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 3 

Abstract 4 

The increasing frequency and severity of natural hazard-induced disasters necessitate rapid 5 

and reliable post-disaster damage detection (PDD) to inform disaster response and 6 

recovery. Deep learning (DL) models, when paired with remote sensing (RS) data, have 7 

shown potential in this domain, but challenges persist due to limited interpretability and 8 

inconsistent reliability, particularly for high-severity damage classes. This study 9 

investigates the use of attention mechanisms—Channel Attention (CA), Spatial Attention 10 

(SA), and Multihead Attention (MA)—to enhance the accuracy and interpretability of 11 

state-of-the-art DL models. Utilizing the xBD dataset, we evaluated eight DL architectures 12 

and their attention-augmented configurations, in total 32 model, using explainable AI 13 

(XAI) models, i.e., Grad-CAM and Saliency Maps to visualize decision-making processes. 14 

Results indicate that models enhanced with MA achieve the highest reliability, with 15 

MA_ShallowNetV2 and MA_InceptionV3 achieving accuracies of 81.9% and 80.0%, 16 

respectively. Grad-CAM analysis demonstrated precise localization of damaged areas, 17 

while Saliency Maps revealed well-concentrated pixel-level focus. In contrast, models with 18 

CA or certain SA configurations struggled with misplaced or diffused attention. These 19 

findings underscore the importance of incorporating explainable and interpretable AI 20 

approaches in disaster risk management. Specifically, MA generally improved 21 

interpretability and reliability in our evaluation, particularly for identifying high-severity 22 

damage levels in post-disaster scenarios. 23 

Keywords: deep learning; attention mechanisms; Explainable AI; Grad-CAM; Saliency 24 

Maps; post-disaster damage detection, remote sensing 25 

 26 

1. Introduction 27 

The increasing frequency and intensity of certain natural hazard-induced disasters 28 

highlight the urgent need for rapid and reliable PDD to inform disaster response and 29 

recovery efforts. The International Disaster Database, EM-DAT, reveals that these 30 
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disasters impacted around 3.4 billion people and created an estimated economic loss of 1 

$4.2 trillion worldwide between 2004 and 2023 (EM-DAT, 2024). Storm related 2 

disasters, such as tornadoes, produce highly localized and varied patterns of destruction 3 

that can be difficult to discern (Crawford et al., 2020; Gokaraju et al., 2015; Mansour et 4 

al., 2021). While timely PDD is critical for identifying affected areas and guiding resource 5 

allocation (Abdullah M Braik & Maria Koliou, 2024; Wu et al., 2021), existing 6 

approaches often struggle to deliver both accurate and reliability in high-pressure disaster 7 

contexts. This creates a pressing need for approaches that are not only accurate but also 8 

operationally reliable and interpretable for informed decision-making, ultimately 9 

speeding up the recovery process and reducing long-term impacts on affected 10 

communities (Ghaffarian et al., 2023; Matin & Pradhan, 2021).  11 

RS technologies, including satellite imagery and aerial photography, provide 12 

comprehensive and near real-time data covering vast and often inaccessible regions, 13 

facilitating quicker and more accurate assessments that make them indispensable for 14 

disaster monitoring (Da et al., 2022; Ghaffarian et al., 2018; Zhan et al., 2022; Zou et al., 15 

2023). The introduction of benchmark studies such as xBD and a following version of it 16 

named Xview2 have driven major advances by providing standardized data for training 17 

and evaluation specifically designed for training DL models. These datasets provide a 18 

large-scale collection of annotated very-high resolution satellite imagery showing pre-19 

disaster and post-disaster conditions with labelled building damages, and include data for 20 

various disaster types such as hurricanes, earthquakes, floods, and wildfires (Ritwik 21 

Gupta et al., 2019). They have enabled DL models to outperform traditional machine 22 

learning relying on predefined features and require extensive domain knowledge 23 

(Ahmadi et al., 2024; Song et al., 2019; X. Zhang et al., 2022). In this study, we 24 

specifically focus on tornado events, using three representative cases from the xBD 25 
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dataset. They present unique challenges due to their highly localized and heterogeneous 1 

damage patterns, which are difficult to detect and classify reliably. Thus, a key gap lies 2 

in evaluating whether DL models can provide consistent and interpretable assessments 3 

when applied to tornado-related disasters across diverse contexts. 4 

 Significant efforts have been made to improve the accuracy of DL models for 5 

PDD using various model architectures combined with attention mechanisms, that 6 

highlight the most informative features and filter out irrelevant inputs (Ghaffarian et al., 7 

2021). Zhang et al. (2023) presented LRBNet combining a Siamese network and UNet++ 8 

architecture with components like lightweight compression module and efficient channel 9 

attention, achieved an accuracy of 85.0% for building localization and 70.7% for damage 10 

classification with xBD dataset. Rohit Gupta and Shah (2021) presented RescueNet 11 

integrating a novel localization-aware loss function and a multi-headed architecture, 12 

significantly improving accuracy to 84.0% for building localization and 74.0% for 13 

damage classification with xBD dataset. L. Deng and Wang (2022) designed an improved 14 

U-Net model architecture for PDD, leveraging the xBD dataset, and achieved 87.41% 15 

accuracy for building localization and 75.36% accuracy for damage classification by 16 

utilizing extra skip connections, asymmetric convolution blocks, and a shuffle attention 17 

module. Abdullah M Braik and Maria Koliou (2024) leveraged xBD dataset and 18 

Convolutional Neural Networks (CNN) by combining with Geographic Information 19 

Systems (GIS) for large-scale building damage assessment. After a fine-tuning process, 20 

the model achieved over 90% accuracy with a case study on Hurricane Ike in Galveston 21 

County. Leveraging the xBD dataset, Xia et al. (2023) presented BDANet integrating 22 

multi-scale feature fusion and cross-directional attention modules and achieved an 23 

accuracy of 80.43% for building localization and 84.17% for damage classification in the 24 

real-world scenario of the 2023 Turkey earthquake. Oludare et al. (2022) proposed ATS-25 
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HRNet combining high-resolution network blocks with criss-cross attention modules to 1 

extract contextual information and achieved an accuracy of 89.2% for building 2 

localization and 87.5% for damage classification, outperforming other state-of-the-art 3 

methods in post-disaster damage assessment. However, the evaluation of attention 4 

mechanisms has remained almost entirely performance-centred and mainly neglected the 5 

explanation of the decision-making process 6 

es, leaving these models as a "black box." This creates an important knowledge gap about 7 

the practical value of attention mechanism for enhancing trust and transparency in disaster 8 

contexts. 9 

In parallel, XAI plays a crucial role in applications such as disaster response and 10 

recovery where reasoning behind model predictions is essential for decision-makers 11 

