challenging because 
even empty droplets can capture ambient RNA from the extracellular environment, leading 
to detectable sequencing reads and non-zero expression counts in libraries that lack 
actual cellular content. The filtering AKA cellcalling step of Cell Ranger, which produces 
filtered_feature_bc_matrix.h5, aims to differentiate cell-containing droplets from empty 
droplets by implementing the EmptyDrops algorithm described in (Griffiths et al., 2018; Lun 
et al., 2019). In this algorithm, ambient RNA background is modelled as a multinomial 
distribution derived from the ambient gene expression profile. Considering barcodes with a 
greater than 500 UMI (transcript) count, the selected barcodes are statistically evaluated 
against the ambient RNA background model. Those whose RNA expression significantly 
differs from this background are subsequently classified as genuine cells.

I opted to use the filtered matrix produced by the Cell Ranger cell-calling algorithm after 
careful inspection of its output. The general approach to confirming successful cell-calling 
is to visualise the sample with a barcode rank plot, implemented into the pipeline using the 
barcodeRanks function from the DropletUtils package in R (Griffiths et al., 2018; Lun et al., 
2019), which contains the reference implementation of EmptyDrops. A barcode rank plot of 
a library after successful removal of empty droplets is characterised by a lack of cells 
below a certain total UMI count, generally around 500 especially when using Cell Ranger 
with default parameters. When plotting total UMI against the rank of each barcode sorted 
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by UMI count, this should furthermore produce a visually smooth curve, implying that the 
number of cells increase in a predictable fashion with reduction of total UMI count. This 
curve is predicted by the modelling of the cell-to-UMI relationship as a negative binomial 
distribution, the prevailing model in the scRNAseq field (W. Chen et al., 2018).

Figure 43.

Figure 43: A barcode rank plot of a random sample in the dataset. On the x-axis is the rank 
of each barcode, where a larger number indicates lower total UMI count. On the y-axis is 
total UMI count of each barcode. A lack of barcodes below a certain UMI count, and a 
smooth curve showing a steady increase in cells with lower total UMI implies that no 
further cell-calling is needed.

Figure 44.
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Figure 44: A barcode rank plot showing a random sample from an unrelated dataset where 
cell-calling had not been run. The x and y axes follow those in Figure 43. It can be 
observed that shape of the curve differs substantially from Figure 43, indicating that cell-
calling is needed. Shown is an approximate inflection point preceding a characteristic 
“knee”, that suggests an appropriate total UMI count cutoff for effective cell-calling.

After determining that all samples underwent cell-calling by Cell Ranger successfully, I 
next aimed to perform routine quality control on the number of unique features (genes), 
total UMI counts, and percentages of mitochondrial, ribosomal, and MALAT1 counts, all of 
which are commonly used as indicators of low-quality cells (Luecken & Theis, 2019; Osorio 
& Cai, 2021). In brief, the number of unique features helps distinguish robust 
transcriptomes from cells with poor RNA capture or degradation. Total UMI counts provide 
an overall measure of sequencing depth per cell, ensuring sufficient detection sensitivity. 
Mitochondrial read percentages act as an indicator of cell stress or apoptosis, as damaged 
cells often exhibit disproportionately high mitochondrial RNA content. Similarly, ribosomal 
RNA percentages can signal contamination or technical artefacts, while MALAT1 count 
levels can help identify cells with nuclear retention bias.

Figure 45.

Figure 45: Violin plots showing various QC metrics on a random sample from the dataset 
before any thresholding or removal. Each point represents a cell, with the y-axis showing 
the cells’ number of counts or percentage of counts, as determined by the plot title.
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Although I obtain these QC metrics at this stage, I withhold any thresholding until after 
doublet removal. This is because scDblFinder, the doublet removal method of choice in 
this analysis, operates under the assumption that empty droplets have been removed, but 
further QC had not been performed yet (Germain et al., 2022). Likewise, certain 
approaches to QC can become skewed if calculations take place after doublet removal. 
The clearest case of this is when using an outlier approach like median absolution 
deviation (MAD) for number of unique features and total counts. This type of filtering is 
commonly used to remove a small number of outlier cells at the upper extreme of these 
metrics. The rationale is that these cells, while not necessarily low-quality, are not essential 
to a population-level understanding of the dataset (assuming they do not constitute a real 
distinct cell-type population of sufficient quantity). However, they can have considerable 
detrimental effects to the quality of steps such as normalisation and dimensionality 
reduction (Luecken & Theis, 2019). Because doublet removal primarily operates on cells in 
these upper extremes, thresholds for statistics such as MAD can substantially shift, 
leading to the adverse effect of removal of larger numbers of cells that may normally be 
considered informative.

Regarding the assumptions of scDblFinder, as per the vignette of the R package: “the 
input to scDblFinder should not include empty droplets, and it might be necessary to 
remove cells with a very low coverage (e.g. <200 or 500 reads) to avoid errors. Further 
quality filtering should be performed downstream of doublet detection, for two reasons: 1. 
the default expected doublet rate is calculated on the basis of the cells given, and if you 
excluded a lot of cells as low quality, scDblFinder might think that the doublet rate should 
be lower than it is. 2. kicking out all low quality cells first might hamper our ability to detect 
doublets that are formed by the combination of a good quality cell with a low-quality one” 
(https://bioconductor.org/packages/release/bioc/vignettes/scDblFinder/inst/doc/
scDblFinder.html). The key operating principle underlying scDblFinder is the simulation of 
artificial doublets generated from the input data, which is used to train a classifier on both 
the original and artificial data. There are a variety of doublet removal methods that elect 
similar or different approaches, and scDblFinder was selected based on its strong 
performance in its reference publication, where it was benchmarked against most 
competing methods at the time.

scDblFinder was run with default parameters, producing a vector marking predicted 
doublets in each sample. To visualise the distribution of doublets, I marked doublets on a 
UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction) created 
on each sample. UMAP is a dimensionality reduction technique that preserves the local 
and global structure of high-dimensional data, making it particularly useful for visualising 
complex datasets such as scRNAseq and machine learning embeddings (Becht et al., 
2018; McInnes et al., 2020). The details for generating the UMAP will be discussing in the 
proceeding paragraphs, as it is ran again after all QC steps are completed.
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Figure 46.

Figure 46: A UMAP projection of a random sample showing the distribution of doublets as 
identified by scDblFinder. In this particular sample, 159 doublets (5.3% of all cells) were 
called.

While the distribution of doublets in each sample did not seem to single out a potential real 
cell-type that might be of interest (in other words, doublets were evenly distributed rather 
than clustered), this approach may have been a bit conservative. According to the 
scDblFinder authors and 10X Genomics documentation, 10X Chromium droplet data, 
which was the basis of the protocol used in this dataset, should produce doublets on the 
rate of 0.8% per 1,000 cells. Figure 46 shows a sample with 2,995 cells, which by that 
calculation should then have a doublet rate of about 2.37%. In that sample, scDblFinder 
marked 5.3% of cells as doublets, more than double the expected rate. This was the case 
generally across all samples. I choose to go forward with this doublet removal, noting that 
it is conservative but not biased towards specific clusters and thus satisfactory for further 
analysis. It is possible that further optimisation may yield a doublet detection rate closer to 
the expected proportions, although it is also possible that this dataset simply contains 
more doublets than a typical dataset. This assumption is not unreasonable considering 
that the dataset was produced using a modified protocol combining FACS sorting to 
separate tangle-bearing and non-tangle-bearing neurons.
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After doublet removal, the QC metrics (number of unique features, number of total counts, 
percentage mitochondrial, ribosomal, and MALAT1 counts) were re-assessed (but not re-
calculated), and a decision was made regarding QC thresholding. Instrumental to this 
process was the creation of density plots on the metrics that help show abnormal peaks at 
range extremes that may indicate that filtering is needed. This is a common approach in 
many scRNAseq QC pipelines (for example 
https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/
Seurat_QC_to_Clustering/ or https://hbctraining.github.io/In-depth-NGS-Data-Analysis-
Course/sessionIV/lessons/SC_quality_control_analysis.html). Figure 47 shows for 
instance, the number of unique features per cell in a randomly selected sample. One 
should note the contrast with Figure 48, which is the same metric in an unrelated dataset. 
The major difference between the two is the number of peaks; for the data in this analysis, 
a single smoothened peak is observed at the mid-to-upper range of number of features, 
whereas the unrelated dataset has multiple peaks and most importantly, its largest peak by 
far is in the lower range of number of features. This information suggests that the thesis 
dataset (Figure 47) may not require further QC on this metric, while the unrelated dataset 
(Figure 48) may benefit from it, specifically a threshold on lower values around the vertical 
line shown.

Figure 47.

Figure 47: QC density plot on a random sample from the FACS ssRNAseq dataset. On the 
x-axis is the number of unique features per cell. On the y-axis is the density of cells at 
each x-axis value.

https://hbctraining.github.io/In-depth-NGS-Data-Analysis-Course/sessionIV/lessons/SC_quality_control_analysis.html
https://hbctraining.github.io/In-depth-NGS-Data-Analysis-Course/sessionIV/lessons/SC_quality_control_analysis.html
https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/Seurat_QC_to_Clustering/
https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/Seurat_QC_to_Clustering/
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Figure 48.

Figure 48: QC density plot from a sample in an unrelated dataset. The x and y axes are 
equivalent to those in Figure 47. A vertical line is drawn which suggests a potential cutoff 
to remove cells below a number of unique features.

Examination of density plots across QC metrics and across samples suggested that 
significant quality control was unneeded. It is important to consider that removal of empty 
droplets and doublet removal can often already substantially filter on the extremes of both 
sides of the range regarding total number of counts and number of unique features. In 
particular, doublet removal on this dataset was conservative and may have already 
removed more cells than necessary. That being said, a decision was made to apply a 
conventional filter on percentage of mitochondrial counts. As seen in Figure 49 of a density 
plot of this metric on a random sample from the dataset, a singular peak is mostly 
observed, but some peakiness does emerge at around the 10% mark. Interestingly, in 
(Osorio & Cai, 2021) the authors systematically analysed 1,349 scRNAseq datasets from 
human tissue with the aim of determining an ideal hard threshold for percent mitochondrial 
counts that is generally applicable across most datasets; they concluded that this 
standardised threshold should be 10%. Adaptive thresholding, for example removing cells 
with greater than 3 MAD in terms of mitochondrial counts, as implemented by the 
commonly used R package scater (McCarthy et al., 2017), is another option. However, I 
argue that this approach is difficult to interpret. By setting a hard threshold, a definition can 
be formed for what constitutes a low-quality cell (i.e. more than 10% of the counts coming 
from mitochondria), whereas adaptive thresholds hold no such meaning and can remove 
cells with wildly different mitochondrial percentages between datasets. In a very clean 
dataset, an adaptive approach may remove cells with mitochondrial percentages as low as 
1 or 2%. It may be argued that even if those cells are outliers, they may not necessarily be 
low-quality.
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Finally, it is important to note that I do not remove mitochondrial genes (nor ribosomal 
genes nor MALAT1) from the gene count matrix, though these genes were used for QC. 
The presence of non-zero counts in these genes are expected and can be a result of true 
biology; in the case of transcripts derived from mitochondria, they are known to be 
influenced by disease biology and are modulated by changes in nuclear gene expression 
(Muir et al., 2016). It is just the case that above a certain enrichment of these genes, their 
presence may be linked to quality issues rather than true biology, and rather than remove 
the genes, it is advisable to remove those overly-enriched cells instead. This is the case 
with single-cell (or in this case single-soma) data; when working with single-nucleus data, 
it makes more sense to remove both cells with enrichment of mitochondrial counts, as well 
as the genes from the matrix itself, as there is no biological reason for mitochondrial 
transcripts to reside in the nucleus; their capture likely arises purely from quality issues.

Figure 49.

Figure 49: A density plot showing percentage mitochondrial counts in a random sample 
from the dataset. The peak near the 10% mark, as well as systematic research on optimal 
thresholding of this metric (Osorio & Cai, 2021), suggests that removing cells with greater 
than 10% mitochondrial counts is sensible in this dataset.

2.4.3Dimensionality Reduction and Clustering

Following the sole additional filtering of percentage mitochondrial counts, each sample 
underwent a conventional dimensionality reduction and clustering pipeline, following 
standard practice as advised by the Seurat developers. Note that the per-sample pipeline 
differs from the pipeline that will be applied to all samples when combined together, which 
will be described in upcoming sections. For the per-sample pipeline, it begins with 
normalisation using SCTransform, using the latest “v2” model (Choudhary & Satija, 2022; 
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Hafemeister & Satija, 2019). SCTransform is a variance-stabilising normalisation method 
for scRNAseq data that models transcript counts using a regularised negative binomial 
regression framework. It aims to account for technical confounders while preserving 
biological variation. By default, the only confounder that SCTransform regresses against is 
sequencing depth and it is possible to specify additional potential confounds (latent 
variables), a common one being percentage mitochondrial counts. I opted to not add any 
additional latent variables, as I decided that remaining expression of such genes, after QC, 
may reflect true biology and their influence on dimensionality reduction and other 
downstream steps is desirable.

Following SCTransform, principle components (PCs) were calculated, retaining the first 30 
PCs as advised by the Seurat and SCTransform authors. This step can be further 
optimised for the selection of more or less PCs, and this optimisation was performed when 
processing on the combined samples, but left to defaults for the current steps on individual 
samples, as the analysis is strictly exploratory at this stage. The 30 PCs were then fed as 
input into the UMAP algorithm, set with default parameters. Finally, clustering was 
performed using Seurat’s default louvain clustering algorithm. This algorithm is a graph-
based community detection method that identifies clusters of similar cells by constructing a 
shared nearest neighbor (SNN) graph, where cells are represented as nodes and edges 
reflect their transcriptomic similarity.

Only one change was made to the default settings for clustering; the clustering resolution 
parameter was set to an adaptable value based on the number of cells in the sample. The 
author authors provide little guidance towards optimisation of this value, just that they find 
that a value of 0.8 is generally suitable for a dataset of about 3,000 cells. A larger value 
results in fine-grained clustering, while a lower one is coarser, and a desirable clustering 
outcome is largely dependent on the interests of the researcher as well as visually 
identifiable clusters on the UMAP projection. While methods exist for more empirical 
determination of clustering resolution, using well-established cluster stability metrics like 
silhouette scores and clustering trees (Zappia & Oshlack, 2018), for the purposes of 
exploratory analysis this was deemed unnecessary. Instead, I found that simply dividing 
the number of cells by 10,000 provides a clustering resolution value that is lightly 
adaptable to small changes in the number of cells between samples, producing clusters 
that align well with each sample’s UMAP (Figure 50). For the analysis on combined 
samples, I elect for a different approach, which is described in following sections.

At this stage, the QC metrics described prior were replotted, including on a per-cluster 
level (Figure 51). Some of these metrics do show cluster-level differences, which may 
arise from biology, but may also indicate that some clusters are driven by minor differences 
in quality. I elected for no additional action in this area, but it demonstrates an area that 
could be of further research interest.
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Figure 50.

Figure 50: Final UMAP projection and clustering of a random sample in the dataset. These 
UMAPs were used solely for exploratory confirmation of the initial preprocessing before a 
combined analysis of the samples.

Figure 51.
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Figure 51: All QC metrics were replotted on a cluster-level basis, shown here are 
percentage mitochondrial and ribosomal counts. Although not further explored in this 
analysis, cluster-level differences are apparent, which may be biological or technical.

2.4.4Sample Merging and Cell-type Annotation

Following QC on each sample, another set of R Markdown files were used for a combined 
analysis. Seurat facilitated straightforward merging of the Seurat objects produced on the 
per-sample processing described above. Besides merging of raw counts, the SCTransform 
normalised data was also merged and corrected for library size between samples using 
PrepSCTFindMarkers. As per the documentation, “this function uses minimum of the 
median UMI (calculated using the raw UMI counts) of individual objects to reverse the 
individual SCT regression model using minimum of median UMI as the sequencing depth 
covariate” (https://satijalab.org/seurat/reference/prepsctfindmarkers). Due to difficult 
interpretability of this transformation, downstream analysis (gene set enrichment and 
differential expression) not not end up using this transform, just the raw counts, which 
were then normalised at the pseudobulk level (described in Section 5.1). In theory, working 
with this transformation may be a superior approach, as it should allow valid statistical 
testing between groups while utilising finer-grained single-cell normalisation, but the 
current implementation was deemed to be of a too experimental state.

After merging raw counts across all samples, I was able to obtain a combined Seurat 
object with 33,694 features across 51,955 somas from 8 donors, each with tangle-bearing 
and non-tangle-bearing populations; no exclusion of samples was required based on 
examination of the per-sample exploratory analysis described prior. To visualise the 
combined dataset, the dimensionality reduction and clustering pipeline previously 
described was ran again, with any differences noted here. To better refine the most 
relevant PCs, this time I inspected an elbow plot (Figure 52), choosing to select the first 33 
PCs for downstream analysis. This is a common and easy to understand approach for PC 
selection, where the aim is to identify an inflection point wherein which additional PCs 
contribute little extra variance and the additional information is more likely to contain 
technical noise than biological variation (Zhuang et al., 2022). The other change made to 
the pipeline was selection of a resolution value. Because at this stage I am working with a 
single data structure of the combined data, automated high-throughput approaches are not 
needed, and it was deemed superior to manually select a value based on visual 
inspection. I decided on a low value of 0.005 given the number of cells, to simply separate 
excitatory neurons, which are the cell-types of interest, from inhibitory neurons and glial 
cells (confirmed through marker gene analysis, Figures 55 and 56). In any case, fine-
grained cell-type annotation would instead use the labels provided by dataset authors 
using a reference-query approach (described below), so this clustering was only used for 
exploratory purposes and would not be used for actual subsetting of specific cell-types. 
The results of these described steps, visualising various properties of the dataset, is 
shown in Figures 52 through 57.
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Figure 52.

Figure 52: Elbow plot used for the selection of principal components (PCs) to retain for 
downstream steps. On the x-axis is each PC and on the y-axis is the standard deviation 
explained by each PC. PC 33 was determined to be a suitable point of inflection on the 
dataset with combined samples, and all PCs up to and including PC 33 was retained for 
downstream analysis.

Figure 53.

Figure 53: UMAP projection of all cells across all donors. A low clustering resolution value 
(0.005) was set to simply divide cells into inhibitory and excitatory neuron populations 
(confirmed through marker gene analysis in Figures 55 and 56).
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Figure 54.

Figure 54: Confirmation of inhibitory neuron populations through plotting the normalised 
expression of the well-established inhibitory neuron marker gene GAD1.

Figure 55.

Figure 55: Confirmation of minor populations of glial cells, in this case astrocytes, using 
the well-established marker gene GFAP.
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Figure 56.

Figure 56: Visualisation of the distribution of the 8 donors among the cells, regardless of 
NFT status.

Figure 57.

Figure 57: Visualisation of the distribution of the primary condition among the cells, where 
CTRL refers to non-tangle-bearing cells and NFT refers to tangle-bearing cells.



78

Figure 58.

Figure 58: Final labelling of cell populations using the labels provided by the dataset 
authors after applying the Seurat reference-query approach for alignment (described 
below). Clusters of cells towards the left size of the UMAP were labelled as inhibitory 
neurons, in agreement with the marker gene analysis in Figure 55. Likewise, a few small 
gilal populations are labelled. All other cells, composing the majority of the data, were 
annotated as various subpopulations of excitatory neurons.

As can be seen in Figure 58, the pipeline produced a dimensionally reduced dataset that 
aligns well with the author’s provided labels, confirmed through the visual consistency of 
labels among nearby cells, forming well-defined clusters with little overlap between them. 
Furthermore, it was determined that no form of advanced integration was required to 
harmonise differences any among donors. Such methods have become highly popular for 
finding shared cell-types between donors or experimental batches by aligning shared 
biological variation while mitigating technical artefacts. However, they should be applied 
cautiously, as the integration procedure introduces dependencies between data points, 
which may fail to preserve the magnitude of relative expression between genes or even 
direction of change, resulting in artificial agreement between donors or batches or 
conversely, the masking of biological heterogeneity of interest (W. Chen et al., 2020). The 
choice to use integration, like many aspects of a bioinformatics pipeline, is ultimately up to 
the discretion of the researcher, and considering the drawbacks, I generally elect to avoid 
use of integration when a dataset exhibits minimal undesirable heterogeneity without it. 
This was determined through examination of Figure 56, which shows the distribution of 
cells among donors. It can be seen that all excitatory neuron populations, the populations 
of interest, are well distributed, regardless of source donor. This figure does however show 
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evidence of greater heterogeneity within inhibitory neurons; investigation of this population 
may warrant use of integration techniques, but the population was not within the scope of 
this analysis.

It should be noted that although the FACS strategy targeted MAP2  neurons, a small ⁺
proportion of events in the sorted populations expressed astrocytic or oligodendrocyte 
precursor cell (OPC) markers. This may reflect technical factors such as non-specific 
MAP2 staining or carry-over of neuronal material into closely associated glia during 
dissociation. Subsets of these populations also exhibited reactivity with AT8. AT8 reactivity 
in glia has been reported in several contexts. Astrocytic tau pathology detectable with 
phosphorylation-dependent antibodies, such as AT8, is recognised as aging-related tau 
astrogliopathy (ARTAG), which can co-occur in brains with Alzheimer’s pathology (Nolan et 
al., 2019). Meanwhile oligodendroglial tau inclusions (“coiled bodies”) are also AT8-positive 
and have been described in AD (Kovacs, 2016).

In order to align the datasets, the Seurat reference-query approach was used (Stuart et al., 
2019). Seurat provides functionality for projecting reference data or metadata onto a query 
dataset, a process that shares similarities with data integration but with key differences. 
Unlike integration, data transfer does not alter or correct the expression values of the 
query dataset, lessening the risk undesirable data manipulation. Instead, Seurat offers the 
option to project the PCA structure of the reference dataset onto the query to learn a joint 
structure. Principal components are purely linear transformations of data, preserving the 
original structure in a mathematically interpretable way while reducing dimensionality. 
Once anchor points between the datasets in the joint PCA are identified, the TransferData 
function is used to classify query cells based on reference labels, returning a matrix 
containing predicted cell identities and confidence scores, which can then be incorporated 
into the query metadata.

The labelling of the combined dataset concludes the conventional portions of the RNA 
sequencing pipeline and produces a Seurat object that is later used for incorporation into 
GeneFunnel and statistical analysis (Section 5.1). For those downstream analyses I 
focused exclusively on the excitatory neurons within the largest contiguous clustering 
space, specifically EX L2-4 CUX2, EX L4-5 RORB, EX L5 RORB, and EX L5-6 THEMIS 
(Figure 59). These cell-types were analysed extensively in (Otero-Garcia et al., 2022) as 
they were found to harbour the largest proportion of NFTs among the cell-types, 
implicating that they are selectively vulnerable. Several of these cell-types, such as the 
RORB expressing populations have been shown to be selectively vulnerable in other 
human AD scRNAseq studies as well (Leng et al., 2021). As the remaining pipeline of 
downstream analysis focuses on novel methods developed in this thesis, it is discussed in 
their associated sections rather than here in Methods.
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Figure 59.

Figure 59: UMAP of the processed and annotated dataset of all combined samples of the 
FACS ssRNAseq dataset. Circled in red are the cell-type populations retained for all 
following downstream analyses (described in Section 5.1), specifically EX L2-4 CUX2, EX 
L4-5 RORB, EX L5 RORB, and EX L5-6 THEMIS. These populations were selected to 
retain excitatory neuron cell-types that fell within the largest contiguous cluster of 
excitatory neurons, in a sense the most representative set of cells of the dataset. 
Importantly, in the original dataset publication, the authors demonstrate that these 
populations also harbour the largest proportion of NFTs among cell-types, suggesting that 
they are the most selectively vulnerable cell-type populations in the dataset (Otero-Garcia 
et al., 2022).
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2.5 Mass Spectrometry Preprocessing

2.5.1Data Cleaning

The LCM mass spectrometry dataset was developed in-house, therefore the pipeline does 
not reference an external resource, unlike the transcriptomics pipeline. The foundational 
package driving this analysis was DEP (Differential Enrichment Analysis of Proteomics), 
available from the R Bioconductor repositories (X. Zhang et al., 2018). This package offers 
a substantial workflow for analysing mass spectrometry-based proteomics data and 
accepts tabular input formats, such as text files, generated by quantitative proteomics 
software like MaxQuant (Cox & Mann, 2008), which was distributed by the mass 
spectrometry service provider.

The pipeline I employed begins with the reading of the proteinGroups.txt file generated as 
output from MaxQuant. This file contains a comprehensive list of identified and quantified 
proteins from the raw mass spectrometry data, consolidating peptide-level information into 
protein-level results. As a form of raw input, this file generally requires some cleaning 
within R for greater usability. Therefore sample names were tidyed; proteins without gene 
annotations were removed, and proteins with multiple gene symbols were collapsed into 
the most likely single symbol. Standard ways to approach these initial steps are 
documented by the DEP authors. After cleaning, the DEP SummarizedExperiment object 
could be created.

2.5.2Quality Control

The first QC step of the pipeline is a simple histogram of log2 protein intensity values with 
all samples combined (Figure 60). The values are normally distributed as expected, 
however, a tail in the higher intensities suggest that it may be slightly skewed. Another QC 
plot showing the number of proteins per sample (Figure 61) suggests that this may be due 
to considerable differences in protein capture among the samples, including technical 
replicates. Likewise, there is significant variance in the pattern of missing values (Figure 
62). This formed a considerable hurdle in the beginning steps of the analysis.

Figure 60.
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Figure 60: Histogram of log2 protein intensity values across the whole dataset. The data 
appears normally distributed as expected, but may contain a slight negative skew.

Figure 61.

Figure 61: Plot of protein intensities per sample. The plot indicates that the efficiency of 
protein capture varies substantially between donors and technical replicates.

Figure 62.
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Figure 62: Plot of missing value distribution among samples, where black areas indicate 
proteins with missing values and white values indicate complete proteins. Like Figure 61, 
missing value distribution varied substantially between samples.

In order to explore the data further, I initially proceeded without any sample removal, 
though the QC steps so far suggest this may be necessary. As suggested by the DEP 
authors, variance stabilising normalisation (VSN) (Huber et al., 2002) was applied to the 
dataset. As seen in Figure 63, however, this normalisation failed to centre median of 
protein intensities across samples, likely due to the great heterogeneity between the 
samples. Nevertheless, following the final preprocessing step of the DEP pipeline, I 
applied imputation using the default k-nearest neighbor (kNN) algorithm (Gatto & Lilley, 
2012) on the normalised data. Figure 64 shows the results of the imputation; abnormalities 
in the distribution of log2 intensities further suggests that the default pipeline was not ideal.

Figure 63.

Figure 63: Standard VSN normalisation applied to the dataset without removal of samples. 
The failure to centre the medians of protein intensities suggests that the method was 
insufficient for normalisation of the dataset.
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Figure 64.

Figure 64: Result of kNN imputation (bottom) on the dataset without removal of samples. 
The lack of a smooth distribution, like the data before imputation (top), suggests that the 
method performed poorly in the naive first-pass pipeline described thus far.

2.5.3Sample Removal

A PCA plot was created to inspect the results of this initial pipeline on all samples (Figure 
65). The plot shows that the pipeline failed to separate the samples by condition, which is 
crucial for a successful analysis. Separation of donor effects were also unclear, with the 
distribution of points appearing more-or-less random. However, further inspection of the 
PCA clusters revealed that the first PCs appear to capture differences in proteins detected 
per sample, reflecting Figure 61. Therefore, by thresholding the samples to the 
coordinates where PC1 < 0 and PC2 > 0 (the upper left quadrant), I found a quantitive 
approach to subsetting to those samples that were of greater quality. This was confirmed 
by recreating Figure 61 with those samples only (Figure 66). I additionally removed one 
donor (Donor 9) because it failed to have a non-tangle-bearing neuron sample after 
removal of low-quality samples.
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Figure 65.

Figure 65: PCA of all samples after running the initial DEP pipeline. The first two 
components capture large variance but fail to separate samples by condition nor donor.

Figure 66.
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Figure 66: Proteins detected per sample after removal of low-quality samples by 
subsetting to those samples in the upper-left quadrant of the PCA plot in Figure 65. Also 
removed is Donor 9 for failing to retain a non-tangle-bearing neuron sample.

2.5.4Normalisation

The data was then reprocessed using the higher-quality samples and a more refined 
pipeline. Crucially, I also apply a novel imputation method I developed called ImputeFinder, 
described in greater detail in Section 3 and also published in (Fowler et al., 2025). 
Furthermore, a more adaptable normalisation method called EigenMS was employed 
(Karpievitch et al., 2014), which resulted in more effective stablisation of variance than 
VSN, as evidenced by a flatter trend line when plotting standard deviation of protein 
intensities against their mean (Figures 68 and 69). Similarly, median-centering of 
intensities were observed to be mildly improved (Figures 70 and 71). The results of 
imputation by ImputeFinder, which contains steps that take place both before and after 
normalisation, is shown in Figure 72, and is suggestive of successful imputation and 
successful overall preprocessing pipeline. Originally designed for use in metabolomics 
data, which is also often mass spectrometry based, as described by the authors, 
“EigenMS works in several stages. First, EigenMS preserves the treatment group 
differences in the metabolomics data by estimating treatment effects with an ANOVA 
model (multiple fixed effects can be estimated). Singular value decomposition of the 
residuals matrix is then used to determine bias trends in the data. The number of bias 
trends is then estimated via a permutation test and the effects of the bias trends are 
eliminated” (Karpievitch et al., 2014).

The particular advantage of EigenMS for this dataset is that it allows for precise selection 
of bias trends to be removed, without removing those trends that correlate with the 
comparison of interest, in this case tangle-bearing vs. non-tangle-bearing neurons. Figure 
67 shows a figure produced by EigenMS on this dataset that demonstrates this process. 
On the x-axis of each subfigure is each sample in the dataset, totalling the 20 remaining 
after sample removal. The y-axes describe SVD trends for each of the samples. The left-
hand figures, titled “Raw Data” summarise these SVD trends for each overall bias trend, 
with the first three shown. The right-hand figures, titled “Residual Data”, summarise the 
SVD trends after removal of the bias trend on the corresponding left-hand side. The key 
point of this process is to identify the number of bias trends that should be removed before 
the remaining SVD trends reflect the comparison of interest. Because the samples are 
arranged such that the first 10 are non-tangle bearing samples, and the remaining 10 are 
tangle-bearing, bias trend removal should be iterated until a “Residual Data” plot is 
produced that shows SVD trends corresponding to these comparison groups, such that the 
SVD trend directions of change are clearly pointed in opposite directions. This point is 
reached in the final right-hand figure, indicating that the removal of 3 bias trends is 
sufficient for removal technical noise such that the remaining largest source of variation 
corresponds to the comparison of interest.
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Figure 67.

Figure 67: Output from EigenMS on the dataset to aid in bias trend removal. The x-axis of 
each subfigure shows each sample, where the first 10 are non-tangle-bearing samples 
and the last 10 are tangle-bearing samples. For each sample, the y-axes shows its 
corresponding SVD trend. The left-hand figures, titled “Raw Data” shows the SVD trend 
associated with each overall bias trend, while the right-hand figures, titled “Residual Data” 
show the remaining SVD trends after removal of the associated bias trend. After removal 
of a bias trend, the next set of trends shows the bias removal process with the prior trends 
removed. A researcher aims to select the minimum number of bias trends required for 
removal before the SVD trends align with the comparison of interest. That point in this 
dataset was determined to be 3 bias trends, as reflected in the final “Residual Data” figure.
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Figure 68.

Figure 68: Result of EigenMS normalisation on variance stabalisation of the subsetted 
data before imputation.

Figure 69.

Figure 69: Result of standard VSN normalisation on variance stabalisation of the subsetted 
data before imputation.
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Figure 70.

Figure 70: Box-plot of protein intensities on subsetted data after EigenMS normalisation.

Figure 71.

Figure 71: Box-plot of protein intensities on subsetted data after VSN normalisation.
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Figure 72.

Figure 72: Protein intensity density plots before (top) and after (bottom) imputation using 
ImputeFinder coupled with EigenMS normalisation on subsetted samples. The close 
resemblance in distributions suggest that the imputation does not skew statistical 
assumptions required of downstream analysis.

I also evaluated whether the “Raw Data” eigentrends, that is the per-sample SVD score 
vectors before bias-trend removal (EigenMS Trends 1-3), reflected measured clinical 
variables. I focused on covariates that showed analysable variation between donors, 
namely Age at Death, Age at Onset, PMI and Sex (see Figure 38 for full table of clinical 
data). Fields with no useful variation were omitted, for example APOE status or ABC 
scores, because they were invariant or nearly so across the included donors. For each 
retained covariate I overlaid its standardised profile with the corresponding eigentrend 
across all 20 samples. Each series was z-scored across samples so they share a common 
scale. Sex was coded M = 1 and F = 0. As seen in Figure 73, no visual concordance is 
evident between the covariate profiles and the EigenMS trends. On this basis, the leading 
eigentrends in the Raw Data panel can be interpreted as technical structure rather than 
measured biology. Potential contributors include variation in peptide loading or sample 
preparation, source contamination, and other residual batch effects. In line with Figure 67 I 
elected to remove three bias trends with EigenMS and used the resulting Residual Data 
for downstream analyses. Further removal of trends would begin to remove true biological 
signal and reduce the contrast between tangle-bearing and non-tangle-bearing neurons.
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Figure 73.

Figure 73: EigenMS eigentrend overlays with clinical covariates. Rows show EigenMS 
Trends 1–3 from the Raw Data. Columns show Age at Death, Age at Onset, PMI and Sex. 
In each panel the eigentrend for the 20 samples is plotted as a solid line and the selected 
covariate as a dashed line in the same sample order. Series are standardised within 
themselves by z-scoring so they share a scale. Sex is coded M = 1 and F = 0. Shaded 
bands indicate donor blocks. No visual concordance is evident between the covariate 
profiles and the EigenMS trends, consistent with technical rather than clinical structure.

Rerunning PCA after this new pipeline on the higher-quality samples (Figure 74) produces 
a dramatically different result than the initial run. On this new PCA, the samples now 
primarily separate by condition, that is tangle-bearing neurons vs. non-tangle-bearing 
neurons, suggesting that this data is viable for downstream analysis in these comparison 
groups. Nonetheless, there remains some minor degree of donor separation that can be 
seen in PC2. When substituting EigenMS with VSN, the samples fail to cleanly separate 
by condition. This demonstrates the practical benefit of EigenMS for this analysis, with the 
caveat that what was identified as technical noise could not be explained by an available 
covariate. Therefore interpretation warrants caution over possible overfitting of the 
normalisation procedure. Bearing that consideration in mind, the result of the EigenMS + 
ImputeFinder preprocessing serves as the foundation for downstream analysis that 
includes differential abundance analysis and GeneFunnel. These downstream steps, 
alongside imputation with ImputeFinder, are described in detail in dedicated sections as 
they constitute novel work.
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Figure 74.

Figure 74: PCA analysis after running the EigenMS and ImputeFinder pipeline on the 
subsetted high-quality samples. The plot shows that PC1 effectively separate the samples 
by condition (tangle-bearing neurons vs. non-tangle-bearing neurons). PC2 on the other 
hand, still captures a minor degree of donor heterogeneity. This data serves as the basis 
for further downstream analysis using GeneFunnel and for differential abundance testing.

Figure 75.

Figure 75: PCA analysis after running the VSN and ImputeFinder pipeline on the subsetted 
high-quality samples. Compared to Figure 74, featuring EigenMS, the primary condition is 
markedly less well separated.
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3. Development of ImputeFinder Imputation Method

I developed ImputeFinder to handle the issue of missing values that plague proteomics 
data. This issue is routinely addressed using imputation, however, when reviewing existing 
methods for imputation, I came across the following unaddressed problem areas that 
prompted the development of a new method: 1) detection and handling of mixed types of 
missing values within a dataset (e.g. missing at random vs. missing not at random). 2) 
incorporation of comparison group information to retain features with missing values of 
probable biological origin. To-date, I was able to find one comparable method, called MI 
SFI-hybrid approach (Gardner & Freitas, 2021). However, the method, which will be further 
discussed, primarily highlights these problem areas and does not provide a software 
solution for handling them in real data. I first developed ImputeFinder to analyse 
extracellular vesicles derived from human AD tissue and it was later published in (Fowler 
et al., 2025). An R package for using ImputeFinder can be found at 
https://github.com/eturkes/imputefinder. It is in preparation for submission to the 
Bioconductor repository of bioinformatics tools for R.

3.1 Definition and Description of Missing Values

The issue and handling of missing values in proteomics has been reviewed extensively 
(Kong et al., 2022; Lazar et al., 2016; M. Li & Smyth, 2023; M. Liu & Dongre, 2021). In 
proteomics, a missing value differs fundamentally from a zero value in transcriptomics due 
to differences in data acquisition methods and biological interpretation. Such missing 
values commonly arise due to instrumental and technical limitations rather than the true 
biological absence of a protein. Proteins may be present in a sample but go undetected 
due to factors such as ionisation efficiency, dynamic range constraints, and general 
stochastic processes in the acquisition methods.

In contrast, zero values in transcriptomics more likely reflect a biological absence or 
extremely low expression of a gene rather than a technical limitation. RNA sequencing 
uses deep sequencing coverage to count transcript reads, and the observed expression 
values are generally considered more complete and quantitative than proteomics data. A 
gene assigned a zero count in transcriptomics generally means that there was no 
measurable RNA transcript detected in that specific sample, rather than an artifact of 
instrument sensitivity or stochastic measurement variability. As a result, transcriptomic 
zero values are more likely biologically meaningful, whereas proteomic missing values 
require careful interpretation and statistical handling. 

