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release of neurotransmitter-like substances from astrocytes. 
His work has demonstrated how astrocytes dynamically 
regulate synaptic activity, plasticity, and network-level 
behaviours. A recurrent theme in his studies is the bidirec-
tional communication between astrocytes and neurons, a 
relationship once considered ancillary but now recognised 
as essential for synaptic integration and circuit homeostasis. 
Importantly, Carmignoto’s investigations have linked astro-
cytic Ca2+ dynamics to major neuropathological conditions, 
particularly epilepsy.

This brief review synthesises the major research areas 
influenced by Carmignoto’s contributions, including astro-
cytic Ca2+-dependent gliotransmission, interneuron-astro-
cyte interactions, vascular regulation, astrocytes in epilepsy, 
and technological innovations that have enabled their study. 
We conclude with a perspective on current challenges and 
future directions in astroglial research.

Introduction

Historically, astrocytes were regarded as passive elements 
in the central nervous system, responsible primarily for 
maintaining ionic balance, providing metabolic support, 
and acting as structural scaffolds. This traditional view has 
shifted dramatically with the recognition of the tripartite 
synapse, wherein astrocytes actively participate in various 
aspects of neuronal signalling. This model, which incorpo-
rates astrocytes alongside pre- and postsynaptic neurons, 
has profoundly altered our understanding of synaptic com-
munication and plasticity [1, 2]. Among the key figures in 
this conceptual transformation is Dr. Giorgio Carmignoto, 
whose research has focused on astrocytic Ca2+ signalling 
as a central mechanism underlying gliotransmission, the 
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Astrocytes, once considered passive support cells, have emerged as active participants in synaptic communication through 
Ca2+-dependent molecular signalling often referred to as gliotransmission. This review highlights the pioneering contri-
butions of Giorgio Carmignoto, whose work has helped to redefine astrocytes as integral components of the tripartite 
synapse. Central to this paradigm shift is the role of astrocytic Ca²⁺ signalling in modulating synaptic activity, plasticity, 
and network behaviour. Carmignoto’s research demonstrated that intracellular Ca2+ fluctuations in astrocytes trigger the 
release of signalling molecules, influencing both excitatory and inhibitory neuronal circuits. These discoveries extended to 
network-level phenomena, implicating astrocytic Ca2+ waves in pathological states like epilepsy. Technologically, Carmi-
gnoto advanced astroglial research by employing genetically encoded calcium indicators, optogenetic tools, and cutting-
edge imaging methods, including multi-photon microscopy, to observe astrocyte activity in vivo. His work also contributed 
to automated data analysis pipelines that uncover fine-scale astrocytic microdomain dynamics. In the context of pathology, 
Carmignoto’s studies related astrocytic dysfunction to epilepsy and dopaminergic dysregulation, suggesting new therapeu-
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Astrocytic Ca2+ Oscillations and 
Gliotransmission

Astrocytes exhibit a non-electrical form of excitability 
based on intracellular Ca2+ fluctuations rather than regen-
erative action potentials. Carmignoto was among the first 
to demonstrate that elevations in astrocytic Ca2+ are tightly 
coupled to the release of signalling molecules such as the 
excitatory neurotransmitter glutamate [3–5] or prostaglan-
dins [6]. He and his colleagues showed that astrocytic Ca2+ 
oscillations constitute a core mechanism for functional sig-
nalling between astrocytes and neurons [7, 8].

His group further demonstrated the involvement of puri-
nergic receptor signalling in generating astrocytic glutamate 
release [9], which could in turn synchronise neuronal fir-
ing via the activation of extrasynaptic NMDA receptors 
[10]. This and subsequent works introduced the concept 
of a multifunctional neuron-astrocyte signalling unit [11]. 
Importantly, their studies reveal a diversity of astrocytic glu-
tamate-release mechanisms, by showing that Ca2+-depen-
dent release appears distinct from glutamate release events 
that generate slow inward currents (SICs) in neurons [12]. 
The origin, conditions, and prevalence of SICs, however, 
remain debatable [13, 14]. Nonetheless, these and related 
studies established the principle that astrocytes are not pas-
sive, but active, modulators of neuronal communication.

Interneuron–Astrocyte Communication

Beyond excitatory transmission, Carmignoto demonstrated 
that astrocytes also respond dynamically to GABAergic sig-
nalling. His group found that the inhibitory neurotransmit-
ter GABA is a potent trigger of astrocytic Ca2+ oscillations 
[15, 16]. More specifically, they showed that somatostatin-
positive interneurons evoke distinct Ca2+ responses in corti-
cal astrocytes, exhibiting use-dependent plasticity [17]. This 
signalling may also involve astrocytic GABA transporters 
[18], has broad implications for the interaction of GABAer-
gic networks with astrocytic ensembles [19], As the balance 
between phasic (fast synaptic) and tonic (slow, both synap-
tic and extrasynaptic) GABAergic signals appears critically 
involved in regulating epileptogenesis, a mouse model of 
Dravet syndrome helped the group to unveil an important 
role of astrocytes in the underlying machinery [20].

