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Abstract:We consider a CMC hypersurface with an isolated singular point at which the tangent cone is regular,
and such that, in a neighbourhood of said point, the hypersurface is the boundary of a Caccioppoli set that
minimises the standard prescribed-mean-curvature functional.We prove that in a ball centred at the singularity
there exists a sequence of smooth CMC hypersurfaces, with the same prescribedmean curvature, that converge
to the given one. Moreover, these hypersurfaces arise as boundaries of minimisers. In ambient dimension 8 the
condition on the cone is redundant. (When themean curvature vanishes identically, the result is thewell-known
Hardt–Simon approximation theorem.

Keywords: Constant-mean-curvature, isolated singularity, Hardt–Simon foliation, smooth approximation

MSC 2020: 53A10, 49Q20, 35J93

1 Introduction

It is well known that variational constructions for area-type functionals may lead to singularity formation.
Already in the widely studied case of area minimisation for hypersurfaces, if the ambient dimension is 8 or
higher, solutions cannot be expected to be completely smooth. The case of volume-constrained perimeter min-
imisation, which leads to isoperimetric regions, is analogous: inℝn+1, or more generally in an (n + 1)-dimensio-
nal Riemannianmanifold, such regions have boundaries that are smoothly embedded away from a possible sin-
gular set of dimension atmost (n − 7); when n = 7, the singular set is mademore precisely of isolated points. The
phenomenon arises yet again in the case of minimax constructions for prescribed-mean-curvature functionals.

Examples show that this singular set is in general unavoidable. Thewell-knownminimal cone C4,4 = {(x, y) ∈
ℝ4 ×ℝ4 ≡ ℝ8 : |x|2 = |y|2} (shown to be stable by Simons [27]) is smooth away from the isolated singularity at the
origin, and is area-minimising, e.g. in any ball B ⊂ ℝ8, with respect to the boundary condition C4,4 ∩ ∂B. This
was proved by Bombieri, De Giorgi and Giusti ([6], see also a more straightforward proof in [13]). This cone is
in fact the unique minimiser for said boundary condition. An isoperimetric region with two isolated singular
points in an 8-dimensional Riemannian manifold was recently constructed in [23].

On the other hand, it is fruitful to askwhether the appearance of singularities is a generic phenomenon. This
question led to very important progress already in the 80s and has received renewed attention in recent years.
The fundamental work by Hardt and Simon [19] shows an instance of generic regularity for solutions to the
Plateau problem, in the following sense. Let a 7-dimensional area minimiser in ℝ8 be given, with (prescribed)
6-dimensional smooth boundary Γ, and with an isolated singular point; then a slight perturbation of Γ yields
a minimiser that is completely smooth. This type of result lends itself to geometric applications, by shifting the
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genericity condition onto the Riemannian metric, as exemplified by Smale’s proof of generic regularity of area-
minimisers in any non-zero homology class [28]. (We also refer the reader to [9, 21].) Very recently, the question
of generic regularity for area minimisers has found affirmative answer in ambient dimension 9 and 10, in the
work by Chodosh, Mantoulidis and Schulze [10], making progress on a long-standing conjecture [28].¹ We also
refer the reader to [8] and references therein, for generic regularity in the setting of mean curvature flow.

Ourmain goal here is to prove a (local) smooth approximation result in the constant-mean-curvature (CMC)
case, establishing a generic regularity result for the CMC Plateau problem analogous to the one proven in [19]
(in particular, if the mean curvature vanishes identically, the Hardt–Simon theorem gives the result). The varia-
tional setting for CMC hypersurfaces involves an energy that wewill denote by Jλ , where λ ∈ ℝ is the prescribed
constant value of the scalarmean curvature. Roughly speaking, Jλ evaluates the n-dimensional area of thehyper-
surface, from which it subtracts λ times the (n + 1)-volume enclosed by it. A natural way to formalise this is by
working with boundaries of sets with finite perimeter. We briefly recall the relevant notions (with more details
in Section 2 below).

Let E ⊂ U be a set with locally finite perimeter in a bounded open set U ⊂ ℝn+1, and let λ ∈ ℝ. We denote
by Jλ the functional (defined on any set D ⊂ U with locally finite perimeter in U),

Jλ(D) = PerU(D) − λ|D|,

where the notation |D| stands for Ln+1(D). GivenW ⊂⊂ U , the set E is said to be a minimiser of Jλ inW ⊂ U if
it attains the following infimum:

inf{Jλ(D) : D ∩ (U \W) = E ∩ (U \W)}.

In other words, the class of competitors for E is that of sets (with locally finite perimeter in U) that coincide with
E outside W . Equalities and inclusions between sets of locally finite perimeter are always understood to hold
in the Ln+1-a.e. sense. Prescribing the set in U \W amounts to fixing the boundary condition for the Plateau
problem inW (as customary in the setting of Caccioppoli sets).

If E is a minimiser of Jλ in W ⊂⊂ U , it is well known (see e.g. [4, 18, 22]) that there exists a set Σ ⊂ W with
dimH(Σ) ≤ n − 7, such that (∂∗E ∩W 󸀠) \ Σ is smoothly embedded inW 󸀠 for every open setW 󸀠 ⊂⊂ W , and that
(∂∗E ∩W 󸀠) \ Σ has constant scalar mean curvature equal to λ. Here ∂∗E denotes the reduced boundary of the
set E. (More precisely, the mean curvature vector is λνE , where νE is the unit normal pointing into E.)

The most immediate instance of our result states the following.

Theorem 1. Let E be a set with locally finite perimeter in an open set U ⊂ ℝ8, and assume that E minimises Jλ in a
ball B̂ ⊂⊂ U, for a given λ ∈ ℝ. There exists a ball B ⊂ B̂, with the same centre, and a sequence of hypersurfaces Tj
smoothly embedded in B, with scalar mean curvature λ, and with Tj → ∂∗E in B. (The convergence holds in the
sense of currents, in the sense of varifolds, as well as in the Hausdorff distance sense.) Moreover, Tj = ∂∗Ej , where
each Ej is a set with finite perimeter in B and ∂∗Ej stands for the reduced boundary of Ej in B, and we have Ej ⊂ E
and Ej → E in B.

We remark that the significance of Theorem 1 lies in the fact that the centre p of B̂ may be a singular point
of ∂∗E.

In ambient dimension 8, as in Theorem 1, isolated singular points are the only type of interior singularities
that ∂∗E may possess. This is no longer the case when the ambient dimension is higher. Just as in [19], we can
remove the dimensional restriction in Theorem1by (strongly) restricting the singular behaviour of E (Theorem2
below). We work in a neighbourhood of an isolated (interior) singular point p of ∂∗E, with the further property
that themultiplicity-1 varifold associated to ∂∗E, denoted by |∂∗E|, admits a tangent cone at p that is regular.We
recall that a cone is regular when it is smooth away from the vertex, and themultiplicity is 1 on the smooth part.

Theorem 2. Let E be a set with locally finite perimeter in an open set U ⊂ ℝn+1, with n ≥ 7, and assume that
E minimises Jλ in a ball B̂ ⊂⊂ U, for a given λ ∈ ℝ. Assume furthermore that the centre p of B̂ is an isolated
singularity of |∂∗E| and that |∂∗E| admits a tangent cone at p that is regular (in the sense of varifolds). There

1 After the appearance of this article, dimension 11 was also addressed, see [11].
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exists a ball B ⊂ B̂, with the same centre p, and a sequence of hypersurfaces Tj smoothly embedded in B, with
scalar mean curvature λ, and with Tj → ∂∗E in B. (The convergence holds in the sense of currents, in the sense
of varifolds, as well as in the Hausdorff distance sense.) Moreover, Tj = ∂∗Ej , where each Ej is a set with finite
perimeter in B and ∂∗Ej stands for the reduced boundary of Ej in B, and we have Ej ⊂ E and Ej → E in B.

Remark 1.1. By construction, for each j the set Ej is a minimiser, more precisely, it is given by Êj ∩ B for a set
with finite perimeter Êj ⊂ B̂ that minimises Jλ in B ⊂ B̂ (among sets that coincide with Êj in B̂ \ B). The mean
curvature vector of |∂∗Ej| in B is given by λνEj , where νEj is the inward pointing unit normal.

Remark 1.2. The regularity theory for n = 7 implies not only that the singular set is made of isolated points, but
also that any varifold tangent cone (at a singular point) must be regular, via a standard dimension reduction
argument. Therefore Theorem 1 follows from Theorem 2.

Remark 1.3. In the special case λ = 0 Theorems 1 and 2 were proved in [19] (see also [10]). Our proof relies on
the result for λ = 0.

Remark 1.4. In both Theorems 1 and 2, the convergence Tj → ∂∗E is strong (graphical and C2) in B \ {p}, thanks
to Allard’s regularity theorem and standard elliptic PDE theory.

Remark 1.5. Theorems 1 and 2 lend themselves applications in geometry, such as the surgery procedure in [3]
(where a generic existence result for smooth CMC closed hypersurfaces in compact Riemannian 8-dimensional
manifolds is proved).

In proving Theorem 2 (whichwewill do in Section 5, see Theorem 5)we establish a result of independent interest
on the existence and regularity of minimisers of Jλ , for the CMC Plateau problem. We present here a simplified
version (sufficient for its scope within the proof of Theorem 2). The more general result requires some notation
and will be given in Theorem 4 of Section 2.

Theorem 3. Let E0 be a set with finite perimeter in U = Bn+1R (p). Let λ ∈ (0,∞) and r ∈ (0,
n
λ ), with r < R. Assume

that ∂E0 is smooth in a neighbourhood of ∂Bn+1r (p) and that it intersects ∂Bn+1r (p) transversely; let T0 denote
(the (n − 1)-dimensional submanifold) ∂E0 ∩ ∂Bn+1r (p). There exists a set E, with finite perimeter in Bn+1R (p), that
coincides a.e. with E0 in Bn+1R (p) \ Bn+1r (p), that is a minimiser of Jλ in Bn+1r (p) ⊂ Bn+1R (p), and with the following
properties:
∙ There exists Σ ⊂ Bn+1r (p), closed in Bn+1r (p), with dimH(Σ) ≤ n − 7 such that (∂∗E ∩ Bn+1r (p)) \ Σ is a smoothly

embedded hypersurface with mean curvature λνE , where νE is the inward unit normal to E; more precisely,
Σ = 0 if n ≤ 6, and Σ is discrete if n = 7.

∙ ∂∗E ∩ ∂Bn+1r (p) = T0.

In the more general formulation that we will provide with Theorem 4, both smoothness and transversality
conditions will be removed (see also Remark 2.4).

The “boundary condition” in Theorem 3 is set by prescribing the coincidence a.e. with a reference set E0
(the condition r < R provides an annulus in which E0 is non-trivial). The submanifold T0 acts as prescribed
boundary condition for the hypersurface thatwe seek. The last conclusion of the theorem states that the solution
does not touch ∂Bn+1r (p) except at T0. So ∂∗E ∩ Bn+1r (p) \ Σ is a smooth hypersurface with boundary in the open
set Bn+1R (p) \ Σ. (Since T0 is smooth, Σ does not accumulate onto T0 by Allard’s boundary regularity theorem, [2];
this property is not needed in our forthcoming arguments.)

While the existence of a minimiser follows for any λ, the condition λ < n
r is essential for the last conclusion

of Theorem3, aswell as for the verification of the prescribedmean curvature condition.Wewill discuss thiswith
examples in Remark 2.3; when λ > n

r , the hypersurface may in fact touch ∂B
n+1
r (0) away from its boundary T0.

Theorem3 (andTheorem4below) and its proof are close in spirit to the results inDuzaar and Fuchs [15] (and
Duzaar [14]). We highlight that our last conclusion in Theorem 3 is sharper than the corresponding statement
in [14, 15], since we are able to rule out any interior touching of the solution with the “obstacle” ∂Bn+1r (p) in
which the boundary condition T0 lies (the only touching is the necessary one at T0 itself). The results in [14, 15],
while establishing the validity of the CMC condition, would only prevent touching of the solution with larger
spheres. The sharper conclusion we obtain is ultimately due to our use of the regularity theory for stable CMC
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hypersurfaces developed in [4, 5] (with the sheeting theorem therein being the key ingredient in our proof). The
same reasoning that we employ to that end (see Lemma 2.4 and the discussion preceding it) can be applied to
sharpen the corresponding conclusion in [15] (where the relevant class is that of integral currents, rather than
boundaries of Caccioppoli sets).