In proteomics, missing values in mass spectrometry data are generally categorized into 
two types: Missing at Random (MAR) and Missing Not at Random (MNAR), each with 
distinct implications for data interpretation and statistical analysis. In proteomics, MAR 
often refers to instances where a protein’s non-detection is due to stochastic variability in 
measurement, meaning that the likelihood of missing data is unrelated to the actual 
abundance of the protein. It is often linked to technical error from instrumentation or biases 

https://github.com/eturkes/imputefinder
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in detecting certain peptide fragments. MAR is sometimes further differentiated into 
Missing Completely at Random (MCAR), when source of missingness is believed to be 
completely unidentifiable. In contrast, MNAR occurs when missing values are 
systematically associated with protein abundance, often due to detection limits of the 
instrument. Low-abundance proteins are more likely to be missing because their signal 
falls below the instrument’s sensitivity threshold, making their absence non-random and 
biased toward weaker signals.

Figure 76.

Figure 76: Three categories of missing data are illustrated in the first column of the 
“Observed” data matrix, where missing values are represented as gray squares. In the 
MCAR scenario, the missing values appear randomly distributed without any discernible 
pattern. For MAR, the absence of data corresponds with lighter values in the second 
column, suggesting the contribution of some factor. In contrast, the MNAR missing values 
tend to align with darker regions of the unobserved data, suggesting it is influenced 
primarily by limits of quantification. Figure reproduced from https://feaz-book.com/missing.

Distinguishing between MAR/MCAR and MNAR is critical in proteomics data analysis 
because improper handling of missing values can introduce bias in downstream statistical 
comparisons. MAR data can sometimes be ignored or handled using generalised 
imputation methods, whereas MNAR data is better addressed with specialized 
approaches, such as imputing missing values with low-intensity estimates to reflect their 
likely biological presence as below the detection limit. The issue is compounded when 
considering the likelihood that certain types of missing values, MNAR in particular, 
correlates with a comparison condition of interest. This is likely the case when certain 
proteins are robustly suppressed in disease states such as AD. Therefore, differentiating 
and addressing these types of missing values appropriately, in a condition-specific 
manner, is the key focus of ImputeFinder that I was unable find a suitable solution for in 
any existing method. ImputeFinder does not aim to reimplement individual MAR and 
MNAR methods, which have robust and long-standing support across a variety of fields, 
but rather provide a framework for appropriate application of such methods.
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3.2 Prior Art: Imputation

The simplest type of imputation fills all missing entries with a fixed value, such as the 
overall mean or a low intensity constant. A common variant in proteomics is minimum 
value replacement, where each missing entry is replaced by a small constant (for example, 
half of the lowest observed intensity). Perseus’s “replace missing with noise” method 
draws from a normal distribution centred at a low intensity (effectively a randomised min 
substitution) (Tyanova et al., 2016). Low-intensity replacements (deterministic minimum, 
MinDet, or probabilistic minimum, MinProb) assume missing signals are left-censored 
values below detection (Gatto et al., 2021; Gatto & Lilley, 2012). MinDet uses a fixed small 
value (e.g. 1st percentile of each sample’s data), whereas MinProb adds random noise by 
sampling from a Gaussian centred at the minimal observed value with a small standard 
deviation. Such left-censoring methods are fast but can introduce bias if applied to values 
missing at random. They are best suited for MNAR missingness, and tend to underperform 
when a large fraction of data is MAR.

Another class of statistical methods leverages similarity across features or samples. These 
methods generally originate from work with microarrays. K-nearest-neighbor (kNN) 
imputation identifies peptides or proteins with expression profiles similar to the one with 
missing values and uses their measured intensities to infer the missing entry (Troyanskaya 
et al., 2001). A related approach is local least squares (LLS) imputation, which fits a small 
linear model using a subset of the most correlated features to estimate a missing value 
(Kim et al., 2005). These local methods preserve the multivariate structure of data and 
often yield more realistic values than global constants. However, neighbor-based methods 
can struggle if too many values are missing for a protein/peptide or if the data contains 
distinct clusters with little overlap.

Methods that exploit global data structure such as principal component analysis (PCA) and 
its Bayesian variant, Bayesian PCA (BPCA), treats missing value estimation as an 
inference problem by assuming that the data can be transformed into a lower-dimensional 
subspace. BPCA iteratively refines missing values by sampling from a posterior distribution 
of PCA model parameters (Oba et al., 2003). Similarly, expectation-maximization (EM) 
algorithms like MLE imputation use iterative estimation by first filling missing entries with 
initial guesses (e.g. means), perform PCA or calculate covariance, then re-estimate 
missing values until convergence (Hippel & Bartlett, 2019). A downside of these methods 
are computational cost and performance degradation if underlying assumptions (linear 
relationships, roughly normal data) are violated or if missing values are not random.

Ensemble machine learning can capture nonlinear relationships in proteomics data for 
imputation. A leading example is missForest, a random forest (RF) algorithm that iteratively 
trains a regression tree model to predict each feature’s missing values using all other 
features (Stekhoven & Bühlmann, 2012). Building off of these concepts, deep learning has 
been applied to proteomics imputation with promising results. Autoencoders, neural 
networks trained to reconstruct their input, can learn latent patterns from complete cases 
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and use that knowledge to infer missing values. Denoising autoencoders and variational 
autoencoders were combined in a proteomics imputation method from 2024 known as 
PIMMS (Webel et al., 2024). Another cutting-edge example is PEPerMINT, also published 
in 2024 (Pietz et al., 2024). PEPerMINT constructs a graph of peptide-protein relationships 
and uses a graph neural network to borrow strength from peptides of the same protein and 
from peptide sequence information. Such methods, while potentially complex, data-
intensive, and difficult to interrogate, may be promising for providing adaptable, 
generalisable solutions for a number of case conditions.

3.3 Benchmarking of Existing Imputation Methods

Given the overwhelming variety of methods available for imputation, it is of crucial 
importance to benchmark them effectively. Imputation accuracy is often measured by how 
well an algorithm can recover artificially removed values. (Jin et al., 2021) introduced 
missing values into a complete proteomics dataset at varying levels (20% MAR with 20% 
MNAR, 20% MAR with 50% MNAR, and 20% MAR with 80% MNAR) and compared 7 
methods. They found accuracy degraded markedly as MNAR missingness increased for 
all methods, but methods differed in resilience. Notably, RF, LLS, and BPCA had 
consistently lower error than simpler methods like single-value replacement. Another study 
in metabolomics (Wei et al., 2018) compared 8 methods and similarly recommended RF 
for general use, and their own QRILC  method for heavily left-censored (MNAR majority) 
situations. 

The ultimate test of an imputation method in proteomics however, is how it affects the 
identification of differentially abundant proteins. (Jin et al., 2021) also evaluated each 
method’s impact on true positive (TP) detection and false discovery rate (FDR) using a 
controlled spike-in on real data. They reported that RF imputation produced the highest TP 
rate and kept FDR blow 5%, whereas simpler methods had notably lower TP rates. 
Importantly, they further showed pathway enrichment results differed after different 
imputation methods, indicating biological interpretations can shift based on how missing 
data were handled.

It is important to note that benchmarking papers sometimes show conflicting and even 
contradictory conclusions. For instance, while the work by (Jin et al., 2021) suggests that 
LLS performs effectively, another (Bramer et al., 2021) advises against using LLS for 
imputation. These discrepancies likely stem from variations in the characteristics of the 
evaluation datasets, as well as differences in data processing and transformation 
procedures. Such pitfalls are discussed further in (Kong et al., 2022), where the authors 
performed a meta-review of benchmarking studies in proteomics imputation. They come to 
the conclusion that there is no “one-size-meets-all” method and the appropriate method 
should be decided after careful consideration by the research. The work is collated into the 
opinionated decision tree shown in Figure 77.
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Figure 77.

Figure 77: A decision chart that the showcases the large variety of imputation methods 
available and conditions for which different methods may be considered ideal. The authors 
collated information from multiple review papers and benchmarking studies to arrive to 
their conclusions. Figure reproduced from (Kong et al., 2022).

3.4 The Lack of Hybrid Imputation Approaches

The above mentioned approaches are generally designed to deal with a single type of 
missing value (MAR, MNAR, etc.) or aim to be reasonably performant in mixed 
missingness situations. However, (Gardner & Freitas, 2021) provide strong justification for 
the separation of missing values within a dataset and application of multiple imputation 
techniques. They investigated a range of imputation strategies designated as MAR 
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approaches (kNN, SVD, MLE), and MNAR (MinDet, MinProb, QRILC), in addition to their 
own hybrid approach dubbed SFI-hybrid that combines kNN and QRILC. The effectiveness 
of these methods were evaluated on a simulated dataset based on real data, where 
missing values were induced (amputated), covering a range of scenarios from minimal 
missing values with comparable protein expression profiles to extensive missingness 
patterns often observed in presence/absence proteomics.

They drew several conclusions from the analysis. For one, they claim that single-method 
MAR or MNAR imputation strategies are only suitable when the underlying missingness 
mechanism is well characterised. Applying these methods without understanding the 
nature of the missing data can introduce bias or yield unreliable results. Secondly, when a 
protein is entirely absent from a treatment group, single-method MAR or MNAR imputation 
is not advisable as imputed values may converge towards more complete cases in the 
competing group, which may not reflect the reality of the group at hand. Lastly, the 
performance of single-method MAR and MNAR strategies deteriorate as the amount and 
complexity of missing data increases, whereas their hybrid approach maintained 
robustness.

Figure 78.

Figure 78: Spread plots of logFC and -log(q-value) for amputated proteins in the simulated 
dataset. The figure suggests that the Hybrid approach maximises effect size and 
significance compared to the tested methods. Figure reproduced from (Gardner & Freitas, 
2021).
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While the work in (Gardner & Freitas, 2021) highlights the value in hybrid imputation 
approaches, as well as consideration of imputation within comparison groups, it is 
incomplete in the provision of a method for real-world use. Though the authors release a 
codebase to replicate the work, it does not contain a software solution. Furthermore, the 
actual designation of MAR vs. MNAR missing values remains out of scope of the 
publication. Working exclusively with amputation, throughout navigating their results, the 
authors are aware of which proteins were induced MAR and MNAR. This is valuable for an 
advocacy of the concept of hybrid imputation, however, in real-world data it is unclear 
which values are likely MAR and MNAR, presenting a gap in their work. Unfortunately, I 
was unable to find an existing solution for assigning missingness type, nor other methods 
that build off of a hybrid imputation concept. Therefore, I elected to develop ImputeFinder 
for the separation of mixed missingness in datasets and application of multiple imputation 
in different comparison groups.

3.5 Methodology of ImputeFinder

Figure 79 provides a schematic overview of the workflow of ImputeFinder. First discussing 
briefly, starting from the top-left of the diagram, the initial step entails replacement of 
proteins missing entirely in a condition to be compared. Next, a protein intensity cutoff for 
designating MNAR proteins is found empirically. This cutoff is then used to select MNAR 
proteins for each condition. Some filtering is then applied to remove MNAR proteins that 
are deemed too missing for further analysis. Finally, these lists of proteins are joined so 
that appropriate methods can be applied for each set of proteins.

Figure 79.

Figure 79: Schematic representing the workflow of ImputeFinder for differentiating and 
separating types of missing values in proteomics for the application of mixed imputation 
approaches.

In further detail, discussing the first step, proteins missing entirely in a condition are 
replaced with a minimum value per condition. The explicit approach, applied to a 
SummarizedExperiment object from DEP, is shown the code block of Figure 80. This step 
contains an important distinction that the protein must be present in at least condition to be 
analysable at all, otherwise it is discarded. This is based on the rationale of a binary 
biological “on-off” protein; in one condition that protein may be present, but in another 
condition, protein intensity may be suppressed to the point of being below limits of 
quantification, in other words MNAR.
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When replacing proteins fully missing in a condition, a minimal replacement procedure is 
performed. For each fully missing protein, only one sample out of the samples in the 
condition is replaced and by using the minimum intensity detected within a random sample 
of the condition. This is due to the minimum of one value being required within a condition 
to perform MNAR imputation. A random sample is selected in order to not introduce bias 
and better reflect the real-life stochastic reality that a random sample may have a protein 
intensity that barely passes the threshold of detection, and is thus detected with a low 
intensity value.

Figure 80.

Figure 80: Code block showing the first step in the ImputeFinder pipeline. Note that it is 
wrapped in a caching method as the approach as written can be time consuming. Also 
note the setting of a random seed to ensure reproducibility.

The next step modifies the plot_detect function of DEP to create stacked probability 
density plots (Figure 81). These plots can be used to determine an “MNAR cutoff”, where 
proteins below a certain intensity value can likely be called MNAR. The rationale comes 
from the understanding that as intensity values decrease, they approach the limits of 
quantification in the mass spectrometer (M. Li & Smyth, 2023), and therefore, these 
proteins become increasingly likely to be MNAR. On the x-axis of the plot, which is created 
per-condition, the mean intensity of each protein is plotted, while on the y-axis, the relative 
proportion of missing values of each protein is plotted. In both the dataset in which this 
method was published (Fowler et al., 2025) and the LCM mass spectrometry data of this 
thesis, mean intensity decreases in a near linear fashion with increasing proportion of 
missing values, reaching an asymptote of 100% missing. It can be inferred that the 
missing values of these proteins are becoming increasingly MNAR and approaching limits 
for detection. On the other hand, as intensity increases, the proportion of missing values 
decrease. As the missing values approach 0%, at a certain inflection point, the relative 
proportion of missing values start to exhibit distinctive randomness. It is inferred that this is 
due to stochastic technical noise and thus any missing values of proteins above the 
inflection point’s intensity is more likely to be MAR. 
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Currently, the MNAR cutoff is managed through hand selection, however, automated 
selection of inflection point is under development for the software. The ideal location of the 
cutoff as being towards the rightward skew of the slope was determined through 
simulation, as discussed in the next subsection. Note also the importance of performing 
this procedure per-condition, as a protein can be called MNAR in one condition but MAR in 
another, particularly if it is an “on-off” protein dependent on the condition of interest. The 
inflection point is also currently decided per condition, but it is debatable as to whether a 
global inflection point is more sensible. Furthermore, it also seems logical that inflection 
points may be specific to the mass spectrometer in use, as instrumentation is a major 
driver of missingness (McGurk et al., 2020). Such information may be considered in future 
developments of the method.

Figure 81.

Figure 81: Stacked probability density plot produced by ImputeFinder on tangle-bearing 
neurons from the LCM Mass Spec dataset. The x-axis represents the mean intensity of 
each protein in the condition, while the y-axis is each protein’s relative proportion of 
missing values, also isolated to the condition. The vertical line shows the inflection point, 
where proteins whose mean intensities within a condition are below the value are 
designated as having MNAR missing values, while those above are MAR.

Following inflection point selection is a housekeeping step, where proteins in each 
condition are ordered by their mean and separated into MNAR and MAR proteins. The 
mean was decided over median for this step, as a high-intensity value in one or more 
samples of a condition group may indicate that the protein is more likely MAR and using 
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the mean may push the protein towards being classed so. The rationale for this stems 
from the fact that mass spectrometry proteomics exhibits heteroscedasticity in the mean-
variance relationship of proteins, though to a milder degree than RNA sequencing 
(Arneberg et al., 2007). This is the phenomenon that as mean protein intensity increases, 
so does the variance, therefore the presence of high-intensity outlier values may signal 
that the true intensities of the protein of interest, had there been no missing values, likely 
lean higher. Assuming this is true, then any missing values of that protein should be more 
appropriately classed as MAR.

After separation of missing value types, there is another important housekeeping step, 
which is to remove MAR proteins where the majority are missing. As discussed in 
(Gardner & Freitas, 2021) and reflected in my own testing, MAR imputation with a majority 
of missing values can lead to suspect imputation due to a lack of information. MNAR 
imputation however, does not seem to suffer from this limitation, as they generally employ 
simpler algorithms that focuses on imputing min values, which can operate reasonably 
with as a few as one complete value. Furthermore, it is logical that MNAR proteins would 
have a higher rate of missing values, as inferred from Figure 81. By imposing strict 
limitations on the number of complete values for MNAR proteins, the result would be near-
complete loss of these proteins when their missing values are in fact the easier of the two 
to impute.

The final housekeeping step involves a set of intersections in order to ensure that all 
treatment conditions have MAR proteins with majority non-missing values, Out of the 
proteins that are majority non-missing in a single condition (for example 5 out of 8 samples 
of the condition), or have no missing values – when considering all other conditions, we 
only keep those that either satisfy these criteria as well, or are MNAR. In other words, we 
want to avoid retaining proteins that are MNAR in all groups, as this provides insufficient 
information for determining that a protein was detected in an experiment at all. This step 
aims to maximise retention of as many proteins as possible for downstream analysis, while 
removing those that lack the minimum necessary complete values. After this step, the data 
across all groups are subset to intersected proteins and separate objects are created that 
mark MNAR and MAR proteins for each treatment condition. The user can then apply 
whichever imputation algorithms they desire, the decision of which is out of scope for this 
tool.

For the LCM mass spec analysis, I opted to use k-nearest neighbor (kNN) for MAR 
proteins and the Minimum Probability method (MinProb) for MNAR proteins from the R 
package MSnbase (Gatto et al., 2021; Gatto & Lilley, 2012), both well established 
algorithms as discussed in Prior Art. As advocated throughout the ImputeFinder 
methodology, imputation was applied separately for tangle-bearing neurons and non-
tangle-bearing neurons. This is highly important, particularly in the case of MAR proteins. 
Consider for instance a truly differentially abundant protein between the two groups, and 
that that protein has MAR missing values on both sides. Applying an MAR imputation 
method like kNN across all samples will impute values somewhere between the ranges of 
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the two groups, an outcome unreflective of the biological reality and that reduces the 
likelihood that it will be detected differentially abundant. But by applying the imputation 
within each group separately, the imputed values should lie within the ranges of that group 
solely, and have the intended effect of preserving differential abundance of the protein 
between the groups. Besides this point, it is also impossible to apply MAR imputation on 
one group and MNAR imputation on another group when applying imputation across all 
samples, a situation that I previously discuss to be biologically likely in the case of proteins 
that exhibit “on-off” dynamics due to a disease condition.

Figure 82.

Figure 82: Visualisation of a subset of log2 protein intensities across samples in a dataset 
associated with (Fowler et al., 2025). The data is subset to several proteins from the 
lowest range of values and several proteins from the highest range. Proteins designated 
MNAR are highlighted in blue and it can be seen that there are more missing values and 
lower intensity values in general. In contrast, proteins on the higher end of the intensity 
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range contain relatively fewer missing values. Visualisation of the entire set of proteins (not 
shown) would have the appearance that at the lower range of intensities, missing values 
decrease relatively linearly, until the inflection point, at which they become relatively more 
random.

Figure 83.

Figure 83: Visual assessment of kNN imputation for MAR and MinProb methods for MNAR 
proteins, applied per group, in a dataset associated with (Fowler et al., 2025). Like Figure 
82, the data is subset to several proteins from the lowest range of values and several 
proteins from the highest range. The general consistency of imputed values within their 
ranges suggest that the imputation is reasonable.

3.6 Construction of Simulated Proteomics Dataset

As previously discussed, there was no comparable method to benchmark ImputeFinder 
against. While SFI-hybrid from (Gardner & Freitas, 2021) is comparable in concept, and 
lays groundwork for ImputeFinder, it lacks a software implementation, nor is an explicit 
method for designation of MAR and MNAR values within a dataset. Therefore, in order to 
better understand and test the validity of ImputeFinder, I designed a comprehensive 
simulation experiment that was published in (Fowler et al., 2025). In the experiment, a 
simulated dataset was generated to include 3,000 manually designated differentially 
expressed proteins (DEPs AKA DAPs), incorporating both MAR and MNAR missing 
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values. This dataset was built using a matrix of 6,105 complete-case log2 intensity values 
by creating a normal distribution on the mean and standard deviation of proteins in the real 
dataset (see Figure 84A i for histogram of the real data, and Figure 84B i for the 
simulated). To introduce DEPs into the dataset, intensity values for 250 random proteins 
were increased by a factor of 1.5 in specific groups, while 750 proteins in other groups had 
their intensity values halved (Figure 84B ii). The rationale for doing so was to simulate both 
upregulated proteins and proteins that are downregulated to the point of being below limits 
of quantification in a mass spectrometer.

MAR missing values were then simulated using the ampute function from the R package 
mice (Buuren & Groothuis-Oudshoorn, 2011), applying a constant 5% random missing 
data rate across the whole population of proteins. Simulation of MNAR missing values was 
applied to proteins with a mean intensity below 12, with greater sampling weight to lower-
intensity proteins to reflect the asymptote towards complete missingness seen in real data. 
The histogram of the simulated data after introduction of these missing values is seen in 
Figure 84B iii and stacked probability density plots in Figure 85. An intensity of 12 was 
chosen as the amputation threshold to not bias all MNAR values towards only the induced 
DEPs that had values reduced. As highlighted by the vertical line in Figure 84B ii, there is 
a notable valley in the histogram around 8.5 due to the induced DEPs, therefore the 
amputation threshold should be somewhere above it to affect some proteins beyond these 
DEPs, better reflecting a real-world dataset.

In the final step, ImputeFinder is applied (using kNN for MAR and MinProb for MNAR) on 
the simulated, DEP induced, amputated data, with the result seen in Figure 84B iv. 
Inspection of the final imputed Figure 84B iv reveals that the log2 intensity distribution is 
similar to both Figure 84B ii (simulated with DEPs but no missing values) and Figure 84A ii 
(real data after imputation). This suggests that the imputation restored the state of having 
DEPs but no missing values, like in Figure 84B ii, implying that ImputeFinder succeeded in 
imputing missing values while retaining the induced DEPs. Furthermore, the experiment 
produced a final distribution that is similar to ImputeFinder applied on real data, implying 
that the simulated experiment is reflective of the set of processes observed in real data.
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Figure 84.

Figure 84: Sequence of transformations in the simulation experiment of ImputeFinder. The 
pipeline starts with real data in A i, which is simulated to produce the data in B I. DEPs are 
then introduced to the simulated data, reflected by the histogram in B ii. Next, missing 
values are introduced, producing the histogram in B iii. Finally, ImputeFinder is applied to 
produce data with the distribution in B iv. The distribution in B iv is similar to the distribution 
in A ii, which is real data after the ImputeFinder workflow. This similarity implies validity of 
the simulation method, while similarity to B ii implies validity in the use of ImputeFinder to 
address missing values while retaining DEPs.
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Figure 85.

Figure 85: Stacked probability density plots of the simulated data at various steps of 
amputation of missing values. Left, is the simulated data after amputing randomly 
distributed MAR missing values. Right, is the data on the left after additional amputation of 
MNAR missing values, producing a final figure with an MNAR inflection point similar to that 
of real data (see Figure 81) and reflective of the MNAR amputation threshold value set at 
mean log2 intensity of 12.

3.7 Benchmarking in Simulated and Real Dataset

Finally, I benchmarked the ability of ImputeFinder to identify the true DEPs introduced into 
the simulated dataset. For DEP testing, I used the R package limma (Phipson et al., 2016; 
Ritchie et al., 2015), as was used on the real dataset in (Fowler et al., 2025) and as 
recommended by the authors of DEP. limma (Linear Models for Microarray and RNA-Seq 
Data) is a widely used R package designed for the differential expression analysis of high-
throughput gene expression data, including microarray, RNA-seq, and proteomics 
datasets. It employs an empirical Bayes approach to shrink variance estimates, with the 
core methodology being based on linear modeling and moderated t-statistics. Using the 
default limma workflow, I tested for DEPs (adjusted F p-value < 0.05) in the simulated 
dataset after introduction of DEPs and missing values under three conditions: 1) after 
application of ImputeFinder, 2) without imputation, and 3) after filtering to only those 
proteins without any missing values (complete-cases). I also carried a comparison of these 
three conditions in the real dataset. The results are summarised in Figure 86.

Effectively, in the simulated data, the results reveal that ImputeFinder is highly performant 
in capturing close to all of the true DEPs, with 92.97% captured, compared to 69.07% in 
the unimputed case and 24.03% in the complete cases. Furthermore, it was highly 
accurate, as 93.56% of the DEPs were those that were induced, though the unimputed 
and complete case conditions were also relatively accurate, at 85.80% and 93.27%, 
respectively. By maximising retention of likely DEP proteins with missing values, while 
removing those unlikely to be DEP, ImputeFinder also achieved the smallest averaged 
adjusted F p-values among the true DEPs, at 0.03333 compared to 0.2976, and 0.759 in 
the unimputed and complete case conditions, respectively. Finally, in Figure 86D, when 
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applying the three conditions to the real dataset, ImputeFinder discovered the largest 
number of DEPs, at 66.60% of the total proteins in the dataset vs. 53.05% without 
imputation and 24.03% when only looking at complete cases. Note that due to being a real 
dataset, it is not possible to verify whether a DEP is a real or not. However, it can be 
inferred from the simulation study that the DEPs uncovered in all cases are likely accurate, 
with ImputeFinder being potentially the most accurate.

Figure 86.

Figure 86: Benchmarking of the hybrid imputation strategy. A) For the simulated dataset 
containing 3,000 manually designated DEPs, the proportion of correctly identified DEPs, 
detection accuracy, and the average adjusted F p-values were assessed across imputed, 



109

unimputed, and complete case conditions. B) A Venn diagram illustrating the overlap of 
DEPs identified from the set of 3,000 true DEPs in imputed, unimputed, and complete-
case datasets. C) A Venn diagram showing DEPs detected from the full dataset of 6,105 
proteins across imputed, unimputed, and complete-case datasets. These DEPs were 
compared against the 3,000 true DEPs to assess detection accuracy. D) A Venn diagram 
depicting DEPs identified from 6,105 total proteins in the real dataset across imputed, 
unimputed, and complete-case conditions. In all cases, DEPs were determined using a 
conventional limma protocol as described.

3.8 Sensitivity Analysis

In order to more clearly demonstrate the benefit of separating MAR and MNAR values 
using ImputeFinder, as well as benchmark the method against a variety of imputation 
methods, another simulation experiment was created. Starting with the same initial sample 
distribution established prior, DEPs were again introduced into the first 3,000 proteins for 
fraction groups F1-3, F4-6, and F7-8. Unlike the first simulation, an equal proportion of 
downregulated and upgregulated proteins were introduced. For example, for the first 500 
proteins, protein intensities in all samples of F1-3 were divided by 2, while for the next 500 
they were increased by 1.5, and so on. 1.5 was selected as a realistic upgregulation factor 
that produced a histogram without a noticeable shift in the overall intensities distribution 
(Figure 87). MAR amputation was increased from 5% of all proteins to 25% to demonstrate 
a more severe case of missing values that necessitate the need to separate MAR and 
MNAR missing values (Figure 88). All other properties were kept the same as the previous 
simulation.

Figure 87.
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Figure 87: Schematic of synthetic dataset construction and outcome of imputation for the 
purposes of sensitivity analysis. The approach resembles that of Figure 84 but increases 
the number of upregulated proteins and introduces more MAR missing values.

Figure 88.

Figure 88: Stacked probability density plot on the sensitivity analysis simulation dataset. 
Note the inflated proportion of missing values past the inflection point.

To make the effect of separating MAR and MNAR clearer, a sweep of MNAR cut-off 
settings from 8 to 14 was run on the same simulated data. I chose this range to span the 
full transition, or “cliff,” in the relationship between intensity and missingness, where the 
probability of missingness rises steeply as intensity falls. The position of this cliff is visible 
in the stacked density plot with a vertical reference line.

For comparison I used the default imputation options in the DEP package. BPCA 
reconstructs missing entries with a low-rank Bayesian PCA model. KNN imputes from the 
nearest neighbours in expression space. QRILC performs quantile regression tailored to 
left-censored MNAR values. MLE fits a censored-normal model via the EM algorithm. 
MinDet replaces values with a small detection-limit estimate per sample. MinProb draws 
small values from a left-shifted distribution to reflect detection uncertainty. Min substitutes 
a simple small constant. Together these cover model-based and minimum-replacement 
strategies.

The figures that follow present three concise two-column tables, one per metric: percent 
true DEPs captured, accuracy, and the average adjusted F p-value among true DEPs. For 
each MNAR cut-off I pair the ImputeFinder result with the corresponding reference 
method, and I include unimputed and complete values for context.
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Figure 89.

Figure 89: Performance of ImputeFinder in capturing true DEPs in the sensitivity analysis 
synthetic dataset across several MNAR cut-off settings (8–14), benchmarked against 
single reference methods (BPCA, KNN, QRILC, MLE, MinDet, MinProb, Min) and 
unimputed and complete cases.

Figure 90.

Figure 90: Performance of ImputeFinder in capturing true positives in the sensitivity 
analysis synthetic dataset across several MNAR cut-off settings (8–14), benchmarked 
against single reference methods (BPCA, KNN, QRILC, MLE, MinDet, MinProb, Min) and 
unimputed and complete cases.
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Figure 91.

Figure 91: Performance of ImputeFinder in increasing statistical power to detect true DEPs 
in the sensitivity analysis synthetic dataset across several MNAR cut-off settings (8–14), 
benchmarked against single reference methods (BPCA, KNN, QRILC, MLE, MinDet, 
MinProb, Min) and unimputed and complete cases.

Across all MNAR cut-off settings, ImputeFinder was shown to be more sensitive for 
capturing true DEPs than any of the reference methods (Figure 89). The unimputed 
baseline performs poorly in this regard, with the lowest score of the reference methods 
aside from using complete cases only. Of the reference methods, MinDet and MinProb, 
methods designed to explicitly tackle MNAR missing values using simple approaches, 
captured the largest number of true DEPs, though these methods did not surpass 
ImputeFinder across any of the MNAR cutoff values chosen. Accuracy (Figure 90) shows a 
different pattern. Values close to 99% were observed for the unimputed and complete 
cases, as well as for several reference methods. Because ImputeFinder is markedly more 
sensitive, a modest reduction in accuracy is expected, since calling more positives has a 
tendency to increase both true and false positives. Accuracy should therefore be 
considered alongside the marked differences in sensitivity between methods. A better 
balance between ImputeFinder’s sensitivity and accuracy may be achieved through future 
optimisations of the method’s filtering steps.

The average adjusted F-value among true DEPs (Figure 91) is lowest for ImputeFinder, 
which indicates stronger statistical evidence for the signals it recovers. The minimum 
occurs at MNAR cut-off 12 (about 0.00795) while sensitivity remains high and, importantly, 
this setting also gives the highest accuracy among the ImputeFinder runs. Cutoffs towards 
the top or middle of the MNAR “cliff” in the stacked density plot likely leave too many 
MNAR values treated as MAR, which dilutes the imputation benefit. Whereas cutoffs past 
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the cliff classify too many values as MNAR, which can introduce inaccurate replacements 
and reduce performance, seen as the drop in sensitivity and worsening p-values at 13-14. 
Taken together, the three tables support using an MNAR cutoff around 12 for this dataset. 
Using the stacked density plot as visual guidance, this suggest a general rule of thumb for 
assigning the cutoff at the bottom of the MNAR cliff. Nevertheless, in this experiment, 
ImputeFinder was shown to be relatively robust to cutoff placement relative to the 
performance of the reference methods.

3.9 Advantages of ImputeFinder

ImputeFinder offers a structured and systematic approach to handling missing values in 
proteomics data by distinguishing between Missing at Random (MAR) and Missing Not at 
Random (MNAR) before imputation. Unlike some existing methods that impose specific 
imputation algorithms, ImputeFinder remains flexible and modular by providing a 
framework rather than implementing new imputation techniques. Researchers can 
integrate their preferred MAR and MNAR imputation methods, allowing them to tailor the 
workflow to the unique characteristics of their dataset. This targeted classification enables 
researchers to apply different imputation strategies tailored to each type of missingness, 
improving the accuracy and interpretability of downstream analyses.

Another key advantage of ImputeFinder is its per-condition imputation framework. Since 
the missingness mechanism for a given protein can vary across experimental conditions, 
being MNAR in one condition but MAR or fully observed in another, ImputeFinder ensures 
that imputation decisions are made in a condition-specific manner. This is in fact a 
common biological situation, particularly when a disease condition suppresses proteins in 
a particular group to below a mass spectrometer’s limit of quantification. By separating 
types of missing values, this reduces the risk of overgeneralisation, preventing 
inappropriate assumptions about missing data mechanisms and preserving the biological 
validity of the dataset.

Additionally, ImputeFinder is implemented as an R package (discussed further in 
Implementation Details), making it accessible to the bioinformatics and proteomics 
research communities. The package is designed with usability in mind, enabling 
researchers to easily incorporate it into their workflows without requiring extensive 
computational expertise. The structured nature of the framework also enhances 
reproducibility by ensuring that the same missing value classification and imputation 
strategy can be consistently applied across multiple datasets.

3.10 Disadvantages and Limitations

While ImputeFinder introduces a useful framework for distinguishing between MAR and 
MNAR missing values and applying targeted imputation strategies, there are several 
limitations and areas that require further validation and refinement. These constraints 
primarily stem from the challenges associated with benchmarking, the empirical 
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determination of missingness classification thresholds, and the lack of comparable 
methodologies.

One major limitation is that ImputeFinder has only been benchmarked using a simulated 
dataset and a real-world proteomics dataset, though both of which demonstrate promising 
results. However, it was not possible to benchmark the method against comparable 
approaches, as no existing method explicitly separates MAR and MNAR missing values 
before applying distinct imputation strategies. This lack of direct comparison means that 
while the framework appears effective based on current testing, its performance relative to 
hypothetical alternative implementations remains unknown. Further independent validation 
across diverse datasets and experimental conditions would be beneficial to confirm the 
method’s generalisability and robustness.

Another key limitation lies in the empirical establishment of an intensity cutoff for MNAR 
classification. The framework requires manually determining an inflection point in protein 
intensity, below which missing values are classified as MNAR, and above which they are 
assumed to be MAR (or potentially complete). While the benchmarking experiments 
suggest that an inflection towards the bottom of the slope in the stacked probability density 
plot results in high accuracy and sensitivity for differentially abundant proteins, an 
exhaustive exploration determining the optimal and precise placement of this inflection 
point is an area of future investigation. Furthermore, while references support a likely 
linear relationship between missingness and protein intensity in MNAR cases, this remains 
a subject of debate in the field (M. Li & Smyth, 2023; R. Luo et al., 2009; O’Brien et al., 
2018). The lack of a rigorous, universally accepted model for defining MNAR thresholds 
means that some subjectivity is involved in the current classification approach. This is 
particularly relevant in datasets where the intensity-missingness relationship deviates from 
expected trends, potentially affecting classification accuracy.

Additionally, the current method does not automate the selection of the MNAR inflection 
point, requiring users to determine it manually for each dataset. While this provides 
flexibility, it also introduces a degree of user-dependent variability, which could lead to 
inconsistencies in classification across studies. Automating this step, potentially through 
data-driven approaches such as breakpoint detection, Bayesian modeling, or machine 
learning-based classification, could increase reproducibility and reduce potential bias 
introduced by manual selection.

Finally, ImputeFinder does not introduce new imputation algorithms but instead relies on 
existing MAR and MNAR imputation methods. While this modularity is advantageous, it 
also means that the effectiveness of the framework is dependent on the quality of the 
selected imputation strategies. In cases where imputation methods do not perform well for 
a given dataset, the framework itself cannot compensate for this limitation. Future 
developments could explore guiding users toward optimal imputation choices based on 
dataset characteristics, perhaps through internal benchmarking within the package.
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3.11 Implementation Details

ImputeFinder is currently being prepared for submission to Bioconductor, with its package 
structure and documentation generated using the R package biocthis to ensure 
compatibility with Bioconductor’s standards. This means that the package has been 
designed with ease of integration in mind, allowing researchers to incorporate it into 
existing proteomics workflows seamlessly. Its implementation is lightweight, requiring 
minimal dependencies and prioritizing flexibility in handling missing data.

Figure 92.

Figure 92: The project structure advocated by the R package biocthis for submission to 
Bioconductor. Figure reproduced from https://dzhang32.github.io/biocthis_workshop/.

A key feature of ImputeFinder is its reliance on ggplot2 (Wickham, 2016) as its only major 
dependency. The package includes a modified missingness-intensity plot originally derived 
from the DEP package, but it does not require DEP itself, keeping the dependency 
footprint small while still providing meaningful visualizations. This ensures that users can 
benefit from informative graphical representations of missing data patterns without the 
need for extensive additional installations.
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The input required for ImputeFinder is straightforward. Users provide a matrix of 
unnormalised log2 protein intensities, where rows represent proteins and columns 
correspond to samples. Additionally, users supply a data frame of group assignments, 
defining the condition or experimental group for each sample. Using this information, 
ImputeFinder classifies missing values per group, ensuring that a protein's missingness 
type is assessed within its specific experimental context rather than across the entire 
dataset. Beyond this, ImputeFinder contains no tweakable parameters nor additional input, 
an intentional design decision to reduce complexity for the user and limit harmful practices 
like data dredging.

The output of ImputeFinder is structured as a list, where each element corresponds to a 
distinct experimental group. Within each group-specific entry, the method provides two key 
outputs: the list of proteins classified as MNAR and the set of MAR or complete cases. 
This classification enables users to refine their dataset based on missingness type, 
ensuring that MAR and MNAR values can be handled separately in downstream analysis.

