Archival Report

Changes in Model-Based and Model-Free Control Prospectively Predict Drinking Trajectories in Young Men

Hao Chen, Sören Kuitunen-Paul, Maria Garbusow, Marina Lukezic, Quentin J.M. Huys, Michael A. Rapp, Andreas Heinz, and Michael N. Smolka

ABSTRACT

BACKGROUND: Expanding our previous findings that model-based/model-free (MB/MF) control—often conceptualized as goal-directed and habitual behavior—at age 18 years was associated with alcohol drinking trajectories over 3 years, in this study, we investigated whether changes in MB/MF control from ages 18 to 21 1) stem from alcohol exposure and 2) predict drinking patterns up to age 24.

METHODS: We followed a community sample of 124 18-year-old men for 6 years. At ages 18 and 21, participants performed a 2-step task assessing MB and MF control while undergoing functional magnetic resonance imaging (91 neural datasets). Drinking behavior was assessed using annual interviews complemented by questionnaires every 6 months. Correlation coefficients assessed the effect of cumulative alcohol exposure from ages 18 to 21 on changes in MB/MF parameters. Latent growth curve models were used to evaluate associations between MB/MF changes and drinking trajectories from ages 21 to 24.

RESULTS: Alcohol exposure from ages 18 to 21 showed no significant effect on changes in MB/MF control. An increased MB behavioral score was protective for binge drinking, while an increased MF behavioral score predicted higher binge drinking at age 21 but not its future development. Changes in MF ventral striatum signals were associated with escalated consumption score development from ages 21 to 24, whereas MF ventromedial prefrontal signals showed a protective effect.

CONCLUSIONS: Changes in behavioral and neural MB and MF control were linked to future drinking patterns, suggesting that interventions aimed at modulating MB/MF controls could help mitigate subsequent risky drinking behaviors.

https://doi.org/10.1016/j.biopsych.2025.06.028

Alcohol use disorder (AUD) poses significant health risks and societal challenges, making understanding its underlying mechanisms a public health priority (1). The progression of AUD is marked by the transition from initially controlled, primarily goal-directed alcohol use to more habitual consumption, with some researchers suggesting that this may involve elements of automaticity (2,3). This transition underscores the necessity of dissecting the intertwined causes and consequences of AUD to develop preventions or interventions that directly target the underlying processes.

The 2-step task, introduced by Daw et al. (4), is a well-established tool for exploring the interplay between goal-directed and habitual behaviors. Grounded in reinforcement learning, it distinguishes between model-based (MB) and model-free (MF) control systems. The MF system calculates the value of actions based on past rewards, with reward prediction error (RPE) signal predominantly originating in the midbrain (5). While these phasic signals align with MF predictions, evidence suggests that midbrain dopamine neurons also contribute to associative learning and outcome-specific

predictive learning rather than being strictly MF (6,7). This allows task structure and future outcomes to influence reinforcement learning, integrating elements of MB computations alongside MF learning (4,8). In contrast, the MB system depends on interactions between ventral striatum (VS) dopamine and lateral prefrontal cortex (PFC) activation (9), engages in forward-planning decision making, and is sensitive to environmental structure (10). While the MF system is efficient in stable environments, its inflexibility becomes apparent in more complex settings. The MB system, although more adaptive and future-oriented, incurs higher computational costs, potentially leading to inefficiency. Typically, human decision making in the 2-step task reflects a blend of both strategies, balancing efficiency with flexibility (4).

Some evidence suggests an association between reduced MB control and AUD severity. No significant behavioral differences were reported between people with AUD and healthy volunteers by Voon et al. (11) and Sebold et al. (12), the latter in contrast to an initially significant finding (13). However, Sebold et al. (12) observed that individuals who relapsed exhibited

lower MB neural responses in the medial PFC. In nonclinical populations, Doñamayor et al. (14) observed reduced MB control among adults with severe binge drinking. In a large online study, Gillan et al. (15) found a link between lower MB control and higher scores on the Alcohol Use Disorder Identification Test (AUDIT) (16). Conversely, Patzelt et al. (17) did not detect this association in an online study using a modified version of the 2-step task (18).

The mixed evidence underscores the intricate and multifaceted nature of the relationship between MB/MF control and AUD. The varying findings could be, at least partly, attributed to the complex interplay between inherent predispositions and the consequences of alcohol use, which makes it challenging to delineate clear cause-and-effect patterns. In this context, we followed young adults age 18 years for 6 years until age 24, which is a critical period when risky alcohol use and distinctive drinking patterns develop (19,20). At age 18, no association was detected between MB/MF control and drinking behaviors (21). However, our findings indicate that more MB behavioral control at age 18 was associated with a reduction in the development of binge drinking over the following 3 years. Conversely, more MF RPE in the VS and ventromedial PFC (vmPFC) were associated with an increase in the development of higher consumption scores. These findings support the role of MB and MF control as predisposing factors (22). In this study, we obtained data on 1) MB/MF decision making at age 21 and 2) annual/biannual alcohol use from ages 21 to 24. We wanted to assess whether changes in the balance between MB/MF controls at ages 18 to 21 were associated with 1) alcohol use during this time period and 2) the future development of risky drinking behaviors from ages 21 to 24. This allowed us to examine the temporal direction of associations between changes in MB/MF control and the development of drinking behavior. Following our previous finding that MB behavioral control and MF neural responses at age 18 predicted future risky drinking development (22), we expected changes in MB/MF parameters to be associated with both the development of future drinking trajectories and cumulative drinking up to age 24.

METHODS AND MATERIALS

Participants and Procedure

At baseline, 201 18-year-old men recruited from local registration offices in Berlin and Dresden took part in our study. Participants needed to have normal or corrected-to-normal vision, be right-handed and eligible for magnetic resonance imaging (MRI), and have had at least 2 drinking occasions during the past 3 months. Individuals with a history or current diagnosis of mental disorder or substance dependence (excluding nicotine), as assessed through structured clinical interviews based on DSM-IV (23), were excluded, while individuals who met criteria for alcohol abuse were included.

