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Abstract: We consider a CMC hypersurface with an isolated singular point at which the tangent cone is regular,
and such that, in a neighbourhood of said point, the hypersurface is the boundary of a Caccioppoli set that
minimises the standard prescribed-mean-curvature functional. We prove that in a ball centred at the singularity
there exists a sequence of smooth CMC hypersurfaces, with the same prescribed mean curvature, that converge
to the given one. Moreover, these hypersurfaces arise as boundaries of minimisers. In ambient dimension 8 the
condition on the cone is redundant. (When the mean curvature vanishes identically, the result is the well-known
Hardt-Simon approximation theorem.
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1 Introduction

It is well known that variational constructions for area-type functionals may lead to singularity formation.
Already in the widely studied case of area minimisation for hypersurfaces, if the ambient dimension is 8 or
higher, solutions cannot be expected to be completely smooth. The case of volume-constrained perimeter min-
imisation, which leads to isoperimetric regions, is analogous: in R"*!, or more generally in an (n + 1)-dimensio-
nal Riemannian manifold, such regions have boundaries that are smoothly embedded away from a possible sin-
gular set of dimension at most (n — 7); when n = 7, the singular set is made more precisely of isolated points. The
phenomenon arises yet again in the case of minimax constructions for prescribed-mean-curvature functionals.

Examples show that this singular set is in general unavoidable. The well-known minimal cone C4 4 = {(X,y) €
R* x R* = R® : x| = |y|?} (shown to be stable by Simons [27]) is smooth away from the isolated singularity at the
origin, and is area-minimising, e.g. in any ball B ¢ R®, with respect to the boundary condition C44 N dB. This
was proved by Bombieri, De Giorgi and Giusti ([6], see also a more straightforward proof in [13]). This cone is
in fact the unique minimiser for said boundary condition. An isoperimetric region with two isolated singular
points in an 8-dimensional Riemannian manifold was recently constructed in [23].

On the other hand, it is fruitful to ask whether the appearance of singularities is a generic phenomenon. This
question led to very important progress already in the 80s and has received renewed attention in recent years.
The fundamental work by Hardt and Simon [19] shows an instance of generic regularity for solutions to the
Plateau problem, in the following sense. Let a 7-dimensional area minimiser in R® be given, with (prescribed)
6-dimensional smooth boundary I', and with an isolated singular point; then a slight perturbation of T yields
a minimiser that is completely smooth. This type of result lends itself to geometric applications, by shifting the
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genericity condition onto the Riemannian metric, as exemplified by Smale’s proof of generic regularity of area-
minimisers in any non-zero homology class [28]. (We also refer the reader to [9, 21].) Very recently, the question
of generic regularity for area minimisers has found affirmative answer in ambient dimension 9 and 10, in the
work by Chodosh, Mantoulidis and Schulze [10], making progress on a long-standing conjecture [28].! We also
refer the reader to [8] and references therein, for generic regularity in the setting of mean curvature flow.

Our main goal here is to prove a (local) smooth approximation result in the constant-mean-curvature (CMC)
case, establishing a generic regularity result for the CMC Plateau problem analogous to the one proven in [19]
(in particular, if the mean curvature vanishes identically, the Hardt-Simon theorem gives the result). The varia-
tional setting for CMC hypersurfaces involves an energy that we will denote by J,, where A € R is the prescribed
constant value of the scalar mean curvature. Roughly speaking, J, evaluates the n-dimensional area of the hyper-
surface, from which it subtracts A times the (n + 1)-volume enclosed by it. A natural way to formalise this is by
working with boundaries of sets with finite perimeter. We briefly recall the relevant notions (with more details
in Section 2 below).

Let E c U be a set with locally finite perimeter in a bounded open set U c R™!, and let A € R. We denote
by J; the functional (defined on any set D ¢ U with locally finite perimeter in U),

Ja(D) = Pery(D) - A|D|,

where the notation |D| stands for £"*1(D). Given W cc U, the set E is said to be a minimiser of J; in W ¢ U if
it attains the following infimum:

inf{J3(D): DN (U\ W) = En(U\ W)}

In other words, the class of competitors for E is that of sets (with locally finite perimeter in U) that coincide with
E outside W. Equalities and inclusions between sets of locally finite perimeter are always understood to hold
in the £"*1-a.e. sense. Prescribing the set in U\ W amounts to fixing the boundary condition for the Plateau
problem in W (as customary in the setting of Caccioppoli sets).

If E is a minimiser of J; in W cc U, it is well known (see e.g. [4, 18, 22]) that there exists a set £ ¢ W with
dimg¢(Z) < n - 7, such that (8*E n W') \ £ is smoothly embedded in W’ for every open set W' cc W, and that
(0*En W'\ T has constant scalar mean curvature equal to A. Here 0*E denotes the reduced boundary of the
set E. (More precisely, the mean curvature vector is Avg, where vg is the unit normal pointing into E.)

The most immediate instance of our result states the following.

Theorem 1. Let E be a set with locally finite perimeter in an open set U ¢ R®, and assume that E minimises J in a
ball B cc U, for a given A € R. There exists a ball B c B, with the same centre, and a sequence of hypersurfaces T;
smoothly embedded in B, with scalar mean curvature A, and with T; — 0*E in B. (The convergence holds in the
sense of currents, in the sense of varifolds, as well as in the Hausdorff distance sense.) Moreover, Tj = 0*Ej, where
each E;j is a set with finite perimeter in B and 0* E; stands for the reduced boundary of Ej in B, and we have Ej C E
and Ej — E in B.

We remark that the significance of Theorem 1 lies in the fact that the centre p of B may be a singular point
of 9*E.

In ambient dimension 8, as in Theorem 1, isolated singular points are the only type of interior singularities
that 8* E may possess. This is no longer the case when the ambient dimension is higher. Just as in [19], we can
remove the dimensional restriction in Theorem 1by (strongly) restricting the singular behaviour of E (Theorem 2
below). We work in a neighbourhood of an isolated (interior) singular point p of 8* E, with the further property
that the multiplicity-1 varifold associated to 6* E, denoted by |0 E|, admits a tangent cone at p that is regular. We
recall that a cone is regular when it is smooth away from the vertex, and the multiplicity is 1 on the smooth part.

Theorem 2. Let E be a set with locally finite perimeter in an open set U ¢ R™*, with n > 7, and assume that
E minimises [, in a ball B cc U, for a given A € R. Assume furthermore that the centre p of B is an isolated
singularity of |0*E| and that |0*E| admits a tangent cone at p that is regular (in the sense of varifolds). There

1 After the appearance of this article, dimension 11 was also addressed, see [11].
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exists a ball B c B, with the same centre p, and a sequence of hypersurfaces T; smoothly embedded in B, with
scalar mean curvature A, and with Tj — 3*E in B. (The convergence holds in the sense of currents, in the sense
of varifolds, as well as in the Hausdorff distance sense.) Moreover, Tj = 0* E;, where each E;j is a set with finite
perimeter in B and 0* E; stands for the reduced boundary of Ej in B, and we have E; c E and E; — E in B.

Remark 1.1. By construction, for each j the set E; is a minimiser, more precisely, it is given by f;‘j N B for a set
with finite perimeter E; ¢ B that minimises J; in B ¢ B (among sets that coincide with E; in B \ B). The mean
curvature vector of [0*Ej| in B is given by Aij, where vg; is the inward pointing unit normal.

Remark 1.2. The regularity theory for n = 7 implies not only that the singular set is made of isolated points, but
also that any varifold tangent cone (at a singular point) must be regular, via a standard dimension reduction
argument. Therefore Theorem 1 follows from Theorem 2.

Remark 1.3. In the special case A = 0 Theorems 1 and 2 were proved in [19] (see also [10]). Our proof relies on
the result for A = 0.

Remark 1.4. Inboth Theorems 1 and 2, the convergence Tj — 9*E is strong (graphical and C*)in B \ {p}, thanks
to Allard’s regularity theorem and standard elliptic PDE theory.

Remark 1.5. Theorems 1 and 2 lend themselves applications in geometry, such as the surgery procedure in [3]
(where a generic existence result for smooth CMC closed hypersurfaces in compact Riemannian 8-dimensional
manifolds is proved).

In proving Theorem 2 (which we will do in Section 5, see Theorem 5) we establish a result of independent interest
on the existence and regularity of minimisers of J,, for the CMC Plateau problem. We present here a simplified
version (sufficient for its scope within the proof of Theorem 2). The more general result requires some notation
and will be given in Theorem 4 of Section 2.

Theorem 3. Let E be a set with finite perimeter in U = Bz“(p). LetA € (0,00) andr € (0, &), withr < R. Assume
that 0Ey is smooth in a neighbourhood of dB'(p) and that it intersects dB"*'(p) transversely; let T, denote
(the (n — 1)-dimensional submanifold) 0Ey N aB?”(p). There exists a set E, with finite perimeter in Bﬁ*l(p), that
coincides a.e. with Ey in Bﬁ*l(p) \ B™*1(p), that is a minimiser of J, in B**1(p) c Bl’é”(p), and with the following
properties:

« Thereexists L c B! (p), closed in BM'(p), with dimy(Z) < n — 7 such that (3*E n BM'(p)) \ £ is a smoothly
embedded hypersurface with mean curvature Avg, where v is the inward unit normal to E; more precisely,
L=0ifn<6 andXisdiscreteifn=717.

« 9*ENaBM(p) = T,.

In the more general formulation that we will provide with Theorem 4, both smoothness and transversality
conditions will be removed (see also Remark 2.4).

The “boundary condition” in Theorem 3 is set by prescribing the coincidence a.e. with a reference set Ey
(the condition r < R provides an annulus in which Ej is non-trivial). The submanifold Ty acts as prescribed
boundary condition for the hypersurface that we seek. The last conclusion of the theorem states that the solution
does not touch B"*1(p) except at Ty. So *E N B™*1(p) \ L is a smooth hypersurface with boundary in the open
set Bl’;*l(p) \ Z. (Since Ty is smooth, £ does not accumulate onto Ty by Allard’s boundary regularity theorem, [2];
this property is not needed in our forthcoming arguments.)

While the existence of a minimiser follows for any 4, the condition A < 2 is essential for the last conclusion
of Theorem 3, as well as for the verification of the prescribed mean curvature condition. We will discuss this with
examples in Remark 2.3; when A > Z, the hypersurface may in fact touch 0B}* 1(0) away from its boundary T.