(Cheng et al., 2022; Ghaffarian et al., 2023; Wenli Yang et al., 2023). Even models with 12 

high accuracy may not be fully trusted or effectively utilized by stakeholders seeking a 13 

comprehensive basis for their decisions when these models lack explainability and 14 

reliability (Ghaffarian et al., 2023; Tursunalieva et al., 2024; Wenli Yang et al., 2023). 15 

Explainable models not only enhance trust and reliability but also enable users to identify 16 

potential errors, biases, or areas for improvement, facilitating more informed and 17 

effective disaster management (Tursunalieva et al., 2024). Seydi et al. (2023) presented 18 

BDD-Net+ combining convolution layers, transformer blocks, and self-attention layers 19 

to enhance damage detection accuracy on the Haiti Earthquake and Bata Explosion 20 

datasets and interpreted their model’s decisions with Grad-CAM, one of the highly used 21 

XAI methods. Grad-CAM revealed that BDD-Net+ successfully focused key features, 22 

such as rough surfaces and collapsed areas, while detecting damaged areas, ensuring trust 23 

in the model’s outputs (Seydi et al., 2023).  Cheng et al. (2022) employed DoriaNET 24 

(Cheng et al., 2021a), xBD datasets and XAI techniques such as Grad-CAM to visualize 25 
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the model’s focus areas during damage classification. Combining Grad-CAM and 1 

uncertainty metrics such as Bayesian inference and Monte Carlo dropout revealed that 2 

their model makes reliable predictions, aligning well with human-labeled assessments 3 

(Cheng et al., 2022). Despite its promise, XAI applications in PDD are fragmented and 4 

rarely scaled across multiple architectures especially with attention mechanisms. 5 

Moreover, most studies use a single XAI method, missing the opportunity to evaluate 6 

interpretability at multiple levels of granularity neglecting the potential of systematic and 7 

multi-level evaluation of model reliability in PDD. 8 

Overall, most studies evaluate DL models for PDD primarily on accuracy, 9 

overlooking whether attention mechanisms actually improve interpretability and 10 

reliability. Despite their extensive usage, there is a lack of evidence that attention modules 11 

make models more trustworthy in practice (Islam et al., 2023; Victor et al., 2022; H. 12 

Zhang et al., 2022). Besides, XAI methods like Grad-CAM are frequently used to 13 

visualize model predictions, there is a notable gap in understanding how these tools can 14 

compare the effectiveness of various attention mechanisms specifically for post-disaster 15 

scenarios (Cheng et al., 2022; Islam et al., 2023; Seydi et al., 2023). The combination of 16 

XAI methods and attention mechanisms in PDD is crucial to know whether attention-17 

driven performance gains are accompanied by improvements in transparency, or whether 18 

they come at the cost of interpretability. Addressing these gaps is necessary if AI systems 19 

are to move beyond benchmarks and be adopted in real-world disaster response, where 20 

decision-makers require both performance and transparency to act with confidence.  21 

To address these shortcomings and bridge the gap between high performance 22 

and practical applicability, our contributions are threefold: 23 

1. We incorporate three attention modules - channel, spatial, and multihead – into 24 

eight widely used DL architectures and perform a systematic evaluation of their 25 
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performance in terms of accuracy and reliability for PDD with 32 model 1 

combinations in total.  2 

2. By coupling attention mechanisms with complementary XAI techniques, using 3 

Grad-CAM to initially filter and identify spatial focus, followed by Saliency Maps 4 

for a finer pixel-level analysis, this study introduces a complementary approach 5 

to evaluating model decision-making in the context of PDD.  6 

3. We emphasize the role of both interpretability and reliability in distinguishing 7 

high-severity from lower-severity categories, demonstrating how reliable models 8 

can provide actionable insights that are directly relevant to decision-makers in 9 

disaster response and recovery efforts. 10 

By bridging the gap between accuracy-driven DL research and interpretability-11 

driven practical needs, this study advances both methodological and applied knowledge. 12 

It contributes a systematic, comparative framework for evaluating the role of attention in 13 

PDD and offers actionable insights into building transparent and trustworthy AI tools for 14 

disaster risk management.  15 

2. Materials and Methods 16 

2.1. Study Area and Dataset 17 

This study utilizes the xBD dataset that contains a large-scale annotated collection 18 

of satellite imagery designed for PDD (Ritwik Gupta et al., 2019). A subset of the xBD 19 

dataset focused on tornado events has been selected for this study. Specifically, the Joplin, 20 

Moore, and Tuscaloosa tornadoes are used as the study area due to the availability of 21 

high-quality annotated imagery for these events. These tornadoes were significant 22 

disasters that resulted in extensive damage and loss of life across the central United States, 23 
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with each event exhibiting unique damage patterns and levels of destruction (Atkins et 1 

al., 2014; Prevatt et al., 2012).  2 

The dataset includes pre- and post-disaster images with labeled damage 3 

classifications, making it suitable for training DL models aimed at identifying damage 4 

severity. It classifies damages into four levels: no damage, minor damage, major damage, 5 

and destroyed (Table 1). However, the dataset exhibits a substantial class imbalance, with 6 

“no damage” samples significantly outnumbering other categories. To mitigate this 7 

imbalance issue and improve generalization, we applied targeted data augmentation, 8 

particularly to the minority classes. The augmentation techniques included random 9 

rotations, horizontal and vertical flips, color space, noise addition, brightness adjustment, 10 

and contrast adjustment (S. Yang et al., 2022). These transformations increased the 11 

diversity of training samples, balanced class distributions, and enhanced the robustness 12 

of the model to variations in image orientation, illumination, and sensor noise (Mumuni 13 

& Mumuni, 2022; Shorten & Khoshgoftaar, 2019). Figure 1 shows the key information 14 

of selected case studies: their occurrence date, intensity on the Enhanced Fujita scale, and 15 

economic loss (Atkins et al., 2014; Crawford et al., 2017; Paul & Stimers, 2012). It also 16 

shows the number of buildings based on their damage levels for each event. 17 

Table 1: Damage level description and the distribution of training and testing samples. 18 

Damage 

Level 

Structure Description Training 

samples 

Testing 

samples 

No Damage Undisturbed. No sign of 

structural or shingle damage 

or burn marks. 

37677 500 

Minor 

Damage 

Building partially burnt, roof 

elements missing, or visible 

cracks. 

4614 500 

Major 

Damage 

Partial wall or roof collapse. 1420 500 
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Destroyed Scorched, completely 

collapsed, or otherwise no 

longer present. 