We recruited only males because we believed that the higher prevalence of hazardous drinking in males compared with females would increase our statistical power to detect associations in our longitudinal study. Additionally, sex differences in MB and MF control [later found in (15)] could introduce interactions that reduce statistical power, also making it

more difficult to detect associations. In retrospect, a sample of both females and males would have been preferable.

Participants performed the 2-step sequential decision-making task (4) during functional MRI (fMRI) at ages 18 and 21. Following quality control, 188 behavioral and 146 imaging datasets from baseline (age 18) were included in the final analysis (21,22). At age 21, 124 behavioral datasets remained after exclusions. Imaging data were preprocessed identically to baseline, with 91 participants included in the final longitudinal analysis (see Supplemental S-1).

Drinking behavior was assessed annually (ages 18–24) using the Munich Composite International Diagnostic Interview (M-CIDI) (24) and the AUDIT (16) questionnaire biannually starting at age 18.5 years. More details about drinking behavior assessments are provided in Supplemental S-2.

Drinking Behavior

To assess cumulative alcohol consumption, 2 key variables were considered: total alcohol consumption (in kg) and the total number of binge drinking occasions from ages 18 to 21 (25), both derived from M-CIDI assessments. The details of this calculation can be found in Supplemental S-2.

Regarding the analysis of how the changes in MB/MF control affect future drinking trajectories, we used the gram/occasion variable (binge drinking score) and the AUDIT consumption (AUDIT-C) score from ages 21 to 24. These 2 variables were selected to maintain consistency with our previous study (22).

Two-Step Task

Details of the 2-step task (4) are described in Figure 1.

Behavioral Parameters. As established in Daw *et al.* (4), the MF agent tends to repeat the first-stage choice following a reward, while the MB agent also considers transition structures, and this results in a reward-by-transition interaction. These scores, derived from the participant's first-stage decision across all trials, quantify the extent to which their behavior aligns with pure MF and MB agents. Specifically, the MF score is formulated as the main effect of reward on the decision probability P: P(rewarded common) + P(rewarded rare) - P(unrewarded common) - P(unrewarded rare). Meanwhile, the MB score captures the interaction of reward and transition: P(rewarded common) - P(rewarded rare) - P(unrewarded common) + P(unrewarded rare).

Neural Parameters. At the neural level, we analyzed the imaging data from age 21 using the same first-level model as we outlined in our baseline report (21). Our primary regressors of interest in the fMRI model were the MF and MB RPEs. These RPEs, modeled as 2 parametric regressors, corresponded to the onset of the second-stage cue and the outcome presentation. They were computed with the same computational model detailed in Nebe *et al.* (21). Our regions of interest were the bilateral vmPFC and the VS. From these regions, we extracted the MF and MB RPEs. These MB and MF RPEs obtained from the VS and vmPFC were then used to predict future drinking trajectories.

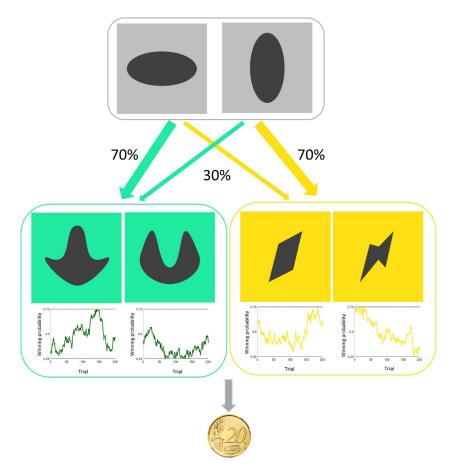


Figure 1. Two-step paradigm. Schematic of the 2-step decision-making task. In the depicted 2-step paradigm (4), participants begin each trial by choosing 1 of 2 gray boxes within a 2-second limit. For example, selecting the left box leads to a common transition to a green pair of stimuli with a 70% probability or a rare transition to a yellow pair with a 30% likelihood. If the right box is chosen, these transition probabilities to the second-stage stimuli are reversed. Upon entering the second stage, participants were required to select 1 of the 2 second-stage stimuli within a 2-second time frame. Below each second-stage stimulus are fluctuating reward probability charts, illustrating the chance (ranging from 25% to 75%) of earning a monetary reward throughout the task, according to a Gaussian random walk algorithm. Monetary rewards are given based on this probability, as depicted by the coin image at the bottom. Participants received €10 for each hour of their participation, in addition to a bonus determined by their performances on the 2-step task. The payouts for this bonus ranged from €3.80 to €8, based on a randomly selected onethird of the trials.

MB and MF Control Parameters

To maintain consistency with our previous study (22), we used the same behavioral and neural predictors in the current study. At the behavioral level, we calculated the MF and MB scores based on whether participants repeated their first-stage choice in subsequent trials (4). Neural MB/MF RPEs were extracted from the VS and vmPFC at age 21 using the same first-level model as in our baseline report (21). See Figure 1 for detailed specifications of MB/MF parameters.

After extracting the 2 behavioral and 4 neural parameters, we assessed the stability of the 6 parameters across 3 years. Specifically, we reported the intraclass correlation coefficients (ICCs) and Spearman's rho, as the Shapiro-Wilk tests confirmed non-normal distributions. This assessment provides insights into individual changes over time. Additionally, to test for changes in the overall mean, we performed Wilcoxon signed-rank tests.

Association Between Alcohol Exposure and Changes in MB/MF Control

The objective of this analysis was to assess the association between cumulative alcohol use and changes in MB/MF control. Given that both total alcohol consumption and total binge drinking occasions were not normally distributed (see

Figure S1), we computed Spearman's correlation coefficients between the 2 drinking variables and the six 2-step measures. Associations between alcohol consumption and 2-step behavioral measures were assessed using data from 124 participants, while associations between alcohol consumption and neural measures were analyzed using data from 91 participants.

