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A B S T R A C T

Climate change and extreme weather events increasingly threaten urban transportation systems, challenging 
their ability to maintain essential mobility services. Current analytical approaches primarily focus on individual 
modes or simplified interactions, failing to capture the complex, non-equilibrium dynamics that emerge when 
multiple transportation modes interact under stress. This research introduces a novel Multi-modal Visibility 
Graph Irreversibility (MmVGI) framework for analysing transportation system behaviour during extreme 
weather events. By integrating concepts from non-equilibrium dynamics with visibility graph analysis, our 
approach quantifies complex interactions between different transportation modes and reveals the underlying 
mechanisms driving system non-equilibrium characteristics. Through a case study in the City of London during 
an extreme rainfall event, we demonstrate that transportation system adaptation exhibits clear hierarchical 
patterns across different road types. While primary roads maintain stable dynamics dominated by motorised 
transport, secondary networks show complex patterns of modal interaction, with cycling emerging as a crucial 
component in system adaptation. The strong correlation between unique and combined irreversibility mea
surements provides evidence for genuine higher-order interactions that cannot be reduced to simpler modal 
combinations. These findings advance both theoretical understanding of urban system dynamics and practical 
approaches to transportation management, offering valuable insights for urban planners and policymakers in 
developing more resilient, adaptive transportation systems for future climate challenges.

1. Introduction

Climate change has emerged as one of the most pressing challenges 
facing modern cities, with extreme weather events becoming increas
ingly frequent and intense [1,2]. Among various urban infrastructure 
systems, surface transportation networks are particularly vulnerable to 
climate-related disruptions, yet they are critical for maintaining urban 
mobility and economic activities [3]. Understanding how multi-modal 
surface transportation systems - including buses, private cars, bicycles, 
and pedestrians - respond to and recover from extreme weather events 
has become crucial for urban resilience. The complexity of multi-modal 
surface transportation systems under extreme conditions stems from 
their intricate patterns of interaction and interdependence [4]. During 
severe weather events, these interactions become more pronounced as 
travellers adapt their mode choices and routes in response to 

disruptions. For instance, when heavy rainfall affects road conditions, 
the interactions between different modes intensify as they compete for 
limited usable road space, potentially leading to system-wide instability 
[5]. Traditional approaches to analysing transportation systems behav
iours have primarily focused on normal operating conditions, employing 
static network properties or simplified flow models [6]. However, these 
methods prove inadequate when studying system behaviour under 
extreme weather conditions, where non-linear interactions and complex 
adaptation patterns dominate [7–9]. Transportation networks during 
extreme events operate far from equilibrium, continuously dissipating 
energy and producing entropy as they struggle to maintain functionality 
[10]. The second law of thermodynamics provides a fundamental 
framework for understanding such non-equilibrium systems. In the 
absence of entropy sinks, a system’s average entropy increases as time 
flows forward [11,12]. This principle becomes particularly relevant in 
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transportation systems under stress, where the detailed balance condi
tion breaks down [13], leading to asymmetric transition probabilities 
between system states. The entropy production rate (EPR) emerges as a 
natural measure of the degree of non-equilibrium [14,15], offering in
sights into system stability and potential vulnerabilities during extreme 
events.

Despite these advances, several critical research gaps remain in our 
understanding of transportation systems under extreme conditions. 
Current approaches to analysing system behaviour during extreme 
weather events primarily focus on individual modes [16] or simplified 
interactions [17], failing to capture the complex, non-linear dynamics 
that emerge when multiple modes interact under stress. Furthermore, 
while existing research has examined transportation systems under 
extreme conditions, these studies have not fully revealed the funda
mental non-equilibrium characteristics that drive system behaviour 
during such events [3,18,19]. Understanding these non-equilibrium 
properties is crucial because they represent the underlying mecha
nisms through which transportation systems adapt to and recover from 
extreme disruptions. Current approaches typically focus on describing 
observed phenomena rather than uncovering the physical principles that 
govern system evolution during stress [20,21]. Thus, a fundamental gap 
exists in understanding how irreversibility manifests across different 
organisational levels in transportation systems, particularly during 
extreme weather events. To address these gaps, this study develops a 
comprehensive framework based on non-equilibrium dynamics for 
analysing multi-modal transportation systems under extreme weather 
conditions. We introduce the Multi-modal Visibility Graph Irrevers
ibility (MmVGI) framework, which enables the quantification of com
plex interactions between different transportation modes during 
extreme events. By mapping multi-modal traffic patterns to visibility 
graphs, our approach captures both the temporal evolution of traffic 
states and the spatial organisation of modal interactions. Additionally, 
we develop methods for measuring unique contributions to system 
irreversibility, enabling the identification of genuine higher-order in
teractions that cannot be reduced to simpler modal combinations.