We are now ready to present an outline of the proof of Theorem 2, setting p = 0. By fairly standard argu-
ments, there exists a sufficiently small ball centred at 0, which we denote by B2R(0), such that E is the unique
minimiser of Jλ in BR(0) ⊂ B2R(0), and with the further requirements that λ < n

R and that ∂E meets ∂BR(0)
smoothly and transversely.

Thenweperturb E towards its interior (keeping it fixed outside an annulus that contains ∂BR(0)) anduse the
resulting set as ‘boundary condition’ in B2R(0) \ BR(0) for a CMC Plateau problem. The perturbation is indexed
on j and tends to the identity as j →∞, and we denote the deformed set by Ej ⊂ E. For each j we find a min-
imiser of Jλ with said boundary condition; note that Theorem 3 applies here. Theorem 2 follows by showing the
existence of a sufficiently small ball centred at 0 in which, for all sufficiently large j, ∂∗Ej are smooth. Arguing
by contradiction, we assume the existence of singular points pj ∈ ∂∗Ej , pj → 0. If the condition pj ̸= 0 is valid
(for all sufficiently large j) then we dilate Ej around 0 by scaling BR(0) to B R|pj | (0). Using [19], we check that the
limit of these rescalings of ∂∗Ej has to be either one of the leaves of the Hardt–Simon foliation, or the tangent
cone C to ∂∗E at 0: in either case we find a contradiction to the smoothness respectively of the leaves, or of the
cone (at points at distance 1 from the origin).

Therefore we have to establish the condition pj ̸= 0. By construction Ej ⊊ E and both boundaries are hyper-
surfaces with the same scalar mean curvature, and with mean curvature vectors both pointing inwards. We
thus show that the inclusion is strict everywhere by proving an instance of a singular maximum principle for
CMChypersurfaces, see Proposition 4.1 below. Its proof (by contradiction) relies on a linearisation argument that
yields a non-trivial Jacobi field on the cone C (an analogous argument appears in [19] in theminimal case), com-
bined with Simon’s result [24], which gives a quantitative decay of ∂∗E towards C at small scales. The resulting
behaviour of the Jacobi field is in contradiction with the ones that are known [7] to be permitted by the stability
of the cone (stability follows from the minimising condition for E).

2 Prescribed CMC Plateau problem

In the following we denote by BR the open ball Bn+1R (0) ⊂ ℝn+1. Let E0 be a set of finite perimeter in B2, that is,
E0 ⊂ B2 is measurable and the perimeter of E0 in B2 is finite,

PerB2 (E0) = sup{∫
E0

div T dLn+1 : T ∈ C1c(B2;ℝn+1), sup |T| ≤ 1} < ∞,

whereLn+1 denotes the Lebesguemeasure onℝn+1. This is equivalent to the requirement that the characteristic
function χE0 ∈ BV(B2), that is, the distributional gradient DχE0 is a vector-valued Radonmeasurewith finite total
variation in B2.

For λ ≥ 0 we will be interested in the following energy, defined on the class of sets of finite perimeter in B2
that coincide with the given E0 in B2 \ B1:

Jλ(E) = PerB2 (E) − λ|E|,
where |E| = Ln+1(E) = Hn+1(E) is the (n + 1)-volume of the Caccioppoli set E ⊂ B2. (The Lebesgue measure
Ln+1 agrees with the Hausdorff measure Hn+1 in ℝn+1.) This class is non-empty, since E0 is one such set, and
Jλ(E0) < ∞, hence it makes sense to seek a minimiser of Jλ in this class.

Lemma 2.1. There exists aminimiser F of Jλ in the class of setswith finite perimeter that coincidewith the given E0
in B2 \ B1.

Proof. Wewill use the direct method. Let Ej , for j ∈ ℕ \ {0}, be a minimising sequence (of sets in the admissible
class), that is

lim
j→∞

Jλ(Ej) = inf{Jλ(E) : χE ∈ BV(B2), χE|B2\B1 = χE0 |B2\B1}.
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For all sufficiently large j we must then have

Jλ(Ej) = PerB2 (Ej) − λ|Ej| ≤ Jλ(E0) + 1 = PerB2 (E0) − λ|E0| + 1,

from which
PerB2 (Ej) ≤ PerB2 (E0) − λ|E0| + λ|Ej| + 1 ≤ PerB2 (E0) + λ|B2| + 1.

Therefore PerB2 (Ej) are uniformly bounded above and there exist (by BV compactness) a set of finite perime-
ter F in B2 and a subsequence (that we do not relabel) Ej such that χEj → χF in BV(B2). In particular, χEj → χF
in L1(B2), so that |Ej| → |F|; moreover, by the hypothesis that Ej = E0 on B2 \ B1, we have also that F = E0
on B2 \ B1. The lower semi-continuity of perimeters then gives Jλ(F) ≤ lim inf j→∞ Jλ(Ej), therefore F minimises
Jλ in the admissible class.

The energy Jλ is relevant in many variational problems. The geometric significance of Jλ lies in the fact
that it should select, as its critical points, sets whose boundary is a hypersurface with constant mean cur-
vature λ. With the set up above, we are using E0 to prescribe a boundary condition (in the sense of the Plateau
problem). If ∂E0 is smooth and intersects ∂B1 transversely, then the set up amounts to fixing ∂E0 ∩ ∂B1 as
(n − 1)-dimensional boundary data, and looking for a (n-dimensional) CMC hypersurface-with-boundary, with
mean curvature λ, and whose boundary is ∂E0 ∩ ∂B1. The hope is to obtain this hypersurface-with-boundary
as ∂F \ (∂E0 ∩ (B2 \ B1)) (if ∂F is smooth).

Remark 2.1. If λ < 0 and F is a minimiser of J|λ| in B1 ⊂ B2, then U \ F is a minimiser of Jλ in B1 ⊂ B2 (and vice
versa), so we only treat the case λ ≥ 0 (and all results extend in a straightforwardmanner to λ < 0). This follows
from the fact that complementary sets have the same perimeter (in an open set).

A well-known consequence of the minimising property is that the integral varifold V (in B2) defined by

V = |∂∗F \ (∂∗E0 ∩ (B2 \ B1))|

(the notation | ⋅ | denotes the multiplicity-1 varifold associated to a rectifiable set) has first variation in B1
represented by the vector-valued measure

λ(Hn (∂∗F ∩ B1))νF ,

where νF is the (measure theoretic) inward unit normal (Hn-a.e. well-defined on ∂∗F). Indeed, given any vector
field X ∈ C1c(B1;ℝn+1), we can consider, for δ > 0 sufficiently small, the one-parameter family of diffeomor-
phisms Φt = Id + tX for t ∈ (−δ, δ). For every such t, we have Φt = Id on B2 \ B1 and therefore the set Φt(F)
remains in the admissible class for every t. The image of V under Φt is |∂∗Φt(F) \ (∂∗E0 ∩ (B2 \ B1))|.

This permits to write the stationarity condition for V with respect to the energy Jλ , which gives (see
e.g. [22, Chapters 17 and 19])

∫ div∂∗F X dV + λ∫(νF ⋅ X) dV = 0
and the desired conclusion. The candidate V thus has the correct mean curvature in B1.

Remark 2.2. The notation | ⋅ | has been (andwill be) employed to denote the (n + 1)-volumewhen the argument
is a Caccioppoli set (as in |E| above), and to denote the multiplicity-1 (n-dimensional) varifold associated to an
n-dimensional rectifiable set (as for V above). The context and the different character of the argument should
avoid any confusion.

Next we are going to examine when it is possible to conclude this same condition away from the prescribed
boundary: the missing analysis at this stage is the behaviour at points that potentially lie on ∂B1 but are not
part of the prescribed boundary. We begin by pointing out that, if the vector field X is non-zero somewhere
on ∂B1, then the above argument breaks down, since a one-parameter family of diffeomorphisms with initial
speed X may map F to a set that is not in the admissible class (no matter how small δ is). In fact, the minimiser
may just fail to have mean curvature λ when λ > n, as the following examples show.

Remark 2.3. Let H be the half-space {xn+1 < 0} and E0 = H ∩ B2. Then for any given λ > n the minimisation
procedure fails to produce a set whose boundary is a CMC hypersurface-with-boundary with mean curvature λ
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and boundary condition ∂H ∩ ∂B1. (In fact, the unique minimiser F is given by E0 ∪ B1 for all λ ≥ n.) To see
that, we observe that, for any given possible value v ∈ [ |B1|2 , |B1|], the (unique) perimeter-minimiser with vol-
ume v in B1, that coincides with E0 in B2 \ B1, is given by the set E0 ∪ Ev , where Ev is the ball of radius r
centred at the point (0, . . . , 0, −√r2 − 1), where r ≥ 1 is chosen so that |Ev ∩ B1| = v. Similarly, for any given
possible value v ∈ |E ∩ B1| ∈ [0, |B1|2 ], the perimeter-minimiser with volume v in B1, and that coincides with E0
in B2 \ B1, is given by the set E0 \ Ẽv , where Ẽv is the ball of radius r centred at the point (0, . . . , 0,√r2 − 1),
where r ≥ 1 is chosen so that |Ẽv ∩ B1| = |B1| − v. The minimisation property just claimed is checked by a cali-
bration argument, using the fact that ∂Ev ∩ B1 (and, similarly, ∂Ẽv ∩ B1) is a CMC graph on Bn1 ⊂ ℝn ≡ ℝn × {0}.
(See e.g. [4, Appendix B].) With this understood, the minimiser of Jλ (for any λ) has to be one of the minimising
sets that have been exhibited for each possible value of v. Each of these minimisers has scalar mean curvature
in [−n, n] (away from B2 \ B1). Hence for any λ > n the minimisation procedure will not produce the desired
CMC hypersurface of mean curvature λ. (By direct computation, one can check that the lowest value of Jλ for
λ > n is attained by E0 ∪ B1.)

In the case λ = n + 1 one can alternatively see that theminimiser is E0 ∪ B1 by arguing as follows. Given any
Caccioppoli set D that coincides with E0 in B2 \ B1, consider the (n + 1)-current C = [[E0 ∪ B1]] − [[D]]. Denoting
by ιT the interior product with T , we define the n-form β = ιT (dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn+1), with T = (x1 , . . . , xn+1). Then

dβ = (div T)dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn+1 = (n + 1)dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn+1 .

Wenote that C is supported in B1, so it can act on dβ (by introducing a cut off function that is 1 on B1 and vanishes
outside B2). Then the equality C(dβ) = (∂C)(β) gives ∂[[E0 ∪ B1]](β) − (n + 1)|E0 ∪ B1| = ∂[[D]](β) − (n + 1)|D|.
Finally, we note that

∂[[E0 ∪ B1]](β) = PerB2 (E0 ∪ B1) − PerB2\B1 H +H
n(∂B2),

while
∂[[D]](β) ≤ PerB2 (D) − PerB2\B1 (H) +H

n(∂B2),

which gives that Jn+1(E0 ∪ B1) ≤ Jn+1(D), that is, E0 ∪ B1 is a minimiser. In fact, the inequality is not strict if and
only if ∂∗D \ (B2 \ B1) is a.e. orthogonal to T and contained in ∂B1, which shows that E0 ∪ B1 is the unique
minimiser.

Before proceeding furtherwe set up somenotation. The integral (n + 1)-current [[E0]] in B2 admits awell-defined
(outer) slice ⟨[[E0]], |x| = 1+⟩ = −∂[[E0 ∩ (B2 \ B1)]] + (∂[[E0]]) (B2 \ B1). (See e.g. [16, Section 2.5].) This (outer)
slice also coincides with ⟨[[F]], |x| = 1+⟩. Let T0 denote the (n − 1)-dimensional current

T0 = −∂⟨[[E0]], |x| = 1+⟩ = −∂((∂[[E0]]) (B2 \ B1)).

Then the Plateau problem under consideration seeks an integral n-current with boundary T0. Note that
∂[[F]] = ∂[[F ∩ B1]] + ∂[[E0 ∩ (B2 \ B1)]] so

S := ∂[[F ∩ B1]] − ⟨[[F]], |x| = 1+⟩ = ∂[[F]] − (∂[[E0]]) (B2 \ B1)

has boundary ∂S = T0. The integral n-current S is our candidate (hypersurface-with-boundary) solution to the
Plateau problem. We let

S = ∂∗F \ (∂∗E0 ∩ (B2 \ B1)).

Then S = (S, 1, − ⋆ νF), where ⋆ is the Hodge star (so νF ∧ ⋆νF gives the positive orientation of ℝn+1) and νF
is the unit inward (measure theoretic) normal for F on its reduced boundary. Also note that V = v(S, 1) is the
associated varifold (with notation from [25]).

