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Background Pourbaix (pH/potential) Diagrams & Corrosion Analysis
To realise novel neuroprostheses and neuromodulators, new methods for further miniaturisation of chronically implanted medical Pourbaix diagrams are a powerful tool for predicting the corrosion behaviour of metals in - ? % ‘r' ? ]5 10 ‘Iz ‘I‘ 16
devices need to be developed; thin film technology may achieve this. In addition to the requirements of standard thin films, these aqueous solutions. Implanted medical devices have electrodes that may record electrical E(VZ)L | =
structures may be continuously exposed to bodily fluids. The operating environment will be wet saline, and highly oxidising species potentials or stimulate the nervous system by applied charge, and the behaviour of metals at 16} liberation of oxygen R
which the body produces in the post-implantation inflammation response will be present [1,2]. The pH may also vary over the range of these potentials may be predicted. All implants must operate safely, and thus will remain within and aciditication
5.6 to 9.0 [3]. All of these may combine to promote corrosion and eventually cause device failure. Therefore the implant maker’s the “water window”; evolution of gases via the electrolysis of water will cause unacceptable 1,2 The “Water Window”
toolbox is restricted to metals which, within this pH range, are: tissue damage. 08l

(1) immune to corrosion in bodily fluids; or Limitations: 044 thermodynamically stable

(2) form protective passivating layers that resist corrosion in bodily fluids; and - Does not inform of the kinetics of potential corrosion reactions, but only the thermodynamics 0 region of warer

(3) are not very toxic. - Diagrams are constructed under strict experimental conditions, which may not reflect

Of the 4 most commonly used metals for thin film interconnects (Au, Ag, Cu, Al), 3 are excluded in the biological working environment accurately the operating environment of a chronic implant (e.g. oxidising agents, chlorides).
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(Al, for inadequate passivation, and Cu & Ag for toxic corrosion products) — thus only gold remains. 12 further metals meet the criteria: Legend (for all following diagrams) ) iberation of hydrogen ana
a. 7 "noble” metals which retain their metallic surface (Au, Ir, Pt, Rh, Ru, Pd, Os); and (a) The oxygen line, potentials above which water may be oxidised and oxygen evolved. “r GaalLaHen -
b. 5 self-passivating metals which form protective oxides (Ti, Ta, Nb, Zr and Cr) [3]. (b) The hydrogen line, potentials below which water may be reduced and hydrogen evolved. - 16} -
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To make a functional device, several metals are likely to be necessary. The noble metals form good electrodes and tracks but often E;g Rg B: g :::g 2 :2;2 mgl)l(irrr:]uurrrlnpphhyyssl?ciclaogglfélﬂppl-ll_l.(excludlng the gastric environment). -2 0 2 4 6 8 10 12 14 16

require an underlying adhesion layer to bond to the substrate. Fortunately, several of these passivating metals are used for adhesion
layers. Metallic interdiffusion can be a problem in the long term; this can be prevented by use of a third diffusion-barrier layer (e.qg.

Ti/Pd/Au). The development of novel corrosion resistant metallic stacks is important future work.
| | | | | | | | | | 1. Commonly Used Metals for Thin Film Interconnects (0] We are interested in the area of the
An advantage_of using Au trgcks IS that_ww_e- or _rlvet-bondln_g can be used [4] for makllng electrical connection. _However, If hermetic L 0 2 66 s W B scaiccomm Pourbaix Diagram contained within
seals are required to protect integrated circuits (with Al metallisation), then another bonding method may be superior, such as Au-Sn or 2o T T T i 3 T AN R the water window and within the
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Au-Si eutectic [5]. Although these seals should be protected by polymer coating, they may under real conditions be exposed to liquid. st T~ Jos 1o TR | 1+ , . PR
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We propose to explore the corrosion of metals alone and in combinations to find the most suitable ways to form circuits and O] d 1o 6 o *° ° diamond”. A_Lh(_:U & rf\g haVﬁ CPFIFOd_mQI
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micropackages for future microscale implants. Further use of passivation layers (e.g. SiO,) or encapsulants (silicone/parylene) may 08| e L s °: L \z" as 0p Sprtlonsd W|L.||nAt .e'][ I physlologica
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protect against the bare-metal corrosion explored here, and is also being explored. 2 o 2 EEY ’l e 1o lamonds, wnlie Au IS Tully Immune.
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Al 13 | Poorly-Passivating 2.74 660.32 Adequate (<Ti/Cr) Evaporatlﬁgt(\r/;/gl(;arﬁlnaer?](ejgzs). E-beam 23.1 Aluminium X Copper X Silver X Gold v
Ti 22 | Self-Passivating 43.1 1668 Good Evaporation (W filament) and e-beam. 8.6
Cr 24 | Self-Passivating 12.9 1907 Good Evaporation (W/Ta filament), 4.9 ] S ]
Evaporation (W/Ta/Mo 2. Noble Metals (potential vs. pH equilibrium diagram at 25°C) [6]
Cu 29 Corrodes; Toxic 1.7 1084.62 Poor (adhesion required) filaments/boats).E-beam not 16.5
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Pt /8 Noble 10.4 1768.4 Poor (acg:)?iﬁper)equwed; Evaporation (W filament) and e-beam. 8.8
. 3. Self-Passivating Metals (potential vs. pH equilibrium diagram at 25°C) [6]
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