Currently, ImputeFinder does not perform imputation itself but instead provides a 
structured classification of missing values, allowing researchers to apply their own 
imputation strategies. Users are responsible for following ImputeFinder with their 
normalisation strategy of choice, subsetting the protein matrix based on the intersection of 
proteins across groups, and then selecting the appropriate imputation techniques for each 
type of missingness. This modular approach ensures that researchers retain full control 
over the overall pipeline while benefiting from the improved accuracy that results from 
distinguishing between MAR and MNAR values. Future iterations of ImputeFinder may 
expand to further streamline the workflow by automating certain steps. Enhancements 
could include selection of common normalisation methods, automated filtering to subset 
the protein matrix across groups, built-in imputation pipelines to handle MAR and MNAR 
values separately, and improved visualisation and reporting functionalities for missing data 
patterns.

Figure 93.

Figure 93: Code showing how separated MNAR and MAR values can be imputed using 
different methods from the impute function of DEP. This example is directly lifted from the 
analysis featured in this thesis work on the LCM Mass Spec dataset. It demonstrates the 
application of mixed imputation on the tangle-bearing negative and tangle-bearing positive 
groups separately.
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4. Development of GeneFunnel Gene Set Enrichment Method

GeneFunnel was developed to address various deficiencies in existing gene set 
enrichment methods. It falls within the subset of methods known as functional class 
scoring (FCS), originating from single-sample GSEA (ssGSEA) (Barbie et al., 2009), which 
aim to produce enrichment results per-sample, generally producing a matrix of gene sets 
by samples that resemble the original gene/protein by sample matrix of which it is derived. 
However, I found that all existing methods fail to retain independence between samples 
and produce results that are unintuitive and difficult to reason with. Explicitly, the following 
issues among these methods are discussed in detail in this section: 1) the handling of 
missing and lowly expressed features. 2) consideration of dependencies between 
samples, between features, and interactions across the two. 3) retention of statistical 
properties of the input data. 4) consideration of complexity and assumptions. 5) 
compatibility with downstream handling of data and interpretation. 6) speed and scalability. 
In order to overcome these issues, I developed a new R package called GeneFunnel with 
a performant C++ backend available at https://github.com/eturkes/g  enefunnel  . It is in 
preparation for submission to the Bioconductor repository of bioinformatics tools for R.

4.1 Definition and Description of Gene Set Enrichment

Gene set enrichment, reviewed extensively in (Bayerlová, 2015; Bull et al., 2024; Candia & 
Ferrucci, 2024; Das et al., 2020; Geistlinger et al., 2020; Khatri et al., 2012; Maleki et al., 
2020; Wijesooriya et al., 2022), is a widely used computational method designed to identify 
biologically meaningful patterns in gene expression data by assessing whether predefined 
gene sets are significantly overrepresented in a dataset. Unlike traditional differential 
expression analysis that examines individual genes (or proteins) in isolation, gene set 
enrichment evaluates groups of genes that share functional relationships, such as 
involvement in metabolic pathways, cellular processes, or disease mechanisms. These 
gene sets are typically sourced from curated databases like KEGG (Kyoto Encyclopedia of 
Genes and Genomes), GO (Gene Ontology), Reactome, and the Molecular Signatures 
Database (MSigDB), which classify genes based on shared biological roles, molecular 
functions, or regulatory pathways. By focusing on collective gene behaviour rather than 
single-gene changes, gene set enrichment provides deeper insights into the molecular 
mechanisms underlying phenotypic differences.

There are several approaches to gene set enrichment analysis, with over-representation 
analysis (ORA) being one of the most straightforward. ORA involves comparing a 
predefined list of differentially expressed genes against curated gene sets to determine 
statistical overrepresentation, typically using Fisher’s exact test or a hypergeometric test. 
However, ORA has limitations as it relies on arbitrary cutoffs for selecting DEGs, 
potentially overlooking biologically relevant changes below statistical thresholds. To 
overcome this, Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) uses a 
rank-based method that considers the entire dataset rather than a predefined cutoff. GSEA 
ranks genes based on their correlation with a phenotype and calculates an enrichment 

https://github.com/eturkes/imputefinder
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score (ES), which quantifies the degree of overrepresentation of a gene set within the 
ranked list. This method enables the detection of subtle but coordinated gene expression 
changes, which are often biologically significant but might be missed by conventional 
differential expression approaches. Statistical significance is assessed through 
permutation testing, generating a null distribution of ES values to compute FDR-adjusted 
p-values.

Another widely used extension of GSEA is single-sample GSEA (ssGSEA), generalised as 
functional class scoring (FCS), which incorporates gene-level information into pathway-
level enrichment scores. These methods aim to calculate enrichment scores per-sample, 
allowing for continuous comparisons across conditions rather than binary classifications of 
enriched or non-enriched pathways. And unlike traditional GSEA, it does not rely on a 
ranking of genes across predefined groups. This results in a matrix of enrichment scores 
that can be further analysed using clustering, dimensionality reduction, statistical testing, 
or correlation with phenotypic traits. Additionally, ssGSEA and other FCS-based 
approaches may better account for subtle variations in pathway activity within 
heterogeneous datasets by independently calculating enrichment scores for each sample, 
rather than relying on predefined case-control comparisons. This per-sample scoring 
enables the detection of gradual or condition-specific pathway activation patterns that may 
not be apparent in population-wide differential expression analyses.

Topology-based methods in gene set enrichment analysis extend traditional enrichment 
approaches by incorporating the structural relationships between genes within biological 
pathways. Unlike classical overrepresentation or functional class scoring methods, which 
primarily evaluate gene sets as simple lists, topology-based approaches account for the 
connectivity, interactions, and hierarchical organisation of genes within pathways. These 
methods leverage pathway graphs, where nodes represent genes and edges denote 
regulatory or signalling interactions, to refine enrichment calculations by weighting genes 
based on their topological significance. By incorporating pathway structure, topology-
aware enrichment methods may provide a more biologically meaningful interpretation of 
gene expression changes.

Gene set enrichment has a wide range of applications across biomedical research. It is 
frequently used to identify dysregulated pathways in diseases, such as pinpointing key 
signaling cascades in neurodegenerative disorders like Alzheimer’s Disease. It also plays 
a crucial role in drug discovery, where gene expression signatures from treated samples 
can be compared to pathway databases to infer potential mechanisms of action. And in the 
context of functional genomics studies, gene set enrichment can enhance the 
interpretation of high-throughput screening results by contextualising gene expression 
changes within known biological processes.

Despite its advantages, gene set enrichment is not without limitations. Its accuracy 
depends on the quality and completeness of gene set databases, meaning that less well-
characterised pathways may be overlooked. Additionally, gene sets often contain highly 
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correlated genes, which can introduce bias in enrichment scoring. Another challenge is the 
reliance of some methods on ranking methods, of which there are many and can drive 
dramatic differences in the outcome of enrichment testing beyond the enrichment test itself 
(Zyla et al., 2017). Nonetheless, gene set enrichment remains an essential and common 
tool in the analysis of various omics assays, fuelling a very active field of research within 
bioinformatics.

Figure 94.

Figure 94: Overview of the major classes of gene set enrichment methods, covering those 
of Over-Representation Analysis (ORA), Functional Class Scoring (FCS), and Pathway 
Topology (PT). Figure reproduced from (Khatri et al., 2012).

4.2 Prior Art: Functional Class Scoring

GeneFunnel classifies as a functional class scoring (FCS) method, so I will focus this 
review on other leading FCS methods, all of which I later benchmark against GeneFunnel. 
As mentioned in the prior section, FCS leverages continuous expression data from all 
genes without needing a significance cutoff to compute pathway-level scores, producing a 
per-sample (or per-cell) enrichment score. The output being a matrix was a key appeal 
from my perspective, as it opens the possibility for further analysis using general purpose 
methods that operate on matrices such as linear modelling and dimensionality reduction, 
provided statistical assumptions are met. The different FCS methods elect a variety of 
computational strategies, the assumptions and pitfalls of each I discuss below.

Gene Set Variation Analysis (GSVA) is a popular FCS method that transforms gene 
expression data from a gene level matrix into a gene set level matrix of enrichment scores 
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(Hänzelmann et al., 2013). GSVA uses a kernel-based, non-parametric approach to 
estimate the cumulative distribution function (CDF) of expression for each gene across the 
sample population. In practice, GSVA replaces the expression values with kernel-
smoothed ranks (CDF estimates) and then calculates a KS-like (Kolmogorov-Smirnov) 
enrichment score per-sample by comparing the distribution of expression values inside the 
gene set to those outside. This yields a continuous pathway activity score for each sample 
without requiring class labels. Essentially, GSVA assesses how up or downregulated a 
gene set is in a given sample relative to the overall dataset.

GSVA was introduced to handle heterogeneous data and subtle expression changes. It 
has been shown to increase power for detecting modest but coordinated pathway shifts, 
and has been shown to work on both microarray and RNAseq data (after appropriate 
normalisation). A key feature is its unsupervised nature, it can be applied to a single cohort 
of samples to reveal variation in pathway activity across conditions or continuous 
phenotypes. However, one important aspect is that GSVA borrows information across 
samples as the kernel estimation uses the entire sample set as context. This means GSVA 
scores are relative to the given dataset; if the composition of samples changes (e.g. 
adding or removing samples), the scores can shift. As a result, GSVA performs well with 
sufficiently large sample sizes, but can become unstable in very small cohorts (since the 
CDF estimation for each gene is less reliable). For scRNAseq, GSVA can be applied by 
treating each cell as a sample, and though it has been used in single-cell studies, the 
computational cost can be significant for large cell numbers, as I will later show through 
benchmarking. Moreover, in extremely sparse single-cell data, many genes have zero 
counts in most cells, which can make the kernel-based estimation less informative. 
Despite these challenges, GSVA remains a widely-used baseline for single-sample gene 
set scoring due to its robustness in detecting subtle pathway variation.

Figure 95.

Figure 95. Schematic of the GSVA algorithm. The GSVA algorithm takes as input a gene 
expression matrix, typically composed of log2-transformed microarray expression values 
or RNAseq count data, along with a collection of predefined gene sets. For each gene set, 
a KS-like rank statistic is computed to assess its enrichment. The algorithm generates an 
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output matrix in which each entry represents a pathway enrichment score corresponding to 
a specific gene set and sample. Figure reproduced from (Hänzelmann et al., 2013).

Single-sample GSEA (ssGSEA) is a sample-specific adaptation of the classic GSEA 
method (Barbie et al., 2009). Instead of comparing two groups, ssGSEA computes an 
enrichment score for each gene set for each sample independently, using that sample’s 
ranked gene expression profile. The method ranks all genes by expression within a given 
sample, then calculates an enrichment score by a cumulative rank distribution comparison, 
essentially measuring if genes in the set tend to appear at the top (highly expressed) or 
bottom (lowly expressed) of that sample’s rank list. This is done by computing the 
difference between two empirical CDFs (genes inside the set vs. outside) like the original 
GSEA KS statistic, yielding a score that can be positive or negative.

Because ssGSEA is rank-based, it is naturally robust to outliers in gene expression and 
differences in measurement scale; it relies only on the relative ordering of genes within a 
sample. It also does not strictly require multiple samples and in principle one can compute 
ssGSEA on a single sample or cell. However, standard ssGSEA implementations (e.g. in 
the GSVA R package) perform a final normalisation that uses the score distribution across 
all samples, which can introduce some inter-sample dependency. Truly single-sample 
versions, like in (Barbie et al., 2009) where it was first described, avoid using other 
samples as a reference. In practice, ssGSEA yields an enrichment score per-sample that 
is intuitively similar to the original GSEA’s NES (normalised enrichment score) but on a 
per-sample basis.

In terms of performance, ssGSEA has been widely used for bulk RNAseq and has also 
been applied to single-cell data by computing per-cell scores. However, ssGSEA can be 
very computationally intensive for large datasets because it effectively performs a sort and 
cumulative sum for each sample and each gene set. Benchmarking studies, including my 
own, have noted that ssGSEA tends to be one of the slowest methods at large scale (X. 
Wang et al., 2024). Additionally, because ssGSEA (in its usual form) yields scores that may 
depend on the overall expression distribution of a dataset, its robustness in small sample 
sets is not ideal, i.e. when few samples are available, the score normalisation can be 
biased.

Pathway Level Analysis of Gene Expression (PLAGE) takes a different approach to single-
sample gene set scoring by using matrix factorisation to estimate pathway activity 
(Tomfohr et al., 2005). PLAGE assumes that if a pathway is coherently activated, the 
genes in that set will show coordinated expression across samples. The PLAGE algorithm 
first standardises the expression matrix for the gene set (z-scoring each gene across all 
samples) so that all genes contribute equally regardless of their absolute expression level. 
It then performs a singular value decomposition (SVD) on this standardised matrix. The 
first singular vector represents the dominant expression pattern shared by those genes 
across the samples, and the values of that vector for each sample are taken as the 
pathway activity level in that sample. PLAGE collapses the gene set into a single latent 
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factor that best explains the expression variation of the gene set, and uses that factor 
score as the enrichment score for the pathway.

One advantage of PLAGE is that by using SVD it inherently accounts for correlations 
between genes in the set. Genes that consistently co-vary will contribute strongly, whereas 
uncorrelated noise will be deemphasised. This can improve sensitivity for pathways where 
many genes change modestly in unison. However, PLAGE also has some limitations. 
Because it uses all samples to perform the SVD, it depends on having a reasonably large 
sample set to get stable estimates, and in very small datasets, the first SVD may not be 
reliably estimated or could pick up random variation. For instance, it has been shown that 
PLAGE’s performance deteriorates with small sample size, showing unstable scores when 
the number of samples is low, particularly in comparison to other methods (Figure 96) 
(Foroutan et al., 2018). This is likely because with few samples, the co-expression 
structure is hard to distinguish from noise. Another consideration is that PLAGE’s 
assumption of one dominant factor may not hold if a pathway has multiple independent 
modes of variation.

Figure 96.

Figure 96: Excerpt of a stability analysis comparing several FCS methods in different 
transcriptomic datasets when altering sample size and number of genes. The left-most 
figures show Spearman’s correlation coefficients and the right-most figures show 
concordance index, where higher values in each indicate greater robustness to the 
changing conditions. Figure adapted from (Foroutan et al., 2018).
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In contrast to those discussed thus far, a straightforward, but not uncommon method, is Z-
score summation (implemented in the GSVA package). This approach simply standardizes 
expression of each gene across samples and sums the z-scores of genes in the set for 
each sample. This yields a gene set score roughly indicating how many standard 
deviations each member feature is above or below its mean. While simple and fast, this 
approach assumes independence of features and can be sensitive to one or two highly 
expressed features. It is generally less sophisticated than GSVA/ssGSEA, but provides a 
quick heuristic pathway score. It can be applied to single cells, but zero-inflated data can 
abnormally push many z-scores to negative values. The z-score method was found to 
have intermediate stability, more stable than PLAGE in small-sample scenarios but still 
influenced by dataset composition. It often serves as a baseline for more complex 
methods.

4.3 Methodology of GeneFunnel

The novel functional class scoring algorithm I propose in this work, GeneFunnel, is 
relatively straightforward, and is similar to subtracting the Mean Absolute Deviation (MAD) 
from the sum of values in a gene set. GeneFunnel iterates through each gene set for each 
sample, introducing no dependency between samples or gene sets. For each gene set, in 
the current sample, the sample’s genes/proteins (AKA features) are subset to those in the 
gene set. The sum and mean are taken. Then, for each feature in the gene set, the 
feature’s expression level is subtracted from the mean and the absolute value is taken. 
These “deviances” are then summed. A scaling factor is then derived, defined as the size 
of the gene set divided by twice the residual gene set size (1 minus the gene set size). 
Finally for each gene set, the summed deviance is multiplied by the scaling factor and then 
subtracted from the sum, yielding the score. This is done for all gene sets in a sample, 
before iterating through the rest of the samples, producing a gene set by sample matrix 
resembling the original gene/protein by sample matrix (Figure 97). The algorithm is 
expressed in mathematical notation below and an excerpt of the Rcpp (C++ interface for 
R) (Eddelbuettel & Balamuta, 2018; Eddelbuettel & François, 2011) implementation in 
Figure 98.

Figure 97.

Figure 97. High-level schematic of the intent of GeneFunnel. From an initial matrix of 
genes (or proteins) by samples, and with the provision of an object containing gene sets, 
the input matrix is transformed into a gene set by sample matrix.
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Mathematical Description of the GeneFunnel Algorithm:

Where:

  is the expression level of feature  in sample ,

  is the sum of expression for the features in gene set  for sample .

  is the mean expression of the features in gene set  for sample .

  is the sum of the absolute deviations from the mean.

  is the scaling factor, which accounts for the number of features in the 
gene set and adjusts the influence of deviation.
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Figure 98.

Figure 98: Rcpp implementation of the singular GeneFunnel function, calculateScores. 
The function is highly optimised for performance, using RcppArmadillo linear algebra 
libraries (Eddelbuettel & Sanderson, 2014).

At the core of GeneFunnel's scoring method is its use of both the sum and deviation of 
feature expression levels within a gene set. By first summing expression values, the 
method captures the overall activity level of a pathway, akin to approaches that rely on 
simple averaging or summation. However, instead of assuming that all features contribute 
equally, GeneFunnel then computes deviance scores for each feature, measuring how 
much each feature's expression deviates from the mean expression of the set. This 
deviation-aware component ensures that pathways with highly variable expression across 
member features are penalised, preventing scenarios where a small number of highly 
expressed features dominate the enrichment score.
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The scaling factor applied to the summed deviance accounts for gene set size, ensuring 
that scores remain comparable across gene sets of different sizes. This is important 
because raw summation-based approaches can be biased toward larger gene sets, simply 
due to the additive nature of their scoring. By normalising the deviation penalty relative to 
gene set size, GeneFunnel maintains a balance between total expression and internal 
variability, making it more sensitive to pathway coherence rather than just overall 
expression magnitude.

Another important consideration in GeneFunnel's design is that it treats gene sets 
independently, meaning that the score for one pathway is not influenced by the 
composition of other gene sets or the overall dataset structure. This makes it particularly 
well-suited for applications where absolute (or as close to it as possible) pathway activity is 
the desired measure. Ideally, this may allow GeneFunnel scores to be compared across 
disparate datasets, and well as have suitability for meta-analyses. Unlike methods that rely 
on ranking or distribution-based transformations, GeneFunnel’s approach remains 
resistant to dataset size changes, such as the addition or removal or samples, ensuring 
that scores remain interpretable even when analysing a single sample in isolation.

In summary, GeneFunnel provides a functional class scoring method that integrates total 
pathway activity with an internal consistency check through deviation scoring, ensures 
independence across samples and gene sets, and incorporates a scaling factor for size 
correction. These design choices make it particularly advantageous in settings where 
existing enrichment methods struggle with dataset-wide dependencies, small sample 
sizes, or variable gene set sizes.

4.4 Mathematical Proof of Non-negative Scores

A fundamental requirement for GeneFunnel is that its scores remain non-negative, 
ensuring compatibility with common downstream analyses in functional genomics. The 
goal is to transform a standard gene/protein by sample expression matrix into a gene set 
by sample matrix, preserving key properties that allow established bioinformatics 
techniques, such as dimensionality reduction, normalisation, and differential expression 
analysis, to be applied seamlessly. Many of these methods, including log-transformation, 
require non-negative inputs, making it essential that GeneFunnel does not yield negative 
scores. Intuitively, a negative pathway activity score would be biologically meaningless, as 
it would imply an inversion of expression that contradicts the additive nature of gene set 
aggregation. Instead, the method is designed such that the minimum possible score is 
zero, which occurs in two biologically interpretable cases: when all features in the set have 
zero expression or when the set exhibits maximal internal deviation, meaning that the 
expression values are so dispersed that the deviation term fully offsets the total summed 
expression (i.e. the case when a single value is non-zero). Proving that GeneFunnel 
always produces non-negative scores formally validates that it is a proper transformation 
of gene expression data, ensuring interpretability and compatibility with standard 
computational workflows.
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Theorem: GeneFunnel Scores Cannot be Negative

Let  be the expression level of feature  in sample , and let  be a predefined gene set 
containing  features. The GeneFunnel score for gene set  in sample  is given by:

Then, for all  and :

Proof:

We begin by expanding the sum of values in the gene set (found left-hand-side or LHS of the 
parenthesis), where in a general case, the sum of values is equal to the mean of values times the 
number of values:

Substituting this into the scoring equation, located LHS of the parenthesis, we obtain:

Factoring out  from that substitution, and from within the parenthesis, simplifies the score to:

Looking within the parenthesis, we form the following inequality, stating that the mean of values is 
always greater than the sum of absolute deviances from the mean multiplied by the scaling factor:

Note that omitting the scaling factor from the RHS yields the equation for Mean Absolute Deviation 
(MAD):

As shown in (Aghili-Ashtiani, 2021):
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Where  is a set of real numbers.

We therefore reformulate the problem as follows, noting however that the inequality that the mean 
of values as always being greater than or equal to the MAD does not hold:

In fact, in maximally deviating sets, where there is only a single non-zero value, the ratio of the 

MAD to the mean approaches 2 with increasing set size. Let’s assume a vector  
of length , where only the first value is non-zero. Then:

and (complete derivation available in Appendix Derivation A):

The ratio between the MAD and mean can then be written as:

Finally, as set size approaches infinity:

Therefore:

These findings helped influence discovery of the appropriate GeneFunnel scaling factor. With the 
scaling factor applied, the above evaluates as follows:
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Therefore:

Substituting in the definitions for GeneFunnel:

We show that the inequality is satisfied for GeneFunnel scores, and conclude that the scaling factor 
combined with MAD is necessary to ensure that for all  and :

Thus GeneFunnel always produces non-negative scores.

In addition to proving that GeneFunnel always produces non-negative scores, this proof 
also shows that GeneFunnel evaluates to zero when a feature set is maximally deviant, 
that is, the set of features contain only one non-zero value. In the context of gene set 
enrichment analysis, it is important to ensure that pathway-level activity scores reflect 
coherent biological signals rather than arbitrary fluctuations in individual gene expression. 
A key principle of GeneFunnel is that a gene set should only be considered enriched if its 
member features exhibit a coordinated expression pattern. However, if a gene set is highly 
inconsistent, where some features are highly expressed while others are completely 
silenced, then it is biologically uninformative to assign it a high enrichment score. In the 
case of maximal deviance, a gene set will always receive a score of zero due to the 
scaling factor. This is a desirable outcome because a gene set is defined by the activity of 
two or more features and therefore a gene set with expression of a single feature, no 
matter how high its expression, should not result in that gene set being enriched. As 
shown in the proof, using MAD alone will dampen such gene sets as well, but at the cost 
of producing negative values incompatible with many kinds of downstream analyses.

The scaling factor produces another interesting property when considering a gene set 
where half the features are non-zero, but equal to one another. This gene set will receive a 
score of half of its sum, and if split into two gene sets, the expressing portion would be 
equal to its sum while the non-expressing portion would equal zero. Effectively, the activity 
in this situation is best explained by one of the smaller gene sets, so it should receive the 
highest score, even if the gene set size is smaller. This is beneficial for narrowing down the 
specific aspects of pathway activity that are most present, penalising overly general 
pathways that contain features that are lowly or non-active in the dataset.
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4.5 Exploration of GeneFunnel Properties

To thoroughly evaluate the behaviour of GeneFunnel and understand its scoring 
properties, I first conducted an exploration of its theoretical and practical characteristics 
before benchmarking it against existing methods. To facilitate this process, I developed a 
Shiny web application (https://data.duff-lab.org/app/genefunnel-benchmarks-viewer), 
which provides an interactive interface for investigating how GeneFunnel responds to 
different input scenarios. While I discuss the technical aspects of the web app’s 
development in Section 5.3, here I focus on how it was used as an exploratory tool for 
assessing the properties of the algorithm.

Figure 99.

Figure 99: Screenshot of the landing page of the GeneFunnel Benchmarks Viewer Shiny 
app (https://data.duff-lab.org/app/genefunnel-benchmarks-viewer).

A key component of this exploration involved constructing a hypothetical gene by sample 
matrix to simulate different patterns of gene expression (Figure 100). This synthetic 
dataset allowed for precise control over the relationships between genes, enabling a 
systematic examination of how GeneFunnel assigns scores under various conditions. 
Within the web app, users can interactively modify values within this matrix, effectively 
simulating different gene expression profiles (Figure 101). Each change is processed in 
real time, with GeneFunnel recomputing scores for all gene sets dynamically. The results 
are displayed as a heatmap of the gene set by sample matrix, providing immediate visual 
feedback on how alterations in individual genes affect pathway-level enrichment scores 
(Figure 102). This interactive approach not only aids in validating theoretical expectations, 
such as the behaviour of GeneFunnel under extreme cases, but also helps intuitively 
illustrate how the method differs from traditional functional class scoring approaches.
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Figure 100.

Figure 100: Heatmap of hypothetical gene by sample matrix to simulate different patterns 
of gene expression. Gray cells indicate NA values. Figure created using ComplexHeatmap 
R library (Gu et al., 2016).

Figure 101.

Figure 101: The gene count values underlying the heatmap in Figure 100. The table uses 
the shinyMatrix R library to allow users to edit values within the web app and update 
GeneFunnel output in real-time.
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Figure 102.

Figure 102: Heatmap coloured by GeneFunnel scores from the hypothetical data in 
Figures 100 and 101. The entire set of genes (rows) were considered to be a single gene 
set. This results in a collapse of the original 10 row by 5 column to the 1 row by 5 column 
matrix seen here. The heatmap contains information below the cells corresponding to the 
GeneFunnel algorithm: the sum of the gene set, the mean, the deviance (including scaling 
factor), and the final score.

The selection of values for the originating gene by sample matrix was very deliberate, to 
try to cover the broad range of situations GeneFunnel was designed to excel in, within a 
minimal example. Starting with the first column of Figures 100 and 101, with Sample 1, it 
can be seen that all of the values hover around the arbitrary expression value of 50. These 
values also include a small degree of noise or jitter, or within the terminology of 
GeneFunnel, deviance. Upon examination of Figure 102, the metrics below the Sample 1 
cell confirm these properties. The mean is precisely 50, and with 10 values, this also 
results in a sum of 500. The small amount of deviance is also captured, which when 
subtracted from the mean results in a final value of 483.

The values in Sample 2 were specifically selected to contrast with Sample 1. Examining 
the original values, it is clear that this column contains much more deviance, with values 
above 100 and several values recorded as 0. This also begins to highlight another key 
point of GeneFunnel – zero values in the input data are never omitted. This is in stark 
contrast to existing methods; as I will review later, all of the benchmarked methods discard 
zero values from the calculation of enrichment scores. I will argue that this is improper 
handling of this case, as zero values are valuable information for determining if the totality 
of gene set is in fact enriched. In any case, even with the inclusion of zero values, Sample 
2 was designed to have the same sum and mean as Sample 1, which is confirmed in 
Figure 102. However, the large deviance of 298 brings a significant penalty to the final 
score, dropping it from 500 to just 202. This is in contrast to Sample 1, which has a final 
score of 483. Comparing these two samples reveals why naive implementations of gene 
set enrichment that are overly reliant on sum or mean alone fail to capture interesting 
nuances in the data.
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Arguably, the gene set contained in Sample 1 would be of greater interest in a real 
biological setting. All of its genes are expressed at a detectable level and within a close 
range of one another, raising confidence that all components of the gene set’s function are 
active. Beyond this, focusing on the gene set in this sample increases the probability of 
successful downstream functional work, such as biochemical or molecular analysis. 
Nevertheless, one must remember that this is an assumption of the method. The 
counterargument against the utility of this assumption is the undisputable fact that 
expression of genes and abundance of proteins vary greatly in their dynamic ranges 
(Buccitelli & Selbach, 2020). Just because some components of gene set are measured at 
a low level while others at a higher level does not necessary mean the gene set is 
inactivate. At present, GeneFunnel, nor any other reviewed method, has a solution to this 
reality; they all operate under the assumption that in general, the greater the value of more 
components of a gene set, the greater the final enrichment score.

Sample 3 showcases a much simpler test case than the first two samples. It simply intends 
to confirm that when all features are equal in value, the deviance is zero. This is confirmed 
in Figure 102. As the values in this sample now centre around 100 rather than 50, the 
mean is now 50 while the sum is 1,000. With a lack of deviance, this results in simply an 
enrichment score equal to the sum.

Sample 4 differs substantially from the others in that there are NA values in the original 
matrix. Similar to the argument for the inclusion of zero values, GeneFunnel also maintains 
a special stance for NA or missing values. Whereas a zero is treated as a measurement at 
the minimum of the range, an NA is considered to provide no information as to the 
expression level of the feature at hand. In practice, this represents the only situation where 
a feature will be excluded in the calculation of the score for a gene set, similarly to how 
other methods treat zeros. Therefore, GeneFunnel will happily accept NA and missing 
values, whereas the benchmarked methods fail. Noting this special treatment however, a 
researcher may still elect to remove these special values, and the general 
recommendation still is to do so. For the purposes of this hypothetical matrix, NA values 
effectively reduce the gene set size, which is useful for testing purposes.

As a result, the gene set in Sample 4 is actually treated as a gene set with a size of 5 
rather than 10. This changes the scaling factor. Whereas the other samples have a scaling 

factor of , the scaling factor for Sample 4 changes to . This would normally have an 
effect on the deviance score, though in this example, there is no deviance to begin with, so 
it remains zero. However, what is noteworthy is that the mean of Sample 4 is equal to 
Sample 3, but the final enrichment score and sum is 500 rather than 1,000. This indicates 
GeneFunnel’s preference for scoring larger gene sets higher, a deliberate design decision 
that users should be aware of. The argument for preferring larger gene sets is again driven 
by pragmatic interest – an enriched larger gene set is more likely to be of biological 
interest than smaller ones, particularly of the many gene sets in Gene Ontology that are 
comprised of fewer than 5 genes.
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While a naive implementation of this will bias results simply towards larger gene sets, a 
drawback of many existing methods (Geistlinger et al., 2020; Simillion et al., 2017), it is 
balanced out by the deviance calculation. As a gene set grows larger, the probability that a 
dataset exhibits deviance among the features increase. The scaling factor, however, is 
designed modulate the severity of this correction. For instance, in the case of Sample 4, 

the scaling factor of  is larger than . Therefore, as gene set size approaches the 

minimum of 2, the scaling factor becomes  and the deviance score is maximally applied. 
On the other hand, as the gene set size approaches infinity, the scaling factor approaches 
0.5. The end result is that for a small gene set to have a high score, the few features it 
contains should have minimal deviance because the scaling factor offers little reduction of 
the penalty, whereas a larger gene set can have a bit more leeway and this is balanced 
out by the fact that larger gene sets will have a higher probability of deviance to begin with.

The final column, Sample 5, showcases a situation where values are maximally deviant, 
producing a score of zero as supported by the proof in preceding sections. Containing a 
single non-zero value, the sum is fully cancelled out by an equivalent deviance value. This 
would be the case in all gene set sizes containing a single non-zero value. As the 
proportion of non-zero values increase, the enrichment score gradually increases until an 
equilibrium where half of values are non-zero. Assuming no additional deviance, the final 
enrichment score in such case would be half of the sum.

4.6 Exploring GeneFunnel Alongside Other Functional Class Scoring 
Methods

I next aimed to build off the exploratory approach in the preceding section and apply it to 
several other functional class scoring methods. I elected to compare GeneFunnel with 
methods discussed as Prior Art: GSVA (testing both Poisson and Gaussian kernels), 
ssGSEA, PLAGE, and Z-score. Like the last analysis, the results are wholly contained in 
the web app in the next tab section. The first series of explorations again focus on a 
hypothetical gene by sample matrix, constructed similarly as the first with slight 
modifications (Figure 103). After running each of the models, the results are condensed 
into enrichment heatmaps (Figure 104) and tables of the raw values (Figure 105).

All methods were run as recommended by their authors for all benchmarking. Importantly, 
all data input into GSVA Gaussian, ssGSEA, PLAGE, and Z-score underwent a log2 + 1 
transformation, with GSVA Poisson (and GeneFunnel) being the only methods taking the 
raw data. The minimum set size was also set to 2 for all methods. Finally, the 
normalisation step in ssGSEA was turned off, as the method is no longer a single-sample 
method with it applied (Barbie et al., 2009; Hänzelmann et al., 2013). All methods were ran 
with parallel processing through BiocParallel.
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Figure 103.

Figure 103: Another hypothetical gene by sample matrix for use with benchmarking 
various FCS methods against GeneFunnel. It is identical to the one in Figure 100 aside 
from three key points. 1) The sample containing NA values is removed, as all the tested 
methods fail to run when the input matrix contains NA or missing values. 2) Any gene sets 
that would have all zeros are modified to have at least one non-zero value (Sample 4), as 
the tested methods discard such gene sets. 3) During testing, the first and second half of 
the genes are evaluated as separate gene sets (designated as Gene Set X and Y in the 
right-side annotations), as well as a gene set encompassing all genes (Gene Set Z).

Figure 104.
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Figure 104: Output of various function class scoring methods, including GeneFunnel, on 
the hypothetical matrix in Figure 103. Gene sets correspond to the groupings shown in the 
right-side annotation of Figure 103. Gray cells indicate NA values produced as output.

Figure 105.

Figure 105: Table of values produced from the functional class scoring methods tested on 
the hypothetical matrix in Figure 103. Values correspond to heatmap colours in Figure 104.
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Before diving into details, it is apparent from a cursory glance that each method produces 
starkly different results, aside from the two variations of the GSVA method. This alone 
highlights the pervasive problem that plagues gene set enrichment – the massive 
heterogeneity in results produced between methods. As gene set enrichment is often used 
as a guiding tool during exploratory analysis that sets the groundwork for extensive and 
often costly downstream work, it is alarming that methods even within the same category 
(functional class scoring) show so little concordance. This known issue (Geistlinger et al., 
2020; Wijesooriya et al., 2022) was a major motivator for the development of GeneFunnel, 
not necessarily to add to the pile of methods, but establish a method that is intuitive and 
can be easily reasoned back to the original data. It is also why initial benchmarking began 
with small, contrived, hypothetical datasets like the ones discussed here.

Beginning with Sample 1, I claim that GeneFunnel is the only method to sensibly score this 
sample. For the most basic test, both Gene Set X and Y should be more-or-less similar, as 
the data contained in each are nearly identical. GeneFunnel produces scores that reflect 
this, with 237.75 and 244.50 for Gene Set X and Y, respectively. All other methods show 
noticeable and generally large differences between them, especially with GSVA. GSVA in 
particular attempts to distribute its output along a range of -1 and 1, similar to a Z-score, 
making it the most inappropriate for assessing just a few gene sets. While this dataset is 
indeed a contrived example, it is not inconceivable to be interested in only scoring a few 
select gene sets in a real-world situation. GSVA was however, the only method other than 
GeneFunnel to attribute the highest score to Gene Set Z, the largest gene set 
encompassing all features in the test dataset. This was the second property that I deemed 
sensible for scoring Sample 1.

In Sample 2, I expected to see generally lower scores than in Sample 1, while following 
the same pattern of Gene Set X and Y being comparable, and Gene Set Z having the 
largest scores. GeneFunnel fulfilled this criteria, while all others failed. Most of the 
methods showed similar patterning as in Sample 1, while Z-score appeared to similarly 
score Gene Set Y and Gene Set Z (the largest gene set) this time, which could not be 
explained.

Sample 3 is the most straightforward of the samples. With no deviance at all, Gene Set X 
and Y should be identical, with Gene Set Z at least being identical or larger. This time at 
least, there were two methods that could be considered comparable to expected output 
seen in GeneFunnel. PLAGE showed very sensible results in that all gene sets of Sample 
3 were the largest scoring sets in the whole dataset. Furthermore, the scores for Gene Set 
X and Y are quite similar (1.643413 vs. 1.594036), though not precisely identical like 
GeneFunnel. While Sample 3 Gene Set Z is indeed the highest score in the entire dataset 
for GeneFunnel as well, Gene Sets X and Y are more similar to Gene Set Z of Sample 1. It 
is a matter of debate and subjective viewpoint as to whether GeneFunnel or PLAGE 
appears more sensible regarding Gene Set Z of Sample 1 in relation to Sample 3. The 
other method that seemed to perform decently in Sample 3 was GSVA Gaussian, as Gene 
Set X and Y are more similar to one another compared to those sets in other samples. 
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Gene Set Z also received the highest score, though the methodology of GSVA makes it so 
that there is no difference in the score of Gene Set Z between samples; it converges 
towards 1 in all cases.

Finally, I expected Sample 4 to produce scores that increase in value slightly from Gene 
Set X, to Gene Set Y, to Gene Set Z, as the proportion of zeros to non-zero values 
decrease. GeneFunnel reflected this, although the difference between Gene Set Y and Z 
were small and hard to see on the heatmap (50 vs. 66.66). The only other method that had 
the correct trend was GSVA Gaussian, however, like other samples, the gap between 
Gene Set Z compared to the other gene sets is extreme. While PLAGE didn’t show the 
expected pattern per se (Gene Set Z was the lowest scoring), it did correctly show Gene 
Set X as less enriched than Gene Set Y, which is an undebatable expectation. 
Furthermore, as a whole, the values in Sample 4 are the lowest in the entire dataset, 
which should also be expected.

In conclusion, at least in this contrived scenario, aside from GeneFunnel, all of the tested 
methods performed poorly. While it may be the case that none of these methods were 
constructed to work with such small test cases, it is still a significant drawback. After all, a 
very useful approach for exploratory work into understanding how a method works and 
interacts with changing parameters are through small, controlled experiments like these. 
Incomparability with such scenarios bring about major limitations to the adoption of these 
methods. Outside of this, not every real-world experiment is high-throughput especially 
when working with emerging technology such as spatial omics. It is important for 
bioinformatic methods to be robust to a range of dataset sizes and I demonstrate here that 
at least within small datasets, GeneFunnel performs sensibly.

