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Abstract. We consider finite element approximations of unique continuation problems subject
to elliptic equations in the case where the normal derivative of the exact solution is known to reside
in some finite dimensional space. To give quantitative error estimates we prove Lipschitz stability of
the unique continuation problem in the global H'-norm. This stability is then leveraged to derive
optimal a posteriori and a priori error estimates for a primal-dual stabilized finite element method.
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1. Introduction. In this work we are interested in the approximation of a
unique continuation problem subject to the Poisson equation. This means that the
we look for the solution to the equation

(1.1) —Au=f

in Q Cc R%, and for some f € L?(), when the boundary condition is unavailable on
the boundary, or part of the boundary. In its stead some measured data is available.
Typically, both Dirichlet and Neumann data are known on some part of the boundary
(the elliptic Cauchy problem) or some measurement in the bulk. Both these situations
can be handled using the arguments below, but for conciseness we will here concentrate
on the second case. Therefore, we assume that for some w C Q there is ¢ : w — R
such that ¢ is the restriction to w of a solution to (1.1) and that we know ¢ up to a
quantifiable perturbation dq. The objective is then to reconstruct « using (1.1) and
the a priori knowledge ul,, = q.

Unique continuation is an important model problem for many applications in
control, data assimilation, or inverse problems. It is an ill-posed problem, so the
assumption that the data ¢ is associated to a solution is crucial for the solvability of
the problem. It is, however, well known that if this is the case a unique solution exists
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and satisfies a conditional stability estimate [1]. If B CC €2, that is the set B does
not intersect the boundary of €, then there holds for all u € H(Q),

llull 2By < Cllull 20y + ”AUHH*I(Q))O_O‘)(”uHL?(w) + [ Aull g-1(0))®,

where o € (0,1). The coefficient « depends on the geometry of the domains Q, w, and
B. As dist(0B,09) — 0, « — 0. In case B and 2 coincide the stability degenerates
to logarithmic

llull () )B

(1.2) lall e < Cllull o 1og(
@ OPEN Nl 2w + Aulla—1 ()

with 8 € (0,1). In a series of works [15, 17, 16] various finite element methods (FEM)
have been designed and shown to satisfy bounds of the type

(1.3) lu — unll L2y < Ch* ([ul gress ) + B 104 2w,
orif B= and d¢q=0
_k\ B
lu = unl|L2() < Clulgrri o) log (CR7F) 7.

In the recent contribution [21], the error bound on the form (1.3) was shown to be
optimal. It can not be improved for general solutions and perturbations, regardless
of the method. For moderately perturbed data and favorable subdomains w and B
this leads to sufficient accuracy, in some cases comparable to that of a well-posed
problem. On the other hand, if the solution, or its normal derivative, is required
on the boundary of the domain the above estimates are very poor. Indeed, there
seems to be no results on how to approximate boundary traces accurately in unique
continuation problems. In view of the result in [21], the only way to improve on the
bounds is to have additional a priori knowledge. In the work [23] it was shown that if
the Dirichlet boundary trace is close to some known finite dimensional space, then a
FEM can be designed so that (1.3) holds with a =1, with an additional perturbation
term measuring the distance of the true solution to the finite dimensional space. The
assumption that the trace is close to a finite dimensional space holds in a variety of
situations, for instance whenever it is a smooth perturbation of a constant, in optimal
control with finite dimensional boundary control, or in engineering applications where
strong modelling a priori knowledge is at hand, for example classes of admissible
boundary profiles.

In the present work we consider the extension of these results to the case when the
Neumann condition is in a finite dimensional space. The main result is Corollary 6.9,
which gives optimal convergence rate for the finite element solution. Contrary to [23]
we prove the stability underpinning the numerical analysis without resorting to the
global stability (1.2) (see section 3). This makes the present analysis self contained.
Although the proposed finite element method introduced in section 4 is similar to
that of [23], the analysis differs in the Neumann case. Indeed the poorer regularity
of the trace variable and the different functional analytical framework lead to some
difficulties in the numerical analysis, that are handled in section 6, resulting in optimal
a posterori and a priori error estimates.

1.1. Relation to previous work. Early work on computational unique contin-
uation (UC) focused on rewriting the problem as a boundary integral [27, 33|, while
the earliest finite element reference appears to be [31]. The dominating regularization
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techniques are Tikhonov regularization [40] and quasi reversibility [37]. The literature
on computational methods for the discretization of the regularized problem is very
rich; see [34] and references therein. For references relevant for the present context we
refer to [38, 4, 29, 8, 6, 7]. Iteration techniques using boundary integral formulations
have been proposed in [35] and for methods using tools from optimal control, we refer
to [36].

The first weakly consistent methods with regularization on the discrete level were
introduced in [13], with the first analysis for ill-posed problems in [14] and then
developed further in [15, 17, 22, 18, 16, 3]. This approach is related to previous work
on finite element methods for indefinite problems based on least squares minimization
in H=1 [9, 10]. More recent results using least squares minimization in dual norm for
ill-posed problems can be found in [26, 25, 28]. Quantitative a priori error estimates
have been derived in a number of situations with careful analysis of the effect of the
physical parameters of the problem on the constants of the error estimates [18, 19, 20].
This has lead to a deeper understanding of the computational difficulty of recovering
quantities via UC in different parameter regimes.

That Lipschitz stability can be recovered for finite dimensional target quantities
has been known for some time in the inverse problem community; see, for example,
[2, 5]. Nevertheless, it appears that the first time this property has been exploited in
a computational method, leading to optimal error estimates, is [23].

2. Problem setting. Let Vi be a subspace of L?(9(2) that satisfies
1. For all g € Vy, there holds [, g dz=0.
2. dim(Vy) =N < oo.
We consider the following problems:

—Au=fin Q,
(2.1) u=gqin w,
duulan € VN + B,

where Q € R? is an open, bounded polygonal domain, w C Q is open, and nonempty.
f € L*(Q) and S is a constant satisfying 3|0Q| = [, f dz. We denote P to be a
projection operator on Vy, with Q=1 — P.

3. Lipschitz stability. First, we define a continuous bilinear functional (-, -)
on HY(Q) x HY(Q),

l(u,v) = (Vu, Vo) 2(q),
and for each u € H(f), a continuous linear functional L, on H*(),
Ly(v) :=1(u,v).
Next, we introduce the space

HL(Q) = {ueHl(Q)‘/wu da:zO}.

Then, we have the following lemma.

LEMMA 3.1. For every u € HL(Q), there holds

Null ) S 1wl o))
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Proof. We start from the inequality
llull gy S llull2o) + IVull2 @) + [JullL2w),
define a continuous linear operator

A: HY(Q)— [L2()]" x L2 (w),
Au = (Vu,uly),

and denote the natural imbedding from H'(2) to L?(Q) by K. To simplify the
notation, we denote

X:=[L2()]" x L*(w).
Then we have
ull o) S 1Aullx + | KullL2(0).-

Notice that K is compact and A is an injection. Indeed, suppose Aug = 0 for ug €
H'(Q), that is, Vug =0 and ug|, = 0. Since Vug = 0 implies ug is a constant, ug = 0
in Q follows immediately from wug|,, = 0.