Impact on Astroglial and Neuronal Plasticity

A landmark study by Carmignoto group demonstrated 
activity-dependent long-term changes in astrocytic activ-
ity, suggesting that non-neuronal cells may encode a form 

of memory trace [21], an idea corroborated by subsequent 
independent studies [22, 23]. They later expanded these 
findings to the plasticity-triggering mechanisms of inhibi-
tory network activity, revealing key intracellular pathways 
[16, 17].

More recently, Carmignoto’s group showed that astro-
cytic Ca2+ signalling mediated by endocannabinoid CB1 
receptors and dopamine D2 receptors, which are co-local-
ised at astrocytic processes, induces long-lasting potentia-
tion of excitatory synapses onto dopamine neurons, which 
also involves presynaptic mGluR activation [24]. In a 
female mouse model of Alzheimer’s disease, his team dem-
onstrated that restoring astrocytic activity by rescuing the 
Ca2+ sensor STIM1 could normalise impaired long-term 
synaptic plasticity [25].

While the sheer diversity of molecular cascades triggered 
by Ca2+ rises in astrocytes raises questions about how they 
achieve specificity in particular contexts, these findings do 
challenge neuron-centric models of plasticity by position-
ing astrocytes as activity-dependent modulators of synaptic 
strength. In many such cases, simultaneous monitoring of 
astrocyte and neuronal activity reveal that astrocytic Ca2+ 
oscillations can follow and influence neuronal firing pat-
terns, functioning as a possible feedback mechanism for 
circuit modulation [26].

Astrocytes and Vascular Regulation

Another important contribution of Carmignoto’s work con-
cerns neurovascular coupling. Early studies of the group 
pointed to reciprocal signalling between astrocytes and neu-
rons mediated by prostaglandins [5, 6], thereby suggesting 
a potential link of astrocytic activity to cerebral blood flow 
regulation, which they have subsequently demonstrated 
[27].

Carmignoto and colleagues later showed that ictal dis-
charges activate astrocytic endfeet, eliciting vasomotor 
responses in cerebral arterioles [28]. These findings, later 
expanded by others [29], established astrocytes as impor-
tant regulators of brain vasculature [11, 26, 30]. This line of 
work widened the significance of astrocytes beyond synap-
tic regulation, to include important influences in maintain-
ing metabolic environment and energy homeostasis of the 
brain.

Astrocytes in Epilepsy

Carmignoto’s group obtained some of the early evidence 
that astrocytic Ca2+ signalling is involved in epileptiform 
activity. They showed that synchronized Ca2+ oscillations in 
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astrocytes often precede and sustain seizure events in exper-
imental models [31]. Importantly, these Ca2+signals were 
not passive responses but appear to advance seizure onset 
by regulating local neuronal excitability [31–33].

While their initial studies showed that astrocytic glu-
tamate release was not necessary for generation of epi-
leptiform activity [34], later findings from the group 
demonstrated that high interneuron activity drives GABA-
induced astrocytic Ca2+ oscillations, boosting network exci-
tation through glutamate release [35, 36]. Subsequent work 
linked astrocytic glutamate release to enhanced neuronal 
synchrony via activation of extrasynaptic NMDA receptors 
[10], and to neuronal excitotoxicity after status epilepticus 
[37]. In addition, Garmignoto team reported alterations in 
GABAergic tonic currents and astrocytic signalling during 
epileptogenesis in Dravet syndrome models [20]. Together, 
these findings underscore the dual role of astrocytes in epi-
lepsy, as drivers of pathological hyperexcitability and as 
potential therapeutic targets [31, 33, 38], the concept cor-
roborated by subsequent studies [39–42].

Tools and Methodological Advances

The impact of Carmignoto studies extends beyond scientific 
discovery to the development or refinement of experimen-
tal methodologies that enabled direct study of astrocytic 
dynamics in vivo and ex vivo. His group pioneered several 
task-specific synchronous bioimaging approaches, includ-
ing intracellular pH and chloride monitoring based on LSS 
fluorescent proteins [43]. They also developed brain slice 
models to study focally induced epileptiform activity [44, 
45], which provided well-controlled systems for investigat-
ing seizure initiation and propagation.