Latent Growth Curve Model Analysis: Changes in MB/MF Control in Association With Future Drinking Trajectories

The aim of this analysis was to examine whether changes in MB and MF control from ages 18 to 21 were associated with drinking trajectories over the subsequent 3 years (from ages 21–24), while controlling for the values of 2-step predictors at age 18. We previously published findings on the association between baseline MB/MF control and the 3-year drinking trajectory; here, we focused specifically on the impact of changes during follow-up. Controlling for baseline MB/MF control is essential to isolate the effect of these changes and avoid biases such as regression to the mean (26). This was achieved by fitting latent growth curve models (LGCMs) using the lavaan package in R (27). The missing data can be handled using the full information maximum likelihood method, which has been

shown to be unbiased when data are missing at random (28). The testing of the missing pattern in the drinking data supported the assumption that the missings were random (details in Supplemental S-3).

We first confirmed that the development of drinking trajectories from ages 21 to 24 followed a linear rather than a quadratic pattern, and therefore we constructed the LGCM models for gram/occasion and AUDIT-C score based on the conceptual model (details in Figure S2). We included both baseline and change score 2-step predictors in our models, regressing them against the latent intercepts and slopes. Unlike in our previous work (22), we separated the behavioral and neural models to enhance the robustness of our analysis by retaining more observations, given that only 91 participants had complete data for both types of assessment. This resulted in 4 models: 2 behavioral (MB and MF scores as predictors) and 2 neural (RPE signals in the VS and vmPFC for MB and MF control), each considering the trajectories for both gram/ occasion and the AUDIT-C score. Additional analyses examining MB/MF indices at age 21 and their associations with drinking trajectories are summarized in Supplemental S-4 and Table S2. We also investigated potential associations and interactions between alcohol expectancy scores and MB/MF control (Supplemental S-5).

RESULTS

Drinking Behavior

From ages 18 to 24, participants consumed an average of 57 g of alcohol per occasion, with 6 drinking occasions per month. Binge drinking occurred approximately 12 times per year, and total alcohol consumption was 4.4 kg/year (SD = 4.7). The mean AUDIT-C score remained stable at around 4.3 (SD = 2.0) over 6 years. Compared with the general German population (29), our sample showed higher at-risk drinking behaviors. Further details are provided in Supplemental S-2.

We also plotted and described the drinking trajectories of gram/occasion and the AUDIT-C score from ages 21 to 24 in Figure 2.

Development of MB/MF Control From Ages 18 to 21

The descriptive statistics for MB and MF behavioral scores and neural responses in the VS and vmPFC are presented in Table 1. At the group level, no significant changes in MB and MF control or their neural underpinnings were found from ages 18 to 21 (Wilcoxon signed-rank test: all $ps \ge .138$; all $rs \le 0.17$). However, this stability at the group level does not preclude changes at the level of individuals, as visualized in Figure S4.

To assess temporal stability, Spearman's correlations and ICCs were calculated over 3 years. The MB score exhibited moderate temporal stability ($\rho=0.46$; p<.001; ICC $_{3,1}=0.47$; 95% CI, -0.32 to 0.59), while the stability of the MF score was minimal ($\rho=-0.01$; p=.946; ICC $_{3,1}=0.01$; 95% CI, -0.16 to 0.19). Neural MF responses in the VS and vmPFC exhibited modest stability, while the MB signals in these regions exhibited relatively low stability. Further details are presented in Table 1. These findings indicate that there were changes in

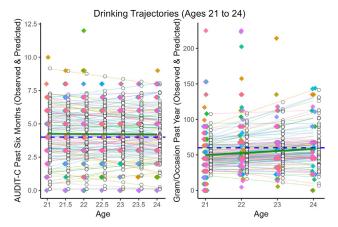


Figure 2. Drinking trajectories. Integrated observed and predicted individual drinking trajectories using unconditional latent growth curve models (LGCMs). The graph presents individual growth trajectories for key measures of alcohol consumption: Alcohol Use Disorder Identification Test consumption (AUDIT-C) scores (left panel) and grams of alcohol per occasion (right panel) across the ages of 21 to 24. The linear trajectories were modeled using unconditional LGCMs that allow for the estimation of initial status (intercept) and change over time (slope) for each individual's drinking behavior. By fitting the LGCMs without external predictors, the models provide a pure view of each participant's developmental pattern based on the observed data across the specified time points. Each colored line depicts an individual's predicted trajectory. Colored dots represent the actual observed data, while the open circles indicate the model's predicted values for each time point. The thick green line represents the mean of the model's predicted values over time. The blue dashed line represents the threshold for risky drinking, which is 60 g for the gram/occasion variable (42) and 4 for the AUDIT-C score (43). At the group level (see the thick green line in both plots), the mean gram/occasion exhibited a slight increase while the AUDIT-C score remained stable. The individual trajectories illustrated here exhibited a combination of increases and decreases.

these predictors over time, which is to be expected given that there were 3 years between the initial and final assessments.

Association Between Alcohol Exposure and Changes in MB/MF Control

We examined the association between alcohol exposure, measured by total alcohol consumption and total number of binge drinking occasions from ages 18 to 21, and changes in 2-step parameters over this period. No significant associations were found (all ps ≥ .175) (Table 2), indicating that alcohol exposure was not substantially associated with the changes in MB and MF control. Similarly, alcohol exposure showed no significant associations with MB/MF outcomes at age 21 (Table S4). To provide a comprehensive overview, we also examined the association between the cumulative AUDIT-C score and the MB/MF control changes; the results are presented in Supplemental S-6.