4.7 Benchmarking of GeneFunnel Against Other Methods in Synthetic 
Data

To test whether the small-panel results were an artifact of the setup rather than the 
methods, I built another synthetic benchmark comparing two groups on a large gene 
catalog and added formal statistical testing alongside a broader mix of approaches, 
including approaches that cover the main families of gene-set inference: ORA, camera, 
fgsea, and GSVA/ssGSEA. ORA (over-representation analysis) takes the final list of 
differentially expressed genes and asks, via an enrichment test against the background 
gene catalogue, whether each set contains more hits than expected by chance; this is the 
generalised approach taken by the popular g:Profiler (Raudvere et al., 2019), but this 
implementation permits an arbitrary set catalogue and background, which is necessary for 
synthetic benchmarks. Camera, from limma (Phipson et al., 2016; Ritchie et al., 2015), is a 
competitive test that fits a linear model per gene and then evaluates whether genes in a 
set show stronger differential expression than genes outside the set. fgsea, is an R 
implementation of GSEA (Subramanian et al., 2005), which operates on a ranked list of 
genes and computes an enrichment score that reflects whether set members concentrate 
near the top or bottom of the ranking (Korotkevich et al., 2016). GSVA and ssGSEA are 
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among the functional class scoring methods used in the prior benchmark, computing a 
per-sample score for each set without using group labels, similar to GeneFunnel. For 
these, as well as GeneFunnel, I apply a stock limma-trend pipeline, similar to that of the 
main thesis analysis on tangle-bearing neurons, to test for differential enrichment between 
groups. This mixture of methods allow for a comparison of hit-list enrichment (ORA), 
model-based competitive testing (camera), rank-based enrichment (fgsea), functional 
class scoring (GSVA and ssGSEA), and the proposed functional class scoring method 
(GeneFunnel) under one evaluation protocol.

The simulation uses a 20,000 gene matrix partitioned into 1,000 non-overlapping gene 
sets (20 genes per set) and 10 samples (5 in group A, 5 in group B). In each experiment, 
50 sets are designated signal and the remaining 950 null. Counts are drawn from a 
negative-binomial model with realistic library-size variation, then normalised with edgeR 
TMM before set-level scoring and testing across the gene matrix. Signals were injected 
under three patterns that isolate different behaviours of gene set enrichment methods and 
expose different dynamic ranges of gene set activity. In “spike”, only half of genes in a 
signal set is perturbed, but strongly, while the remainder is left untouched, which probes a 
method’s tolerance to partial activation and within-set heterogeneity (Figure 106). In 
“variance”, the set mean of the signal set is preserved while the within-set dispersion is 
deliberately reduced in one group, testing the ability of the methods in assessing within-set 
consistency (Figure 107). In “coordinated”, a small but consistent log fold change is 
applied to all genes in a signal set in one group, producing the most classic example of 
gene set enrichment but within a small dynamic range so as to stress the sensitivity of 
each method (Figure 108). I evaluate each setting at FDR 0.05, using statistical testing 
intrinsic to each method or limma-trend otherwise, recording sensitivity, specificity, 
precision and other common benchmarks. In contrast with the last simulation, which 
functions as an exploration of functional class scoring properties under precisely defined 
but ultimately unrealistic scenarios, this simulation study intends to more comprehensively 
cover the various approaches to gene set enrichment in a dataset with realistic properties 
and signal structures. It furthermore provides a clearer picture of where GeneFunnel’s 
design, which rewards both signal magnitude and within-set consistency, confers 
advantages or exposes limitations in practical use.
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Figure 106.

Figure 106: An example of the perturbations for one randomly selected signal set. In the 
“spike” paradigm, half of genes of the signal set in one group have 200 counts added to 
their signal while the rest remain unchanged. Columns are split by group, rows are 
clustered within the set, and the colour bar shows centred log2+1 expression.

Figure 107.
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Figure 107: An example of the perturbations for one randomly selected signal set. In the 
“variance” paradigm, set means are preserved but intergene variance of the genes in the 
signal sets of one group is reduced to 25% of its original value. Columns are split by 
group, rows are clustered within the set, and the colour bar shows centred log2+1 
expression.

Figure 108.

Figure 108: An example of the perturbations for one randomly selected signal set. In the 
“coordinated” paradigm, all genes in the signal set shift by a small (0.25 logFC with 0.1 
standard deviation) same-direction amount in one group. Columns are split by group, rows 
are clustered within the set, and the colour bar shows centred log2+1 expression.

The tables below summarise method performance at the threshold of FDR (BH adjusted p-
value) 0.05 for each perturbation paradigm. With 50 signal sets and 950 null sets per 
experiment, TP (true positive) counts signal sets correctly detected, FN (false negative) the 
missed signal sets, TN (true negative) the correctly rejected null sets, and FP (false 
positive) the null sets falsely called. From these I report sensitivity (TP/P), specificity 
(TN/N), precision (TP/(TP+FP)), accuracy ((TP+TN)/(P+N)), and F1 (the harmonic mean of 
precision and sensitivity). I also report the average FDR for the signal sets, defined as the 
mean BH adjusted p-value across all 50 signal sets for each paradigm. Higher is better for 
all rates except average FDR, where lower is better.
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Figure 109.

Figure 109: Per-method performance for the “spike” paradigm at the FDR threshold of 
0.05. Rows list methods, columns report detection counts (TP, FN, TN, FP) and the 
derived rates (sensitivity, specificity, precision, F1, accuracy, average FDR). Colours 
correspond to magnitude while bold font marks the highest values within a column.

Figure 110.

Figure 110: Per-method performance for the “variance” paradigm at the FDR threshold of 
0.05. Rows list methods, columns report detection counts (TP, FN, TN, FP) and the 
derived rates (sensitivity, specificity, precision, F1, accuracy, average FDR). Colours 
correspond to magnitude while bold font marks the highest values within a column.

Figure 111.

Figure 111: Per-method performance for the “coordinated” paradigm at the FDR threshold 
of 0.05. Rows list methods, columns report detection counts (TP, FN, TN, FP) and the 
derived rates (sensitivity, specificity, precision, F1, accuracy, average FDR). Colours 
correspond to magnitude while bold font marks the highest values within a column.
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In the “spike” paradigm, where only half of the genes in a signal set are perturbed, though 
robustly, all methods perform well except ORA. GeneFunnel and camera achieve perfect 
detection (50/50 true positives with no false positives). The rank-based and unsupervised 
scoring approaches are close to this ceiling; fgsea detects all 50 signal sets with two false 
positives, GSVA recovers 45 of 50 with one false positive, and ssGSEA detects all 50 with 
three false positives. ORA remains highly specific but has low sensitivity (15/50), likely 
because partial activation leaves too few genes surpassing the differential expression 
threshold to trigger over-representation at the set level. Although the 50 signal sets do not 
overlap any other sets, several methods are sensitive to the overall distribution of gene-
level statistics or ranks. The robust perturbation of the signal sets may have shifted this 
background slightly, resulting in false positives for those methods. GeneFunnel is only 
susceptible to this issue at the statistical testing stage, i.e. limma, as the scoring 
mechanism itself operates on each gene set and sample in isolation.

In the “variance” paradigm, where the mean is preserved and only within-set dispersion is 
altered, procedures that target location differences lose power. GeneFunnel retains the 
highest sensitivity because its scoring emphasises within-set consistency as well as 
magnitude, allowing reduced variability to register as a stronger, more coherent pattern 
despite the lack of mean change. Camera and ORA identify a smaller fraction of signal 
sets, and the rank-based and unsupervised scoring methods detect none at the chosen 
threshold. Though no other method claims to measure inter-gene variance, individual 
changes to gene counts to reduce inter-gene variance pushes some genes past the 
significance threshold for regular differential expression testing. It is likely that when 
several such genes occur in the same set, methods that aggregate gene-level evidence, 
such as camera or ORA, can incidently report enrichment despite not explicitly including 
criteria for within-set consistency. Across methods, average FDRs are higher than in 
“spike”, reflecting weaker evidence when the signal resides in dispersion rather than in the 
mean.

In the “coordinated” paradigm, where a very small (0.25 logFC with 0.1 standard 
deviation), but consistent log-fold change is applied to all members of each signal set, 
GeneFunnel again achieves the best combination of sensitivity and F1. GSVA is second, in 
line with its design to capture coordinated per-sample shifts, and camera detects fewer 
sets at this subtle effect size. fgsea and ORA do not register signal sets at all here, 
indicating that the per-gene effects are too small to accumulate sufficient ranked-list or hit-
list evidence at an FDR of 0.05. This paradigm is the most standard formulation of gene 
set enrichment and serves as a direct test of method sensitivity to small but coherent 
shifts. With the current effect size and 5 vs 5 samples the signal is intentionally 
challenging, so power concentrates in methods that aggregate weak, consistent changes 
across all genes in a set.

Across these simulations GeneFunnel shows the most consistent power across the three 
alternatives. It reaches the ceiling in the spike setting, retains the highest sensitivity when 
the signal is variance only, and remains competitive for small coordinated shifts. This 
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matches the design goal of the method, which produces per-sample set scores that reward 
both effect magnitude and within-set consistency, so partial activation, tighter dispersion 
and subtle coordinated changes can each yield a detectable set-level signal. GeneFunnel 
works within a standard limma-trend workflow, gives interpretable profiles at the sample 
level, and maintains low false-positive rates at the stated FDR.

A few caveats remain. The current simulation uses 5 vs. 5 samples, non-overlapping sets 
of size 20 and a single catalogue of genes. Performance could change with larger or 
smaller cohorts, different set sizes, heavy set overlap or highly redundant catalogues, and 
stronger gene-gene correlation. In this experiment, GeneFunnel and other functional class 
scoring methods, relied on limma-trend for statistical testing, and ensuring its proper 
calibration is non-trivial. Furthermore, there are other downstream testing frameworks that 
can significantly affect the performance of these methods. Finally, the evidence here 
remains fully synthetic, and while the proceeding section covers usage in real-world data, 
testing in biological “ground truth” data, such as those utilising RNA spike-ins may be of 
value, though such datasets still contain non-trivialities in generation and interpretation.

4.8 Benchmarking of GeneFunnel Against Other Methods in Real Data

Having run two synthetic experiments, one exploratory within the FCS family and one 
spanning method families with formal testing, I now move to real data. Because ground 
truth is unknown in this setting, I restrict the comparison to FCS methods to create a more 
like-for-like testing framework, which makes qualitative comparisons more interpretable. 
The dataset of choice was the transcriptomics dataset that encompasses the main results 
of this thesis work: the FACS-sorted ssRNAseq dataset (Otero-Garcia et al., 2022). I 
started with the annotated Seurat object obtained from the completion of the pipeline 
described in Methods. This object is a single cell by gene matrix which I then 
psuedobulked to resemble a bulk RNAseq matrix using the aggregateAcrossCells function 
from (McCarthy et al., 2017). The parameters for psueduobulking were set to produce a 
simple two column output, aggregating cells into either a tangle-bearing or non-tangle-
bearing group while ignoring donor label information. In the following section I describe a 
number of controlled transformations of these objects and test the ability of each functional 
class scoring methods to capture these transformations.

The first transformation was to arbitrarily select a single column, in this case the tangle-
bearing neurons, and alter the gene expression of genes corresponding to specific gene 
sets. To begin with, I choose two particular gene sets: NELF Complex and Trace-amine 
Receptor Activity. These gene sets were chosen because they have no gene overlap with 
other gene sets in the testing set, therefore, any changes detected should only be in these 
two sets (Figure 112). NELF Complex was modified to reduce variability, that is, all genes 
of the set were transformed into the sum of the gene counts divided by the total number of 
genes in the set. Trace-amine Receptor Activity was simply modified to have increased 
counts; all genes in the set had 100 counts added to them. A column containing these 
modifications was added to the original object, while leaving the original column 
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unmodified. I then ran each FCS method on the modified and unmodified columns. The 
result of each FCS output is shown in Figure 113. I subset to the top two gene sets sorted 
by greatest absolute difference between the modified and unmodified columns. If a method 
successful captured the induced modifications, then the altered gene sets should be the 
ones present in the sorted data.

Figure 112.

Figure 112: Heatmaps showing controlled modifications of specific gene sets in 
pseudobulked data from (Otero-Garcia et al., 2022), the FACS ssRNAseq dataset. In 
each, I introduce a Modified column where the counts for genes in NELF Complex were 
altered to reduce variability, and the counts for genes in Trace-amine Receptor Activity 
were increased, as described in the text. The data is log2 + 1 transformed before plotting.
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Figure 113:
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Figure 113: Comparison of the six FCS methods in the controlled modifications of the 
pseudobulked FACS ssRNAseq dataset. The “Original” column contains unmodified data, 
while the “Modified" had counts of NELF Complex modified to reduce variability while the 
counts of Trace-amine Receptor Activity were increased. Shown are the top two gene sets 
for each method after sorting by greatest absolute difference between the “Modified” and 
“Original” columns.

As can be seen in Figure 113, all methods successfully captured the change in Trace-
amine Receptor Activity, which simply had counts of associated genes increased by 100 
counts. This demonstrates that all methods have the capacity to capture simple linear 
changes in expression level. However, only three methods also showed NELF as being 
among the top two hits: ssGSEA, PLAGE, and GeneFunnel. This shows that these 
methods are sensitive, at least to some extent and whether incidental or not, to changes in 
the variability (or deviance in GeneFunnel methodology), even without changes in overall 
expression levels. 

This example is also noteworthy when considering the magnitude of changes expressed in 
the heatmaps. No scaling was applied to any heatmap and the colour bar is set to 
encompass the entire range of values produced by each method. For all methods except 
for GeneFunnel, the changes are visually apparent, while in GeneFunnel, the changes are 
so subtle and the colour bar range so wide that it is essentially invisible. This is a feature of 
GeneFunnel, not a bug. Recall that the changes were induced subtly, for instance, an 
increase of only 100 counts in each gene of NELF Complex. GeneFunnel reflects that this 
change is small, but still detectable. This is advantageous because it preserves magnitude 
of relative expression between the genes, offering great dynamic range. One may argue 
that this reduces sensitivity for statistical testing, however, as shown when exploring 
synthetic data in Figures 103 through 105, GeneFunnel does not introduce artificial 
variance between what should be similarly scored gene sets or samples, unlike the tested 
methods. While other methods may increase power by artificially inflating effect sizes, 
even if unintentionally, increased sensitivity when using GeneFunnel is derived from 
robust, stable scoring that closely reflects the source data.

Using the dynamic range of GeneFunnel, one can infer in Figure 113 that both gene sets 
contain genes that are either lowly expressed in the context of the dataset, or a set of 
genes that are highly variable. Effectively, whether or not the gene sets are differentially 
expressed, in both samples these gene sets are relatively lowly enriched. One can make 
no such inferences using the other methods. Nevertheless, if one wanted to strictly 
highlight changes between groups, it is up to the discretion of the researcher to limit the 
colour bar to the range of values shown in the heatmap, or apply scaling, which will 
produce a GeneFunnel heatmap more similar to the other methods in Figure 113. An 
example of this is shown in Figure 114. In general however, I advocate against such 
approaches as they may be misleading and ultimately results in a loss of information.
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Figure 114.

Figure 114: The same GeneFunnel heatmap shown in Figure 113, however with the colour 
set to the range of values encompassed by the two-row heatmap, rather than the range of 
values across the entire profile of GeneFunnel scores.

I continued with this line of testing with further variations variations on the theme. In a 
similar fashion, I next modified the gene set Tau Protein Binding, which was modified to 
reduce variability, that is, all genes are set to the sum of the gene counts divided by the 
total number of genes. The key difference in this experiment is that this gene set overlaps 
with other gene sets, so it may not necessarily be the highest hit, but should still be ranked 
near the top. Figure 115 shows what this modification looks like, and Figure 116 shows the 
output of testing on the six FCS methods.

Figure 115.
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Figure 115: Modifications performed on the genes in the gene set Tau Protein Binding in 
the FACS ssRNAseq dataset. In this instance, only variability was reduced, as described. 
Shown left is the data after log2 + 1 transformation, and right is the data after per-row-
scaling for added visualisation purposes.

Figure 116:
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Figure 116: Result of FCS testing when modifying the gene set Tau Protein Binding to 
reduce variability. Because Tau Protein Binding overlaps with other gene sets, the top five 
gene sets, sorted by absolute difference between Modified and Original columns are 
shown, as Tau Protein Binding may not necessarily be the top hit.

The results of this experiment shows that two methods successfully capture the Tau 
Protein Binding term, with both selecting it as the top hit: PLAGE and GeneFunnel. These 
methods also rank terms with many overlapping genes highly, such as Tau-protein Kinase 
Activity and Amyloid-beta Formation. Noteworthy is that in other methods that did not 
capture Tau Protein Binding, they often showed Tau-protein Kinase Activity (or some 
variation of it) in the top five hits; these methods being the two GSVA methods and Z-
score. ssGSEA failed to capture a gene set that appears to have immediate relevance to 
Tau Protein Binding. Unlike the last experiment (Figures 112 through 114), this one also 
produced a larger magnitude of change in GeneFunnel, requiring no scaling approaches to 
visualise the differences. This is likely the result of the larger gene set size of Tau Protein 
Binding; when modifying more genes, a greater difference between the two groups is 
produced. GeneFunnel reflects this, while the other methods appear to adversely produce 
effect sizes similar to those in Figure 113.

Like the previous experiments, I performed the benchmarking procedure again, this time 
modifying the counts of the Neurofibrillary Tangle gene set to have increase counts; all 
genes had 100 counts added to them. Like Tau Protein Binding, this gene set overlaps 
with other gene sets. Figure 117 shows what the modification looks like, while Figure 118 
shows the results of FCS testing.

Figure 117.
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Figure 117: Modifications performed on the genes in the gene set Neurofibrillary Tangle in 
the FACS ssRNAseq dataset. In this instance, counts were increased, as described. 
Shown left is the data after log2 + 1 transformation, and right is the data after per-row-
scaling for added visualisation purposes.

Figure 118.
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Figure 118: Result of FCS testing when modifying the gene set Neurofibrillary Tangle to 
have increased counts. Because Neurofibrillary Tangle overlaps with other gene sets, the 
top five gene sets, sorted by absolute difference between Modified and Original columns 
are shown, as Neurofibrillary Tangle may not necessarily be the top hit.

The results of this experiment are much more promising across methods than the last; all 
of the tested FCS methods show Neurofibrillary Tangle as among the top five hits, 
although GSVA Gaussian and ssGSEA only list it as the second hit. Nonetheless, GSVA 
Gaussian at least ranks Neurofilament Bundle Assembly as the top hit, which is a highly 
overlapping gene set. These results show that in general, all methods can capture simple 
changes in gene set expression, but only a few have to capacity to detect the changes in 
variability introduced in the prior experiment (Figures 115 and 116).

As a final test, I examined the ability of each method to detect changes in the condition-
level pseudobulked dataset without modifications, in other words, a comparison of the 
gene set composition of tangle-bearing vs. non-tangle-bearing neurons. In order to make 
this comparison as straightforward as possible, all the donors are pooled together and no 
statistical testing is performed. The hypothesis is that when sorting gene sets by the 
absolute difference between the two conditions, as done in the prior tests, gene sets 
relevant to Alzheimer’s Disease should rise to the top. If not, then manual inspection of the 
top gene sets should at least reveal that they are reasonable and reflect likely real 
changes. The results of gene set enrichment for this experiment is shown in Figure 119, 
along with inspection of the genes within some of the gene sets in Figure 120.

Out of the benchmarks performed thus far, this last benchmark appears to produce the 
largest divergence between GeneFunnel and the other methods. Comparisons with other 
methods aside, GeneFunnel does appear to highlight gene sets of immediate relevance to 
AD: containing terms such as Tau Protein Binding (gene expression shown in detail in 
Figure 120) and Positive Regulation of Tau-protein Kinase Activity. Neither of these terms 
are shown among the top five for the other methods. In regard to term overlap between 
GeneFunnel and other methods, there is a term related to dendrites in both GeneFunnel 
and GSVA Poisson and a term related to synapses in both GeneFunnel and the Z-score 
method, with neither overlaps being exact matches.
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Figure 119.
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Figure 119: Gene set enrichment results across the methods when comparing tangle-
bearing vs. non-tangle-bearing neurons in the FACS ssRNAseq dataset without 
modifications. The data was pseudobulked by donor to ensure ease of comparison. The 
top five gene sets sorted by absolute difference between NFT and CTRL columns is 
shown for each method.

Figure 120.

Figure 120: The expression of genes in selected gene sets highlighted in the experiment 
depicted in Figure 119, where tangle-bearing and non-tangle-bearing neurons were 
contrasting using the FCS methods in the unmodified FACS ssRNAseq data.

Aside from the Z-score method and GeneFunnel, the other methods do appear to have a 
noticeable level of alignment with one another. In particular, they all seem to focus highly 
on processes related to CHOP, a factor known to interact with the C/EBP family of 
transcription factors (Sok et al., 1999). In AD, CHOP is implicated to protect neurons from 
ER stress (Aceves et al., 2024), so this finding may indeed warrant further inspection. 
However, examination of the actual gene set raises suspicion for the reasons behind its 
prioritisation by various methods. As can be seen in Figure 120, this is a very small gene 
set, composed of just two genes. One gene, ATF4, is highly expressed, and is likely solely 
dependent for driving the large difference in enrichment between the NFT and CTRL 
conditions. As described in prior sections, GeneFunnel is designed to balance gene set 
size, increasing the weight of deviance penalty for small gene sets, with gene sets 



155

specifically of the size 2 carrying the most weight. Indeed, there is a large difference 
between ATF4 and the only other gene DDIT3 and GeneFunnel uses this difference to 
penalise the gene set highly. This allows for the higher prioritisation of gene sets like Tau 
Protein Binding, where the magnitude of no singular gene change is comparable to ATF4, 
but across the 25 genes comprising the gene set, many are increased by some degree in 
NFT vs. CTRL. I argue that such gene sets are of greater research interest and thus 
GeneFunnel provides greater utility over other methods in this instance. They are also 
easier to interpret, as tau related processes are the direct mechanism involved in this 
comparison, so GeneFunnel provides important positive confirmation as to the validity of 
the experimental data.

4.9 Benchmarking of Computational Efficiency of GeneFunnel Against 
Other Methods

Even if a method has high analytical performance compared to others, that method may 
not be feasible to use if runtime or memory usage is excessive. This area received 
significant attention in GeneFunnel, prompting an implementation in Rcpp (C++ interface 
to R) (Eddelbuettel & Balamuta, 2018; Eddelbuettel & François, 2011) with the highly 
optimised RcppArmadillo linear algebra libraries (Eddelbuettel & Sanderson, 2014). In 
order to compare computational efficiency across methods, I took the original FACS 
ssRNAseq data and replicated samples or cells to different sizes and then passed each 
method through the function mark from the R package bench. All tests were performed 
with 5 iterations to ensure robustness. Furthermore, when comparing serial and parallel 
processing, the same framework was used in all methods: BiocParallel.

Three variations of this approach were recorded. For the first, I used a pseudobulked 
version of the FACS ssRNAseq dataset with 6 total samples and ran all methods using 
serial processing. The output is summarised in Figure 121. Next, I took this same data and 
reran the methods with 60 samples using parallel processing. This output is summarised in 
Figure 122. Finally, for the last test, I went back to the original single-cell data without 
pseudobulking. Using parallel processing, I tested each method on a maximum of 600 
cells alongside various subsets of the data. Using six subsets, at each subset the number 
of cells was halved. For example, whereas the sixth subset contained 600 cells, the fifth 
subset contained 300, and so-on. The results of this experiment is captured in Figure 123.

Figure 121.
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Figure 121: Runtime and memory usage across various functional class scoring methods 
when using serial processing on 6 pseudobulked samples from the FACS ssRNAseq 
dataset. Benchmarking performed using the mark function from the R package bench.

Figure 122.

Figure 122: Runtime when performing the same experiment as Figure 121 but with parallel 
processing and 60 rather than 6 samples. Note that when using parallel processing, 
memory usage cannot be captured using the framework provided by the R package 
bench.

Figure 123.

Figure 123: Runtime benchmarking of the six methods on various subsets of samples from 
the unmodified non-pseudobulk version of the FACS ssRNAseq dataset. At the largest 
subset, subset 6, 600 cells are used. At each prior subset, the number of cells is halved; 
300 cells at subset 5, 150 cells at subset 4, etc.

Inspection of the figures shows that GeneFunnel is the leader in computational efficiency 
in both runtime and memory usage in all scenarios, although PLAGE is comparable when 
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comparing runtime in single-cell data (Figure 123). When using serial processing, the 
median runtime and memory usage of GeneFunnel is 379.54ms and 2.24MB, respectively. 
The next most performant methods, PLAGE and Z-score have runtimes measured in the 
seconds and several tens of megabytes of memory usage. ssGSEA was notably 
unoptimised, taking almost 40 seconds and consuming 10GB of memory. The GSVA 
methods, while reasonably quick (~2 seconds), also consumed about 8GB memory. When 
using parallel processing and increasing the number of samples by a factor of 10 (6 to 60 
samples), the same efficiency rankings hold true (Figure 122). GeneFunnel is the quickest 
by far, taking a median of 12.58s, with PLAGE being the next quickest at 1.37m and Z-
score and GSVA Gaussian tied at 2.13m. Similarly to the first experiment, ssGSEA took an 
excessively long time, at a median of 17.26m to the time of completion.

In Figure 123, I reverted to analysis on the original single-cell version of the FACS 
ssRNAseq dataset, to measure how feasible the various methods are for single-cell 
analysis. Throughout the different subset of data, both GeneFunnel and PLAGE rank at 
the top, with both taking under 30s when evaluating 600 single cells. The two methods 
track closely in runtime in this instance, though were more divergent in the pseudobulk 
data. This can be explained through the handling of dropouts among the methods. 
GeneFunnel is the only method that fully retains zero values in all calculations and never 
discards data. In contrast, PLAGE, and others, drop much of this information, lessening 
the gap with GeneFunnel particularly in the sparse single-cell data. Although not within the 
scope of the GeneFunnel algorithm, if GeneFunnel were to drop values in a similar value, 
the gap would likely widen again to a margin similar to the pseudobulk tests.

Regarding the other methods in the final test, towards the 600 cell mark they all begin 
approach runtimes into the minutes, with ssGSEA taking almost 1hr per run at this point. 
Interestingly, the Z-score method starts out comparable to PLAGE and GeneFunnel 
initially, but diverges significantly from the fourth subset (150 cells). Considering that 
typical single-cell datasets these days contain tens to hundreds of thousands of cells, it is 
clear that many of these methods are likely completely infeasible to run on a single-cell 
level. Overall, these efficiency benchmarks support the optimisations garnered by 
GeneFunnel’s C++ implementation, simple algorithm, and parallel processing capability.

4.10 Advantages of GeneFunnel

GeneFunnel introduces a novel approach to functional class scoring that directly 
addresses limitations in existing methods by incorporating deviation-aware scoring while 
maintaining sample independence. One of its most significant advantages is that it 
ensures pathway-level enrichment scores reflect coordinated gene expression rather than 
being driven by a few highly expressed genes. Many existing methods, such as GSVA and 
ssGSEA, operate on the assumption that total expression within a gene set is a sufficient 
proxy for pathway activity. However, this can lead to inflated scores for gene sets where 
only a subset of genes are highly expressed while others are inactive, producing 
misleading conclusions about pathway activation. GeneFunnel overcomes this by 
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introducing an internal deviation penalty, which ensures that gene sets exhibiting extreme 
dispersion do not receive high scores. This property makes it particularly well-suited for 
cases where internal consistency within a pathway is biologically relevant, such as 
distinguishing truly co-regulated gene sets from those that are only partially activated.

Figure 124.

Figure 124: An example of GeneFunnel’s powerful ability to detect changes in variability in 
datasets. Using the pseudobulked tangle-bearing neurons of the FACS ssRNAseq data, 
the data was modified to produce two new columns. In the Low Var. column, the overall 
counts profile of the dataset was altered to reduce variability while retaining total library 
size. In the High Var. column, variability was increased while retaining total library size. 
After running the three columns through GeneFunnel, the output was sorted to highlight 
gene sets most changed in the variability modified columns, highlighting GeneFunnel’s 
ability to detect these changes. Per-row scaling is applied for visual purposes to 
emphasise differences.
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The benchmarking performed in this work supports the predictability of GeneFunnel in the 
controlled scenarios, a major advantage over other methods that often use more 
complicated algorithms, making intuitive reasoning and troubleshooting difficult. In all of 
the test cases, GeneFunnel outperformed others significantly in capturing differentially 
enriched gene sets. In addition, it always maintains independence between samples and 
gene sets. This is important, particularly as datasets are re-analysed, expanded, or meta-
analysed with other datasets. Furthermore, while no method can be absolutely quantifiable 
when working with data that is intrinsically relative, GeneFunnel retains the original range 
of genes composing gene sets, i.e. a gene set composed of relatively lowly expressed 
genes will receive a low expression score. This in contrast to methods that solely focus on 
differential expression like GSVA. Finally, GeneFunnel carries out its function in an efficient 
manner, ranking above far above peers in terms of runtime and memory usage.

4.11 Disadvantages and Limitations

Despite its advantages, GeneFunnel comes with certain theoretical and practical 
limitations that warrant further consideration. One of the most significant concerns is 
whether variability within a gene set is truly biologically meaningful. While GeneFunnel 
penalises pathway scores when gene expression is highly inconsistent within a set, it is 
important to recognize that gene expression levels exist within intrinsic biological ranges. A 
gene expressed at low levels relative to others in a pathway is not necessarily inactive, its 
expression may be at the upper limit of its normal dynamic range, even if its absolute 
expression is much lower than other genes in the set (Buccitelli & Selbach, 2020). Without 
a comprehensive corpus of predefined gene/protein expression ranges, which is largely 
lacking in current databases, it is difficult to determine whether observed variability is 
genuinely reflective of biological dysregulation or simply an artifact of individual gene 
expression constraints. Addressing this issue would require integrating GeneFunnel with 
external datasets containing reference expression ranges, an area of research (M. Wang 
et al., 2012), though currently sparse.

Another key limitation is that GeneFunnel prioritises maintaining resemblance to the 
original data distribution, ensuring that gene sets with low expression levels correspond to 
lower scores. While this is useful for interpretability, it may come at the cost of detection 
sensitivity, particularly when compared to methods such as GSVA, which focus exclusively 
on detecting relative enrichment between conditions rather than maintaining absolute 
expression information. By incorporating absolute expression into its scoring mechanism, 
GeneFunnel may miss subtle cases where differential expression is the primary signal 
rather than overall expression magnitude. This trade-off makes it particularly important to 
carefully consider whether absolute or relative expression is more relevant for a given 
study.

Like all gene set enrichment methods, GeneFunnel’s accuracy is inherently dependent on 
the biases and completeness of the gene set database being used. The gene sets in this 
study were exclusively derived from Gene Ontology (GO), meaning that the benchmarks 
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primarily reflect GO-specific enrichment performance. Since pathway definitions vary 
across different gene set collections, it remains unclear how well GeneFunnel generalizes 
beyond GO. Future evaluations should test GeneFunnel’s performance with alternative 
gene set databases, such as KEGG, Reactome, or MSigDB, to ensure that its properties 
hold across different biological ontologies.

Although GeneFunnel never introduces dependencies between samples or gene sets, it 
does have one key exception where results may become obsolete over time: if the 
composition of a gene set changes, its score will change. This is because scores are 
inherently tied to the structure of the gene set itself, meaning that if a pathway definition is 
updated in future gene set releases, previous analyses may not be fully reproducible. 
While this issue is unavoidable in any enrichment method tied to evolving biological 
databases, it highlights a potential drawback for long-term reproducibility in GeneFunnel 
analyses.

Another important consideration is that the balance between gene set size, deviance 
penalties, and summation terms were under continuous development, and it remains 
unclear whether the current weighting scheme is truly optimal. While the method was 
carefully designed to balance these components, fine-tuning the exact contribution of each 
factor could further refine GeneFunnel’s ability to detect meaningful pathway activity. 
Related to this, it is also debatable whether summation of expression values and explicit 
gene set size normalisation is the ideal approach. While most comparable functional class 
scoring methods incorporate similar normalization strategies, whether intended or not, it is 
not universally accepted that it is best practice for gene set enrichment scoring.

Finally, it remains uncertain whether the final distribution of GeneFunnel scores are 
inherently well-suited for downstream statistical analyses such as differential expression 
testing and dimensionality reduction. While the scoring method was designed to be 
interpretable and comparable to the original feature by sample expression matrix, the 
actual statistical properties of the resulting values, such as their distributional assumptions, 
variance scaling, and impact on downstream modelling, have not been rigorously tested. 
Many commonly used downstream statistical techniques, such as t-tests, log-transforms, 
or PCA, make implicit assumptions about data distribution that may not perfectly align with 
the output of GeneFunnel. This issue is currently assumed rather than proven, making it 
an area of future investigation to ensure that GeneFunnel scores can be seamlessly 
integrated into standard transcriptomic workflows without introducing unintended biases.

4.12 Implementation Details

Like ImputeFinder, GeneFunnel is being actively prepared for submission to Bioconductor 
at the following URL: https://github.com/eturkes/genefunnel, ensuring that it adheres to 
best practices for reproducible and well-documented bioinformatics software. The biocthis 
package was used to structure the package according to Bioconductor guidelines, 
facilitating smooth integration into the Bioconductor ecosystem. This will enable users to 

https://github.com/eturkes/genefunnel
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easily install, update, and incorporate GeneFunnel into their workflows while benefiting 
from Bioconductor's extensive infrastructure for version control and dependency 
management.

To ensure efficient computation, GeneFunnel is implemented in Rcpp, leveraging the high-
performance RcppArmadillo library for optimised matrix operations. The core algorithm is 
contained within a single function, which is wrapped in an R interface to maintain 
accessibility while taking advantage of low-level C++ speed improvements. Additionally, 
the function is compatible with BiocParallel, allowing users to efficiently compute 
GeneFunnel scores in parallel across multiple samples, significantly improving runtime for 
large-scale transcriptomic datasets.

Like ImputeFinder, GeneFunnel does not contain any tweakable parameters beyond an 
input gene/protein by sample matrix and a list object containing gene sets and the genes 
contained therein. This is by design to reduce complexity for the user and limit harmful 
practices such a data dredging. GeneFunnel is compatible with both raw, untransformed, 
and unnormalised data, as well as more highly processed data. As GeneFunnel outputs a 
gene set by sample matrix based on the simple assumptions described here, it is up to the 
user to decide the direction of further processing and downstream analysis. Where 
possible however, raw data is preferred as it is less likely that data is removed from the 
original matrix. Recall that zero values have meaning in GeneFunnel but that it is also 
unadvisable to retain these values for common preprocessing steps such as normalisation 
in the source data. The solution therefore is to run GeneFunnel as early as possible in a 
pipeline and them apply identical parallel pipelines to both the source data and 
GeneFunnel output. This is the approach taken in this thesis work. However, I demonstrate 
its use on both raw and processed data, with the FACS ssRNAseq dataset using raw 
counts and the LCM Mass Spec dataset using log-transformed, normalised, imputed data 
as necessitated to address the greater quality issues in that dataset. While this is less 
ideal, I later show that both datasets produce comparable GeneFunnel results.

Regarding the list of gene sets, it can derive from any source, such as GO or Reactome as 
previously discussed, or user-created gene sets. There are no assumptions regarding 
overlap of gene sets and the smallest gene set size can be 2. GeneFunnel makes no 
recommendations regarding filtering on gene set size and aims to be robust against this, 
unlike GSEA for example, which by default ignores gene sets that contain fewer than 15 
features or more than 500 features. That being said, a user may decide to ignore gene 
sets containing features that may confound an experiment, for example sex-related 
features. These may be removed before or after running GeneFunnel as GeneFunnel has 
no dependencies between gene sets. Alternatively, one can remove these features from 
the gene sets, as long as they are aware that this has a direct impact on the score. The 
same effect can be achieved by removing these features from the source matrix, as 
missing and NA values are excluded from calculations (but not zero values). If electing to 
remove features, or if not all features in the gene sets are in the source data, one may also 
decide to prune away gene sets that are deemed insufficiently covered by the source data. 
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For example, because the LCM Mass Spec dataset only covers a few hundred proteins, I 
choose to only analyse gene sets where at least 50% of the features were in the dataset, 
as scoring a gene set using only a small fraction of its features did not appear sensible. 
Such decisions are left to the discretion of the user.

For benchmarking and interactive exploration of GeneFunnel’s performance, an online 
web app is available at https://data.duff-lab.org/app/genefunnel-benchmarks-viewer. This 
platform enables users to visually compare GeneFunnel’s scoring behaviour with 
alternative functional class scoring methods, examine real-time pathway scoring results, 
and assess its performance under various input conditions. By providing an interactive 
interface, one can develop a more intuitive understanding of how GeneFunnel processes 
gene expression data and how it compares to existing enrichment methods. Finally, while 
not yet available, it is in the roadmap for make available a web app where users can 
submit datasets for server-side processing. The main web viewer associated with this 
thesis work (https://data.duff-lab.org/app/tangle-bearing-neurons-viewer  )   provides a 
glimpse into what such an app may resemble. There remain many possibilities in this front, 
such as integration with gene, protein, and pathway databases, as well as AI integration, 
for efficient and seamless exploration and interpretation of results.

https://data.duff-lab.org/app/tangle-bearing-neurons-viewer
https://data.duff-lab.org/app/genefunnel-benchmarks-viewer
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5. Development of Downstream Analysis Pipeline

5.1 Integrated Transcriptomic/Proteomic Differential Expression Analysis

To integrate findings across both transcriptomic and proteomic datasets, a differential 
expression analysis was performed following imputation using ImputeFinder and functional 
class scoring using GeneFunnel. This approach enabled the identification of differentially 
expressed genes (DEGs), differentially expressed proteins (DEPs AKA DAPs), and 
differentially enriched gene sets associated with tangle-bearing neurons. By leveraging 
limma (Phipson et al., 2016; Ritchie et al., 2015), a widely used method for linear modeling 
in high-throughput expression analysis, differential expression testing was conducted 
across both omics modalities, allowing for comparison of transcriptomic and proteomic 
alterations in Alzheimer’s Disease pathology.