The remainder of this paper is organised as follows. Section 2 reviews 
relevant literature on transportation system analysis, non-equilibrium 
dynamics, and their applications. Section 3 presents our theoretical 
foundation and methodology for quantifying multimodal irreversibility. 
Section 4 demonstrates the application of our approach through real- 
world case studies. Section 5 discusses the implications of our findings 
and their practical significance. Finally, Section 6 concludes the paper 
with a summary of key contributions and future research directions.

2. Literature review

2.1. Transportation system dynamics

The theoretical foundations of traffic flow analysis were established 
in the 1950s and 1960s through seminal works by Lighthill and 
Whitham and Richards, who developed the fundamental hydrodynamic 
theory of traffic flow [22]. These studies introduced wave propagation 
concepts to traffic analysis, establishing the LWR model that remains 
influential today. Subsequent work by Greenshields provided empirical 
foundations for understanding the relationship between traffic density 
and flow [23]. During the 1970s and 1980s, researchers expanded these 
foundations to incorporate network-level analysis. Daganzo [24] 
developed the cell transmission model, while Newell [25] introduced 
simplified theories of traffic flow that balanced theoretical rigor with 
practical applicability. These developments enabled better understand
ing of network-wide traffic phenomena, though they primarily focused 
on vehicular traffic in isolation. The 1990s saw increasing attention to 
multi-modal transportation analysis. Ben-Akiva and Lerman [26] 
developed comprehensive frameworks for analysing travel behaviour 
across different modes, while cellular automata models [27] is intro
duced to represent multiple vehicle types. These studies began to 

address the complexity of modal interactions, though often under 
simplified assumptions. Recent decades have witnessed significant ad
vances in understanding transportation system dynamics. Mishra et al. 
[28] developed methods for analysing cross-modal interactions in urban 
networks, while Xiong et al. [29], Gallotti and Barthelemy [30] explored 
the dynamics of mode switching behaviour. Zhang et al. [31] introduced 
frameworks for studying system-wide responses to disruptions, partic
ularly focusing on the propagation of congestion across different modes. 
Studies of transportation system resilience have emerged as a crucial 
research direction. Sohouenou et al. [32] and Bucar et al. [33] analysed 
system responses to extreme events, while Huang [34] developed 
frameworks for quantifying system adaptability. These studies have 
highlighted the importance of understanding both structural and dy
namic aspects of transportation system resilience.

However, several significant limitations in current approaches have 
become apparent. First, while existing models can effectively describe 
individual mode behaviour, they struggle to capture the complex in
teractions between different modes, particularly during disruptions 
[35–37]. As noted by Lynn et al. [38], traditional approaches often fail 
to account for the non-linear nature of these interactions. In this context, 
nonlinearity refers both to disproportionate system responses, such as 
tipping points in congestion [39,40], and more importantly, to emergent 
higher-order effects where the dynamics of a multi-modal group cannot 
be explained by simply summing its constituent pairwise interactions 
[41]. Second, most existing frameworks assume near-equilibrium con
ditions or simple steady states. The work of Borowska-Stefańska et al. 
[13] highlighted how these assumptions break down during extreme 
events, when transportation systems operate far from equilibrium. Pan 
et al. [42] and Gao et al. [43] demonstrated the need for new theoretical 
approaches that can better handle non-equilibrium dynamics. Third, 
there remains a significant gap between theoretical models and practical 
applications. While researchers like Assaad [44] have attempted to 
bridge this gap, the complexity of real-world transportation systems 
often exceeds the capabilities of current analytical frameworks. These 
frameworks primarily include large-scale simulation models (e.g., 
agent-based models) [45] and equilibrium-based Dynamic Traffic 
Assignment (DTA) models [46]. Despite their power, their reliance on 
pre-defined behavioural rules and, most critically, on near-equilibrium 
assumptions, limits their ability to quantify the fundamental 
non-equilibrium dynamics that dominate during severe, transient dis
ruptions. This limitation becomes particularly apparent when studying 
system behaviour under stress [47].