Changes in MB/MF Control in Association With Future Drinking Trajectories

Having established that alcohol exposure from ages 18 to 21 was not significantly associated with MB and MF control changes, we then examined whether these changes predisposed individuals to different drinking trajectories from ages 21 to 24. Using LGCM models, we assessed the association

ventral striatum

Table 1. Descriptive Statistics for Two-Step Measures

							Age 1	Age 18 vs. Age 21	
			Age 18		Age 21	Change, Wilcoxor	shange, Wilcoxon Rank-Sum Test	Temporal Stability	Stability
	MB/MF	MB/MF Mean (SD) Med	Median [Range]	Mean (SD)	Mean (SD) Median [Range]	(<i>a</i>) W	Effect Size r	Spearman's Rho (p) ICC _{3,1} ^a [95% CI]	ICC _{3,1} ^a [95% CI]
Behavioral, $n = 124$	MB	0.29 (0.33) 0.23	0.23 [-0.34 to 1.21]	0.30 (0.29)	[-0.34 to 1.21] 0.30 (0.29) 0.29 [-0.22 to 1.13]	7242 (.430)	0.08	0.46 (<.001*)	0.47 [-0.32 to 0.59]
	MF	0.09 (0.18) 0.09		0.09 (0.22)	[-0.38 to 0.63] 0.09 (0.22) 0.08 [-0.55 to 1.15]	7865 (.755)	0.03	-0.01 (.946)	0.01 [-0.16 to 0.19]
Neural RPE	MB VS	0.34 (0.84)	0.34 (0.84) 0.48 [-2.28 to 2.48] 0.33 (0.99)	0.33 (0.99)	0.30 [-3.23 to 3.42]	4140 (1.00)	0.01	0.08 (.434)	0.09 [-0.12 to 0.29]
Signals, $n = 91$	MB vmPFC	MB vmPFC 0.39 (1.14) 0.46 [-	0.46 [-4.13 to 4.12] 0.11 (1.26)	0.11 (1.26)	0.23 [-4.29 to 2.83]	4668 (.138)	0.17	0.10 (.346)	0.17 [-0.03 to 0.37]
	MF VS	0.28 (0.35) 0.22		0.26 (0.36)	-0.76 to 1.09] 0.26 (0.36) 0.22 [-0.74 to 1.41]	4227 (.809)	0.08	0.31 (.002*)	0.27 [0.01 to 0.45]
	MF vmPFC	MF vmPFC 0.08 (0.43) 0.11		0.05 (0.44)	[-1.29 to 1.08] 0.05 (0.44) 0.05 [-1.55 to 1.48]	4429 (.418)	0.05	0.24 (.024*)	0.18 [-0.03 to 0.37]

prefrontal cortex; VS, ventromedial reward prediction error; vmPFC, ICCs are calculated as 2-way mixed effects, consistency, single measurement ICC, intraclass correlation coefficient; MB, model-based; MF, model-free; RPE,

Table 2. Associations Between Alcohol Exposure and Development of MB/MF Control

	Total Alcohol Consumption, kg		Total Number of Binge Drinking Occasions		
Age 21 Minus Age 18	ρ	р	ρ	р	
Δ MB Score	0.07	.433	-0.02	.856	
Δ MF Score	0.10	.279	0.11	.213	
Δ MB VS	0.02	.841	-0.03	.796	
Δ MB vmPFC	-0.05	.620	-0.06	.591	
Δ MF VS	-0.14	.175	-0.04	.727	
Δ MF vmPFC	-0.13	.205	-0.10	.388	

MB, model-based; MF, model-free; vmPFC, ventromedial prefrontal cortex; VS, ventral striatum.

between the MB/MF control changes (ages 18–21) and subsequent drinking trajectories (ages 21–24). Three of the 4 models demonstrated moderate to good model fit (binge drinking score with behavioral predictors, AUDIT-C models with behavioral and neural predictors) (Table 3). The binge drinking score model with neural predictors showed poor fit and is reported in Supplemental S-7.

For the binge drinking score measure (Figure 3A), which assesses the alcohol consumption per drinking occasion, we observed a negative association between MB score changes and the slope of the gram/occasion trajectory ($\beta = -14.07$, SE = 5.80, p = .015). This suggests that participants with stronger increases in MB behavioral scores exhibited greater decreases in binge drinking score development. Conversely, MF score increase was associated with higher binge drinking scores at age 21, as evidenced by its positive association with the intercept ($\beta = 41.72$, SE = 15.82, p = .008).

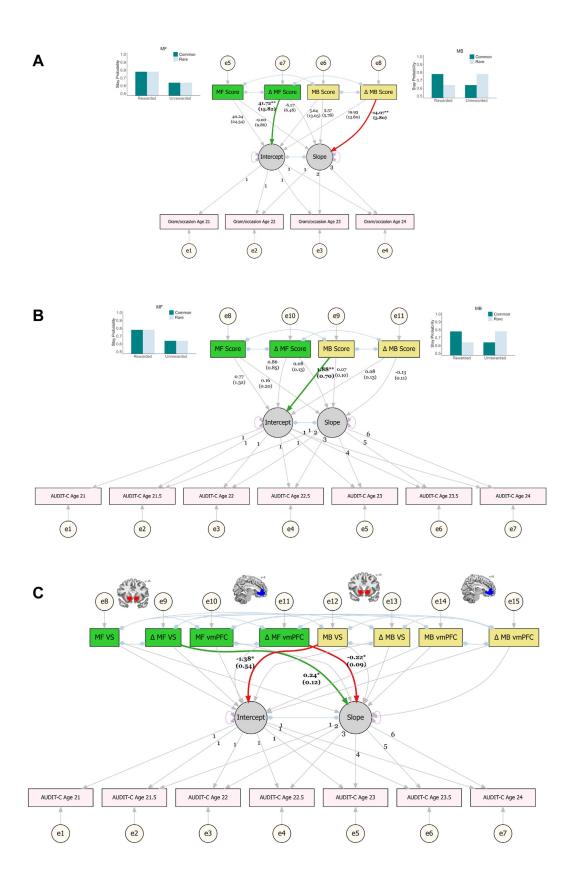
The AUDIT-C trajectory, which evaluated changes in drinking frequency and quantity, showed that higher MB behavioral scores at age 18 were associated with a higher AUDIT-C intercept (β = 1.88, SE = 0.70, p = .007), indicating that individuals with higher MB control at baseline tended to have higher AUDIT-C scores at age 21 (Figure 3B). Conversely, changes in the behavioral score did not significantly predict the AUDIT-C score trajectories.

