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Abstract. We consider finite element approximations of unique continuation problems subject
to elliptic equations in the case where the normal derivative of the exact solution is known to reside
in some finite dimensional space. To give quantitative error estimates we prove Lipschitz stability of
the unique continuation problem in the global H1-norm. This stability is then leveraged to derive
optimal a posteriori and a priori error estimates for a primal-dual stabilized finite element method.

Key words. unique continuation, conditional stability, finite dimension, Neumann boundary,
finite element methods, stabilized methods, error estimates

MSC code. 65N20

DOI. 10.1137/24M164080X

1. Introduction. In this work we are interested in the approximation of a
unique continuation problem subject to the Poisson equation. This means that the
we look for the solution to the equation

 - \Delta u= f(1.1)

in \Omega \subset \BbbR d, and for some f \in L2(\Omega ), when the boundary condition is unavailable on
the boundary, or part of the boundary. In its stead some measured data is available.
Typically, both Dirichlet and Neumann data are known on some part of the boundary
(the elliptic Cauchy problem) or some measurement in the bulk. Both these situations
can be handled using the arguments below, but for conciseness we will here concentrate
on the second case. Therefore, we assume that for some \omega \subset \Omega there is q : \omega \rightarrow \BbbR 
such that q is the restriction to \omega of a solution to (1.1) and that we know q up to a
quantifiable perturbation \delta q. The objective is then to reconstruct u using (1.1) and
the a priori knowledge u| \omega = q.

Unique continuation is an important model problem for many applications in
control, data assimilation, or inverse problems. It is an ill-posed problem, so the
assumption that the data q is associated to a solution is crucial for the solvability of
the problem. It is, however, well known that if this is the case a unique solution exists
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1987

and satisfies a conditional stability estimate [1]. If B \subset \subset \Omega , that is the set B does
not intersect the boundary of \Omega , then there holds for all u\in H1(\Omega ),

\| u\| L2(B) \leq C(\| u\| L2(\Omega ) + \| \Delta u\| H - 1(\Omega ))
(1 - \alpha )(\| u\| L2(\omega ) + \| \Delta u\| H - 1(\Omega ))

\alpha ,

where \alpha \in (0,1). The coefficient \alpha depends on the geometry of the domains \Omega , \omega , and
B. As dist(\partial B,\partial \Omega )\rightarrow 0, \alpha \rightarrow 0. In case B and \Omega coincide the stability degenerates
to logarithmic

\| u\| L2(\Omega ) \leq C\| u\| H1(\Omega ) log

\biggl( \| u\| H1(\Omega )

(\| u\| L2(\omega ) + \| \Delta u\| H - 1(\Omega ))

\biggr)  - \beta 

(1.2)

with \beta \in (0,1). In a series of works [15, 17, 16] various finite element methods (FEM)
have been designed and shown to satisfy bounds of the type

\| u - uh\| L2(B) \leq Ch\alpha k(| u| Hk+1(\Omega ) + h - k\| \delta q\| L2(\omega )),(1.3)

or if B =\Omega and \delta q= 0

\| u - uh\| L2(\Omega ) \leq C| u| Hk+1(\Omega ) log
\bigl( 
Ch - k

\bigr)  - \beta 
.

In the recent contribution [21], the error bound on the form (1.3) was shown to be
optimal. It can not be improved for general solutions and perturbations, regardless
of the method. For moderately perturbed data and favorable subdomains \omega and B
this leads to sufficient accuracy, in some cases comparable to that of a well-posed
problem. On the other hand, if the solution, or its normal derivative, is required
on the boundary of the domain the above estimates are very poor. Indeed, there
seems to be no results on how to approximate boundary traces accurately in unique
continuation problems. In view of the result in [21], the only way to improve on the
bounds is to have additional a priori knowledge. In the work [23] it was shown that if
the Dirichlet boundary trace is close to some known finite dimensional space, then a
FEM can be designed so that (1.3) holds with \alpha = 1, with an additional perturbation
term measuring the distance of the true solution to the finite dimensional space. The
assumption that the trace is close to a finite dimensional space holds in a variety of
situations, for instance whenever it is a smooth perturbation of a constant, in optimal
control with finite dimensional boundary control, or in engineering applications where
strong modelling a priori knowledge is at hand, for example classes of admissible
boundary profiles.

In the present work we consider the extension of these results to the case when the
Neumann condition is in a finite dimensional space. The main result is Corollary 6.9,
which gives optimal convergence rate for the finite element solution. Contrary to [23]
we prove the stability underpinning the numerical analysis without resorting to the
global stability (1.2) (see section 3). This makes the present analysis self contained.
Although the proposed finite element method introduced in section 4 is similar to
that of [23], the analysis differs in the Neumann case. Indeed the poorer regularity
of the trace variable and the different functional analytical framework lead to some
difficulties in the numerical analysis, that are handled in section 6, resulting in optimal
a posterori and a priori error estimates.

1.1. Relation to previous work. Early work on computational unique contin-
uation (UC) focused on rewriting the problem as a boundary integral [27, 33], while
the earliest finite element reference appears to be [31]. The dominating regularization

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1988 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

techniques are Tikhonov regularization [40] and quasi reversibility [37]. The literature
on computational methods for the discretization of the regularized problem is very
rich; see [34] and references therein. For references relevant for the present context we
refer to [38, 4, 29, 8, 6, 7]. Iteration techniques using boundary integral formulations
have been proposed in [35] and for methods using tools from optimal control, we refer
to [36].

The first weakly consistent methods with regularization on the discrete level were
introduced in [13], with the first analysis for ill-posed problems in [14] and then
developed further in [15, 17, 22, 18, 16, 3]. This approach is related to previous work
on finite element methods for indefinite problems based on least squares minimization
in H - 1 [9, 10]. More recent results using least squares minimization in dual norm for
ill-posed problems can be found in [26, 25, 28]. Quantitative a priori error estimates
have been derived in a number of situations with careful analysis of the effect of the
physical parameters of the problem on the constants of the error estimates [18, 19, 20].
This has lead to a deeper understanding of the computational difficulty of recovering
quantities via UC in different parameter regimes.

That Lipschitz stability can be recovered for finite dimensional target quantities
has been known for some time in the inverse problem community; see, for example,
[2, 5]. Nevertheless, it appears that the first time this property has been exploited in
a computational method, leading to optimal error estimates, is [23].

2. Problem setting. Let \scrV N be a subspace of L2(\partial \Omega ) that satisfies
1. For all g \in \scrV N , there holds

\int 
\partial \Omega 
g dx= 0.

2. dim(\scrV N ) =N <\infty .
We consider the following problems:\left\{     

 - \Delta u= f in \Omega ,

u= q in \omega ,

\partial \nu u| \partial \Omega \in \scrV N + \beta ,

(2.1)

where \Omega \in \BbbR d is an open, bounded polygonal domain, \omega \subset \Omega is open, and nonempty.
f \in L2(\Omega ) and \beta is a constant satisfying \beta | \partial \Omega | =

\int 
\Omega 
f dx. We denote P to be a

projection operator on \scrV N , with Q= 1 - P .

3. Lipschitz stability. First, we define a continuous bilinear functional l(\cdot , \cdot )
on H1(\Omega )\times H1(\Omega ),

l(u, v) = (\nabla u,\nabla v)L2(\Omega ),

and for each u\in H1(\Omega ), a continuous linear functional Lu on H1(\Omega ),

Lu(v) := l(u, v).