Recent efforts by Song et al. [48] and Duan et al. [49] have begun to 
address these limitations by developing more comprehensive frame
works that integrate multiple analytical approaches. However, a com
plete understanding of transportation system dynamics, particularly 
under extreme conditions, remains elusive. These gaps highlight the 
need for new theoretical frameworks that can better capture the 
complexity of modern multi-modal transportation systems while 
remaining practically applicable.

2.2. Non-equilibrium dynamics theory

The study of non-equilibrium dynamics has evolved significantly 
since Onsager’s pioneering work in the 1930s. Onsager established the 
fundamental reciprocal relations in near-equilibrium systems, providing 
the first rigorous framework for understanding non-equilibrium pro
cesses [50]. This foundation was extended by Prigogine [51] in the 
1960s, who introduced the concept of dissipative structures and devel
oped systematic approaches to analysing systems far from equilibrium. 
Significant advances in EPR (Entropy Production Rate) theory emerged 
in the 1990s through the work of Evans et al. [52] and Gallavotti and 
Cohen [53], who developed the fluctuation theorem for non-equilibrium 
steady states. These developments were complemented by Jarzynski 
[11], who established the relationship between non-equilibrium work 
and equilibrium free energy differences. Crooks further extended these 
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concepts, providing a more general framework for understanding 
non-equilibrium processes [54]. The application of these theories to 
complex systems has seen remarkable progress. Seifert [55] developed 
stochastic thermodynamics, providing tools for analysing small systems 
subject to thermal fluctuations. Van den Broeck and Esposito extended 
these approaches to coupled systems and developed frameworks for 
analysing information flows in non-equilibrium processes [56,57]. In 
recent years, researchers have focused increasingly on applying 
non-equilibrium concepts to real-world systems. Skinner et al. [58] 
developed methods for measuring entropy production in biological 
systems, while Nartallo-Kaluarachchi et al. [14] applied these ap
proaches to neuroscience fields. These studies have demonstrated the 
broad applicability of non-equilibrium frameworks while also revealing 
the challenges in adapting them to specific contexts.

However, several significant limitations in current approaches have 
become apparent. First, most applications of non-equilibrium theory 
focus on relatively simple systems or idealised models. The work of Farsi 
et al. [59] highlighted the difficulties in extending these frameworks to 
complex, real-world systems with multiple interacting components. 
Second, while theoretical frameworks exist for analysing steady-state 
behaviour, understanding transient dynamics and responses to 
extreme perturbations remains challenging [60]. The gap between 
theoretical developments and practical applications is particularly 
evident in transportation research. While researchers like Li et al. [61] 
have attempted to apply non-equilibrium concepts to traffic flow anal
ysis, and Zhou et al. [62] have explored entropy production in trans
portation networks. However, their application to large-scale 
transportation systems, particularly under extreme conditions, remains 
limited. These gaps highlight the need for new theoretical approaches 
that can better bridge the gap between fundamental non-equilibrium 
physics and the practical challenges of analysing complex trans
portation systems.

2.3. Multilevel interaction analysis methods

Recent decades have witnessed extensive research on analysing 
multilevel interactions in complex systems. Scholars in network science 
have made significant contributions to understanding the structural 
aspects of multilevel systems. Watts and Strogatz [63] pioneered the 
study of small-world networks, while Barabási and Albert [64] intro
duced scale-free network concepts, laying the groundwork for analysing 
complex network structures. Building on these foundations, Newman 
[65] and others developed methods for community detection and hier
archical structure analysis in networks, enabling deeper insights into 
system organisation across multiple scales. The application of network 
analysis to transportation systems has evolved significantly. Gallotti and 
Barthelemy [30] developed multilayer network models for urban 
transportation, while Wang et al. [66] extended these approaches to 
incorporate temporal dynamics. These studies revealed important pat
terns in mode interactions, though they primarily focused on structural 
rather than dynamic aspects. Lin et al. [3] integrated network theory 
with traffic flow analysis, providing new insights into how network to
pology influences system performance. Time series analysis has emerged 
as another crucial approach for studying multilevel interactions. 
Traditional methods based on correlation analysis have been enhanced 
by more sophisticated techniques. