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Abstract

The increasing frequency and severity of natural hazard-induced disasters necessitate rapid
and reliable post-disaster damage detection (PDD) to inform disaster response and
recovery. Deep learning (DL) models, when paired with remote sensing (RS) data, have
shown potential in this domain, but challenges persist due to limited interpretability and
inconsistent reliability, particularly for high-severity damage classes. This study
investigates the use of attention mechanisms—Channel Attention (CA), Spatial Attention
(SA), and Multihead Attention (MA)—to enhance the accuracy and interpretability of
state-of-the-art DL models. Utilizing the xBD dataset, we evaluated eight DL architectures
and their attention-augmented configurations, in total 32 model, using explainable Al
(XAI) models, i.e., Grad-CAM and Saliency Maps to visualize decision-making processes.
Results indicate that models enhanced with MA achieve the highest reliability, with
MA_ShallowNetV2 and MA_InceptionV3 achieving accuracies of 81.9% and 80.0%,
respectively. Grad-CAM analysis demonstrated precise localization of damaged areas,
while Saliency Maps revealed well-concentrated pixel-level focus. In contrast, models with
CA or certain SA configurations struggled with misplaced or diffused attention. These
findings underscore the importance of incorporating explainable and interpretable Al
approaches in disaster risk management. Specifically, MA generally improved
interpretability and reliability in our evaluation, particularly for identifying high-severity

damage levels in post-disaster scenarios.

Keywords: deep learning; attention mechanisms; Explainable Al; Grad-CAM; Saliency

Maps; post-disaster damage detection, remote sensing

1. Introduction

The increasing frequency and intensity of certain natural hazard-induced disasters
highlight the urgent need for rapid and reliable PDD to inform disaster response and

recovery efforts. The International Disaster Database, EM-DAT, reveals that these
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disasters impacted around 3.4 billion people and created an estimated economic loss of
$4.2 trillion worldwide between 2004 and 2023 (EM-DAT, 2024). Storm related
disasters, such as tornadoes, produce highly localized and varied patterns of destruction
that can be difficult to discern (Crawford et al., 2020; Gokaraju et al., 2015; Mansour et
al., 2021). While timely PDD is critical for identifying affected areas and guiding resource
allocation (Abdullah M Braik & Maria Koliou, 2024; Wu et al., 2021), existing
approaches often struggle to deliver both accurate and reliability in high-pressure disaster
contexts. This creates a pressing need for approaches that are not only accurate but also
operationally reliable and interpretable for informed decision-making, ultimately
speeding up the recovery process and reducing long-term impacts on affected
communities (Ghaffarian et al., 2023; Matin & Pradhan, 2021).

RS technologies, including satellite imagery and aerial photography, provide
comprehensive and near real-time data covering vast and often inaccessible regions,
facilitating quicker and more accurate assessments that make them indispensable for
disaster monitoring (Da et al., 2022; Ghaffarian et al., 2018; Zhan et al., 2022; Zou et al.,
2023). The introduction of benchmark studies such as xBD and a following version of it
named Xview2 have driven major advances by providing standardized data for training
and evaluation specifically designed for training DL models. These datasets provide a
large-scale collection of annotated very-high resolution satellite imagery showing pre-
disaster and post-disaster conditions with labelled building damages, and include data for
various disaster types such as hurricanes, earthquakes, floods, and wildfires (Ritwik
Gupta et al., 2019). They have enabled DL models to outperform traditional machine
learning relying on predefined features and require extensive domain knowledge
(Ahmadi et al., 2024; Song et al., 2019; X. Zhang et al., 2022). In this study, we

specifically focus on tornado events, using three representative cases from the xBD
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dataset. They present unique challenges due to their highly localized and heterogeneous
damage patterns, which are difficult to detect and classify reliably. Thus, a key gap lies
in evaluating whether DL models can provide consistent and interpretable assessments
when applied to tornado-related disasters across diverse contexts.

Significant efforts have been made to improve the accuracy of DL models for
PDD using various model architectures combined with attention mechanisms, that
highlight the most informative features and filter out irrelevant inputs (Ghaffarian et al.,
2021). Zhang et al. (2023) presented LRBNet combining a Siamese network and UNet++
architecture with components like lightweight compression module and efficient channel
attention, achieved an accuracy of 85.0% for building localization and 70.7% for damage
classification with xBD dataset. Rohit Gupta and Shah (2021) presented RescueNet
integrating a novel localization-aware loss function and a multi-headed architecture,
significantly improving accuracy to 84.0% for building localization and 74.0% for
damage classification with xBD dataset. L. Deng and Wang (2022) designed an improved
U-Net model architecture for PDD, leveraging the xBD dataset, and achieved 87.41%
accuracy for building localization and 75.36% accuracy for damage classification by
utilizing extra skip connections, asymmetric convolution blocks, and a shuffle attention
module. Abdullah M Braik and Maria Koliou (2024) leveraged xBD dataset and
Convolutional Neural Networks (CNN) by combining with Geographic Information
Systems (GIS) for large-scale building damage assessment. After a fine-tuning process,
the model achieved over 90% accuracy with a case study on Hurricane Ike in Galveston
County. Leveraging the xBD dataset, Xia et al. (2023) presented BDANet integrating
multi-scale feature fusion and cross-directional attention modules and achieved an
accuracy of 80.43% for building localization and 84.17% for damage classification in the

real-world scenario of the 2023 Turkey earthquake. Oludare et al. (2022) proposed ATS-
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HRNet combining high-resolution network blocks with criss-cross attention modules to
extract contextual information and achieved an accuracy of 89.2% for building
localization and 87.5% for damage classification, outperforming other state-of-the-art
methods in post-disaster damage assessment. However, the evaluation of attention
mechanisms has remained almost entirely performance-centred and mainly neglected the
explanation of the decision-making process

es, leaving these models as a "black box." This creates an important knowledge gap about
the practical value of attention mechanism for enhancing trust and transparency in disaster
contexts.