5455 500 

 1 

 2 

Figure 1: Overview of the selected tornado events, including key details such as damage 3 

intensities, economic losses, and the number of images per damage category. 4 

Figure 2 shows that pre-disaster and post-disaster high resolution satellite images 5 

(1024x1024 pixel tiles with a spatial resolution of 0.5 m) of tornado affected areas were 6 

utilized to prepare the data for this study, consisting of three spectral bands: red, green, 7 

blue (RGB). The dataset includes building annotations for both pre-disaster locations and 8 

post-disaster damage levels, facilitating the identification and categorization of damage 9 

for each structure (Ritwik Gupta et al., 2019). The data preparation process begins with 10 

segmenting each annotated building area into smaller 128x128 pixel images. This allows 11 

the extraction of focused views for each individual building, isolating them from the 12 
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larger satellite image. The post-disaster images were then cropped to match the pre-1 

disaster building locations, ensuring alignment and consistency for comparative analysis. 2 

This alignment enables the model to directly compare structural changes across time and 3 

ensures that explainable AI visualizations can meaningfully trace these differences. 4 

Doubling the paired pre- and post-disaster patches into a square format also standardized 5 

the input dimensions for stable processing in the deep learning models. Each cropped 6 

building image from the post-disaster layer is subsequently labeled based on its damage 7 

classification. 8 

 9 

Figure 2: Data preparation workflow illustrating the process of pre- and post-disaster 10 

satellite images into 128×128 pixel patches, aligning building locations, and labeling 11 

each patch based on its damage classification. 12 

 13 

This data preparation approach reduces computational complexity by shifting 14 

from pixel-level segmentation to image-level classification, allowing for faster 15 

processing of high-resolution images (Csillik, 2017; Wang et al., 2011). It enhances 16 
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generalizability by focusing on broader structural features rather than pixel details, and it 1 

improves model accuracy by isolating critical damage patterns in each building image. 2 

For XAI, this method enables clear and focused visual explanations, making 3 

interpretations accessible to non-technical stakeholders.  4 

2.2. Our Proposed DL Models 5 

In this study, our approach leverages eight widely used CNN architectures, that reflect 6 

diverse design strategies and have been commonly applied in remote sensing tasks, to 7 

evaluate the impact of incorporating attention mechanisms into DL models for PDD. 8 

These eight models are InceptionV3 (C. Szegedy et al., 2016), Xception (Chollet, 2017), 9 

InceptionResNetV2 (Christian Szegedy et al., 2017), ResNet152 (He et al., 2016), 10 

DenseNet169 (Huang et al., 2017), ShallowNetV2, MobileNetV2 (Howard, 2017), and 11 

NasNetMobile (Zoph et al., 2018), each of which serves as a base model for feature 12 

extraction. These architectures capture different design aims including deep residual and 13 

dense networks (ResNet152, DenseNet169), multi-scale inception variants (InceptionV3, 14 

InceptionResNetV2), lightweight architectures suitable for rapid deployment 15 

(MobileNetV2, NASNetMobile), a separable convolution model (Xception), and a 16 

baseline shallow network (ShallowNet). This diversity allows us to examine whether 17 

attention and XAI improve model interpretability consistently across networks with 18 

distinct strengths and limitations, ensuring that our findings are broadly applicable to 19 

remote sensing–based damage detection.  20 

To enhance the focus of these models on critical aspects of the input data, we 21 

integrate three types of attention mechanisms: Channel Attention (CA), Spatial Attention 22 

(SA), and Multihead Attention (MA). These mechanisms are designed to dynamically 23 

prioritize different elements in the feature maps, improving the models’ performance, 24 

Jo
urn

al 
Pre-

pro
of



2 

 

robustness, and interpretability. In all eight base models, the attention modules were 1 

consistently inserted at the end of the feature extraction stage and immediately before the 2 

flattening and classification layers. This placement was chosen to ensure that attention 3 

operates on the highest-level semantic features, providing a uniform integration point 4 

across diverse architectures, reducing computational overhead by acting on compact 5 

feature maps, and directly influencing the decision-making process of the classifier. 6 

Figure 3  illustrate the architecture of each attention module and Figure 4 demonstrate 7 

how these modules are integrated with the base models. 8 

CA is designed to emphasize the importance of certain feature channels over 9 

others. It employs both global average pooling and max pooling, followed by a shared 10 

multilayer perceptron with two dense layers (C → C/8 with ReLU activation, then C with 11 

sigmoid activation), generating channel weights that rescale the input feature maps. This 12 

mechanism dynamically adjusts the weights of each feature channel based on their 13 

relevance to the task, allowing the model to focus on the most significant attributes of the 14 

input data (Woo et al., 2018). Besides, SA emphasizes the specific regions within input 15 

data by concatenating average-pooled and max-pooled feature descriptors across 16 

channels and passing them through a 7×7 convolution, which is crucial for accurate 17 

classification. By creating attention maps, this mechanism directs the model’s attention 18 

to spatially relevant areas (Woo et al., 2018). MA applies scaled dot-product attention 19 

across multiple heads, implemented with four heads and a key dimension of 64. Queries, 20 

keys, and values are projected from the feature maps, attention outputs are concatenated, 21 

and residual connections with layer normalization (ε = 1e-6) are applied, ensuring stable 22 

training and contextual refinement (Vaswani et al., 2017). 23 

For each of the eight base models, we create three variants by applying one of the 24 

attention mechanisms, resulting in a total of 32 unique model configurations. Each 25 
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configuration processes input images of size 128x128x3, with a series of layers following 1 

the attention mechanism: a flattening layer, dropout layers (with a rate of 0.5) to reduce 2 

overfitting, and a final softmax layer for multi-class classification.  3 

 4 

Figure 3: Schematics of the three attention mechanisms in the study: SA, MA, and CA. 5 

 6 
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 1 

Figure 4: Overview of the 32 model configurations, showing how attention modules are 2 

incorporated into eight baseline CNN architectures for PDD. 3 

 4 

This study employs transfer learning for the majority of DL models, except 5 

ShallowNetV2, leveraging pretrained weights on the ImageNet dataset to enhance the 6 

models' ability to extract meaningful features from post-disaster imagery (J. Deng et al., 7 

2009). Using pretrained models on large-scale datasets like ImageNet allows these 8 

architectures to start with a solid foundation of feature recognition, which is particularly 9 

beneficial in domains with limited labeled data, such as post-disaster damage detection 10 

(Zhuang et al., 2021). ImageNet is a large-scale dataset containing over 14 million labeled 11 

images across thousands of categories, widely used to pretrain deep learning models for 12 

image recognition tasks (Arbulu & Ballard, 2004; Krizhevsky et al., 2012; Christian 13 