Theorem 3 (and Theorem 4 below) and its proof are close in spirit to the results in Duzaar and Fuchs [15] (and
Duzaar [14]). We highlight that our last conclusion in Theorem 3 is sharper than the corresponding statement
in [14, 15], since we are able to rule out any interior touching of the solution with the “obstacle” dB"**!(p) in
which the boundary condition Tj lies (the only touching is the necessary one at T itself). The results in [14, 15],
while establishing the validity of the CMC condition, would only prevent touching of the solution with larger
spheres. The sharper conclusion we obtain is ultimately due to our use of the regularity theory for stable CMC
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hypersurfaces developed in [4, 5] (with the sheeting theorem therein being the key ingredient in our proof). The
same reasoning that we employ to that end (see Lemma 2.4 and the discussion preceding it) can be applied to
sharpen the corresponding conclusion in [15] (where the relevant class is that of integral currents, rather than
boundaries of Caccioppoli sets).

We are now ready to present an outline of the proof of Theorem 2, setting p = 0. By fairly standard argu-
ments, there exists a sufficiently small ball centred at 0, which we denote by B, R(O), such that E is the unique
minimiser of J; in Br(0) ¢ Bor(0), and with the further requirements that A < % " and that 0E meets 0Bz (0)
smoothly and transversely.

Then we perturb E towards its interior (keeping it fixed outside an annulus that contains d Bz (0)) and use the
resulting set as ‘boundary condition’ in Byz(0) \ Br(0) for a CMC Plateau problem. The perturbation is indexed
on j and tends to the identity as j — oo, and we denote the deformed set by E; c E. For each j we find a min-
imiser of J; with said boundary condition; note that Theorem 3 applies here. Theorem 2 follows by showing the
existence of a sufficiently small ball centred at 0 in which, for all sufficiently large j, 9* E; are smooth. Arguing
by contradiction, we assume the existence of singular points p; € a*_E] p; — 0.If the condition p; # 0 is valid
(for all sufficiently large j) then we dilate E; around 0 by scaling Bz(0) to B o (0). Using [19], we check that the
limit of these rescalings of 0*E; has to be either one of the leaves of the Hardt Simon foliation, or the tangent
cone C to 3*E at 0: in either case we find a contradiction to the smoothness respectively of the leaves, or of the
cone (at points at distance 1 from the origin).

Therefore we have to establish the condition p; # 0. By construction E; ¢ E and both boundaries are hyper-
surfaces with the same scalar mean curvature, and with mean curvature vectors both pointing inwards. We
thus show that the inclusion is strict everywhere by proving an instance of a singular maximum principle for
CMC hypersurfaces, see Proposition 4.1 below. Its proof (by contradiction) relies on a linearisation argument that
yields a non-trivial Jacobi field on the cone C (an analogous argument appears in [19] in the minimal case), com-
bined with Simon’s result [24], which gives a quantitative decay of 8* E towards C at small scales. The resulting
behaviour of the Jacobi field is in contradiction with the ones that are known [7] to be permitted by the stability
of the cone (stability follows from the minimising condition for E).

2 Prescribed CMC Plateau problem

In the following we denote by By the open ball Bﬁ”(O) c R™1, Let Eq be a set of finite perimeter in By, that is,
Ey c By is measurable and the perimeter of Ej in By is finite,

Perp, (Eo) = sup{J div T dL™ : T e CL(By; R™), sup|T| < 1} < 00,
Eo
where £"*! denotes the Lebesgue measure on R™*'. This is equivalent to the requirement that the characteristic
function yg, € BV(B,), thatis, the distributional gradient Dy, is a vector-valued Radon measure with finite total
variation in Bj.
For A > 0 we will be interested in the following energy, defined on the class of sets of finite perimeter in B;
that coincide with the given Ey in B \ By:

JA(E) = Perg, (E) - A|E|,
where |E| = L™(E) = H"™(E) is the (n + 1)-volume of the Caccioppoli set E ¢ B;. (The Lebesgue measure

L™ agrees with the Hausdorff measure ™! in R"*1.) This class is non-empty, since E is one such set, and
Ja(Ep) < 00, hence it makes sense to seek a minimiser of J in this class.

Lemma 2.1. There exists aminimiser F of ], in the class of sets with finite perimeter that coincide with the given E;
in Bz \ Bl.

Proof. We will use the direct method. Let Ej, for j € N\ {0}, be a minimising sequence (of sets in the admissible
class), that is

jErBO]A(Ej) =1inf{J3(E) : £ € BV(B2), XElB,\B, = XEo|Bs\B, }-
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For all sufficiently large j we must then have
Ja(Ej) = Perg,(Ej) — A|Ej| < Ja(Eo) + 1 = Perp,(Eo) — A|Eq| + 1,

from which
PerBZ(Ej) < PeI‘BZ(Eo) - /1|E0| + /1|E]| +1< PEI'BZ(E()) + )l|Bz| +1.

Therefore Perg, (E;) are uniformly bounded above and there exist (by BV compactness) a set of finite perime-
ter F in By and a subsequence (that we do not relabel) E; such that XE — XF in BV(B3). In particular, XE; = XF
in L1(By), so that |E;| — |F|; moreover, by the hypothesis that E; = Eq on B, \ By, we have also that F = Eg
on B3 \ By. The lower semi-continuity of perimeters then gives J(F) < liminf;_,, J2(Ej), therefore F minimises
J in the admissible class. O

The energy J; is relevant in many variational problems. The geometric significance of J, lies in the fact
that it should select, as its critical points, sets whose boundary is a hypersurface with constant mean cur-
vature A. With the set up above, we are using Ey to prescribe a boundary condition (in the sense of the Plateau
problem). If 0E; is smooth and intersects dB; transversely, then the set up amounts to fixing 0Eq N dB; as
(n - 1)-dimensional boundary data, and looking for a (n-dimensional) CMC hypersurface-with-boundary, with
mean curvature A, and whose boundary is Ey N dB;. The hope is to obtain this hypersurface-with-boundary
as OF \ (8Ey N (Bz \ By)) (if AF is smooth).

Remark 2.1. If A < 0 and F is a minimiser of |3 in By ¢ By, then U\ F is a minimiser of J; in B1 ¢ B, (and vice
versa), so we only treat the case A > 0 (and all results extend in a straightforward manner to A < 0). This follows
from the fact that complementary sets have the same perimeter (in an open set).

A well-known consequence of the minimising property is that the integral varifold V (in B,) defined by
V=10"F\(9"Eo N (B2 \ B))l

(the notation |- | denotes the multiplicity-1 varifold associated to a rectifiable set) has first variation in B;
represented by the vector-valued measure

/1([]-{’1 L (a*F N B1))Vvr,

where vr is the (measure theoretic) inward unit normal (:{"-a.e. well-defined on 8* F). Indeed, given any vector
field X € C%(Bl ;R™1), we can consider, for § > 0 sufficiently small, the one-parameter family of diffeomor-
phisms @; = Id + tX for t € (-6, §). For every such t, we have ®; = Id on By \ By and therefore the set ®.(F)
remains in the admissible class for every t. The image of V under ®, is |8*®(F) \ (8*Eo n (B3 \ B1))!.

This permits to write the stationarity condition for V with respect to the energy J;, which gives (see
e.g. [22, Chapters 17 and 19])

Jdiva*FXdV+)l J(vp . X)dV =0
and the desired conclusion. The candidate V thus has the correct mean curvature in Bj.

Remark 2.2. The notation | - | has been (and will be) employed to denote the (n + 1)-volume when the argument
is a Caccioppoli set (as in |E| above), and to denote the multiplicity-1 (n-dimensional) varifold associated to an
n-dimensional rectifiable set (as for V above). The context and the different character of the argument should
avoid any confusion.

Next we are going to examine when it is possible to conclude this same condition away from the prescribed
boundary: the missing analysis at this stage is the behaviour at points that potentially lie on 0B but are not
part of the prescribed boundary. We begin by pointing out that, if the vector field X is non-zero somewhere
on 0By, then the above argument breaks down, since a one-parameter family of diffeomorphisms with initial
speed X may map F to a set that is not in the admissible class (no matter how small § is). In fact, the minimiser
may just fail to have mean curvature A when A > n, as the following examples show.

Remark 2.3. Let H be the half-space {xp+1 < 0} and Eqg = H N B,. Then for any given A > n the minimisation
procedure fails to produce a set whose boundary is a CMC hypersurface-with-boundary with mean curvature A
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and boundary condition 0 H N 8B. (In fact, the unique minimiser F is given by Eo U B for all A > n.) To see
that, we observe that, for any given possible value v € [@, |B1|], the (unique) perimeter-minimiser with vol-
ume v in Bj, that coincides with Ey in By \ By, is given by the set Ey U E,, where E, is the ball of radius r
centred at the point (0,...,0,—Vr% — 1), where r > 1 is chosen so that |E, N By| = v. Similarly, for any given
possible value v € [En B4] € [0, @], the perimeter-minimiser with volume v in By, and that coincides with Ej
in B, \ By, is given by the set Eq \ E,, where E, is the ball of radius r centred at the point (0,...,0, Vr2 - 1),
where r > 1 is chosen so that |E, N By| = |B1| — v. The minimisation property just claimed is checked by a cali-
bration argument, using the fact that dE, n By (and, similarly, dE, n By) is a CMC graph on B{‘ ¢ R" = R" x {0}.
(See e.g. [4, Appendix B].) With this understood, the minimiser of J, (for any A) has to be one of the minimising
sets that have been exhibited for each possible value of v. Each of these minimisers has scalar mean curvature
in [-n, n] (away from B, \ By). Hence for any A > n the minimisation procedure will not produce the desired
CMC hypersurface of mean curvature A. (By direct computation, one can check that the lowest value of J; for
A > nis attained by Eg U By.)

In the case A = n + 1 one can alternatively see that the minimiser is Eq U By by arguing as follows. Given any
Caccioppoli set D that coincides with Ep in B; \ By, consider the (n + 1)-current C = [Eg U B1] — [D]. Denoting
by (7 the interior product with T, we define the n-form = (7(dx' A--- A dx™1), with T = (x1, ..., Xns1). Then

dp = (divT)dx* A--- AdxX™! = (n+ Ddx A~ A dx"™L,

We note that C is supported in By, so it can act on df (by introducing a cut off function thatis 1 on By and vanishes
outside By). Then the equality C(df) = (9C)(B) gives o[Ey U B1](B) — (n + 1)|Ep U B1| = 8[D](B) — (n + 1)|D|.
Finally, we note that

O[Ey U B1]](B) = P(EI'BZ (Eg UBy) — PeI‘BZ\EH + i}fn(aBz),

while
0[DI(B) < Perp,(D) - Pery, \5-(H) + H"(8B3),

which gives that J,,.1(Eq U B1) < Jn+1(D), that is, Eg U By is a minimiser. In fact, the inequality is not strict if and
only if 8*D \ (B \ By) is a.e. orthogonal to T and contained in dBj, which shows that Ey U By is the unique
minimiser.