In parallel, XAl plays a crucial role in applications such as disaster response and
recovery where reasoning behind model predictions is essential for decision-makers
(Cheng et al., 2022; Ghaffarian et al., 2023; Wenli Yang et al., 2023). Even models with
high accuracy may not be fully trusted or effectively utilized by stakeholders seeking a
comprehensive basis for their decisions when these models lack explainability and
reliability (Ghaffarian et al., 2023; Tursunalieva et al., 2024; Wenli Yang et al., 2023).
Explainable models not only enhance trust and reliability but also enable users to identify
potential errors, biases, or areas for improvement, facilitating more informed and
effective disaster management (Tursunalieva et al., 2024). Seydi et al. (2023) presented
BDD-Net+ combining convolution layers, transformer blocks, and self-attention layers
to enhance damage detection accuracy on the Haiti Earthquake and Bata Explosion
datasets and interpreted their model’s decisions with Grad-CAM, one of the highly used
XAl methods. Grad-CAM revealed that BDD-Net+ successfully focused key features,
such as rough surfaces and collapsed areas, while detecting damaged areas, ensuring trust
in the model’s outputs (Seydi et al., 2023). Cheng et al. (2022) employed DoriaNET

(Cheng et al., 2021a), xBD datasets and XAl techniques such as Grad-CAM to visualize
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the model’s focus areas during damage classification. Combining Grad-CAM and
uncertainty metrics such as Bayesian inference and Monte Carlo dropout revealed that
their model makes reliable predictions, aligning well with human-labeled assessments
(Cheng et al., 2022). Despite its promise, XAl applications in PDD are fragmented and
rarely scaled across multiple architectures especially with attention mechanisms.
Moreover, most studies use a single XAl method, missing the opportunity to evaluate
interpretability at multiple levels of granularity neglecting the potential of systematic and
multi-level evaluation of model reliability in PDD.

Overall, most studies evaluate DL models for PDD primarily on accuracy,
overlooking whether attention mechanisms actually improve interpretability and
reliability. Despite their extensive usage, there is a lack of evidence that attention modules
make models more trustworthy in practice (Islam et al., 2023; Victor et al., 2022; H.
Zhang et al., 2022). Besides, XAl methods like Grad-CAM are frequently used to
visualize model predictions, there is a notable gap in understanding how these tools can
compare the effectiveness of various attention mechanisms specifically for post-disaster
scenarios (Cheng et al., 2022; Islam et al., 2023; Seydi et al., 2023). The combination of
XAl methods and attention mechanisms in PDD is crucial to know whether attention-
driven performance gains are accompanied by improvements in transparency, or whether
they come at the cost of interpretability. Addressing these gaps is necessary if Al systems
are to move beyond benchmarks and be adopted in real-world disaster response, where
decision-makers require both performance and transparency to act with confidence.

To address these shortcomings and bridge the gap between high performance
and practical applicability, our contributions are threefold:

1. We incorporate three attention modules - channel, spatial, and multihead — into

eight widely used DL architectures and perform a systematic evaluation of their
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performance in terms of accuracy and reliability for PDD with 32 model

combinations in total.

2. By coupling attention mechanisms with complementary XAl techniques, using
Grad-CAM to initially filter and identify spatial focus, followed by Saliency Maps
for a finer pixel-level analysis, this study introduces a complementary approach
to evaluating model decision-making in the context of PDD.

3. We emphasize the role of both interpretability and reliability in distinguishing
high-severity from lower-severity categories, demonstrating how reliable models
can provide actionable insights that are directly relevant to decision-makers in
disaster response and recovery efforts.

By bridging the gap between accuracy-driven DL research and interpretability-
driven practical needs, this study advances both methodological and applied knowledge.
It contributes a systematic, comparative framework for evaluating the role of attention in
PDD and offers actionable insights into building transparent and trustworthy Al tools for

disaster risk management.

2. Materials and Methods

2.1. Study Area and Dataset

This study utilizes the xBD dataset that contains a large-scale annotated collection
of satellite imagery designed for PDD (Ritwik Gupta et al., 2019). A subset of the xBD
dataset focused on tornado events has been selected for this study. Specifically, the Joplin,
Moore, and Tuscaloosa tornadoes are used as the study area due to the availability of
high-quality annotated imagery for these events. These tornadoes were significant

disasters that resulted in extensive damage and loss of life across the central United States,
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with each event exhibiting unique damage patterns and levels of destruction (Atkins et
al., 2014; Prevatt et al., 2012).

The dataset includes pre- and post-disaster images with labeled damage
classifications, making it suitable for training DL models aimed at identifying damage
severity. It classifies damages into four levels: no damage, minor damage, major damage,
and destroyed (Table 1). However, the dataset exhibits a substantial class imbalance, with
“no damage” samples significantly outnumbering other categories. To mitigate this
imbalance issue and improve generalization, we applied targeted data augmentation,
particularly to the minority classes. The augmentation techniques included random
rotations, horizontal and vertical flips, color space, noise addition, brightness adjustment,
and contrast adjustment (S. Yang et al., 2022). These transformations increased the
diversity of training samples, balanced class distributions, and enhanced the robustness
of the model to variations in image orientation, illumination, and sensor noise (Mumuni
& Mumuni, 2022; Shorten & Khoshgoftaar, 2019). Figure 1 shows the key information
of selected case studies: their occurrence date, intensity on the Enhanced Fujita scale, and
economic loss (Atkins et al., 2014; Crawford et al., 2017; Paul & Stimers, 2012). It also

shows the number of buildings based on their damage levels for each event.

Table 1: Damage level description and the distribution of training and testing samples.