In the AUDIT-C model with neural RPE signals (Figure 3C), we observed that a higher MB signal in the VS at age 18 was associated with a lower AUDIT-C score intercept ($\beta=-1.38,$ SE = 0.54, $\rho=.010$). This means that individuals with stronger MB signals in the VS at baseline tended to have lower AUDIT-C scores at age 21. Regarding the changes in the neural responses, we found that an increase in the MF RPE signal in the VS was associated with a more pronounced upward trend in the AUDIT-C score trajectory from ages 21 to 24 ($\beta=0.24,$ SE = 0.12, $\rho=.041$). Conversely, changes in the MF vmPFC signals showed an inverse effect, whereby an increase was associated with a more pronounced decline in AUDIT-C score development ($\beta=-0.22,$ SE = 0.09, $\rho=.016$).

Exploratory Mediation and Moderation Analysis

The observed results indicated that the changes in MF RPE signals in the VS and vmPFC had opposite roles when

Table 3. Latent Growth Curve Model Results


Behavioral/ Neural	MF/MB	Path	Unstandardized Estimate	SE	z	p	Standardized Estimate
Gram/Occasion							
Behavioral	MF age 18	Behavioral score → intercept	40.244	24.340	1.653	.098	0.310
		Behavioral score → slope	-9.004	9.858	-0.913	.361	-0.171
	ΔMF	Δ Behavioral score → intercept	41.718	15.817	2.638	.008*	0.498
		Δ Behavioral score → slope	-6.274	6.480	-0.968	.333	-0.184
	MB age 18	Behavioral score → intercept	5.641	13.046	0.432	.665	0.079
		Behavioral score → slope	3.570	5.777	0.618	.537	0.122
	Δ ΜΒ	Δ Behavioral score → intercept	19.928	13.798	1.444	.149	0.269
		Δ Behavioral score → slope	-14.067	5.801	-2.425	.015*	-0.468
	Model fit: χ ² ₁	₁ = 23.85, <i>p</i> = .013, CFI = 0.946, RM	SEA = 0.097, SRMR = 0.05	4			
Neural	Model fit: χ ² ₃	$_{11}$ = 81.19, p < .001, CFI = 0.894, RM	ISEA = 0.133, SRMR = 0.14	.3			
AUDIT-C							
Behavioral	MF age 18	Behavioral score → intercept	0.767	1.322	0.580	.562	0.073
Bonavioral	· ·	Behavioral score → slope	0.158	0.195	0.810	.418	0.134
	ΔMF	Δ Behavioral score → intercept	0.855	0.850	1.006	.315	0.124
		Δ Behavioral score → slope	0.075	0.125	0.600	.548	0.096
	MB age 18	Behavioral score → intercept	1.878	0.702	2.676	.007*	0.318
	_	Behavioral score → slope	0.066	0.104	0.633	.527	0.100
	Δ ΜΒ	Δ Behavioral score → intercept	0.075	0.125	0.600	.548	0.096
		Δ Behavioral score → slope	-0.130	0.106	-1.219	.223	-0.193
	Model fit: χ ² ₄	₀ = 67.09, p = .005, CFI = 0.968, RM	SEA = 0.074, SRMR = 0.08	0			
Neural	MF age 18	VS→intercept	-0.933	0.994	-0.939	.348	-0.158
		vmPFC→intercept	1.602	0.827	1.938	.053	0.330
		VS→slope	-0.039	0.134	-0.290	.772	-0.060
		vmPFC→slope	-0.035	0.111	-0.312	.755	-0.065
	ΔMF	Δ VS→intercept	-1.275	0.815	-1.563	.118	-0.263
		Δ vmPFC→intercept	1.007	0.641	1.570	.116	0.273
		Δ VS→slope	0.236	0.115	2.046	.041*	0.445
		Δ vmPFC→slope	-0.219	0.091	-2.401	.016*	-0.543
	MB age 18	VS→intercept	-1.376	0.535	-2.571	.010*	-0.558
		vmPFC→intercept	0.634	0.390	1.626	.104	0.351
		VS→slope	0.033	0.073	0.450	.652	0.122
		vmPFC→slope	0.035	0.054	0.641	.522	0.176
	Δ ΜΒ	Δ VS→intercept	-0.297	0.307	-0.968	.333	-0.179
		Δ vmPFC→intercept	0.138	0.243	0.566	.571	0.105
		Δ VS→slope	0.024	0.042	0.568	.570	0.130
		Δ vmPFC→slope	0.009	0.034	0.272	.785	0.065
	Model fit: v^2	$p_0 = 130.19, p < .001, CFI = 0.940, R$	MSEA = 0.097, SRMR = 0.1	17			

AUDIT-C, Alcohol Use Disorder Identification Test consumption; CFI, comparative fit index; MB, model-based; MF, model-free; RMSEA, root mean square error of approximation; SRMR, standardized root mean square residual; vmPFC, ventromedial prefrontal cortex; VS, ventral striatum.

predicting the trajectory of AUDIT-C from ages 21 to 24. This divergence suggests a potentially intricate relationship between the RPE signals in these 2 regions concerning their influence on future drinking behaviors. To better understand this dynamic, we tested whether vmPFC RPE signals moderated or mediated the relationship between VS RPE signals and AUDIT-C score trajectory. Moderation analysis examined whether vmPFC altered this relationship, while mediation analysis tested whether vmPFC explained part of the effect of VS RPE on drinking behavior. Results suggest competitive mediation rather than moderation. See Figure 4 and Supplemental S-8 for more details.

DISCUSSION

In our longitudinal study, we tracked a community sample of 18- to 24-year-old men for 6 years and found that changes in MB and MF control during young adulthood were predisposing factors for subsequently observed drinking trajectories. Notably, an increase in MB behavioral control from ages 18 to 21 was found to be protective and associated with a stronger decrease in binge drinking scores over the subsequent 3 years. Furthermore, an increase in the MF RPE signal in the VS preceded an escalation in consumption scores. The influence of changes in the VS RPE signals on future drinking behavior was found to be competitively mediated by changes in the MF RPE