Before proceeding further we set up some notation. The integral (n + 1)-current [E] in B, admits a well-defined
(outer) slice ([Eo], x| = 1*) = —=8[Eo N (B2 \ B1)] + ([Eo]) L (B \ By). (See e.g. [16, Section 2.5].) This (outer)
slice also coincides with ([F], |x|] = 1*). Let Ty denote the (n — 1)-dimensional current

To = —9([Eol, x| = 1*) = ~0((0[Eol) L (B2 \ B1)).

Then the Plateau problem under consideration seeks an integral n-current with boundary T,. Note that
O[F] = 0[FnB1] + 0[[Eo N (B2 \ B1)] so

S := O[F n B1] - ([F1, Ix| = 1*) = O[F] - (8[Eo]) L (B2 \ B1)

has boundary 0S = Ty. The integral n-current S is our candidate (hypersurface-with-boundary) solution to the
Plateau problem. We let
8= a*F\ (a*EO N (B3 \ By)).

Then S = (8,1, —  vr), where * is the Hodge star (so vr A xVr gives the positive orientation of R"™1) and v
is the unit inward (measure theoretic) normal for F on its reduced boundary. Also note that V = v(8, 1) is the
associated varifold (with notation from [25]).

We turn our attention to the analysis of the first variation (with respect to J;) of V on B; \ spt Ty. Combining
Lemma 2.1 with Lemmas 2.2, 2.3, 2.4 below, we will in particular prove the following overall result.

Theorem 4. With the above setting and notation, let A € (0, n). In the class of sets with finite perimeter that
coincide with the given Ey in By \ By there exists a minimiser F of J,, and there exists a set ¥ c By with
dimg¢ X < n -7, such that (spt V\ spt Tp) \ £ is a smoothly embedded CMC hypersurface with mean curvature
vector Ave. If n = 7, more precisely, ¥ is made of isolated points (possibly accumulating onto spt Ty). Moreover,
spt V\ spt Ty C By.



DE GRUYTER C. Bellettini and K. Leskas, Smooth CMC approximations = 7

Remark 2.4. By scaling and translating, the theorem can be stated replacing B4, By and (0, n) respectively with
BM(p), Byt L(p), (0, ). Moreover, the role of B}’ L(p) is only to provide an annulus in which Ey is non-trivial,
so 2r can be replaced by any radius R > r. Theorem 3 is thus a special case of Theorem 4, and in the case of
Theorem 3 the accumulation of £ onto Ty is ruled out by [2]. We also recall that, as well as the varifold V, we
can associate to the minimiser F an integral n-current S such that S = T (see above for the definition of S).

Our first result on the first variation (with respect to J;), Lemma 2.2, is valid for any A and yields a sign con-
dition and an upper bound. The analysis needs to be carried out only in a neighbourhood of an arbitrary
p € 0By \ spt Ty (since sptV ¢ B1 and we have established that the first variation is 0 in By). This result is the
analogue of [15, Theorem 4.1]. Here we keep using the notation introduced above (e.g. vr, V, 8, To).

Lemma2.2. LetX € C%(Bz \ spt To; R™1). Then the first variation with respect to J; of V evaluated on the vector
field X (equal to the left-hand-side of the following expression) satisfies

JdivSXd}f"LS 2 j(vF-X) dH LS = J(X~N) am,
where M is a positive Radon measure supported in 0By and N = —ﬁ (for x # 0). Moreover,
M < (divs N + A(vp - N))dH" L (8 n 0B1)

(as measures).

Proof. Letp € dB1 \ spt T and consider B,(p) C Bs \ sptTo.In the first part of the proof, we analyse the action
of the first variation on a vector field of the type nN, where n € C%(Br(p)), n >0.Letd(-) =dist(-, dB1), where
dist is the signed distance, taken to be positive in By and negative in B; \ B;. Note that in any tubular neighbour-
hood of dB; we have that d is smooth and its gradient is N. Given € > 0, let f; : R — R be a C! function such
that f = 0 on [2€, 00), fe = 1 on (~00, €] and f' < 0. We consider the following one-sided (s € [0, o], with sg > 0
sufficiently small, depending on €) one-parameter family of diffeomorphisms:

#s(2) = 2 + s n(2)(fe o d)(2) N(2).

The reason for the one-sided restriction, s > 0, is that we need to ensure that we stay in the admissible class
when deforming via ¢, which we check next.

Since S = Ty, and sptS ¢ By, by the conditions on ¢, we also have 0(¢s);S = To and spt(¢s)yS € B;.On
one hand we have S + ([F], |x| = 1*) = 0[[F n B4], therefore (for any o € [0, s¢])

(90)4S + (9o)¢([F, Ix] = 17) = 8(¢o)s [F N B1].

On the other hand, letting ®(s, z) = ¢5(z) for s € [0, o] (this is a homotopy between the identity ¢y and ¢5 on By)
we obtain, from the homotopy formula,

(9o)g(IFD, IxI = 1%) = ([F1, Ix] = 17) = 8(@4([0, o] x ([F1, x| = 1%))).

Next we check that -®;([0, a] x ([F], |x| = 1*)) is a Caccioppoli set. Note that ®(s, - ) only acts on z € By in this
case. The map ®|o,4xa8, : [0, 0] X 0B1 — By is Lipschitz and orientation-reversing wherever its differential is
injective, moreover it is injective on the set where its differential is non-degenerate. Therefore, since [0, o] x
([F1, x| =1*%)isa Caccioppolisetin R x 0By, soisits negative pushforward (e.g. by employing the image formula
for integral currents, see e.g. [16, p.149] or [25, 26.21(2)]). We finally note that —®4([0, o] x ([F], |x| = 1*}) is
disjoint from (¢¢)s [F N B1]. Indeed, ®([0, o] x 0B1) is contained in {x € By : |[x - ﬁl < Gn(wxl)},while theimage
¢s(B1) is contained in {x € By : [x — ﬁl > oq(wxl)}. We can therefore conclude that

(96)3S + ([F], Ix| = 1) = 8[F,],
where F, is the Caccioppoli set

Fg = ($o)t[F 0 B1] - ©4([0, 0] x ([F], Ix| = 1%)).
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Recalling that F and E, agree in By \ B1, and since F, c By, we set
Fg = FsU(F N (B2\B1))
and conclude that (the following is an identity between currents in By)
(¢5)4S + (O[Eo]) L (B2 \ B1) = [ Fsl,

with Fy a set of finite perimeter in B, that coincides with Ey in By \ By (that is, it is in the admissible class).

The previous conclusion permits to use the minimising property of F, as we are allowed to compare the
energy with that of F, (for any o € [0, S¢], So depends on €). For € > 0 fixed, we can write (from the minimising
property)

0 < lim
ag—0*

]A(Fa)a—h(F) _ JdiVS(r)(fe o d)N) " + A J' Ve - (N(fe o A)N) dH". @D

8 8
This equality is justified as follows. First, as by construction

Perg, (Fg) — Perg, (F) = M((¢0)3S) — M(S),

we can use the well-known formula for the first variation of n-area, which gives the first term on the right-hand-
side of (2.1). Next we observe that, denoting by dx the (n + 1)-form dx' A--- A dx™! and by x = (x1, ..., Xns1),
and since (by Cartan’s formula, denoting by £ the Lie derivative) d(t,dx) = £xdx = (n + 1)dx, we have

1 1
[Fol = IF| = (IFol = [FD(@0) = ——=3(IFo] = [FD(td) = —=(($0);S = H)(1xd)

1
= 71 9(@4([0, 0] x 9))(1xdx) = (24([0, 7] x §))(dx).
+1

Then by direct computation (using the image formula [16, p. 149], [25, 26.21(2)], together with the fundamental
theorem of calculus)
d
1o (@4([0, a] x 8$))(dx) = (®4({0} x 8))(Lgg2,dX)
g o=0* as

= S(ty(ead) = - j Ve - ((fe o A)N) I,
S

which completes the proof of (2.1).
The next argument follows [15, Theorem 4.1] verbatim. We check that the right-hand-side of (2.1) is inde-
pendent of €. Indeed, for €’ < € we consider

Ys(2) = 2+ sn(2)((fe - A)(2) = (fer ° d)(2))N(2).

This is (for s € (-8, §) with § > 0 sufficiently small, depending on €') a (two-sided) one-parameter family of
diffeomorphisms, equal to the identity in a neighbourhood of 0B;. We can then use the vanishing of the first
variation under the deformation induced by ¢, that is,

J divs (n(2)((fe ° A)(2) - (fer ° d)(2))N(2)) dH"(z) + A J VE(Z) - (N(2)((fe o d)(2) - (fer © A)(2))N(2)) dH"(2) = 0.

8 8

The linearity of divergence, scalar product and integration then implies that the right-hand-side of (2.1) is
independent of e.

By the sign condition in (2.1), and viewing the right-hand-side of (2.1) as the action of a distribution on C?,
there exists a (positive) Radon measure M in By such that the right-hand-side of (2.1) is given by j n dM. (A priori
this distribution should depend on ¢, however we have proved that the action is independent of ¢€.)

On the other hand, sending € — 0 on the right-hand-side of (2.1) (denoting by Vs = projrgV the gradient
on 8, a.e. well-defined), we obtain

J(feod)Vgn-Ndﬂ-C"—» j Vs - N dH" =0,
8 SNdB;
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where the last equality follows from the fact that Vs - N = 0 a.e. on 8 n 0B5; and

J(fe o d)n divs N dH" — J 0 divs N dH";
8 SNoB;

and
qug(fe od)- N dH" = jn(fe’ o d)|Vsdl? d¥" <0,
8 8

where we used Vd = N on the support of f¢; and

JVF - (N(fe o AN) dH" — J nve-NdH".
8 $NoB;

These imply (expanding the divergence in (2.1))

JndMs J ndivg N dH" + A J n(vg - N) dH"
8NdBy 8NoB;

is valid for all n € CL(B,(p)), n = 0, hence
M = (divs N + A(vp - N)) dH" _ (S N 8By)

is a (positive) Radon measure. The first variation of V (with respect to J;) computed on the test vector field nN
can be decomposed as the sum of the first variation computed on n(fe - d)N and on n(1 - (f; o d))N. The latter
contribution gives 0 since n(1 — (fe o d))N € C} (B1; R" 1), Therefore the first variation of V on NN givesjust (2.1),
that is, is given by f ndM, and we have seen that 0 < M < M.