Next, we introduce the space

H1
\omega (\Omega ) :=

\biggl\{ 
u\in H1(\Omega )

\bigm| \bigm| \bigm| \int 
\omega 

u dx= 0

\biggr\} 
.

Then, we have the following lemma.

Lemma 3.1. For every u\in H1
\omega (\Omega ), there holds

\| u\| H1(\Omega ) \lesssim \| Lu\| (H1(\Omega ))\ast .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1989

Proof. We start from the inequality

\| u\| H1(\Omega ) \lesssim \| u\| L2(\Omega ) + \| \nabla u\| L2(\Omega ) + \| u\| L2(\omega ),

define a continuous linear operator

A : H1(\Omega )\rightarrow 
\bigl[ 
L2(\Omega )

\bigr] n \times L2(\omega ),

Au= (\nabla u,u| \omega ),

and denote the natural imbedding from H1(\Omega ) to L2(\Omega ) by K. To simplify the
notation, we denote

X : =
\bigl[ 
L2(\Omega )

\bigr] n \times L2(\omega ).

Then we have

\| u\| H1(\Omega ) \lesssim \| Au\| X + \| Ku\| L2(\Omega ).

Notice that K is compact and A is an injection. Indeed, suppose Au0 = 0 for u0 \in 
H1(\Omega ), that is, \nabla u0 = 0 and u0| \omega = 0. Since \nabla u0 = 0 implies u0 is a constant, u0 = 0
in \Omega follows immediately from u0| \omega = 0.

Therefore, by compactness-uniqueness [24, Lemma 9],

\| u\| H1(\Omega ) \lesssim \| Au\| X = \| \nabla u\| L2(\Omega ) + \| u\| L2(\omega ).

According to the Friedrich's inequality [11, Lemma 4.3.14], the condition
\int 
\omega 
u dx= 0

implies that

\| u\| L2(\omega ) \lesssim \| \nabla u\| L2(\omega ) \leq \| \nabla u\| L2(\Omega ).

Hence

\| u\| H1(\Omega ) \lesssim \| \nabla u\| L2(\Omega ).(3.1)

For arbitrary \epsilon > 0, there holds

\| \nabla u\| 2L2(\Omega ) =Lu(u)\leq \| Lu\| (H1(\Omega ))\ast \| u\| H1(\Omega ) \leq \epsilon  - 1\| Lu\| 2(H1(\Omega ))\ast +
\epsilon 

4
\| u\| 2H1(\Omega ).(3.2)

Combining (3.1) and (3.2), and choosing \epsilon small enough, we have

\| u\| H1(\Omega ) \lesssim \| Lu\| (H1(\Omega ))\ast .

Lemma 3.2. Suppose F \in (H1(\Omega ))\ast satisfies

F (c) = 0

for all constant functions c on \Omega . Then for the variational problem

l(u, v) = F (v) \forall v \in H1(\Omega ),(3.3)

there exists a unique solution u\in H1
\omega (\Omega ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1990 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

Proof. Since for any constant function c on \Omega , F (c) = 0 and l(u,c) = 0, problem
(3.3) amounts to finding u\in H1(\Omega ) such that

l(u, v) = F (v) \forall v \in H1
\omega (\Omega ).

The coercivity of l on H1
\omega (\Omega ) follows from (3.1). According to Lax--Milgram theorem

[12, Corollary 5.8], there exists a unique u\in H1
\omega (\Omega ) solves (3.3).

For each u \in H1(\Omega ) with \partial \nu u| \partial \Omega \in L2(\partial \Omega ), we define a linear functional Lq
u on

H1(\Omega )

Lq
u(v) :=Lu(v) - (P\partial \nu u, v)L2(\partial \Omega ), v \in H1(\Omega ).

By trace inequality, we can see that Lq
u \in (H1(\Omega ))\ast .

Theorem 3.3. For u\in H1(\Omega ) with \partial \nu u| \partial \Omega \in L2(\partial \Omega ), there holds

\| P\partial \nu u\| L2(\partial \Omega ) + \| u\| H1(\Omega ) \lesssim \| u\| L2(\omega ) + \| Lq
u\| (H1(\Omega ))\ast .(3.4)

Proof. First, we assume that u\in H1
\omega (\Omega ).

Write u= v+w, where v, w \in H1
\omega (\Omega ) and satisfy

l(v,\varphi ) =Lq
u(\varphi ) \forall \varphi \in H1(\Omega ),(3.5)

and

l(w,\varphi ) = (P\partial \nu u,\varphi )L2(\partial \Omega ) \forall \varphi \in H1(\Omega ),(3.6)

respectively. Since Lq
u(c) = 0 and (P\partial \nu u,c)L2(\partial \Omega ) = 0, (3.5) and (3.6) are both

solvable by Lemma 3.2. We define an operator

A : \scrV N \rightarrow L2(\omega ),

A(g) :=wg| \omega , g \in \scrV N ,

where wg \in H1
\omega (\Omega ) satisfies

l(wg,\varphi ) = (g,\varphi )L2(\partial \Omega ) \forall \varphi \in H1(\Omega ).

Notice that \| \Delta wg\| H - 1(\Omega ) = 0. Then by (1.2), A is injective.
Since A(\scrV N ) is a finite dimensional subspace of L2(\omega ), there exist a norm on

A(\scrV N ) such that A is an isometry. As all norms are equivalent in the finite dimensional
range of A, there holds

\| g\| L2(\partial \Omega ) \lesssim \| Ag\| L2(\omega ).

Notice that A(P\partial \nu u) =w| \omega . We conclude that

\| P\partial \nu u\| L2(\partial \Omega ) \lesssim \| w\| L2(\omega ).

Applying Lemma 3.1 to v and w, there holds

\| u\| H1(\Omega ) \leq \| v\| H1(\Omega ) + \| w\| H1(\Omega ) \lesssim \| v\| H1(\Omega ) + \| P\partial \nu u\| L2(\partial \Omega )

\lesssim \| v\| H1(\Omega ) + \| w\| L2(\omega ) \lesssim \| v\| H1(\Omega ) + \| u\| L2(\omega )

= \| Lq
u\| (H1(\Omega ))\ast + \| u\| L2(\omega ).
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1991

The above argument also gives

\| P\partial \nu u\| L2(\partial \Omega ) \lesssim \| Lq
u\| (H1(\Omega ))\ast + \| u\| L2(\omega ).

For u \not \in H1
\omega (\Omega ), there exist a \~u\in H1

\omega (\Omega ) and a constant C \in \BbbR such that u=C+\~u.
Then

\| u\| 2H1(\Omega ) \leq 2\| \~u\| 2H1(\Omega ) + 2C2| \Omega | ,
\| u\| 2L2(\omega ) = \| \~u\| 2L2(\omega ) +C2| \omega | .

Therefore, we have

\| u\| 2H1(\Omega ) \leq 2\| \~u\| 2H1(\Omega ) + 2C2| \Omega | \lesssim \| Lq
\~u\| 

2
(H1(\Omega ))\ast + \| \~u\| 2L2(\omega ) +C2| \omega | 

= \| Lq
u\| 2(H1(\Omega ))\ast + \| u\| 2L2(\omega ),

and

\| P\partial \nu u\| L2(\partial \Omega ) = \| P\partial \nu \~u\| L2(\partial \Omega ) \lesssim \| \~u\| L2(\omega ) + \| Lq
\~u\| (H1(\Omega ))\ast 

\lesssim \| u\| L2(\omega ) + \| Lq
u\| (H1(\Omega ))\ast .