We turn our attention to the analysis of the first variation (with respect to Jλ) of V on B2 \ spt T0. Combining
Lemma 2.1 with Lemmas 2.2, 2.3, 2.4 below, we will in particular prove the following overall result.

Theorem 4. With the above setting and notation, let λ ∈ (0, n). In the class of sets with finite perimeter that
coincide with the given E0 in B2 \ B1 there exists a minimiser F of Jλ , and there exists a set Σ ⊂ B1 with
dimH Σ ≤ n − 7, such that (spt V \ spt T0) \ Σ is a smoothly embedded CMC hypersurface with mean curvature
vector λνF . If n = 7, more precisely, Σ is made of isolated points (possibly accumulating onto spt T0). Moreover,
spt V \ spt T0 ⊂ B1.



C. Bellettini and K. Leskas, Smooth CMC approximations  7

Remark 2.4. By scaling and translating, the theorem can be stated replacing B1, B2 and (0, n) respectively with
Bn+1r (p), Bn+12r (p), (0,

n
r ). Moreover, the role of B

n+1
2r (p) is only to provide an annulus in which E0 is non-trivial,

so 2r can be replaced by any radius R > r. Theorem 3 is thus a special case of Theorem 4, and in the case of
Theorem 3 the accumulation of Σ onto T0 is ruled out by [2]. We also recall that, as well as the varifold V , we
can associate to the minimiser F an integral n-current S such that ∂S = T0 (see above for the definition of S).

Our first result on the first variation (with respect to Jλ), Lemma 2.2, is valid for any λ and yields a sign con-
dition and an upper bound. The analysis needs to be carried out only in a neighbourhood of an arbitrary
p ∈ ∂B1 \ spt T0 (since spt V ⊂ B1 and we have established that the first variation is 0 in B1). This result is the
analogue of [15, Theorem 4.1]. Here we keep using the notation introduced above (e.g. νF , V , S, T0).

Lemma 2.2. Let X ∈ C1c(B2 \ spt T0;ℝn+1). Then the first variation with respect to Jλ of V evaluated on the vector
field X (equal to the left-hand-side of the following expression) satisfies

∫ divS X dHn S + λ∫(νF ⋅ X) dHn S = ∫(X ⋅ N) dM,

whereM is a positive Radon measure supported in ∂B1 and N = − x|x| (for x ̸= 0). Moreover,

M ≤ (divS N + λ(νF ⋅ N))dHn (S ∩ ∂B1)

(as measures).

Proof. Let p ∈ ∂B1 \ spt T0 and consider Br(p) ⊂ B 5
4
\ spt T0. In the first part of the proof, we analyse the action

of the first variation on a vector field of the type ηN , where η ∈ C1c(Br(p)), η ≥ 0. Let d( ⋅ ) = dist( ⋅ , ∂B1), where
dist is the signed distance, taken to be positive in B1 and negative in B2 \ B1. Note that in any tubular neighbour-
hood of ∂B1 we have that d is smooth and its gradient is N . Given ϵ > 0, let fϵ : ℝ → ℝ be a C1 function such
that fϵ ≡ 0 on [2ϵ,∞), fϵ ≡ 1 on (−∞, ϵ] and f 󸀠 ≤ 0. We consider the following one-sided (s ∈ [0, s0], with s0 > 0
sufficiently small, depending on ϵ) one-parameter family of diffeomorphisms:

ϕs(z) = z + s η(z)(fϵ ∘ d)(z)N(z).

The reason for the one-sided restriction, s ≥ 0, is that we need to ensure that we stay in the admissible class
when deforming via ϕs , which we check next.

Since ∂S = T0, and spt S ⊂ B1, by the conditions on ϕs we also have ∂(ϕs)♯S = T0 and spt(ϕs)♯S ⊂ B1. On
one hand we have S + ⟨[[F]], |x| = 1+⟩ = ∂[[F ∩ B1]], therefore (for any σ ∈ [0, s0])

(ϕσ)♯S + (ϕσ)♯⟨[[F]], |x| = 1+⟩ = ∂(ϕσ)♯[[F ∩ B1]].

On the other hand, letting Φ(s, z) = ϕs(z) for s ∈ [0, σ] (this is a homotopy between the identity ϕ0 and ϕσ on B2)
we obtain, from the homotopy formula,

(ϕσ)♯⟨[[F]], |x| = 1+⟩ − ⟨[[F]], |x| = 1+⟩ = ∂(Φ♯([0, σ] × ⟨[[F]], |x| = 1+⟩)).

Next we check that −Φ♯([0, σ] × ⟨[[F]], |x| = 1+⟩) is a Caccioppoli set. Note that Φ(s, ⋅ ) only acts on z ∈ ∂B1 in this
case. The map Φ|[0,σ]×∂B1 : [0, σ] × ∂B1 → B1 is Lipschitz and orientation-reversing wherever its differential is
injective, moreover it is injective on the set where its differential is non-degenerate. Therefore, since [0, σ] ×
⟨[[F]], |x| = 1+⟩ is a Caccioppoli set inℝ × ∂B1, so is its negative pushforward (e.g. by employing the image formula
for integral currents, see e.g. [16, p. 149] or [25, 26.21(2)]). We finally note that −Φ♯([0, σ] × ⟨[[F]], |x| = 1+⟩) is
disjoint from (ϕσ)♯[[F ∩ B1]]. Indeed, Φ([0, σ] × ∂B1) is contained in {x ∈ B1 : |x − x

|x| | ≤ ση(
x
|x| )}, while the image

ϕσ(B1) is contained in {x ∈ B1 : |x − x
|x| | > ση(

x
|x| )}. We can therefore conclude that

(ϕσ)♯S + ⟨[[F]], |x| = 1+⟩ = ∂[[F̃σ]],

where F̃σ is the Caccioppoli set

F̃σ = (ϕσ)♯[[F ∩ B1]] − Φ♯([0, σ] × ⟨[[F]], |x| = 1+⟩).
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Recalling that F and E0 agree in B2 \ B1, and since F̃σ ⊂ B1, we set

Fσ = F̃σ ∪ (F ∩ (B2 \ B1))

and conclude that (the following is an identity between currents in B2)

(ϕσ)♯S + (∂[[E0]]) (B2 \ B1) = ∂[[Fσ]],

with Fσ a set of finite perimeter in B2 that coincides with E0 in B2 \ B1 (that is, it is in the admissible class).
The previous conclusion permits to use the minimising property of F, as we are allowed to compare the

energy with that of Fσ (for any σ ∈ [0, s0], s0 depends on ϵ). For ϵ > 0 fixed, we can write (from the minimising
property)

0 ≤ lim
σ→0+ Jλ(Fσ) − Jλ(F)σ

= ∫
S

divS(η(fϵ ∘ d)N) dHn + λ∫
S

νF ⋅ (η(fϵ ∘ d)N) dHn . (2.1)

This equality is justified as follows. First, as by construction

PerB2 (Fσ) − PerB2 (F) = 𝕄((ϕσ)♯S) −𝕄(S),

we can use thewell-known formula for the first variation of n-area, which gives the first term on the right-hand-
side of (2.1). Next we observe that, denoting by dx the (n + 1)-form dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn+1 and by x = (x1 , . . . , xn+1),
and since (by Cartan’s formula, denoting by L the Lie derivative) d(ιxdx) = Lxdx = (n + 1)dx, we have

|Fσ | − |F| = ([[Fσ]] − [[F]])(dx) =
1

n + 1∂([[Fσ]] − [[F]])(ιxdx) =
1

n + 1 ((ϕσ)♯S − S)(ιxdx)

=
1

n + 1∂(Φ♯([0, σ] × S))(ιxdx) = (Φ♯([0, σ] × S))(dx).

Then by direct computation (using the image formula [16, p. 149], [25, 26.21(2)], together with the fundamental
theorem of calculus)

d
dσ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨σ=0+ (Φ♯([0, σ] × S))(dx) = (Φ♯({0} × S))(ιdΦ( ∂∂s )dx)

= S(ιη(fϵ∘d)Ndx) = −∫
S

νF ⋅ (η(fϵ ∘ d)N) dHn ,

which completes the proof of (2.1).
The next argument follows [15, Theorem 4.1] verbatim. We check that the right-hand-side of (2.1) is inde-

pendent of ϵ. Indeed, for ϵ󸀠 < ϵ we consider

ψs(z) = z + sη(z)((fϵ ∘ d)(z) − (fϵ󸀠 ∘ d)(z))N(z).
This is (for s ∈ (−δ, δ) with δ > 0 sufficiently small, depending on ϵ󸀠) a (two-sided) one-parameter family of
diffeomorphisms, equal to the identity in a neighbourhood of ∂B1. We can then use the vanishing of the first
variation under the deformation induced by ψs , that is,

∫
S

divS(η(z)((fϵ ∘ d)(z) − (fϵ󸀠 ∘ d)(z))N(z)) dHn(z) + λ∫
S

νF(z) ⋅ (η(z)((fϵ ∘ d)(z) − (fϵ󸀠 ∘ d)(z))N(z)) dHn(z) = 0.

The linearity of divergence, scalar product and integration then implies that the right-hand-side of (2.1) is
independent of ϵ.

By the sign condition in (2.1), and viewing the right-hand-side of (2.1) as the action of a distribution on C1c ,
there exists a (positive) RadonmeasureM in B2 such that the right-hand-side of (2.1) is given by∫ η dM. (A priori
this distribution should depend on ϵ, however we have proved that the action is independent of ϵ.)

On the other hand, sending ϵ → 0 on the right-hand-side of (2.1) (denoting by ∇S = projTS∇ the gradient
on S, a.e. well-defined), we obtain

∫
S

(fϵ ∘ d) ∇Sη ⋅ N dHn → ∫
S∩∂B1

∇Sη ⋅ N dHn = 0,
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where the last equality follows from the fact that ∇Sη ⋅ N = 0 a.e. on S ∩ ∂B1; and

∫
S

(fϵ ∘ d)η divS N dHn → ∫
S∩∂B1

η divS N dHn;

and
∫
S

η∇S(fϵ ∘ d) ⋅ N dHn = ∫
S

η(f 󸀠ϵ ∘ d)|∇Sd|2 dHn ≤ 0,

where we used ∇d = N on the support of fϵ; and

∫
S

νF ⋅ (η(fϵ ∘ d)N) dHn → ∫
S∩∂B1

η νF ⋅ N dHn .

These imply (expanding the divergence in (2.1))

∫ ηdM ≤ ∫
S∩∂B1

η divS N dHn + λ ∫
S∩∂B1

η(νF ⋅ N) dHn

is valid for all η ∈ C1c(Br(p)), η ≥ 0, hence

M̂ = (divS N + λ(νF ⋅ N)) dHn (S ∩ ∂B1)

is a (positive) Radon measure. The first variation of V (with respect to Jλ) computed on the test vector field ηN
can be decomposed as the sum of the first variation computed on η(fϵ ∘ d)N and on η(1 − (fϵ ∘ d))N . The latter
contribution gives 0 since η(1 − (fϵ ∘ d))N ∈ C1c(B1;ℝn+1). Therefore the first variation of V on ηN gives just (2.1),
that is, is given by ∫ ηdM, and we have seen that 0 ≤M ≤ M̂.

In the first part of the proof we analysed the action of the first variation of V (with respect to Jλ) on a vector
field of the form ηN , for η ∈ C1c(Br(p)), η ≥ 0. Now, in the second part of the proof, we consider instead the
action on a vector field Y ∈ C1c(Br(p);ℝn+1) such that Y ⋅ N = 0. We note that in this case we are able to consider
a two-sided deformation induced by Y , which will lead to a vanishing condition, see (2.2) below, rather than an
inequality as in (2.1) (where we only had a one-sided deformation at our disposal).

Let ψs be the flow of Y , that is, the one-parameter (two-sided) family of diffeomorphisms obtained by solv-
ing the ODE for each trajectory, d

dsΨ(s, x) = Y(x), with initial condition Ψ(0, x) = x, and setting ψs(x) = Ψ(s, x).
Then ψs(B1) ⊂ B1 and we consider F̃s = ψs(F ∩ B1). These are Caccioppoli sets with support in B1 and such that
∂∗ F̃s = ψs(∂∗F) is a.e. contained in B1. The Caccioppoli set Fs = F̃s ∪ (F ∩ (B2 \ B1)) is in the admissible class.
We need to show that its boundary (as a current) is (ψs)♯S + (∂[[E0]]) (B2 \ B1). The immediate expression for
this boundary is (ψs)♯(∂[[F ∩ B1]]) + ∂[[E0 ∩ (B2 \ B1)]]. Recalling that S = ∂[[F ∩ B1]] − ⟨[[E0]], |x| = 1+⟩we arrive
at

(ψs)♯S + (ψs)♯⟨[[E0]], |x| = 1+⟩ + (∂[[E0]]) (B2 \ B1) − ⟨[[E0]], |x| = 1+⟩.