In the first part of the proof we analysed the action of the first variation of V (with respect to J;) on a vector
field of the form nN, for n € CL(Br(p)), n = 0. Now, in the second part of the proof, we consider instead the
action on a vector field Y € C%(Br(p); R™1) such that Y- N = 0. We note that in this case we are able to consider
a two-sided deformation induced by Y, which will lead to a vanishing condition, see (2.2) below, rather than an
inequality as in (2.1) (wWhere we only had a one-sided deformation at our disposal).

Let 5 be the flow of Y, that is, the one-parameter (two-sided) family of diffeomorphisms obtained by solv-
ing the ODE for each trajectory, %‘P(s, X) = Y(x), with initial condition ¥(0, x) = x, and setting ¥s(x) = ¥(s, x).
Then 5(B1) ¢ B; and we consider Fs = ¥5(F N By). These are Caccioppoli sets with support in By and such that
8*Fg = )5(0*F) is a.e. contained in By. The Caccioppoli set Fg = Fs U (F n (B, \ By)) is in the admissible class.
We need to show that its boundary (as a current) is (5)3S + (8[Eo]) L (B2 \ B1). The immediate expression for
this boundary is (1) (0[F n B1]) + d[Eo N (B2 \ B1)]. Recalling that S = d[F n B1] - ([Eo], Ix|] = 17) we arrive
at

(¥s5)3S + (¥s)y([Eol, Ix] = 17) + ([ Eo]) L (B2 \ B1) — ([Eo], || = 1%).

As ¥(t, z), for (t, z) € [0, s] x By is a homotopy joining the identity ¥ to ¢s, we will use the homotopy formula.
Wenote that W(t, z) = zinaneighbourhood of Ty = —0([Eo], |x| = 1*),so that W4([0, s] x o([Eo], x| = 1*)) = 0.
Moreover, ¥([0, s] x 0B1) ¢ 8By, so that W4([0, s] x ([Eo], Ix] = 1*)) = 0 (as an (n + 1)-current). The homotopy
formula then gives (s);([Eol, [x| = 1*) = ([Eo], |x] = 1*) and therefore (the following is an identity between
currents in By)
O Fs] = (¥s)3S + (O[Eol) L (B2 \ B1).

We can therefore use the minimising condition to write the standard condition for the vanishing of the first
variation (with respect to J;) as

j divs ¥ dH" + 2 I Vp- Y dH" = 0. 2.2)

8 8

For the third (and final) part of the proof, given an arbitrary vector field X € C(B,(p); R™*') we write the
orthogonal decomposition X = XT + XV, where XV = (X- N)N and both XT and XV are C1(B,(p); R"*'). Then
the first variation of J; on X is given by the sum of the two actions on X7 and X. For the former, in view of (2.2)
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the action is 0. For the latter, we have that X¥ = n, N — n_N, where n,,n- >0and n, = (X-N)*,np_ = (X-N)".
By the conclusion in the first part (applied separately to n, N and n_N, using the linearity of the first variation),
we then have that the action is given by [(n, - n-) dM = [(X- N) dM. O

As remarked in the example given in Remark 2.3, for A > n one may actually have M # 0. If A < n, on the other
hand, we obtain the following result (this is analogous to [15, Theorem 7.1]).

Lemma 2.3. Let A < n. Then M = 0, that is, V is stationary (with respect to J) in By \ spt Ty.

Proof. Wehave N = vra.e.on8 ndBjanddivs N = divep, N a.e.on8 n dB;. By explicit computation, we obtain
divgp, N = —n (where n is the mean curvature of 0B1). Then the inequality

0 <M < (divs N + A(vp - N))dH" L (8 n 0By)

obtained in Lemma 2.2 becomes
0<M<A-ndH"L (SN dBy).

Thus with A < n we must have M = 0 (and if A < n also H"(8 n dB1) = 0). O

Having established this stationarity property, in order to obtain Theorem 4 we move on to the regularity of
the minimiser, focusing on the case A < n. We note immediately that, while the regularity in B; follows from the
theory of minimisers, we may a priori have that spt V. n dB1 # ¢, and said theory is not applicable at these points.
We will instead employ the regularity theory for stable CMC (or prescribed-mean-curvature) hypersurfaces
[4, 5], in view of which we recall some relevant notions.

We say that p € spt V is a classical singularity of an integral n-varifold V in R™*! when there exists an open
ball B**1(p) such that spt V n B**1(p) is equal to the union of three or more hypersurfaces-with-boundary, all
having a common boundary, all having C*%-regularity up to the boundary, and with p in the common boundary,
and with at least two of the hypersurfaces-with-boundary meeting transversely at p.

Given an integral n-varifold V in R™*', we denote by gen-reg V the set of points p for which there exists an
open ball B"*1(p) such that spt V n B"*1(p) is either a single C> embedded disc, or the union of two (distinct)
C%-embedded discs that lie on one side of each other and whose intersection contains p.

Lemma 2.4. Let A < nand V, F as above. Then spt V' \ spt Ty C B1. Moreover; there exists &L c By with dimg¢ £ <
n — 7 such that (spt V\ spt Ty) \ X is a smoothly embedded CMC hypersurface (with mean curvature vector Avg).
If n =7, more precisely, ¥ is made of isolated points (possibly accumulating onto spt To).

Proof. If p e d0B1 nsptV\sptTy is a point in gen-reg V, then by definition there exists an embedded disc
D c spt V\ spt Tg c By of class C> with p € D. The C? regularity of D and the stationarity of V with respect to J;
(Lemma 2.3) imply that D is CMC with mean curvature A. (We remark that, by Allard’s regularity theorem [1]
and standard elliptic PDE regularity, there exists a dense open subset of spt V that is smoothly embedded with
mean curvature A. It follows that, in the case in which the local structure of spt V around p is the union of two
distinct C* embedded discs, the C? regularity of each disc implies that both discs have mean curvature A.) The
maximum principle gives a contradiction if A < n (since n is the mean curvature of 0B; with respect to the
inward normal to Bq). This means that if A < n then gen-reg V. n (0B, \ spt Ip) = 0.

In other words, gen-reg V'\ spt Ty c B;. In the (open) ball B; we are able to use the minimising assumption
to further conclude that gen-reg V \ spt Ty is a C> embedded hypersurface (that is, only the first occurrence in
the definition of gen-reg V can happen). This follows e.g. from density estimates (see e.g. [22, Theorem 21.11]).
The minimising assumption also implies that gen-reg V \ spt Ty (as a C> embedded hypersurface) is stable with
respect to J;.

We further note that for p € 9B; nspt V'\ spt T the varifold V has a unique tangent cone at p, given by
the hyperplane that is tangent to B at p, possibly counted with integer multiplicity. The existence of tangent
cones, and the fact that any such cone is a stationary varifold, both follow from the monotonicity-type formula
for the mass, valid thanks to the stationarity with respect to J;. Since spt V ¢ By, any such tangent cone must be
contained in a half-space (whose boundary is the tangent to dB; at p), and thus it has to be supported on that
tangent hyperplane itself (see e.g. [25]), from which the claim follows (thanks to the constancy theorem [25]).
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Finally, we note the absence of classical singularities in spt V'\ spt Ty. In By, this is a consequence of the
minimising property, while at any p € 0B nspt V'\ spt T, we have proved that the tangent has to be supported
on a hyperplane (which rules out that p could be a classical singularity).

Having checked all hypotheses, we can now apply the sheeting results from [4] or [5], namely [4, Theo-
rems 3.1 and 3.3] or [5, Theorems 6.2 and 6.4]. We conclude that, if p € spt V.n dB; \ spt Ty, then spt V is, in a
suitable coordinate system in a neighbourhood of p, given by the union of (finitely many) ordered C? graphs
(each giving an embedded C? disc with constant mean curvature A), and in particular p € gen-reg V, contra-
dicting the earlier conclusion that gen-reg V'\ spt Ty c B;. (Alternatively, one may directly use the maximum
principle, the fact that 8B; has mean curvature n, and the condition A < n, to find a contradiction.)

We thus conclude (in a first instance) that spt V'\ spt Ty ¢ Bj. At this stage one may either use the standard
regularity theory for minimisers (e.g. [22, Theorem 21.8] in conjunction with standard elliptic regularity) or
alternatively [4, Corollary 2.1] or [5, Corollary 1.1], for the remaining conclusions. O

Remark 2.5. We expect that the same regularity conclusions should hold for A = n, albeit with the possibility
that open subsets of B1 may be contained in spt V'\ spt Ty, as in the example of Remark 2.3.

3 Regular minimal cones, graphs, Jacobi operator

In Section 4 we will prove Proposition 4.1, an instance of a singular maximum principle for CMC hypersurfaces,
which will then be needed in Section 5. In this section we collect some preliminaries on stable minimal cones
and their Jacobi fields that will be needed in Section 4.

In what follows let C be a regular cone that is also minimal. We recall that the notion of regular cone
means that C = {ry : r > 0, y € L}, where X (the link of () is a smooth embedded compact (n — 1)-dimensional
submanifold of the unit sphere §™. The minimality condition is the vanishing of the mean curvature of C \ {0} (as
a submanifold of R™*1). (This requirement is equivalent to the minimality of X as a submanifold of S, see [27]).
We first recall some facts about graphs over C and their mean curvature operator.

Let C = [ E], for a set? of locally finite perimeter E ¢ R The graphofu e C2(C1;R) over C1 = (C\{0) n By
is defined to be

greu = {X+u(X)N(x) : x € C1},

where N is the inward pointing unit normal on C\ {0}. We will be interested in functions u that satisfy the

following radial decay:
lu()|

|
where V denotes the Levi-Civita connection on C \ {0} with respect to the Riemannian metric induced on C \ {0}
by the Euclidean one in R"*!, and | - | is taken with respect to the Euclidean inner product.
We remark that there exists M = My such that, if

lu(x)|
Ix|

is valid for all x € Cq, then gr, u is an embedded hypersurface, with {0} = (gr- u \ gr- u) N By an isolated singu-
larity when C is not a hyperplane. We will assume in this section that (3.2) is satisfied on C;. We further note
that (3.1) implies the validity of (3.2) for all 0 < |x| < r for sufficiently small r, and therefore, after rescaling,
u(x) = u(%) satisfies

+[Vu)| + IxI|V2u(x)| =0 3.1
X|—

+|Vux)| <M (3.2)

[a(x)|
x|

+ VRl < M

on Cj. (This fact will be implicitly used in Section 4.)

2 In the forthcoming sections, any minimal regular cone C will arise automatically as a boundary. However, any regular minimal
cone has connected link £ (by a standard application of the maximum principle) and using this one shows that S" \ £ has two
connected components (by Alexander’s duality), thus so does R™*! \ C, therefore there always exists E such that C = d[E].
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Assume now that the associated current to gr. u is of the form 0[F] L B1,* where Fis a set of finite perimeter
and that F is a critical point of J; thus in particular we have that
d

altzoh(ﬂ) -0,

where F; is the set of finite perimeter whose boundaryis gr-(u + tv) and v € C%(Cl; R). We recall that the mean
curvature operator Mc of the cone is defined as follows, by defining in duality its action on u € C*(Cy; R):

dt

HMgre(u + tv)) = —(Mcu, v)z,
t=0

where (-,-);2 denotes the L%-inner product on C\ {0} and v € C%(Cl ;R). The PDE that the function u satisfies
is given in terms of M as we prove in the following:

Lemma 3.1. Let u and gr u be as above. Then
Mcu = Adet(Id — uAc), 3.3)

where A denotes the second fundamental form of C;.

Proof. Let G(x) = x + u(x)N(x) and consider an extension N of N (defined in an open cone over a tubular
neighbourhood of X in §"). Then for any v € C%(Cl; RR) we have that

0= 2| JaF) = —OView, vysz + 2 [ vir-vaorr,
dtle=g

greu

where F; is the associated set to gro(u + tv), v the inward pointing unit normal of gr u and the last term is the
derivative of the volume term. Using the area formula the latter can be written as Ic VN - V|J¢| dH", where |J¢|
denotes the Jacobian of G. Thus it suffices to compute N - ¥|J|. Let (7;) be an orthonormal basis of C; then

D;,G - 1j = 6 - uAyj,
D;G-N =Dqu,

where D, G denotes the differential of G in the direction of 7; and (4;) is the matrix that corresponds to the
second fundamental form of C; with respect to the chosen basis. Consider the matrix

Dy,G-N D;,G-11 ... Dy,G-1p
B= : : . :
D;,G-N D;,G-11 ... D,G-1p

Let B denote the n x n minor of the matrix B for 2 < k < n + 1 obtained by erasing the k-th column of the
matrix B. Then
R n+1
V= (det(ld ~uAc)N+ ) (—1)k‘1B(k)Tk1>[]G|‘1.
k=2
In particular, N - 9|J¢| = det(Id — uA¢) and this finishes the proof. O
In view of (3.3), we recall some properties of the operator M¢, referring to [7, (2.1)] and [7, Section 3], whose

notation we adopt here. We also refer to [12, Lemma 2.26] for a proof, and to [19], and note that due to (3.2) the
form established for M¢ in [12] is the same as in [7] or [19]. The operator M¢ has the form

1
Mcu = Leu + N(x, i, Vu> Vu(x) + —P(x, i, Vu(x)),
|x] x| x|

3 Inwhat follows every graph of the form gr. u will arise as a boundary of a set of finite perimeter. However, since gr. u is embedded
the map G(x) = x + u(x)N(x) is a diffeomorphism to its image and, since C; is a boundary, R**! \ C; has two connected components
thus so does R™*! \ G(C;) therefore there always exist a set F such that the associated current to gre uis of the form 9[F] [ B;.
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where Leu = Acu + |Ac|?u is the Jacobi field operator of the cone C \ {0}, N is a symmetric bilinear form, (-) is to
be understood as the trace of the linear transformations on Ty C; associated to the bilinear forms N, V2u (equiva-
lently, using an orthonormal basis of T, Cy to write the associated matrices Ny and Vj;u, this is Nj;V;ju with sum-
mation over repeated indices) and both N, P have a C?>-dependency on the arguments (x, z, p) € C1 x R x TCy.
Moreover, M is a quasilinear elliptic operator of order two, and for |z|, |[p| < 1 we have the following inequal-
ities at (x, z, p):

IN(x, z, p)| < Mx(|z| + pl),

IP(x, z, p)| < Mx(|z| + |p])?,

1P|+ 1Pp| + 1XI(IPxz | + [Pxpl) < Ms(12] + Ipl),

[X[(INx| + [Px| + [Nxz| + [Nxpl) + [Nz| + |Np| + [Nzz| + |Nzp| + |Nppl + |Pzz| + |Pzp| + |Pppl| < M,

(3.4)

where the subscripts denote partial differentiation and My is a constant that depends on the dimension n and
the link X of the cone.

The estimates in (3.4) along with the radial decay assumption (3.1) allow us to prove that the linearisation
of the PDE (3.3) has the following form:

Lemma3.2. Letu,v € C3(C;R) satisfy (3.1) and Mcu = Adet(Id — uAc), Mcv = Adet(ld — vA¢). Thenh =v - u
satisfies the following linear PDE:
1 1
Lch = Ay -VAh+ ﬁA2 Vh+| 7 Ash, (3.5
where A1 : C; —» End(TCq), Ay : C; — TCq1, A3 : C1 » Rand A1, A, A3 — 0 as |x| — 0. Moreover; ifu,v € C3(C1;R),
then the coefficients of the PDE are in C%%(U; R) for some a € (0,1) and any U cc C;.

Proof. We first compute the operator £ such that Lh = M¢v — Mcu. We introduce the notation

u u

N(u) = N(x, —,Vu> and P(u) = P(x, —,Vu)

x| BY

(for N, P introduced above). Then, since L is linear,
1
Mev = Mcu = Leh + N(v) - V2v = N(u) - V2u + m(P(v) - P(u)).
We recall the standard method to rewrite N(v) - V2v — N(u) - V2u. We denote by Nj; the components of the

matrix associated to the operator N (in an orthonormal basis of T,C;) and compute (with implicit summation
on repeated indices)
1

v u d
Nij<x, I’ VV)VUV - Ni](x, m,Vu)Viju == J dt(NU(t u, v)(Viju + (Vv — Viu)) dt

+tY=W vy 4 t(Vv - Vu)). Differentiating with respect to t, we get the

with the notation Ny;(t, u, v) = Nyj(x, = W

following expression:

ot

1

1 1
( JNij(t, u,v) dt)Vi]'h + ( J [X|Nij 2 (t, u, v)(Viu + tVi]'h) dt) | h|2 ( J [X|Nij p(t, u, v)(Viju + tVi]'h) dt)
0

0 0

Vh
Ix”

where Nj; ;, Njj p denote partial differentiation of Ny; (with respect to z and p respectively). A similar computa-
tion gives that

1 1

h Vh
—_— P P = PZ P b ) )
X I( (v) = P(u)) = (J (t, u, v)dt)| iz <0J p(t,u v)dt) X

where again we use the notation P(t, u, v) = P(x, ot t(lelu ,

entiation as above. Putting everything together, we get that

Vu + t(Vv — Vu)) and P,, P, denote partial differ-

1 1
Mc\} Mcu Lch+A1 Vh+ﬁA2 Vh+| |2A h



14 — C. Bellettini and K. Leskas, Smooth CMC approximations DE GRUYTER

where

Ay = | Nij(t,u,v)dt,

O ———

Ay = [X|Ny p(t, u, v)(Viju + tVijh) dt + Py(t,u,v) dt,

O ———

P,(t,u,v)dt.

Clm— . O

1
As = J [XINyj 2 (t, u, V)(Viju + tViih) dt +
0
Using the estimates in (3.4), we have that
Axl < My + T+ IVul+ V),
X X
u h
# o XV |x||v2h|),
- u h 9 2
|As] < Mz(— 0 xIIV2u) + XV h|),

x| x|

where My, denotes a constant that depends on the link X of the cone C. Thus from (3.1) we have that A;, A5, A3 — 0
as |x| — 0.
In a similar way, we now compute (using the Jacobi formula for the derivative of the determinant)

det(Id — (u + th)Ac¢) dt

SIES

1
det(Id — vAc) — det(Id — uAc) = J
0

det(Id — (u + th)A¢) tr((Id — (u + th)Ac) thAc) dt

—

0
1
_ j h det(Id - (u + th)Ac) tr((Id — (u + th)Ac) Ac) dt = #Am,
0
where
1
Ag=- I IX|? det(Id - (u + th)A¢) tr((Id - (u + th)Ac) "Ac) dt.
0
From (3.1) we have that Id — (u + th)A¢ — Id as |x| — 0 thus A4 converges to 0 as |x| — 0 as well.
The statement follows by setting A; = ~A1, Ay = —Aj and A3 = Ay — As. O

From (3.5) we see that L becomes the leading term of the PDE as |x| — 0. This crucial fact will allow us, in
Proposition 4.1 below, to construct a non-trivial positive Jacobi field of C. In view of that, we recall some well-
known properties of the Jacobi operator L.

For x e C\ {0} letr = |x]and w = ﬁ € ¥ denote spherical coordinates on C. Then the metric of the cone is
given by g = dr? + r’gy where gy is the pull-back on X of the round metric on " (via the inclusion map). The
operator L¢ is expressed in spherical coordinates as

Lef =2 Lyf + ri "0, (r"1a,f), (3.6)

where Ly = Ay + |Az|? and Ay is the second fundamental form of £ in S™. Since Ly is a linear elliptic operator
on a smooth compact manifold, we consider the spectrum A; < A3 <--+ — +0o of —Ly.
The first eigenvalue A; is simple and it is known from [7] that C is stable if and only if

_9\2
max{-41, 0} < (n 42) .

In particular, if C is stable (which will be the case in forthcoming sections), we define y* = ’% + - +A
and we have y* >y~ > 0.
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Remark 3.1. Unless C is a hyperplane, one always has y~ > 0. Indeed, if y~ = 0, then A; = 0 and from the varia-
tional characterisation of the first eigenvalue of Ly, if we take as a test function a constant function, we get that
|Ax| = 0 thus |A¢| = 0 and C is a plane.

Any positive solution of L¢f = 0 is of the form (see e.g. [19, p. 105], and Lemma A.2 below)

+

firw) = (%

ry

+ =L )gi(w) (37)

where @1 > 0 is the first eigenfunction of Ly, that is Ly¢1 = -A1¢1 and c{, €] are non-negative constants.

4 A singular maximum principle

We first state and prove the following fact regarding the convergence of minimisers of J,. Analogous results hold
(with similar arguments that require building competitors) for area-minimising currents (see e.g. [25, Chapter 7,
Theorem 2.4]) and for perimeter minimisers or almost-minimisers (see e.g. [22, Theorem 21.14]).

Lemma 4.1. Forj € N, let E; be sets with finite perimeter in B;, and let A, A € [0, 0o), withlim; A; = A. For each j
we assume that E; minimises J;, among sets that coincide with Ej in B, \ By. Let E be a set with finite perimeter
in By and assume that [E;] — [E] (as currents) in By. Then E minimises J, among sets that coincide with E
in By \ B1. Moreover, |0*Ej| — |0*E| in By (as varifolds).