Combining the above two inequalities yields (3.4).

4. Finite element method. Here we will introduce a finite element method
for the approximation of (2.1). Some results detailing the continuity, stability and
consistency properties of the method will then be proven, preparing the terrain for
the error analysis in the next section.

Let \scrT h be a decomposition of \Omega into shape regular simplices K that form a
simplicial complex, and let h = maxK\in \scrT h

diam(K) be the global mesh parameter.
The trace inequality with scaling [11, eq. 10.3.8] reads

h1/2\| u\| L2(\partial K) \lesssim \| u\| L2(K) + \| h\nabla u\| L2(K), u\in H1(K).(4.1)

On \scrT h we define the standard space of continuous finite element functions

Vh := \{ v \in H1(\Omega ) | v| K \in \BbbP k for K \in \scrT h\} .

Here \BbbP k is the space of polynomial of degree at most k \geq 1 on K. For m \geq 0, we
denote the broken semiclassical Sobolev seminorms and norms by

[u]2Hm(\scrT h)
=
\sum 

K\in \scrT h

\| (hD)mu\| 2L2(K), \| u\| 2Hm(\scrT h)
=

m\sum 
k=0

[u]2Hk(\scrT h)
.

The discrete inequality [30, Lemma 1.138] in \BbbP k implies that for all integers m\geq l\geq 0

[u]Hm(\scrT h) \lesssim [u]Hl(\scrT h), u\in Vh.(4.2)

Let F be a interior face between two simplices K1,K2 \in \scrT h such that K1 \cap K2 = F ,
then the jump over F is given by

J\nabla uKF = \nu 1 \cdot \nabla u| K1
+ \nu 2 \cdot \nabla u| K2

,

where \nu 1 and \nu 2 are the outward normal of K1 and K2, respectively.
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1992 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

Then we introduce the Lagrangian on Vh \times Vh,

\scrL (u, z) := h2

2
\| u - q\| 2L2(\omega ) + a(u, z) - h2(f, z)L2(\Omega )  - h2(\beta , z)L2(\partial \Omega )

+
1

2
B(u) - h(hQ\partial \nu u,h\beta )L2(\partial \Omega ) +

1

2
[h2\Delta u+ h2f ]2H0(\scrT h)

+
1

2
J(u) - 1

2
S\ast (z),

where

B(u) = h\| hQ\partial \nu u\| 2L2(\partial \Omega ),

a(u, z) = (h\nabla u,h\nabla z)L2(\Omega )  - h

\int 
\partial \Omega 

h(P\partial \nu u)z dx,

J(u) =
\sum 

K\in \scrT h

h\| Jh\nabla uK\| 2L2(\partial K\setminus \partial \Omega ),

S\ast (z) = h2\| z\| 2H1(\Omega ).

For

S(u) = J(u) + [h2\Delta u]2H0(\scrT h)
,

we have the following lemma.

Lemma 4.1. For u \in H1(\Omega ) with \Delta (u| K) \in L2(K) for all K \in \scrT h, \partial \nu u| \partial \Omega \in 
L2(\partial \Omega ), and z \in H1(\Omega ), there holds

a(u, z)\lesssim (S(u)1/2 +B(u)1/2)\| z\| H1(\scrT h).

Proof. An integration by parts reads

a(u, z) = (h\nabla u,h\nabla z)L2(\Omega )  - h

\int 
\partial \Omega 

h(P\partial \nu u)z dx

= - 
\sum 

K\in \scrT h

\int 
K

h2\Delta uz dx+
\sum 

F\in \scrF h

h

\int 
F

Jh\partial \nu uKz dx+ h

\int 
\partial \Omega 

(Qh\partial \nu u)z dx,

where \scrF h is the set of elements faces in the interior of \Omega .
Applying the trace inequality with scaling (4.1) on each face in \scrF h and \partial \Omega , we

can obtain\sum 
F\in \scrF h

h

\int 
F

Jh\partial \nu uKz dx

\leq 
\sum 

K\in \scrT h

h1/2\| Jh\partial \nu uK\| L2(\partial K\setminus \partial \Omega )h
1/2\| z\| L2(\partial K\setminus \partial \Omega )

\lesssim 
\sum 

K\in \scrT h

h1/2\| Jh\partial \nu uK\| L2(\partial K\setminus \partial \Omega )

\bigl( 
\| z\| L2(K) + \| h\nabla z\| L2(K)

\bigr) 
\leq 

\Biggl( \sum 
K\in \scrT h

h\| Jh\partial \nu uK\| 2L2(\partial K\setminus \partial \Omega )

\Biggr) 1
2
\Biggl( \sum 

K\in \scrT h

\| z\| 2L2(K) + \| h\nabla z\| 2L2(K)

\Biggr) 1
2

\leq J(u)1/2\| z\| H1(\scrT h),

and

h

\int 
\partial \Omega 

(Qh\partial \nu u)z dx\leq h1/2\| Qh\partial \nu u\| L2(\partial \Omega )h
1/2\| z\| L2(\partial \Omega ) \lesssim B(u)1/2\| z\| H1(\scrT h).
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1993

Finally, notice that\sum 
K\in \scrT h

\int 
K

h2(\Delta u)z dx\leq 
\sum 

K\in \scrT h

[h2\Delta u]L2(K)\| z\| L2(K)

\leq [h2\Delta u]H0(\scrT h)[z]H0(\scrT h) \leq [h2\Delta u]H0(\scrT h)\| z\| H1(\scrT h).

Thus we conclude that

a(u, z)\lesssim 
\Bigl( 
[h2\Delta u]H0(\scrT h) + J(u)1/2 +B(u)1/2

\Bigr) 
\| z\| H1(\scrT h)

\lesssim (S(u)1/2 +B(u)1/2)\| z\| H1(\scrT h).

Finding saddle points of the Lagrangian \scrL amounts to finding (u, z) \in Vh \times Vh
such that for all (v,w)\in Vh \times Vh, there holds\left\{     

a(u,w) - s\ast (z,w) = h2(f,w)L2(\Omega ) + h2(\beta ,w)L2(\partial \Omega ),

h2(u, v)L2(\omega ) + b(u, v) + a(v, z) + s(u, v) = h2(q, v)L2(\omega ) + h3(Q\partial \nu v,\beta )L2(\partial \Omega )

+(h2f,h2\Delta v)H0(\scrT h).

Here s\ast , b, and s are the bilinear forms corresponding to S\ast , B, and S, respectively.
Solving the above system is equivalent to finding (u, z) \in Vh \times Vh such that for all
(v,w)\in Vh \times Vh, there holds

g(u, z, v,w) = h2(f,w)L2(\Omega ) + h2(\beta ,w)L2(\partial \Omega ) + h2(q, v)L2(\omega )(4.3)

+ h3(Q\partial \nu v,\beta )L2(\partial \Omega ) + (h2f,h2\Delta v)H0(\scrT h),

where the bilinear form g is defined by

g(u, z, v,w) := h2(u, v)L2(\omega ) + b(u, v) + a(v, z) + s(u, v) + a(u,w) - s\ast (z,w).

Remark 4.2. Recall that f \in L2(\Omega ). Hence, if u \in H1(\Omega ) solves (2.1), then
u\in H2

loc(\Omega ). In particular, for all F \in \scrF h and all compact sets K in the interior of \Omega 
there holds J\nabla uK = 0 on F \cap K. As K is arbitrary, the same holds on the whole set
F , and J(u) = 0. Therefore, (u,0) solves (4.3) for all (v,w)\in Vh \times Vh and the system
(4.3) is consistent.