Firstly, it is important to describe the composition of gene sets that were used for 
GeneFunnel analysis. Gene sets were downloaded from the g:Profiler (Raudvere et al., 
2019) website on 2024/08/25, corresponding to the Ensembl 111 release. g:Profiler was 
selected as the source due to be consistently up-to-date and organised in their 
procurement of gene sets. The sets chosen were those from Gene Ontology, and sets 
from all three ontologies – cellular component, molecular function, and biological process – 
were then combined into a single set. The sets housing ENSEMBL IDs were selected to 
reduce ambiguity in gene symbols.

Some sets that were considered hard to interpret or confounding in this experiment was 
removed prior to GeneFunnel analysis to reduce multiple testing burden downstream. 
Duplicates were removed, and while GeneFunnel should be robust to gene set size, I 
limited gene set size to 45, to reduce scope towards more specific processes and allow for 
easier interrogation of gene set enrichment. Though this may introduce a degree of bias, 
45 was chosen as it includes all terms of interest related to AD pathophysiology. Since 
many other unrelated terms are included within this cutoff, the bias was deemed negligible, 
but it would be indeed the case that statistical testing only on AD related gene sets would 
be considered invalid due to loss of type I error control (Bourgon et al., 2010). The 
minimum gene set size was 2, as required by GeneFunnel. 

Next, I removed removed redundancies regarding gene sets prefixed with “regulation” or 
“selection”, opting only to keep the “positive regulation” and “positive selection” variants of 
them. This reduces ambiguity as terms that are just prefixed with “regulation” for instance, 
without direction of effect, are unclear as to whether they refer to up or downregulation. In 
order to not exclude these regulatory terms entirely, the “positive” variants of them were 
considered easiest to interpret and reduces redundancy. The “negative” variants in 
particular are problematic as many of these terms differ from their parent term by a single 
feature; in any gene set enrichment method, these terms can easily be marked enriched 
even if the key feature is lowly expressed, leading to false interpretations. I then removed 
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all gene sets containing features on the Y-chromosome as well as the sex-specific features 
TSIX and XIST, as the datasets were mixed sex and sex differences were not of interest.

Finally, for the FACS ssRNAseq dataset, the gene sets were subset to only those where all 
features were in the input matrix, including those with zero values in all cells. GeneFunnel 
would be run on raw counts without removal of any genes from the initial matrices given by 
Cell Ranger. Since the LCM Mass Spec dataset had considerably fewer features, on the 
order of several hundreds of proteins, I only included gene sets where at least 50% of 
features could be found in the input matrix after imputation. Without doing so, many gene 
sets would be scored using a very small subset of its features, which would not lead to 
sensible scoring. Though GeneFunnel was run after normalisation and imputation, the log-
transform was reversed before running GeneFunnel.

As both the count matrices and GeneFunnel scoring from the FACS ssRNAseq dataset 
were at the single-cell level at this stage, the next step was to perform pseudobulking on 
both the count matrix and scores. Pseudobulking is an increasingly common practice 
where single cells are aggregated by a metadata label of choice, most commonly by donor 
as was done here (Zimmerman et al., 2021). The most obvious reason for doing so is to 
avoid pseudoreplication, an ill-advised practice where single-cells are treated as 
independent biological replicates during statistical testing. This has the effect of drastically 
inflating significance scores such as p-values and masking information regarding 
heterogeneity in true biological replicates such as donors. The second benefit is that 
mimicking a bulk RNAseq dataset offers a practical solution for overcoming several 
statistical hurdles specifically associated with single-cell data, particularly sparsity and 
heteroscedasticity. Pooling across cells is a viable approach for averaging out dropouts (L. 
Lun et al., 2016) and bulk RNAseq normalisation methods are considered more robust, 
with more relaxed statistical assumptions compared to their single-cell counterparts (Cole 
et al., 2019).

Next, filtering and normalisation steps took place, first in the GeneFunnel scores. This 
pipeline is largely based on a standard bulk RNAseq pipeline frequently suggested when 
working with pseudobulked data, particularly in preparation for limma-trend analysis (Y. 
Chen et al., 2016). For filtering, the filterByExpr function from EdgeR was used (Robinson 
et al., 2010). This is a function that accepts a design matrix or other designation of the 
contrasts of interest. By doing so, it aims to remove features that have little chance of 
being called DE. Specific scenarios that filterByExpr excels over more naive approaches 
include those where a feature is expressed in one treatment group, but absent in another. 
Less optimised approaches might require the feature have minimum expression across a 
number of samples, without taking into account group information, but filterByExpr only 
requires that minimum expression be in at least one of the groups.

filterByExpr has a number of parameters but it is intended to have sensible defaults, so no 
changes were made to these defaults. However, it was applied in a specific way alongside 
normalisation, as suggest by one of its authors Aaron Lun on the Bioconductor forums 
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(https://support.bioconductor.org/p/116351/#116369). Essentially filterByExpr was ran 
twice, one time in order to calculate normalisation factors which are added back to the 
original, unfiltered object, and then the final filtering done with the normalisation factors at 
hand. The reasoning behind this workflow is that accurate calculation of normalisation 
factors (done through the calcNormFactors function in EdgeR) requires that very low 
counts (as well as GeneFunnel scores) are first removed, so this is done using  
filterByExpr. However, rather than use this filtered object as the final object, the 
normalisation factors are used to inform a more performant filtering that may better handle 
compositional biases in the data. Internally, filterByExpr transforms the data into counts-
per-million (CPM) and in the absence of normalisation factors, it simply uses the library 
size of each sample. But with the normalisation factors available, it will use this 
information, which in theory should result in a superior, or at least more informed, filtering 
approach.

After the final filtering, normalisation factors are calculated once again, before 
transformation into the final log2CPM normalisation, as recommended for limma-trend 
analysis. A notable parameter at this stage is the choice of prior count. In order to avoid 
taking the log of zero, a small CPM value is added before log transformation. It is 
recommended to optimise this parameter with inspection of an SA plot, which plots 
residual standard deviation against average log expression. When using limma-trend, 
limma attempts to fit a trend against this relationship and includes a boolean parameter for 
robustness which ignores outliers. An optimisation is to adjust prior count, which is by 
default set to 2, to minimise the number of outliers. These outliers are typically in the 
lowest log expression range, as these features tend to have the highest variances. 
Increasing the prior count has the effect of clamping down on these variances. Increasing 
prior count should be done judiciously though, as the SA plot should still exhibit a trend 
showing that low expressing features have greater variances – this trend should not flat as 
limma-trend does not expect complete variance stabilisation, just a reduction in outliers. 
Furthermore, too large of a prior count has the effect of artificially inflating the values of the 
original counts. This process could be performed without issue on GeneFunnel scores, 
and a value of 6 was selected as a suitable prior count. Figure 125 shows the SA plot of 
GeneFunnel scores with this prior count, and Figure 126 shows the SA plot of the counts 
for comparison. The counts pipeline is very similar and described in the next paragraph.

The counts pipeline was performed in an identical fashion to the scores, with one major 
exception. Before running filterByExpr and the following steps, the counts were filtered to 
only those genes that are present in the GeneFunnel gene sets after the GeneFunnel 
scores were filtered and normalised, as described above. In order to reduce multiple 
testing burden as much as possible, I elected to only test for features that were also in 
gene sets to be tested. Since the filtering procedure for GeneFunnel scores thus far only 
uses non-specific filtering and the initial corpus is derived from the complete Gene 
Ontology, the gene sets should not be biased towards AD-related terms. This is a key 
point, as doing so would invalidate statistical assumptions for both testing of the scores 
and the features that would be filtered from the scores (Bourgon et al., 2010). With this in 

https://support.bioconductor.org/p/116351/#116369


166

mind, I filtered the genes as described and ran them through an identical pipeline as the 
scores, with the only difference being that the ideal prior count was found to be 4 rather 
than 6.

Figure 125.

Figure 125: SA Plot of GeneFunnel scores in the FACS ssRNAseq dataset showing 
standard deviation against average log expression. A prior count of 6 before logCPM 
transformation was found to minimise outliers when fitting the trend, while retaining the 
characteristic mean-variance relationship that the limma-trend pipeline expects.

Figure 126.
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Figure 126: SA plot of the counts in the FACS ssRNAseq dataset. A prior count of 4 was 
found to be ideal in this case. Overall characteristics between the SA plot for GeneFunnel 
score and the originating counts are similar, suggesting that the scores have statistical 
properties similar to the input data and can be passed through a parallel analysis pipeline.

At the point of GeneFunnel scoring, the LCM Mass Spec data was already filtered, 
transformed, normalised, and imputed, in contrast to the raw counts for the FACS 
ssRNAseq dataset. Therefore, its pipeline for limma-trend preparation is far more minimal. 
Notably, only the scores received a single filterByExpr step on scores with default 
parameters, as GeneFunnel produced an abundance of low scoring gene sets. There was 
no calculation of normalisation factors as the input data was already normalised. In any 
case, no compositional biases are expected as the data does not originate from a single-
cell level, where even after pseudobulking individual cells are expected to contribute some 
degree of variance that can be corrected for. Like with the FACS ssRNAseq dataset, after 
filtering the GeneFunnel scores, the protein matrix was subset to those matching features 
of the gene sets retained in the score matrix. Prior count was optimised for both scores 
and proteins, but the default setting of 2 was found to be sufficient for both.

After completing these parallel pipelines, genes, proteins, and gene sets were passed 
through a conventional limma-trend pipeline, as described in the limma documentation. 
limma-trend was chosen for its superior performance in a comprehensive benchmarking 
study of 36 differential expression methods for single-cell analysis (Soneson & Robinson, 
2018). Limma is also highly flexible and being based on straightforward linear modelling, 
does not impose strict statistical assumptions. It has been shown to be compatible with 
testing of functional class scoring output (Hänzelmann et al., 2013) as well as mass 
spectrometry proteomics (X. Zhang et al., 2018). The limma-trend variant is designed to 
work with any data that exhibits a mean-variance trend, which is observed both in 
transcriptomics and proteomics, and so the same pipeline can be applied to both, making 
it ideal for integrated analysis.

Only one modification was made to the default limma-trend pipeline, that is the use of the 
duplicateCorrelation function prior to fitting the linear model. This function adapts the 
modelling to account for repeated measures. Recall that each pair of tangle-bearing vs. 
non-tangle-bearing neurons are sampled within the same patient donors. While this can be 
analysed naively, i.e. with every sample as a unique replicate, one can afford more power 
by incorporating such sampling information into the statistical design. duplicateCorrelation 
achieves this by treating donor as a random effect, with equal magnitude across all 
features. While effective, this does suggest a point of future optimisation. Because 
features may interact differently with this random effect, a linear mixed model may be the 
basis of a superior analysis. limma has been adapted to support mixed models with the 
dream package (Hoffman & Roussos, 2021), which is under consideration for future work 
with these experimental designs.
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Finally, after statistical testing and Bayesian inference using limma-trend with default 
parameters (aside from using the robustness parameter to exclude outliers in the fitting of 
the trend, see Figures 125 and 126), I obtained a table of the test results comparing 
tangle-bearing neurons with non-tangle-bearing neurons in genes, proteins, and their 
corresponding GeneFunnel scores (four total tables). The next and final crucial step of this 
pipeline was the implementation of multiple testing correction. While each table could be 
corrected independently, as a default and potentially naive approach would entail, it would 
be considered more valid to account for all testing performed in the entire experiment at 
once. In such cases, especially when using FDR, this can in fact lead to increase in power 
while still controlling for error, as discussed in the limma documentation 
(https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/
usersguide.pdf  ).   Therefore, I elected to concatenate all unadjusted p-values from the four 
tables and correct them using the default BH (Benjamini-Hochberg correction) together. A 
significant feature was then defined as being below the adjusted-p < 0.05 cutoff. By 
applying a parallel pipeline across the different modalities and carefully accounting for the 
total testing performing, this integrated analysis framework allowed for a direct comparison 
of transcriptomic and proteomic alterations, providing a comprehensive view of Alzheimer’s 
Disease associated molecular changes in tangle-bearing neurons.

5.2 Development of Network Analysis and Hub Selection Approach

In order to explore the large breath of gene set enrichment and differential expression 
results, extensive interactive network graphs were built using VisNetwork, a Javascript 
library with an R implementation (https://github.com/datastorm-open/visNetwork). The 
main goal was to visualise differentially expressed features, easily assessing if features 
were differentially expressed/abundant in the FACS ssRNAseq dataset, the LCM Mass 
Spec dataset, or both. Furthermore, I aimed to connect features on the basis of shared 
differentially enriched gene sets. Because doing so with all differentially 
expressed/enriched features resulted in networks too large to be navigable, I had to 
establish metrics for the pruning of the networks. This was implemented as a slider, 
allowing for an interactive range of network sizes. The networks are available at the 
landing page for the main analysis of this thesis: https://data.duff-lab.org/app/tangle-
bearing-neurons-viewer, with code available at https://github.com/eturkes/tangle-bearing-
neurons.

https://github.com/eturkes/tangle-bearing-neurons
https://github.com/eturkes/tangle-bearing-neurons
https://data.duff-lab.org/app/tangle-bearing-neurons-viewer
https://data.duff-lab.org/app/tangle-bearing-neurons-viewer
https://github.com/datastorm-open/visNetwork
https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf).Therefore
https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf
https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf
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Figure 127.

Figure 127: Landing page of the viewer associated with the main work of the thesis, an 
integrated transcriptomic and proteomic analysis of tangle-bearing neurons in AD. The 
VisNetwork figures are the first aspects of the analysis a user interfaces with.

The network is built by first collating the four differential expression/enrichment tables 
output by limma in the last section (DEGs and GSE for the FACS ssRNAseq dataset; 
DAPs and GSE for the LCM Mass Spec dataset). When associating gene sets with 
features, if the gene set was enriched in the opposite direction as the feature, it was 
discarded. This is due to the ultimate design of the network as being built to find hub 
features. These hubs, as will be described, are highly prioritised through concordant 
evidence across gene sets. It was considered to apply a penalty on hub features when 
discordant gene sets are present, with the highest penalty being assigned when an equal 
amount of gene sets are enriched in both directions, cancelling out the hub feature 
candidate score. Ultimately, for this analysis, it was decided that feature differential 
expression/abundance is a more reliable signal over gene set enrichment, which is 
sensitive to inaccurate/incomplete annotations and requires the use of less robust 
methods. Therefore, the direction of feature was established as “ground truth” and gene 
set evidence was accumulated on only a positive basis. This explicitly prioritises feature-
level signals over pathway-level trends when they conflict, and it is noted that this bias 
may be better addressed with a more sophisticated signing and weighting system in the 
future.

Though antagonistic sign information regarding gene sets were not incorporated into this 
analysis, sign was taken into account by creating separate networks for upregulated and 
downregulated features / gene sets. In each, features were ranked by adjusted p-value, 
and scaled such that the range lies between 0 and 1 to facilitate relative thresholding of 
the values using the “Stringency” slider, which is set to 0.9 by default. At this stage, the 
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LCM Mass Spec dataset comprised 218 DAPs while the FACS ssRNAseq dataset 
comprised 1,207 DEGs, making it challenging to equally represent both datasets on a 
single network. In order to do so, filtering of the features was designed to be adaptive to 
these sizes. For both filtering of DEGs and DAPs, the smaller of the lists was divided by 
the larger, in other words, 218 divided by 1,207 which equals 0.1806131. This was then 
either multiplied by the Stringency value for filtering the larger list of DEGs, or multiplied by 
the inverse (1 minus Stringency) for the smaller DAPs. Finally, that value was added to 
0.1806131. In effect, at the default Stringency of 0.9, the scaled adjusted p-value rank of 
DAPs had to be above 0.1986744 to be kept, while DEGs had to be above 0.9819387. 
This was found effective for more equally representing both datasets in a single network, 
while giving intuitive meaning to the Stringency slider. Essentially, as the slider value 
approaches 1, more DEGs are filtered and more DAPs are kept, whereas as it approaches 
0, more DAPs are filtered and more DEGs are kept. This explains the effectiveness of the 
default value of 0.9, it balances out the greater number of DEGs in this dataset.

With the features filtered, a co-occurance matrix is built to count the number of 
differentially enriched gene sets a feature appears within. This is used to build a weighted, 
undirected graph using igraph (Csardi & Nepusz, 2006), where features are nodes and 
edges are gene sets. Networks are created individually for DAPs and DEGs, but they are 
not visualised at this stage. Instead, they are used to assign some features as network 
hubs. A three-part criteria is used for this, with each criteria scaled so that they contribute 
equally when multiplied together. The first part consists of the adjusted p-values for each 
feature, described prior, though without ranking this time to retain magnitude of relative 
differences between features like the other parts of this criteria. The second part is to count 
the number of enriched gene sets a feature is enriched in; in the co-occurance network, 
this corresponds to the number of unique edges of each node. However, this simple count 
is modified to account for issues such as gene annotation bias (Haynes et al., 2018). A 
feature such as APP may appear in many gene sets solely on the virtue of it being highly 
studied. To correct for this, a simple but effect approach is to find the proportion of gene 
sets the feature is enriched in, out of all the tested gene sets the feature is a member of, 
and this was the approach taken for this second criteria. The third part of the criteria is to 
count the number of unique features that share enriched gene sets with the original 
feature; in the co-occurance network, this corresponds to the number of unique neighbour 
nodes to the original node. No further corrections are needed for this part of the criteria. 
After multiplying these parts together and creating scores for each feature, the scores are 
scaled, and this time ranked.

The Stringency value was again used to designate the top scores as hubs. This time, a 
function was written to weight the Stringency about the midpoint of 0.5. The function is 
such that when Stringency is 1, the upper value is 0.625 and the lower value is 0.375. 
When Stringency is 0, these values are reversed, and when it is 0.5, both the values are 
0.5 as well. The upper value is used as a filter for DAPs, the smaller of the two lists, so 
that a protein is a hub if its hub score is above this value. On the other hand, the lower 
value is used to filter DEGs, and a hub must be above that value. Note that this is inverse 
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from the initial filtering using Stringency; this time, the more strict criteria is being applied 
to the smaller list, which initially had looser filtering. This seems counter-intuitive but was 
found effective for balancing the ratio of DE features and hubs in both datasets.

With the features filtered, and network hubs selected, the co-occurance network to be 
visualised was created using data from both datasets. A toggle switch is available, allowing 
the network to be created using all features or only those features that are DE in both 
datasets. This can be used alongside another toggle, that cuts down the network to only 
those in the “main network”. This main network is defined as nodes connected to the 
largest contiguous network of nodes, excluding those isolated from it. Note that neither of 
these have an effect on the selection of hubs, which takes place before this step. The 
layout of nodes uses a more advanced algorithm than those in igraph, using the 
Fruchterman Reingold algorithm (Fruchterman & Reingold, 1991) from the qgraph 
package (Epskamp et al., 2012). As node layout only has implications for visualisation, this 
is not a very important implementation detail, it was just found to subjectively improve 
initial placement of nodes, clustering them neatly nearby nodes with shared differentially 
enriched gene sets. Moreover, visNetwork allows a user to drag and move nodes to their 
discretion or as needed for better readability.

Figure 128.

Figure 128: Code block showing the creation of the co-occurance network using data from 
both datasets, followed by subsetting the network to those used for hub selection, and 
then evaluating the toggle switch for the plotting of all features vs. the main network only.
Figure 129 shows an example of the final co-occurance network on upregulated features 
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and their enriched gene sets. Describing the aesthetic features, hubs were shaped into 
circles, while all other DE features were shaped as rectangles. They were also coloured in 
accordance to the dataset they are associated with, with yellow for LCM Mass Spec only, 
orange for FACS ssRNAseq, and green for both. Hubs were sized in proportion to their 
hub score, while all other features were given a static size for readability. Finally, edges 
were sized according to the number of shared differentially enriched gene sets between 
the nodes. visNetwork also allows for extensive interactivity which was fully utilised. Users 
can hover over a node to see what enriched gene sets they are associated with, along with 
which dataset they are enriched in. This can be used in combination with clicking on a 
node, which highlights its neighbours. The highlighting method is also set to reveal the 
names of second degree neighbours without highlighting them, allowing for multiple layers 
of information. A second degree neighbour is that which is not directly connected to the 
original node, but is connected through another node that the original node is connected 
to. The clicking of nodes can alternatively be performed through a drop-down menu by 
searching for and clicking on the feature name.

Figure 129.

Figure 129: Demonstration of the aesthetics and interactive features of the graph network. 
In this example, a node was clicked on, which highlights all of its neighbours. Additionally, 
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second degree neighbours are shown with their labels but without highlighting. This can 
also be accomplished by selecting the node’s label in the drop-down menu in the top-left. 
The mouse cursor is also left to hover over the node – after a few seconds, this produces 
the nearby menu, showing enriched gene sets for that node and the dataset from which 
the enrichment derives.

To complement the main networks, an additional network focusing more specifically on 
gene sets is produced alongside it in the viewer (the right-hand network in Figure 127). 
Being a bipartite rather than co-occurance network, it shows both genes/proteins and gene 
sets as nodes. This graph is dependent on the output of the previous network, using only 
those features designated as hubs. It features an additional slider called “Connectivity”. 
This slider implements a simplified version of the filtering approach of the Stringency slider 
and is also set to a default of 0.9. The adjusted p-values of gene sets are ranked and then 
scaled, and then any gene sets greater than or equal to the Connectivity value is selected 
for network creation. No separate filtering for each dataset is performed, as there is no hub 
section for this network. With the features selected by the previous network and the gene 
sets selected with the Connectivity slider, network aesthetics are defined in a similar way 
as previously described, however without a hover-over function. An example of this 
network is seen in Figure 130.

Figure 130.

Figure 130: The complementary bipartite network showing both network hubs and a 
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subset of their enriched gene sets, pruned using the Connectivity slider. Note that in this 
network, gene sets can also be selected, showing their first and second degree 
neighbours. However, no functionality is currently implemented when hovering-over a 
node.

The same process described above was implemented for downregulated features and 
gene sets, though with different initial values for Stringency and Connectivity (both set to 
0.1 rather than 0.9). As will be discussed in the coming sections, very few proteins and 
gene sets were downregulated in the LCM Mass Spec dataset, and no combination of 
parameters could produce a balanced network that didn’t result in an overly small network. 
With these parameters set low, the networks appeared to benefit from more representation 
from the FACS ssRNAseq dataset at least, without much loss in information of the already 
small information coming from the LCM Mass Spec dataset (an advantage of using scaled 
ranking, which will never cause the filtering to discard all of the data). In any case, it was 
decided that upregulated features and gene sets would be the focus of this thesis work, so 
this downregulated network is available more for completeness and additional exploration.

Figure 131.

Figure 131: Networks of downregulated features and gene sets from the web viewer. Note 
that the Stringency and Connectivity parameters are set to 0.1 rather than 0.9. A more 
balanced network between both datasets could not be achieved due to the very 
downregulated proteins, so the parameters were to set allow more representation of genes 
as a compromise.

5.3 Development of Web Viewers

Given the large volume of results generated in this study, an interactive data viewer was 
developed to facilitate efficient exploration and visualization of key findings. The sheer 
number of differentially expressed genes, enriched gene sets, and their interconnections 
made it impractical to rely solely on static figures or tables for interpretation. Instead, a 
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dynamic web-based solution was implemented, allowing users to interactively query and 
explore the data in real time.

To ensure that the application could be securely hosted and accessed remotely, a 
dedicated Debian VPS server was rented, and a custom domain name (https://data.duff-
lab.org/) was registered for ease of access. A Dockerised setup was selected as the 
deployment strategy due to its advantages in reproducibility, scalability, and ease of 
maintenance. Docker image files were specifically designed to run ShinyProxy, a Java-
based server that enables the self-hosting of ShinyApps with containerized session 
management. The configuration for the server can be found at https://github.com/duff-lab-
team/shinyproxy-docker-compose. Web applications themselves were developed using R 
Markdown with flexdashboard and a Shiny runtime, ensuring a balance between 
interactivity and structured reporting.

To improve performance and optimize resource utilization, a containerised approach was 
implemented. When a user accesses the application, the R Markdown file is dynamically 
compiled from scratch, and a unique Docker container is assigned to the session. To 
mitigate the computational overhead of on-demand rendering, computationally expensive 
steps, such as preprocessing, differential expression analysis, and enrichment 
calculations, were pre-cached in advance. This significantly reduces processing time while 
ensuring that users still have access to the most up-to-date results. Additionally, zram, a 
Linux-based memory compression tool, was deployed to allow for aggressive in-memory 
compression of up to 3x the available RAM, enabling the server to handle concurrent 
users beyond its raw memory capacity.

The main interactive analysis portal can be accessed at 
https://data.duff-lab.org/app/tangle-bearing-neurons-viewer, providing a comprehensive 
interface for examining the core results of this study. For benchmarking and testing of 
GeneFunnel’s functional class scoring performance, a separate web viewer is available at 
https://data.duff-lab.org/app/genefunnel-benchmarks-viewer.

While this Dockerised approach works well for smaller analyses, it was found to scale 
poorly for the work in this thesis, primarily the main analysis, as the R Markdown 
document is compiled upon each request. To better accommodate users in accessing the 
data quickly, an experimental Linux kernel optimization called Checkpoint/Restore in 
Userspace (CRIU) was utilised. CRIU allows for freezing and restoring running processes, 
effectively enabling the storage of an already-initialized web viewer instance inside the 
Docker image. Instead of launching from scratch, a user request now restores a pre-frozen 
session in just a few seconds, significantly reducing the startup delay.

This technique was implemented for the main analysis portal, where standard initialization 
takes up to 10 minutes due to the large dataset size and overhead of R Markdown 
compilation. The experimental fast-loading version of the app is accessible at 
https://data.duff-lab.org/app/tangle-bearing-neurons-viewer-quick. While this method 

https://data.duff-lab.org/app/tangle-bearing-neurons-viewer-quick
https://data.duff-lab.org/app/genefunnel-benchmarks-viewer
https://data.duff-lab.org/app/tangle-bearing-neurons-viewer
https://github.com/duff-lab-team/shinyproxy-docker-compose
https://github.com/duff-lab-team/shinyproxy-docker-compose
https://data.duff-lab.org/
https://data.duff-lab.org/
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greatly accelerates access, the current implementation is hacky and not fully functional. 
For instance, the source code of various dependencies including Shiny itself had to be 
modified to create a prototype version. Improvement of the CRIU-enabled viewer is an 
area of active development.

By combining scalable cloud-based hosting, containerised execution, memory 
optimization, and experimental process freezing techniques, this web-based solution 
provides a powerful and flexible means for researchers to interactively explore 
transcriptomic and proteomic results while keeping computational demands manageable. 
Future improvements will focus on enhancing the stability of the CRIU-based system, 
further optimising memory efficiency, and expanding the options for user query of results.

Figure 132.

Figure 132: Screenshot of the Duff Lab website, which I developed to host various 
explorable analyses both within and outside the scope of this thesis work.
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6. Results

6.1 Overview of Transcriptomic and Proteomic Analysis of Tangle-bearing 
Neurons

In this study, the molecular profile of tangle-bearing and non-tangle-bearing neurons from 
post-mortem human prefrontal cortex tissue in Alzheimer’s Disease donors were 
compared. Two datasets were used in this study, one using laser-capture microdissection 
coupled with mass spectrometry (LCM Mass Spec) to generate a proteomics profile, and 
another using FACS sorting coupled with single-soma RNA sequencing (FACS ssRNAseq) 
to generate a transcriptomics profile. The LCM Mass Spec dataset was generated in-
house while the FACS ssRNAseq dataset had been previously available. Both datasets 
underwent their correspondent pre-processing pipelines described in Methods, and then 
were analysed using novel or highly tailored methods described throughout Sections 3-5.

The results of differential gene/protein (feature) expression/abundance and differential 
gene set (pathway) enrichment in the groups of interest in the two datasets are 
summarised in Figure 133.

Figure 133.

Figure 133. Basic summary metrics of differential gene/protein expression/abundance and 
differential pathway enrichment between tangle-bearing and non-tangle-bearing neurons in 
the LCM Mass Spec and FACS ssRNAseq datasets.

Figure 133 demonstrates robust molecular changes taking in tangle-bearing neurons on 
both the proteomic and transcriptomic level. It also highlights large differences in coverage 
and bias between the two datasets. Notably, the first two columns tally the number of 
pathways and genes/proteins (features) that were tested in each dataset, and while the 
FACS ssRNAseq dataset assessed 6,871 pathways and 8,950 features, the LCM Mass 
Spec dataset could only cover 362 pathways and 665 features. These numbers are 
derived from the pathways and features used prior to null hypothesis testing by limma and 
after all QC and filtering for low enrichment/expression. The numbers reflect a typical 
contrast between mass spectrometry and NGS sequencing approaches, which differ 
greatly in coverage. Nonetheless, looking at the last two columns, both approaches 
yielded large percentages of pathways and features that were called DE at a standard 
FDR cutoff of 0.05. Interestingly, though proteomics coverage was lower, a higher 
percentage of its pathways and features were found DE, at 53% and 49% respectively, 
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compared to 37% and 41% in the transcriptomics experiment. Finally, the middle columns 
show the exact numbers of pathways and features DE between the two datasets, reflective 
of the total tested and percentage called DE. While the number of upregulated and 
downregulated pathways and genes did not differ greatly in the FACS ssRNAseq dataset, 
there was a large difference in the LCM Mass Spec dataset, with 171 and 262 pathways 
and proteins upregulated but only 20 and 61 pathways and proteins downregulated. The 
overlap of pathways and features between the two datasets are summarised in the Venn 
diagrams of Figure 134.

Figure 134.

Figure 134. Venn diagrams showing the overlap of pathways and features between the 
LCM Mass Spec and FACS ssRNAseq datasets, alongside one-sided Fisher’s exact test 
results assessing whether the overlap is greater than expected by chance.

Despite large differences in the number of discoveries in each dataset, 71 pathways and 
134 features are shared. Using a one-sided Fisher’s exact (hypergeometric) test with the 
background defined as the intersection of items tested across datasets (N = 328 gene 
sets; N = 581 genes), the expected overlaps by chance were 65 and 130, respectively. 
The observed overlaps are only slightly above expectation (pathways: p = 0.084, features: 
p = 0.262) and thus not statistically significant below a threshold of 0.05. The share of the 
union overlapped is 31% for pathways and 32% for features. In practical terms, the assays 
have some findings in common, but each also contributes a sizeable set of unique 
pathways/features, reflecting notable divergence in either assay biases or 
transcriptomic/proteomic signals.
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6.2 Top Differentially Expressed Proteins and Genes and Associated 
Pathways

The summary metrics demonstrate statistically significant changes taking place in tangle-
bearing neurons across hundreds of proteins and thousands of genes. A common 
approach for highlighting key changes is to sort the list of features by a summary statistic 
such as adjusted p-value and to focus on the top N features. Such approaches are 
potentially naive, as effect size and consistency among replicates may not necessarily be 
informative of changes on a mechanistic level, inspiring the development of the pathway 
enrichment methods in this work. Furthermore, even if top features do appear to reflect 
mechanistic changes, it is common for them to only reveal a subset of all changes. For 
instance, many features co-regulate with others mechanistically, and a list of top N 
features may only comprise these features and not contain groups of co-regulated features 
further down the list. Nevertheless, top N approaches are easy to interpret and still very 
important in exploratory understanding of the data. Figure 135, shows one such figure of 
the top 25 DE features between tangle-bearing and non-tangle-bearing neurons in the 
LCM Mass Spec and FACS ssRNAseq datasets.

Figure 135.

Figure 135. Heatmaps of the top 25 DE features when comparing tangle-bearing and non-
tangle-bearing neurons (labeled NFT and CTRL, respectively) in the LCM Mass Spec and 
FACS ssRNAseq datasets. Cells corresponding to DE features are marked with an up or 
down arrow indicating up or downregulation at an adjusted p-value cutoff of < 0.05. 
Features are scaled from -1 to 1 within each row to highlight differences between groups. 
Biological replicates are indicated by the Donor annotation at the top of each heatmap. 
Donors were not such shared between datasets.

The most striking aspect of Figure 135 is the fact that when both datasets are subset to 
shared features, MAPT tops the list in adjusted p-value ranking for both proteins and 
genes. This is a key finding that confirms the validity of both experiments, as both centre 
around single-cell capture of tangle-bearing neurons, which were defined by positive 
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nuclear staining of the phosphorylated form of the MAPT gene product tau using the ATA8 
antibody. The effect size of this change can be further investigated in the unscaled version 
of the heatmaps (Figure 136). Figure 136 shows that the change is strongest in the 
proteomics experiment and more subtle on the transcriptomics level. This aligns with 
known understanding of disease biology, where substantial increases in tau protein is 
readily detected in late-stage AD but changes in MAPT gene expression remain uncertain, 
perhaps due to the low effect size exhibited in this study.

Figure 136.

Figure 136. Equivalent figure to Figure 135, however no scaling is applied and 
visualisation shows the native log2 LFQ intensities and log2 CPM values. The colour 
range is set to cover the entire range of values of each dataset including those outside of 
the heatmap.

Regarding other features in the top 25, most change in the same direction between the 
proteomics and transcriptomics datasets. While all of the top features are upregulated in 
the proteomics dataset, 4 are downregulated in the transcriptomics – HSPA4L, ATP1A2, 
PTPRZ1, and IDH3B. This shows that while the two modalities largely align, it cannot be 
assumed that all changes take place in an equivalent fashion on the protein and gene 
level. Indeed, by analysing the top features of each dataset separately, a more nuanced 
story begins to emerge. Figures 137 and 138 show heatmaps of features, as well as 
associated pathways, when looking at the top N features of each dataset separately.
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Figure 137.

Figure 137. Top 10 proteins DE between tangle-bearing and non-tangle-bearing neurons 
sorted by adjusted p-value and with an adjusted p-value cutoff of < 0.05. Also shown are 
DE pathways (adjusted p-value < 0.05) tested using the same null hypothesis testing 
framework. The feature heatmap is scaled per-row between -1 and 1. While the pathways 
are visualised as a Sankey diagram showing the membership of the top 10 DE proteins 
within each pathway.

Figure 138.

Figure 138. The same figure as Figure 137, however using the FACS ssRNAseq dataset. 
Only the top 5 genes are shown to allow better readability of the Sankey diagram.

It can be seen that when sorting the LCM Mass Spec dataset on its own, the results align 
well with sorting features of both datasets together. MAPT remains the top hit and its 
relevance to the dataset is further confirmed with the DE pathway “neurofibrillary tangle”, 
describing the neurofibrillary tangle-bearing neurons that were captured in the experiment. 
The rest of the top hits appear to be members of several distinct mechanisms. ATP1A1 
and ATP1A3 are likely closely co-regulated and part of the same class of 
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sodium:potassium transporters, with additional implicated roles in steroid hormone binding. 
DMN1 is shown to be part of synaptic pathways such as “synaptic vesicle budding”, 
alongside STXBP1, though with seemingly more impact on endocytosis-related sub-
functions. As impairment of synaptic pathways are highly implicated in AD (Dorostkar et 
al., 2015), and changes in these pathways provide additional evidence of capture of NFT-
positive neurons. The remaining proteins, ABAT, GNAO1, and HSPA4L seem to be related 
to GABAergic pathways, hormone binding, and protein folding respectively, mechanisms 
that are less clear in the context of AD but may shed further insight in the pathophysiology 
of the disease.

In contrast to the heatmaps in Figures 135 and 136, which uses the intersection of 
features between the two datasets, when analysing the FACS ssRNAseq dataset on its 
own, it does not feature MAPT as a top hit, instead being supplanted by NNAT. Curiously, 
NNAT did not have many associated pathways called DE, with the only one being “protein 
lipoylation”, a post-translational modification known to be a key player in cell death (C.-H. 
Lin et al., 2024). Interestingly, several other genes support the theme of cell stress, with 
LAMP1 being associated with changes in several inflammation related pathways and 
RELL2 being associated with the p38MAPK cascade, a well-known coordinator of stress 
response (Canovas & Nebreda, 2021). Again, while microtubule associated protein tau 
(MAPT) is not in the top 5, MAP1A appears alongside a number of microtubule related 
pathways, reflecting that the strongest modulations in the microtubule space, at least in 
terms of gene expression, is capitulated more by players outside of MAPT. DDN is the 
remaining gene in the top 5, and appears to play a role in dendritic spines, which are 
notably pruned in AD (Dorostkar et al., 2015).
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6.3 Network Hub Analysis

As expressed in the previous section, approaches that use the top N features have pitfalls 
that are less than ideal for comprehensively summarising changes in datasets with 
thousands of positive results. Therefore, a bespoke network analysis method was 
developed, as described in Section 5.2, for prioritising pathways and features that are 
changed in tangle-bearing neurons between the LCM Mass Spec and FACS ssRNAseq 
datasets. Figure 139 shows the final network for upregulated features in the two datasets.

Figure 139.

Figure 139. Upregulated features in tangle-bearing neurons in the LCM Mass Spec and 
FACS ssRNAseq datasets prioritised using a bespoke network analysis method (see 
Section 5.2). Only DE features (adjusted p-value < 0.05) are shown. Features designated 
as hubs are encircled. Hubs were called on the basis of mixed criteria related to the 
proportion of associated pathways called DE, and sized proportional to this score. This 
three-part criteria is described in detail in Section 5.2 and in brief equally weights the 
adjusted p-values of DEGs, the number of enriched gene sets associated with a DEG, and 
number of unique features associated with a DEG on the basis of shared enriched gene 
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sets. Colours indicate dataset in which a feature is DE and edges connecting nodes are 
sized proportional to number of shared DE pathways between features.