Model-Based/Model-Free Control Predict Future Drinking

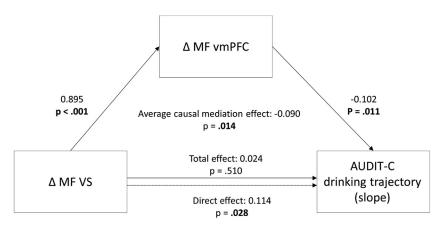


Figure 4. Mediation analysis results. We utilized the R mediation package (44) for the mediation analysis. The direct effect of Δ model-free (MF) ventral striatum (VS) on Alcohol Use Disorder Identification Test consumption (AUDIT-C) score drinking trajectory is significant (estimate = 0.114, p = .028), implying that changes in Δ MF VS are associated with an increase in the slope of the drinking trajectory. The mediation effect, as represented by the average causal mediation effect of Δ MF ventromedial prefrontal cortex (vmPFC) is significant (estimate = -0.090, p = .014) and operates in the opposite direction of the direct effect, thereby indicating competitive mediation (33). This suggests that the influence of Δ MF VS on AUDIT-C scores is partly offset by the mediating role of Δ MF vmPFC. Additionally, the path from the independent variable to the mediator (Δ MF VS to Δ MF vmPFC) is sig-

nificant (estimate = 0.895, p < .001). The total effect of Δ MF VS on the drinking trajectory is nonsignificant (estimate = 0.024, p = .510), which is consistent with the competitive mediation, where the mediator's effect contrasts with the direct effect. This competitive dynamic suggests that while the MF VS reward prediction error (RPE) changes are associated with an increase in AUDIT-C scores, the vmPFC signal changes offset this effect, leading to a nuanced interplay between the neural correlates and the progression of alcohol use behavior. The bolded p values highlight the statistical significance of the relationships between the variables.

signal in the vmPFC, indicating that the latter signal may serve as a protective factor against increasing drinking behavior. Conversely, our analysis does not support the hypothesis that moderate alcohol consumption during young adulthood alters MB and MF control. These findings suggest that MB/MF development may play a role in the progression of alcohol use in young adults, potentially informing the development of targeted early intervention strategies.

Overall, our findings are very consistent with our previous research (22). Earlier, we found that high MB behavioral control at age 18 protected against binge drinking score development from ages 18 to 21. The current study extends this understanding by showing that an additional increase in MB behavioral control during early adulthood was associated with stunted progression of binge drinking score development over the subsequent 3 years, i.e., after age 21. This finding emphasizes the protective role of MB behavioral control for the binge drinking trajectory. Furthermore, we previously observed that the MF RPE signal in the VS at age 18 positively correlated with the development of consumption scores during the following 3 years, i.e., was a risk factor (22). We have extended this by demonstrating that changes in this MF signal during early adulthood may be linked to excessive alcohol use. Taken together, these findings provide additional evidence that not only MB/MF control at one time point but also their development may be associated with future drinking trajectories. This indicates that MB/MF control and drinking trajectories

codevelop in a dynamic manner. Importantly, these associations were identified after the initial levels of MB/MF control at age 18 were included as predictors, allowing us to test whether MB/MF control at age 18 was also associated with future drinking trajectories. In summary, consistent with our hypothesis, these findings delineate MB behavioral control as protective and MF processes as detrimental in shaping alcohol use trajectories.

However, not all findings align neatly. Upon initial examination, the negative association between changes in the MF signal in the vmPFC and consumption score development was not consistent with the hypothesis that increasing MF signals are a risk factor. This unexpected result prompted the hypothesis that a moderation or mediation effect might be present. Exploratory analyses suggest that changes of the vmPFC RPE signal act as a competitive mediator (30). We speculate that the vmPFC signal may be involved in action inhibition during the development of addiction (31), counteracting the heightened MF RPE signals from the VS, thus providing a protective mechanism against future risky drinking patterns. This idea is consistent with the broader literature, which suggests that the vmPFC is crucial for integrating various signals and guiding decision making based on the expected value of an action (32). Additionally, the competitive dynamic between MF vmPFC and VS signals may indicate distinct roles in MF processing: VS signals likely reflect habitual, reward-driven tendencies, whereas the vmPFC MF signal may encode

Figure 3. Latent growth curve model (LGCM) results. Significant pathways in LGCM results. This figure illustrates the results from the LGCMs: the binge drinking score model measured in grams of alcohol consumed per occasion (A) and Alcohol Use Disorder Identification Test consumption (AUDIT-C) scores (B, C). Green paths indicate significant positive associations, whereas red paths indicate significant negative associations. In the grams/occasion behavioral model, a negative association was found between the change in the model-based (MB) score and the development of the binge drinking trajectory (slope) from ages 21 to 24. Conversely, a positive association was observed between change in the model-free (MF) behavioral score and the binge drinking score at age 21 (intercept). In the AUDIT-C behavioral model, we found a positive association between the MB behavioral score at age 18 and the intercept. To maintain clarity, only significant path estimates are displayed for the AUDIT-C neural model; comprehensive details are provided in Table 3. The change in MF ventral striatum (VS) signal is positively associated with the rate of change (slope) in the AUDIT-C trajectory, while the change in the MF ventromedial prefrontal cortex (vmPFC) signal is negatively associated with this rate of change. Additionally, the MB reward prediction error signal in the VS is negatively associated with drinking behavior at age 21 (intercept). *p < .05, **p < .01.

more nuanced feedback about the broader consequences of behavior, mitigating the influences of heightened VS activity. The differential maturation of the VS and vmPFC during this period may also underlie these contrasting roles, with the vmPFC's later development enhancing its ability to regulate behaviors (33). However, MB and MF RPE signals in the 2-step task may not be entirely distinctive (34), suggesting that our measurements may reflect general RPE signals rather than distinct MF or MB RPE signals having a direct influence on choices during the task. Overall, these findings highlight the complex interaction between neural signal changes and future drinking behavior, emphasizing the significant role of the vmPFC in this dynamic.

Complementary to the predisposing effects that we observed, our study is the first to investigate whether alcohol consumption alters MB/MF control in humans. Overall, we found no evidence that moderate levels of alcohol consumption [1 standard drink per day on average (35)] or binge drinking in young adults were associated with changes in MB and MF control. While research in this area is limited, Groman et al. (36) did find that both MB and MF control were reduced in rats following self-administered methamphetamine use. Our findings do not rule out the possibility that alcohol consumption may alter MB/MF control; rather, the lack of observed changes in the current study may be attributable to moderate alcohol use in our study population during early adulthood. Future research is required to determine whether higher levels of alcohol consumption and/or longer durations of alcohol exposure impact MB/MF control over time.