Preparing the terrain for the error analysis of the next section, we introduce the
norm

| | | u, z| | | 2 =B(u) + h2\| u\| 2L2(\omega ) + S(u) + S\ast (z).

According to Lemma 4.1, we have

\| Lq
u\| (H1(\Omega ))\ast = sup

v\in H1(\Omega )

Lq
u(v)

\| v\| H1(\Omega )
= sup

v\in H1(\Omega )

a(u, v)

h2\| v\| H1(\Omega )

\lesssim sup
v\in H1(\Omega )

(S(u)1/2 +B(u)1/2)\| v\| H1(\scrT h)

h2\| v\| H1(\Omega )
\lesssim 

1

h2
| | | u,0| | | .

By Theorem 3.3, we have

\| u\| H1(\Omega ) \lesssim 
1

h2
| | | u,0| | | .

Notice that | | | u, z| | | 2 = | | | u,0| | | 2 + | | | 0, z| | | 2, then | | | u, z| | | = 0 implies that u= 0 and z = 0.
Hence | | | \cdot , \cdot | | | is indeed a norm.
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1994 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

Lemma 4.3.

| | | u, z| | | \lesssim sup
(v,w)\in Vh\times Vh

g(u, z, v,w)

| | | v,w| | | 
, (u, z)\in Vh \times Vh.

Proof. The claimed inequality follows immediately from

| | | u, z| | | 2 = g(u, z,u, - z).

Due to Lemma 4.3, the linear system (4.3) admits a unique solution for any
f \in L2(\Omega ) and q \in L2(\omega ). Denoting the unique solution by (uh, zh) and letting u solve
(2.1), we have the Galerkin orthogonality

g(uh  - u, zh, v,w) = 0, (v,w)\in Vh \times Vh.(4.4)

5. Necessity of regularization. One may wonder if the regularization intro-
duced in section 4 is really needed. To illustrate necessity of a regularization of some
form, let us consider a straightforward data fitting approach. To simplify the discus-
sion, we suppose that f = 0 and, therefore< \beta = 0 in (2.1). Let \{ \psi i\} Ni=1 be a basis of
\scrV N , and let wi

h \in Vh \cap H1
\omega (\Omega ) be the solution of\int 
\Omega 

\nabla wi
h \cdot \nabla v dx=

\int 
\partial \Omega 

\psi iv dx \forall v \in Vh.

Let Wh be the space spanned by \{ wi
h\} Ni=1\oplus \{ 1\} where 1 is the constant function that

is identical to 1 in \Omega . It feels natural to try to approximate the solution of (2.1) via

uh = arg min
wh\in Wh

\| wh  - q\| L2(\omega ).(5.1)

However, such uh may not be unique. Indeed, if there exists wh \in Wh that satisfies
wh| \omega = 0, then (5.1) does not define uh uniquely. In fact, this may happen even when
N = 1 if h > 0 is not small enough, as shown by Proposition 5.2 below. In other
words, the mesh size h> 0 cannot be chosen independently of \scrV .

Presumably there is h0(\scrV ,\Omega , \omega ) > 0 such that all wh \in Wh have the unique
continuation property for

0\leq h\leq h0(\scrV ,\Omega , \omega ),

but we have opted not to try to find such a selection rule h0. We expect that h0 would
depend on the implicit constant in (3.4). On the other hand, our method introduced
in section 4 does not impose any constraints on the mesh size, as the system (4.3) has
a unique solution for any h> 0.

To simplify the discussion, we suppose that \Omega := [0,1]\times [0,1] and the mesh size

h=
\surd 
2

n - 1 where n > 3 is an integer. Let \scrT h be a uniform triangular decomposition of
\Omega as exemplified in Figure 1, and let the polynomial order of Vh be one. Then Vh is
a n2 dimensional space. The set of nodal basis functions \{ \phi i\} n

2

i=1 forms a basis of Vh.
We notice that \{ \phi i\} n

2

i=1 consists of 4n - 4 boundary nodal basis functions and (n - 2)2

interior nodal basis functions.
Let \{ \phi i\} 4n - 4

i=1 be boundary nodal functions. We denote the space of continuous
functions with zero mean value on \partial \Omega by \Gamma , that is,

\Gamma :=

\biggl\{ 
g \in C(\partial \Omega )

\bigm| \bigm| \bigm| \int 
\partial \Omega 

g dx= 0

\biggr\} 
.
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1995

(0,0) (1,0)

(0,1) (1,1)

Fig. 1. A uniform triangular decomposition on \Omega = [0,1]\times [0,1] with n= 6.

And we define the operator

\Lambda : \Gamma \rightarrow \BbbR 4n - 4

as

\Lambda (g) = \bfitb = (b1, b2, . . . , b4n - 4), g \in \Gamma ,

where

bi =

\int 
\partial \Omega 

g\phi i dx,1\leq i\leq 4n - 4.

Write the vector \bfite = (1,1, \cdot \cdot \cdot ,1\underbrace{}  \underbrace{}  
4n - 4

)T . Consider the functional it induced on \BbbR 4n - 4

T (\bfita ) = \bfite T\bfita =

4n - 4\sum 
i=1

ai, \bfita = (a1, a2, . . . , a4n - 4)\in \BbbR 4n - 4.

We have the following lemma.

Lemma 5.1. Let R(\Lambda ) := \{ \Lambda g | g \in \Gamma \} be the range of \Lambda , then we have

T - 1(0)\subset R(\Lambda ).

Proof. Rearrange the index such that \phi i and \phi i+1 are two adjacent boundary
nodal basis functions for 1 \leq i \leq 4n - 5. Without loss of generality, we assume that
supp(\phi i| \partial \Omega )\cap supp(\phi i+1| \partial \Omega ) = [y1, y2] and

\phi i| [y1,y2] = 1 - y - y1
y2  - y1

, \phi i+1| [y1,y2] =
y - y1
y2  - y1

.

Notice that [y1, y2]\cap supp(\phi j | \partial \Omega ) = \emptyset if j \not = i, i+1. Then for a nonzero smooth function
gi that is supported in (y1, y2) and that is odd corresponding to the midpoint of the
interval [y1, y2], we have\int 

\partial \Omega 

gi\phi i dx= - 
\int 
\partial \Omega 

gi\phi i+1 dx= ci \not = 0,
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1996 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

and \int 
\partial \Omega 

gi\phi j dx= 0 if j \not = i, i+ 1.

It follows that

\Lambda (gi/ci) = \bfitb i = ( 0, . . . ,0\underbrace{}  \underbrace{}  
(i - 1) zeros

,1, - 1, 0, . . . ,0\underbrace{}  \underbrace{}  
(4n - i - 5) zeros

), 1\leq i\leq 4n - 5.

Observe that \{ \bfitb i\} 4n - 5
i=1 forms a basis of T - 1(0), thus T - 1(0)\subset R(\Lambda ) follows immedi-

ately.

Proposition 5.2. Suppose \Omega := [0,1] \times [0,1]. For any fixed integer n > 3 and

h=
\surd 
2

n - 1 , we set \omega := [ 1
n - 1 ,1 - 

1
n - 1 ]\times [ 1

n - 1 ,1 - 
1

n - 1 ]. Let \scrT h be the uniform triangular
decomposition of \Omega , and let the polynomial order of Vh be one. Then there exists a
function g \in \Gamma , such that the solution uh \in Vh \cap H1

\omega (\Omega ) of\int 
\Omega 

\nabla uh \cdot \nabla v dx=
\int 
\partial \Omega 

gv dx \forall v \in Vh(5.2)

satisfies uh \not = 0 and uh| \omega = 0.