As Ψ(t, z), for (t, z) ∈ [0, s] × B2 is a homotopy joining the identity ψ0 to ψs , we will use the homotopy formula.
Wenote that Ψ(t, z) = z in a neighbourhood of T0 = −∂⟨[[E0]], |x| = 1+⟩, so that Ψ♯([0, s] × ∂⟨[[E0]], |x| = 1+⟩) = 0.
Moreover, Ψ([0, s] × ∂B1) ⊂ ∂B1, so that Ψ♯([0, s] × ⟨[[E0]], |x| = 1+⟩) = 0 (as an (n + 1)-current). The homotopy
formula then gives (ψs)♯⟨[[E0]], |x| = 1+⟩ = ⟨[[E0]], |x| = 1+⟩ and therefore (the following is an identity between
currents in B2)

∂[[Fs]] = (ψs)♯S + (∂[[E0]]) (B2 \ B1).

We can therefore use the minimising condition to write the standard condition for the vanishing of the first
variation (with respect to Jλ) as

∫
S

divS Y dHn + λ∫
S

νF ⋅ Y dHn = 0. (2.2)

For the third (and final) part of the proof, given an arbitrary vector field X ∈ C1c(Br(p);ℝn+1) we write the
orthogonal decomposition X = XT + XN , where XN = (X ⋅ N)N and both XT and XN are C1c(Br(p);ℝn+1). Then
the first variation of Jλ on X is given by the sum of the two actions on XT and XN . For the former, in view of (2.2)



10  C. Bellettini and K. Leskas, Smooth CMC approximations

the action is 0. For the latter, we have that XN = η+N − η−N , where η+ , η− ≥ 0 and η+ = (X ⋅ N)+, η− = (X ⋅ N)−.
By the conclusion in the first part (applied separately to η+N and η−N , using the linearity of the first variation),
we then have that the action is given by ∫(η+ − η−) dM = ∫(X ⋅ N) dM.

As remarked in the example given in Remark 2.3, for λ > n one may actually haveM ̸= 0. If λ ≤ n, on the other
hand, we obtain the following result (this is analogous to [15, Theorem 7.1]).

Lemma 2.3. Let λ ≤ n. ThenM = 0, that is, V is stationary (with respect to Jλ) in B2 \ spt T0.

Proof. WehaveN = νF a.e. on S ∩ ∂B1 and divS N = div∂B1 N a.e. on S ∩ ∂B1. By explicit computation,we obtain
div∂B1 N = −n (where n is the mean curvature of ∂B1). Then the inequality

0 ≤M ≤ (divS N + λ(νF ⋅ N))dHn (S ∩ ∂B1)

obtained in Lemma 2.2 becomes
0 ≤M ≤ (λ − n)dHn (S ∩ ∂B1).

Thus with λ ≤ n we must haveM = 0 (and if λ < n alsoHn(S ∩ ∂B1) = 0).

Having established this stationarity property, in order to obtain Theorem 4 we move on to the regularity of
the minimiser, focusing on the case λ < n. We note immediately that, while the regularity in B1 follows from the
theory ofminimisers, wemay a priori have that spt V ∩ ∂B1 ̸= 0, and said theory is not applicable at these points.
We will instead employ the regularity theory for stable CMC (or prescribed-mean-curvature) hypersurfaces
[4, 5], in view of which we recall some relevant notions.

We say that p ∈ spt V is a classical singularity of an integral n-varifold V inℝn+1 when there exists an open
ball Bn+1r (p) such that spt V ∩ Bn+1r (p) is equal to the union of three or more hypersurfaces-with-boundary, all
having a common boundary, all having C1,α-regularity up to the boundary, andwith p in the common boundary,
and with at least two of the hypersurfaces-with-boundary meeting transversely at p.

Given an integral n-varifold V inℝn+1, we denote by gen-reg V the set of points p for which there exists an
open ball Bn+1r (p) such that spt V ∩ Bn+1r (p) is either a single C2 embedded disc, or the union of two (distinct)
C2-embedded discs that lie on one side of each other and whose intersection contains p.

Lemma 2.4. Let λ < n and V, F as above. Then spt V \ spt T0 ⊂ B1. Moreover, there exists Σ ⊂ B1 with dimH Σ ≤
n − 7 such that (spt V \ spt T0) \ Σ is a smoothly embedded CMC hypersurface (with mean curvature vector λνF).
If n = 7, more precisely, Σ is made of isolated points (possibly accumulating onto spt T0).

Proof. If p ∈ ∂B1 ∩ spt V \ spt T0 is a point in gen-reg V , then by definition there exists an embedded disc
D ⊂ spt V \ spt T0 ⊂ B1 of class C2 with p ∈ D. The C2 regularity of D and the stationarity of V with respect to Jλ
(Lemma 2.3) imply that D is CMC with mean curvature λ. (We remark that, by Allard’s regularity theorem [1]
and standard elliptic PDE regularity, there exists a dense open subset of spt V that is smoothly embedded with
mean curvature λ. It follows that, in the case in which the local structure of spt V around p is the union of two
distinct C2 embedded discs, the C2 regularity of each disc implies that both discs have mean curvature λ.) The
maximum principle gives a contradiction if λ < n (since n is the mean curvature of ∂B1 with respect to the
inward normal to B1). This means that if λ < n then gen-reg V ∩ (∂B1 \ spt T0) = 0.

In other words, gen-reg V \ spt T0 ⊂ B1. In the (open) ball B1 we are able to use the minimising assumption
to further conclude that gen-reg V \ spt T0 is a C2 embedded hypersurface (that is, only the first occurrence in
the definition of gen-reg V can happen). This follows e.g. from density estimates (see e.g. [22, Theorem 21.11]).
The minimising assumption also implies that gen-reg V \ spt T0 (as a C2 embedded hypersurface) is stable with
respect to Jλ .

We further note that for p ∈ ∂B1 ∩ spt V \ spt T0 the varifold V has a unique tangent cone at p, given by
the hyperplane that is tangent to ∂B1 at p, possibly counted with integer multiplicity. The existence of tangent
cones, and the fact that any such cone is a stationary varifold, both follow from the monotonicity-type formula
for the mass, valid thanks to the stationarity with respect to Jλ . Since spt V ⊂ B1, any such tangent cone must be
contained in a half-space (whose boundary is the tangent to ∂B1 at p), and thus it has to be supported on that
tangent hyperplane itself (see e.g. [25]), from which the claim follows (thanks to the constancy theorem [25]).
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Finally, we note the absence of classical singularities in spt V \ spt T0. In B1, this is a consequence of the
minimising property, while at any p ∈ ∂B1 ∩ spt V \ spt T0 we have proved that the tangent has to be supported
on a hyperplane (which rules out that p could be a classical singularity).

Having checked all hypotheses, we can now apply the sheeting results from [4] or [5], namely [4, Theo-
rems 3.1 and 3.3] or [5, Theorems 6.2 and 6.4]. We conclude that, if p ∈ spt V ∩ ∂B1 \ spt T0, then spt V is, in a
suitable coordinate system in a neighbourhood of p, given by the union of (finitely many) ordered C2 graphs
(each giving an embedded C2 disc with constant mean curvature λ), and in particular p ∈ gen-reg V , contra-
dicting the earlier conclusion that gen-reg V \ spt T0 ⊂ B1. (Alternatively, one may directly use the maximum
principle, the fact that ∂B1 has mean curvature n, and the condition λ < n, to find a contradiction.)

We thus conclude (in a first instance) that spt V \ spt T0 ⊂ B1. At this stage one may either use the standard
regularity theory for minimisers (e.g. [22, Theorem 21.8] in conjunction with standard elliptic regularity) or
alternatively [4, Corollary 2.1] or [5, Corollary 1.1], for the remaining conclusions.

Remark 2.5. We expect that the same regularity conclusions should hold for λ = n, albeit with the possibility
that open subsets of ∂B1 may be contained in spt V \ spt T0, as in the example of Remark 2.3.

3 Regular minimal cones, graphs, Jacobi operator

In Section 4 we will prove Proposition 4.1, an instance of a singular maximum principle for CMC hypersurfaces,
which will then be needed in Section 5. In this section we collect some preliminaries on stable minimal cones
and their Jacobi fields that will be needed in Section 4.

In what follows let C be a regular cone that is also minimal. We recall that the notion of regular cone
means that C = {ry : r ≥ 0, y ∈ Σ}, where Σ (the link of C) is a smooth embedded compact (n − 1)-dimensional
submanifold of the unit sphere Sn . Theminimality condition is the vanishing of themean curvature of C \ {0} (as
a submanifold ofℝn+1). (This requirement is equivalent to the minimality of Σ as a submanifold of Sn , see [27]).
We first recall some facts about graphs over C and their mean curvature operator.

Let C = ∂[[E]], for a set² of locally finite perimeter E ⊂ℝn+1. The graph of u ∈ C2(C1;ℝ) over C1 = (C \ {0}) ∩ B1
is defined to be

grC u = {x + u(x)N(x) : x ∈ C1},

where N is the inward pointing unit normal on C \ {0}. We will be interested in functions u that satisfy the
following radial decay:

|u(x)|
|x| + |∇u(x)| + |x||∇

2u(x)| 󳨀󳨀󳨀󳨀→
|x|→0

0, (3.1)

where ∇ denotes the Levi-Civita connection on C \ {0}with respect to the Riemannian metric induced on C \ {0}
by the Euclidean one in ℝn+1, and | ⋅ | is taken with respect to the Euclidean inner product.

We remark that there exists M = MΣ such that, if

|u(x)|
|x| + |∇u(x)| ≤ M (3.2)

is valid for all x ∈ C1, then grC u is an embedded hypersurface, with {0} = (grC u \ grC u) ∩ B1 an isolated singu-
larity when C is not a hyperplane. We will assume in this section that (3.2) is satisfied on C1. We further note
that (3.1) implies the validity of (3.2) for all 0 < |x| < r for sufficiently small r, and therefore, after rescaling,
ũ(x) = u( xr ) satisfies |ũ(x)|

|x| + |∇ũ(x)| ≤ M

on C1. (This fact will be implicitly used in Section 4.)

2 In the forthcoming sections, any minimal regular cone C will arise automatically as a boundary. However, any regular minimal
cone has connected link Σ (by a standard application of the maximum principle) and using this one shows that Sn \ Σ has two
connected components (by Alexander’s duality), thus so doesℝn+1 \ C, therefore there always exists E such that C = ∂[[E]].
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Assumenow that the associated current to grC u is of the form ∂[[F]] B1,³ where F is a set of finite perimeter
and that F is a critical point of Jλ thus in particular we have that

d
dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=0

Jλ(Ft) = 0,

where Ft is the set of finite perimeter whose boundary is grC(u + tv) and v ∈ C2c(C1;ℝ). We recall that the mean
curvature operatorMC of the cone is defined as follows, by defining in duality its action on u ∈ C2(C1;ℝ):

d
dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=0

Hn(grC(u + tv)) = −⟨MCu, v⟩L2 ,

where ⟨ ⋅ , ⋅ ⟩L2 denotes the L2-inner product on C \ {0} and v ∈ C2c(C1;ℝ). The PDE that the function u satisfies
is given in terms ofMC as we prove in the following:

Lemma 3.1. Let u and grC u be as above. Then

MCu = λ det(Id − uAC), (3.3)

where AC denotes the second fundamental form of C1.

Proof. Let G(x) = x + u(x)N(x) and consider an extension N̂ of N (defined in an open cone over a tubular
neighbourhood of Σ in 𝕊n). Then for any v ∈ C2c(C1;ℝ) we have that

0 = d
dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=0

Jλ(Ft) = −⟨MCu, v⟩L2 + λ ∫
grCu

vN̂ ⋅ ν̂ dHn ,

where Ft is the associated set to grC(u + tv), ν̂ the inward pointing unit normal of grC u and the last term is the
derivative of the volume term. Using the area formula the latter can be written as ∫C vN̂ ⋅ ν̂|JG| dH

n , where |JG|
denotes the Jacobian of G. Thus it suffices to compute N̂ ⋅ ν̂|JG|. Let (τi) be an orthonormal basis of C1 then

DτiG ⋅ τj = δij − uAij ,
DτiG ⋅ N̂ = Dτiu,

where DτiG denotes the differential of G in the direction of τi and (Aij) is the matrix that corresponds to the
second fundamental form of C1 with respect to the chosen basis. Consider the matrix

B = (
Dτ1G ⋅ N̂ Dτ1G ⋅ τ1 . . . Dτ1G ⋅ τn

...
...