Therefore, by compactness-uniqueness [24, Lemma 9],

lull 10y S [[Aullx =1IVullL2@) + llull L2w)-

According to the Friedrich’s inequality [11, Lemma 4.3.14], the condition fw udx=0
implies that

lull 2wy S IVullLzw) < IVullL2(o)-
Hence
(3.1) [ull 2 (0) S1IVullL2(0)-
For arbitrary € > 0, there holds
(32) [VulZzq) = Lu(w) <[ Lull @)= lullar @) < € Lulltm ) + i”uH%{l(Q)'
Combining (3.1) and (3.2), and choosing e small enough, we have
lullm @) S 1 Lullr @)~ 0
LEMMA 3.2. Suppose F € (H'(Q))* satisfies
F(c)=0
for all constant functions ¢ on . Then for the variational problem
(3.3) I(u,v) = F(v) Yve H(Q),

there exists a unique solution u € HL ().
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Proof. Since for any constant function ¢ on 2, F(c) =0 and I(u,c) =0, problem
(3.3) amounts to finding u € H'(Q) such that

l(u,v) = F(v) Yve H}(Q).

The coercivity of [ on H}(Q) follows from (3.1). According to Lax—Milgram theorem
[12, Corollary 5.8], there exists a unique u € HL(Q) solves (3.3). d

For each u € H(Q) with d,ulsq € L?(09), we define a linear functional L¢ on
H'Y(Q)

LI (v) := Ly (v) — (POyu,v) 1250y, vE H' ().
By trace inequality, we can see that LI € (H(Q))*.
THEOREM 3.3. For u € H'(Q) with d,ulsq € L*(00), there holds
(34) [1POyull2(o0) + lull @) S llullzew) + L4 @)

Proof. First, we assume that u € HL(Q).
Write u = v + w, where v, w € H.(Q) and satisfy

(3.5) (v, ) = Li(p) Vo H (),
and
(3.6) l(w, ) = (POyu, ) 200) Vo € H'(Q),

respectively. Since Li(c) = 0 and (Pd,u,c)r290) = 0, (3.5) and (3.6) are both
solvable by Lemma 3.2. We define an operator

A:Vy — L (w),
A(g) = wglwv ge VNv

where w, € H}(Q2) satisfies
Wwg, ) = (9, ¢)r2(80) Ve € H' ().

Notice that ||Awg| g-1(q) =0. Then by (1.2), A is injective.

Since A(Vy) is a finite dimensional subspace of L?(w), there exist a norm on
A(Vy) such that A is an isometry. As all norms are equivalent in the finite dimensional
range of A, there holds

191l 2200) < 149l L2(w)-
Notice that A(Pd,u)=w],. We conclude that
1PO,ullL200) S lwll L2 (w)-
Applying Lemma 3.1 to v and w, there holds

lull @) < vl @) + lwllmr @) S vlla @) + POl 200
Slvllar @) + lwll 22wy Svlla @) + lull 2 w)
=L o)+ + lulln2w)-
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The above argument also gives

PO ullL200) S L& (1)) + lullL2w)-

For u & H!(Q), there exist a & € H.(2) and a constant C' € R such that u = C+.
Then

ull 3 0y < 2ll@ll3 o) +2C%19,

[l 72y = 1@l 720y + C2|wl.
Therefore, we have

lull ) < 2llall7n o) + 2C% QU SNLEN @) + 181720 + Ol

= ”LZ”?Hl(Q))* + HU||2L2(W)7

and
PO, ull2(a0) = [P0yl 2(a0) S |l L2 (w) + 1 L8 || (a1 (e))-
Sllullezw) + 158l @)=
Combining the above two inequalities yields (3.4). 0

4. Finite element method. Here we will introduce a finite element method
for the approximation of (2.1). Some results detailing the continuity, stability and
consistency properties of the method will then be proven, preparing the terrain for
the error analysis in the next section.

Let T, be a decomposition of 2 into shape regular simplices K that form a
simplicial complex, and let h = maxge7, diam(K) be the global mesh parameter.
The trace inequality with scaling [11, eq. 10.3.8] reads

(41) W2l g2 or) S el o2y + 1BV 2 xe), w€ HYE).
On 7, we define the standard space of continuous finite element functions
Vi:={ve H Q)| v|x €Py for K € Tp}.

Here Py is the space of polynomial of degree at most £ > 1 on K. For m > 0, we
denote the broken semiclassical Sobolev seminorms and norms by

m

[U]ipn(ﬁ,,): Z ||(hD)mU||%2(K), Hu”%m(Th):Z[u]%ﬂ'(Th)'
KeTn k=0

The discrete inequality [30, Lemma 1.138] in Py, implies that for all integers m >1>0
(4.2) [U]Hm(Th) S [’U,]HL(Th), u € V.

Let F be a interior face between two simplices K1, K5 € Tj, such that K1 N Ky = F,
then the jump over F' is given by

[Vulp =v1 - Vulk, +v2- Vu|k,,

where v and vy are the outward normal of K; and K5, respectively.
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Then we introduce the Lagrangian on Vj, x Vj,

2

h
L(u,z) = §||U = qll72(y + alu, 2) = B*(f,2) 2 h*(8,2) L2 (a0
1 1 1
+§B( u) — h(hQ0,u, hfB)r2(a0) + §[h2Au+h f]HO(Th)"' J( ) — 55*(2)’
where
B(u) = h|[hQd,ul 72 (50
a(u, z) = (hVu,hVz)2(q) — h/ h(PO,u)z dx,
o0
T(w) =" Bl[hVu]ll72ox\00);
KeTh
S*(2) = h?||ll3n (g
For

we have the following lemma.