Proof. Let \{ \phi i\} n
2

i=1 be nodal basis functions of Vh and rearrange the index so

that \{ \phi i\} (n - 2)2

i=1 are the interior nodal basis functions while \{ \phi i\} n
2

i=(n - 2)2+1 are the
boundary nodal basis functions. Then we consider

\bfitA \bfitalpha = \bfitb ,(5.3)

where \bfitalpha = (\alpha 1, . . . , \alpha n2)T , the entries of \bfitA = (aij)n2\times n2 are aij =
\int 
\Omega 
\nabla \phi i \cdot \nabla \phi j dx, and

the entries of \bfitb = (bj)n2 are bj =
\int 
\partial \Omega 
\psi \phi j dx for some \psi \in \Gamma . Our first observation is

that bj = 0 for j \leq (n - 2)2 since \{ \phi j\} (n - 2)2

j=1 are interior nodal basis functions. Then
we decompose (5.3) into the following form:\biggl( 

A B
BT D

\biggr) \biggl( 
\bfitalpha 1

\bfitalpha 2

\biggr) 
=

\biggl( 
0
\bfitb 2

\biggr) 
.

Here \bfitalpha 1 \in \BbbR (n - 2)2 , \bfitalpha 2, \bfitb 2 \in \BbbR 4n - 4, A \in \BbbR (n - 2)2\times (n - 2)2 , B \in \BbbR (4n - 4)\times (n - 2)2 , and

D \in \BbbR (4n - 4)\times (4n - 4). For the interior nodal basis functions \{ \phi j\} (n - 2)2

j=1 ,\int 
\Omega 

\nabla \phi j\nabla \phi i dx \not = 0 for some (n - 2)2 + 1\leq i\leq n2

only if \phi j is an element adjacent to the boundary. For uniform triangular decompo-
sition, there are only 4n - 12 interior elements adjacent to boundary elements. That
is, at most 4n - 12 rows in B are nonzero.

Let \bfitalpha 1 = 0. Since the dimension of \bfitalpha 2 is 4n - 4 and the rank of B is 4n - 12, the
linear system \Biggl\{ 

B\bfitalpha 2 = 0,

\bfite TD\bfitalpha 2 = 0

admits a 7 dimensional null space X \subset \BbbR 4n - 4. Select a nonzero \bfitalpha 2 \in X. According
to Lemma 5.1, there exists a function g \in \Gamma such that \Lambda (g) =D\bfitalpha 2. Recall that

\bfitalpha = (\alpha 1, . . . , \alpha n2)T =

\biggl( 
0
\bfitalpha 2

\biggr) 
.
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1997

Set uh =
\sum n2

i=1\alpha i\phi i, then uh solves (5.2). We notice that uh| [h,1 - h]\times [h,1 - h] = 0 since
\alpha j = 0, 1 \leq j \leq (n  - 2)2, corresponding to the coefficients of interior nodal basis
functions.

6. Error analysis. The objective of this section is to leverage the stability of
Theorem 3.3 to derive optimal error estimates. We start with a technical lemma.

Lemma 6.1. Suppose that u\in H1(\Omega ) and (uh, zh)\in Vh\times Vh solve (2.1) and (4.3),
respectively. Then there holds

h - 1\| h2Lq
u - uh

\| (H1(\Omega ))\ast \lesssim S(u - uh)
1/2 +B(u - uh)

1/2 + S\ast (zh)
1/2.(6.1)

Proof. We have

\| h2Lq
u - uh

\| (H1(\Omega ))\ast = sup
w\in H1(\Omega )

h2Lq
u - uh

(w)L2(\Omega )

\| w\| H1(\Omega )
= sup

w\in H1(\Omega )

a(u - uh,w)

\| w\| H1(\Omega )
.

Let ih :Hm(\Omega )\rightarrow Vh be an interpolator satisfying

\| u - ihu\| Hm(\scrT h) \lesssim [u]Hm(\scrT h), u\in H
m(\Omega )(6.2)

for all m \geq 1. The Scott--Zhang interpolator is a possible choice [39]. For any w \in 
H1(\Omega ), (4.4) gives

g(uh  - u, zh,0, ihw) = a(uh  - u, ihw) - s\ast (zh, ihw) = 0.

Applying Lemma 4.1, we have

a(u - uh,w) = a(u - uh,w - ihw) - s\ast (zh, ihw)

\lesssim (S(u - uh)
1/2 +B(u - uh)

1/2)\| w - ihw\| H1(\scrT h) + S\ast (zh)
1/2S\ast (ihw)

1/2

\lesssim (S(u - uh)
1/2 +B(u - uh)

1/2)[w]H1(\scrT h)

+ S\ast (zh)
1/2h(\| ihw - w\| H1(\Omega ) + \| w\| H1(\Omega ))

\lesssim h
\Bigl( 
S(u - uh)

1/2 +B(u - uh)
1/2 + S\ast (zh)

1/2
\Bigr) 
\| w\| H1(\Omega ),

which implies (6.1).

Then we can prove the a posteriori error estimate

Theorem 6.2. Suppose that u \in H1(\Omega ) and (uh, zh) \in Vh solves (2.1) and (4.3),
respectively. Then there holds

h\| u - uh\| H1(\Omega ) \lesssim h\| uh  - q\| L2(\omega ) + J(uh)
1/2 + h3/2\| Q\partial \nu uh  - \beta \| L2(\partial \Omega )

+ [h2\Delta uh + h2f ]H0(\scrT h) + h\| zh\| H1(\Omega ) \lesssim | | | u - uh, zh| | | .
(6.3)

Proof. Applying Theorem 3.3, we have

h\| u - uh\| H1(\Omega ) \lesssim h\| uh  - q\| L2(\omega ) + h\| Lq
u - uh

\| (H1(\Omega ))\ast .

Here we recall u| \omega = q. Using  - \Delta u = f , J(u) = 0, Q\partial \nu u = \beta , and Lemma 6.1, we
have

h\| Lq
u - uh

\| (H1(\Omega ))\ast \lesssim S(u - uh)
1/2 +B(u - uh)

1/2 + S\ast (zh)
1/2

\lesssim J(uh)
1/2 + h3/2\| Q\partial \nu uh  - \beta \| L2(\partial \Omega ) + [h2\Delta uh + h2f ]H0(\scrT h)

+ h\| zh\| H1(\Omega ).
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1998 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

Furthermore, notice that the right-hand side of the first inequality in (6.3) can be
written as

h\| u - uh\| L2(\omega ) +B(u - uh)
1/2 + J(uh)

1/2 + [h2\Delta uh + h2f ]H0(\scrT h) + h\| zh\| H1(\Omega )

which is essentially identical to | | | u - uh, zh| | | .
Next, we use the orthogonality and Lemma 4.3 to derive the best approximation

in the norm | | | \cdot | | | . Before we present the lemma, we introduce the notation

\| u\| 
V

 - 1/2
h (\partial \Omega )

= sup
w\in Vh

(u,w)L2(\partial \Omega )

\| w\| H1(\Omega )
.

Lemma 6.3. Suppose that u\in H1(\Omega ) and (uh, zh)\in Vh\times Vh solve (2.1) and (4.3),
respectively. Then there holds

| | | u - uh, zh| | | \lesssim inf
\~u\in Vh

\Bigl( 
| | | u - \~u,0| | | + \| h\nabla (u - \~u)\| L2(\Omega ) + \| h\partial \nu (u - \~u)\| 

V
 - 1/2
h (\partial \Omega )

\Bigr) 
.