Damage Structure Description Training Testing
Level samples samples
No Damage | Undisturbed. No sign of 37677 500
structural or shingle damage
or burn marks.
Minor Building partially burnt, roof 4614 500
Damage elements missing, or visible
cracks.
Major Partial wall or roof collapse. 1420 500
Damage
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Destroyed Scorched, completely 5455 500
collapsed, or otherwise no
longer present.
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Figure 1: Overview of the selected tornado events, including key details such as damage
intensities, economic losses, and the number of images per damage category.

Figure 2 shows that pre-disaster and post-disaster high resolution satellite images
(1024x1024 pixel tiles with a spatial resolution of 0.5 m) of tornado affected areas were
utilized to prepare the data for this study, consisting of three spectral bands: red, green,
blue (RGB). The dataset includes building annotations for both pre-disaster locations and
post-disaster damage levels, facilitating the identification and categorization of damage
for each structure (Ritwik Gupta et al., 2019). The data preparation process begins with
segmenting each annotated building area into smaller 128x128 pixel images. This allows
the extraction of focused views for each individual building, isolating them from the

2
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larger satellite image. The post-disaster images were then cropped to match the pre-
disaster building locations, ensuring alignment and consistency for comparative analysis.
This alignment enables the model to directly compare structural changes across time and
ensures that explainable Al visualizations can meaningfully trace these differences.
Doubling the paired pre- and post-disaster patches into a square format also standardized
the input dimensions for stable processing in the deep learning models. Each cropped
building image from the post-disaster layer is subsequently labeled based on its damage

classification.

128 pixels

Pre-disaster building locations

Pre-disaster condition (RGB)
= e

128 pixels

1024 pixels

Pre-disaster

Minor Damage

Post-disaster damage levels

Destroyed

Post-disaster
1024 pixels

128 pixels

Example input images with labels for Deep Learning models

No Damage

1024 pixels

. No Damage . Minor Damage 128 pixels

Major Damage . Destroyed

Figure 2: Data preparation workflow illustrating the process of pre- and post-disaster
satellite images into 128x%128 pixel patches, aligning building locations, and labeling

each patch based on its damage classification.

This data preparation approach reduces computational complexity by shifting
from pixel-level segmentation to image-level classification, allowing for faster

processing of high-resolution images (Csillik, 2017; Wang et al., 2011). It enhances
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generalizability by focusing on broader structural features rather than pixel details, and it
improves model accuracy by isolating critical damage patterns in each building image.
For XAl, this method enables clear and focused visual explanations, making

interpretations accessible to non-technical stakeholders.

2.2. Our Proposed DL Models

In this study, our approach leverages eight widely used CNN architectures, that reflect
diverse design strategies and have been commonly applied in remote sensing tasks, to
evaluate the impact of incorporating attention mechanisms into DL models for PDD.
These eight models are InceptionVV3 (C. Szegedy et al., 2016), Xception (Chollet, 2017),
InceptionResNetV2 (Christian Szegedy et al., 2017), ResNetl52 (He et al., 2016),
DenseNet169 (Huang et al., 2017), ShallowNetV2, MobileNetV2 (Howard, 2017), and
NasNetMobile (Zoph et al., 2018), each of which serves as a base model for feature
extraction. These architectures capture different design aims including deep residual and
dense networks (ResNet152, DenseNet169), multi-scale inception variants (InceptionV3,
InceptionResNetV2), lightweight architectures suitable for rapid deployment
(MobileNetV2, NASNetMobile), a separable convolution model (Xception), and a
baseline shallow network (ShallowNet). This diversity allows us to examine whether
attention and XAl improve model interpretability consistently across networks with
distinct strengths and limitations, ensuring that our findings are broadly applicable to
remote sensing—based damage detection.

To enhance the focus of these models on critical aspects of the input data, we
integrate three types of attention mechanisms: Channel Attention (CA), Spatial Attention
(SA), and Multihead Attention (MA). These mechanisms are designed to dynamically

prioritize different elements in the feature maps, improving the models’ performance,
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robustness, and interpretability. In all eight base models, the attention modules were
consistently inserted at the end of the feature extraction stage and immediately before the
flattening and classification layers. This placement was chosen to ensure that attention
operates on the highest-level semantic features, providing a uniform integration point
across diverse architectures, reducing computational overhead by acting on compact
feature maps, and directly influencing the decision-making process of the classifier.
Figure 3 illustrate the architecture of each attention module and Figure 4 demonstrate
how these modules are integrated with the base models.

CA is designed to emphasize the importance of certain feature channels over
others. It employs both global average pooling and max pooling, followed by a shared
multilayer perceptron with two dense layers (C — C/8 with ReLU activation, then C with
sigmoid activation), generating channel weights that rescale the input feature maps. This
mechanism dynamically adjusts the weights of each feature channel based on their
relevance to the task, allowing the model to focus on the most significant attributes of the
input data (Woo et al., 2018). Besides, SA emphasizes the specific regions within input
data by concatenating average-pooled and max-pooled feature descriptors across
channels and passing them through a 7x7 convolution, which is crucial for accurate
classification. By creating attention maps, this mechanism directs the model’s attention
to spatially relevant areas (Woo et al., 2018). MA applies scaled dot-product attention
across multiple heads, implemented with four heads and a key dimension of 64. Queries,
keys, and values are projected from the feature maps, attention outputs are concatenated,
and residual connections with layer normalization (¢ = 1e-6) are applied, ensuring stable
training and contextual refinement (Vaswani et al., 2017).

For each of the eight base models, we create three variants by applying one of the

attention mechanisms, resulting in a total of 32 unique model configurations. Each
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Figure 4: Overview of the 32 model configurations, showing how attention modules are

incorporated into eight baseline CNN architectures for PDD.