LEMMA 4.1. For u € HY(Q) with A(u|x) € L*(K) for all K € Ty, Oyulaq €
L2(09Q), and z € H(QQ), there holds

a(u,z) S (S()'/? + B(u)'"?)|[ll g2 (73

Proof. An integration by parts reads

a(u, z) = (hVu,hVz)2q) —h h(PO,u)z dx
0

=3 / h?Auz dv+ Y /[[h6' u]]zderh/ (Qhd,u)z dx,

KeTh FeFy

where F}, is the set of elements faces in the interior of 2.
Applying the trace inequality with scaling (4.1) on each face in F,, and 912, we
can obtain

> h/[[ha u]z dx

FeFy,
< > 2ROl 2 orom kP 2| L2 0 r0\00)
KeTy,
<Y RP|[Rosu]ll 2 oron) (2]l L2 + 1AV 2l L2 ()
KeThn
1 1
2 2
< ( Z h|[[h6Vu]]||2L2(6K\BQ)> ( Z HZ||2L2(K) + |hvz||2L2(K)>
KeTh KeTn

< Izl a1 (7

and

h/a (Qhdu)z dr < K| Qhdyull s o k2] 20y < Bw) 2]z a1 7).
Q
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Finally, notice that

3 / B2(Au)z dz< S (W2 Au] a2l )
K

K€7—h K€7-h
<[P Au]go(ry 2o 7y < (W2 AU o7y 2] 1 (7 -

Thus we conclude that
(W2 Al oy + T ()2 + B@)'2) 2] 7
(S)'? + Bw)'?) 2] 1 (73,)- O

a(u,z) S
S

Finding saddle points of the Lagrangian £ amounts to finding (u,z) € V}, x V},
such that for all (v, w) € V}, X V}, there holds

a(u,w) — s*(z,w) = h*(f, w)r2Q) + hQ(ﬁvw)w(aQ),
B2 (u,v) L2y + b(u,v) + a(v, 2) + s(u,v) = h*(q,v) L2(w) + h3(QD,v, B) L2560
+(h2f, hQAU)HO(Th).

Here s*, b, and s are the bilinear forms corresponding to S*, B, and S, respectively.

Solving the above system is equivalent to finding (u,z) € V x V}, such that for all
(v,w) €V}, X V4, there holds

(43) g(U, Z,0, U}) = h2 (f? w)LZ(Q) + h2 (ﬁv w)Lz((’)Q) + h2 (Qa 'U)Lz(w)
+ h’S(QaI/U7 B)L2(BQ) + (h2f, thv)Ho(Th)v

where the bilinear form ¢ is defined by
g(u,z,mw) = hg(uﬂ))LZ(w) + b(u,v) + a(vv Z) + S(uvv) + a’(u7w) - s*(sz)'

Remark 4.2. Recall that f € L?*(Q). Hence, if v € H*(Q) solves (2.1), then
uw € HE (). In particular, for all F € Fj, and all compact sets K in the interior of
there holds [Vu] =0 on FN K. As K is arbitrary, the same holds on the whole set
F, and J(u) =0. Therefore, (u,0) solves (4.3) for all (v,w) € V}, x V}, and the system

(4.3) is consistent.
Preparing the terrain for the error analysis of the next section, we introduce the
norm
llu, 217 = B(w) + h2[|ullZa ) + S(u) + 57 (2)-
According to Lemma 4.1, we have

Li(v) au,v)

ILLl ()= sup ————= —
() vermi(@) Va1 Q) veri@) PPvIE (@)

1/2 1/2
< sup (S(u) +QB(U) Mol g (7 < iz
veH(Q) R2||v|| g (o) h

e, O
By Theorem 3.3, we have

1
lull @) S 73 Ml O]

Notice that ||u, z||? = [|u, 0]|* + [|0, z]|?, then ||u,z|| = 0 implies that u =0 and z = 0.
Hence ||, || is indeed a norm.
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LEMMA 4.3.

g(u7 Z’ U? w)

lu, 2]l S sup , (u,2) €V X V.

(v,w)EVL X V), v, wll

Proof. The claimed inequality follows immediately from
|Hu,z||\2=g(u,z,u,—2). o

Due to Lemma 4.3, the linear system (4.3) admits a unique solution for any
f € L) and g € L*(w). Denoting the unique solution by (up, z,) and letting u solve
(2.1), we have the Galerkin orthogonality

(4.4) glup —u, zp,0,w) =0, (v,w) €V x V.

5. Necessity of regularization. One may wonder if the regularization intro-
duced in section 4 is really needed. To illustrate necessity of a regularization of some
form, let us consider a straightforward data fitting approach. To simplify the discus-
sion, we suppose that f =0 and, therefore< =0 in (2.1). Let {¢;}; be a basis of
Vi, and let wi € V;, N HL(2) be the solution of

VwZ-VUda:Z Pivdr Yv € V.
Q o0
Let W}, be the space spanned by {w? }X, @ {1} where 1 is the constant function that
is identical to 1 in Q. It feels natural to try to approximate the solution of (2.1) via

(5.1) up, = arg minflwy, — q|| L2 (w)-
wp €W

However, such u, may not be unique. Indeed, if there exists wy € W}, that satisfies
wp|w =0, then (5.1) does not define uy, uniquely. In fact, this may happen even when
N =1 if h > 0 is not small enough, as shown by Proposition 5.2 below. In other
words, the mesh size h > 0 cannot be chosen independently of V.

Presumably there is ho(V,Q,w) > 0 such that all w, € W), have the unique
continuation property for

0 § hg ho(V,Q,OJ),

but we have opted not to try to find such a selection rule hy. We expect that hg would
depend on the implicit constant in (3.4). On the other hand, our method introduced
in section 4 does not impose any constraints on the mesh size, as the system (4.3) has
a unique solution for any h > 0.

To simplify the discussion, we suppose that € :=[0,1] x [0,1] and the mesh size
h= n—\g where n > 3 is an integer. Let 7, be a uniform triangular decomposition of
Q) as exemplified in Figure 1, and let the polynomial order of V}, be one. Then V}, is
a n? dimensional space. The set of nodal basis functions {¢; ?:21 forms a basis of V.

We notice that {¢; ;ﬁl consists of 4n —4 boundary nodal basis functions and (n —2)?
interior nodal basis functions.
Let {¢;}i"7* be boundary nodal functions. We denote the space of continuous

functions with zero mean value on 92 by I, that is,

r.— {geC(@Q)‘/and:v:O}.
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(0,1) (1,1)

(0,0) (1,0)

F1G. 1. A uniform triangular decomposition on Q= [0,1] X [0,1] with n =6.