(6.4)

Proof. For any \~u\in Vh, we have

| | | uh  - u, zh| | | \leq | | | uh  - \~u, zh| | | + | | | \~u - u,0| | | .

Applying Lemma 4.3 and Galerkin orthogonality (4.4), we get

| | | uh  - \~u, zh| | | \lesssim sup
(v,w)\in Vh\times Vh

g(uh  - \~u, zh, v,w)

| | | v,w| | | 

= sup
(v,w)\in Vh\times Vh

g(u - \~u,0, v,w)

| | | v,w| | | 
.

Applying Cauchy--Schwarz inequality to each term in g(u - \~u,0, v,w), we have

g(u - \~u,0, v,w) = h2(u - \~u, v)L2(w) + b(u - \~u, v) + s(u - \~u, v) + a(u - \~u,w)

\leq | | | u - \~u,0| | | \cdot | | | v,0| | | + a(u - \~u,w).

Notice that for all w \in Vh, there holds

a(u - \~u,w) = (h\nabla (u - \~u), h\nabla w)L2(\Omega )  - h2(P\partial \nu (u - \~u),w)L2(\partial \Omega )

\lesssim \| h\nabla (u - \~u)\| L2(\Omega ) \cdot h\| w\| H1(\Omega ) + h\| P\partial \nu (u - \~u)\| 
V

 - 1/2
h (\partial \Omega )

\cdot h\| w\| H1(\Omega )

\lesssim 
\Bigl( 
\| h\nabla (u - \~u)\| L2(\Omega ) + \| hP\partial \nu (u - \~u)\| 

V
 - 1/2
h (\partial \Omega )

\Bigr) 
| | | 0,w| | | .

Since P is a projection operator, we have

\| hP\partial \nu (u - \~u)\| 
V

 - 1/2
h (\partial \Omega )

\lesssim \| h\partial \nu (u - \~u)\| 
V

 - 1/2
h (\partial \Omega )

.

Thus

g(u - \~u,0, v,w)\lesssim | | | u - \~u,0| | | \cdot | | | v,0| | | 

+
\Bigl( 
\| h\nabla (u - \~u)\| L2(\Omega ) + \| h\partial \nu (u - \~u)\| 

V
 - 1/2
h (\partial \Omega )

\Bigr) 
| | | 0,w| | | 

\lesssim 
\Bigl( 
| | | u - \~u,0| | | + \| h\nabla (u - \~u)\| L2(\Omega ) + \| h\partial \nu (u - \~u)\| 

V
 - 1/2
h (\partial \Omega )

\Bigr) 
| | | v,w| | | .

Hence for any \~u\in Vh,

| | | uh  - u, zh| | | \lesssim | | | u - \~u,0| | | + \| h\nabla (u - \~u)\| L2(\Omega ) + \| h\partial \nu (u - \~u)\| 
V

 - 1/2
h (\partial \Omega )

,

which implies (6.4).

Combining Theorem 6.2 and Lemma 6.3, we can obtain the a priori estimate.
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 1999

Theorem 6.4. Suppose that u \in H1(\Omega ) and (uh, zh) \in Vh \times Vh solves (2.1) and
(4.3), respectively. Then there holds

h\| u - uh\| H1(\Omega ) \lesssim inf
\~u\in Vh

\Bigl( 
| | | u - \~u,0| | | + \| h\nabla (u - \~u)\| L2(\Omega ) + \| h\partial \nu (u - \~u)\| 

V
 - 1/2
h (\partial \Omega )

\Bigr) 
.

Next, we will show that Theorem 6.4 gives the optimal convergence rate.
As in [17, Proposition 3.3], we decompose \partial \Omega in disjoint and shape regular patches

\{ F\} with diameter \Theta (h) thus | F | =\Theta (hd - 1), and to each of them we associate a bulk
patch T that extends \Theta (h) into \Omega such that T \cap \partial \Omega = F , and T \cap T \prime = \emptyset if T \not = T \prime . On
each patch T we can construct a function \varphi F \in H1

0 (T ) with supp\varphi F \subset T satisfying

\| \partial \nu \varphi F \| L\infty (F ) \leq C\Omega ,

where C\Omega is a constant that only depends on \Omega , and\int 
F

\partial \nu \varphi F dx= | F | .

When h is small enough, we can take T \cap \omega = \emptyset for all T and \varphi F \in Vh such that
\varphi F | K \in \BbbP 1 for all K \in \scrT h. A typical patch F and \varphi F constructed on it is illustrated
in Figure 2. We refer to [17, Appendix] for the construction in a more general case.
Then we define an interpolation \pi h : Hm(\Omega )\rightarrow Vh:

\pi hu= ihu+
\sum 
F

\alpha F (u)\varphi F ,

where \alpha F (u) is a functional defined as

\alpha F (u) =
1

| F | 

\int 
F

\partial \nu (u - ihu) dx.

Then we have the following lemma.

Lemma 6.5. Suppose u\in Hm(\Omega ), m\geq 2, and the polynomial order k of the finite
element space Vh satisfies k\geq m - 1, then there holds

h1/2\| h\partial \nu (u - \pi hu)\| L2(\partial \Omega ) \lesssim [u]Hm(\Omega ).

Proof. By the definition of \pi h, there holds

h3/2\| \partial \nu (u - \pi hu)\| L2(\partial \Omega ) \leq h1/2\| h\partial \nu (u - ihu)\| L2(\partial \Omega ) + h3/2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
F

\alpha F (u)\partial \nu \varphi F

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\partial \Omega )

.

xT

T

\partial \Omega 
F

Fig. 2. Patch F on \partial \Omega together with associated bulk patch T . \varphi F | K \in \BbbP 1 for all K \in \scrT h, and
\varphi F (xT ) =\Theta (h) and vanishes on other nodes.
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2000 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

Notice that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
F

\alpha F (u)\partial \nu \varphi F

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\partial \Omega )

=

\Biggl( \sum 
F

\alpha F (u)\partial \nu \varphi F ,
\sum 
F \prime 

\alpha F \prime (u)\partial \nu \varphi F \prime 

\Biggr) 
L2(\partial \Omega )

=
\sum 
F

\sum 
F \prime 

\alpha F (u)\alpha F \prime (u) (\partial \nu \varphi F , \partial \nu \varphi F \prime )L2(\partial \Omega ) =
\sum 
F

\alpha 2
F (u)\| \partial \nu \varphi F \| 2L2(F )

\leq 
\sum 
F

C\Omega 

| F | 2

\biggl( \int 
F

\partial \nu (u - ihu) dx

\biggr) 2

\cdot | F | \leq 
\sum 
F

C\Omega 

| F | 

\int 
F

1F dx

\int 
F

| \partial \nu (u - ihu)| 2dx

\lesssim \| \partial \nu (u - ihu)\| 2L2(\partial \Omega ).

Thus

h3/2\| \partial \nu (u - \pi hu)\| L2(\partial \Omega ) \lesssim h1/2\| h\partial \nu (u - ihu)\| L2(\partial \Omega )

\lesssim [u - ihu]H1(\scrT h) + [u - ihu]H2(\scrT h)

\lesssim \| u - ihu\| Hm(\scrT h) \lesssim [u]Hm(\scrT h).

Here the last inequality follows from the trace inequality and (6.2).