The network, which was generated using stringent parameters to prune the network from 
the large number of DE features, showcase a handful of hub genes alongside features 
connected on the basis of shared DE pathways. The hub genes have little overlap with the 
selected features of the previous section, only GOT2 and STXBP1, though many features 
appear as non-hubs in the network, such as MAPT. 8 hubs are DE in both datasets, while 
9 are unique to the LCM Mass Spec and 4 are unique to the FACS ssRNAseq. Almost all 
hubs are contiguously connected to the largest unbroken network (the main network), 
except for 4 LCM Mass Spec hubs – PFKL, PSMC6, PCCA, and CTNNB1.

Interpretation of this network is best explored by interactive exploration of select features 
and hubs. Although not a hub, the product of MAPT is the protein that is pathologically 
aggregated in AD and the top shared feature between datasets in terms of adjusted p-
value. Therefore MAPT was used as a starting point for exploring the network. Figure 140 
shows the output of zooming in, clicking on, and hovering the cursor over MAPT in the 
online viewer for the analysis, revealing key details of its context in the network.

Figure 140.

Figure 140. A view of the network analysis of upregulated features from the online viewer. 
The network is zoomed in and MAPT is selected, highlighting all direct connections in 
terms of features with shared DE pathways. Features in greyscale but labelled are second 
degree connections – not directly connected with MAPT but connected with a MAPT-
connected feature. MAPT is also moused-over, showing a pop-up window of DE pathways 
containing MAPT in each dataset. Note that the layout of some features were manually 
moved to allow all to be visible in the zoomed in view.
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As shown in the previous section, MAPT is DE in both datasets, as indicated by green 
colour. The tooltip showing DE pathways for MAPT confirms its relationship to 
neurofibrillary tangles in the context of the analysis, alongside other potentially relevant 
pathways related to microtubule function, lipid processing, axonal and synaptic functions, 
and apolipoprotein binding, a well-studied risk factor in AD. Though this study is in 
neurons, the transcriptomics dataset also shows several pathways that may impact glial 
response, another stereotypical feature of AD. Regarding other features, MAPT has first 
and or second degree connections with many hubs, notably APP, HSP90AA1, NEFM, and 
SQSTM1, all of which are highly implicated for involvement in AD.

To demonstrate the properties of a hub gene, the same procedure is applied to APP in 
Figure 141, a feature of high interest in AD. Similarly to the highlighting of neurofibrillary 
tangle pathways when looking at MAPT, the relationship of APP to the current study is 
confirmed with the top hit of “positive regulation of amyloid fibril formation” in the LCM 
Mass Spec dataset and “cellular response to amyloid-beta” in the FACS ssRNAseq 
dataset. A large number of additional pathways are linked with the transcriptomics dataset, 
covering cellular replication and reproduction, synaptic pathways, metabolism, and glial 
response. APP is a highly studied feature that’s been shown to touch a wide variety of 
biological functions. As previously mentioned, the designation of APP as a hub warrants 
caution as the large number its large number of annotations by the GO consortium 
introduces bias. However, in the hub selection process I attempt to correct for this, 
ensuring that a hub has a large proportion of its potential pathways called DE and that the 
pathways have little duplication of features between them. Like MAPT, APP is directly and 
indirectly connected with many other hubs, as well as other well studied features in AD 
such as MAPT itself, APOE, MAP1A, and PRNP.

Figure 141.

Figure 141. A zoomed in view and highlighted properties of APP, performed using a similar 
procedure as Figure 140.
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Another type of network figure was created for the purpose of inspecting the sharing of 
pathways between hubs and datasets more finely. The final network of this kind for 
upregulated features in tangle-bearing vs. non-tangle-bearing neurons is shown in Figure 
142. The network is directly derived from the overall network shown in Figure 139 and 
contains a subset of its hubs.

Figure 142.

Figure 142. A variant of the network plot that highlights shared pathways between hubs 
and datasets. The figure is coupled with information from the overall network in Figure 139 
and uses a subset of hubs designated by that network.

The network in Figure 142 provides insight in two ways. Firstly, it shows the specific DE 
pathways shared between datasets in the hubs. For example, adding additional 
confidence to NEFM as a hub, is the encircling neurofibrillary tangle and cytoskeletal 
related pathways, all of which are coloured green and shown with enlarged edges 
indicating that the pathways are DE in both datasets. HSP90AA1 shows this as well in 
terms of protein folding pathways and a tau-protein kinase pathway. And the pathways 
surrounding WASF1 are indicative of synaptic/cytoskeletal pathways, and Arp2/3 and TRK 
signaling pathways. This information is not only useful for finding shared pathways 
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between datasets but also proves effective to pruning down the mechanistic relevance of 
each hub in the context of disease, out of the many pathways most features are typically 
involved in. The second insight gleamed from this network are DE pathways shared 
between hubs rather than datasets. For instance, a relationship that APP seems to share 
with SQSTM1 is the upregulation of the “positive regulation of long-term synaptic 
potentiation” pathway. However, as indicated by the pathway’s orange colour and smaller 
edge size, this pathway is DE only in the FACS ssRNAseq dataset, though APP and 
SQSTM1 are upregulated in both datasets. This information is of limited utility in this 
particular study however, as no shared DE pathways in both datasets could be found 
connecting those hubs.

The procedure described above was also performed for downregulated features and 
pathways, as shown in Figures 143 and 144. In the case of this study, far fewer hubs could 
be found in either dataset. This is further exacerbated by the fact that far fewer 
downregulated features were called DE in the LCM Mass Spec dataset compared to 
upregulated features (Figure 133). Though network parameters were modified in an 
attempt to make network analysis of downregulated features and pathways as informative 
as the upregulated ones (described in detail in Section 5.2), no shared hubs and only a 
single shared feature, DDX1, was generated by the network. It can therefore be inferred 
that in comparison to upregulation, far fewer downregulated features and pathways are 
shared between the LCM Mass Spec and FACS ssRNAseq datasets. Furthermore, feature 
connectivity even within the distinct hubs, is far more limited. This additionally suggests far 
fewer “master regulators” of downregulated mechanisms in tangle-bearing neurons as 
fewer features likely co-regulate with one another. Finally, no hubs nor features comprise 
those traditionally associated with AD, aside from the gene MEF2C. Interestingly, it has 
been reported that MEF2C transcriptional upregulation in human post-mortem tissue is 
associated with resilience to neurodegeneration (Barker et al., 2021). This supports the 
direction of change in this study, where MEF2C is downregulated in tangle-bearing 
neurons, suggesting loss of resiliency to pathology.

Figure 143.
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Figure 143. Network plot showing hub and feature connectivity, similar to Figure 139 but 
for those downregulated in tangle-bearing vs. non-tangle-bearing neurons. Some 
parameters were modified to account for the far fewer downregulated features and 
pathways (described in Section 5.2).

Figure 144 shows shared downregulated pathways between hubs and datasets, similar to 
Figure 142. Note that this network also has modified parameters, such that the criteria for 
showing a pathway is looser. This resulted in a network where a large number of DE 
pathways are shown as associated with a few hub features. It is possible to achieve a 
similar result when only looking at upregulation in this dataset, but the figure would be 
overcrowded and unreadable. Instead it is often more informative to produce figures 
balanced between shown hubs and pathways, but in the case when analysing 
downregulation, I was unable to achieve this without producing a very small network of 
lesser value. So Figure 144 is representative of this compromise and it was generally 
decided that downregulation would be out of scope for the present analysis due to the 
greater difficulty in interpreting it. Indeed, the logical interpretation of this figure is that 
while a large number of pathways are DE for some of hubs, the features comprising the 
pathways are not well represented by the pathways. In other words, many of the features 
are possibly ubiquitous and related to many mechanisms outside of the DE pathways. In 
practice, this may make them poor targets for translational medicine, as modulation of a 
highly ubiquitous gene or protein may have undesirable side effects not related to the 
pathophysiology of the disease. Further evidence of this stems from inspection the 
pathways of Figure 144, many which are related to development and hard to interpret in 
the context of AD. The few that appear more directly relevant include apoptotic and 
inflammatory processes associated with MEF2C and mitochondrial pathways with PNPT1.



189

Figure 144.

Figure 144. Network plot showing sharing of pathways between hubs and datasets, similar 
to Figure 142 but for those downregulated in tangle-bearing vs. non-tangle-bearing 
neurons. Parameters were adjusted to account for the far fewer downregulated features 
and pathways.

As a final sanity check, scatter plots of all features in the LCM Mass Spec and FACS 
ssRNAseq datasets were plotted (Figure 145), with corresponding expression values in 
tangle-bearing and non-tangle-bearing neurons in each axis. Each of the shared hubs 
shown in Figure 139 are also highlighted as a blue point. This figure can be further 
explored in the online viewer, where mousing-over on a point reveals the feature name 
and expression values. The scatter plots shows an overall strong correlation between the 
features of tangle-bearing and non-tangle-bearing neurons, as indicated by the close fit of 
genes/proteins along a diagonal line drawn across the axes. Those that deviate 
substantially from the fitted line were likely called DE during statistical testing. This is 
difficult to assess when plotting all features, but two properties suggest that this is the 
case. Recall that in the LCM Mass Spec dataset that far more of the DE proteins were 
upregulated rather than downregulated; this is reflected in Figure 145, where more of the 
proteins deviating from the diagonal are above the diagonal. Secondly, and perhaps more 
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importantly, all of the shared network hubs, shown as blue points, deviate from the 
diagonal in a visually apparent way. What’s more is that they are all in the upregulated 
direction in both datasets, providing confirmation of the validity of the hub section 
approach. In summary, the data presented in this section describe a sophisticated 
approach to describing the changes taking place in the dataset and appears to align 
correctly with more simplified views like that of the scatter plots in Figure 145.

Figure 145.

Figure 145. Scatter plot of the expression values of all features between NFT and CTRL 
neurons. As each each dataset was comprised of multiple biological replicates, expression 
values were taken from the mean expression across replicates. Shared network hubs are 
highlighted as blue points. Information about feature name and expression values can be 
obtained by mousing-over a point in the online viewer.
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6.4 Pathway Analysis of Hubs

In order to investigate further, while at the same time narrowing the scope of the analysis, 
the pathways and associated features of hubs were examined comprehensively. Out of the 
hubs highlighted in the network analysis, the focus was placed on those shared between 
the LCM Mass Spec and FACS ssRNAseq datasets. This therefore also restricted the 
analysis to upregulated pathways and features. The following sections thus focus on each 
of these hubs, specifically NEFM, APP, SQSTM1, YWHAE, WASF1, CNTNAP1, and 
GOT2. To help introduce the format of the following sections and initially analyse the data 
more unbiasedly, shown in Figures 146 and 147 are the top 10 DE pathways of each 
dataset, sorted by adjusted p-value with an adjusted p-value cutoff of < 0.05.

Figure 146.

Figure 146. Heatmaps of the top 10 DE pathways comparing tangle-bearing and non-
tangle-bearing neurons (labeled NFT and CTRL, respectively) in the LCM Mass Spec 
dataset. Cells corresponding to DE features are marked with an up or down arrow 
indicating up or downregulation at an adjusted p-value cutoff of < 0.05. Features are 
scaled from -1 to 1 within each row to highlight differences between groups. Biological 
replicates are indicated by the Donor annotation at the top of each heatmap.

Figure 147.

Figure 147: A similar heatmap to Figure 146, except for the FACS ssRNAseq dataset.
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The pathways shown have a level of correspondence with the top DE features sorted by 
adjusted p-value. For instance, in the LCM Mass Spec dataset, the top pathway is 
“positive regulation of lipid kinase activity”, which also appears in Figure 137 as co-
upregulated with the top DE protein MAPT. Indeed, plotting all proteins comprising this 
pathway includes MAPT, alongside the other components EEF1A2 and F2 (Figure 148). 
Similarly, in Figure 147, the top pathway in the FACS ssRNAseq dataset, “cytolytic granule 
membrane”, contains the gene LAMP1, which is also a top DE gene as seen in Figure 
138. This provides strong real-data evidence that DE testing of pathways using 
GeneFunnel shows high correspondence with traditional DE testing of genes and proteins.

In general, the top 10 pathways of the LCM Mass Spec dataset covers synapse-
associated pathways most frequently, in addition to lipid kinase activity, sodium:potassium 
transporters, hormonal functions, and GABAergic pathways, all of which are also reflected 
by the gene-level analysis in Figure 137. The FACS ssRNAseq data shows comparatively 
less correspondence with the gene-level analysis, covering cytosolic granules, a 
microtubule pathway, and cell death but not dendritic pathways nor p38MAPK pathways. 
In place are pathways related to ATF4-CREB1 transcription factors, cAMP response, and 
several immune cell pathways.

Figure 148.

Figure 148. Heatmap of proteins comprising the “positive regulation of lipid kinase activity” 
pathway in the LCM Mass Spec dataset. The heatmap properties are similar to that of 
Figure 135, with significantly DE proteins defined with adjusted p-value < 0.05. Proteins 
absent from the dataset or too lowly abundant for analysis are shown in grey.
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Figure 149.

Figure 149. A heatmap similar to Figure 148, however showing the “cytolytic granule 
membrane” pathway in the FACS ssRNAseq dataset.

As mentioned earlier, top N approaches to analysis come with caveats that apply 
generally, regardless of if the targets are individual genes/proteins or if they are pathways. 
In the case of the pathway-level analysis performed here, there is a tendency of overlap 
between functionally related pathways. This results in the duplication of near-identical 
terms, for instance, the multiple GABAergic signaling pathways observed in Figure 146. 
There are several ways to address this. One way is to discard pathways on the basis of 
overlap with other pathways, but this presents difficulties in deciding which of the pathways 
to keep, i.e. the more general or more specific ones. Furthermore, pathway scoring can be 
very sensitive to this in the case of pivotal features that are absent or present between 
otherwise similar pathways. For this reason, I do not implement filtering of pathways based 
on overlap. Instead, it was the motivation for developing a hub analysis based on networks 
of the association between features and pathways. In theory, a well implemented approach 
to this may better highlight the diversity of changes that might be taking place in the 
dataset. This also massively increases complexity of the analysis and the introduction of 
undesirable assumptions, which is why this analysis also features simplified exploratory 
analysis based on simple procedures like top N, as seen here. But a network based 
approach with carefully defined metrics has the potential to converge towards full dataset 
characterisation while maximising concision of the results. This is the ultimate intent of this 
analysis and the next sections dive in-depth into each hub feature that was selected for 
this purpose, narrowing scope to only shared changes between the datasets.
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6.4.1NEFM

Neurofilament medium polypeptide (NEFM) plays a fundamental role in axonal structure, 
cytoskeletal stability, and intracellular transport, acting as a key component of the 
neurofilament network that supports neuronal integrity (A. Yuan & Nixon, 2021). NEFM is 
upregulated in both the LCM Mass Spec and FACS ssRNAseq datasets, alongside 
another neurofilament, neurofilament light polypeptide (NEFL). These proteins work in 
conjunction with microtubules, regulated by microtubule-associated protein tau (MAPT), 
which itself was found to be upregulated in NFT-bearing neurons on both the 
transcriptomic and proteomic level. In Alzheimer's Disease, and particularly in tangle-
bearing neurons, disruptions in tau homeostasis, neurofilament dysregulation, and 
cytoskeletal instability contribute to progressive neuronal dysfunction and degeneration.

Figure 150.

Figure 150. Feature network of NEFM. Figure format previously described in Figure 150.

Tau is essential for stabilising microtubules, ensuring the proper transport of organelles, 
vesicles, and signalling molecules throughout the neuron (Stamer et al., 2002). Under 
physiological conditions, tau binds to microtubules to regulate their assembly and 
disassembly (Barbier et al., 2019), complementing the structural role of neurofilaments 
such as NEFM and NEFL. However, in AD, tau undergoes hyperphosphorylation, leading 
to its detachment from microtubules and subsequent aggregation into neurofibrillary 
tangles. This loss of microtubule stability disrupts axonal transport, shifting the burden of 
structural support onto neurofilaments like NEFM (Yadav et al., 2016).

NEFL is the smallest neurofilament subunit, critical for initiating neurofilament assembly 
and regulating the fidelity of axons. Together with NEFM and NEFH, it forms 
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heteropolymers that provide structural stability to axons (Campos-Melo et al., 2018). In 
tangle-bearing neurons, however, neurofilament homeostasis is disrupted, potentially 
leading to mislocalisation, accumulation, and altered phosphorylation patterns of NEFM 
and NEFL (J. Wang et al., 2001). This neurofilament pathology has also been observed in 
dystrophic neurites surrounding amyloid plaques and within degenerating axons (Dickson 
et al., 1999), where aberrant neurofilament aggregation contributes to neuronal 
dysfunction. Interestingly, NEFH was not found to be differentially expressed in both 
datasets and is furthermore lowly expressed compared to the other neurofilaments (Figure 
151), the complete set of which forms the differentially enriched GO gene set 
“neurofilament bundle assembly” (Figure 152). This may contribute to the overall 
pathological effect of neurofilaments in AD, by disrupting homeostasis between the trio of 
neurofilaments, a particular event that has been discussed in the context of 
neurodegenerative disease (Capano et al., 2000).

Figure 151.

Figure 151: Heatmaps showing the unscaled expression of the trio of neurofilaments in the 
LCM Mass Spec (left) and FACS ssRNAseq (right) datasets. The set of these 3 features 
also comprise complete membership of the GO gene set (pathway) “neurofilament bundle 
assembly”, which is differentially enriched in both datasets. Figure format previously 
described in Figure 148.

Additionally, neurofilament levels in cerebrospinal fluid (CSF) and plasma have been 
identified as biomarkers of neurodegeneration in AD, with elevated NEFL levels correlating 
with axonal injury and disease progression (Giuffrè et al., 2023). Given that NEFM and 
NEFL expression patterns shift in response to cytoskeletal stress, their dysregulation in 
NFT-bearing neurons may reflect an ongoing neurodegenerative process driven by tau 
pathology. Closer analysis of enriched pathways associated with NEFM confirms its 
involvement in neurofibrillary tangles (Figures 152 to 154). This is alongside several 
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pathways related to neurofilaments, the cytoskeleton, as well as a pathway describing the 
“postsynaptic cytoskeleton”.

Figure 152.

Figure 152: Heatmap showing enrichment of all differentially enriched pathways containing 
NEFM in the LCM Mass Spec dataset. Figure format previously described in Fig. 146.

Figure 153.

Figure 153: Heatmap showing enrichment of all differentially enriched pathways containing 
NEFM in the FACS ssRNAseq dataset. Figure format previously described in Fig. 146.
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Figure 154.

Figure 154: Pathway network of NEFM. Figure format previous described in Figure 142.

The “neurofibrillary tangle” pathway is defined by the Gene Ontology group as composed 
of NEFM and NEFH, though curiously not NEFL (Figure 155). This may constitute an 
inaccuracy on the group’s part, considering NEFL has been specifically reported to be 
present in the proteome of tangle-bearing neurons in AD (Hondius et al., 2021). If this is 
the case, it is a prime example of the caveats associated with the reliance on gene sets 
when performing gene set enrichment. The pathway is also defined by the inclusion of 
CLU and PICALM, both classic AD risk-genes more generally known to interact with Aβ 
and clathrin-mediated endocytosis, respectively (Carrasquillo et al., 2010).

Figure 155.

Figure 155: Heatmaps showing the unscaled expression of features within the 
“neurofibrillary tangle” pathway in the LCM Mass Spec (left) and FACS ssRNAseq (right) 
datasets. Figure format previously described in Figure 135.
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NEFM is a major constituent of intermediate filament bundles, which provide structural 
support to axons and dendrites (A. Yuan et al., 2012). The assembly of intermediate 
filament bundles is crucial for maintaining neuronal integrity and resistance to mechanical 
stress. NEFM further plays a key role in modulating neurofilament spacing and cross-
linking, ensuring proper axonal caliber and function (Ding & Kumar, 2024). However, in AD, 
tau hyperphosphorylation leads to microtubule destabilisation, forcing neurofilaments to 
bear a greater structural burden. The impairment of neurofilament bundle assembly in 
tangle-bearing neurons may accelerate neuronal breakdown, leading to 
neurodegeneration and cognitive impairment.

Beyond its roles in axonal support, NEFM is also dysregulated alongside pathways related 
to the postsynaptic cytoskeleton, where it helps regulate dendritic spine stability and 
synaptic function (A. Yuan et al., 2009). The postsynaptic cytoskeleton is essential for 
maintaining synaptic strength and plasticity, processes that are progressively impaired in 
AD. In tangle-bearing neurons, synaptic cytoskeletal components become disorganised, 
leading to synaptic weakening and loss (Otero-Garcia et al., 2022). NEFM dysregulation, 
coupled with tau pathology, likely contributes to the postsynaptic cytoskeletal instability 
observed in AD, further exacerbating neuronal communication deficits and cognitive 
decline.

Figure 156.

Figure 156: Heatmaps showing the unscaled expression of features within the 
“postsynaptic cytoskeleton” pathway in the LCM Mass Spec (left) and FACS ssRNAseq 
(right) datasets. Figure format previously described in Figure 135.
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6.4.2APP

Amyloid precursor protein (APP) plays a central role in AD pathology, where dysregulated 
APP processing leads to the accumulation of amyloid-beta (Aβ) peptides, which, in 
conjunction with tau aggregation, contribute to neuronal dysfunction and degeneration. 
APP’s involvement extends beyond Aβ production, as Figure 157 suggests it interacts with 
a variety other genes and proteins, including ATP1A3, PRNP, NSF, MAPRE2, and MAPT, 
all of which have been implicated in neurodegenerative processes associated with NFT-
bearing neurons. It also shares enriched pathways with another network hub, SQSTM1 
across both datasets; this association will be discussed in the section dedicated to that 
hub.

Figure 157.

Figure 157: Feature network of APP. Figure format previously described in Figure 140.

ATP1A3 encodes the α3 subunit of Na+/K+-ATPase, a critical enzyme responsible for 
maintaining neuronal ion homeostasis and action potential propagation. In AD, Aβ and 
APP dysfunction have been shown to impair Na+/K+-ATPase activity, leading to altered 
neuronal excitability and energy metabolism (Adzhubei et al., 2022). ATP1A3 mutations 
are associated with neurological disorders (Vezyroglou et al., 2022), and its dysfunction in 
AD may contribute to neuronal hyperexcitability, impaired synaptic transmission, and 
eventual neurodegeneration. The connection between APP and ATP1A3 suggests that ion 
transport dysregulation could be a key factor in neuronal vulnerability, particularly in 
tangle-bearing neurons that are already under metabolic stress.
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The prion protein (PRNP) has been implicated in protein misfolding diseases, including 
Creutzfeldt-Jakob disease and AD, and shares pathological similarities with Aβ and tau 
aggregation (Calero et al., 2011). PRNP interacts with APP and has been proposed to act 
as a cellular receptor for Aβ oligomers (Nygaard & Strittmatter, 2009), potentially 
amplifying tau pathology in NFT-bearing neurons. Dysregulated PRNP expression in AD 
may exacerbate synaptic dysfunction and neuronal toxicity, further accelerating the 
disease process. Additionally, both Aβ and PRNP have been linked to oxidative stress 
(Castle & Gill, 2017), which is a contributing factor to neuronal damage in tangle-bearing 
neurons.

N-ethylmaleimide-sensitive factor (NSF) is a key regulator of SNARE-mediated vesicle 
trafficking and synaptic transmission (Y. Yang et al., 2018). APP interacts with vesicle 
transport pathways, and in AD, abnormal APP processing can disrupt synaptic vesicle 
cycling, leading to impaired neurotransmission and synaptic loss. Alterations in NSF 
function have been linked to defects in synaptic plasticity, which are exacerbated in NFT-
bearing neurons where tau aggregates further impair microtubule-based transport. Given 
that NSF dysfunction contributes to synaptic vesicle misregulation, it is likely that APP and 
NSF dysregulation together accelerate synaptic failure in AD.

Microtubule-associated protein RP/EB family member 2 (MAPRE2) plays a crucial role in 
microtubule stabilization and intracellular transport, directly influencing cytoskeletal 
dynamics (McKetney et al., 2019). APP is trafficked along microtubules (T. Lin et al., 2021) 
and MAPRE2 dysfunction may contribute to instability in its transport, compounding the 
deleterious effects of APP in a disease state.

The APP-MAPT relationship is central to AD pathology. While APP cleavage generates Aβ 
peptides that trigger neurotoxicity, tau undergoes hyperphosphorylation, forming NFTs that 
disrupt intracellular transport and neuronal homeostasis. Studies suggest that Aβ 
oligomers can drive tau phosphorylation by activating kinases such as GSK3β and CDK5, 
linking APP dysfunction to NFT formation (Engmann, 2009). Furthermore, tau aggregates 
impair APP transport along axons (Stamer et al., 2002), potentially altering its cleavage 
and exacerbating Aβ accumulation.

Pathway enrichment using the current methods failed to share much further light into the 
context of these features when considering both datasets together. While the analysis on 
the FACS ssRNAseq dataset found many differentially enriched APP related pathways, the 
LCM Mass Spec dataset could only uncover one. However, that single pathway did help 
provide confirmation into obvious roles of APP in Alzheimer’s Disease, with the term being 
“positive regulation of amyloid fibril formation” (Figure 158). Furthermore, this gene set 
includes one of the most consistent and well-studied AD risk genes – APOE, which was 
found to be differentially abundant on the protein-level, though not on the gene-level 
(Figure 159). Note that in both datasets these features are relatively lowly expressed, 
suggesting that even if changes were detected, it may not be as robust as those related to 
NEFM, for instance.
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Figure 158.

Figure 158: Heatmap showing the unscaled abundance of proteins within the “positive 
regulation of amyloid fibril formation” pathway in the LCM Mass Spec dataset. Figure 
format previously described in Figure 135.

Figure 159.

Figure 149: Heatmap showing the unscaled expression of APOE alongside two other more 
highly expressed genes in the FACS ssRNAseq data. Figure format previously described 
in Figure 135.
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Figure 160.

Figure 160: Heatmap showing enrichment of all differentially enriched pathways containing 
APP in the FACS ssRNAseq dataset. Figure format previously described in Figure 146.

The differentially enriched pathways in Figure 160 suggests that a wide variety of 
processes that interact with APP are upregulated on the transcript-level, with most being 
well-enriched in the dataset. This is supportive of findings regarding the interaction of 
genes from Figure 157, which appear to touch upon many domains. The apparent ubiquity 
of APP indeed makes further interpretation of these results difficult. Note however that 
another amyloid-related term is present in this list, “cellular response to amyloid-beta”. 
Further examination of this term (Figure 161) shows that is substantially larger in scope 
than the “positive regulation of amyloid fibril formation” previously visualised.

Figure 161.
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Figure 161: Heatmap showing the unscaled expression of genes within the “cellular 
response to amyloid-beta” pathway in the FACS ssRNAseq dataset. Figure format 
previously described in Figure 135.

In order to nail down a particular focus of the many enriched pathways on the 
transcriptomic level, I turned to the pathway network. With the pruning parameters set, the 
pathway-level network of APP (Figure 162) converged upon a single term, “positive 
regulation of long-term synaptic potentiation”. The gene contents of this term is further 
visualised in Figure 163. Interestingly, this term is shared with another selected hub – 
SQSTM1, which will be further discussed in the next section. Long-term synaptic plasticity 
is widely regarded as the fundamental mechanism underlying learning and memory, and 
impaired potentiation and depression of synaptic plasticity is a key factor in many 
neurodegenerative disorders, including Alzheimer’s Disease (Mango et al., 2019).

Figure 162.

Figure 162: Pathway 
network of APP. 
Figure format 
previously described 
in Figure 127.

Figure 163.

Figure 163: Heatmap 
showing the unscaled 
expression of genes 
within the “positive 
regulation of long-
term synaptic 
potentiation” pathway 
in the FACS 
ssRNAseq dataset. 
Figure format 
previously described 
in Figure 135.
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6.4.3SQSTM1

Sequestosome 1 (SQSTM1, also known as p62) is a key regulator of autophagy and 
protein degradation pathways, particularly through its interactions with the ubiquitin-
proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) (Kumar et al., 
2022). In AD, SQSTM1 plays a crucial role in the clearance of misfolded and aggregated 
proteins, including pathological tau (Y. Xu et al., 2019). However, in AD autophagy 
becomes dysfunctional (J.-H. Liang & Jia, 2014), and whether as a cause or consequence, 
p62 aggregation has been directly observed in neurofibrillary tangle-bearing neurons 
(Kuusisto et al., 2002). The relationship between SQSTM1 and other key proteins and 
genes detected in this analysis, such as FTH1, MAP1LC3A, and APP, provides further 
insight into how disruptions in proteostasis contribute to NFT pathology.

Figure 164.

Figure 164. Feature network of SQSTM1. Figure format previously described in Fig. 140.

Ferritin heavy chain 1 (FTH1) is a key iron-storage protein that maintains cellular iron 
homeostasis and protects neurons from oxidative stress (Di Sanzo et al., 2022). Recent 
studies have identified iron dysregulation as a major contributor to neurodegeneration in 
AD (Ru et al., 2024), where iron accumulation promotes oxidative damage and may 
enhance tau aggregation. SQSTM1 has been implicated in ferritinophagy (Fang et al., 
2025), a selective autophagy process responsible for degrading ferritin and maintaining 
iron balance. The dysfunction of SQSTM1-mediated ferritinophagy may exacerbate the 
oxidative environment in NFT-bearing neurons, accelerating tau pathology and neuronal 
degeneration.
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Microtubule-associated protein 1 light chain 3 alpha (MAP1LC3A, commonly referred to as 
LC3A) is a core component of the autophagosome membrane (Bonam et al., 2020), 
essential for autophagy initiation and cargo degradation. SQSTM1 serves as an autophagy 
receptor, directly binding to LC3 through its LC3-interacting region (LIR) to facilitate the 
selective degradation of ubiquitinated protein aggregates (Kraft et al., 2016). In healthy 
neurons, this interaction enables the efficient removal of damaged proteins and prevents 
the accumulation of toxic aggregates. However, in AD autophagy is dysregulated (J.-H. 
Liang & Jia, 2014), leading to the accumulation of SQSTM1/p62 in tangle-bearing neurons 
(Kuusisto et al., 2002). The build-up of p62 by contribute to a broader failure of 
autophagosome formation and function, impacting components such as MAP1LC3A.

SQSTM1 has been linked to the metabolism of APP (another network in this analysis), as 
it can interact with ubiquitinated APP and facilitate its degradation via the autophagy-
lysosomal system (Ma et al., 2019). However, in AD, p62 accumulation and autophagic 
dysfunction may impair APP homeostasis, leading to increased Aβ production and 
deposition. Contributing to this feedback, Aβ itself inhibits autophagy (M. Yuan et al., 
2023), compounding proteostasis failure. As shown in the pruned pathway-level network in 
Figure 165, within the analysis APP and SQSTM1 (on the gene-level only) are linked by 
the GO term “positive regulation of long-term synaptic potentiation”. SQSTM1 has been 
implicated in synaptic plasticity through its role in AMPA receptor trafficking and mice 
deficient in p62 has been shown to exhibit impaired LTP in the hippocampal CA1 region 
(Jiang et al., 2009).

Figure 165.

Figure 165: Pathway network of SQSTM1. Figure format previous described in Figure 142.

Figures 166 and 167, showing all differentially enriched pathways in each dataset confirms 
the role of SQSTM1 in autophagy in the present analysis. Further examination of some of 
these pathways also show membership of the previously discussed features, with the 
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“autolysosome” gene set in the LCM Mass Spec dataset showing the upregulation of FTH1 
and MAP1LC3A (Figure 168). In the transcriptomic dataset, it is interesting to see the 
upregulation of Lewy body pathways in the tangle-bearing neurons. Lewy bodies describe 
protein aggregates primarily, but not exclusively, composed of α-synuclein and 
neurofilaments, and is more commonly associated with Parkinson’s Disease and Lewy 
Body Dementia (Trojanowski, 1998). However, there are case reports of both NFTs and 
Lewy bodies coexisting within the same neuron (Iseki et al., 1999). While we did not 
employ immunohistochemistry in the current experiment to confirm this, the current 
transcriptomic results suggest that this may be of value for future experiments. A closer 
look at the genes in the “Lewy body” gene set is shown in Figure 169.

Figure 166.

Figure 166: Heatmap showing enrichment of all differentially enriched pathways containing 
SQSTM1 in the LCM Mass Spec dataset. Figure format previously described in Fig. 146.

Figure 167.

Figure 167: Heatmap showing enrichment of all differentially enriched pathways containing 
SQSTM1 in the FACS ssRNAseq dataset. Figure format previously described in Fig. 146.
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Figure 168.

Figure 168: Heatmap showing the unscaled abundance of proteins within the 
“autolysosome” pathway in the LCM Mass Spec dataset. Figure format previously 
described in Fig. 135.

Figure 169.

Figure 169: Heatmap showing the unscaled expression of genes within the “Lewy body” 
pathway in the FACS ssRNAseq dataset. Figure format previously described in Fig. 135.
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6.4.4HSP90AA1

Heat shock protein 90 alpha, class A member 1 (HSP90AA1) is a molecular chaperone 
that plays a crucial role in protein folding, stability, and degradation under both normal and 
pathological conditions (Zuehlke et al., 2015). In AD, HSP90AA1 is implicated in tau 
homeostasis and NFT formation, as it interacts with hyperphosphorylated tau and 
regulates kinase activity involved in tau phosphorylation (Bohush et al., 2019). However, in 
Alzheimer’s Disease, HSP90AA1 protein abundance and gene expression is often 
dysregulated (Astillero‐Lopez et al., 2024; X.-L. Wang & Li, 2021), contributing to the 
accumulation of misfolded proteins, synaptic dysfunction, and cellular stress responses. 
Among the key interactors with HSP90AA1 in this analysis are YWHAE (a network hub 
discussed in its own section), ATP2B4, HSPA9, CCT5, LONP1, ATP1B1, ATP1A1, and 
NCKAP1.

Figure 170.

Figure 170. Feature network of HSP90AA1. Figure format previously described in Fig. 140.

To give a brief overview of these features: ATP2B4 (Plasma membrane calcium-
transporting ATPase 4, PMCA4) is crucial for neuronal calcium homeostasis (Zámbó et al., 
2017). While ATP1B1 and ATP1A1 are subunits of the Na+/K+-ATPase, which is essential 
for neuronal excitability and ion homeostasis (Sahoo et al., 2016).  HSPA9 (mortalin, a 
mitochondrial chaperone) is another heat shock protein that interacts with HSP90AA1 to 
regulate mitochondrial stability and oxidative stress responses (Ferré et al., 2021).  CCT5 
(chaperonin-containing TCP-1 subunit 5) is a component of the CCT/TRiC complex, which 
is responsible for assisting in the folding of cytoskeletal proteins and microtubules 
(Grantham, 2020). LONP1 (Lon protease 1) is a mitochondrial protease that degrades 
misfolded mitochondrial proteins and plays a role in mitochondrial quality control 
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(Matsushima et al., 2021). Finally, NCKAP1 (Nck-associated protein 1) is involved in actin 
cytoskeleton remodeling, playing a role in synaptic plasticity and neuronal structure 
maintenance (Han & Ko, 2023a). The interaction of these many genes and proteins, 
across a variety of functions, in conjunction with the protein stability roles of HSP90AA1, 
may be strong contributors to the pathological processes at play in tangle-bearing 
neurons.

Figure 171.

Figure 171. Pathway network of HSP90AA1. Figure format previous described in Fig. 142.

Figure 171 shows the pathway network for HSP90AA1 in this analysis, which may help 
narrow down the many implied mechanisms to those that may be most pertinent. In line 
with the most commonly associated function of HSP90AA1 are the two pathways “protein 
refolding” and “ATP-dependent protein folding chaperone”, the later of which is visualised 
in both datasets in Figure 172. These figures highlight the dispersion of protein folding 
mechanisms across many heat shock related features, as well as the CCT/TRiC complex. 
It is also interesting to observe the considerable variance in the features comprising this 
pathway, with some, like HSP90AA1 being relatively highly expressed/abundant, while 
others are a low, and a few were even detected as DE in the opposite direction of the 
overall pathway. This is a relevant example that supports usage of gene set enrichment 
methods; though not all components are DE in a consistent direction, enough of them are 
such that the sum of all parts suggest that the pathway as a whole is changed.
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Figure 172.

Figure 172: Heatmaps showing the unscaled expression of features within the “ATP-
dependent protein folding chaperone” pathway in the LCM Mass Spec (left) and FACS 
ssRNAseq (right) datasets. Figure format previously described in Figure 135.

The other immediately relevant pathway shown in Figure 171 is the “positive regulation of 
tau-protein kinase activity” pathway. Unfortunately, Gene Ontology defines very few 
features within this set – only HSP90AA1 and HSP90AB1 (which was detected as DE on 
its own in either dataset. This makes it difficult to take actionable steps for further 
functional research, outside of the already known fact that HSP90AA1 (and seemingly 
HSP90AB1) interact with tau kinases. This itself, as previously discussed, has large 
implications for the progression of tau hyperphosphorylation, and accordingly, tau 
aggregation. That being said, visualisation of shared and distinct enriched pathways for 
HSP90AA1 and HSP90AB1 for the LCM Mass Spec dataset implicate additional roles of 
the two proteins together in tangle-bearing neurons in nitric-oxide synthase and 
telomerase activity regulation (Figure 173).