This study employs transfer learning for the majority of DL models, except
ShallowNetV2, leveraging pretrained weights on the ImageNet dataset to enhance the
models' ability to extract meaningful features from post-disaster imagery (J. Deng et al.,
2009). Using pretrained models on large-scale datasets like ImageNet allows these
architectures to start with a solid foundation of feature recognition, which is particularly
beneficial in domains with limited labeled data, such as post-disaster damage detection
(Zhuang et al., 2021). ImageNet is a large-scale dataset containing over 14 million labeled
images across thousands of categories, widely used to pretrain deep learning models for
image recognition tasks (Arbulu & Ballard, 2004; Krizhevsky et al., 2012; Christian
Szegedy et al., 2017).

In addition to these pretrained architectures, we developed a custom model,
ShallowNetV2, specifically designed and trained from scratch for this study.

ShallowNetV2’s architecture, as illustrated in Figure 5. ShallowNetV2 is a simple

2
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convolutional neural network with four convolutional blocks, each consisting of a 3x3
convolutional layer (filters = 32, 64, 128, and 256, respectively) with ReL U activation
and same padding, followed by 2x2 max-pooling. After feature extraction, the network
includes a flattening operation, a fully connected dense layer with 128 units (ReLU
activation), a dropout layer (rate = 0.5) to reduce overfitting, and a final softmax output
layer with four units corresponding to the damage classes. Several configurations were
initially explored (e.g., varying the number of convolutional blocks, filter sizes, and dense
units), and the final design of ShallowNetV2 was selected based on training and
validation performance. By including ShallowNetV2 alongside pretrained models, we
aim to assess the comparative performance of a simpler, customized architecture against

more complex, pretrained models.

Dropout (0.5)
Softmax (4)

Max Pooling
Max Pooling
Max Pooling
Max Pooling

|
\

Dense Layer (128)

&'1\“

Figure 5: Architecture of base ShallowNetVV2 model.

2.3. Evaluation Metrics and Training Procedure

To assess model performance, we utilized the following metrics: accuracy, precision,
recall, F1 score and the confusion matrix. These metrics are well-suited for DL-based
classification tasks and provide a thorough understanding of model effectiveness in the
context of PDD (A. M. Braik & M. Koliou, 2024; Lu et al., 2024; Wiguna et al., 2024).

Accuracy represents the overall proportion of correct predictions across all
classes, calculated as:

TP+TN
TP+TN+ FP +FN

Accuracy = *100 (E.1)

2
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where TP and TN indicate true positives and true negatives, respectively, while FP and
FN denote false positives and false negatives.
Precision indicates the ratio of correctly identified positive predictions to the total

positive predictions, reflecting the model’s reliability in identifying actual damage cases.

Precision = 100 (E.2)

TP + FP

Recall measures the proportion of actual positive cases that the model correctly

identifies, capturing the model’s ability to detect damage when it truly exists.

Recall = 100 (E.3)

TP+FN
F1-score provides a balanced measure that combines precision and recall into a
single metric by calculating their harmonic mean.

Precision * Recall
F1 Score =

100 E.4
Precision + Recall * (E-4)

Additionally, we utilized a confusion matrix to provide a detailed breakdown of
the model’s classification across each damage category, offering insights into its
performance in distinguishing between levels of damage severity.

We trained the models using the Adam optimizer with a cross-entropy loss
function, a common choice for multi-class classification (Ahmadi et al., 2024; Wanting
Yang et al., 2021). Hyperparameters, including learning rate, batch size, and number of
epochs, were fine-tuned through a grid search to maximize model performance on the
validation set. Specifically, we experimented with the following values:

e Learning Rates: 0.01, 0.005, 0.001, 0.0005, and 0.0001.
e Batch Sizes: 16, 32, 64, and 128.
e Number of Epochs: 50, 100, and 200.

The optimal configuration determined was a learning rate of 0.001, a batch size

of 64, and 200 epochs, balancing accuracy with computational efficiency. To further

2
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enhance model robustness, we applied 5-fold cross-validation, reporting the average
performance across folds to ensure reliable and unbiased results. To prevent overfitting,
early stopping was applied based on validation loss, stopping the training once
improvements plateaued. After training and validation, the models were evaluated on the
test set, with accuracy, precision, recall, and the confusion matrix used as final

performance metrics, ensuring robust evaluation.

2.4. Explainable Al

Model transparency is crucial for fostering trust and enabling informed, accountable
decisions among stakeholders. To improve the interpretability of our models, we
implement two widely recognized Explainable Al (XAI) methods: Saliency Maps and
Grad-CAM. They are particularly effective for image-based tasks, as they visually
indicate which parts of an image most significantly impact the model’s predictions,
enhancing our understanding of the decision-making process (Weber et al., 2023). These
XAl methods provide insights into whether the model's attention aligns with human
judgment regarding post-disaster images. In high-stakes disaster management, this
interpretability is essential, as it enables first responders, decision-makers, and other
stakeholders to make more transparent, confident decisions based on a clear
understanding of the model’s reasoning (Ghaffarian et al., 2023; Kakogeorgiou &
Karantzalos, 2021).

Saliency Maps utilize gradients to identify the most critical pixels influencing the
model's output for a given input image. This technique computes the gradient of the class
score concerning each input pixel, thereby revealing the areas that contribute most to the

model’s classification decisions. This is invaluable in disaster scenarios, where it is
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essential to know precisely which image regions, such as damaged buildings or collapsed
infrastructure, are driving the model’s predictions.

For a particular class c, the Saliency Map S is derived as:

aC
s=Z

(E.3)

Where represents the gradient of the class score y€ in relation to the input

image 1. The absolute values of these gradients highlight key pixels, allowing us to
visualize which regions significantly influence the outcome (Simonyan, 2013).

Grad-CAM is another technique used to visualize model decision-making but
focuses on high-level feature maps within the model’s final convolutional layers,
producing a heatmap that emphasizes the areas relevant to a specific class prediction.
Unlike Saliency Maps, which operate at the pixel level, Grad-CAM provides a broader
perspective, highlighting entire regions within the image that the model finds important
for a given class.