Proposition 6.6. Suppose u \in Hm(\Omega ), m \geq 2, and the polynomial order k of
the finite element space Vh satisfies k\geq m - 1, then there holds

\| h\partial \nu (u - \pi hu)\| V  - 1/2
h (\partial \Omega )

\lesssim [u]Hm(\scrT h).(6.5)

Proof. By definition,

\| h\partial \nu (u - \~u)\| 
V

 - 1/2
h (\partial \Omega )

= sup
z\in Vh

(h\partial \nu (u - uh), z)L2(\partial \Omega )

\| z\| H1(\Omega )
.

By trace inequality, for all z \in Vh, there holds z| \partial \Omega \in L2(\partial \Omega ). Then we define an
operator \pi 0

h :L2(\partial \Omega )\rightarrow L2(\partial \Omega ):

\pi 0
h(z) =

\sum 
F

\biggl( 
1

| F | 

\int 
F

z dx

\biggr) 
1F .

Notice \int 
\partial \Omega 

z  - \pi 0
h(z) = 0.

Applying the Poincar\'e's inequality on each F , we have

\| z  - \pi 0
h(z)\| 2L2(\partial \Omega ) \lesssim h2\| \nabla \partial z\| 2L2(\partial \Omega ) \lesssim h2\| \nabla z\| 2L2(\partial \Omega ) \lesssim 

\sum 
K\in \scrT h

h2\| \nabla z\| 2L2(\partial K)

\lesssim h
\sum 

K\in \scrT h

\Bigl( 
\| \nabla z\| 2L2(K) + \| hD2z\| 2L2(K)

\Bigr) 
\lesssim h\| \nabla z\| 2L2(\Omega ).

The last inequality follows from the discrete inverse inequality (4.2). Since\int 
F

\partial \nu (u - \pi hu)dx= 0
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 2001

for all F , there holds

(h\partial \nu (u - \pi hu), z)L2(\partial \Omega ) = (h\partial \nu (u - \pi hu), z  - \pi 0
h(z))L2(\partial \Omega )

\lesssim h\| \partial \nu (u - \pi hu)\| L2(\partial \Omega ) \cdot \| z  - \pi 0
h(z)\| L2(\partial \Omega )

\lesssim h3/2\| \partial \nu (u - \pi hu)\| L2(\partial \Omega ) \cdot \| z\| H1(\Omega ).

Then (6.5) follows immediately from Lemma 6.5.

Proposition 6.7. Suppose u \in Hm(\Omega ), m \geq 2, and the polynomial order k of
the finite element space Vh satisfies k\geq m - 1, then there holds

\| h\nabla (u - \pi hu)\| L2(\Omega ) \lesssim [u]Hm(\scrT h).

Proof. By definition

\| h\nabla (u - \pi hu)\| L2(\Omega ) \leq \| h\nabla (u - ihu)\| L2(\Omega ) +

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| h\sum 
F

\alpha F (u)\nabla \varphi F

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

.

Notice

\| h\nabla (u - ihu)\| L2(\Omega ) \leq \| u - ihu\| H2(\scrT h) \lesssim [u]H2(\scrT h).

According to [17, eq. (3.2)], there holds

\| \nabla \varphi F \| L2(\Omega ) \lesssim h
d
2 .

Thus\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
F

\alpha F (u)\nabla \varphi F

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega )

\lesssim 
\sum 
F

\alpha 2
F (u)\| \nabla \varphi F \| 2L2(\Omega ) \lesssim 

\sum 
F

hd\alpha 2
F (u)

\lesssim hd
\sum 
F

1

| F | 2

\biggl( \int 
F

\partial \nu (u - ihu) dx

\biggr) 2

\lesssim hd
\sum 
F

1

| F | 

\int 
F

| \partial \nu (u - ihu)| 2 dx

\lesssim hd \cdot h1 - d
\sum 
F

\int 
F

| \partial \nu (u - ihu)| 2 dx\lesssim h\| \partial \nu (u - ihu)\| 2L2(\partial \Omega ).

Applying Lemma 6.5, we have

h

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
F

\alpha F (u)\nabla \varphi F

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

\lesssim h
1
2 \| h\partial \nu (u - ihu)\| L2(\partial \Omega ) \lesssim [u]Hm(\scrT h).

Proposition 6.8. Suppose u \in Hm(\Omega ), m \geq 2, and the polynomial order k of
the finite element space Vh satisfies k\geq m - 1, then there holds

| | | u - \pi hu,0| | | \lesssim [u]Hm(\scrT h).
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2002 ERIK BURMAN, LAURI OKSANEN, AND ZIYAO ZHAO

Proof. By definition,

| | | u - \pi hu,0| | | \lesssim B(u - \pi hu)
1/2 + h\| u - \pi hu\| L2(\omega ) + S(u - \pi hu)

1/2.

Since for the patch T introduced before Lemma 6.5 there holds T \cap \omega = \emptyset ,

\| u - \pi hu\| L2(\omega ) = \| u - ihu\| L2(\omega ) \lesssim \| u - ihu\| Hm(\scrT h) \lesssim [u]Hm(\scrT h).

And there holds

B(u - \pi hu)
1/2 = h

1
2 \| hQ\partial \nu (u - \pi hu)\| L2(\partial \Omega ) \lesssim h

1
2 \| h\partial \nu (u - \pi hu)\| L2(\partial \Omega )

\leq [u - \pi hu]H1(\scrT h) + [u - \pi hu]H2(\scrT h).

Notice D2\varphi F = 0, then there holds

[u - \pi hu]H2(\scrT h) = [u - ihu]H2(\scrT h).(6.6)

Applying Proposition 6.7, we have

B(u - \pi hu)
1/2 \lesssim [u]Hm(\scrT h) + \| u - ihu\| Hm(\scrT h) \lesssim [u]Hm(\scrT h).

Finally, according to (4.1), (6.6), and Proposition 6.7,

S(u - \pi hu)
1/2 \lesssim [u - \pi hu]H1(\scrT h) + [u - \pi hu]H2(\scrT h)

\lesssim \| u - ihu\| Hm(\scrT h) \lesssim [u]Hm(\scrT h).

Combining Theorem 6.4 and the above three propositions, we can conclude the
following corollary.

Corollary 6.9. Suppose u \in Hm(\Omega ) and (uh, zh) \in Vh \times Vh solves (2.1) and
(4.3), respectively. Here m\geq 2 and the polynomial order k of the finite element space
Vh satisfies k\geq m - 1. Then there holds

\| u - uh\| H1(\Omega ) \lesssim hm - 1\| Dmu\| L2(\Omega ).

7. Perturbation analysis. Consider the finite element method with perturba-
tion q\delta \in L2(\omega ),

g(u, z, v,w) = h2(f,w)L2(\Omega ) + h2(\beta ,w)L2(\partial \Omega ) + h2(q+ q\delta , v)L2(\omega )

+ b(\beta , v) + (h2f,h2\Delta v)H0(\scrT h),
(7.1)

where \| q\delta \| L2(\omega ) \leq \delta . We have the following theorem.