Szegedy et al., 2017). 14 

In addition to these pretrained architectures, we developed a custom model, 15 

ShallowNetV2, specifically designed and trained from scratch for this study. 16 

ShallowNetV2’s architecture, as illustrated in Figure 5. ShallowNetV2 is a simple 17 
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convolutional neural network with four convolutional blocks, each consisting of a 3×3 1 

convolutional layer (filters = 32, 64, 128, and 256, respectively) with ReLU activation 2 

and same padding, followed by 2×2 max-pooling. After feature extraction, the network 3 

includes a flattening operation, a fully connected dense layer with 128 units (ReLU 4 

activation), a dropout layer (rate = 0.5) to reduce overfitting, and a final softmax output 5 

layer with four units corresponding to the damage classes. Several configurations were 6 

initially explored (e.g., varying the number of convolutional blocks, filter sizes, and dense 7 

units), and the final design of ShallowNetV2 was selected based on training and 8 

validation performance. By including ShallowNetV2 alongside pretrained models, we 9 

aim to assess the comparative performance of a simpler, customized architecture against 10 

more complex, pretrained models. 11 

 12 

Figure 5: Architecture of base ShallowNetV2 model. 13 

2.3. Evaluation Metrics and Training Procedure 14 

To assess model performance, we utilized the following metrics: accuracy, precision, 15 

recall, F1 score and the confusion matrix. These metrics are well-suited for DL-based 16 

classification tasks and provide a thorough understanding of model effectiveness in the 17 

context of PDD (A. M. Braik & M. Koliou, 2024; Lu et al., 2024; Wiguna et al., 2024). 18 

Accuracy represents the overall proportion of correct predictions across all 19 

classes, calculated as: 20 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100   (𝐸. 1) 21 
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where TP and TN indicate true positives and true negatives, respectively, while FP and 1 

FN denote false positives and false negatives.  2 

Precision indicates the ratio of correctly identified positive predictions to the total 3 

positive predictions, reflecting the model’s reliability in identifying actual damage cases. 4 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ∗ 100      (𝐸. 2) 5 

Recall measures the proportion of actual positive cases that the model correctly 6 

identifies, capturing the model’s ability to detect damage when it truly exists. 7 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ∗ 100      (𝐸. 3) 8 

F1-score provides a balanced measure that combines precision and recall into a 9 

single metric by calculating their harmonic mean. 10 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 ∗ 100      (𝐸. 4) 11 

Additionally, we utilized a confusion matrix to provide a detailed breakdown of 12 

the model’s classification across each damage category, offering insights into its 13 

performance in distinguishing between levels of damage severity. 14 

We trained the models using the Adam optimizer with a cross-entropy loss 15 

function, a common choice for multi-class classification (Ahmadi et al., 2024; Wanting 16 

Yang et al., 2021). Hyperparameters, including learning rate, batch size, and number of 17 

epochs, were fine-tuned through a grid search to maximize model performance on the 18 

validation set. Specifically, we experimented with the following values: 19 

• Learning Rates: 0.01, 0.005, 0.001, 0.0005, and 0.0001. 20 

• Batch Sizes: 16, 32, 64, and 128. 21 

• Number of Epochs: 50, 100, and 200. 22 

The optimal configuration determined was a learning rate of 0.001, a batch size 23 

of 64, and 200 epochs, balancing accuracy with computational efficiency. To further 24 

Jo
urn

al 
Pre-

pro
of



2 

 

enhance model robustness, we applied 5-fold cross-validation, reporting the average 1 

performance across folds to ensure reliable and unbiased results. To prevent overfitting, 2 

early stopping was applied based on validation loss, stopping the training once 3 

improvements plateaued. After training and validation, the models were evaluated on the 4 

test set, with accuracy, precision, recall, and the confusion matrix used as final 5 

performance metrics, ensuring robust evaluation. 6 

2.4. Explainable AI 7 

Model transparency is crucial for fostering trust and enabling informed, accountable 8 

decisions among stakeholders. To improve the interpretability of our models, we 9 

implement two widely recognized Explainable AI (XAI) methods: Saliency Maps and 10 

Grad-CAM. They are particularly effective for image-based tasks, as they visually 11 

indicate which parts of an image most significantly impact the model’s predictions, 12 

enhancing our understanding of the decision-making process (Weber et al., 2023). These 13 

XAI methods provide insights into whether the model's attention aligns with human 14 

judgment regarding post-disaster images. In high-stakes disaster management, this 15 

interpretability is essential, as it enables first responders, decision-makers, and other 16 

stakeholders to make more transparent, confident decisions based on a clear 17 

understanding of the model’s reasoning (Ghaffarian et al., 2023; Kakogeorgiou & 18 

Karantzalos, 2021). 19 

Saliency Maps utilize gradients to identify the most critical pixels influencing the 20 

model's output for a given input image. This technique computes the gradient of the class 21 

score concerning each input pixel, thereby revealing the areas that contribute most to the 22 

model’s classification decisions. This is invaluable in disaster scenarios, where it is 23 
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essential to know precisely which image regions, such as damaged buildings or collapsed 1 

infrastructure, are driving the model’s predictions. 2 

For a particular class c, the Saliency Map 𝑆 is derived as: 3 

𝑆 = |
𝜕𝑦𝑐

𝜕𝐼
|                            (E. 3) 4 

where 
𝜕𝑦𝑐

𝜕𝐼
 represents the gradient of the class score 𝑦𝑐 in relation to the input 5 

image 𝐼. The absolute values of these gradients highlight key pixels, allowing us to 6 

visualize which regions significantly influence the outcome (Simonyan, 2013). 7 

Grad-CAM is another technique used to visualize model decision-making but 8 

focuses on high-level feature maps within the model’s final convolutional layers, 9 

producing a heatmap that emphasizes the areas relevant to a specific class prediction. 10 

Unlike Saliency Maps, which operate at the pixel level, Grad-CAM provides a broader 11 

perspective, highlighting entire regions within the image that the model finds important 12 

for a given class. 13 

To calculate the Grad-CAM heatmap for a class c, we begin by obtaining the 14 

gradients of the class score 𝑦𝑐 with respect to the feature maps 𝐴𝑘 in a chosen 15 

convolutional layer. These gradients are averaged over spatial dimensions to produce 16 

weights 𝛼𝑘
𝑐: 17 

𝛼𝑘
𝑐 =

1

𝑍
∑  

𝑖

∑  

𝑗

∂𝑦𝑐

∂𝐴𝑖𝑗
𝑘                               (E. 4) 18 

where 𝑍 is the total number of pixels in the feature map. We then compute a 19 

weighted combination of the feature maps, followed by a ReLU activation to create the 20 

Grad-CAM heatmap: 21 
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𝐿Grad-CAM 
𝑐 = ReLU (∑  