And we define the operator

A:T - R

as

A(g) =b= (bl,bg, ey b4n,4), ge F,
where

bi:/ gp;dr,1 <i<4n —4.
a0

Write the vector e = (1,1,---,1)7. Consider the functional it induced on R*"~*

An—4

e

4n—4
T(a) = eTa = Z a;, a= (al, ag, ..., a4n_4) S R4n74.
=1

We have the following lemma.
LEMMA 5.1. Let R(A):={Ag|g €T} be the range of A, then we have
T71(0) C R(A).
Proof. Rearrange the index such that ¢; and ¢;;1 are two adjacent boundary

nodal basis functions for 1 <i < 4n — 5. Without loss of generality, we assume that

supp(¢iloa) N supp(dit1lon) = [y1,y2] and
Y—un Yy—hn
¢z|[y1,y2] Y2 — 1 H—ll[yhyz] Ya — U1
Notice that [y1,y2]Nsupp(¢;|an) =0 if j #4,i+1. Then for a nonzero smooth function
g; that is supported in (y;,ys) and that is odd corresponding to the midpoint of the
interval [y1,y2], we have

/gi¢id$=—/ Gi®it1dr =c; #0,
o0 89
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and
/ gi¢jdl‘20ifj7éi,i+1.
o0
It follows that
A(gi/ci)=b;=(0,...,0 ,1,—-1, 0,...,0 ), 1<i<4n-—5.
N—_——

——

(i—1) zeros (4n—1i—5) zeros
Observe that {b;};";® forms a basis of T1(0), thus T~(0) C R(A) follows immedi-
ately. 0

PROPOSITION 5.2. Suppose 2 :=[0,1] x [0,1]. For any fized integer n > 3 and

h= n—‘@l, we set w = [ﬁ,l— ﬁ] X [nil,l— nil] Let Ty, be the uniform triangular

decomposition of 2, and let the polynomial order of Vi, be one. Then there exists a
function g €T, such that the solution uy, € Vi, N HL() of

(5.2) Vup, - Vodz = / gvdr Yv eV,
Q a0

satisfies up, #0 and up|, =0.

Proof. Let {¢; :’:21 be nodal basis functions of V}, and rearrange the index so

2 2
that {gb,}EZ;Q) are the interior nodal basis functions while {¢;}}", 5., are the
boundary nodal basis functions. Then we consider
(5.3) Aa=b,
where ac = (a1, ..., ,2)7, the entries of A = (ajj)n2xn2 are a;; = [, V- V; da, and
the entries of b= (b;),2 are b; = [,, ¥¢; dx for some 1 € T'. Our first observation is
2

that b; =0 for j < (n —2)? since {¢; }§ZIQ) are interior nodal basis functions. Then
we decompose (5.3) into the following form:

A B a1\ 0
BT D (6 %) - bg ’
Here a; € R™2° aqy, by € R A ¢ ROV X(=2)° g ¢ RUn—9x(n=2)" ;)4

D e RUn=HxUn=4) For the interior nodal basis functions {9, }§1_12)2,

/ Vo;V¢,dr #0 for some (n—2)2+1<i<n?
Q

only if ¢; is an element adjacent to the boundary. For uniform triangular decompo-
sition, there are only 4n — 12 interior elements adjacent to boundary elements. That
is, at most 4n — 12 rows in B are nonzero.

Let vy = 0. Since the dimension of as is 4n — 4 and the rank of B is 4n — 12, the

linear system
Bas = 0,
eT"Das =0

admits a 7 dimensional null space X € R*™*. Select a nonzero a € X. According
to Lemma 5.1, there exists a function g € I' such that A(g) = Doa. Recall that

a=(a1,...7an2)T=(0>.

(&%)
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2
Set up =Y. 1 b, then uy, solves (5.2). We notice that up|p,1—pjx[n,1-n) = 0 since
a; =0, 1<j<(n— 2)2, corresponding to the coefficients of interior nodal basis
functions. o

6. Error analysis. The objective of this section is to leverage the stability of
Theorem 3.3 to derive optimal error estimates. We start with a technical lemma.

LEMMA 6.1. Suppose that u€ HY(Q) and (up,zn) € Vi, x Vi, solve (2.1) and (4.3),
respectively. Then there holds

(6.1) Y RPLE Ny S S(u—up)? + Blu—up)'/? + S (2) /2.

U—Up
Proof. We have

h2L4 _
”hQL;IL—uh ” (i) = Sup u—up (w)L2(Q) = sup M
weri@)  wlla@ weri (@) |[wllma)

Let ip, : H™(Q2) — V}, be an interpolator satisfying
(6.2) ||u—ihuHHm(7—h) < [’U,]Hm(']’h), u€ H™(Q)
for all m > 1. The Scott-Zhang interpolator is a possible choice [39]. For any w €
HY(Q), (4.4) gives
g(up — u, 21,0, ipw) = a(up, — u,ipw) — s*(zp, tpw) =0.
Applying Lemma 4.1, we have
a(u —up,w) =alu —up,w —ipw) — s* (2, ipw)
< (S(u-— uh)1/2 + B(u— uh)1/2)||w —ipw|| g7, + S”"(zh)l/QS*(ihw)l/2
S (S(u—up)'? + Blu—un)?) [l ()
+ 8% (zn) 2 h([linw = wl ) + [wllm0)
Sh <S(U —up)"? + B(u—up)"? + S*(Zh)l/Z) wll a1 (@),

which implies (6.1). |
Then we can prove the a posteriori error estimate
THEOREM 6.2. Suppose that u € H* () and (un,21,) € Vi, solves (2.1) and (4.3),
respectively. Then there holds
63) hllw—unll oy S hllun — all 2oy + I (wn)? + h32|Q0yun — Bl r2(00)
+ [P Aup + B2 flao () + hllznl i 9) S llu—un, 2 ]l-

Proof. Applying Theorem 3.3, we have

hllu —un| g S hllun — qll L2y + RILE ., |l ))--

Here we recall u|,, = ¢. Using —Au = f, J(u) =0, Q0,u = 8, and Lemma 6.1, we
have

h”Lquh |l (mr )y S S(u— Uh)1/2 + B(u — Uh)l/2 + S*(Zh)1/2
< T (un) 2 + h32)|Qd,up, — Bll 200y + (R Aup, + B2 o)
+ bl znll m1 ()
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Furthermore, notice that the right-hand side of the first inequality in (6.3) can be
written as

h||u — uhHL2(w) + B(u — uh)1/2 + J(uh)1/2 + [h2Auh + h2f]H0(Th) + h”ZhHHl(Q)
which is essentially identical to ||u — wup, zp||. |
Next, we use the orthogonality and Lemma 4.3 to derive the best approximation
in the norm ||-||. Before we present the lemma, we introduce the notation
(u, w)LZ(aQ)
sup ————~
wevi, wllae)
LEMMA 6.3. Suppose that u€ HY(Q) and (up,zn) € Vi, x Vj, solve (2.1) and (4.3),
respectively. Then there holds
(6.4)
llu = un 2l S inf (Il =01l + A9 (u = @) 2y + 190 (1 = @)y, 2 5 )-

||U||Vh,71/2(89) =

Proof. For any 4 € V},, we have
lleer = w, 2zl < llwn — @, zn] + @ — u, 0]
Applying Lemma 4.3 and Galerkin orthogonality (4.4), we get

g(uh - ﬂ,Zh,U,TU)

llun — @, znll S sup
(’U,w)EVhXVh |HU’ w”'
_ g(u_ﬂvovvvw)
= sup =
(v,w)EV) XV, |||U7w|H

Applying Cauchy—Schwarz inequality to each term in g(u — @,0,v,w), we have
g(u—1,0,v,w) =h*(u— 0,v) 2() + b(u — @, v) + s(u — @,v) + a(u — @, w)
< lw =@, 0l - flv, Ol + a(u — @, w).
Notice that for all w € V}, there holds
a(u — G,w) = (hV(u— @), AVw) r2(0) — h* (PO, (u — @), w) r2(50)