Further innovations include the application of task-tar-
geted genetically encoded calcium indicators, optogenetic 
actuators, and chemogenetic tools, which permitted cell-
specific manipulation of astrocytic activity. With these 
approaches, Carmignoto group could relate the dynamics 
of astrocytic Ca2+ transients to neuronal and behavioural 
outcomes [17, 46, 47]. They continued to advance optical 
methods such as two-photon microscopy and chronic cra-
nial windows allowing long-term, high-resolution imaging 
of astrocytic processes and vascular interactions in intact 
brain tissue. These methodological contributions have been 
essential in revealing the fine-scale and dynamic nature of 
astrocytic signalling.

Current Challenges

Despite major advances, several conceptual and method-
ological challenges remain. First, the identity and regula-
tion of gliotransmitters is still debated. While astrocytes 
can release glutamate, ATP, and dD-serine in response to 
Ca2+ signals, the conditions under which the release of a 
particular molecule predominates remain unclear [48–50]. 
Similarly, the precise release mechanisms, vesicular ver-
sus non-vesicular (e.g., hemichannels, Bestrophins), are 
incompletely defined and may vary across regions and 
developmental stages. Electron micrographs reveal that the 
number of synaptic glutamatergic vesicles in neurons vastly 
outnumbers, by several orders of magnitude, those found 
in astrocytes. This disparity raises questions about the com-
parative physiological impact of vesicular glutamate release 
from astrocytes versus neurons. Moreover, astrocyte mem-
branes are densely populated with high-affinity glutamate 
transporters, particularly GLT-1 [51], which appear to cover 
the entire cell surface [52]. This dense transporter pattern 
suggests that the effects of astrocyte-released glutamate are 
likely as spatially restricted as those of excitatory synapses. 
One theoretical possibility that could account for more 
extensive astrocyte-driven glutamate signalling is a local-
ised failure of their glutamate transporters, leading to either 
a massive unbinding or an incomplete binding of glutamate 
molecules.

Secondly, the temporal precision problem persists as neu-
ronal firing occurs on the millisecond scale, whereas astro-
cytic Ca2+ events are slower, although the latter could be, 
at least in part, a reflection of the high affinity of available 
Ca2+ sensors [53]. One proposed solution is that astrocytic 
modulation operates via local microdomains, enabling rapid 
and spatially restricted gliotransmission at perisynaptic 
sites. Indeed, the assumption that the Ca2+ release machin-
ery that engages astrocytic internal Ca2+ stores resembles 
the classical “sparks-and-puffs” mechanisms established in 
other cell types [54, 55] is, at least theoretically, consistent 
with experimentally observed astrocytic Ca2+ dynamics 
on the sub-micron scale [56]. Elucidating the biophysical 
properties of these microdomains, the potential diversity 
in their signalling dynamics, and the consequences of their 
specific signals for local network activity remains a pressing 
objective.

Thirdly, astrocyte heterogeneity presents a universal 
challenge to unified models. Recent studies revealed that 
astrocytes differ substantially between cortical, hippo-
campal, and striatal regions in terms of gene expression, 
electrophysiology, and Ca2+ dynamics [57–59]. Whether a 
single conceptual framework can capture this diversity, or 
whether astrocyte function must be understood in a region-
specific manner, is unresolved. Single-cell RNA sequencing 
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and spatial transcriptomics, when combined with advanced 
imaging approaches, might be able to somewhat clarify 
these questions, although to what extent such “snapshots” 
could capture the temporal dynamics of cell diversity 
remains unclear.

Finally, the therapeutic potential of astrocyte modulation 
is becoming increasingly tangible. Astrocyte-targeted strat-
egies, ranging from pharmacological modulation of Ca2+ 
signalling, K+ homeostasis and glutamate clearance, to gene 
therapy vectors directed at GFAP-positive cells, are now 
under investigation in models of epilepsy, gliosis, and neu-
rodegeneration. However, to what degree the experimental 
manipulations of astrocyte function developed and tested 
in animal models could represent a feasible path to human 
therapy remains to be seen. In any case, Carmignoto’s stud-
ies have contributed significantly to the foundation for such 
translational advances, positioning astrocytes as promising 
targets for future treatments.

Concluding Remarks

Dr. Giorgio Carmignoto’s body of work has helped to 
reshape the field of glial biology. His studies provided criti-
cal contributions to establishing astrocytes as active, bidi-
rectional regulators of synaptic function, plasticity, and 
network behaviour, while implicating their dysfunction 
in pathological states such as epilepsy. His methodologi-
cal innovations have furthered and encouraged inter-disci-
plinary studies of astrocytic activity, while his mechanistic 
insights continue to inspire both fundamental research and 
translational approaches. As the field advances, addressing 
unresolved questions of gliotransmission-trigger identity, 
spatiotemporal precision of Ca2+ signalling, and potentially 
fluid astrocytic heterogeneity will be critical.
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