𝑘

𝛼𝑘
𝑐𝐴𝑘)               (E. 5) 1 

Applying ReLU ensures that only positive influences on the class score are 2 

visualized, resulting in a heatmap that highlights the image regions most pertinent to the 3 

model’s prediction (Selvaraju et al., 2017). 4 

3. Results and Discussion 5 

3.1. Performance Comparison of the models 6 

This section presents the performance of the proposed base models and their 7 

configurations using different attention mechanisms. To streamline the discussion, 8 

models are prefixed based on their configuration: Base_ for the original model without 9 

attention mechanisms, CA_ for models with CA, SA_ for those with SA, and MA_ for 10 

those with MA. For example, Base_DenseNet169 represents the original DenseNet169 11 

model, while MA_ResNet152 indicates the ResNet152 model configured with MA. In 12 
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Table 2, blue text highlights the configurations with the highest accuracy among 1 

variations of the same base model, while red text indicates the configurations achieving 2 

the highest precision. 3 

The results shows that Base_InceptionV3 and Base_Xception exhibited 4 

consistently high accuracy, achieving 81% and 80.5%, respectively, and high precision, 5 

reaching 80.8% and 80.6%, respectively, among the eight base models. These findings 6 

highlight the robustness of these architectures even without additional enhancements 7 

from attention mechanisms. However, the integration of attention mechanisms 8 

significantly improved both accuracy and precision for most models, emphasizing their 9 

potential to refine the performance of deep learning models for PDD. 10 
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Table 2: Performance comparison of deep learning models with different attention mechanisms for PDD, (Pre: Precision, Acc: Accuracy, Rec: 1 

Recall, F1-S: F1 Score). The highest accuracy achieved within each base model configuration is highlighted in blue, the highest precision is 2 

highlighted in red, the highest recall is highlighted in green, the highest f1 score is highlighted in purple, and the overall best performance across 3 

all metrics is highlighted in yellow. 4 

Model Name 
Transfer 

Learning 

Base  

Model 

Channel Attention Spatial Attention Multihead Attention 

Pre Acc Rec F1-S Pre Acc Rec F1-S Pre Acc Rec F1-S Pre Acc Rec F1-S 

DenseNet169  ✓ 79.5 79.2 79.2 79.3 81.3 80.9 80.9 81.1 79.5 79.4 79.4 79.4 81.6 80.5 80.5 81.0 

InceptionV3 ✓ 80.8 81.0 81.0 80.9 81.1 81.0 81.0 81.1 80.8 81.0 81.0 80.9 82.9 81.9 81.9 82.4 

InceptionResNetV2 ✓ 80.5 80.2 80.2 80.3 79.9 78.3 78.3 79.1 79.2 79.2 79.2 79.2 80.9 79.7 79.7 80.3 

MobileNetV2 ✓ 74.8 75.0 75.0 74.9 75.6 73.8 73.8 74.7 77.5 77.7 77.7 77.6 83.1 82.5 82.5 82.8 

NasNetMobile ✓ 69.1 69.1 69.1 69.1 73.3 72.3 72.3 72.8 68.5 67.7 67.7 68.1 78.7 77.7 77.7 78.2 

ResNet152 ✓ 78.7 78.3 78.3 78.5 78.9 78.8 78.8 78.9 79.6 79.0 79.0 79.3 78.6 79.2 79.2 78.9 

ShallowNetV2 - 73.0 69.9 69.9 71.5 79.7 79.7 79.7 79.7 81.0 80.8 80.8 80.9 80.6 80.0 80.0 80.3 

Xception ✓ 80.6 80.5 80.5 80.6 80.9 79.7 79.7 80.3 81.9 81.2 81.2 81.6 81.1 79.7 79.7 80.4 
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 1 

Among the attention mechanisms, MA consistently produced the best results, 2 

particularly with models like MobileNetV2 and NasNetMobile. For example, 3 

MA_MobileNetv2 achieved an accuracy of 82.5% and a precision of 83.1%, surpassing 4 

its base model by substantial margins of 7.5% in accuracy and 8.3% in precision. While 5 

SA did not consistently outperform the other mechanisms, it was particularly beneficial 6 

for models like ShallowNetV2, improving its accuracy from 69.9% (Base_ 7 

ShallowNetV2) to 80.8% (SA_ ShallowNetV2), demonstrating the role of SA in 8 

emphasizing critical regions within the images. CA also demonstrated its effectiveness, 9 

especially for feature-rich models like DenseNet169. The CA_DenseNet169 10 

configuration improved both accuracy and precision compared to its base variant, 11 

achieving 80.9% accuracy and 81.3% precision. 12 

Overall, MA_MobileNetV2 achieved the best accuracy (82.5%) and precision 13 

(83.1%) performances, among 32 model configurations, followed by MA_InceptionV3 14 

with an accuracy of 81.9% and precision of 82.9%. Despite a transformative potential of 15 

attention mechanisms in improving model performances, configurations of 16 

InceptionResNetV2 demonstrated only marginal improvements, suggesting that the 17 

choice of base model plays a crucial role in determining the effectiveness of attention 18 

mechanisms. Another interesting finding is that ShallowNetV2 performed competitively 19 

despite being a custom-designed model without pretrained weights. 20 

A critical aspect of PDD is accurately identifying buildings with major damage 21 

and those that are destroyed, as these classes represent the highest severity levels 22 

requiring urgent response (Shen et al., 2022; Wu et al., 2021). Misclassification of these 23 

categories could delay relief efforts and resource allocation, emphasizing the need for 24 

models capable of precise predictions in these critical classes (Kaur et al., 2023). Figure 25 
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6, the detailed confusion matrix, reveals that the integration of MA significantly improved 1 

the prediction accuracy for major damage and destroyed classes across several models. 2 

For example, in MA_InceptionV3, the destroyed class was predicted with an impressive 3 

accuracy of 87.6%, while the major damage class improved to 80.5%.   4 

 5 
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 1 

Figure 6: Confusion matrices showing the classification performance of the base models 2 

and their variants with attention mechanisms for the four damage classes. 3 
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Notably, SA_ShallowNetV2 and MA_InceptionV3 emerged as the only models 1 

capable of predicting both the major damage and destroyed classes with over 80% 2 

accuracy, achieving a balance between high accuracy for severe damage categories and 3 

overall robustness. Figure 7 reveals the predictions made by each base model and its 4 

attention-augmented variants (CA, SA, and MA) on a sample post-disaster image Across 5 

all base models, the most common trend is a systematic underestimation of severity, with 6 

frequent confusions between adjacent categories—most notably between major damage 7 

and destroyed, or between minor damage and no damage. For example, 8 

Base_MobileNetV2 and Base_NasNetMobile misclassify large proportions of destroyed 9 

structures as major damage, and minor damage as no damage, reflecting a bias toward 10 

underestimating severity. The introduction of attention mechanisms reduces these 11 

systematic errors, particularly Spatial and Multihead Attention, which sharpen class 12 

boundaries and improve the separation of high-severity categories. For instance, 13 

MA_InceptionV3 and MA_ShallowNetV2 exhibit precise identification of destroyed 14 

structures, closely aligning with the ground truth. The figure further demonstrates 15 

performance variations across architectures, revealing that base models such as 16 