SIAV (u = @)l 2@ - bllwll s @) + blIPO (w =)l —1/2 5q) - Pllwll @)
< (IRV (= @) 200 + 1RPO (1 = @), -1/2 g, ) 10,01l

Since P is a projection operator, we have

|nPO, (u — ) S 170y (u—a)

”v,jl/z(m) ”v,;l/Z(aQ)'

Thus
g(u—,0,0,0) S llu =@, 0] - |}, O]
+ (113 = @)l 2y + 10, (1w = @)y, 172y ) 10, ]
< (I =, 00l + 19 (w = @) 20y + 130, (= Dy 172 ) o
Hence for any @ € Vp,,
lun = 1, 20l S llw = @, Ol + 1AV (= @) 20 + 190 (1w = @)y, 1720
which implies (6.4). O

Combining Theorem 6.2 and Lemma 6.3, we can obtain the a priori estimate.
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THEOREM 6.4. Suppose that u € HY(Q) and (up,zn) € Vi X V3, solves (2.1) and
(4.3), respectively. Then there holds

Pl = unllrrs oy S inf (Il =@, 01l + AV (w = @) |20 + 1590 (w = @)y, -1/2 5 ) -

inf
aueVy
Next, we will show that Theorem 6.4 gives the optimal convergence rate.
As in [17, Proposition 3.3], we decompose 912 in disjoint and shape regular patches
{F} with diameter ©(h) thus |F| =©(h%"1), and to each of them we associate a bulk

patch T that extends ©(h) into 2 such that TNON=F, and TNT' =P if T#T'. On
each patch T we can construct a function pr € H (T) with supp¢r C T satisfying

10v¢Fl L~ (r) < Ca,

where Cq is a constant that only depends on €2, and

/ Oypr dx=|F|.
F

When £ is small enough, we can take T Nw = @ for all T and ¢r € V} such that
prlk €Py for all K € T,. A typical patch F' and ¢p constructed on it is illustrated
in Figure 2. We refer to [17, Appendix] for the construction in a more general case.
Then we define an interpolation 7, : H™(Q) — Vj:

TRU = T + Zozp(u)gap7
F

where ap(u) is a functional defined as

1 .
aF(u)IFI/F&,(uzhu) dx.

Then we have the following lemma.

LEMMA 6.5. Suppose uw € H™(Q), m > 2, and the polynomial order k of the finite
element space Vi, satisfies k> m — 1, then there holds

hY/2||hd, (u — )| 22 00) S (U] Hm (o)

Proof. By the definition of 7, there holds

K320, (u — mpu) || 12(00) < B2 (RO, (u — ipu) || L2(a0) + B/

> ar(w)dpr
F

L2(9)

ja o0

FI1G. 2. Patch F on 02 together with associated bulk patch T. ¢p|x € P1 for all K € Ty, and
er(zr)=0(h) and vanishes on other nodes.
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Notice that

Z ap(u)d,pr
F L2(59)

(ZQF VQOF,ZO(F’ USOF/>
L2(89)

—ZZQF u)ap (u 8V<PF’8u¢F')L2(aQ) ZaF ||8V<PF||L2

F F’

_Z|F|2 (/8 —pU dx) \F\<Z|F|/1Fdx/|8 u — ipu)|?de

S0 (u— Zh“)||L2(aQ)~

2

Thus
W20, (u — mau) | 200) < B2 |hOy (u — inu) | 12 (00)
Su—inul gy + [w—inulg2(7;)
Sl =inullgm(z,) S [ulam(7)-
Here the last inequality follows from the trace inequality and (6.2). ]

PROPOSITION 6.6. Suppose uw € H™(2), m > 2, and the polynomial order k of
the finite element space Vy, satisfies k >m — 1, then there holds

(65) ||h8V(u - ﬂhu) th—1/2(aﬂ) 5 [U}H'”(Th)-
Proof. By definition,

(hOy (u —up),2) L2 (a0
sup

1RO, (u —
2€V) 2l 7 )

)”V—l/?(ag)

By trace inequality, for all z € Vj,, there holds z|pq € L?(99). Then we define an
operator 7\ : L2(982) — L?(9Q):

wg(z);<|;|/dex> 1p.

Notice

/692’—71'2(2’):0.

Applying the Poincaré’s inequality on each F', we have

(B 7Th( )||L2 (09) ~ S h2||vaz||L2 (09) ~ S h2||vz||L2(89 Z h2||VZ||L2(3K)
KeTh

$h > (Ve + 1BD%20%2 k) ) S BIV2IE2()-
KeTh

The last inequality follows from the discrete inverse inequality (4.2). Since

/ Oy (u—mpu)dz =0
F
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for all F', there holds

(RO, (u — Thu), 2) L2(90) = (hOy (u — Thu), z— 7o (2 2))L2(00)
Shl|o, (U_WhU)HL?(aQ) ||Z—7Th( )||L2(BQ)

SE2)0,(u—mhu)l| L2 00) - 12 ] 1 (9)-

Then (6.5) follows immediately from Lemma 6.5. ad

PROPOSITION 6.7. Suppose uw € H™(2), m > 2, and the polynomial order k of
the finite element space Vy, satisfies k >m — 1, then there holds

1AV (u — mhu) (| 2 () S [l amTs,)-

Proof. By definition

1AV (u = mhu) |l L2(0) < 1BV (u = inu)||L2(0) + hZaF Weor

F

L2(Q)

Notice
1AV (v — inu)|| 2 ) < Ju —inull g2 o7y S [l E2(75)-
According to [17, eq. (3.2)], there holds
IVerllz S h®.

Thus

Z ap(u)Ver

2

S arW)lIVer|iaq, <Zh o (u)

L2(Q) F

2
d
<hZ|F2(/a ~ ) )
< d
h |F‘/|8 Z}L

§hd.h1*dZ/F\8y(ufihu)|2 da S hl|0y (u— inu)|32 o0
F

Applying Lemma 6.5, we have

S hE(|hd, (u = inu)l|2(00) S [l (7). 0
L2(Q)

V<PF

PROPOSITION 6.8. Suppose u € H™(2), m > 2, and the polynomial order k of
the finite element space Vi, satisfies k > m — 1, then there holds

llw = 7w, Ol < [ul frm(75,)-
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Proof. By definition,
llw — 7pw, 0| < B(u — mpu)'/? + hlju — Thul| 2wy + S(u — Thu)'/2.
Since for the patch T introduced before Lemma 6.5 there holds T'Nw =0,
lu = mpullL2w) = llu = inullLz@w) S v —inull =7 < W)

And there holds

B(u — mu) Y% = h2 |hQ8, (u — 1) || 1200y S B2 [[hDy (u — mhu) || 12 (00

< [u—mpul gy + (U — Thul a2 () -
Notice D?¢r =0, then there holds
(6.6) [u — Thu] g2,y = [ — ipu] g2 (75,)-
Applying Proposition 6.7, we have
B(u—mpu)'? Sl g (r + lu = invll g7y S [l er,)-
Finally, according to (4.1), (6.6), and Proposition 6.7,

S(u — Whu)l/Q < [u - Whu]Hl(Th) + [u — Whu]H2(7-h)

Sl —inullgm ) S [Wlmgm 7).

d

Combining Theorem 6.4 and the above three propositions, we can conclude the

following corollary.