To calculate the Grad-CAM heatmap for a class ¢, we begin by obtaining the
gradients of the class score y¢ with respect to the feature maps A* in a chosen
convolutional layer. These gradients are averaged over spatial dimensions to produce

weights aj:

’i_zzZaAk (E.4)

where Z is the total number of pixels in the feature map. We then compute a
weighted combination of the feature maps, followed by a ReLU activation to create the

Grad-CAM heatmap:
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Applying ReLU ensures that only positive influences on the class score are
visualized, resulting in a heatmap that highlights the image regions most pertinent to the

model’s prediction (Selvaraju et al., 2017).

3. Results and Discussion

3.1. Performance Comparison of the models

This section presents the performance of the proposed base models and their
configurations using different attention mechanisms. To streamline the discussion,
models are prefixed based on their configuration: Base_ for the original model without
attention mechanisms, CA_ for models with CA, SA__ for those with SA, and MA_ for
those with MA. For example, Base_DenseNet169 represents the original DenseNet169
model, while MA_ResNet152 indicates the ResNet152 model configured with MA. In
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Table 2, blue text highlights the configurations with the highest accuracy among
variations of the same base model, while red text indicates the configurations achieving
the highest precision.

The results shows that Base InceptionV3 and Base Xception exhibited
consistently high accuracy, achieving 81% and 80.5%, respectively, and high precision,
reaching 80.8% and 80.6%, respectively, among the eight base models. These findings
highlight the robustness of these architectures even without additional enhancements
from attention mechanisms. However, the integration of attention mechanisms
significantly improved both accuracy and precision for most models, emphasizing their

potential to refine the performance of deep learning models for PDD.
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Table 2: Performance comparison of deep learning models with different attention mechanisms for PDD, (Pre: Precision, Acc: Accuracy, Rec:
Recall, F1-S: F1 Score). The highest accuracy achieved within each base model configuration is highlighted in blue, the highest precision is
highlighted in red, the highest recall is highlighted in green, the highest f1 score is highlighted in purple, and the overall best performance across

all metrics is highlighted in yellow.

Transfer Base Channel Attention Spatial Attention Multihead Attention
Model Name Learning Model

Pre Acc Rec F1-S| Pre Acc Rec F1-S| Pre Acc Rec F1-S| Pre Acc Rec FI1-S
DenseNet169 v 795 792 792 793813 809 809 811|795 794 794 794|816 805 805 810
InceptionV3 v 80.8 81.0 810 809 (811 810 810 811 (808 81.0 81.0 809 (829 819 819 824
InceptionResNetV2 v 805 802 802 803|799 783 783 791 79.2 792 792 792|809 797 79.7 803
MobileNetV2 v 748 750 750 749|756 738 738 747|775 777 777 776 (831 825 825 828
NasNetMobile v 69.1 69.1 691 691|733 723 723 728|685 67.7 677 681|787 777 777 782
ResNet152 v 787 783 783 785|789 788 788 789 (796 79.0 79.0 793|786 792 792 789
ShallowNet\V2 - 73.0 699 699 715|797 797 797 797 (810 808 80.8 809|806 800 80.0 803
Xception v 806 805 805 806 (809 797 797 803|819 812 812 816|811 79.7 797 804
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Among the attention mechanisms, MA consistently produced the best results,
particularly with models like MobileNetV2 and NasNetMobile. For example,
MA_MobileNetv2 achieved an accuracy of 82.5% and a precision of 83.1%, surpassing
its base model by substantial margins of 7.5% in accuracy and 8.3% in precision. While
SA did not consistently outperform the other mechanisms, it was particularly beneficial
for models like ShallowNetV2, improving its accuracy from 69.9% (Base_
ShallowNetV2) to 80.8% (SA_ ShallowNetV2), demonstrating the role of SA in
emphasizing critical regions within the images. CA also demonstrated its effectiveness,
especially for feature-rich models like DenseNetl69. The CA_DenseNet169
configuration improved both accuracy and precision compared to its base variant,
achieving 80.9% accuracy and 81.3% precision.

Overall, MA_MobileNetV2 achieved the best accuracy (82.5%) and precision
(83.1%) performances, among 32 model configurations, followed by MA _InceptionVV3
with an accuracy of 81.9% and precision of 82.9%. Despite a transformative potential of
attention mechanisms in improving model performances, configurations of
InceptionResNetVV2 demonstrated only marginal improvements, suggesting that the
choice of base model plays a crucial role in determining the effectiveness of attention
mechanisms. Another interesting finding is that ShallowNetV2 performed competitively
despite being a custom-designed model without pretrained weights.

A critical aspect of PDD is accurately identifying buildings with major damage
and those that are destroyed, as these classes represent the highest severity levels
requiring urgent response (Shen et al., 2022; Wu et al., 2021). Misclassification of these
categories could delay relief efforts and resource allocation, emphasizing the need for

models capable of precise predictions in these critical classes (Kaur et al., 2023). Figure