Base_NasNetMobile and Base_MobileNetV2 struggle to differentiate between high-17 

severity damage levels without attention mechanisms. However, their accuracy improves 18 

considerably when attention is incorporated, as seen in MA_NasNetMobile and 19 

MA_MobileNetV2. Consistency in predictions is another critical observation, with 20 

attention-enhanced models such as MA_InceptionV3 and SA_ShallowNetV2 21 

consistently predicting major damage and destroyed classes with higher accuracy. These 22 

findings align with earlier results showing that these configurations achieve over 80% 23 

accuracy for these critical categories. Finally, the visualization underscores the 24 

operational relevance of attention mechanisms, as stakeholders can easily verify model 25 
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predictions by cross-referencing the visual outputs with actual damage patterns. This 1 

aspect highlights the importance of transparency and interpretability in post-disaster 2 

scenarios, ensuring the reliability and usability of the models in real-world applications. 3 

 4 

Figure 7: Visual comparison of predictions made by base models and their variants with 5 

attention mechanisms on a sample post-disaster image. 6 

Jo
urn

al 
Pre-

pro
of



26 

 

These results highlight the crucial potential of attention mechanisms, particularly 1 

MA, in improving model focus on high-severity damage classes. By enhancing the 2 

models' ability to correctly identify major damage and destroyed structures, these 3 

configurations align well with the priorities of disaster response efforts, ensuring more 4 

efficient resource allocation and faster decision-making during critical phases. This 5 

underscores the importance of designing models not just for overall accuracy but with a 6 

targeted emphasis on the classes that hold the greatest operational significance in post-7 

disaster contexts. 8 

3.2. Reliability assessment of the models with XAI 9 

The reliability of the proposed DL models for PDD were evaluated using Grad-CAM and 10 

Saliency Map techniques. These XAI methods provided visual insights into how each 11 

model, including their attention-augmented variants, focused on critical features while 12 

predicting specific damage level classes. To ensure a fair and comprehensive analysis, 13 

the example images from each damage class presented in this study are those that 1) all 14 

32 models predicted correctly and 2) no model predicted correctly (Figure 8). These 15 

representative examples were selected to illustrate consistent patterns observed across the 16 

broader dataset, rather than isolated cases, and therefore provide overall insights into 17 

model behavior and limitations. The analysis demonstrated the impact of attention 18 

mechanisms on enhancing the explainability and reliability of the models, particularly for 19 

high-severity damage classes. 20 
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 1 

Figure 8: Example images used in XAI visualizations, illustrating the four damage 2 

categories for 1) all 32 models predicted correctly, and 2) no model predicted correctly. 3 

 4 

In this study, interpretability was assessed at two complementary levels. Global 5 

reliability reflects whether the models focus on the correct areas of interest across the 6 

dataset as a whole, indicating their overall decision-making behaviour. For example, for 7 

“Major Damage” or “Destroyed” categories, a globally reliable model is expected to 8 

focus pre- and post-disaster images and compare them side by side by especially 9 

concentrating on buildings where structural changes are visible, rather than unrelated 10 

regions. Local reliability relates to how well individual predictions are explained at the 11 

pixel or region level, namely whether the model highlights the specific damaged parts of 12 

a building within a single image. To capture these two perspectives, Grad-CAM was 13 

mainly employed to evaluate global behaviour, as it illustrates where the model attends 14 

when forming its predictions, while Saliency Maps were used to examine local reliability, 15 

as they indicate which pixels are most influential for a decision. Using these 16 

complementary methods allowed us to assess both the overall logic of the models and the 17 

detailed evidence behind specific predictions. 18 
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Figure 9 illustrates the Grad-CAM results for all 32 model configurations, 1 

showing the focus of base models and their attention-augmented variants on the 2 

"Destroyed" class. The figure reveals that base models such as Base_InceptionV3, 3 

Base_ShallowNetV2, and Base_MobileNetV2 struggle to localize severely damaged 4 

areas, as their heatmaps display scattered or diffused attention. These models fail to 5 

consistently highlight regions of structural damage, indicating limitations in extracting 6 

relevant features for high-severity classes. The addition of attention mechanisms 7 

improved model focus in general, but their effectiveness varied.  8 

In some cases, CA-augmented models, such as CA_DenseNet169 and 9 

CA_ResNet152, produced heatmaps that primarily emphasized pre-disaster image 10 

regions rather than post-disaster damage. This misplaced focus suggests that CA, while 11 

effective at prioritizing feature channels, struggles to integrate spatial or temporal context 12 

effectively. For example, in CA_ShallowNetV2, the model highlighted areas in the pre-13 

disaster image with little connection to the visible damage in the post-disaster image, 14 

reducing its reliability for interpreting structural changes. In contrast, SA and MA 15 

consistently enhanced model focus on critical areas in models such as SA and MA 16 

variations of InceptionV3, ShallowNetV2, and NasNetMobile, effectively combined 17 

spatial and temporal information from pre- and post-disaster images. Their Grad-CAM 18 

heatmaps demonstrated precise and well-localized attention on regions of significant 19 

change, ensuring contextually accurate predictions. These models excelled at correlating 20 

structural changes observed in the post-disaster image with their pre-disaster state, 21 

enhancing interpretability and reliability. However, as shown in Figure 9, even high-22 

performing configurations like MA_MobileNetV2 occasionally misplaced focus on 23 

visually distinct regions in the post-disaster image, leading to potential unreliability. 24 
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Figure 10 illustrates the Grad-CAM results for all 32 model configurations, 1 

showing the focus of base models and their attention-augmented variants on the “Major 2 

Damage” class. The base models display weak and diffuse activation patterns, often 3 

spreading attention across large portions of the image or focusing on irrelevant regions 4 

such as Base_InceptionV3, Base_ShallowNetV2, and Base_MobileNetV2. This 5 

inconsistent focus makes it difficult to reliably identify the areas of partial roof or wall 6 

collapse that define major damage, underscoring their limited ability to isolate features 7 

critical for this class. In contrast, attention-augmented models generally display stronger 8 

and more localized activation on damaged building regions, and more effectively 9 

compare pre- and post-disaster images. This was particularly evident in SA and MA 10 

variations of InceptionV3 and ShallowNetV2, where attention maps concentrated on 11 

structurally relevant regions. Similar to the “Destroyed” class, these models appear more 12 

reliable across other variations by combining spatial and contextual focus, producing 13 

more stable and interpretable activations. 14 

Figure 11and Figure 12 present Grad-CAM visualizations for the “Destroyed” and 15 

“Major Damage” classes where none of the models produced correct predictions, 16 

respectively. These heatmaps reveal that both base and attention-augmented models fail 17 

to concentrate on the critical damaged areas. Instead, their attention is either scattered 18 

across large portions of the image or misplaced on undamaged regions and pre-disaster 19 

structures. In contrast, correctly predicted samples of the same classes showed sharper 20 

and more localized focus on collapsed roofs, missing walls, and other key structural 21 

changes, particularly in SA- and MA-augmented models. This pattern highlights a 22 

recurring source of error that misclassifications might be often associated with diffuse or 23 

misplaced attention maps, underscoring the limits of current models in consistently 24 

capturing ambiguous or complex damage cues, especially in lower resolution images. 25 
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 1 