Our findings on the predisposing side underscore the importance of the development of decision-making mechanisms during early adulthood, which in turn influence future drinking behaviors. This highlights a critical opportunity for preventive measures. One promising direction is evaluating existing neuropsychological interventions, such as those reviewed by Verdejo-García et al. (37). For example, goal management training has been proposed as a means of enhancing goal-directed behaviors by training techniques such as mindfulness practices, response inhibition, goal setting, self-monitoring, and decision-making strategies (38). Additionally, the ongoing study by Karl et al. (39) explores interventions such as chess-based cognitive remediation and habit-modifying training in smokers, aimed at balancing goaldirected and habitual behavior. These approaches could be adapted to prevent risky drinking, highlighting a promising research avenue on the impact of such training or intervention on improving MB/MF decision making and thus mitigating risky alcohol use.

Limitations

Although we found evidence that MB/MF control predicts the course of future drinking behavior, this should not simply be interpreted as a dichotomy between goal-directed and habitual control (40,41). The complexities that underlie these constructs suggest that our findings may reflect broader cognitive processes rather than a straightforward binary categorization. Additionally, the stability of our measurements was modest. This could be attributed to 2 factors: significant changes and the fact that consistency

measurement represents only the lower bound of real stability. Measurement errors might also have contributed to the low ICCs or correlation coefficients that we observed, emphasizing the need for further research to disentangle stable traits from the state-dependent aspects of unbalanced MB/MF control, which may provide a more profound understanding of their impact on drinking behavior. Additionally, the substantial amount of missing data at age 24 represents a limitation, as it required the use of imputation methods; future studies should aim for larger initial sample sizes to more efficiently address attrition during critical developmental stages. The neural model for binge drinking scores demonstrated suboptimal fit, requiring cautious interpretation; future studies should aim to increase sample size and the number of measurement time points to improve model robustness. Finally, our findings, derived from a male-only sample ages 18 to 24, limits the generalization of the results to other age groups, developmental stages, or to female populations. Having identified these associations in males, future research should examine whether they hold in females and more diverse samples. Additionally, the exclusion of participants with prior mental illness, intended to minimize variance and ensure task homogeneity, might have omitted particularly atrisk individuals, given the high comorbidity between mental illness and substance use. Moreover, these findings may not be applicable to other drinking cultures or countries with differing regulations regarding alcohol use, availability, and marketing, indicating a need for broader demographic and cultural representation in future research.

Conclusions

Building on our previous research, this study further elucidates the crucial role of MB and MF control in shaping drinking behaviors during young adulthood in nondependent social drinking men. We found that increases in MB behavioral control acted as a protective factor against the development of future binge drinking. Furthermore, changes in MF RPE signals in the VS and vmPFC both significantly impacted future drinking behaviors. The VS signal appears to predispose individuals to future alcohol consumption, while a vmPFC signal may have a protective effect. Our study is the first to address both the predisposing factors for and consequences of risky drinking behavior for MB/MF control. These findings highlight mechanisms that could potentially inform interventions during this pivotal developmental period, offering valuable insights for developing preventive strategies against risky drinking in this crucial age bracket.

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) (Grant Nos. 186318919 [FOR1617] [to AH, MAR, MNS], 178833530 [SFB 940] [to MNS], 402170461 [TRR 265] [to AH, MAR, MNS], and 454245598 [IRTG 2773] [to MNS]).

We thank Dr. Stephan Nebe for his significant contributions to data collection and quality control, as well as for his valuable work in processing and developing analytic scripts for the baseline dataset.

QJMH acknowledges support by the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre. QJMH has obtained fees and options for consultancies for Aya

Model-Based/Model-Free Control Predict Future Drinking

Technologies and Alto Neuroscience. All other authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany (HC, ML, AH, MNS); Chair of Clinical Child and Adolescent Psychology and Psychotherapy, Technische Universität Chemnitz, Chemnitz, Germany (SK-P); Clinical Psychology and Psychotherapy, Technische Universität Chemnitz, Chemnitz, Germany (SK-P); Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany (MG); Department of Psychology, Medical School Berlin, Berlin, Germany (MG); Applied Computational Psychiatry Laboratory, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, United Kingdom (QJMH); Area of Excellence Cognitive Sciences, University of Potsdam, Potsdam, Germany (MAR); Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany (AH); and German Center for Mental Health, Tübingen, Germany (AH).

Address correspondence to Michael N. Smolka, M.D., at michael. smolka@tu-dresden.de.

Received Aug 26, 2024; revised Jun 20, 2025; accepted Jun 21, 2025. Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2025.06.028.

REFERENCES

- World Health Organization (2019): Global Status Report on Alcohol and Health 2018. Geneva: World Health Organization.
- Everitt BJ, Robbins TW (2016): Drug addiction: Updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50.
- Heinz A, Gutwinski S, Bahr NS, Spanagel R, Di Chiara G (2024): Does compulsion explain addiction? Addict Biol 29:e13379.
- Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011): Modelbased influences on humans' choices and striatal prediction errors. Neuron 69:1204–1215
- Schultz W (1998): Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27.
- Sharpe MJ, Batchelor HM, Mueller LE, Yun Chang C, Maes EJ, Niv Y, Schoenbaum G (2020): Dopamine transients do not act as model-free prediction errors during associative learning. Nat Commun 11:106.
- Keiflin R, Pribut HJ, Shah NB, Janak PH (2019): Ventral tegmental dopamine neurons participate in reward identity predictions. Curr Biol 20:02.103.63
- Sadacca BF, Jones JL, Schoenbaum G (2016): Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework. eLife 5:e13665.
- Deserno L, Huys QJ, Boehme R, Buchert R, Heinze H-J, Grace AA, et al. (2015): Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci U S A 112:1595–1600.
- Daw ND, Niv Y, Dayan P (2005): Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711.
- Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. (2015): Disorders of compulsivity: A common bias towards learning habits. Mol Psychiatry 20:345–352.
- Sebold M, Nebe S, Garbusow M, Guggenmos M, Schad DJ, Beck A, et al. (2017): When habits are dangerous: Alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biol Psychiatry 82:847–856.
- Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, et al. (2014): Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 70:122–131.
- Doñamayor N, Strelchuk D, Baek K, Banca P, Voon V (2018): The involuntary nature of binge drinking: Goal directedness and awareness of intention. Addict Biol 23:515–526.

- Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND (2016): Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5:e11305.
- 16. Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG, World Health Organization (2001): AUDIT: The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Health Care. Geneva: World Health Organization.
- Patzelt EH, Kool W, Millner AJ, Gershman SJ (2019): Incentives boost model-based control across a range of severity on several psychiatric constructs. Biol Psychiatry 85:425–433.
- Kool W, Gershman SJ, Cushman FA (2017): Cost-benefit arbitration between multiple reinforcement-learning systems. Psychol Sci 28:1321–1333.
- Jackson KM, Sher KJ, Schulenberg JE (2008): Conjoint developmental trajectories of young adult substance use. Alcohol Clin Exp Res 32:723–737.
- Tucker JS, Orlando M, Ellickson PL (2003): Patterns and correlates of binge drinking trajectories from early adolescence to young adulthood. Health Psychol 22:79–87.
- Nebe S, Kroemer NB, Schad DJ, Bernhardt N, Sebold M, Müller DK, et al. (2018): No association of goal-directed and habitual control with alcohol consumption in young adults. Addict Biol 23:379–393.
- Chen H, Mojtahedzadeh N, Belanger MJ, Nebe S, Kuitunen-Paul S, Sebold M, et al. (2021): Model-based and model-free control predicts alcohol consumption developmental trajectory in young adults: A 3year prospective study. Biol Psychiatry 89:980–989.
- Saß H, Wittchen H-U, Zaudig M, Houben I (2003): DSM-IV-TR-Diagnostisches und Statistisches Manual Psychischer Störungen-Textrevision. Göttingen, Germany: Hogrefe.
- Wittchen H-U, Pfister H (1997): DIA-X-Interviews: Manual für Screening-Verfahren und Interview; Interviewheft. Frankfurt: Swets & Zeitlinger.
- Hentschel A, Petzold J, Chen H, Heinz A, Smolka MN (2025): Higher alcohol use is associated with subsequent increased risk seeking toward gains: A longitudinal cohort study in young men. Alcohol Clinical and Experimental Research 49:1306–1320.
- Clifton L, Clifton DA (2019): The correlation between baseline score and post-intervention score, and its implications for statistical analvsis. Trials 20:43.
- Rosseel Y (2012): Lavaan: An R package for structural equation modeling and more. J Stat Softw 48:1–36.
- Arbuckle JL (1996): Full information estimation in the presence of incomplete data. In: Marcoulides GA, Schumacker RE, editors. Advanced Structural Equation Modeling: Issues and Techniques. New York: Psychology Press, 243–277.
- Orth B, Merkel C (2022): Der Substanzkonsum Jugendlicher und Junger Erwachsener in Deutschland. Ergebnisse des Alkoholsurveys 2021 zu Alkohol, Rauchen, Cannabis und Trends. Bundeszentrale für gesundheitliche Aufklärung.
- Zhao X, Lynch JG Jr, Chen Q (2010): Reconsidering Baron and Kenny: Myths and truths about mediation analysis. J Consum Res 37:197–206.
- Koob GF, Volkow ND (2016): Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 3:760–773.
- 32. Levy DJ, Glimcher PW (2012): The root of all value: A neural common currency for choice. Curr Opin Neurobiol 22:1027–1038.
- Christakou A, Gershman SJ, Niv Y, Simmons A, Brammer M, Rubia K (2013): Neural and psychological maturation of decisionmaking in adolescence and young adulthood. J Cogn Neurosci 25:1807–1823.
- Feher da Silva C, Lombardi G, Edelson M, Hare TA (2023): Rethinking model-based and model-free influences on mental effort and striatal prediction errors. Nat Hum Behav 7:956-969.
- Dufour MC (1999): What is moderate drinking? Defining "drinks" and drinking levels. Alcohol Res Health 23:5–14.
- Groman SM, Massi B, Mathias SR, Lee D, Taylor JR (2019): Model-free and model-based influences in addiction-related behaviors. Biol Psychiatry 85:936–945.
- Verdejo-García A, Alcázar-Córcoles MA, Albein-Urios N (2019): Neuropsychological interventions for decision-making in addiction: A systematic review. Neuropsychol Rev 29:79–92.

ARTICLE IN PRESS

Biological Psychiatry

Model-Based/Model-Free Control Predict Future Drinking

- Valls-Serrano C, Caracuel A, Verdejo-Garcia A (2016): Goal management training and mindfulness meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment. Drug Alcohol Depend 165:9–14.
- 39. Karl D, Wieland A, Shevchenko Y, Grundinger N, Machunze N, Gerhardt S, et al. (2023): Using computer-based habit versus chess-based cognitive remediation training as add-on therapy to modify the imbalance between habitual behavior and cognitive control in tobacco use disorder: Protocol of a randomized controlled, fMRI study. BMC Psychol 11:24.
- Miller KJ, Shenhav A, Ludvig EA (2019): Habits without values. Psychol Rev 126:292–311.
- Collins AG, Cockburn J (2020): Beyond dichotomies in reinforcement learning. Nat Rev Neurosci 21:576–586.
- World Health Organization (2000): International Guide for Monitoring Alcohol Consumption and Related Harm. Geneva: World Health Organization.
- 43. Dawson DA, Grant BF, Stinson FS, Zhou Y (2005): Effectiveness of the derived Alcohol Use Disorders Identification Test (AUDIT-C) in screening for alcohol use disorders and risk drinking in the US general population. Alcohol Clin Exp Res 29:844–854.
- Tingley D, Yamamoto T, Hirose K, Keele L, Imai K (2014): Mediation: R Package for Causal Mediation Analysis. J Stat Softw 59:1–38.