. . .
...

DτnG ⋅ N̂ DτnG ⋅ τ1 . . . DτnG ⋅ τn

) .

Let B(k) denote the n × n minor of the matrix B for 2 ≤ k ≤ n + 1 obtained by erasing the k-th column of the
matrix B. Then

ν̂ = (det(Id − uAC)N̂ +
n+1
∑
k=2
(−1)k−1B(k)τk−1)|JG|−1 .

In particular, N̂ ⋅ ν̂|JG| = det(Id − uAC) and this finishes the proof.

In view of (3.3), we recall some properties of the operator MC , referring to [7, (2.1)] and [7, Section 3], whose
notation we adopt here. We also refer to [12, Lemma 2.26] for a proof, and to [19], and note that due to (3.2) the
form established forMC in [12] is the same as in [7] or [19]. The operatorMC has the form

MCu = LCu + N(x,
u
|x| , ∇u) ⋅ ∇

2u(x) + 1
|x|P(x,

u
|x| , ∇u(x)),

3 Inwhat follows every graph of the form grC uwill arise as a boundary of a set of finite perimeter. However, since grC u is embedded
the map G(x) = x + u(x)N(x) is a diffeomorphism to its image and, since C1 is a boundary,ℝn+1 \ C1 has two connected components
thus so doesℝn+1 \ G(C1) therefore there always exist a set F such that the associated current to grC u is of the form ∂[[F]] B1.
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where LCu = ΔCu + |AC|2u is the Jacobi field operator of the cone C \ {0},N is a symmetric bilinear form, ( ⋅ ) is to
be understood as the trace of the linear transformations on TxC1 associated to the bilinear formsN, ∇2u (equiva-
lently, using an orthonormal basis of TxC1 to write the associatedmatrices Nij and∇iju, this is Nij∇ijuwith sum-
mation over repeated indices) and both N, P have a C2-dependency on the arguments (x, z, p) ∈ C1 × ℝ × TC1.
Moreover,MC is a quasilinear elliptic operator of order two, and for |z|, |p| ≤ 1 we have the following inequal-
ities at (x, z, p):

|N(x, z, p)| ≤ MΣ(|z| + |p|),
|P(x, z, p)| ≤ MΣ(|z| + |p|)2 ,
|Pz| + |Pp| + |x|(|Pxz| + |Pxp|) ≤ MΣ(|z| + |p|),
|x|(|Nx| + |Px| + |Nxz| + |Nxp|) + |Nz| + |Np| + |Nzz| + |Nzp| + |Npp| + |Pzz| + |Pzp| + |Ppp| ≤ MΣ ,

(3.4)

where the subscripts denote partial differentiation and MΣ is a constant that depends on the dimension n and
the link Σ of the cone.

The estimates in (3.4) along with the radial decay assumption (3.1) allow us to prove that the linearisation
of the PDE (3.3) has the following form:

Lemma 3.2. Let u, v ∈ C2(C1;ℝ) satisfy (3.1) andMCu = λ det(Id − uAC),MCv = λ det(Id − vAC). Then h = v − u
satisfies the following linear PDE:

LCh = A1 ⋅ ∇2h +
1
|x|A2 ⋅ ∇h +

1
|x|2

A3h, (3.5)

where A1 : C1→ End(TC1), A2 : C1→ TC1, A3 : C1→ℝ and A1 ,A2 ,A3→ 0 as |x| → 0. Moreover, if u, v ∈ C3(C1;ℝ),
then the coefficients of the PDE are in C0,α(U;ℝ) for some α ∈ (0, 1) and any U ⊂⊂ C1.

Proof. We first compute the operator L such that Lh =MCv −MCu. We introduce the notation

N(u) = N(x, u
|x| , ∇u) and P(u) = P(x, u

|x| , ∇u)

(for N, P introduced above). Then, since LC is linear,

MCv −MCu = LCh + N(v) ⋅ ∇2v − N(u) ⋅ ∇2u +
1
|x| (P(v) − P(u)).

We recall the standard method to rewrite N(v) ⋅ ∇2v − N(u) ⋅ ∇2u. We denote by Nij the components of the
matrix associated to the operator N (in an orthonormal basis of TxC1) and compute (with implicit summation
on repeated indices)

Nij(x,
v
|x| , ∇v)∇ijv − Nij(x,

u
|x| , ∇u)∇iju ==

1

∫
0

d
dt (

Nij(t, u, v)(∇iju + t(∇ijv − ∇iju)) dt,

with the notation Nij(t, u, v) = Nij(x, u
|x| + t

(v−u)
|x| , ∇u + t(∇v − ∇u)). Differentiating with respect to t, we get the

following expression:

(
1

∫
0

Nij(t, u, v) dt)∇ijh + (
1

∫
0

|x|Nij,z(t, u, v)(∇iju + t∇ijh) dt)
h
|x|2
+ (

1

∫
0

|x|Nij,p(t, u, v)(∇iju + t∇ijh) dt) ⋅
∇h
|x| ,

where Nij,z , Nij,p denote partial differentiation of Nij (with respect to z and p respectively). A similar computa-
tion gives that

1
|x| (P(v) − P(u)) = (

1

∫
0

Pz(t, u, v) dt)
h
|x|2
+ (

1

∫
0

Pp(t, u, v) dt) ⋅
∇h
|x| ,

where again we use the notation P(t, u, v) = P(x, u
|x| + t

(v−u)
|x| , ∇u + t(∇v − ∇u)) and Pz , Pp denote partial differ-

entiation as above. Putting everything together, we get that

MCv −MCu = LCh + Ā1 ⋅ ∇2h +
1
|x| Ā2 ⋅ ∇h +

1
|x|2

Ā3h,
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where

Ā1 =
1

∫
0

Nij(t, u, v) dt,

Ā2 =
1

∫
0

|x|Nij,p(t, u, v)(∇iju + t∇ijh) dt +
1

∫
0

Pp(t, u, v) dt,

Ā3 =
1

∫
0

|x|Nij,z(t, u, v)(∇iju + t∇ijh) dt +
1

∫
0

Pz(t, u, v) dt.

Using the estimates in (3.4), we have that

|Ā1| ≤ MΣ(
|u|
|x|
+
|h|
|x|
+ |∇u| + |∇h|),

|Ā2| ≤ MΣ(
|u|
|x|
+
|h|
|x|
+ |x||∇2u| + |x||∇2h|),

|Ā3| ≤ MΣ(
|u|
|x|
+
|h|
|x|
+ |x||∇2u| + |x||∇2h|),

whereMΣ denotes a constant that depends on the link Σ of the cone C. Thus from (3.1)wehave that Ā1 , Ā2 , Ā3→ 0
as |x| → 0.

In a similar way, we now compute (using the Jacobi formula for the derivative of the determinant)

det(Id − vAC) − det(Id − uAC) =
1

∫
0

d
dt det(Id − (u + th)AC) dt

= −
1

∫
0

det(Id − (u + th)AC) tr((Id − (u + th)AC)−1hAC) dt

= −
1

∫
0

h det(Id − (u + th)AC) tr((Id − (u + th)AC)−1AC) dt =
1
|x|2

Ā4h,

where

Ā4 = −
1

∫
0

|x|2 det(Id − (u + th)AC) tr((Id − (u + th)AC)−1AC) dt.

From (3.1) we have that Id − (u + th)AC → Id as |x| → 0 thus Ā4 converges to 0 as |x| → 0 as well.
The statement follows by setting A1 = −Ā1, A2 = −Ā2 and A3 = Ā4 − Ā3.

From (3.5) we see that LC becomes the leading term of the PDE as |x| → 0. This crucial fact will allow us, in
Proposition 4.1 below, to construct a non-trivial positive Jacobi field of C. In view of that, we recall some well-
known properties of the Jacobi operator LC .

For x ∈ C \ {0} let r = |x| and ω = x
|x| ∈ Σ denote spherical coordinates on C. Then the metric of the cone is

given by g = dr2 + r2gΣ where gΣ is the pull-back on Σ of the round metric on Sn (via the inclusion map). The
operator LC is expressed in spherical coordinates as

LC f = r−2LΣ f + r1−n∂r(rn−1∂r f), (3.6)

where LΣ = ΔΣ + |AΣ|2 and AΣ is the second fundamental form of Σ in Sn . Since LΣ is a linear elliptic operator
on a smooth compact manifold, we consider the spectrum λ1 < λ2 ≤ ⋅ ⋅ ⋅ → +∞ of −LΣ .

The first eigenvalue λ1 is simple and it is known from [7] that C is stable if and only if

max{−λ1 , 0} ≤
(n − 2)2

4 .

In particular, if C is stable (which will be the case in forthcoming sections), we define γ± = n−2
2 ± √

(n−2)2
4 + λ1

and we have γ+ ≥ γ− ≥ 0.
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Remark 3.1. Unless C is a hyperplane, one always has γ− > 0. Indeed, if γ− = 0, then λ1 = 0 and from the varia-
tional characterisation of the first eigenvalue of LΣ , if we take as a test function a constant function, we get that
|AΣ| ≡ 0 thus |AC| ≡ 0 and C is a plane.

Any positive solution of LC f = 0 is of the form (see e.g. [19, p. 105], and Lemma A.2 below)

f(rω) = (
c+1
rγ+ + c

−
1
rγ− )ϕ1(ω), (3.7)

where ϕ1 > 0 is the first eigenfunction of LΣ , that is LΣϕ1 = −λ1ϕ1 and c+1 , c
−
1 are non-negative constants.

4 A singular maximum principle

Wefirst state and prove the following fact regarding the convergence ofminimisers of Jλ . Analogous results hold
(with similar arguments that require building competitors) for area-minimising currents (see e.g. [25, Chapter 7,
Theorem 2.4]) and for perimeter minimisers or almost-minimisers (see e.g. [22, Theorem 21.14]).

Lemma 4.1. For j ∈ ℕ, let Ej be sets with finite perimeter in B2, and let λj , λ ∈ [0,∞), with limj λj = λ. For each j
we assume that Ej minimises Jλj among sets that coincide with Ej in B2 \ B1. Let E be a set with finite perimeter
in B2 and assume that [[Ej]] → [[E]] (as currents) in B2. Then E minimises Jλ among sets that coincide with E
in B2 \ B1. Moreover, |∂∗Ej| → |∂∗E| in B1 (as varifolds).

Remark 4.1. Let D be a set with finite perimeter in B2. The outer and inner slices ⟨[[D]], |x| = 1+⟩ and ⟨[[D]], |x| =
1−⟩ are n-dimensional integral currents supported in ∂B1 (which is n-dimensional), therefore there exist inte-
ger-valued BV-functions θ+D and θ

−
D such that ⟨[[D]], |x| = 1+⟩ = θ

+
D(H

n ∂B1) ⃗ξ and ⟨[[D]], |x| = 1−⟩ = θ−D(Hn

∂B1) ⃗ξ, where ⃗ξ is the orientation of ∂B1 corresponding (in Hodge duality) to the choice of outward point-
ing unit normal. In fact, θ+D , θ

−
D are {0, 1}-valued (Hn-a.e. on ∂B1), since [[D]] is the current of integration on

a Caccioppoli set.

Proof. We remark that ⟨[[Ej]], |x| = 1+⟩ → ⟨[[E]], |x| = 1+⟩ as currents (since by definition we have ⟨[[Ej]], |x| =
1+⟩ = −∂[[Ej ∩ (B2 \ B1)]] + (∂[[Ej]]) (B2 \ B1), and [[Ej]] → [[E]] in B2 by assumption).

Let F be a set with finite perimeter that coincides with E in B2 \ B1. Set

Fj = (F ∩ B1) ∪ (Ej ∩ (B2 \ B1)).

Then Fj → F as sets of finite perimeter (when Fj , F are sets with finite perimeter, the convergence Fj → F as
sets with finite perimeter is equivalent to [[Fj]] → [[F]] as currents). Moreover, ⟨[[Fj]], |x| = 1+⟩ = ⟨[[Ej]], |x| = 1+⟩
by the definition of Fj , and ⟨[[F]], |x| = 1+⟩ = ⟨[[E]], |x| = 1+⟩ by definition of F.