Remark 4.1. Let D be a set with finite perimeter in By. The outer and inner slices ([D], [x| = 1*) and ([D], |x| =
17) are n-dimensional integral currents supported in dB; (which is n-dimensional), therefore there exist inte-
ger-valued BV-functions 6}, and 67, such that ([D], |x| = 1*) = 65 (H" L 8B1)¢ and ([D], x| = 1°) = O (H" L
0B1)E, where ¢ is the orientation of dB; corresponding (in Hodge duality) to the choice of outward point-
ing unit normal. In fact, 67, 0, are {0, 1}-valued (H"-a.e. on dBy), since [D] is the current of integration on
a Caccioppoli set.

Proof. We remark that ([E;], [x| = 1*) — ([E], |x| = 1*) as currents (since by definition we have ([E;], [x| =
1*) = —8[Ej n (By \ B1)] + (3[E;]) L (B2 \ By), and [E;] — [E] in B, by assumption).
Let F be a set with finite perimeter that coincides with E in B, \ By. Set

Fj =(FnBy)U (Ej N (By \ By)).

Then F; — F as sets of finite perimeter (when Fj, F are sets with finite perimeter, the convergence F; — F as
sets with finite perimeter is equivalent to [F;] — [F] as currents). Moreover, ([F;], [x| = 1*) = ([E;], |x] = 1%)
by the definition of Fj, and ([F], |x| = 1*) = ([E], |x| = 1*) by definition of F.

With notation as in Remark 4.1, we remark that 6, = 6, 0 = 6z and 6y = 6} . Using Lemma A.1with E;, Fj
in place of D, we rewrite the minimising condition 7, A (Ej) < Jy (Ep) in the form,

Perp, Ej + M(([Ej], Ix| = 1) — ([E;], Ix] = 17)) = A;H"(E))
< Perp, F + M(([Fj], Ix| = 1%) = ([F;1, Ix| = 17)) = ;3" (F)).

(We have used Perp, F = Perp, Fj and Perp 5 Ej = Perp 5 F;.) The second term on the right-hand-side is writ-
ten as
j 107 - 67| = j 107 - 051.
0B, 0By
Since 0B, is compact, |6j{:j -0zl <1,and 0}1_ — 0} = 6} pointwise H"-a.e. in 9B (by the hypothesis ([E;], |x| =
1*) — ([E], |x] = 1*)), we conclude that (by dominated convergence) IaBl |9;gj - 07 — IaBl |9} — 0F|. The latter
is M(([[FT, Ix] = 17) — ([F], |x| = 17)). Sending j — oo and using the lower-semi-continuity of mass and perime-
ter on the left-hand-side, as well as H"*(E;) — H"*1(E), H"*1(Fj) — H™(F) (implied by E; — E, Fj — F), we
find
Perp, E + M(([E], x| = 1*) - ([E], x| = 17)) - AH""(E)

< Per, F+ M(([F], x| = 1*) = ([F], Ix| = 17)) = AH"*1(F).



16 =—— C.Bellettini and K. Leskas, Smooth CMC approximations DE GRUYTER

Adding Pery \5- E = Perp 3= F to both sides, and using Lemma A.1 again (with E, F in place of D), the inequality
obtained becomes J;(E) < Ji(F). Therefore E minimises J; (among sets that coincide with E in By \ By).
Repeating the above argument with E in place of F shows that we must have Perp, E = lim;_,, Perp, Ej,
therefore |0*Ej|l — [[0*E|l as Radon measures in By (and, by Allard’s compactness for integral varifolds,
|0*Ej| — |0*E| in By). O

Remark 4.2. Assume that E minimises J, in an open set U. Then, given a point x € 9*E and a sequence of
dilations nyr,(y) = yr;lx rj \ 0, consider the sequence of Caccioppoli sets Ej = 11x,r,(E) (blow up sequence). At
the same time, we may consider the sequence of varifolds |0 Ej| = nyr; i |0*E|. Standard theory (respectively
of Caccioppoli sets and of varifolds, see e.g. [22, 25]) guarantees that both sequences subsequentially converge.
Any limit in the sense of varifolds is a so-called varifold tangent cone of |0*E| at x. Lemma 4.1 implies that any
varifold tangent cone is of the form |0* E,|, where E, is a Caccioppoli set obtained as a (subsequential) limit
of E;. This follows by passing to a subsequence (still denoted by r;) for which we have convergence to a varifold
tangent cone, and by using Lemma 4.1 (with 4;, A therein replaced by r;jA and 0 respectively), noting that the
dilated set E; is a minimiser of 5, and letting E, be the Caccioppoli set to which E; converges. In particular,
any varifold tangent cone has multiplicity 1 on its regular part.

Remark 4.3. If A < n, then for a minimiser such as E (similarly for E; if 4; < n) in Lemma 4.1, one has that
H™(0*E N dBy) =0 (see Lemma 2.3). Therefore o[E] L 0By =0 and ([E], |x| = 1*) = ([E], |x| =17) by (A.])
(therefore the standard slice ([E], |x| = 1) exists).

We are now ready to prove the main result of this section, an instance of maximum principle for CMC hyper-
surfaces with isolated singularities.

Proposition 4.1. Let E and F be sets with finite perimeter in By that minimise J, with respect to their own bound-
ary condition, assumedin By \ By. Assume that 9*E n (B1 \ {0}) is smoothly embedded, 0 € 9*E, and that a tangent
cone to |0*E| at 0 is regular (which means, it is smooth away from 0 and has multiplicity 1 on its regular part).
Assume further that F ¢ E and that 0 € 9*F. ThenEn By = Fn By.

Remark 4.4. Under the assumed condition on a tangent cone, by L. Simon’s renowned result [24], [0*E| pos-
sesses a unique tangent cone at 0 (which has to be the one about which the regularity and multiplicity hypotheses
are made).

Proof. We divide the proof into four steps.

Step 1. We begin by proving that 8*F is smooth in B, \ {0} for some r > 0. Let £ c 8*F denote the singular
set of 0*F. Arguing by contradiction, assume that x; — 0, x; € Z Letting p; = |x;|, we consider the sequence of
dilations x F and take a blow up of F at 0 by setting Fo 5, = and taking a subsequential limit Fo of Fo p,. By
the assumption that F ¢ E we have that Fy c Ey, where Ej is the blow up of E at 0 obtained by taking the limit
for said subsequence of dilations (as remarked above, the blow up for E at 0 is independent of the sequence of
dilations). The stationarity property of F with respectto J, translates into stationarity of Fy ,, with respectto /2,
which implies that Fy is stationary for the perimeter (equivalently, Jo). Similarly, Ey is perimeter-stationary, that
is,both [0*Ey| and |0* Fyp| are stationary varifolds in R™!. (We remark that hoth |8* Ey| and |0* F| are non-zero,
since the origin is in the support of both |0*E| and |0* F| and thus both densities are > 1 by the monotonicity
formula.)

More precisely, by Lemma 4.1, Eg and Fy are perimeter minimisers in any compact set K ¢ R™*1, for their
own boundary condition (assumed in the complement of K). Clearly, 0 € spt|0* Eg| N spt|d* Fy|. Then the sin-
gular maximum principle [20, Theorem A (iii)] implies that spt|0*Ey| = spt|0* Fo|, and thus |0*Eg| = |0 Fy|.
(Alternatively, one may use the maximum principle in the form given in [26].)

Lemma 4.1 (see Remark 4.2) also gives that [0* Fop,| converge (as varifolds) to [0 Fol. By the choice
of dilations, and by Allard’s interior regularity theorem, see [1], the points ;)L: lie in 0By and have density
(0" Fo,pl, ,"72) > 1+ €y, where €y > 0 is the dimensional constant in Allard’s regularity theorem. This contra-
dicts the hypothesis that the density of |0 Eg| = |0* Fo| is 1 at any point distinct from 0 (since |0*Ey| is a regular
cone by assumption). We have therefore established the smoothness of 9*F in B, \ {0} for some r > 0.
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Step 2. Asremarked above, |0* Ep| is the unique tangent cone to |0* E| at 0. This also implies that |0* Fo| = |0* Eg|
is the unique tangent cone for |0*F| at 0 (since, given any blow up sequence, the resulting blow up of F at 0 is
contained in Eo, and the maximum principle implies, as above, that the two blow up sets must coincide). In
particular (see [24, Section 7]), we are able to write 0E N (Bs \ {0}) and 0F n (Bs \ {0}), for sufficiently small
6 > 0, as graphs of C?% functions over the common cone Cs = C N (Bs \ {0}), where C = 8*Ey, as follows:

OEN (Bs\ {0}) = gre, u withu e C*(Cs; R),
OF N (Bs\ {0}) = gre, v withv e C3(Cs; R),

[u(x)] _ 4.1
|)l(1|ﬁo( x| IVu(x)I) =0,

VOOl _
fim, (53 +19v01) =0

Taking the identification of R with (TCs)* so that the orientation is inward (for Ey), we have, in view of E ¢ F
and the fact that [0*E| and |0* F| are stationary for Jj,

u<v and Mcu=Adet(Id-uAc), Mcv=Adet(Id - vAc).

Note that due to (4.1) the PDE for u and v satisfies the estimates (3.4) in Cs and from standard elliptic estimates,
see also [24, Section 1], we deduce that |x||[VZu(x)| + |x||V2v(x)| — 0 as |x] — 0 hence the radial decay (3.1) is
satisfied. In particular, we may consider h = v — u > 0 and from (3.5) we have that h satisfies the linear PDE

1 1
Lech=A4 - V2h+ﬁA Vh+| |2A3h

where A1, Ay, As II—O) 0. Thus for any K cc Cs we can apply the Harnack inequality to get that
X|—

sup h < Cginf h.
% K

Hence either h > 0 on K or h = 0. Since K is arbitrary, we must have either h =0 on Cs, or h > 0 on Cs (and
h = 0 at 0). We will next rule out the second occurrence.

Step 3. The minimising property of Ey implies that C is a stable minimal cone and thus all positive Jacobi fields
are of the form (3.7). To prove that u = v, we will construct a non-existent positive Jacobi field on C \ {0} under
the contradiction assumption that h > 0 on Cs. We argue as in [19, Lemma 1.20].