21



6, the detailed confusion matrix, reveals that the integration of MA significantly improved
the prediction accuracy for major damage and destroyed classes across several models.
For example, in MA_InceptionV3, the destroyed class was predicted with an impressive

accuracy of 87.6%, while the major damage class improved to 80.5%.
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and their variants with attention mechanisms for the four damage classes.
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Notably, SA_ShallowNetV2 and MA_InceptionV3 emerged as the only models
capable of predicting both the major damage and destroyed classes with over 80%
accuracy, achieving a balance between high accuracy for severe damage categories and
overall robustness. Figure 7 reveals the predictions made by each base model and its
attention-augmented variants (CA, SA, and MA) on a sample post-disaster image Across
all base models, the most common trend is a systematic underestimation of severity, with
frequent confusions between adjacent categories—most notably between major damage
and destroyed, or between minor damage and no damage. For example,
Base_MobileNetV2 and Base_NasNetMobile misclassify large proportions of destroyed
structures as major damage, and minor damage as no damage, reflecting a bias toward
underestimating severity. The introduction of attention mechanisms reduces these
systematic errors, particularly Spatial and Multihead Attention, which sharpen class
boundaries and improve the separation of high-severity categories. For instance,
MA_InceptionVV3 and MA_ShallowNetV2 exhibit precise identification of destroyed
structures, closely aligning with the ground truth. The figure further demonstrates
performance variations across architectures, revealing that base models such as
Base_NasNetMobile and Base_MobileNetV2 struggle to differentiate between high-
severity damage levels without attention mechanisms. However, their accuracy improves
considerably when attention is incorporated, as seen in MA_NasNetMobile and
MA_MobileNetV2. Consistency in predictions is another critical observation, with
attention-enhanced models such as MA_InceptionV3 and SA_ShallowNetV2
consistently predicting major damage and destroyed classes with higher accuracy. These
findings align with earlier results showing that these configurations achieve over 80%
accuracy for these critical categories. Finally, the visualization underscores the

operational relevance of attention mechanisms, as stakeholders can easily verify model
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1  predictions by cross-referencing the visual outputs with actual damage patterns. This
2  aspect highlights the importance of transparency and interpretability in post-disaster

3 scenarios, ensuring the reliability and usability of the models in real-world applications.
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5  Figure 7: Visual comparison of predictions made by base models and their variants with

6  attention mechanisms on a sample post-disaster image.
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These results highlight the crucial potential of attention mechanisms, particularly
MA, in improving model focus on high-severity damage classes. By enhancing the
models' ability to correctly identify major damage and destroyed structures, these
configurations align well with the priorities of disaster response efforts, ensuring more
efficient resource allocation and faster decision-making during critical phases. This
underscores the importance of designing models not just for overall accuracy but with a
targeted emphasis on the classes that hold the greatest operational significance in post-

disaster contexts.

3.2. Reliability assessment of the models with XAl

The reliability of the proposed DL models for PDD were evaluated using Grad-CAM and
Saliency Map techniques. These XAl methods provided visual insights into how each
model, including their attention-augmented variants, focused on critical features while
predicting specific damage level classes. To ensure a fair and comprehensive analysis,
the example images from each damage class presented in this study are those that 1) all
32 models predicted correctly and 2) no model predicted correctly (Figure 8). These
representative examples were selected to illustrate consistent patterns observed across the
broader dataset, rather than isolated cases, and therefore provide overall insights into
model behavior and limitations. The analysis demonstrated the impact of attention
mechanisms on enhancing the explainability and reliability of the models, particularly for

high-severity damage classes.
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Figure 8: Example images used in XAl visualizations, illustrating the four damage

categories for 1) all 32 models predicted correctly, and 2) no model predicted correctly.

In this study, interpretability was assessed at two complementary levels. Global
reliability reflects whether the models focus on the correct areas of interest across the
dataset as a whole, indicating their overall decision-making behaviour. For example, for
“Major Damage” or “Destroyed” categories, a globally reliable model is expected to
focus pre- and post-disaster images and compare them side by side by especially
concentrating on buildings where structural changes are visible, rather than unrelated
regions. Local reliability relates to how well individual predictions are explained at the
pixel or region level, namely whether the model highlights the specific damaged parts of
a building within a single image. To capture these two perspectives, Grad-CAM was
mainly employed to evaluate global behaviour, as it illustrates where the model attends
when forming its predictions, while Saliency Maps were used to examine local reliability,
as they indicate which pixels are most influential for a decision. Using these
complementary methods allowed us to assess both the overall logic of the models and the

detailed evidence behind specific predictions.
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Figure 9 illustrates the Grad-CAM results for all 32 model configurations,
showing the focus of base models and their attention-augmented variants on the
"Destroyed” class. The figure reveals that base models such as Base_InceptionV3,
Base_ShallowNetV2, and Base_MobileNetV2 struggle to localize severely damaged
areas, as their heatmaps display scattered or diffused attention. These models fail to
consistently highlight regions of structural damage, indicating limitations in extracting
relevant features for high-severity classes. The addition of attention mechanisms
improved model focus in general, but their effectiveness varied.

In some cases, CA-augmented models, such as CA_DenseNet169 and
CA_ResNet152, produced heatmaps that primarily emphasized pre-disaster image
regions rather than post-disaster damage. This misplaced focus suggests that CA, while
effective at prioritizing feature channels, struggles to integrate spatial or temporal context
effectively. For example, in CA_ShallowNetV2, the model highlighted areas in the pre-
disaster image with little connection to the visible damage in the post-disaster image,
reducing its reliability for interpreting structural changes. In contrast, SA and MA
consistently enhanced model focus on critical areas in models such as SA and MA
variations of InceptionVV3, ShallowNetV2, and NasNetMobile, effectively combined
spatial and temporal information from pre- and post-disaster images. Their Grad-CAM
heatmaps demonstrated precise and well-localized attention on regions of significant
change, ensuring contextually accurate predictions. These models excelled at correlating
structural changes observed in the post-disaster image with their pre-disaster state,
enhancing interpretability and reliability. However, as shown in Figure 9, even high-
performing configurations like MA_MobileNetVV2 occasionally misplaced focus on

visually distinct regions in the post-disaster image, leading to potential unreliability.
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Figure 10 illustrates the Grad-CAM results for all 32 model configurations,
showing the focus of base models and their attention-augmented variants on the “Major
Damage” class. The base models display weak and diffuse activation patterns, often
spreading attention across large portions of the image or focusing on irrelevant regions
such as Base_InceptionV3, Base ShallowNetV2, and Base MobileNetVV2. This
inconsistent focus makes it difficult to reliably identify the areas of partial roof or wall
collapse that define major damage, underscoring their limited ability to isolate features
critical for this class. In contrast, attention-augmented models generally display stronger
and more localized activation on damaged building regions, and more effectively
compare pre- and post-disaster images. This was particularly evident in SA and MA
variations of InceptionV3 and ShallowNetV2, where attention maps concentrated on
structurally relevant regions. Similar to the “Destroyed” class, these models appear more
reliable across other variations by combining spatial and contextual focus, producing
more stable and interpretable activations.