COROLLARY 6.9. Suppose u € H™(Q) and (up,z2r) € Vi, X V3, solves (2.1) and
(4.3), respectively. Here m > 2 and the polynomial order k of the finite element space

Vi satisfies k> m — 1. Then there holds

= unll @) S B HID™ ul| L2 (o)

7. Perturbation analysis. Consider the finite element method with perturba-

tion g5 € L?*(w),

g(u, z,0,w) = h*(f,w) 20y + h* (B, w) 12 (00) + b (¢ + 45, V) L2 ()

(7.1) +b(B,v) + (R* f, k> Av) ro(73,),

where ||gs]|z2(.) <J. We have the following theorem.

THEOREM 7.1. Suppose §) is convex, u € H?(Q) satisfies

U=q in w,

{—Au:f in Q,

and there exists p € Vi + 8 such that [|0,u — p|l g1/2(90) < 9. Let (un, 2n) € Vi, x Vi, be

the solution of (7.1) with k=1 in V},. Then there holds

(72) ||u—uhHH1(Q) §h||D2uHL2(Q) + 6.
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Proof. Let u* € H'(Q) solve

—Au*=fin Q,
dy,u* =p on 01,
[ u* de= [ udx,

and u’ =u — u*. Notice that u® € HL(09) and satisfies

—Au®=01n Q,
0,u’ = d,u — p on ON.

Denote d,u — p by ps. According to the elliptic regularity [32, Corollary 2.2.2.6] and
Lemma 3.1, there holds

0] mr20) S 182 () + 125 ] vz o0) S g5l L2y + Ipsll mrrz oy S 6.

Since d,u* € Vi + 3, we can obtain the finite element approximation (uj,z;) of u*
by the method (4.3). Then Corollary 6.9 says that

[w* =il 1 () S PID?u" | L20) S RIID?ul 20 + hIID*u || L2(q)
S bl D?ul L2 (0 + hé

and

= wnll 1 ) < 16l + 1w = wh o) + lug, — unllm @
<6+ hl|D?ull 20y + lujy, — unll g (o)-

Notice that
g(uh - u;szh - ZZ,’[M’LU) = h2(q5 + uéav)LZ(w)'
By Lemma 4.3, we have

g(uh - uZazh - 2271}7“})

llun = whszn = 241 S sup

(v,w) €V, v, wl|
(q5 + ’U,é,’U)Lz w
Shosup e (g e + 0 2 S B
wweve  llzzw)

Combining Theorem 3.3 and Lemma 4.1, there holds
lun =il @) S h ™ Hlun =, 0l S,

which concludes (7.2) d

8. Numerical results. In order to simplify the implementation of the finite
element method, in the numerical examples below, we take Q = [0,1]? and w =
[0.1,0.9] x [0.25,0.75]. We denote I € 99 to be the top edge of the unit square, that is

I'={(z,y)|0<z<1and y=1},

and let Vy be the subspace of L?(9€2) which is spanned by the basis {¢,,}, 1 <n <N,
where ¢,, is v/2cos(nmz) on T' and vanishes on Q\I'. Furthermore, the polynomial
order of the finite element space V}, is one.
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Our first computational example studies the effect of the stabilizing term s in the
computations. Without making any theoretical difference, we rescale s by a positive
constant v > 0. Choosing N =8 for space Vy, and the H'(Q) error for the artificial
solution

(8.1) u(z,y) = (¥ —y) cos(mx)

as a function of the mesh parameter h is illustrated for different values of v in Fig-
ure 3a. It shows that the numerical results improve as v — 0, which implies that in
this example the stabilizing term s can be omitted as the method still converges with
the optimal rate without it.

Next, we study the effect of the dimension N of Vy in the computations, the
HY(Q) for u(z,y) in (8.1) as a function of the mesh size h is shown for different N
in Figure 3b. It appears that when N is large enough, merely increasing N cannot
affect the results.

Our second example illustrates the error estimate with perturbations. Taking

(z,y) = (e —y)cos(mz) 4+ 0.025(e? — y) cos(2mx).

Figure 4 shows the stagnation of the convergence for N =1 but not for N = 2 because
0, U|pq € Va, which is compatible with our theory.

6x1072

6x107%
4x1072

3x1072
4x1073

2x107? 3x1073 2x1073 3x1072

(a) (b)

F1G. 3. The error ||u — up|| g1 as a function of mesh size h with the reference rate h presented
by the dash line. (a) up is computed with parameter v =1, 1071, 1072, 0 with triangles pointing
down, up, left, and right, respectively. (b) uy is obtained with different Vy where N =1, 8, 16, 64
with triangles pointing down, up, left, and square, respectively.

—

2x1073 3x1073 4x1073 6x1073

F1G. 4. The error ||lu—up|| g1 as a function of mesh size h. Here N = 1,2 with triangles pointing
down and up. Reference rate h is presented by the dash line.
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Then we study the effect of random perturbations of data. To this end, we denote
the right-hand side of (4.3) by F(v,w). Instead of solving (4.3), we numerically solve

|F'(v, w)]

g0t 2, 0,0) = F(vw) + 20— 20,

where the random variables § ~ N(0,1) and N(0,1) represent the standard normal
distribution. Figure 5 shows the stagnation of the convergence for € # 0 compared
with the consistent convergence without white noise.

To close this section, we define the ratio

||U*Uh||H1(Q)
Clu)=—F—7—"7—""
hllull 2 (o)

and consider the functions
(8.2) un(z,y)=(e¥ —y)cos(Nnz), N=1, 2, 3, 4.

We use both the first-order and second-order finite element methods to compute uyp,.
The H'(Q) errors between uy and uyj with first-order and second-order methods
are plotted in Figures 6a and 6b, respectively.

2x107%  3x107%4x107%  6x1077 102

F1G. 5. The error ||lu—up| 1 as a function of mesh size h. Here e =0.12,0.06,0 with triangles
pointing down, up, and left. Reference rate h is presented by the dash line.