With notation as in Remark 4.1, we remark that θ+E = θ
+
F , θ
−
Fj = θ

−
F and θ

+
Fj = θ

+
Ej . Using LemmaA.1 with Ej , Fj

in place of D, we rewrite the minimising condition Jλj (Ej) ≤ Jλj (Fj) in the form,

PerB1 Ej +𝕄(⟨[[Ej]], |x| = 1+⟩ − ⟨[[Ej]], |x| = 1−⟩) − λjHn+1(Ej)
≤ PerB1 F +𝕄(⟨[[Fj]], |x| = 1+⟩ − ⟨[[Fj]], |x| = 1−⟩) − λjHn+1(Fj).

(We have used PerB1 F = PerB1 Fj and PerB2\B1 Ej = PerB2\B1 Fj .) The second term on the right-hand-side is writ-
ten as

∫
∂B1

|θ+Fj − θ
−
Fj | = ∫

∂B1

|θ+Ej − θ
−
F |.

Since ∂B1 is compact, |θ+Ej − θ
−
F | ≤ 1, and θ

+
Ej → θ+E = θ

+
F pointwiseHn-a.e. in ∂B1 (by the hypothesis ⟨[[Ej]], |x| =

1+⟩ → ⟨[[E]], |x| = 1+⟩), we conclude that (by dominated convergence) ∫∂B1 |θ
+
Ej − θ
−
F | → ∫∂B1 |θ

+
F − θ
−
F |. The latter

is𝕄(⟨[[F]], |x| = 1+⟩ − ⟨[[F]], |x| = 1−⟩). Sending j →∞ and using the lower-semi-continuity ofmass and perime-
ter on the left-hand-side, as well asHn+1(Ej) → Hn+1(E),Hn+1(Fj) → Hn+1(F) (implied by Ej → E, Fj → F), we
find

PerB1 E +𝕄(⟨[[E]], |x| = 1+⟩ − ⟨[[E]], |x| = 1−⟩) − λHn+1(E)
≤ PerB1 F +𝕄(⟨[[F]], |x| = 1+⟩ − ⟨[[F]], |x| = 1−⟩) − λHn+1(F).
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Adding PerB2\B1 E = PerB2\B1 F to both sides, and using Lemma A.1 again (with E, F in place of D), the inequality
obtained becomes Jλ(E) ≤ Jλ(F). Therefore E minimises Jλ (among sets that coincide with E in B2 \ B1).

Repeating the above argument with E in place of F shows that we must have PerB1 E = limj→∞ PerB1 Ej ,
therefore ‖∂∗Ej‖ → ‖∂∗E‖ as Radon measures in B1 (and, by Allard’s compactness for integral varifolds,
|∂∗Ej| → |∂∗E| in B1).

Remark 4.2. Assume that E minimises Jλ in an open set U . Then, given a point x ∈ ∂∗E and a sequence of
dilations ηx,rj (y) =

y−x
rj , rj ↘ 0, consider the sequence of Caccioppoli sets Ej = ηx,rj (E) (blow up sequence). At

the same time, we may consider the sequence of varifolds |∂∗Ej| = ηx,rj ♯|∂
∗E|. Standard theory (respectively

of Caccioppoli sets and of varifolds, see e.g. [22, 25]) guarantees that both sequences subsequentially converge.
Any limit in the sense of varifolds is a so-called varifold tangent cone of |∂∗E| at x. Lemma 4.1 implies that any
varifold tangent cone is of the form |∂∗E∞|, where E∞ is a Caccioppoli set obtained as a (subsequential) limit
of Ej . This follows by passing to a subsequence (still denoted by rj) for which we have convergence to a varifold
tangent cone, and by using Lemma 4.1 (with λj , λ therein replaced by rjλ and 0 respectively), noting that the
dilated set Ej is a minimiser of Jrjλ , and letting E∞ be the Caccioppoli set to which Ej converges. In particular,
any varifold tangent cone has multiplicity 1 on its regular part.

Remark 4.3. If λ < n, then for a minimiser such as E (similarly for Ej if λj < n) in Lemma 4.1, one has that
Hn(∂∗E ∩ ∂B1) = 0 (see Lemma 2.3). Therefore ∂[[E]] ∂B1 = 0 and ⟨[[E]], |x| = 1+⟩ = ⟨[[E]], |x| = 1−⟩ by (A.1)
(therefore the standard slice ⟨[[E]], |x| = 1⟩ exists).

We are now ready to prove the main result of this section, an instance of maximum principle for CMC hyper-
surfaces with isolated singularities.

Proposition 4.1. Let E and F be sets with finite perimeter in B2 that minimise Jλ with respect to their own bound-
ary condition, assumed in B2 \ B1. Assume that ∂∗E ∩ (B1 \ {0}) is smoothly embedded, 0 ∈ ∂∗E, and that a tangent
cone to |∂∗E| at 0 is regular (which means, it is smooth away from 0 and has multiplicity 1 on its regular part).
Assume further that F ⊂ E and that 0 ∈ ∂∗F. Then E ∩ B1 = F ∩ B1.

Remark 4.4. Under the assumed condition on a tangent cone, by L. Simon’s renowned result [24], |∂∗E| pos-
sesses a unique tangent cone at 0 (whichhas to be the one aboutwhich the regularity andmultiplicity hypotheses
are made).

Proof. We divide the proof into four steps.

Step 1. We begin by proving that ∂∗F is smooth in Br \ {0} for some r > 0. Let Σ ⊂ ∂∗F denote the singular
set of ∂∗F. Arguing by contradiction, assume that xi → 0, xi ∈ Σ. Letting ρi = |xi|, we consider the sequence of
dilations x 󳨃→ x

ρi and take a blow up of F at 0 by setting F0,ρi = F
ρi and taking a subsequential limit F0 of F0,ρi . By

the assumption that F ⊂ E we have that F0 ⊂ E0, where E0 is the blow up of E at 0 obtained by taking the limit
for said subsequence of dilations (as remarked above, the blow up for E at 0 is independent of the sequence of
dilations). The stationarity property of Fwith respect to Jλ translates into stationarity of F0,ρi with respect to Jρiλ ,
which implies that F0 is stationary for the perimeter (equivalently, J0). Similarly, E0 is perimeter-stationary, that
is, both |∂∗E0| and |∂∗F0| are stationary varifolds inℝn+1. (We remark that both |∂∗E0| and |∂∗F0| are non-zero,
since the origin is in the support of both |∂∗E| and |∂∗F| and thus both densities are ≥ 1 by the monotonicity
formula.)

More precisely, by Lemma 4.1, E0 and F0 are perimeter minimisers in any compact set K ⊂ ℝn+1, for their
own boundary condition (assumed in the complement of K). Clearly, 0 ∈ spt |∂∗E0| ∩ spt |∂∗F0|. Then the sin-
gular maximum principle [20, Theorem A (iii)] implies that spt |∂∗E0| = spt |∂∗F0|, and thus |∂∗E0| = |∂∗F0|.
(Alternatively, one may use the maximum principle in the form given in [26].)

Lemma 4.1 (see Remark 4.2) also gives that |∂∗F0,ρi | converge (as varifolds) to |∂∗F0|. By the choice
of dilations, and by Allard’s interior regularity theorem, see [1], the points xi

ρi lie in ∂B1 and have density
Θ(‖∂∗F0,ρi‖,

xi
ρi ) ≥ 1 + ϵ0, where ϵ0 > 0 is the dimensional constant in Allard’s regularity theorem. This contra-

dicts the hypothesis that the density of |∂∗E0| = |∂∗F0| is 1 at any point distinct from 0 (since |∂∗E0| is a regular
cone by assumption). We have therefore established the smoothness of ∂∗F in Br \ {0} for some r > 0.
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Step 2. As remarked above, |∂∗E0| is the unique tangent cone to |∂∗E| at 0. This also implies that |∂∗F0| = |∂∗E0|
is the unique tangent cone for |∂∗F| at 0 (since, given any blow up sequence, the resulting blow up of F at 0 is
contained in E0, and the maximum principle implies, as above, that the two blow up sets must coincide). In
particular (see [24, Section 7]), we are able to write ∂E ∩ (Bδ \ {0}) and ∂F ∩ (Bδ \ {0}), for sufficiently small
δ > 0, as graphs of C2 functions over the common cone Cδ = C ∩ (Bδ \ {0}), where C = ∂∗E0, as follows:

∂E ∩ (Bδ \ {0}) = grCδ u with u ∈ C2(Cδ;ℝ),
∂F ∩ (Bδ \ {0}) = grCδ v with v ∈ C2(Cδ;ℝ),

lim
|x|→0
(
|u(x)|
|x|
+ |∇u(x)|) = 0,

lim
|x|→0
(
|v(x)|
|x|
+ |∇v(x)|) = 0.

(4.1)

Taking the identification ofℝwith (TCδ)⊥ so that the orientation is inward (for E0), wehave, in viewof E ⊂ F
and the fact that |∂∗E| and |∂∗F| are stationary for Jλ ,

u ≤ v and MCu = λ det(Id − uAC), MCv = λ det(Id − vAC).

Note that due to (4.1) the PDE for u and v satisfies the estimates (3.4) in Cδ and from standard elliptic estimates,
see also [24, Section 1], we deduce that |x||∇2u(x)| + |x||∇2v(x)| → 0 as |x| → 0 hence the radial decay (3.1) is
satisfied. In particular, we may consider h = v − u ≥ 0 and from (3.5) we have that h satisfies the linear PDE

LCh = A1 ⋅ ∇2h +
1
|x|A2 ⋅ ∇h +

1
|x|2

A3h,

where A1 , A2 , A3 󳨀󳨀󳨀󳨀→
|x|→0

0. Thus for any K ⊂⊂ Cδ we can apply the Harnack inequality to get that

sup
K
h ≤ CK inf

K
h.

Hence either h > 0 on K or h ≡ 0. Since K is arbitrary, we must have either h ≡ 0 on Cδ , or h > 0 on Cδ (and
h = 0 at 0). We will next rule out the second occurrence.

Step 3. The minimising property of E0 implies that C is a stable minimal cone and thus all positive Jacobi fields
are of the form (3.7). To prove that u ≡ v, we will construct a non-existent positive Jacobi field on C \ {0} under
the contradiction assumption that h > 0 on Cδ . We argue as in [19, Lemma 1.20].

From the property that h → 0 as |x| → 0 we can construct a sequence of ρ󸀠j ↘ 0 such that

sup
Cρ󸀠j+1 h < supCρ󸀠j h.

Let xj be the points where supCρ󸀠j h is achieved and set rj = |xj|. Then we have rj ↘ 0 (since rj ∈ (ρ󸀠j+1 , ρ󸀠j )) and
supCrj h = sup∂Crj h. We define

hj(x) = h(rjx)

for x ∈ C δ
rj
and we have that

sup
C1

hj = sup
∂C1

hj .

Let x󸀠j ∈ ∂C1 where supC1 hj is achieved and set

fj(x) =
hj(x)
Mj

for x ∈ C δ
rj
, where Mj = hj(x󸀠j ). From the PDE for h we have that fj satisfies the following PDE:

LC fj = Ã(1)j ⋅ ∇
2fj +

1
|x| Ã
(2)
j ⋅ ∇fj +

1
|x|2

Ã(3)j fj ,

where Ã(i)j (x) = Ai(rjx) for x ∈ C δ
rj
and i = 1, 2, 3.
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Fix a set K ⊂⊂ C \ {0} and let K󸀠 be another set with K ⊂⊂ K󸀠 ⊂⊂ C \ {0} and x󸀠j ∈ K
󸀠. Notice that, from the

standard regularity theory for CMC hypersurfaces, we have that u, v ∈ C∞ thus the coefficients Ai , for i = 1, 2, 3
of the PDE are in C0,α(K󸀠) and since Ã(i)j are rescalings of Ai we have that [Ã(i)j ]α;K󸀠 ≤ M1rαj , where M1 is a con-
stant independent of j and [ ⋅ ]α;K󸀠 is the Hölder semi-norm in K󸀠 with exponent α. In particular, if we combine
with (3.1), we conclude that ‖Ã(i)j ‖0,α;K󸀠 → 0, as j →∞ for i = 1, 2, 3, where ‖f‖l,α;K󸀠 = ‖f‖l;K󸀠 +max|β|=l[Dβ f]α;K󸀠
denotes the Hölder norm in Cl,α . Thus from the C2,α-Schauder estimates, see [17, Theorem 6.1], we get that

‖fj‖2,α;K ≤ M3‖fj‖0;K󸀠 ,
where M3 is a constant independent of j.