Figure 173.
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Figure 173: Sankey plot showing shared and distinct enriched pathways for HSP90AA1 
and HSP90AB1 in the LCM Mass Spec dataset.

On the gene-level, the pathway network in Figure 171 also implicates the involvement of 
HSP90AA1 in the major histocompatibility complex (MHC). As this pathway is shared with 
YWHAE, another network hub, it will be discussed in that hub’s section. Finally, beyond the 
pathways discussed thus far, visualisation of all differentially enriched pathways on the 
gene-level shows involvement of HSP90AA1 across many different domains (Figure 174). 
Of note, are a number of vascular-related pathways and those involved with basic 
molecular processing of compounds such as pyrimidines. The later is more difficult to 
interpret in the context of disease, but vascular dysfunction is well-known component of 
Alzheimer’s Disease pathophysiology, inspiring widely publicised initiatives to classify AD 
as “type 3 diabetes” (Peng et al., 2024).

Figure 174.

Figure 174: Heatmap showing enrichment of all differentially enriched pathways containing 
HSP90AA1 in the FACS ssRNAseq dataset. Figure format previously described in Fig. 
146.
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6.4.5YWHAE

YWHAE (14-3-3ε) is a scaffolding and signaling protein that plays a crucial role in 
regulating tau phosphorylation, synaptic function, and cellular stress responses (Foote & 
Zhou, 2012). As part of the 14-3-3 protein family, YWHAE binds to phosphorylated tau and 
influences its affinity for microtubules, thereby contributing to neuronal stability and 
cytoskeletal organization (Y. D. Ke et al., 2019). In this dataset, YWHAE interacts with a 
variety of genes and proteins involved in neuronal integrity and stress response, including 
HSP90AA1, ATP1A1, ATP1B1, PRNP, and FTH1.

Figure 175.

Figure 175. Feature network of YWHAE. Figure format previously described in Fig. 140.

YWHAE and HSP90AA1 share a functional relationship in regulating tau homeostasis and 
protein stability. HSP90AA1 is a molecular chaperone that assists in the folding and 
degradation of misfolded proteins, including tau. Meanwhile YWHAE directly binds to 
phosphorylated tau, influencing its detachment from microtubules. The dysregulation of 
each of these genes and proteins may work synergistically to potentiate tau aggregation. 
That being said, the present analysis, at least with current pruning parameters, did not 
highlight this association between the two features, instead implicating mechanisms 
involving major histocompatibility complex (MHC) (Figure 176). Upon further inspection, it 
is possible that this is an unreliable signal, as many of the genes involved are very lowly 
expressed, particularly those of the CD class (i.e. CD74) (Figure 177). Recall that those 
cells in the heatmap that are coloured gray are also lowly expressed genes, though they 
are counted in the gene set scoring by GeneFunnel, just excluded from differential 
expression testing and visualisation. Indeed, I could not find relevant research linking 
these genes together in relation to MHC. Gene Ontology cites (Buschow et al., 2010) as 
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the sole reference, which examined exosomes, a type of secreted vesicle, which while 
relevant to AD biology (Fowler et al., 2025), is not solid evidence of this activity within cells.

Figure 176.

Figure 176. Pathway network of YWHAE. Figure format previous described in Fig. 142.

Figure 177.
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Figure 177: Heatmap showing the expression of genes within the “MHC protein complex 
binding” pathway in the FACS ssRNAseq dataset. Format previously described in Fig. 135.

Other features in Figure 175 have been previously mentioned. Like with the network for 
HSP90AA1, the Na+/K+-ATPase complex, which includes ATP1B1 (Na+/K+-ATPase beta 
subunit 1) and ATP1A1 (Na+/K+-ATPase alpha subunit 1), critical regulators of neuronal 
excitability and ion homeostasis (Sahoo et al., 2016). In AD, Aβ and tau pathology have 
been linked to disruptions in Na+/K+-ATPase activity, potentially leading to calcium 
overload and excitotoxicity (Petrushanko et al., 2016). And as in with SQSTM1, FTH1, 
which is a key iron-storage protein that maintains cellular iron homeostasis and protects 
neurons from oxidative stress (Di Sanzo et al., 2022). Finally, PRNP, which as discussed in 
relation to APP, is implicated in protein misfolding diseases like CFJ and AD (Calero et al., 
2011). It is less clear how YWHAE interacts with these features due to a lack of research 
interest in YWHAE compared to the previously mentioned hubs, all of which are big names 
in disease research.

It is potentially more insightful to look into other pathways containing YWHAE that was 
shown differentially enriched. In the LCM Mass Spec, the only gene set was 
“phosphoserine residue binding”, which are the specific motifs targeted by 14-3-3 proteins 
when mediating protein localisation. This is a potential path to direct interaction with AD as 
phosphoserine has been reported to be elevated in AD post-mortem brain tissue (Klunk et 
al., 1991). The proteins involved in this process is shown in Figure 178. Figure 179 shows 
all differentially enriched pathways containing YWHAE in the LCM Mass Spec dataset. Out 
of them, it is interesting to see pathways related to sequestration. In the context of 
proteins, sequestering is the process by which specific proteins are isolated or bound by 
other molecules, preventing them from interacting with their usual cellular targets or 
participating in biological processes; it is often as a regulatory mechanism in signalling 
pathways, stress responses, or protein aggregation disorders (H. Yang & Hu, 2016). The 
genes involved in the gene set “protein sequestering activity” is shown in Figure 180. In 
both this figure, and Figure 178, it can be observed that YHWAE often functions alongside 
related components of the 14-3-3 class, such as YHWAE and YHWAZ.

Figure 178.
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Figure 178: Heatmap showing the unscaled abundance of proteins within the 
“phosphoserine residue binding” pathway in the LCM Mass Spec dataset. Figure format 
previously described in Fig. 135.

Figure 179.

Figure 179: Heatmap showing enrichment of all differentially enriched pathways containing 
YWHAE in the FACS ssRNAseq dataset. Figure format previously described in Fig. 146.

Figure 180.

Figure 180: Heatmap showing the unscaled expression of genes within the “protein 
sequestering activity” pathway in the FACS ssRNAseq dataset. Figure format previously 
described in Fig. 135.
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6.4.6WASF1

WASF1 (WAVE1, WASP-family verprolin homologous protein 1) is a critical regulator of 
actin cytoskeleton remodeling, playing an essential role in synaptic plasticity, dendritic 
spine formation, and neuronal connectivity (Han & Ko, 2023b). It is a core component of 
the WAVE regulatory complex (WRC), which activates the Arp2/3 complex to drive actin 
polymerization and dendritic spine maintenance. WASF1 has been shown to colocalise 
directly with tau in the 3xTg AD mouse model (Watamura et al., 2016). The present 
analysis highlights NCKAP1 and MAPT as top interacting partners in terms of shared 
differentially expressed pathways in the LCM Mass Spec and FACS ssRNAseq datasets.

Figure 181.

Figure 181. Feature network of WASF1. Figure format previously described in Fig. 140.

NCKAP1 (Nck-associated protein 1) is previously described, as it was also associated with 
the network hub HSP90AA1. NCKAP1, one of five key components of the WRC, regulates 
actin cytoskeleton dynamics, contributing to synaptic plasticity and the structural integrity 
of neurons (Han & Ko, 2023b). While I could not find a report of NCKAP1 being 
upregulated in AD, its gene has been reported to be downregulated in microarray data 
from AD prefrontal cortex tissue (Y. Zhu et al., 2023). Another group revealed that 
overexpression of NCKAP1 led to an upregulation of actin polymerization-associated 
proteins, including CYFIP1, ABI2, WAVE1, and WAVE2, while NCKAP1 knockdown 
resulted in their decreased expression (Noh et al., 2023). They further showed the 
NCKAP1 ameliorated defects in phagocytic function an amyotrophic lateral sclerosis (ALS) 
model of microglia-like cells. Another study compared WASF1 between human AD and 
healthy control neocortical tissue and reported a reduction in gene expression (Ceglia et 
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al., 2015). That study also showed that significantly lowering Wasf1 led to a marked 
decrease in Aβ levels and reversed memory impairments in the Tg-APPswe AD mouse 
model. This may suggest that the WRC as a whole may be a protective factor in 
neurodegeneration, and the upregulation observed in the datasets of this thesis is 
representative of a compensatory mechanism.

(Watamura et al., 2016) reports that WAVE1 (WASF1) and tau directly colocalise in the 
3xTg AD mouse model. Interestingly, (Takata et al., 2009) reports that both tau and 
amyloid pathologies are required for WAVE1 accumulation, as accumulation was not 
detected in the JNPL3 or Tg2576 mice, which respectively feature each pathology 
separately. However, robust WAVE1 accumulation was observed in the 3xTg model, which 
harbour both pathologies. In AD, the kinases Cdk5 and GSK3-β are heavily implicated in 
the regulation of cytoskeletal dynamics and axonal transport. Their activity influences 
these processes by phosphorylating critical molecules including WAVE1, as well as tau 
(Ceglia et al., 2010). It is possible that kinase dysregulation is in fact the casual factor in 
the observed upregulation of both WAVE1 and tau, leading to their aggregation, loss of 
cytoskeletal stability, and dysfunction of the hypothesised protective effects of the WAVE 
regulatory complex.

Figure 182.

Figure 182. Pathway network of WASF1. Figure format previous described in Fig. 142.

The discussion presented above is supportive of the pruned pathways associated with 
WASF1 shown in Figure 182. An additional pathway not discussed is “positive regulation of 
neurotrophin TRK receptor signaling pathway”. The Trk receptor signaling pathway 
involves a family of receptor tyrosine kinases, TrkA, TrkB, and TrkC, each activated by 
specific neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic 
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factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Upon neurotrophin binding, Trk 
receptors initiate intracellular signaling cascades that regulate diverse domains such as 
neuronal survival, axonal and dendritic growth, and synaptic plasticity (E. J. Huang & 
Reichardt, 2003). Neurotrophin related pathways appear to be the link between WASF1 
and MAPT in this dataset, as they both appear in the pathway “cellular response to brain-
derived neurotrophic factor stimulus”. This pathway was only differentially enriched in the 
FACS ssRNAseq dataset and the genes within the pathway are shown in Figure 183.

Figure 183.

Figure 183: Heatmap showing the unscaled expression of genes within the “cellular 
response to brain-derived neurotrophic factor stimulus” pathway in the FACS ssRNAseq 
dataset. Figure format previously described in Fig. 135.
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6.4.7CNTNAP1

CNTNAP1 (Contactin-associated protein 1 or Caspr) is a neuronal adhesion molecule 
essential for axonal organization, synaptic function, and neuronal excitability. It plays a 
crucial role in maintaining the integrity of paranodal junctions in myelinated neurons, 
facilitating axon-glial interactions that are critical for proper neuronal signaling (W. Li et al., 
2020b). In this analysis, CNTNAP1 interacts with several genes and proteins involved in 
cytoskeletal organization, endosomal trafficking, and synaptic stability, including ANK2, 
VPS35, PALM, and NEFL.

Figure 184.

Figure 184. Feature network of CNTNAP1. Figure format previously described in Fig. 140.

ANK2 (Ankyrin-2, also known as Ankyrin-B) is a scaffolding protein involved in linking 
membrane proteins to the actin cytoskeleton, particularly at the nodes of Ranvier and 
paranodal junctions in axons (Kawano et al., 2022). VPS35 (Vacuolar Protein Sorting 35) 
is a core component of the retromer complex, responsible for endosomal sorting and 
protein recycling (A. Wu et al., 2024).  PALM (Paralemmin-1) is a scaffolding protein 
involved in neuronal membrane dynamics, synaptic plasticity, and dendritic spine 
remodeling (Macarrón-Palacios et al., 2025).  NEFL, as previously discussed, is a major 
component of the neuronal cytoskeleton, critical for axon stability and intracellular 
transport (Campos-Melo et al., 2018). The interaction between CNTNAP1 and many of 
these largely structural components may largely contribute to the instability induced by tau 
pathology in AD.
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The pathway network analysis performed in these datasets support the role of CNTNAP1 
in paranodal junctions on both a transcriptomic and proteomic level (Figure 185). 
Inspection of additional pathways differentially enriched in the FACS ssRNAseq dataset 
also shows a term called “myelin assembly”, which may provide a link between this so-far 
neuron focused analysis to glia (Figure 186). Of the above mentioned genes, this pathway 
also incorporates ANK2, which itself is implicated in myelin specific processes. Gene 
expression of CNTNAP1 has been reported as upregulated human AD post-mortem 
tissue, though interpretation of such data has predominantly been in the context of 
regulating APP function (Bamford et al., 2020). However, extensive work outside of the AD 
research field have reported that mutations in CNTNAP1 is highly involved in myelination 
disorders (W. Li et al., 2020c), and related mechanisms may be at play when CNTNAP1 is 
dysregulated alongside other key genes in tangle-bearing neurons.

Figure 185.

Figure 185. Pathway network of CNTNAP1. Figure format previous described in Fig. 142.

Figure 186.

Figure 186: Heatmap showing the unscaled expression of genes within the “myelin 
assembly” pathway in the FACS ssRNAseq dataset. Figure format previously described in 
Fig. 135.
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6.4.8GOT2

Glutamate oxaloacetate transaminase 2 (GOT2), also known as aspartate 
aminotransferase, is a component of the malate-aspartate shuttle (MAS), a cytosolic-
mitochondrial pathway responsible for transferring reducing equivalents (donation of an 
electron into an electron recipient) into mitochondria to sustain oxidative phosphorylation 
(Borst, 2020). The reaction is a rapid process that bypasses the tricarboxylic acid (TCA) 
cycle, and is thought to be required for neuronal activity (Yudkoff et al., 1994). Studies 
have shown that GOT2 is decreased in both AD model mice (H. Li et al., 2023) and human 
AD cases (Choe et al., 2024; Mahajan et al., 2020). However, in this thesis work, GOT2 
was identified as upregulated in both the transcriptomic and proteomic datasets. Its 
interacting partners include DLST and GLUD1, which were also upregulated in both 
datasets (Figure 187).

Figure 187.

Figure 187: Feature network of GOT2. Figure format previously described in Fig. 140.

Dihydrolipoamide S-succinyltransferase (DLST) is a core component of the 2-oxoglutarate 
dehydrogenase complex (OGDHc), which catalyzes the conversion of 2-oxoglutarate to 
succinyl-CoA and CO₂ in the tricarboxylic acid (TCA) cycle (Mellid et al., 2023). 
Meanwhile, Glutamate dehydrogenase 1 (GLUD1) is a mitochondrial enzyme that 
catalyses the reversible conversion of glutamate to α-ketoglutarate and ammonia, playing 
a pivotal role in amino acid metabolism and energy production (Plaitakis et al., 2017). 
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Since GLUD1 is integral to neurotransmitter regulation, modulating the primary excitatory 
neurotransmitter glutamate, and DLST contributes to energy metabolism, they both play 
important roles in synaptic transmission and overall neuronal function. The contribution of 
DLST gene to genetic risk of AD has had inconsistent results in the literature (Matsushita 
et al., 2001; Sheu et al., 1999), while GLUD1 has shown more consistency as reviewed in 
(Mathioudakis et al., 2023).

After pruning, the pathway network showed no data for GOT2. Therefore Figures 188 and 
189 instead visualise the all differentially enriched pathways containing GOT2 in each 
dataset as heatmaps. It is reassuring to observe that all of the pathways converge towards 
basic metabolic processes and include those related to glutamate, oxaloacetate, and 2-
oxoglutarate (Figure 190). Also interesting is that these processes are more associated 
with the proteomics dataset; a noticeable difference in enrichment levels is observed 
between the two datasets. This runs counter to the data thus far, where pathway 
enrichment always had more coverage in the transcriptomics dataset. An NGS dataset will 
always provide more coverage than mass spectrometry with current technology, which 
makes that case unsurprising. On the other hand, recall that in the methodology for this 
analysis, due to the sparsity of the proteomics dataset, gene sets were only required to 
have half of its features present in the input data. Figure 190 is an example of this, and 
likely results in the term suggesting catabolism despite the absence of GAD1 and GAD2, 
which are probably the key features driving the catabolic aspect of the term. While it may 
indeed be the case that GOT2-related processes take place more on the protein than 
transcript-level, one should be cautious that this was not driven by methodology decisions 
that unintentionally inflated the enrichment of some gene sets on the proteomics side. 
Nevertheless, in theory this should not significantly impact differential enrichment, just the 
relative expression of some gene sets when comparing the two datasets against each 
other. 

Figure 188.

Figure 188: Heatmap showing enrichment of all differentially enriched pathways containing 
GOT2 in the LCM Mass Spec dataset. Figure format previously described in Fig. 146.
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Figure 189.

Figure 189: Heatmap showing enrichment of all differentially enriched pathways containing 
GOT2 in the FACS ssRNAseq dataset. Figure format previously described in Fig. 146.

Figure 190.

Figure 190: Heatmap showing the unscaled abundance of proteins within the “glutamate 
catabolic process” pathway in the LCM Mass Spec dataset. Figure format previously 
described in Figure 135.
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7. Discussion

7.1 ImputeFinder and GeneFunnel Resolve Obstacles in Real-world 
Analysis

In this work, I develop novel methods for tackling common problems in transcriptomic and 
proteomic analysis. I explain their methodologies and explore their properties extensively, 
as well as perform benchmarks in synthetic data, real data, and against other 
contemporary methods. I show that the new methods are intuitive to reason with and 
address issues that other methods fail to satisfactorily solve. The methods are performant 
and were leaders in all metrics defined in the benchmarking experiments. Finally, I utilised 
the methods for real-world analysis to investigate the molecular changes underlying 
tangle-bearing neurons in Alzheimer’s Disease.

While the transcriptomics dataset (FACS ssRNAseq) was of exemplary quality for re-
analysis, the in-house proteomics dataset (LCM Mass Spec) could be considered pilot 
quality at present. It is in fact the earliest of several similarly designed experiments 
performed by our group, and recent improvements in the protocol has improved the most 
recent iterations to a much higher standard than before. With the current dataset, I was 
forced to remove half of the data due to poor capture of proteins. The remaining samples 
still suffered from issues related to missing values. This made the dataset a prime 
candidate for more sophisticated missing value handling using ImputeFinder, previously 
developed for the analysis of another complex proteomics dataset (Fowler et al., 2025).

ImputeFinder performed exceptionally well in this dataset, resulting in the clean separation 
of samples by treatment group (tangle-bearing vs. non-tangle-bearing) on a PCA plot 
(Figure 74). This helped maximise retention of analysable proteins in the already sparse 
label-free mass spectrometry dataset, allowing for the testing of differential abundance in 
665 proteins from the original 1,547. Through the comprehensive exploration and 
benchmarking process of the method, I could be confident that these proteins were valid to 
keep and any missing values were imputed in a sensible manner.

GeneFunnel was primarily employed to help manage and interpret the mass output of data 
that result from omics research. Many genes/proteins (features) participate in a multitude 
of functional domains and it can be of value to infer as to which of these domains are 
relevant in an analysis. GeneFunnel helped identify the functionalities of features based on 
their membership in GO annotations, but more importantly, pinpointed which of those 
annotations are actually active in the datasets or show differences between groups. This 
information was further enhanced by coupling it with network analysis, facilitating unique 
approaches to feature prioritisation. In this work, traditional statistics such as p-value were 
not the sole criteria, it was combined with metrics such as if a feature had many of its 
possible GO annotations differentially enriched. This, for example, inferred that not just the 
feature itself was differentially expressed, but also the totality of its functionalities.
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The end result of usage of these methods was the identification of a small set of hub 
features, with final focus on those upregulated in both datasets, totalling just 8, out of the 
1,771 genes and 262 proteins upregulated in total. The methods themselves then allowed 
in-depth characterisation of these hubs in the context of the dataset, as detailed in Section 
6.4. As will be further deduced from the coming sections, the mechanisms exposed by just 
these 8 hubs cover a wide variety of functional domains, demonstrating that such analysis 
is not only useful for deciding on individual genes/proteins of focus, but that they can also 
be used to distil overall themes from the analysis.

Beyond interpretational benefit, both ImputeFinder and GeneFunnel aim to improve the 
sensitivity of the analysis. In regards to imputation, this is an obvious goal, however, 
ImputeFinder additionally has specific criteria for when to discard proteins entirely from the 
analysis. Quality control aside, making such decisions has non-negliable impact on the 
severity of multiple testing correction, which often plague naive omics analyses. Likewise, 
by performing a gene set enrichment focused analysis, one can choose to not test features 
which are not contained in the gene sets, a valid but often overlooked approach for only 
analysing decently characterised features. Finally, by statistically testing gene sets 
themselves, it is possible to capture more subtle changes across many features, where 
few to none of those features would be detected as statistically different individually.
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7.2 Evidence of Successful Isolation of NFT-bearing Neurons on the Gene 
and Protein-level

As shown in Figure 133, tangle-bearing neurons compared to within donor non-tangle-
bearing neuron controls, exhibit robust changes on the proteomic and transcriptomic-level. 
In both modalities, nearly half of all tested features were identified as differentially 
expressed/abundant. This was the case when testing pathways in the LCM Mass Spec 
dataset as well, though less so in the FACS ssRNAseq dataset (37% differentially 
enriched). Moreover, 134 out of the 289 differentially abundant proteins were also 
differentially expressed on the gene-level, showing considerable agreement between the 
two datasets. In the FACS ssRNAseq dataset, adjusted p-values as low as 1.08  ✕ 10-12 
were found (NNAT), while in the LCM Mass Spec dataset, adjusted p-values were as low 
as 2.57  ✕ 10-9 (MAPT). This information also suggests that variance between donors was 
low and that the methods are consistent and reproducible between samples. Note though, 
that the LCM Mass Spec experiment will benefit from further optimisation, as nearly half of 
samples had to be discarded due to low or no protein capture (Section 2.5.3). Of the 
samples kept however, the data was of sufficient quality to achieve strong significance.

It is reassuring in the context of this analysis that MAPT is not only differentially expressed 
in both datasets, but also had the lowest adjusted p-value in the LCM Mass Spec dataset. 
MAPT encodes the tau protein, which is the primary protein that becomes aggregated in 
neurofibrillary tangles. To find it differentially abundant on the protein-level provides strong 
evidence that the experiment achieves its goals, that is the separation of tangle-bearing 
and non-tangle-bearing neurons. Similarly, neurofilaments were also strongly differentially 
expressed in both datasets, with NEFM being selected as a shared hub. In recent years, 
neurofilaments show great promise for being a biomarker of Alzheimer’s Disease (Giuffrè 
et al., 2023), and in advanced AD, they often co-localise with aggregated tau (Schmidt & 
Trojanowski, 1990).

Finally, I observed strong differentially enrichment of the pathway “neurofibrillary tangle” in 
both datasets, which was unbiasedly selected as a pathway hub for the analysis. This 
pathway is defined by GO as comprised of MAPT and several neurofilaments, as well as 
CLU (Clusterin) and PICALM (Phosphatidylinositol Binding Clathrin Assembly Protein). 
The later two features are also well-characterised classical AD risk genes (Carrasquillo et 
al., 2010). Together, these finds support not only robust differential changes between 
tangle-bearing and non-tangle-bearing neurons on the protein and gene-level, but also 
evidence that the cell sorting methods succeeded in isolating the two cell populations.
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7.3 Similarly Designed Studies Support Findings in This Analysis

The work performed here directly re-analyses an existing transcriptomics dataset (Otero-
Garcia et al., 2022) as well as initial analysis on an in-house proteomics dataset. For the 
in-house dataset, LCM Mass Spec, there is no perfect study for comparison. Other studies 
besides the one for re-analysis that performed within donor isolation of tangle-bearing 
neurons all analysed transcripts (Dunckley et al., 2006; Ginsberg et al., 2000), though they 
did utilise laser-capture microdissection (LCM) like the in-house dataset. However, the 
work of (Hondius et al., 2021) does use LCM with mass spectrometry to analyse the 
proteome of tangle-bearing neurons in AD, with the big difference being that it is not a 
within-donor comparison; non-tangle-bearing neurons were all isolated from non-
demented control donors. This not only introduces additional donor variability to the 
analysis but also now confounds the effect with general processes associated with AD 
beyond that of neurofibrillary tangles. Moreover, their study was not focused strictly on 
tangle-bearing neurons, but also granulovacuolar degeneration (GVD), and cells with GVD 
were collected within the same patient donors as tangles, unlike cells without either 
feature. Nonetheless, it appears to be the best dataset for comparison with the LCM mass 
spectrometry dataset in this thesis work.

One of the strongest points of concordance between this analysis and the referenced 
datasets is the top feature sorted by adjusted p-value. Comparing (Otero-Garcia et al., 
2022) is made complicated by the fact that they focused on differential expression in each 
cell-type separately. While they do present figures of shared differentially expressed 
genes, it is a collation of cell-types beyond the cell-types chosen in my re-analysis. 
Moreoever, a CSV or Excel file of these cell-types could not be found in the supplemental 
data. Since the authors do release comprehensive Excel files of differentially expressed 
genes for each cell-type on an individual basis (Table S6 from their publication), this file 
was used to compare their analysis with the one in this work. I specifically selected their 
analysis of their EX2 cell subtype, corresponding to Layer 2-4 CUX+ excitatory neurons in 
the prefrontal cortex. This cell-type corresponds to the largest group of cell subtypes used 
in my analysis (Figure 59), so is likely a good compromise.

The top DE gene in EX2 from the analysis by (Otero-Garcia et al., 2022) is NNAT, which is 
the same top DE gene found in my analysis (Figure 138). They report an adjusted p-value 
of 1.37  ✕ 10-156, which is substantially inflated from the 1.08  10✕ -12 in this thesis work. 
This results from the use of pseudobulking in my analysis, which facilitates the use of true 
biological replication (8 donors compared to thousands of cells), a practical solution for 
avoiding pseudoreplication bias (Zimmerman et al., 2021). The authors did not use 
pseudobulking, so there is insufficient evidence to suggest that their DE genes, particularly 
lower ranks ones, will replicate across different patient donors. Nonetheless, it is 
reassuring that their top DE gene aligns with the top DE genes in the pseudobulked 
analysis performed here.
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Interestingly, despite pseudoreplication bias, the authors report far fewer DE genes than I 
found, 743 vs. 3,369, both using an adjusted p-value cutoff of 0.05. It is unclear what 
contributed to this difference, though it can be hypothesised that the pipeline in this thesis 
work takes substantial efforts to reduce multiple testing burden. The most salient source of 
this is the subsetting of tested genes to those contained within the Gene Ontology, 
resulting in the testing of just 8,950 genes compared to the original matrix containing tens 
of thousands of genes. I could not find data indicating the universe of genes tested by 
(Otero-Garcia et al., 2022), but it is possible that it was much larger. The approach elected 
in this thesis work comes with the caveat of removing genes that may have been DE, even 
strongly DE, just because they are not in the Gene Ontology. Therefore less characterised 
genes, which may indeed be great candidates for further work, are excluded in favour of 
greater statistical power for better characterised genes. These differences may reflect in 
differences in the overlap of DE genes in the analysis by (Otero-Garcia et al., 2022) and 
my analysis. I report that 556 genes overlap, which means that 187 genes in the (Otero-
Garcia et al., 2022) dataset were either not analysed in my analysis or did not reach 
significance, perhaps due to reduced power from pseudobulking. Nonetheless, this overlap 
shows that the majority of their DE genes align with mine, regardless of the substantial 
differences in methodology.

Regarding the analysis by (Hondius et al., 2021) and my analysis on the in-house LCM 
Mass Spec dataset, the top protein also matches. Crucially, this top protein is MAPT in 
both analyses, providing confidence that both datasets successfully isolated tangle-
bearing neurons and that protein expression of MAPT itself is a good marker for evidence 
of this. They report an adjusted p-value of 5.05  10✕ -60 for MAPT vs. 2.57  ✕ 10-9 in the in-
house dataset. There are several clear reasons for this. Their dataset had much larger 
sample size, having an N of 12, while the in-house dataset only had an N of 4 after 
removal of low-quality samples. As reported in Section 2.5, the in-house dataset had 
substantial quality issues, which while addressed to the best of my ability, may have still 
manifested in the remaining samples. One readily observed way is that by the end of pre-
processing, samples had a variable number of technical replicates. While the function 
duplicateCorrelation provides handling of this, it is nonetheless a less-than-ideal situation. 
In any case, the differential abundance pipeline may have salvaged the data substantially, 
as my analysis discovered 262 differentially abundant proteins (DAPs AKA DEPs) with an 
adjusted p-value cutoff of 0.05. With that same cutoff, the authors of (Hondius et al., 2021) 
found 197 DAPs. It is unclear what their universe of proteins for testing were, but they 
report the quantification of 2,596 proteins. In my analysis, I tested 665 proteins and like the 
transcriptomics analysis, reduction of multiple testing burden may have played a key role 
in improving power of the analysis. The overlap between the two analyses is 151 DAPs, 
which like the transcriptomics analysis, shows that the majority of their DAPs align with 
those in the in-house dataset and associated analysis. These analyses in the 
transcriptomic and proteomic datasets therefore strongly suggest that the work performed 
in this thesis align well with existing research in a similar area, despite large differences in 
methodology.
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7.4 Caveats and Interpretational Considerations

It is important to consider some caveats and interpretation considerations associated with 
the datasets and analysis at hand. Tangle-bearing neurons were isolated on the basis of 
Anti-Phospho-Tau AT8 immunohistochemical staining. The AT8 antibody is a widely used 
monoclonal antibody with high specificity (D. Li & Cho, 2020) that specifically recognises 
tau protein phosphorylated at residues Ser202 and Thr205 (Goedert et al., 1995). AT8 
detects early-stage tau phosphorylation events, which may or may not progress to form 
insoluble aggregates characteristic of advanced tauopathies. Therefore, AT8 positivity 
alone does not confirm the presence of mature neurofibrillary tangles. Follow-up work with 
other antibodies may be beneficial to confirm the validity of this work, as well as provide 
further precision as to what is being captured during the neuronal isolation process. It may 
also be insightful to investigate other varieties of tau-related pathology in AD, such as 
dystrophic neurites, known for co-localising with amyloid plaques as well as 
hyperphosphorylated tau (Moloney et al., 2021). Related to this is the notable under-
representation of differential enrichment of explicit cell death pathways, both in the 
analysis of this work and the original analysis of re-analysed data (Otero-Garcia et al., 
2022). It is not out of the question that indeed the neurons captured are those that are  
more resilient to cell death or pathology as a whole, and thus able to be isolated and 
profiled. It is a significant technical challenge, but would be of great benefit if future 
methods can somehow facilitate profiling of neurons that are known to die at a later time 
point but before their death. A future technology one might envision is a minimally invasive 
live imaging protocol that can sample transcript expression and protein abundance. There 
are reports of proof-of-concepts of such technology (W. Chen et al., 2022), but further 
review is needed to ascertain the eventual viability of this direction.

The use of gene set enrichment in this analysis provides various benefits in terms of 
sensitivity to subtly altered pathways, multiple testing correction burden, and prioritisation 
and interpretation, as discussed extensively throughout Section 4. Here, I wish to highlight 
some potential pitfalls as well that pertain to interpretation of the results on real-world data. 
First and foremost, while I attempt to explore the properties and benchmark GeneFunnel 
extensively, it is a part of the novel work of this thesis, and has not yet undergone peer-
review. Indeed, in a real-world situations, where compromises are necessary, GeneFunnel 
can produce unintended results. In Figure 188 and 190, one can observe that the gene set 
“glutamate catabolic process” is highly enriched but half the proteins were undetected, or 
very lowly abundant. These proteins include GAD1 and GAD2, crucial towards the 
“catabolic” aspect of the gene set. When possible, I prefer to only analyse gene sets for 
which data of all its features can be found in the input data, like the FACS ssRNAseq 
dataset. But the sparsity of the LCM Mass Spec dataset led to the decision to only require 
that half the proteins are present in a gene set, leading to some edge cases such as this. A 
related issue is the dependency of these analyses on the contents of the gene sets. I used 
the Gene Ontology, which is both non-disease specific and generally curated by non-
experts on the huge swathes of biology it covers. Even if a gene set enrichment method is 
accurate, the sets used in the analysis may not always be.
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7.5 Emergent Themes of Tangle-bearing Neuron Pathophysiology

This study presents a within-donor comparison of transcriptome and proteome in tangle-
bearing (AT8+) neurons and adjacent AT8- neurons from Alzheimer’s disease brains. The 
novelty lies in the joint analysis of RNA-protein concordance within the same cellular and 
pathological context, rather than across unmatched donors or bulk tissue. Pairing AT8+ 
and AT8- neurons from the same case reduces inter-individual and cellular composition 
confounding and allows the observed signal to be attributed to the presence of 
neurofibrillary tangles.

A further contribution is methodological. A single analysis framework integrated both 
modalities so that gene and pathway level inferences are directly comparable. Quality 
control, statistical testing, and gene set scoring used the same procedures in RNA and 
protein data, and quantitative criteria was established (i.e. network analysis) to measure 
agreement and divergence between the two data types. Rigour was enforced by 
addressing issues like pseudoreplication through pseudobulking, and multiple testing was 
controlled by taking into account both assays in tandem.

To organise the breadth of differential expression and gene-set results, an interactive 
network representation was used to summarise relationships between features and 
associated pathways that move in tandem with disease state, with fine-tuned filtering 
procedures to move between broader and more selective views. The intergration of these 
networks, as well as interactive heatmaps, into publicly accessible web viewers helps 
encourage the dissemination and reuse of data in easily explorable formats.

Within this experiment, a compact set of hubs, NEFM, APP, SQSTM1, HSP90AA1, 
YWHAE, WASF1, CNTNAP1 and GOT2, showed consistent upregulation in AT8+ neurons 
relative to nearby AT8- neurons in both RNA and protein. The recurrence of these features 
across donors and analyses supports them as robust characteristics of the tangle-bearing 
state rather than technical or study-specific effects. The focus on a small, reproducible set 
is deliberate and intended to aid interpretation and downstream validation.

Practically, the comparison returns two products for use beyond this study. First, a set of 
features observed in both datasets within the same donors and cellular context. These can 
be taken forward for confirmation in adjacent material by immunolabelling, targeted 
proteomics, and other orthogonal assays, and serve as a foundation for pathways that 
were also observed enriched. Second are findings confined to one dataset or another. 
These frame more nuanced questions regarding the relationship between transcriptional 
programmes and protein accumulation in the context of disease.

In the sections that follow, I organise the results into discrete themes and relate them to 
existing literature. I do not impose a definite causal sequence, as the present data does 
not have the capability to resolve directionality, and hypotheses which remain speculative 
are made clearly distinguishable from the descriptive results.
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7.5.1Co-aggregation of Neurofilaments and Microtubule Destabilisation

NEFM (neurofilament medium polypeptide) was shown to have increased gene expression 
and protein abundance in the comparison of tangle-bearingneurons with non-tangle-
bearing neurons. Neurofilaments are a class of intermediate filament proteins that 
contribute to the support of microtubules, a key component of the structure of axons (A. 
Yuan & Nixon, 2021). Along with tau, neurofilaments bind to the outer perimeter of 
microtubules to help maintain axonal caliber. In disorders that affect microtubule integrity 
such as Alzheimer’s Disease, neurofilaments and tau become mislocalised. Tau commonly 
aggregates while neurofilaments have a tendency to fragment. A high-level schematic of 
these roles can be seen in Figure 191.

Figure 191.

Figure 191: Proposed disease mechanism of neurofilament overabundance in tangle-
bearing neurons based on the results of the analysis. Neurofilaments mislocalise 
alongside tau, leading to microtubule instability and disintegration. The mislocalisation and 
fragmentation of neurofilaments may also promote their escape from the axonal space, 
resulting in increased detection in CSF and blood plasma. Furthermore, fragmentation 
may result in neurofilament dyshomeostasis, an adverse condition where shorter chains 
become the predominant species. Created with BioRender.com.
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The detection of neurofilaments in neurofibrillary tangles date as far back as 1979, when 
(Ishii et al., 1979) showed immunofluorescence co-localisation in the AD hippocampus. 
This finding has faced scepticism over the years; in 1987 it was suggested that 
neurofilament antibodies are cross-reactive with PHF-tau (Nukina et al., 1987), and in 
2003, a study could not replicate direct co-localisation with tangles and furthermore 
reported that neurofilament aggregates were only found in a subset of PHF-tau-positive 
neurons in the EC (Porchet et al., 2003). Nonetheless, other groups have replicated the 
original finding by (Ishii et al., 1979), and have further revealed that neurofilaments are 
phosphorylated in AD (Haugh & Probst, 1986), and that they may mark selectively 
vulnerable neurons (J. H. Morrison et al., 1987). Additionally, monoclonal antibodies 
against NEFM and NFH were shown by (Rasool et al., 1984) to strongly label nearly all 
neurofibrillary tangles in AD cortical tissue. They also performed a biochemical extraction 
to remove neurofilament, finding that most isolated NFTs still retain tau immunoreactivity 
while largely losing neurofilament antibody reactivity. They concluded that neurofilament 
content in tangles appear to represent partial fragments or cross-linked epitopes rather 
than a core structural component. Consistent with this, a quantitative analysis found that 
NFTs are composed predominantly of tau protein and that only restricted segments 
contained NEFM and NFH. Furthermore, tau epitopes far outnumbered neurofilament 
epitopes in tangles (Schmidt & Trojanowski, 1990). The authors showed as well that 
neurofilament markers tend to co-localise with tau lesions especially in advanced stages of 
tangle accumulation, suggesting that as cytoskeletal degeneration progresses, 
neurofilament proteins increasingly become entrapped in or co-aggregate with tau 
filaments. Finally, though it is inferential evidence, in this thesis work, neurofilaments were 
detected as differentially enriched alongside associated members of the GO term 
“neurofibrillary tangle” (Figure 155).