Figure 11and Figure 12 present Grad-CAM visualizations for the “Destroyed” and
“Major Damage” classes where none of the models produced correct predictions,
respectively. These heatmaps reveal that both base and attention-augmented models fail
to concentrate on the critical damaged areas. Instead, their attention is either scattered
across large portions of the image or misplaced on undamaged regions and pre-disaster
structures. In contrast, correctly predicted samples of the same classes showed sharper
and more localized focus on collapsed roofs, missing walls, and other key structural
changes, particularly in SA- and MA-augmented models. This pattern highlights a
recurring source of error that misclassifications might be often associated with diffuse or
misplaced attention maps, underscoring the limits of current models in consistently

capturing ambiguous or complex damage cues, especially in lower resolution images.
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Figure 13 represents the Saliency Map analysis providing critical pixel-level
insights into the decisions made by the models for the "Destroyed” class. The reliability
hinges on two key factors: the ability to focus on damaged areas and avoiding overly
diffuse saliency patterns that attribute importance to irrelevant or excessive pixels.
Building on the Grad-CAM analysis, which identified SA and MA variations of
InceptionV3, ShallowNetV2, and NasNetMobile as the most reliable models for
predicting the "Destroyed" class, we conducted a further evaluation using Saliency Maps.
While Grad-CAM provided insights into where the models focused spatially, Saliency
Maps offered a pixel-level perspective, highlighting the most influential pixels driving
the models' decisions. This complementary analysis aimed to validate the reliability of
these models and uncover any limitations.

For SA_NasNetMobile and MA_NasNetMobile, the Saliency Map revealed a
significant limitation: a diffused focus across the image, with nearly all pixels marked as
influential. Instead of isolating the most critical pixels corresponding to damaged areas,
the model attributed importance to large portions of the post-disaster image, including
undamaged regions. This behavior undermines the interpretability of the model's
predictions, as the diffused saliency pattern does not provide clear evidence of a specific
decision-making process. Besides, both SA_ ShallowNetV2 and SA InceptionV3
exhibited problems in localizing logically damaged areas. Their Saliency Maps frequently
highlighted regions that did not correspond to visibly damaged structures in the post-
disaster image. Instead of concentrating on critical damaged areas, these models produced
saliency patterns that were either diffused or misplaced, emphasizing irrelevant regions
with no connection to actual destruction. However, MA ShallowNetV2 and

MA _InceptionVV3 emerged as the only consistently reliable models based on Saliency
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Map analysis. Both configurations demonstrated sharp and well-localized saliency
patterns concentrated on pixels corresponding to areas of severe structural damage in the
post-disaster image. These models not only avoided diffused focus but also aligned their
influential pixels closely with visible damage, making their decision-making process both
interpretable and trustworthy. The integration of MA allowed these models to effectively
balance spatial and temporal context, ensuring accurate predictions.

Figure 14 shows the Saliency Map analysis for the “Major Damage” class in cases
where models produced correct predictions. Compared to the “Destroyed” class, reliable
identification of major damage requires finer discrimination, as the damage is often
partial and less visually obvious. The image showed that many base and attention-
augmented models produced diffuse or misplaced saliency patterns, failing to isolate the
damaged pixels; however, the MA_ShallowNetV2 model stood out by showing a
consistent alignment between Grad-CAM and Saliency Maps. In this case, the global
attention (Grad-CAM) highlighting damaged roof regions coincided with the pixel-level
attribution (Saliency), indicating that the model not only looked at the right area but also
relied on the correct pixels when making its decision. This consistency across two
interpretability methods was not observed in other architectures, where Grad-CAM and
Saliency Maps often emphasized different or overly broad regions. These results reinforce
the finding that reliable predictions depend on both global and local focus, with
MA_ShallowNetV2 emerging as the most trustworthy configuration for major damage
detection.

Figure 15 and Figure 16 show Saliency Map analyses for “Destroyed” and “Major
Damage” cases where all models produced incorrect predictions, respectively. Unlike the
correctly classified samples, these visualizations reveal diffuse, misplaced, or in some

cases almost absent pixel attributions. Many models scattered their focus across irrelevant
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regions of the image, while others (notably MA_ShallowNetV2) showed very little
activation at all, indicating that the decision was made without reliance on meaningful
visual cues. This lack of concentrated or interpretable saliency contrasts sharply with the
successful cases, where reliable models aligned their pixel-level focus with damaged
roofs, collapsed walls, or other structural features. These failed examples therefore
highlight two recurring sources of error: diffuse or misplaced focus, and in some cases,
the near-complete absence of focus, both of which might undermine interpretability and
point to the difficulty of detecting ambiguous or subtle damage patterns in post-disaster
imagery.