Figure 9: Grad-CAM visualizations for the "Destroyed" class, comparing base models 2 

and their attention-augmented variants (all 32 models predicted correctly). 3 

Jo
urn

al 
Pre-

pro
of



31 

 

 1 

Figure 10: Grad-CAM visualizations for the "Major damage" class, comparing base 2 

models and their attention-augmented variants (all 32 models predicted correctly). 3 

Jo
urn

al 
Pre-

pro
of



32 

 

 1 

Figure 11: Grad-CAM visualizations for the "Destroyed" class, comparing base models 2 

and their attention-augmented variants (no model predicted correctly). 3 
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 1 

Figure 12: Grad-CAM visualizations for the "Major damage" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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 1 

Figure 13 represents the Saliency Map analysis providing critical pixel-level 2 

insights into the decisions made by the models for the "Destroyed" class. The reliability 3 

hinges on two key factors: the ability to focus on damaged areas and avoiding overly 4 

diffuse saliency patterns that attribute importance to irrelevant or excessive pixels. 5 

Building on the Grad-CAM analysis, which identified SA and MA variations of 6 

InceptionV3, ShallowNetV2, and NasNetMobile as the most reliable models for 7 

predicting the "Destroyed" class, we conducted a further evaluation using Saliency Maps. 8 

While Grad-CAM provided insights into where the models focused spatially, Saliency 9 

Maps offered a pixel-level perspective, highlighting the most influential pixels driving 10 

the models' decisions. This complementary analysis aimed to validate the reliability of 11 

these models and uncover any limitations. 12 

For SA_NasNetMobile and MA_NasNetMobile, the Saliency Map revealed a 13 

significant limitation: a diffused focus across the image, with nearly all pixels marked as 14 

influential. Instead of isolating the most critical pixels corresponding to damaged areas, 15 

the model attributed importance to large portions of the post-disaster image, including 16 

undamaged regions. This behavior undermines the interpretability of the model's 17 

predictions, as the diffused saliency pattern does not provide clear evidence of a specific 18 

decision-making process. Besides, both SA_ShallowNetV2 and SA_InceptionV3 19 

exhibited problems in localizing logically damaged areas. Their Saliency Maps frequently 20 

highlighted regions that did not correspond to visibly damaged structures in the post-21 

disaster image. Instead of concentrating on critical damaged areas, these models produced 22 

saliency patterns that were either diffused or misplaced, emphasizing irrelevant regions 23 

with no connection to actual destruction. However, MA_ShallowNetV2 and 24 

MA_InceptionV3 emerged as the only consistently reliable models based on Saliency 25 
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Map analysis. Both configurations demonstrated sharp and well-localized saliency 1 

patterns concentrated on pixels corresponding to areas of severe structural damage in the 2 

post-disaster image. These models not only avoided diffused focus but also aligned their 3 

influential pixels closely with visible damage, making their decision-making process both 4 

interpretable and trustworthy. The integration of MA allowed these models to effectively 5 

balance spatial and temporal context, ensuring accurate predictions. 6 

Figure 14 shows the Saliency Map analysis for the “Major Damage” class in cases 7 

where models produced correct predictions. Compared to the “Destroyed” class, reliable 8 

identification of major damage requires finer discrimination, as the damage is often 9 

partial and less visually obvious. The image showed that many base and attention-10 

augmented models produced diffuse or misplaced saliency patterns, failing to isolate the 11 

damaged pixels; however, the MA_ShallowNetV2 model stood out by showing a 12 

consistent alignment between Grad-CAM and Saliency Maps. In this case, the global 13 

attention (Grad-CAM) highlighting damaged roof regions coincided with the pixel-level 14 

attribution (Saliency), indicating that the model not only looked at the right area but also 15 

relied on the correct pixels when making its decision. This consistency across two 16 

interpretability methods was not observed in other architectures, where Grad-CAM and 17 

Saliency Maps often emphasized different or overly broad regions. These results reinforce 18 

the finding that reliable predictions depend on both global and local focus, with 19 

MA_ShallowNetV2 emerging as the most trustworthy configuration for major damage 20 

detection. 21 

Figure 15 and Figure 16 show Saliency Map analyses for “Destroyed” and “Major 22 

Damage” cases where all models produced incorrect predictions, respectively. Unlike the 23 

correctly classified samples, these visualizations reveal diffuse, misplaced, or in some 24 

cases almost absent pixel attributions. Many models scattered their focus across irrelevant 25 
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regions of the image, while others (notably MA_ShallowNetV2) showed very little 1 

activation at all, indicating that the decision was made without reliance on meaningful 2 

visual cues. This lack of concentrated or interpretable saliency contrasts sharply with the 3 

successful cases, where reliable models aligned their pixel-level focus with damaged 4 

roofs, collapsed walls, or other structural features. These failed examples therefore 5 

highlight two recurring sources of error: diffuse or misplaced focus, and in some cases, 6 

the near-complete absence of focus, both of which might undermine interpretability and 7 

point to the difficulty of detecting ambiguous or subtle damage patterns in post-disaster 8 

imagery. 9 

These differences highlight the importance of analyzing models not only through 10 

Grad-CAM but also at a more granular level using Saliency Maps. While 11 

MA_ShallowNetV2 and MA_InceptionV3 remain reliable in both Grad-CAM and 12 

Saliency Map evaluations, SA_ShallowNetV2 and SA_InceptionV3 struggle with 13 

misplaced pixel focus, and SA_NasNetMobile and MA_NasNetMobile are undermined 14 

by diffused saliency patterns. These findings emphasize the need for refined attention 15 

mechanisms that balance spatial coherence with pixel-level precision, ensuring reliable 16 

and interpretable predictions in post-disaster damage detection tasks. 17 

 18 
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 1 

Figure 13: Saliency Map visualizations for the "Destroyed" class, comparing base 2 

models and their attention-augmented variants (all 32 models predicted correctly). 3 
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 1 

Figure 14: Saliency Map visualizations for the "Major damage" class, comparing base 2 

models and their attention-augmented variants (all 32 models predicted correctly). 3 
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 1 

Figure 15: Saliency Map visualizations for the "Destroyed" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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 1 

Figure 16: Saliency Map visualizations for the "Major damage" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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4. Conclusions 1 