From the property that h — 0 as |x| — 0 we can construct a sequence of p]’. \ 0 such that

sup h < sup h.
C ! C
Pir1 b
Let x; be the points where sup. , h is achieved and set r; = |x;|. Then we have r; \, 0 (since r; € (p]’.+1, p]’.)) and
sup.. h = sup,e. h. We define '
j j
hj(X) = h(rjx)
for x € Cs and we have that
! sup hj = sup h;.
aCy

Let x]’. € 0Cy where sup, h; is achieved and set
hj(x)
f;00 = J_
J

for x € Cs, where M; = h; (x]f). From the PDE for h we have that f; satisfies the following PDE:
Tj

V2 @
LCJ‘}' = f) + HA] f} |2 ] j}’

where le(.i)(x) =Ai(rix)forx e Cs andi=1,2,3.
7
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Fix a set K cc C\ {0} and let K’ be another set with K cc K’ cc C\ {0} and x]’. € K'. Notice that, from the
standard regularity theory for CMC hypersurfaces, we have that u, v € C* thus the coefficients A;, fori =1, 2,3
of the PDE are in C%%(K’) and since A](.l) are rescalings of A; we have that [A}l)]a;Kr <M r]‘.’, where M; is a con-
stant independent of j and [ - Jo;x is the Holder semi-norm in K " with exponent a. In particular, if we combine
with (3.1), we conclude that ||A}(.l) lo,c:r — 0, asj — oo for i = 1,2, 3, where |fl,ax = Iflixe + maxg-i[DPflax
denotes the Holder norm in C*®. Thus from the C>2-Schauder estimates, see [17, Theorem 6.1], we get that

Ifillz,cx < Msllfjllo;x

where M3 is a constant independent of j.
From the Harnack inequality on K’ and since x; € K’ and fj(x;) = 1 we have that |fjllo.x < Cx' infg fj < Cxr
where Cg is a constant that depends on K'. Putting everything together we get that

Ifill2,a;x < Ma,

where My is a constant independent of j (and depending on K'). From Arzela-Ascoli theorem, after a diagonal
argument and passing to a subsequence that we still index with j, we have that
fi ——— f e C2%(C\ {0}).
Ch(C\{0})

From the uniform convergence of A}i) on compact sets to zero, for i = 1, 2, 3, we get that L¢f = 0in C \ {0}. Fur-
thermore, (again passing to a subsequence) we have that x]’. — Xo € 0C1 and so f(xp) = 1. Thus from Harnack’s
inequality f > 0.

In conclusion, we have constructed a positive solution of L¢f = 0, defined on C \ {0} for a stable minimal
cone C of R™, and satisfying

supf = sup f.
G aC

The latter contradicts (3.7) and thus proves that dE n Bs = 0F N Bs.
Step 4. Finally, we show that E n By = Fn By. Let
ro =sup{r: 0EnB, = 0F N B;}

and note that the set over which we take the supremum is non-empty due to the existence of §, from the previous
step, and itis in fact a maximum. Assume for the contrary thatro < 1andletxo € 0By, N 0F n 0E. Then by virtue
of Remark 4.2, we can consider a varifold tangent cone for |0* F| at xq, of the form |6* G|, with |0* G| stationary
(for the perimeter functional), and with spt |d* G| contained in a half space thanks to the condition F c E (more
precisely, the half space whose boundary is the tangent plane to |0* E| at x). Then from [25, Theorem 36.5] we
have that |0* G| is a plane hence the regularity theory implies that we can find a neighbourhood B, (xo) where
OF is smooth and 0F, 0E meet tangentially at x¢. Since F ¢ E and due to the variational equations satisfied by J
the mean curvature vectors point in the same direction at xo thus the standard maximum principle implies that
OE n By (Xo) coincides with 0F n By (Xo). In particular, since xg is arbitrary and 0B, n dF is compact we can
find € > 0 such that 0E N Byy+e = 0F N By, contradicting the choice of ry. Thus rp = 1 and we conclude that
EnBy=FnBs. O

5 Approximation

Lemma 5.1 and Theorem 5 below will establish in particular the approximation results stated in the introduction,
Theorems 1 and 2. (One should identify B - p in Theorem 2 with the ball B; below.)

We assume that E ¢ R™*! satisfies the following properties. The topological boundary agrees with 8*E and
T = OE contains 0, the hypersurface (T \ {0}) n By is smooth for some R > 0 (so the origin is an isolated singular-
ity for T), E minimises J; in Bg among Caccioppoli sets that coincide with E in Byg \ By, a tangent cone to |0*E|
at 0 is regular (which means, it is smooth away from 0 and has multiplicity 1 on its regular part). In view of
Remark 4.4, |0* E| thus possesses a unique tangent cone at 0.
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Remark 5.1. We note that if n = 7, these properties can be fulfilled whenever we have a Caccioppoli set that
minimises J; locally. To begin with, one chooses a system of coordinates centred at a singular point, and R
smaller than the distance of this to any other singular point (which is possible thanks to the interior regularity
theory for minimisers). Moreover, (again by the regularity theory) any tangent cone must be smooth away from
the origin (for otherwise, the radial invariance would give a singular set of dimension at least one). Finally,
any tangent cone must have multiplicity 1 on its regular part since the rescaled varifolds |0E,, o| converge as
varifolds to |0* Ey| (see Remark 4.2).

It may not be true, in the above situation, that E is the unique minimiser of J,, among Caccioppoli sets that
coincide with E in By \ Bg. However, by taking a slightly smaller R (which preserves all the assumptions above),
we can ensure said uniqueness, thanks to a standard argument that we now recall.

Lemma5.1. Let E, T be as above. IfR' < R, then E is the unique minimiser of |, among sets that coincide with E
in Bag \ Br (and therefore also among sets that coincide with E in Bag' \ Bg!).

Proof. LetR’' < R.Clearly, E minimises J, in Br among Caccioppoli sets that coincide with E in By \ Bg. Assume
that there exists a Caccioppoli set E’ # E that minimises J; in Bg among Caccioppoli sets that coincide with E
in Byg \ Brr. In particular, E’ coincides with E in B,y \ Bg, and on E’ the energy J, attains the same value as
it does on E. Therefore E' is a minimiser of J, in Bg, among Caccioppoli sets that coincide with E in Bz \ Bg.
As such, its reduced boundary must enjoy the optimal regularity of minimisers, that is, 0*E' n By is a smooth
hypersurface (with mean curvature 1) away from a set £ ¢ 8*E' n Bg with dimg £ < n — 7. We aim to prove
that *E' coincides with 8*E (which is in contradiction with E’ # E and E' = E in Byg \ Br/).
We define r < R’ by
r=inf{t: 0*E' = 0*Ein Byg \ B;}

and note that this is a minimum. The conclusion will follow upon establishing that r = 0. Assume r > 0. We
remark that for p € B, N 8*E we must have that there exists a unique tangent cone to |3*E’| at p, and it must
coincide with the hyperplane that is tangent to dE at p. (This follows from d*E’ = 8*E in Byg \ B, and the
smoothness of 8*E around p.) The regularity theory implies that 3*E’ is smooth in an open ball Bg”(p) for
some p > 0. Recall however that

0*E' = (8*E' nBy) U(0*EN (Bar \ By)),

and we have established that this is smooth in B, (p). Unique continuation implies that 8* E’ n B, coincides with

0*EN B, in By(p).
Asp € dB,nd*Eisarbitrary and 0B, n 0*E is compact, it follows that 3* E’ coincides with 8*E in Byg \ By_s
for some § > 0, contradicting the choice of r. Hence r = 0 and E' = E in Byp. O

Remark 5.2. By taking R’ sufficiently small we also ensure that A < 4. Therefore, upon dilating Bz to By, we
have that the working assumptions stated in the next theorem are fulfilled.

Theorem 5. Let E be a set of finite perimeter in By. Assume that T = dE = 0*E contains 0, the hypersurface
T n (B2 \ {0}) is smooth, E is the unique minimiser for J, in B, among Caccioppoli sets that coincide with E
in By \ By, A < n. Given r € (0,1), there exists a sequence of sets E; that have finite perimeter in B,, such that
0E;j n By is smooth for each j, it has constant mean curvature Aij, where VE is the inward unit normal to Ej,
Ej C E, Ej — E and dE;j converge to dE smoothly on any Q cc By \ {0}.

Remark 5.3. We point out that the sequence E; will be constructed without any dependence on r; however, we
will only prove that the boundaries E; n B are smooth for sufficiently large j, with dependence on r.

Proof. We divide the proof into three steps.

Step 1. The first step is to perturb the boundary condition E inwards, and then use this new boundary condition
to define E;. The vector field vg is smooth in (B2 \ {0}) N 0E.Letd(-) = dist(-, 0E) be the signed distance function
to AE (taken to be positive in E and negative in its complement) and consider a tubular neighbourhood N, of
size p > 0 around 0E N (B% \B% ). Then the gradient of d is a smooth extension of vg to Nj,. Let y be a smooth
function on B; that is equal to 1 in (B% \B%) n Ng and with support contained in (B% \B%) Nn{ld| < %p}. Let
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X = yVd. Then X extends vy and we may consider the flow ¢:(x) of X. (We view X as a vector field in B5.) For
any t € [0, §), with § > 0 sufficiently small, ¢;(E) ¢ E. By construction ¢;(0E n dB;) is disjoint from dE n 0B,
forall t € (0, 6), and ¢((E) n (B% \ B%) is strictly contained in E N (B% \ B%).

The sequence E; in the statement is built with the boundary condition E; = ¢)t1.(E) in By \ By, for a sequence
tj — 0. Namely, from Theorem 4 we may define E; to be a minimiser of J, for said boundary condition; fur-
thermore, we have that *E; n By intersects 0B only at its boundary, and is a smoothly embedded CMC
hypersurface-with-boundary away from a codimension 7 set.

Step 2. We show first that Ej — E as j — oo as sets of finite perimeter (therefore [E;] — [E] as currents,
hence 9[E;] — d[E] as well). This follows from the uniqueness property of E, as we now show. To begin
with, we have Jy(Ej) < Ja(¢¢,(E)) (by the minimising property of E;). By smoothness of X, using the area
formula we find that J(¢(E)) — Ja(E) as j — oco. In particular, there exists a uniform upper bound for
Ja(¢(E)), and thus (since |E;j| < |B;|) a uniform upper bound for Pers,(E;). Standard BV-compactness then
gives the existence of a subsequential limit E; — D with |E;| — |D| and (by lower semi-continuity of perimeter)
Ja(D) < liminf;_, ., J2(Ej). Recalling the previous considerations, J;(D) < liminfj_., J2(Ej) < Ja(E). Finally, not-
ing that Ej n (By \ B1) = ¢, (E) N (B2 \ B1) — En (B \ By), we obtain that D = E in B, \ By and therefore D is
a minimiser (among sets with finite perimeter that coincide with E in By \ B1). The uniqueness hypothesis on E
gives E = D.