Theorem 7.1. Suppose \Omega is convex, u\in H2(\Omega ) satisfies\Biggl\{ 
 - \Delta u= f in \Omega ,

u= q in \omega ,

and there exists p\in \scrV N +\beta such that \| \partial \nu u - p\| H1/2(\partial \Omega ) \leq \delta . Let (uh, zh)\in Vh\times Vh be
the solution of (7.1) with k= 1 in Vh. Then there holds

\| u - uh\| H1(\Omega ) \lesssim h\| D2u\| L2(\Omega ) + \delta .(7.2)
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 2003

Proof. Let u\ast \in H1(\Omega ) solve\left\{     
 - \Delta u\ast = f in \Omega ,

\partial \nu u
\ast = p on \partial \Omega ,\int 

\omega 
u\ast dx=

\int 
\omega 
u dx,

and u\delta = u - u\ast . Notice that u\delta \in H1
\omega (\partial \Omega ) and satisfies\Biggl\{ 

 - \Delta u\delta = 0 in \Omega ,

\partial \nu u
\delta = \partial \nu u - p on \partial \Omega .

Denote \partial \nu u - p by p\delta . According to the elliptic regularity [32, Corollary 2.2.2.6] and
Lemma 3.1, there holds

\| u\delta \| H2(\Omega ) \lesssim \| u\delta \| L2(\Omega ) + \| p\delta \| H1/2(\partial \Omega ) \lesssim \| q\delta \| L2(\omega ) + \| p\delta \| H1/2(\partial \Omega ) \lesssim \delta .

Since \partial \nu u
\ast \in \scrV N + \beta , we can obtain the finite element approximation (u\ast h, z

\ast 
h) of u\ast 

by the method (4.3). Then Corollary 6.9 says that

\| u\ast  - u\ast h\| H1(\Omega ) \lesssim h\| D2u\ast \| L2(\Omega ) \lesssim h\| D2u\| L2(\Omega ) + h\| D2u\delta \| L2(\Omega )

\lesssim h\| D2u\| L2(\Omega ) + h\delta 

and

\| u - uh\| H1(\Omega ) \leq \| u\delta \| H1(\Omega ) + \| u\ast  - u\ast h\| H1(\Omega ) + \| u\ast h  - uh\| H1(\Omega )

\lesssim \delta + h\| D2u\| L2(\Omega ) + \| u\ast h  - uh\| H1(\Omega ).

Notice that

g(uh  - u\ast h, zh  - z\ast h, v,w) = h2(q\delta + u\delta , v)L2(\omega ).

By Lemma 4.3, we have

| | | uh  - u\ast h, zh  - z\ast h| | | \lesssim sup
(v,w)\in Vh

g(uh  - u\ast h, zh  - z\ast h, v,w)

| | | v,w| | | 

\lesssim h sup
(v,w)\in Vh

(q\delta + u\delta , v)L2(\omega )

\| v\| L2(\omega )
\lesssim h(\| q\delta \| L2(\omega ) + \| u\delta \| L2(\omega ))\lesssim h\delta .

Combining Theorem 3.3 and Lemma 4.1, there holds

\| uh  - u\ast h\| H1(\Omega ) \lesssim h - 1| | | uh  - u\ast h,0| | | \lesssim \delta ,

which concludes (7.2)

8. Numerical results. In order to simplify the implementation of the finite
element method, in the numerical examples below, we take \Omega = [0,1]2 and \omega =
[0.1,0.9]\times [0.25,0.75]. We denote \Gamma \in \partial \Omega to be the top edge of the unit square, that is

\Gamma = \{ (x, y) | 0<x< 1 and y= 1\} ,

and let \scrV N be the subspace of L2(\partial \Omega ) which is spanned by the basis \{ \phi n\} , 1\leq n\leq N ,
where \phi n is

\surd 
2cos(n\pi x) on \Gamma and vanishes on \partial \Omega \setminus \Gamma . Furthermore, the polynomial

order of the finite element space Vh is one.
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Our first computational example studies the effect of the stabilizing term s in the
computations. Without making any theoretical difference, we rescale s by a positive
constant \gamma > 0. Choosing N = 8 for space \scrV N , and the H1(\Omega ) error for the artificial
solution

u(x, y) = (ey  - y) cos(\pi x)(8.1)

as a function of the mesh parameter h is illustrated for different values of \gamma in Fig-
ure 3a. It shows that the numerical results improve as \gamma \rightarrow 0, which implies that in
this example the stabilizing term s can be omitted as the method still converges with
the optimal rate without it.

Next, we study the effect of the dimension N of \scrV N in the computations, the
H1(\Omega ) for u(x, y) in (8.1) as a function of the mesh size h is shown for different N
in Figure 3b. It appears that when N is large enough, merely increasing N cannot
affect the results.

Our second example illustrates the error estimate with perturbations. Taking

\~u(x, y) = (ey  - y) cos(\pi x) + 0.025(ey  - y) cos(2\pi x).

Figure 4 shows the stagnation of the convergence for N = 1 but not for N = 2 because
\partial \nu \~u| \partial \Omega \in \scrV 2, which is compatible with our theory.

(a) (b)

Fig. 3. The error \| u - uh\| H1 as a function of mesh size h with the reference rate h presented
by the dash line. (a) uh is computed with parameter \gamma = 1, 10 - 1, 10 - 2, 0 with triangles pointing
down, up, left, and right, respectively. (b) uh is obtained with different \scrV N where N = 1, 8, 16, 64
with triangles pointing down, up, left, and square, respectively.

2×10−3 3×10−3 4×10−3 6×10−3

10−2

Fig. 4. The error \| u - uh\| H1 as a function of mesh size h. Here N = 1,2 with triangles pointing
down and up. Reference rate h is presented by the dash line.
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UC WITH FINITE DIMENSIONAL NEUMANN TRACE 2005

Then we study the effect of random perturbations of data. To this end, we denote
the right-hand side of (4.3) by F (v,w). Instead of solving (4.3), we numerically solve

g(u, z, v,w) = F (v,w) + \varepsilon \delta 
| F (v,w)| 

| \delta | 
,

where the random variables \delta \sim \scrN (0,1) and \scrN (0,1) represent the standard normal
distribution. Figure 5 shows the stagnation of the convergence for \varepsilon \not = 0 compared
with the consistent convergence without white noise.

To close this section, we define the ratio

C(u) =
\| u - uh\| H1(\Omega )

h\| u\| H2(\Omega )
,

and consider the functions

uN (x, y) = (ey  - y) cos(N\pi x), N = 1, 2, 3, 4.(8.2)

We use both the first-order and second-order finite element methods to compute uNh.
The H1(\Omega ) errors between uN and uNh with first-order and second-order methods
are plotted in Figures 6a and 6b, respectively.

Fig. 5. The error \| u - uh\| H1 as a function of mesh size h. Here \varepsilon = 0.12,0.06,0 with triangles
pointing down, up, and left. Reference rate h is presented by the dash line.

(a) (b)

Fig. 6. (a) The error \| uN  - uNh\| H1(\Omega ) as a function of mesh size h where uNh is computed
by first-order method. Here N = 1, 2, 3, 4 with the triangles pointing down, up, left, and right,
respectively. Reference rate h is dashed. (b) The error \| uN  - uNh\| H1(\Omega ) as a function of mesh size

h2 where uNh is computed by second-order method. Here N = 1, 2, 3, 4 with the triangles pointing
down, up, left, and right, respectively. Reference rate h2 is dashed.
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1 2 3 4 5
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fig. 7. The ratio C(u) as a function of N . Here u is as in (8.1) and (8.2) with triangles pointing
down and up, respectively.

Besides, the ratio C(u) for u as in (8.1), and for uN is shown in Figure 7 as a func-
tion of N . For any u, the ratio C(u) gives a lower bound for the constant C > 0 in our
a priori estimate. It appears that the constant grows as a function of N , as expected.
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