This study highlights the critical role of XAI in evaluating the reliability of deep learning 2 

models for PDD. Although these models achieve high accuracy, our XAI-based analysis 3 

uncovers reliability limitations, emphasizing the necessity for enhanced interpretability 4 

to ensure trustworthy deployment in real-world scenarios. Furthermore, we show the 5 

potential of attention mechanisms in DL models for PDD. Through systematic evaluation 6 

using a tornado subset of the xBD dataset, we demonstrated that integrating attention 7 

mechanisms, particularly MA and SA improve model reliability, accuracy, and 8 

interpretability. These mechanisms were shown to enhance the focus of models on critical 9 

damage areas, especially in high-severity categories like "Destroyed" and "Major 10 

Damage," which are vital for prioritizing disaster response efforts. 11 

XAI techniques, the complementary analysis of Grad-CAM and Saliency Maps 12 

together, played a pivotal role in evaluating model reliability. Grad-CAM visualizations 13 

identified MA variations of ShallowNetV2 and InceptionV3 as the most reliable 14 

configurations, with heatmaps consistently highlighting regions of structural damage 15 

while maintaining spatial coherence. Conversely, models with CA often struggled to 16 

focus on post-disaster features, misdirecting attention to pre-disaster regions and 17 

diminishing their interpretability. Saliency Map analysis further validated these findings 18 

at a pixel level, revealing that MA_ShallowNetV2 and MA_InceptionV3 provided sharp, 19 

focused saliency patterns aligning with actual damage, providing interpretable and 20 

trustworthy decision paths. 21 

The comparative analysis underscores the importance of selecting appropriate 22 

attention mechanisms and explainability methods in PDD tasks. While MA emerged as 23 

the most effective mechanism, its success depends on the underlying architecture's ability 24 

to integrate spatial and temporal information effectively. These findings emphasize the 25 
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need for robust and interpretable models that balance predictive accuracy with 1 

explainability, ensuring their applicability in real-world disaster management scenarios. 2 

The novelty of this study is primarily comparative and application-focused. Its 3 

contribution lies in systematically integrating and evaluating attention mechanisms across 4 

multiple architectures, rather than in proposing new algorithms or interpretability 5 

frameworks. This applied focus nevertheless provides practical value by highlighting 6 

consistent patterns of reliability and limitations, supporting researchers and practitioners 7 

in selecting suitable approaches for operational disaster management. 8 

At the same time, several limitations must be acknowledged. Although this study 9 

employed qualitative XAI analyses to assess model reliability, the inclusion of 10 

quantitative metrics such as the Intersection over Union between attention heatmaps and 11 

annotated damage masks, or the percentage of salient pixels falling within damaged 12 

regions, would provide a more rigorous evaluation of model interpretability. 13 

Incorporating such quantitative measures could complement the qualitative insights 14 

presented here and further strengthen the assessment of model reliability in PDD. Another 15 

limitation is the use of the standard cross-entropy loss function, which treats all 16 

misclassifications equally and does not capture the ordinal relationship between damage 17 

classes. This limitation is particularly important in real-world applications, where 18 

confusing “destroyed” with “no damage” carries far greater consequences than 19 

misclassifying it as “major damage.” Recent studies have begun addressing this issue 20 

through ordinal-aware loss functions. For example, Tsai and Lin (2024) employed the 21 

Ordinal Class Distance Penalty Loss (OCDPL), introducing penalties that increase with 22 

the class distance between the prediction and ground truth to reduce the impact of severe 23 

misclassifications. Cheng et al. (2021b) adopted a more advanced approach by using the 24 

squared Earth Mover’s Distance (EMD), which evaluates the dissimilarity between the 25 
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entire predicted probability distribution and the true label distribution. Unlike OCDPL, 1 

which directly applies distance-based penalties at the class level, EMD considers the 2 

underlying geometry of the probability space, offering a principled way to enforce ordinal 3 

consistency across predictions. Moreover, this study is the use of fixed 128×128 patches 4 

centered on individual buildings, which, while simplifying training and ensuring 5 

consistency across models, may exclude valuable contextual information such as nearby 6 

damage or infrastructure. This approach can also distort building scales and introduce 7 

artificial uniformity, limiting the generalizability of the models to more complex post-8 

disaster scenes. To mitigate such issues, previous studies have proposed strategies such 9 

as multi-scale feature fusion to capture both fine detail and broader contextual cues (Shen 10 

et al., 2022), patch-based discriminative learning with multi-level and pyramid 11 

representations to enhance discriminative power across scales (Muhammad et al., 2022), 12 

and scale-adaptive approaches that dynamically adjust patch size or receptive fields 13 

according to scene complexity (Liu et al., 2023). These strategies underscore the 14 

importance of integrating both local and contextual information when designing damage 15 

assessment models. 16 

Future research should address these limitations by developing context-aware loss 17 

functions, incorporating quantitative interpretability metrics, and exploring variable patch 18 

sizes or scene-level models. Future studies should also explore ordinal-aware approaches, 19 

such as ordinal regression techniques or cost-sensitive loss functions, which can penalize 20 

severe misclassifications more heavily than adjacent ones and thereby better align model 21 

behavior with the practical needs of disaster response. Moreover, future studies could 22 

investigate variable patch sizes, multi-scale architectures, or scene-level models that 23 

capture both local and contextual information more effectively to address the constraints 24 

of fixed 128×128 patches. Advances in generative AI also hold promises for addressing 25 
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the scarcity of high-resolution disaster datasets, enabling synthetic augmentation to 1 

improve model robustness across diverse hazard types. Finally, extending this approach 2 

to multi-hazard scenarios, such as earthquakes, floods, or cascading hazard sequences, 3 

represents an important next step, as operational models must ultimately account for the 4 

compound and interacting risks that characterize real-world disaster environments.  5 

In summary, this work demonstrates that while attention mechanisms can improve 6 

both performance and interpretability in PDD, their effectiveness varies across 7 

architectures. The systematic evaluation presented here provides actionable insights for 8 

developing more reliable and interpretable AI tools, helping bridge the gap between 9 

technical advances and operational needs in disaster risk management. 10 
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Appendix    1 

 2 

Figure 17: Grad-CAM visualizations for the "Minor damage" class, comparing base 3 

models and their attention-augmented variants (all 32 models predicted correctly). 4 
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 1 

Figure 18: Grad-CAM visualizations for the "No damage" class, comparing base 2 

models and their attention-augmented variants (all 32 models predicted correctly). 3 
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Figure 19: Grad-CAM visualizations for the "Minor damage" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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Figure 20: Grad-CAM visualizations for the "No damage" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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Figure 21: Saliency Map visualizations for the "Minor damage" class, comparing base 2 

models and their attention-augmented variants (all 32 models predicted correctly). 3 
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Figure 22:Saliency Map visualizations for the "No damage" class, comparing base 2 

models and their attention-augmented variants (all 32 models predicted correctly). 3 
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Figure 23: Saliency Map visualizations for the "Minor damage" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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Figure 24: Saliency Map visualizations for the "No damage" class, comparing base 2 

models and their attention-augmented variants (no model predicted correctly). 3 
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