These differences highlight the importance of analyzing models not only through
Grad-CAM but also at a more granular level using Saliency Maps. While
MA_ShallowNetV2 and MA _InceptionV3 remain reliable in both Grad-CAM and
Saliency Map evaluations, SA_ShallowNetV2 and SA_ InceptionV3 struggle with
misplaced pixel focus, and SA_NasNetMobile and MA_NasNetMobile are undermined
by diffused saliency patterns. These findings emphasize the need for refined attention
mechanisms that balance spatial coherence with pixel-level precision, ensuring reliable

and interpretable predictions in post-disaster damage detection tasks.
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2 Figure 13: Saliency Map visualizations for the "Destroyed" class, comparing base

3 models and their attention-augmented variants (all 32 models predicted correctly).
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3 models and their attention-augmented variants (all 32 models predicted correctly).
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4. Conclusions

This study highlights the critical role of XAl in evaluating the reliability of deep learning
models for PDD. Although these models achieve high accuracy, our XAl-based analysis
uncovers reliability limitations, emphasizing the necessity for enhanced interpretability
to ensure trustworthy deployment in real-world scenarios. Furthermore, we show the
potential of attention mechanisms in DL models for PDD. Through systematic evaluation
using a tornado subset of the xBD dataset, we demonstrated that integrating attention
mechanisms, particularly MA and SA improve model reliability, accuracy, and
interpretability. These mechanisms were shown to enhance the focus of models on critical
damage areas, especially in high-severity categories like "Destroyed" and "Major
Damage," which are vital for prioritizing disaster response efforts.

XAl techniques, the complementary analysis of Grad-CAM and Saliency Maps
together, played a pivotal role in evaluating model reliability. Grad-CAM visualizations
identified MA variations of ShallowNetV2 and InceptionV3 as the most reliable
configurations, with heatmaps consistently highlighting regions of structural damage
while maintaining spatial coherence. Conversely, models with CA often struggled to
focus on post-disaster features, misdirecting attention to pre-disaster regions and
diminishing their interpretability. Saliency Map analysis further validated these findings
at a pixel level, revealing that MA_ShallowNetV2 and MA_InceptionV3 provided sharp,
focused saliency patterns aligning with actual damage, providing interpretable and
trustworthy decision paths.

The comparative analysis underscores the importance of selecting appropriate
attention mechanisms and explainability methods in PDD tasks. While MA emerged as
the most effective mechanism, its success depends on the underlying architecture's ability

to integrate spatial and temporal information effectively. These findings emphasize the
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need for robust and interpretable models that balance predictive accuracy with
explainability, ensuring their applicability in real-world disaster management scenarios.

The novelty of this study is primarily comparative and application-focused. Its
contribution lies in systematically integrating and evaluating attention mechanisms across
multiple architectures, rather than in proposing new algorithms or interpretability
frameworks. This applied focus nevertheless provides practical value by highlighting
consistent patterns of reliability and limitations, supporting researchers and practitioners
in selecting suitable approaches for operational disaster management.

At the same time, several limitations must be acknowledged. Although this study
employed qualitative XAl analyses to assess model reliability, the inclusion of
quantitative metrics such as the Intersection over Union between attention heatmaps and
annotated damage masks, or the percentage of salient pixels falling within damaged
regions, would provide a more rigorous evaluation of model interpretability.
Incorporating such quantitative measures could complement the qualitative insights
presented here and further strengthen the assessment of model reliability in PDD. Another
limitation is the use of the standard cross-entropy loss function, which treats all
misclassifications equally and does not capture the ordinal relationship between damage
classes. This limitation is particularly important in real-world applications, where
confusing “destroyed” with “no damage” carries far greater consequences than
misclassifying it as “major damage.” Recent studies have begun addressing this issue
through ordinal-aware loss functions. For example, Tsai and Lin (2024) employed the
Ordinal Class Distance Penalty Loss (OCDPL), introducing penalties that increase with
the class distance between the prediction and ground truth to reduce the impact of severe
misclassifications. Cheng et al. (2021b) adopted a more advanced approach by using the

squared Earth Mover’s Distance (EMD), which evaluates the dissimilarity between the

42



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

entire predicted probability distribution and the true label distribution. Unlike OCDPL,
which directly applies distance-based penalties at the class level, EMD considers the
underlying geometry of the probability space, offering a principled way to enforce ordinal
consistency across predictions. Moreover, this study is the use of fixed 128x128 patches
centered on individual buildings, which, while simplifying training and ensuring
consistency across models, may exclude valuable contextual information such as nearby
damage or infrastructure. This approach can also distort building scales and introduce
artificial uniformity, limiting the generalizability of the models to more complex post-
disaster scenes. To mitigate such issues, previous studies have proposed strategies such
as multi-scale feature fusion to capture both fine detail and broader contextual cues (Shen
et al., 2022), patch-based discriminative learning with multi-level and pyramid
representations to enhance discriminative power across scales (Muhammad et al., 2022),
and scale-adaptive approaches that dynamically adjust patch size or receptive fields
according to scene complexity (Liu et al.,, 2023). These strategies underscore the
importance of integrating both local and contextual information when designing damage
assessment models.

Future research should address these limitations by developing context-aware loss
functions, incorporating quantitative interpretability metrics, and exploring variable patch
sizes or scene-level models. Future studies should also explore ordinal-aware approaches,
such as ordinal regression techniques or cost-sensitive loss functions, which can penalize
severe misclassifications more heavily than adjacent ones and thereby better align model
behavior with the practical needs of disaster response. Moreover, future studies could
investigate variable patch sizes, multi-scale architectures, or scene-level models that
capture both local and contextual information more effectively to address the constraints

of fixed 128x128 patches. Advances in generative Al also hold promises for addressing
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the scarcity of high-resolution disaster datasets, enabling synthetic augmentation to
improve model robustness across diverse hazard types. Finally, extending this approach
to multi-hazard scenarios, such as earthquakes, floods, or cascading hazard sequences,
represents an important next step, as operational models must ultimately account for the
compound and interacting risks that characterize real-world disaster environments.

In summary, this work demonstrates that while attention mechanisms can improve
both performance and interpretability in PDD, their effectiveness varies across
architectures. The systematic evaluation presented here provides actionable insights for
developing more reliable and interpretable Al tools, helping bridge the gap between

technical advances and operational needs in disaster risk management.
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