From the Harnack inequality on K󸀠 and since xj ∈ K󸀠 and fj(xj) = 1 we have that ‖fj‖0;K󸀠 ≤ CK󸀠 infK󸀠 fj ≤ CK󸀠
where CK󸀠 is a constant that depends on K󸀠. Putting everything together we get that

‖fj‖2,α;K ≤ M4 ,

where M4 is a constant independent of j (and depending on K󸀠). From Arzelà-Ascoli theorem, after a diagonal
argument and passing to a subsequence that we still index with j, we have that

fj 󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
C2loc(C\{0})

f ∈ C2,α(C \ {0}).

From the uniform convergence of Ã(i)j on compact sets to zero, for i = 1, 2, 3, we get that LC f = 0 in C \ {0}. Fur-
thermore, (again passing to a subsequence) we have that x󸀠j → x0 ∈ ∂C1 and so f(x0) = 1. Thus from Harnack’s
inequality f > 0.

In conclusion, we have constructed a positive solution of LC f = 0, defined on C \ {0} for a stable minimal
cone C of ℝn+1, and satisfying

sup
C1

f = sup
∂C1

f.

The latter contradicts (3.7) and thus proves that ∂E ∩ Bδ = ∂F ∩ Bδ .

Step 4. Finally, we show that E ∩ B1 = F ∩ B1. Let

r0 = sup{r : ∂E ∩ Br = ∂F ∩ Br}

and note that the set overwhichwe take the supremum is non-empty due to the existence of δ, from the previous
step, and it is in fact amaximum. Assume for the contrary that r0 < 1 and let x0 ∈ ∂Br0 ∩ ∂F ∩ ∂E. Then by virtue
of Remark 4.2, we can consider a varifold tangent cone for |∂∗F| at x0, of the form |∂∗G|, with |∂∗G| stationary
(for the perimeter functional), and with spt |∂∗G| contained in a half space thanks to the condition F ⊂ E (more
precisely, the half space whose boundary is the tangent plane to |∂∗E| at x0). Then from [25, Theorem 36.5] we
have that |∂∗G| is a plane hence the regularity theory implies that we can find a neighbourhood Bρ󸀠 (x0)where
∂F is smooth and ∂F, ∂Emeet tangentially at x0. Since F ⊂ E and due to the variational equations satisfied by Jλ
themean curvature vectors point in the same direction at x0 thus the standardmaximum principle implies that
∂E ∩ Bρ󸀠 (x0) coincides with ∂F ∩ Bρ󸀠 (x0). In particular, since x0 is arbitrary and ∂Br ∩ ∂F is compact we can
find ϵ > 0 such that ∂E ∩ Br0+ϵ = ∂F ∩ Br0+ϵ contradicting the choice of r0. Thus r0 = 1 and we conclude that
E ∩ B1 = F ∩ B1.

5 Approximation

Lemma5.1 andTheorem5belowwill establish in particular the approximation results stated in the introduction,
Theorems 1 and 2. (One should identify B̂ − p in Theorem 2 with the ball BR below.)

We assume that E ⊂ ℝn+1 satisfies the following properties. The topological boundary agrees with ∂∗E and
T = ∂E contains 0, the hypersurface (T \ {0}) ∩ BR is smooth for some R > 0 (so the origin is an isolated singular-
ity for T), Eminimises Jλ in BR among Caccioppoli sets that coincide with E in B2R \ BR , a tangent cone to |∂∗E|
at 0 is regular (which means, it is smooth away from 0 and has multiplicity 1 on its regular part). In view of
Remark 4.4, |∂∗E| thus possesses a unique tangent cone at 0.
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Remark 5.1. We note that if n = 7, these properties can be fulfilled whenever we have a Caccioppoli set that
minimises Jλ locally. To begin with, one chooses a system of coordinates centred at a singular point, and R
smaller than the distance of this to any other singular point (which is possible thanks to the interior regularity
theory for minimisers). Moreover, (again by the regularity theory) any tangent cone must be smooth away from
the origin (for otherwise, the radial invariance would give a singular set of dimension at least one). Finally,
any tangent cone must have multiplicity 1 on its regular part since the rescaled varifolds |∂Eρi ,0| converge as
varifolds to |∂∗E0| (see Remark 4.2).

It may not be true, in the above situation, that E is the unique minimiser of Jλ , among Caccioppoli sets that
coincidewith E in B2R \ BR . However, by taking a slightly smaller R (which preserves all the assumptions above),
we can ensure said uniqueness, thanks to a standard argument that we now recall.

Lemma 5.1. Let E, T be as above. If R󸀠 < R, then E is the unique minimiser of Jλ among sets that coincide with E
in B2R \ BR󸀠 (and therefore also among sets that coincide with E in B2R󸀠 \ BR󸀠 ).
Proof. Let R󸀠 < R. Clearly, Eminimises Jλ in BR󸀠 amongCaccioppoli sets that coincidewith E in B2R \ BR󸀠 . Assume
that there exists a Caccioppoli set E󸀠 ̸= E that minimises Jλ in BR󸀠 among Caccioppoli sets that coincide with E
in B2R \ BR󸀠 . In particular, E󸀠 coincides with E in B2R \ BR , and on E󸀠 the energy Jλ attains the same value as
it does on E. Therefore E󸀠 is a minimiser of Jλ in BR , among Caccioppoli sets that coincide with E in B2R \ BR .
As such, its reduced boundary must enjoy the optimal regularity of minimisers, that is, ∂∗E󸀠 ∩ BR is a smooth
hypersurface (with mean curvature λ) away from a set Σ ⊂ ∂∗E󸀠 ∩ BR with dimH Σ ≤ n − 7. We aim to prove
that ∂∗E󸀠 coincides with ∂∗E (which is in contradiction with E󸀠 ̸= E and E󸀠 = E in B2R \ BR󸀠 ).

We define r ≤ R󸀠 by
r = inf{t : ∂∗E󸀠 = ∂∗E in B2R \ Bt}

and note that this is a minimum. The conclusion will follow upon establishing that r = 0. Assume r > 0. We
remark that for p ∈ ∂Br ∩ ∂∗E we must have that there exists a unique tangent cone to |∂∗E󸀠| at p, and it must
coincide with the hyperplane that is tangent to ∂E at p. (This follows from ∂∗E󸀠 = ∂∗E in B2R \ Br and the
smoothness of ∂∗E around p.) The regularity theory implies that ∂∗E󸀠 is smooth in an open ball Bn+1ρ (p) for
some ρ > 0. Recall however that

∂∗E󸀠 = (∂∗E󸀠 ∩ Br) ∪ (∂∗E ∩ (B2R \ Br)),

andwe have established that this is smooth in Bρ(p). Unique continuation implies that ∂∗E󸀠 ∩ Br coincides with
∂∗E ∩ Br in Bρ(p).

As p ∈ ∂Br ∩∂∗E is arbitrary and ∂Br ∩ ∂∗E is compact, it follows that ∂∗E󸀠 coincideswith ∂∗E in B2R \ Br−δ
for some δ > 0, contradicting the choice of r. Hence r = 0 and E󸀠 = E in B2R .

Remark 5.2. By taking R󸀠 sufficiently small we also ensure that λ < n
R󸀠 . Therefore, upon dilating B2R󸀠 to B2, we

have that the working assumptions stated in the next theorem are fulfilled.

Theorem 5. Let E be a set of finite perimeter in B2. Assume that T = ∂E = ∂∗E contains 0, the hypersurface
T ∩ (B2 \ {0}) is smooth, E is the unique minimiser for Jλ in B2 among Caccioppoli sets that coincide with E
in B2 \ B1, λ < n. Given r ∈ (0, 1), there exists a sequence of sets Ej that have finite perimeter in B2, such that
∂Ej ∩ Br is smooth for each j, it has constant mean curvature λνEj , where νEj is the inward unit normal to Ej ,
Ej ⊂ E, Ej → E and ∂Ej converge to ∂E smoothly on any Ω ⊂⊂ Br \ {0}.

Remark 5.3. We point out that the sequence Ej will be constructed without any dependence on r; however, we
will only prove that the boundaries ∂Ej ∩ Br are smooth for sufficiently large j, with dependence on r.

Proof. We divide the proof into three steps.

Step 1. The first step is to perturb the boundary condition E inwards, and then use this new boundary condition
to define Ej . The vector field νE is smooth in (B2 \ {0}) ∩ ∂E. Let d( ⋅ ) = dist( ⋅ , ∂E)be the signed distance function
to ∂E (taken to be positive in E and negative in its complement) and consider a tubular neighbourhood Nρ of
size ρ > 0 around ∂E ∩ (B 3

2
\ B 1

2
). Then the gradient of d is a smooth extension of νE to Nρ . Let χ be a smooth

function on B2 that is equal to 1 in (B 5
4
\ B 3

4
) ∩N ρ

2
and with support contained in (B 3

2
\ B 1

2
) ∩ {|d| < 3

4ρ}. Let
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X = χ∇d. Then X extends νE and we may consider the flow ϕt(x) of X. (We view X as a vector field in B2.) For
any t ∈ [0, δ), with δ > 0 sufficiently small, ϕt(E) ⊂ E. By construction ϕt(∂E ∩ ∂B1) is disjoint from ∂E ∩ ∂B1
for all t ∈ (0, δ), and ϕt(E) ∩ (B 5

4
\ B 3

4
) is strictly contained in E ∩ (B 5

4
\ B 3

4
).

The sequence Ej in the statement is built with the boundary condition Ej = ϕtj (E) in B2 \ B1, for a sequence
tj → 0. Namely, from Theorem 4 we may define Ej to be a minimiser of Jλ for said boundary condition; fur-
thermore, we have that ∂∗Ej ∩ B1 intersects ∂B1 only at its boundary, and is a smoothly embedded CMC
hypersurface-with-boundary away from a codimension 7 set.

Step 2. We show first that Ej → E as j →∞ as sets of finite perimeter (therefore [[Ej]] → [[E]] as currents,
hence ∂[[Ej]] → ∂[[E]] as well). This follows from the uniqueness property of E, as we now show. To begin
with, we have Jλ(Ej) ≤ Jλ(ϕtj (E)) (by the minimising property of Ej). By smoothness of X, using the area
formula we find that Jλ(ϕtj (E)) → Jλ(E) as j →∞. In particular, there exists a uniform upper bound for
Jλ(ϕtj (E)), and thus (since |Ej| ≤ |B2|) a uniform upper bound for PerB2 (Ej). Standard BV-compactness then
gives the existence of a subsequential limit Ej → D with |Ej| → |D| and (by lower semi-continuity of perimeter)
Jλ(D) ≤ lim inf j→∞ Jλ(Ej). Recalling the previous considerations, Jλ(D) ≤ lim inf j→∞ Jλ(Ej) ≤ Jλ(E). Finally, not-
ing that Ej ∩ (B2 \ B1) = ϕtj (E) ∩ (B2 \ B1) → E ∩ (B2 \ B1), we obtain that D = E in B2 \ B1 and therefore D is
a minimiser (among sets with finite perimeter that coincide with E in B2 \ B1). The uniqueness hypothesis on E
gives E = D.

Next wewill prove that Ej ⊂ E, for each given j. Considering the sets with finite perimeter Ej ∩ E and Ej ∪ E,
we have [[Ej ∩ E]] + [[Ej ∪ E]] = [[Ej]] + [[E]], so that ∂[[Ej ∩ E]] + ∂[[Ej ∪ E]] = ∂[[Ej]] + ∂[[E]]. Clearly we also have
Ej ∩ E ⊂ Ej ∪ E. This implies that atHn-a.e. x ∈ ∂∗(Ej ∩ E) ∩ ∂∗(Ej ∪ E) one must obtain the same half-space as
the unique blow up at x for both sets Ej ∩ E and Ej ∪ E, and therefore the measure-theoretic outer normals are
the same at x for both sets. The common orientationHn-a.e. gives the equality

𝕄(∂[[Ej ∩ E]]) + 𝕄(∂[[Ej ∪ E]]) = 𝕄(∂[[Ej ∩ E]] + ∂[[Ej ∪ E]]),

and therefore

𝕄(∂[[Ej ∩ E]]) +𝕄(∂[[Ej ∪ E]]) = 𝕄(∂[[Ej]] + ∂[[E]]) ≤ 𝕄(∂[[Ej]]) + 𝕄(∂[[E]]).

Noting that |Ej ∩ E| + |Ej ∪ E| = |Ej| + |E|, we conclude that

Jλ(Ej ∩ E) + Jλ(Ej ∪ E) ≤ Jλ(Ej) + Jλ(E).