Regardless of controversies regarding the direct co-localisation of neurofilaments with 
neurofibrillary tangles or other pathological features, its accumulation is undisputed in 
Alzheimer’s Disease as well as a range of other neurodegenerative diseases including 
ALS and Parkinson’s Disease (Q. Liu et al., 2011). (Vickers et al., 2016) provides a great 
review of the mechanistic contributions of neurofilaments to AD, particularly within the 
scope of cytoskeleton dysfunction in axons, as depicted in Figure 191. Neurofilaments are 
described by the triplet proteins NEFL, NEFM, and NEFH (light, medium, and heavy) 
based on the length of extension of the C-terminal tail domain. They are specific to 
neurons and closely integrate with axons and myelinating glia to structure the cytoskeleton 
and facilitate axonal transport. Phosphorylation state is tightly regulated to enable timely 
and precise control of axon calibre (Brown, 1998). The high reliance of axonal integrity on 
neurofilaments mean that neurofilament dysruption results in an observable loss of 
microtubule structure (King et al., 2001). This is alongside a collapse in filamentation and 
formation of filamentous aggregates (Siedler et al., 2014). The loss of microtubule support 
is particularly detrimental because microtubules serve as tracks for axonal transport, and 
without them, the movement of proteins, vesicles, and organelles are severely impaired. 
This underlie observations that tangle-bearing neurons show accumulations of cargo (e.g., 
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amyloid precursor protein, mitochondria, and neurofilaments themselves) in the soma 
(Stamer et al., 2002).

Neurofilaments have also seen rising popularity as a biomarker for neural injury and in AD 
they are elevated in the CSF and blood plasma (Giuffrè et al., 2023). It has been proposed 
that during axonal injury, neurofilaments escapes into the extracellular space, resulting in 
its detection in locations peripheral to the CNS (Khalil et al., 2024). Through autophagy 
and proteolysis, neurofilaments are known fragment into a variety of degradation products 
(A. Yuan et al., 2017), and this may contribute to neurofilament translocation. It is possible 
that this may have contributed to low detection of NEFH species on the protein-level in this 
thesis work, though this does not explain the low expression of the NFH gene as well. 
Regarding interpretation of the analysis in this work, it is insightful that in NEFM (as well as 
NEFL) upregulation is taking place on both the protein and gene-level. An increase in 
differential gene expression suggests that neurofilament gene expression itself may be a 
contributing factor to neurofilament aggregation. On the other hand, a lack of differential 
expression would suggest aggregation occurs as a direct consequence of external factors, 
such as tau or amyloid pathology. Upregulation of neurofilament gene expression may also 
be a compensatory response due to axonal injury, as has been suggested (H. Wang et al., 
2012). This is supported by separate studies in AD model mice that knocked down Nfl, 
showing an increase in the AD-like phenotype (Fernandez-Martos et al., 2015; Weston et 
al., 2017). Little direct research on neurofilament gene expression in humans could be 
found, though work from 1994 reports large reductions in NEFM and NEFL (Kittur et al., 
1994). Though the evidence supports the thesis that elevated neurofilament protein 
abundance may signal co-aggregation with tau and microtubule/cytoskeletal dysfunction, 
more work is needed to elucidate the role of neurofilament gene expression in disease and 
physiology.

7.5.2Potentially Protective Role of the Non-Amyloigenic Pathway

AD is characterized by the accumulation of extracellular amyloid-beta (Aβ) fibrils in 
plaques in addition to the intracellular tau neurofibrillary tangles focused on in this 
research. Rather than the proliferation of plaques themselves however, and besides tau 
pathological staging, multiple studies have identified the loss of synapses and associated 
synaptic dysfunction as pathological changes that closely correlate with cognitive decline 
in AD (Rajmohan & Reddy, 2017; Sirisi et al., 2024). The role of amyloid plaques on 
synaptic integrity therefore represents an indirect link with disease severity (H. Zhang et 
al., 2022). In this thesis research, I observed an upregulation of amyloid precursor protein 
(APP) on the transcript and protein-level. While much has been publicised regarding APP’s 
contribution to synaptic dysfunction, I wish to also discuss underappreciated roles of APP 
in neuroprotection, including synapse support. This is largely dependent on whether APP 
is processed through amyloigenic or non-amyloigenic pathways, respectively (Figure 192). 
Although the datasets in this analysis lack sufficient information for determining the 
predominant pathway, I speculate that non-amyloigenic may be more active on the basis 
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that amyloid plaques are not conventionally found co-localised with neurons bearing 
neurofibrillary tangles.

Figure 192.

Figure 192: APP can be processed through two main pathways, non-amyloigenic (left) and 
amyloigenic (right). Often underappreciated, there is substantial research indicating that 
the non-amyloigenic pathway confers significant positive effects for neural health. APP was 
found upregulated on both the gene and protein-level in the present analysis of 
neurofibrillary tangle-bearing neurons, but amyloid plaques are not conventionally found 
co-localised to NFTs, suggesting that the non-amyloigenic pathway may be the 
predominant pathway at play. Figure reproduced from (Azargoonjahromi, 2024).

The amyloidogenic pathway involves sequential processing of APP by β-secretase and γ-
secretase. Initially, β-secretase cleaves APP to produce soluble APP beta (sAPPβ) and a 
membrane-bound C-terminal fragment known as C99 (CTFβ). Subsequently, γ-secretase 
cleaves C99 within the cell membrane, resulting in the release of the APP intracellular 
domain (AICD) and amyloid-beta (Aβ) peptides, primarily Aβ40 and Aβ42 (Rodríguez-
Manotas et al., 2012). The accumulation of Aβ in AD can activate kinases such as 
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GSK-3β, CDK5, and MAPKs, leading to abnormal phosphorylation of tau protein and its 
subsequent aggregation into NFTs. Additionally, disruption of phosphatases, enzymes that 
remove phosphate groups, can further contribute to tau hyperphosphorylation. (H. Zhang 
et al., 2021).

The non-amyloidogenic pathway prevents the formation of Aβ. Here, α-secretase cleaves 
APP within the Aβ region, producing soluble α-APP fragments (sAPPα) and a membrane-
bound fragment known as C-terminal fragment alpha (CTFα or C83). This C83 fragment is 
further cleaved by γ-secretase, generating non-toxic P3 peptides and the APP intracellular 
domain (AICD). Through this pathway, APP is processing without producing harmful 
products, reducing the potential for amyloid pathology (Nhan et al., 2015).

As reviewed in (Azargoonjahromi, 2024), growing evidence suggests that under certain 
conditions, Aβ can exert beneficial physiological functions, including neuroprotection, 
antioxidation, and trophic support. Human Aβ peptides has been shown to decrease 
apoptosis when introduced to neuronal cell cultures (Chan et al., 1999). And in cultured 
cortical neurons, inhibition of β- and γ-secretases or treatment with antibodies that 
aggregate Aβ leads to decreased cell survival, an effect that is fully reversed upon 
supplementation with Aβ1–40 (Plant et al., 2003). Furthermore, In a study using neural 
stem cells (NSCs), oligomeric Aβ1–42 was observed to enhance the survival and 
differentiation of NSCs from the striatum and hippocampus (Lopez-Toledano, 2004). 
Interestingly, this outcome did not occur upon exposure to either Aβ1–40, Aβ25–35, or 
their fibrillar peptide forms.

In the work in this thesis, the top enriched pathway associated with APP, aside from those 
directly related to Aβ, was "positive regulation of long-term synaptic potentiation" (Figure 
162). Aβ peptides have been shown experimentally to induce long-term potentiation (LTP), 
for example after application of low concentrations of Aβ 1–42 into hippocampal slice 
preparations in mice (Puzzo et al., 2008) and rats (J. Wu et al., 1995). Potential 
mechanisms underlying these effects include an increase in acetylcholine release into 
synapses and heightened probability of postsynaptic neuron depolarisation, thereby 
promoting synaptic strengthening (Q. Huang et al., 2022). Evidence points towards these 
neuroprotective mechanisms as being mediated via NMDA receptors rather than AMPA 
receptors (J. Wu et al., 1995). Additionally, Aβ 1–40 has been implicated in promoting 
synaptic plasticity through modulation of cholesterol dynamics within neuronal membranes 
(Koudinov & Koudinova, 2003). These findings suggest that there is a potential for APP 
upregulation in tangle-bearing neurons to manifest as a protective or compensatory 
response, dependent on the activity of the non-amyloigenic pathway over the amyloigenic 
pathway. Though this cannot be confirmed with the data at hand, the improbability of co-
localisation of amyloid plaques suggests that this is not improbable. Well designed 
experiments to gauge the activity of the competing pathways will be informative to better 
understand the interplay of APP within NFT environments. It is likely also valuable to 
further investigate genes/proteins co-upregulated with APP in the enriched synaptic 
potential-related gene sets (Figure 163).
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7.5.3p62 Accumulation and Dysregulation of Autophagy

In my analysis I report an increase in gene expression and protein abundance of 
SQSTM1/p62 in neurofibrillary tangle-bearing neurons compared to tangle-free neurons. 
Mechanistically, this elevation of p62 likely reflects a cellular response to proteostasis 
stress. p62 is a selective autophagy receptor that normally binds polyubiquitinated proteins 
and organelles and delivers them to autophagosomes via its LC3-interacting region (Kraft 
et al., 2016). In healthy conditions, p62 is continually turned over by autophagy; thus an 
accumulation of p62 often indicates impaired autophagic flux (Blaudin De Thé et al., 2021). 
The high p62 levels in tangle-bearing neurons could therefore signify that the autophagy-
lysosomal pathway is overwhelmed or stalled, leading to p62 protein being stabilised and 
accumulated rather than degraded. Recent mechanistic work has illuminated how an 
overload of p62 on tau fibrils can actually impede degradation. Tau fibrils heavily coated by 
p62 fail to recruit other crucial autophagy adapters like TAX1BP1, thereby stalling 
autophagosome formation and cargo turnover (Ferrari et al., 2024). In other words, while 
p62 docks onto the tangles, the downstream steps of autophagy may not fully engage. A 
schematic of how this situation may pertain to neurofibrillary tangles is shown in Figure 
178.

Figure 193.

Figure 193: Proposed disease mechanism of p62 upregulation in tangle-bearing neurons 
based on the results of the analysis. p62 accumulation may lead to its overabundance 
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relative to other key factors, like TAXBP1, that are essential to forming a functional 
autophagosome for autophagic breakdown of toxic species such as pathological tau forms. 
p62 competes with these factors for ubiquitin binding sites on the autophagy target and 
p62 overabundance may saturate and over-compete for these sites. Created with 
BioRender.com.

TAXBP1 (AKA TAX1BP1), was not within either dataset for statistical testing, indicating 
that it was too lowly present for analysis. It should not have been removed as a result of 
filtering on Gene Ontology members, as it had been annotated by the group. Nevertheless, 
the related gene TAX1BP3 was detected as lowly upregulated in tangle-bearing neurons in 
the FACS ssRNAseq dataset (adjusted p-value < 0.0231). Considering the greater level of 
differential expression of SQSTM1 (adjusted p-value < 0.00675) and differential protein 
abundance (adjusted p-value < 0.00117), this may highlight a severe imbalance between 
p62 and other co-factors in NFT disease response. It would be interesting to explore other 
co-factors in this dataset to see if any have comparable effect sizes as p62. 
Experimentally, one may overexpress or introduce co-factors exogenously to an NFT 
disease model to see if it can rescue the phenotype by better balancing the ratio of p62 to 
other autophagy adapters.

p62’s role in tangle-bearing neurons appears to be directly tied to its ability to recognise 
and bind tau aggregates. In AD brain tissue, p62 has been found to strongly bind to NFTs 
composed of hyperphosphorylated tau (Kuusisto et al., 2002). Through its ubiquitin-binding 
UBA domain, p62 can attach to ubiquitinated tau species and tether them to the autophagy 
machinery via LC3 binding (Babu et al., 2005), suggesting that p62 is actively attempting 
to target tau aggregates for degradation. In the tangle-bearing neurons of this analysis, the 
co-localisation of protein p62 with tau pathology likely represents this effort to clear tau. At 
the transcript level, increased SQSTM1 mRNA might be a compensatory upregulation, 
potentially driven by stress-responsive transcription factors (e.g. via NRF2), as the neuron 
attempts to boost its clearance capacity. However, the persistence of NFTs despite p62 
enrichment indicates a breakdown in the clearance process. One other possibility besides 
the imbalance of co-factors is that tau aggregates trap p62 in an autophagy-incompetent 
state. Prior studies have shown that in AD, p62 becomes sequestered within NFTs, which 
may reduce the pool of functional p62 available in the cytosol (Du et al., 2009). In 
summary, elevated presence and expression of p62 may signal a genuinely functional 
autophagy response but may also be a sign of over-accumulation that ultimately impedes 
rather than rescues neurons.

7.5.4Chaparone Co-factors and the Dual Roles of the HSP90 Complex

Heat shock protein 90 alpha (HSP90AA1) is a ubiquitous ATP-dependent chaperone that 
plays a central role in the cellular misfolded protein response (Ou et al., 2014a). 
HSP90AA1 directly binds tau and influences its folding state and stability. It interacts 
across broad regions of the tau molecule, including aggregation-prone domains (Shelton 
et al., 2017), forming a complex that can either refold tau or hold it in a soluble state. The 
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analysis in this thesis reports an upregulation of HSP90AA1 on both the transcriptomic and 
proteomic-level in tangle-bearing neurons. In experimental models, elevating Hsp90 (and 
co-chaperone Hsp70) levels promotes tau solubility and enhances tau’s binding to 
microtubules, leading to a reduction in insoluble, aggregated tau (Dou et al., 2003). This 
chaperoning activity also correlates with lower tau hyperphosphorylation. Conversely, 
pharmacological inhibition of HSP90 (e.g. geldanamycin) has been shown to promote the 
reduction of disease-associated tau (Opattova et al., 2012). Another study likewise showed 
that tau protein interaction with Hsp90 promotes its assembly into filamentous aggregates 
(Tortosa et al., 2009). The elevation and reduction of HSP90 appears to have contradictory 
effects on tau pathology in the literature, but this may in fact be due to variation in the 
activity of interacting partners with HSP90. As shown in Figure 194, HSP90 can adopt 
different conformation depending on these partners, which can have widely different 
effects on HSP90 function.

Figure 194.

Figure 194: Proposed disease mechanism of p62 upregulation in tangle-bearing neurons 
based on the results of the analysis. Dependent on if HSP90 is bound to the CHIP 
complex or the HOP-p23 complex (forming what is known as the Mature HSP90 
Complex), HSP90 carries out different functions on its protein target, either breaking them 
down or refolding them. This has been shown experimentally to have significant impacts 
on the interaction between HSP90 and tau. Created with BioRender.com.
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An important function of HSP90AA1 is the triaging of misfolded proteins for degradation 
via the ubiquitin-proteasome system. HSP90 serves as a scaffold that, together with 
Hsp70 and the E3 ubiquitin ligase CHIP, can target aberrant tau for proteasomal 
destruction (Dickey et al., 2007). In fact, the HSP90-HSP70-CHIP complex specifically 
recognises phosphorylated, pathogenic tau species and tags them with ubiquitin for 
clearance (Nadel et al., 2023). Essentially, co-chaperones may determine whether tau is 
refolded or degraded when targeted by HSP90. A review by (Ou et al., 2014b) postulates 
that recruitment of CHIP and related factors favours tau disposal, whereas assembly of the 
so-called mature HSP90 folding complex (which includes adaptors like HOP and p23) can 
prevent tau degradation. In AD, an imbalance in these co-chaperone interactions could 
impair the efficient proteasomal clearance of tau. For instance, if HSP90 remains engaged 
in a refolding mode with tau (possibly due to an excess of mature co-chaperones), it may 
inadvertently shield tau from ubiquitination, allowing pathological forms of tau to persist. 
The intricacies of HSP90 triage highlights HSP90AA1’s dual role, it can either rescue tau 
pathology or potentiate it, and simply assessing its gene or protein levels in isolation may 
be insufficient for understanding its role in disease. Deeper analysis of the pathway-level 
data produced by GeneFunnel may guide directions for follow-up work, such as 
investigation of factors co-regulated with HSP90AA1 like those seen in Figure 172.

7.5.5Sequestration of Tau Dephosphorylating Phosphatases

YWHAE (14-3-3ε), shown as upregulated in tangle-bearing neurons in my analysis, plays 
a significant role in modulating the subcellular localisation of a diverse range of binding 
partners, thereby influencing their function and activity (Foote & Zhou, 2012). 14-3-3ε 
exerts its effects on protein localisation primarily through phosphorylation-dependent 
binding. By recognising specific phosphoserine or phosphothreonine motifs on target 
proteins, 14-3-3ε can induce conformational changes that inhibit localisation signals, such 
as nuclear localisation signals (NLS) or nuclear export signals (NES), effectively 
sequestering these proteins in-place or into particular cellular compartments. This 
mechanism ensures that proteins are localised appropriately in response to various 
cellular signals, maintaining cellular homeostasis. Interestingly, it has been proposed that 
this sequestration activity may be active against tau phosphoryl residues, effectively 
preventing potentially protective dephosphorylating phosphatases from carrying out their 
functions (Sluchanko & Gusev, 2011). A visualisation of this scenario is shown in Figure 
195.
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Figure 195.

Figure 195: Proposed disease mechanism of 14-3-3 protein upregulation in tangle-bearing 
neurons based on the results of the analysis. Dephosphorylating phosphates are generally 
considered to be protective in AD by removing phosphoryl groups from 
hyperphosphorylated tau. These phosphoryl groups also bind 14-3-3 proteins, effectively 
sequestering them from phosphatase activity and contributing to the continuation of AD 
disease progression. Created with BioRender.com.

In further detail, (Sluchanko & Gusev, 2011) describe that when tau detaches from 
microtubules, it becomes accessible for phosphorylation by multiple protein kinases, 
creating potential binding sites for 14-3-3 proteins. While high-affinity binding of 14-3-3 
proteins to these phosphorylated sites may inhibit the aggregation of hyperphosphorylated 
tau, this binding may also sequester phosphorylated residues from protein phosphatases, 
thereby preventing tau dephosphorylation. Furthermore, in the event of sequestration of 
phosphorylated tau within aggregates directly, that structure may become more highly 
stabilised, making degradation increasingly difficult. These ideas remain theories, though 
inhibition of dephosphorylation by 14-3-3 proteins has been observed in different biological 
contexts (Kacirova et al., 2017).

Aside from this putative mechanism, early work has identified 14-3-3 proteins as present 
NFTs in postmortem hippocampal tissue obtained from AD patients (Layfield et al., 1996). 
Subsequent immunolocalisation studies have demonstrated that these proteins 
accumulate both within and surrounding NFTs in AD-affected brains (Umahara et al., 
2004). Tau was demonstrated to be a binding partner of 14-3-3 proteins in (Hashiguchi et 
al., 2000), where it was also shown to promote its hyperphosphorylation. Additionally, the 
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14-3-3ζ form is proposed to function as an adaptor protein, mediating the interaction 
between GSK3β and tau, thus promoting GSK3β-dependent tau phosphorylation (Z. Yuan 
et al., 2004). On the other hand, 14-3-3 proteins potentially confer neuroprotection by 
supporting aggresome formation, thus aiding in the sequestration and subsequent 
degradation of toxic misfolded proteins (Kopito, 2000).

7.5.6Recruitment of Neurotrophic Factors Through the WRC

WASF1 is a component of the WAVE regulatory complex (WRC), which promotes actin 
polymerisation and is essential for neuronal morphology and function (Dahl et al., 2003). 
The WRC is recruited to the plasma membrane upon BDNF-TrkB activation and this 
recruitment facilitates actin-dependent endocytosis of the BDNF-TrkB complex, 
highlighting the role of WASF1 in actin cytoskeletal remodeling in response to neurotrophic 
signaling (C. Xu et al., 2016). Additionally, BDNF-TrkB signalling has been shown to 
regulate actin cytoskeleton dynamics through pathways involving Rac1 and other 
intermediates, further supporting the role of neurotrophic factors in modulating actin 
remodelling (Gonzalez et al., 2016). However, neurotrophic signalling is frequently 
impaired in AD, leading to synaptic instability and progressive loss of neuronal connectivity 
(Zuccato & Cattaneo, 2009). The upregulation of WASF1 in NFT-bearing neurons, as well 
as the prioritisation of BDNF-TrkB signalling pathways in the GeneFunnel analysis, may 
reflect an attempt to compensate for deficits in neurotrophic support, that in turn should 
reinforce synaptic and cytoskeletal structure and function.

Figure 196.

Figure 196: Proposed protective mechanism of activation of the WRC in tangle-bearing 
neurons based on the results of the analysis. The WRC, of which WASF1 is a major 
component, becomes active upon translocation to the plasma membrane. This mediates 
the endocytosis of BDNF and other neurotropic factors through BDNF-TrkB signalling. 
Created with BioRender.com using elements from (Rottner et al., 2021).
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Beyond its role in cytoskeletal regulation, WASF1 is also implicated in intracellular 
trafficking pathways relevant to neurotrophic signalling. It has been shown to regulate 
endosomal dynamics and receptor trafficking, suggesting that increased WASF1 
expression may influence the localisation and availability of neurotrophic factor receptors 
(Yokota et al., 2007). This could have profound effects on neuronal survival and synaptic 
function, particularly in AD where neurotrophic signalling is already compromised. In my 
analysis, neurotrophin related pathways appear to link WASF1 and MAPT, as they both 
appear in the differentially enriched pathway “cellular response to brain-derived 
neurotrophic factor stimulus”.

Regarding direct interactions with tau, work with the 3xTg AD mouse model by (Watamura 
et al., 2016) demonstrated that tau and WASF1 directly co-localise. This was also 
observed in 3xTg mice by (Takata et al., 2009) who additionally showed that co-
localisation requires the presence of amyloid and tau pathologies. They included JNPL3 
and Tg2576 mice in their experiment, which respectively feature tau and amyloid 
pathology separately, finding that the co-localisation is lost in those models but not the 
3xTg model. Lastly, the key kinases Cdk5 and GSK3-β have also been shown to 
phosphorylate WAVE1, in addition to tau (Ceglia et al., 2010), suggesting their close 
correlation downstream of signalling pathways, particularly in disease-promoting 
conditions.

7.5.7Glial Involvement Through Paranodal Junctions

The paranodal junction is a specialised site of neuron-glia interaction where the myelin 
sheath is tightly anchored to the axon. CNTNAP1, shown upregulated in tangle-bearing 
neurons in both the proteomics and transcriptomics datasets, encodes contactin-
associated protein 1 (Caspr), the key axonal adhesion molecule at this junction, linking the 
neuronal membrane to the flanking myelin loops (Ishibashi & Baba, 2022). This adhesion 
not only ensures physical attachment of oligodendrocyte processes to the axon, but also 
creates a barrier that compartmentalises the axonal membrane into node, paranode, and 
juxtaparanode regions. Thus, under physiological conditions, CNTNAP1 is an essential 
site of neuron-glia interaction at the paranodes, it not only physically tethers myelin to 
axons, but also helps coordination with oligodendrocytes for proper synaptic transmission. 
A schematic of the role of Caspr in these structures can be seen in Figure 197.
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Figure 197.

Figure 197:  Physiological function of Caspr at the paranodal junction. Contactin forms an 
intracellular complex with Caspr, essential for the transport of this complex to the 
paranodal axolemma, where it interacts with NF155 present on the terminal loops of 
myelin. Created with BioRender.com using elements from (Boyle et al., 2001).

In the context of AD, emerging evidence points to the significant involvement of 
myelinating glia and their interactions with neurons. White matter changes are now 
recognised as part of AD pathology, as the accumulation of Aβ and NFTs not only lead to 
synaptic and neuronal loss, but can also induce oligodendrocyte injury and myelin 
degeneration (Papuć & Rejdak, 2020). Oligodendroglial cell death and compromised 
myelin sheaths are observed in AD brains, and myelin impairment may even precede 
classical amyloid and tau lesions (Couttas et al., 2016). This context raises the possibility 
that neuron-glia junctions, such as paranodes, become destabilised during AD 
progression, thereby contributing to neurodegenerative mechanisms.

Tau pathology within neurons might directly or indirectly perturb paranodal junctions. In 
healthy axons, tau assists in maintaining the cytoskeleton that help position and transport 
paranodal proteins, however, the mislocalisation of tau forms NFTs that disrupt axonal 
transport and cytoskeletal organization. Such disruption could impair the delivery or 
anchoring of Caspr at paranodes, leading to junctional instability. Moreover, dying or 
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dysfunctional neurons might fail to sustain normal expression levels of axonal adhesion 
molecules. In line with this, pathological studies in demyelinating disease show that when 
myelin is lost, affected axons downregulate Caspr, and paranodal junctions disintegrate 
(Wolswijk, 2003). A similar phenomenon in AD could mean that tangle-bearing neurons 
undergoing degenerative changes might also exhibit altered Caspr distribution or loss as 
myelin support begins to fail. While it is unclear how this might directly translate to 
upregulation of Caspr and its associated gene CNTNAP1, it could be a compensatory 
response or general dyshomeostasis of its regulation and production.

7.5.8Compensation of Impaired Glutamate Recycling

Finally, the observed upregulation of aspartate aminotransferase (GOT2) in NFT-bearing 
neurons, alongside its enriched pathways (Figures 188 to 190), suggests significant 
alterations in neuronal metabolic processing and neurotransmitter homeostasis associated 
with AD. GOT2 is an enzyme found in high levels in the liver but also brain, central to the 
malate-aspartate shuttle (MAS), playing a crucial role in maintaining cellular redox balance 
and energy metabolism through facilitating the reversible conversion of glutamate and 
oxaloacetate into α-ketoglutarate and aspartate (Borst, 2020). It is found in both a 
mitochondrial (GOT2) and cytoplasmic form (GOT1), fulfilling similar roles as either 
species. Relating GOT1/2 to a disease context, Aβ oligomers have been shown to 
increase the abundance of glutamate in the extracellular space, leading to excitotoxicity 
(Hu et al., 2014; S. Li & Selkoe, 2020). As a protective response, or coincidentally 
beneficial side-effect, upregulation of GOT2 in tangle-bearing neurons adjacent to Aβ 
oligomers or fibrils may provide an alternative pathway for turnover of excess glutamate 
through its conversion into α-ketoglutarate and aspartate. A diagram of this process is 
shown in Figure 198.
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Figure 198.

Figure 198: Proposed protective mechanism of GOT2 upregulation in tangle-bearing 
neurons based on the results of the analysis. Aβ oligomers or fibrils block the functioning 
of EAAT receptors on glial cells (typically astrocytes) nearby neurons, halting the recycling 
of glutamate through glutamine synthetase. This manifests as an excess of glutamate in 
the synaptic cleft, leading to impaired synaptic function and excitotoxicity. GOT1/2 
facilitates the reversible conversation of glutamate into α-ketoglutarate and aspartate, and 
may compensate for impaired recycling by offering an alternative pathway for breakdown 
of excess glutamate. Created with BioRender.com using elements from (Puranik & Song, 
2024).

In AD, oligomeric forms of Aβ are known to impair synaptic plasticity. This disruption 
occurs partly due to Aβ-induced downregulation of glutamate transporters, leading to 
glutamate spillover and subsequent overactivation of NMDA receptors, specifically the 
NMDA receptor 2B subunit (NMDA-R2B) (Hu et al., 2014; S. Li & Selkoe, 2020). 
Consequently, interventions that enhance glutamate clearance or block specific glutamate 
receptor subtypes have shown potential in mitigating Aβ-mediated synaptic dysfunction 
and associated memory impairments (Puranik & Song, 2024). Seemingly unrelated, 
studies have revealed correlations between altered liver enzyme activities, particularly 
elevated aspartate aminotransferase (GOT1/2), and an increased risk of AD (Nho et al., 
2019). Additionally, post-mortem analyses identified a substantial increase (approximately 
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1.5-fold) in aspartate aminotransferase activity in multiple cortical regions of individuals 
with AD compared to cognitively normal subjects (D’Aniello et al., 2005).

GOT1/2, in addition with oxaloacetate, catalyses the conversion of glutamate into α-
ketoglutarate, which effectively scavenges excess glutamate, facilitating its clearance from 
the brain (D. Zhang et al., 2019). In animal models, administration of aspartate 
aminotransferase in rats resulted in the rapid reduction of brain glutamate levels, rescuing 
synaptic plasticity impairments induced by Aβ and inflammatory cytokines such as TNFα 
(D. Zhang et al., 2016). And a more recent study using APP/PS1 transgenic mice showed 
a significantly greater density of hippocampal CA1 synapses, accompanied by improved 
mitochondrial structural integrity, compared to untreated control mice (H. Li et al., 2023).

More generally on the topic of metabolic dysfunction, Alzheimer’s Disease is associated 
with significant metabolic impairments. In fact, a study utilising LCM paired with microarray 
in AD post-mortem tissue (though in non-tangle-bearing neurons), highlighted the reduced 
expression of energy metabolism genes (W. S. Liang et al., 2008). Furthermore, a 
comprehensive metabolomic analysis revealed widespread metabolic dysregulation in the 
AD brain, affecting pathways related to bioenergetics, cholesterol metabolism, and 
neurotransmitter balance (Batra et al., 2023). More relevant to GOT2 in particular, 
glutamatergic neurotransmission decreases with age, and progression of AD also 
correlates with dysfunctions in the glutamatergic system (D. Huang et al., 2017). GOT2 
gene expression has been reported as downregulated in AD bulk cortical tissue (Choe et 
al., 2024; Mahajan et al., 2020), though its expression/abundance has yet to be reported in 
NFT-bearing neurons. Given the therapeutic potential of GOT1/2, recovery of its 
physiological levels in AD may provide rescue of overall neural dysfunction, while it 
remains speculative as to whether its elevated levels in NFT-bearing neurons is truly 
protective or ultimately harmful.
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8. Conclusion

This thesis provides a comprehensive review of the history and evolution of 
transcriptomics and proteomics, tracing their development from early methodologies to 
modern high-throughput techniques. These fields have undergone decades of 
technological advancement, continuously refining analytical methods and expanding their 
applications in biomedical research. Within this broader context, this work focuses 
specifically on two major computational challenges: gene set enrichment analysis and 
missing value imputation, both of which remain active areas of methodological 
development.

A key contribution of this thesis is the identification and systematic investigation of critical 
problem areas within these two computational domains. To address these challenges, I 
develop and introduce novel computational methods, designed to enhance the accuracy 
and interpretability of enrichment analysis and imputation strategies. These methods are 
implemented as open-source software, available to the research community as standalone 
R packages for integration into existing computational workflows. Web-based interactive 
viewers also comprise a significant portion of this work that enables researchers to explore 
the data freely.

Beyond computational development, this thesis applies these methods to an important and 
underexplored problem in Alzheimer’s Disease research: the molecular characteristics of 
neurofibrillary tangle (NFT)-bearing neurons. NFTs, composed of hyperphosphorylated tau 
protein, are a defining feature of Alzheimer’s pathology, yet the specific molecular 
determinants that govern their presence in affected neurons remain poorly understood. To 
advance this field, our lab introduces a new proteomics dataset, providing the research 
community with a valuable resource for investigating tau pathology at the protein level. 
Additionally, I perform a reanalysis of an existing single-cell transcriptomics dataset, 
integrating these two datasets to obtain a multi-omics perspective on NFTs in AD.

Applying my computational methods to these datasets yields a restricted set of 8 key 
molecular features that are consistently upregulated in both the transcriptomic and 
proteomic data: NEFM, APP, SQSTM1, HSP90AA1, YWHAE, WASF1, CNTNAP1, and 
GOT2. Each of these features plays a distinct but interconnected role in the 
pathophysiology of tangle-bearing neurons in AD, revealing the complex interplay of 
distinct domains. In detail, I discuss the potential impact of neurofilament co-aggregation 
coupled with microtubule destabilisation, a potentially protective role of the non-
amyloigenic pathway, p62 accumulation and dysregulation of autophagy, the influence of 
HSP90 co-factors on protein folding and degradation, the sequestering of tau 
dephosphorylating phosphatases, the recruitment of neurotrophic factors such as BDNF, 
glial involvement through paranodal junctions, and compensatory responses to impaired 
glutamate recycling. This analysis lays the groundwork for future validation and exploration 
into these domains that may someday coalesce into a unified model of neurofibrillary 
tangle pathology in Alzheimer’s Disease.
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8.1 Overall Limitations and Future Directions

While this analysis provides valuable insights into the molecular factors underlying NFT-
bearing neurons in Alzheimer’s Disease, it is inherently constrained by the availability and 
quality of datasets. At the time of writing, no proteomic datasets existed that specifically 
quantified tangle-bearing neurons at single-cell resolution, which prompted our lab to 
generate the first such dataset. However, as with any novel dataset, this first-of-its-kind 
proteomic dataset contains technical challenges that could be improved with future 
optimization of sample preparation, mass spectrometry acquisition, and data processing 
pipelines. Enhancing these aspects in subsequent iterations of the dataset could 
significantly improve signal clarity, coverage, and reproducibility, allowing for more precise 
insights into protein-level alterations in NFT-bearing neurons.

The availability of transcriptomic datasets were also highly limited, with only one high-
quality FACS-based single-cell RNA-seq dataset available for this study. While this dataset 
underwent rigorous quality control and was determined to be suitable for differential 
expression analysis, it lacks a definitive ground truth for comparison. Older LCM-based 
microarray datasets exist, but these were determined to be of insufficient quality for 
integration into the present analysis due to poor resolution, lower dynamic range, and 
technical artifacts. The lack of an independent transcriptomic dataset for validation 
remains a notable constraint, underscoring the need for replication studies and additional 
single-cell sequencing efforts.

An interpretive limitation is that the RNA and protein datasets were not derived from the 
same donors or tissue sections. They are matched by region and disease stage, but they 
are not paired at the individual level. Consequently, agreement between RNA and protein 
should be read as convergent evidence in similar contexts rather than as evidence of 
coupling within the same cells or donors. Relatedly, Alzheimer’s disease contains mixed 3-
repeat and 4-repeat tau, and the relative proportions and phosphorylation states vary by 
region and disease stage. Selection by AT8 enriches for specific phospho-epitopes and 
may not capture all tau species equally. Conclusions therefore generalise to AT8-positive 
tangles in the sampled region, not to all tau pathology.

The precision of single-cell isolation by LCM is another constraint. Sections were cut at 8 
μm thickness, and material from adjacent cells or processes in the z-plane cannot be 
completely excluded. Profiles should be regarded as soma-enriched rather than perfectly 
isolated single cells. In the FACS material, although the strategy targeted neuronal somas, 
a small minority of events showed astrocytic or OPC markers. Non-specific staining, 
incomplete doublet exclusion and neuron-glia aggregates are plausible technical 
contributors, though a biological contribution cannot be excluded.

This study also introduces novel computational methodologies, both of which were 
benchmarked against existing approaches. However, while these methods demonstrated 
strong performance in controlled benchmarking scenarios, they have not yet been 
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validated in widespread real-world applications. Their effectiveness depends on a number 
of underlying assumptions that may not hold universally, particularly as new ground truth 
datasets become available for comparison.

For example, GeneFunnel’s functional class scoring depends on curated resources (e.g. 
Gene Ontology). These resources are uneven across the genome and favour well-studied 
genes, which can bias hub weighting and enrichment toward highly curated features (for 
example, APP or HSP90AA1) while down-weighting less characterised genes. Alternative 
weighting schemes that account for annotation density, or incorporate citation-independent 
priors, would mitigate this bias. Similarly, ImputeFinder relies on distinguishing MAR 
(Missing At Random) and MNAR (Missing Not At Random) values based on an observed 
relationship between protein intensity and missingness. While this assumption was 
empirically tested within the available datasets, it remains unclear whether this relationship 
will hold under future ground truth datasets or across other proteomic workflows and 
instrumentation.

To address dataset, current work in our lab is focused on replicating the FACS single-soma 
RNAseq dataset and generating higher quality LCM mass spectrometry datasets. The 
LCM dataset used in this study exhibited substantial donor and technical variability, which 
necessitated the removal of a large number of samples due to inconsistencies in quality 
and coverage. While the remaining dataset was determined to be suitable for analysis, the 
loss of samples was not ideal and introduced additional uncertainty into the final results. 
Future iterations of LCM mass spec datasets will prioritise enhancing sample consistency, 
improving technical reproducibility, and optimizsng protein extraction from LCM-captured 
material to reduce inter-sample variability.

Despite these limitations, this study provides a strong foundation for future investigations 
into the molecular determinants of NFT-bearing neurons in Alzheimer’s Disease. By 
integrating multi-omics data, novel computational tools, and network-based analyses, this 
work establishes a framework for systematically identifying key molecular players in NFT 
pathology. However, functional validation remains essential to determine whether the 
identified differentially expressed genes, proteins, and enriched pathways play causal 
roles in driving neurodegeneration or are simply correlates of tangle formation. The 
findings presented here can serve as a roadmap for targeted experimental studies, such 
as gene perturbations, proteomic interaction mapping, or simply additional confirmation 
using orthogonal techniques such as RNAscope. Future research can build upon this work 
to refine therapeutic targets, uncover novel biomarkers, and deepen our understanding of 
the complex landscape of neurofibrillary tangles in Alzheimer’s Disease progression.
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10. Appendix

Derivation A.

Derivation of simplified MAD (Mean Absolute Deviation) equation in sets with only one non-zero 
value.

Starting with the general MAD equation (Aghili-Ashtiani, 2021):

Assume a vector  of length , where only the first value is non-zero.

For the non-zero entry:

For each of the zero entries:

Upon summing deviations:

Simplified:

After dividing  to arrive at the MAD:
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