Next we will prove that E; c E, for each given j. Considering the sets with finite perimeter E; n E and E;j U E,
we have [E;nE] + [Ej U E] = [E;] + [E], so that 0[E; n E] + 0[E; U E] = 9[E;] + o[ E]. Clearly we also have
E;jnE c Ej U E. This implies that at H{"-a.e. x € 3*(E; n E) N 0" (E; U E) one must obtain the same half-space as
the unique blow up at x for both sets E; n E and E; U E, and therefore the measure-theoretic outer normals are
the same at x for both sets. The common orientation H"-a.e. gives the equality

M(B[E;j n E]) + M(3[E; U E]) = M(3[E;j n E] + 8[E; U E),
and therefore
M(3[E; n E]) + M(3[E; U E]) = M(3[E;] + [E]) < M(3[E;]) + M(A[E]).
Noting that |[E; n E| + |E; U E| = |Ej| + |E|, we conclude that
JAEjNE) + JA(Ej UE) < JA(Ej) + Ja(E).

On the other hand, since ¢(E) ¢ E and E; agrees with ¢(E) in By \ By we conclude that (Ej n E) n (Bz \
By) = Ejn (B2 \ By) and (Ej UE) N (B2 \ By) = EN (B2 \ By) thus the minimising properties of E; and E imply
respectively that

JA(EjNE) 2 Ja(Ej), Ja(Ej UE) 2 Ja(E).

Combining the inequalities obtained, we find that equalities must hold throughout, and therefore E; U E is a min-
imiser of J; (among sets with finite perimeter that coincide with E in By \ By), so that the uniqueness of E gives
EjUE =E, thatis,Ej c E*

Step 3. We conclude the proof of Theorem 5 by showing that, given any r < 1, the sequence E; N B, is smooth
for large j (depending on r). To that end we will use the Hardt-Simon foliation provided by [19, Theorem 2.1].
First note that as a consequence of Allard’s interior regularity theorem, and of the smoothness of 0 E away from
the origin, we must then have that, for any r < 1and o € (0, r), there is C1¢ convergence of 0Ejto 0Ein By \ Bg.
By elliptic regularity, the convergence is in fact smooth, and E; n (B \ B,) is smooth for all sufficiently large j,
depending on the choice of g, .

4 We point out that the conclusion E; ¢ E would follow also without the uniqueness assumption on E, by exploiting interior regu-
larity for the minimiser E; U E in B; to conclude that 8" Ej and 0* E cannot intersect transversely on their regular parts, and by then
applying the maximum principle and unique continuation to exclude tangential intersections.
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Let X; denote the singular set of 6*_}5', in B; (which is of dimension at most n — 7). Let rg < 1 be fixed and
let pj € Z;j N By,. In view of the previous conclusion, we must have p; — 0 as j — co. Also we remark that, by
Proposition 4.1, we must have 0 ¢ 6*_]5] for all j, so p; # 0 for all sufficiently large j. We will dilate E; around 0 by
the homothety n;(x) = F);I' Then E; = nj(Ej) is a CaccioPpoli setin By|p;|, in particular in B; for all sufficiently
large j; moreover, the point p; = %I is s~ingular for 6*E]; and lies on 0Bj;. Upon extracting a subsequence that
we do not relabel, we can assume that £; — Q and |0 E;| converge to the (stationary) integral varifold |9 Q]
in B,. The minimising property of E; with respect to J; implies that Q minimises perimeter in any compact set.
Moreover, as Ej ¢ E, we have Q c Eg, where Ey is the blow up of E at 0 obtained from 5. Then [19, Theorem 2.1]
(specifically, its final assertion) implies that either Q = Ey, or Q belongs to the “Hardt—Simon family” of sets
Gs = No,s(G), where nos(-) = 5, $ >0, and G ¢ Ep has smooth minimising boundary. On the other hand, the
presence of a sequence of singular points p; € 0By implies, by Allard’s interior regularity theorem, that a sub-
sequential limit p € dB; of p; must occur with density > 1 + ¢ in |0* Q|, contradicting the smoothness and unit
density of dE( and of 0G; (regardless of s) in a tubular neighbourhood of 0B;. The contradiction shows that

%; N By, = 0 for all sufficiently large j, so that dE; N By, is a smooth hypersurface (for all sufficiently large j). O

A Auxiliary results

We give a proof of the following general property.
Lemma A.1. Let D be a set with finite perimeter in By. Then
0[D]L 8By =([D], Ix| = 17) = ([DI, Ix| = 1%) (AD
and
Perp, D = Perp, D + PerBZ\B—lD + M[D], |x| =17) = ([D], |x| = 17)). (A.2)

Proof. To check this, we begin by recalling that for an open set U c By, one has Pery D = M(3[D] L U), and
M(3[D]) = M(A[D] L B1) + M(8[D] L (B2 \ B1)) + M(8[D] L_ 8B4). Therefore (A.2) follows from (A.1).

We recall that the restriction of d[D] to dB; is well-defined (since the current is normal) via the limit, for
any n-form w with compact support in B,

([D] L 0B1)(w) = }lliif(l)(a[[D]])(Vh”M -NHw),
where yj, : (00, 00) — R is C!, is identically 1 on (-h, h), vanishes on (-co, —2h) U (2h, c0), and y’ € [-2,0]
on (0,00) and y’ € [0, 2] on (~0o, 0). Then

(8[D]L0B1)(w) = }llig})([[D]])(VL(IXI = DdIx| A w) + }llii%([D]])(Vhﬂ“ -1)dw)
—0ash—0 (A.3)
= illiir})(I[D]])(Vﬁl(IXI - DdIx| A w).

On the other hand, let y; : (~00,00) — R be 1, identically 0 on (-oc0,0), and equal to 1 — y;, on [0, co). Let
Vp i (00, 00) — R be defined by y; (s) = y;(-s). Note that y; + y, + yr = 1. Then
([D], x| = 17)(w) = =a([DT L {Ix| > 1})(w) + (O[D] _ {Ix] > 1})(w)
=- %{I})I[D]](VZ(IXI -1dw) + }llig})[[D]](d(VZ(IXl -Dw)) = }lig(l)[[D]]((VZ)'(IXI - 1Dd|x| A w))
and similarly
(ID], Ix] = 1" M w) = - ilgr(l)IID]]((Vﬁ)'(IXI = Ddlx| A w)).

Therefore
(([D1, Ix] = 1%) =«[D], Ix| =17))(w) = —}lgr})[[D]]((Vh)’(IXI - 1dIx| A w)),

which, jointly with (A.3), gives (A.1). O
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We provide the details regarding the positive solutions to the linear elliptic PDE L¢f = 0, which is crucial in the
proof of Proposition 4.1.

Lemma A.2. Let C be a regular stable minimal n-cone in R™*1. Then every positive solution of Lcf = 0 is of the

form
+ -

fro) = (= + L g (o),

vt oy
where ¢1 > 0 is the first eigenfunction of Ls, and c7, ¢ are non-negative constants.

Proof. We assume first that the cone is strictly stable thus y* > y~. Consider the eigenvalues of the operator —Ly,
M <A <3+ > 00

and let (¢;) be an orthonormal basis of L%(%) such that ¢; is an eigenfunction of A;. Recall that ¢1 > 0 and Ay is
a simple eigenvalue.

For any r > 0 the function f{r,-) (on X) is of the form Z]‘fl a;j(r)¢;j(w). Thus in order to solve L¢f = 0 we
write L¢ in spherical coordinates and from (3.6) we get, after solving the corresponding ODE for a;, that

+ -V — -V
aj(r):cjr S,

—2)2
where yji = 122 4 /(220 4 ) and cji are constants. Thus

frw) = Y i gj(w).
j=1

Let us prove that cji =0forallj> 2. As L¢f = 0and f > 0 from Harnack’s inequality on K1 = Cn (B \ B: ),
[17, Corollary 8.21], we have that sup K f < Cg, infg, f, where Ck, is a constant that depends on K1 and the opera-
tor L¢. Let now Ks = C N (Bys \ Bgj2), for some s > 0 to be fixed later. Notice that if we rescale fs(x) = f(sx), then
the scale invariance of the operator L¢ implies that

supf < Cg, inf f.
Ky Ks
We want to evaluate the L?-norm of f on K with respect to the cone metric g¢ = dr? + r?gs. First note that

e, < (FCCNK)S™)E supf = Cix, nzys? supf,
K K

where C(k, »,x) denotes a constant that depends on Ky, n, X that may vary from line to line. On the other hand,
since ¢; is an orthonormal basis of L%(%), we have

28

1
[} . 7
"ﬂle(Ks) = ( J’ Z(C}L)Zr—zyfrn—1 dr)

s/2 =1

+ +_ 1
- < oZ():(c.i)zsn—zy,-*(zn 2 g ))2
=i n-2y;

and since % > 1 for any x € R \ {0}, we conclude that

o0
n oyt
1ALz, = 82 < Zl(Cjt)ZS Vi )
]:

1
2

The three inequalities thus give

1

(o] . 2 )
C(Kl,n,2)< Z(Cf)zs_zyi ) < III<1Sff < flr, w)

j=1

forallr € [3, s] and w € E. Multiplying the latter with ¢4, and integrating over X, we get

1
(o8} 2
—2p¥ + oy
C(Kl,n,z‘.)( Z(C}—’)zs R( ) <ciracrhn
j=1
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for all r € [$, 2s]. Thus we may take r = s and get that

1

o) + i + —
C(K1,n,2)( Z(C];)ZS—ZV]T> < CI'S_V1 + CIS_Vl. (A.4)
j=1
Multiplying now (A.4) by s¥1, we have that

1
) ok 2 P
C(Kl,n,Z)( Z(C;—’)zsz”1 R ) <cf+ogshin.
J=

In order to prove that c; = 0 for all j > 2 first note that ZJ‘?SZ(CJ.*)2 < oo (by Parseval’s identity it is bounded
by [Iflz2(z)), and recall that y; < y; <y < Yi<y; < y].* for allj > 2. Thus for any E > 0 there exists sy > 0 such
that s < so implies s*1 %" > EZ for every j, and moreover s /1 < ﬁ thus we obtain

1

(o]
E? Y (¢)) < Clynmy (] + 12,
j=2

which gives a contradiction for sufficiently large E unless c]fr =0 for allj > 2. If we instead multiply (A.4) by s
and choose s sufficiently large, a similar argument leads to a contradiction unless ¢ = Oforallj > 2.
It remains to show that ], ¢ > 0. Assume for the contrary that ¢ < 0. Then

— yt—y
V' f=cior+ e’ ¢,

and letting r — 0 we get a contradiction. A similar argument gives ¢; > 0.
In case the cone is not strictly stable, thus y* =y~ = "T‘Z then the expression of the function f is given by

frw) = cirYd1(w) + c; logr ¢1(w) + Z c]f—'if”fi dj(w)
=)

and repeating the same computations as above we will get that ¢; = cji =0forallj > 2, thus frw) = ¢V ¢1(w),
where c] is a non-negative constant. This concludes the proof of Lemma A.2. O
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