// 105

2x1073 3x107? 3x107  4x107? 6x1073 10-2

(a) (b)

F1G. 6. (a) The error |luy — unnllg1(q) as a function of mesh size h where uny, is computed
by first-order method. Here N =1, 2, 3, 4 with the triangles pointing down, up, left, and right,
respectively. Reference rate h is dashed. (b) The error ||lun —UNh”Hl(Q) as a function of mesh size
h? where upy, is computed by second-order method. Here N =1, 2, 3, 4 with the triangles pointing
down, up, left, and right, respectively. Reference rate h? is dashed.
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1.84

164

1.44

1.24

1.04

0.8

0.61

0.2

1 2 3 4 5

Fi1G. 7. The ratio C(u) as a function of N. Herew is as in (8.1) and (8.2) with triangles pointing
down and up, respectively.

Besides, the ratio C'(u) for v as in (8.1), and for uy is shown in Figure 7 as a func-
tion of N. For any u, the ratio C(u) gives a lower bound for the constant C' > 0 in our
a priori estimate. It appears that the constant grows as a function of N, as expected.

(1]

2]

(3]

(4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

13]

REFERENCES

. ALESSANDRINI, L. RoNDI, E. ROSSET, AND S. VESSELLA, The stability for the Cauchy prob-

lem for elliptic equations, Inverse Problems, 25 (2009), 47, https://doi.org/10.1088/0266-
5611,/25,/12/123004.

. ALESSANDRINI AND S. VESSELLA, Lipschitz stability for the inverse conductivity problem,

Adv Appl. Math., 35 (2005), pp. 207-241, https://doi.org/10.1016/j.aam.2004.12.002.

. BEN BELGACEM, V. GIRAULT, AND F. JELASSI, Full discretization of Cauchy’s problem by

Lavrentiev-finite element method, SIAM J. Numer. Anal., 60 (2022), pp. 558-584, https://
doi.org/10.1137/21M1401310.

. BOURGEOIS, A mized formulation of quasi-reversibility to solve the Cauchy problem for

Laplace’s equation, Inverse Problems, 21 (2005), pp. 1087-1104, https://doi.org/10.1088/
0266-5611/21/3/018.

. BOURGEOIS, A remark on Lipschitz stability for inverse problems, C. R. Math. Acad. Sci.

Paris, 351 (2013), pp. 187-190, https://doi.org/10.1016/j.crma.2013.04.004.

. BOURGEOIS AND L. CHESNEL, On quasi-reversibility solutions to the Cauchy problem for the

Laplace equation: Regularity and error estimates, ESAIM Math. Model. Numer. Anal., 54
(2020), pp. 493-529, https://doi.org/10.1051/m2an/2019073.

. BOURGEOIS AND J. DARDE, The Morozov’s principle applied to data assimilation problems,

ESAIM Math. Model. Numer. Anal., 56 (2022), pp. 2021-2050, https://doi.org/10.1051/
m2an/2022061.

. BOURGEOIS AND A. RECOQUILLAY, A mized formulation of the Tikhonov regularization and

its application to inverse PDE problems, ESAIM Math. Model. Numer. Anal., 52 (2018),
pp. 123-145, https://doi.org/10.1051/m2an/2018008.

. H. BRAMBLE, R. D. LAzArROV, AND J. E. PAsciAK, A least-squares approach based on

a discrete minus one inner product for first order systems, Math. Comp., 66 (1997),
pp- 935-955, https://doi.org/10.1090/S0025-5718-97-00848-X.

. H. BRAMBLE, R. D. LAzAROV, AND J. E. PASCIAK, Least-squares for second-order elliptic

problems, Symposium Adv. Comput. Mech., 152 (1998), pp. 195-210, https://doi.org/
10.1016,/S0045-7825(97)00189-8.

. C. BRENNER AND L. R. Scort, The Mathematical Theory of Finite Element Methods, 3rd

ed., Texts Appl. Math. 15, Springer, New York, 2008, https://doi.org/10.1007/978-0-387-
75934-0.

. BREzIS, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universi-

text, Springer, New York, 2011.

. BURMAN, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed

problems. Part 1: Elliptic equations, SIAM J. Sci. Comput., 35 (2013), pp. A2752-A2780,
https://doi.org/10.1137,/130916862.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1088/0266-5611/25/12/123004
https://doi.org/10.1088/0266-5611/25/12/123004
https://doi.org/10.1016/j.aam.2004.12.002
https://doi.org/10.1137/21M1401310
https://doi.org/10.1137/21M1401310
https://doi.org/10.1088/0266-5611/21/3/018
https://doi.org/10.1088/0266-5611/21/3/018
https://doi.org/10.1016/j.crma.2013.04.004
https://doi.org/10.1051/m2an/2019073
https://doi.org/10.1051/m2an/2022061
https://doi.org/10.1051/m2an/2022061
https://doi.org/10.1051/m2an/2018008
https://doi.org/10.1090/S0025-5718-97-00848-X
https://doi.org/10.1016/S0045-7825(97)00189-8
https://doi.org/10.1016/S0045-7825(97)00189-8
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1137/130916862

Downloaded 09/29/25 to 144.82.114.230 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

[24]

(25]

(26]
27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

E.

N.

p.

UC WITH FINITE DIMENSIONAL NEUMANN TRACE 2007

BURMAN, Error estimates for stabilized finite element methods applied to ill-posed prob-
lems, C. R. Math. Acad. Sci. Paris, 352 (2014), pp. 655-659, https://doi.org/10.1016/
j-crma.2014.06.008.

. BURMAN, Stabilised finite element methods for ill-posed problems with conditional stability,

in Building Bridges: Connections and Challenges in Modern Approaches to Numerical
Partial Differential Equations, Lect. Notes Comput. Sci. 114, Eng., Springer, Cham, 2016,
pp. 93-127.

. BURMAN, G. DELAY, AND A. ERN, A hybridized high-order method for unique continua-

tion subject to the Helmholtz equation, SIAM J. Numer. Anal., 59 (2021), pp. 2368-2392,
https://doi.org/10.1137/20M1375619.

. BURMAN, M. G. LARSON, AND L. OKSANEN, Primal-dual mized finite element meth-

ods for the elliptic Cauchy problem, SIAM J. Numer. Anal., 56 (2018), pp. 3480-3509,
https://doi.org/10.1137/17M1163335.

. BURMAN, M. NECHITA, AND L. OKSANEN, Unique continuation for the Helmholtz equation

using stabilized finite element methods, J. Math. Pures Appl. (9), 129 (2019), pp. 1-22,
https://doi.org/10.1016/j.matpur.2018.10.003.

. BURMAN, M. NECHITA, AND L. OKSANEN, A stabilized finite element method for inverse prob-

lems subject to the convection-diffusion equation. 1: Diffusion-dominated regime, Numer.
Math., 144 (2020), pp. 451-477, https://doi.org/10.1007 /s00211-019-01087-x.