On the other hand, since ϕtj (E) ⊂ E and Ej agrees with ϕtj (E) in B2 \ B1 we conclude that (Ej ∩ E) ∩ (B2 \
B1) = Ej ∩ (B2 \ B1) and (Ej ∪ E) ∩ (B2 \ B1) = E ∩ (B2 \ B1) thus the minimising properties of Ej and E imply
respectively that

Jλ(Ej ∩ E) ≥ Jλ(Ej), Jλ(Ej ∪ E) ≥ Jλ(E).

Combining the inequalities obtained,wefind that equalitiesmust hold throughout, and therefore Ej ∪ E is amin-
imiser of Jλ (among sets with finite perimeter that coincide with E in B2 \ B1), so that the uniqueness of E gives
Ej ∪ E = E, that is, Ej ⊂ E.⁴

Step 3. We conclude the proof of Theorem 5 by showing that, given any r < 1, the sequence ∂Ej ∩ Br is smooth
for large j (depending on r). To that end we will use the Hardt–Simon foliation provided by [19, Theorem 2.1].
First note that as a consequence of Allard’s interior regularity theorem, and of the smoothness of ∂E away from
the origin, wemust then have that, for any r < 1 and σ ∈ (0, r), there is C1,α convergence of ∂Ej to ∂E in Br \ Bσ .
By elliptic regularity, the convergence is in fact smooth, and ∂Ej ∩ (Br \ Bσ) is smooth for all sufficiently large j,
depending on the choice of σ, r.

4 We point out that the conclusion Ej ⊂ E would follow also without the uniqueness assumption on E, by exploiting interior regu-
larity for the minimiser Ej ∪ E in B1 to conclude that ∂∗Ej and ∂∗E cannot intersect transversely on their regular parts, and by then
applying the maximum principle and unique continuation to exclude tangential intersections.
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Let Σj denote the singular set of ∂∗Ej in B1 (which is of dimension at most n − 7). Let r0 < 1 be fixed and
let pj ∈ Σj ∩ Br0 . In view of the previous conclusion, we must have pj → 0 as j →∞. Also we remark that, by
Proposition 4.1, we must have 0 ∉ ∂∗Ej for all j, so pj ̸= 0 for all sufficiently large j. We will dilate Ej around 0 by
the homothety ηj(x) = x

|pj | . Then Ẽj = ηj(Ej) is a Caccioppoli set in B1/|pj |, in particular in B2 for all sufficiently
large j; moreover, the point p̃j =

pj
|pj | is singular for ∂

∗Ẽj and lies on ∂B1. Upon extracting a subsequence that
we do not relabel, we can assume that Ẽj → Ω and |∂∗Ẽj| converge to the (stationary) integral varifold |∂∗Ω|
in B2. The minimising property of Ej with respect to Jλ implies that Ω minimises perimeter in any compact set.
Moreover, as Ej ⊂ E, we have Ω ⊂ E0, where E0 is the blow up of E at 0 obtained from ηj . Then [19, Theorem 2.1]
(specifically, its final assertion) implies that either Ω = E0, or Ω belongs to the “Hardt–Simon family” of sets
Gs = η0,s(G), where η0,s( ⋅ ) = ⋅s , s > 0, and G ⊊ E0 has smooth minimising boundary. On the other hand, the
presence of a sequence of singular points pj ∈ ∂B1 implies, by Allard’s interior regularity theorem, that a sub-
sequential limit p ∈ ∂B1 of pj must occur with density ≥ 1 + ϵ0 in |∂∗Ω|, contradicting the smoothness and unit
density of ∂E0 and of ∂Gs (regardless of s) in a tubular neighbourhood of ∂B1. The contradiction shows that
Σj ∩ Br0 = 0 for all sufficiently large j, so that ∂Ej ∩ Br0 is a smooth hypersurface (for all sufficiently large j).

A Auxiliary results

We give a proof of the following general property.

Lemma A.1. Let D be a set with finite perimeter in B2. Then

∂[[D]] ∂B1 = ⟨[[D]], |x| = 1−⟩ − ⟨[[D]], |x| = 1+⟩ (A.1)

and
PerB2 D = PerB1 D + PerB2\B1 D +𝕄(⟨[[D]], |x| = 1

+⟩ − ⟨[[D]], |x| = 1−⟩). (A.2)

Proof. To check this, we begin by recalling that for an open set U ⊂ B2, one has PerU D = 𝕄(∂[[D]] U), and
𝕄(∂[[D]]) = 𝕄(∂[[D]] B1) +𝕄(∂[[D]] (B2 \ B1)) +𝕄(∂[[D]] ∂B1). Therefore (A.2) follows from (A.1).

We recall that the restriction of ∂[[D]] to ∂B1 is well-defined (since the current is normal) via the limit, for
any n-form ω with compact support in B2,

(∂[[D]] ∂B1)(ω) = lim
h→0
(∂[[D]])(γh(|x| − 1)ω),

where γh : (−∞,∞) → ℝ is C1, is identically 1 on (−h, h), vanishes on (−∞, −2h) ∪ (2h,∞), and γ󸀠 ∈ [− 2h , 0]
on (0,∞) and γ󸀠 ∈ [0, 2h ] on (−∞, 0). Then

(∂[[D]] ∂B1)(ω) = lim
h→0
([[D]])(γ󸀠h(|x| − 1)d|x| ∧ ω) + limh→0

([[D]])(γh(|x| − 1) dω⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
→ 0 as h→ 0

)

= lim
h→0
([[D]])(γ󸀠h(|x| − 1)d|x| ∧ ω).

(A.3)

On the other hand, let γ+h : (−∞,∞) → ℝ be C
1, identically 0 on (−∞, 0), and equal to 1 − γh on [0,∞). Let

γ−h : (−∞,∞) → ℝ be defined by γ
+
h(s) = γ

−
h(−s). Note that γ

+
h + γ
−
h + γh = 1. Then

⟨[[D]], |x| = 1+⟩(ω) = −∂([[D]] {|x| > 1})(ω) + (∂[[D]] {|x| > 1})(ω)
= − lim

h→0
[[D]](γ+h(|x| − 1)dω) + limh→0

[[D]](d(γ+h(|x| − 1)ω)) = limh→0
[[D]]((γ+h)

󸀠(|x| − 1)d|x| ∧ ω))

and similarly
⟨[[D]], |x| = 1−⟩(ω) = − lim

h→0
[[D]]((γ−h)

󸀠(|x| − 1)d|x| ∧ ω)).

Therefore
(⟨[[D]], |x| = 1+⟩ − ⟨[[D]], |x| = 1−⟩)(ω) = − lim

h→0
[[D]]((γh)󸀠(|x| − 1)d|x| ∧ ω)),

which, jointly with (A.3), gives (A.1).
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We provide the details regarding the positive solutions to the linear elliptic PDE LC f = 0, which is crucial in the
proof of Proposition 4.1.

Lemma A.2. Let C be a regular stable minimal n-cone in ℝn+1. Then every positive solution of LC f = 0 is of the
form

f(rω) = (
c+1
rγ+ + c

−
1
rγ− )ϕ1(ω),

where ϕ1 > 0 is the first eigenfunction of LΣ , and c+1 , c
−
1 are non-negative constants.

Proof. Weassumefirst that the cone is strictly stable thus γ+ > γ−. Consider the eigenvalues of the operator−LΣ ,

λ1 < λ2 ≤ λ3 ⋅ ⋅ ⋅ → ∞

and let (ϕj) be an orthonormal basis of L2(Σ) such that ϕj is an eigenfunction of λj . Recall that ϕ1 > 0 and λ1 is
a simple eigenvalue.

For any r > 0 the function f(r, ⋅ ) (on Σ) is of the form ∑∞j=1 aj(r)ϕj(ω). Thus in order to solve LC f = 0 we
write LC in spherical coordinates and from (3.6) we get, after solving the corresponding ODE for aj , that

aj(r) = c+j r
−γ+j + c−j r−γ−j ,

where γ±j =
n−2
2 ± √

(n−2)2
4 + λj and c

±
j are constants. Thus

f(rω) =
∞
∑
j=1
c±j r
−γ±j ϕj(ω).

Let us prove that c±j = 0 for all j ≥ 2. As LC f = 0 and f > 0 from Harnack’s inequality on K1 = C ∩ (B2 \ B 1
2
),

[17, Corollary 8.21], we have that supK1 f ≤ CK1 infK1 f, where CK1 is a constant that depends on K1 and the opera-
tor LC . Let now Ks = C ∩ (B2s \ Bs/2), for some s > 0 to be fixed later. Notice that if we rescale fs(x) = f(sx), then
the scale invariance of the operator LC implies that

sup
Ks

f ≤ CK1 infKs
f.

We want to evaluate the L2-norm of f on Ks with respect to the cone metric gC = dr2 + r2gΣ . First note that

‖f‖L2(Ks) ≤ (H
n(C ∩ K1)sn)

1
2 sup

Ks
f = C(K1 ,n,Σ)s

n
2 sup

Ks
f,

where C(K1 ,n,Σ) denotes a constant that depends on K1 , n, Σ that may vary from line to line. On the other hand,
since ϕj is an orthonormal basis of L2(Σ), we have

‖f‖L2(Ks) = (
2s

∫
s/2

∞
∑
j=1
(c±j )

2r−2γ
±
j rn−1 dr)

1
2

= (
∞
∑
j=1
(c±j )

2sn−2γ
±
j (
2n−2γ

±
j − 22γ

±
j −n

n − 2γ±j
))

1
2

,

and since 2x−2−x
x ≥ 1 for any x ∈ ℝ \ {0}, we conclude that

‖f‖L2(Ks) ≥ s
n
2 (
∞
∑
j=1
(c±j )

2s−2γ
±
j )

1
2

.

The three inequalities thus give

C(K1 ,n,Σ)(
∞
∑
j=1
(c±j )

2s−2γ
±
j )

1
2

≤ inf
Ks
f ≤ f(r, ω)

for all r ∈ [ s2 , s] and ω ∈ Σ. Multiplying the latter with ϕ1, and integrating over Σ, we get

C(K1 ,n,Σ)(
∞
∑
j=1
(c±j )

2s−2γ
±
j )

1
2

≤ c+1 r
−γ+1 + c−1 r−γ−1
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for all r ∈ [ s2 , 2s]. Thus we may take r = s and get that

C(K1 ,n,Σ)(
∞
∑
j=1
(c±j )

2s−2γ
±
j )

1
2

≤ c+1 s
−γ+1 + c−1 s−γ−1 . (A.4)

Multiplying now (A.4) by sγ+1 , we have that
C(K1 ,n,Σ)(

∞
∑
j=1
(c±j )

2s2γ
+
1−2γ

±
j )

1
2

≤ c+1 + c
−
1 s

γ+1−γ−1 .
In order to prove that c+j = 0 for all j ≥ 2 first note that ∑

∞
j=2(c
+
j )

2 < ∞ (by Parseval’s identity it is bounded
by ‖f‖L2(Σ)), and recall that γ−j ≤ γ

−
2 < γ
−
1 < γ
+
1 < γ
+
2 ≤ γ
+
j for all j ≥ 2. Thus for any E > 0 there exists s0 > 0 such

that s ≤ s0 implies s2γ
+
1−2γ

+
j > E2 for every j, and moreover sγ+1−γ−1 < 1

|c−1 | thus we obtain
E2
∞
∑
j=2
(c+j )

2 ≤ C(K1 ,n,Σ)(c+1 + 1)
2 ,

which gives a contradiction for sufficiently large E unless c+j = 0 for all j ≥ 2. If we instead multiply (A.4) by s
γ−1

and choose s sufficiently large, a similar argument leads to a contradiction unless c−j = 0 for all j ≥ 2.
It remains to show that c+1 , c

−
1 ≥ 0. Assume for the contrary that c

+
1 < 0. Then

rγ+ f = c+1ϕ1 + c−1 rγ+−γ−ϕ1 ,
and letting r → 0 we get a contradiction. A similar argument gives c−1 ≥ 0.

In case the cone is not strictly stable, thus γ+ = γ− = n−2
2 , then the expression of the function f is given by

f(rω) = c+1 r
−γϕ1(ω) + c−1 log r ϕ1(ω) +

∞
∑
j=2
c±j r
−γ±j ϕj(ω)

and repeating the same computations as abovewewill get that c−1 = c
±
j = 0 for all j ≥ 2, thus f(rω) = c

+
1 r−γϕ1(ω),

where c+1 is a non-negative constant. This concludes the proof of Lemma A.2.
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