. BURMAN, M. NECHITA, AND L. OKSANEN, A stabilized finite element method for inverse

problems subject to the convection-diffusion equation. 11: Convection-dominated regime,
Numer. Math., 150 (2022), pp. 769801, https://doi.org/10.1007/s00211-022-01268-1.

. BURMAN, M. NECHITA, AND L. OKSANEN, Optimal approzimation of unique continuation,

Found. Comput. Math., 25 (2025), pp. 1025-1045, https://doi.org/10.1007/s10208-024-
09655-w.

. BURMAN AND L. OKSANEN, Data assimilation for the heat equation using stabilized finite

element methods, Numer. Math., 139 (2018), pp. 505528, https://doi.org/10.1007/s00211-
018-0949-3.

. BURMAN AND L. OKSANEN, Finite element approximation of unique continuation of functions

with finite dimensional trace, Math. Models Methods Appl. Sci., 34 (2024), pp. 1809-1824,
https://doi.org/10.1142/S0218202524500362.

. CHERVOVA AND L. OKSANEN, Time reversal method with stabilizing boundary conditions for

photoacoustic tomography, Inverse Problems, 32 (2016), 125004, https://doi.org/10.1088/
0266-5611/32,/12/125004.

. CHUNG, K. ITO, AND M. YAMAMOTO, Least squares formulation for ill-posed inverse prob-

lems and applications, Appl. Anal., 101 (2022), pp. 5247-5261, https://doi.org/10.1080/
00036811.2021.1884228.
CINDEA AND A. MUNCH, Inverse problems for linear hyperbolic equations using mized formu-
lations, Inverse Problems, 31 (2015), 38, https://doi.org/10.1088/0266-5611/31/7/075001.
CoLLl FRANZONE AND E. MAGENES, On the inverse potential problem of electrocardiology,
Calcolo, 16 (1979), pp. 459-538, https://doi.org/10.1007/BF02576643.

W. DAHMEN, H. MONSUUR, AND R. STEVENSON, Least squares solvers for ill-posed PDEs that

J.

are conditionally stable, ESAIM Math. Model. Numer. Anal., 57 (2023), pp. 2227-2255,
https://doi.org/10.1051/m2an/2023050.
DARDE, A. HANNUKAINEN, AND N. HYVONEN, An Hg;,-based mized quasi-reversibility
method for solving elliptic Cauchy problems, SIAM J. Numer. Anal., 51 (2013), pp. 2123—
2148, https://doi.org/10.1137/120895123.

. ERN AND J.-L. GUERMOND, Theory and Practice of Finite Elements, Appl. Math. Sci. 159,

Springer, New York, 2004.

. S. FALK AND P. B. MONK, Logarithmic convexity for discrete harmonic functions and the

approzimation of the Cauchy problem for Poisson’s equation, Math. Comp., 47 (1986),
pp. 135-149, https://doi.org/10.1090/S0025-5718-1986-0842126-5.

. GRISVARD, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman,

Boston, 1985.

. B. INGHAM, Y. YUuAaN, AND H. HAN, The boundary-element method for an improperly

posed problem, IMA J. Appl. Math., 47 (1991), pp. 61-79, https://doi.org/10.1093/
imamat/47.1.61.

. ITo AND B. JIN, Inverse Problems: Tikhonov Theory and Algorithms, Ser. Appl. Math. 22,

World Scientific Publishing, Hackensack, NJ, 2015.

. JOHANSSON, An iterative procedure for solving a Cauchy problem for second order elliptic

equations, Math. Nachr., 272 (2004), pp. 46-54, https://doi.org/10.1002/mana.200310188.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1016/j.crma.2014.06.008
https://doi.org/10.1016/j.crma.2014.06.008
https://doi.org/10.1137/20M1375619
https://doi.org/10.1137/17M1163335
https://doi.org/10.1016/j.matpur.2018.10.003
https://doi.org/10.1007/s00211-019-01087-x
https://doi.org/10.1007/s00211-022-01268-1
https://doi.org/10.1007/s10208-024-09655-w
https://doi.org/10.1007/s10208-024-09655-w
https://doi.org/10.1007/s00211-018-0949-3
https://doi.org/10.1007/s00211-018-0949-3
https://doi.org/10.1142/S0218202524500362
https://doi.org/10.1088/0266-5611/32/12/125004
https://doi.org/10.1088/0266-5611/32/12/125004
https://doi.org/10.1080/00036811.2021.1884228
https://doi.org/10.1080/00036811.2021.1884228
https://doi.org/10.1088/0266-5611/31/7/075001
https://doi.org/10.1007/BF02576643
https://doi.org/10.1051/m2an/2023050
https://doi.org/10.1137/120895123
https://doi.org/10.1090/S0025-5718-1986-0842126-5
https://doi.org/10.1093/imamat/47.1.61
https://doi.org/10.1093/imamat/47.1.61
https://doi.org/10.1002/mana.200310188

Downloaded 09/29/25 to 144.82.114.230 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2008 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

[36] S. I. KABANIKHIN AND A. L. KARCHEVSKY, Optimizational method for solving the Cauchy
problem for an elliptic equation, J. Inverse Ill-Posed Probl., 3 (1995), pp. 21-46, https://
doi.org/10.1515/jiip.1995.3.1.21.

[37] R. LATTES AND J.-L. LIONS, The method of quasi-reversibility. Applications to partial differen-
tial equations, Modern Analytic and Computational Methods in Science and Mathematics
18, American Elsevier Publishing, New York, 1969, translated from the French edition and
edited by Richard Bellman.

[38] H.-J. REINHARDT, H. HAN, AND D. N, HAo, Stability and regularization of a discrete approzi-
mation to the Cauchy problem for Laplace’s equation, STAM J. Numer. Anal., 36 (1999),
pp. 890-905, https://doi.org/10.1137/S0036142997316955.

[39] L. R. SCOTT AND S. ZHANG, Finite element interpolation of nonsmooth functions satisfy-
ing boundary conditions, Math. Comp., 54 (1990), pp. 483-493, https://doi.org/10.1090/
S0025-5718-1990-1011446-7.

[40] A. N. TiIKHONOV AND V. Y. ARSENIN, Solutions of ill-posed problems, Scripta Series in Mathe-
matics, V. H. Winston & Sons, Washington, D.C.; John Wiley & Sons, New York, Toronto,
London, 1977, translated from the Russian, preface by translation editor Fritz John.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1515/jiip.1995.3.1.21
https://doi.org/10.1515/jiip.1995.3.1.21
https://doi.org/10.1137/S0036142997316955
https://doi.org/10.1090/S0025-5718-1990-1011446-7
https://doi.org/10.1090/S0025-5718-1990-1011446-7

	Introduction
	Relation to previous work

	Problem setting
	Lipschitz stability
	Finite element method
	Necessity of regularization
	Error analysis
	Perturbation analysis
	Numerical results
	References

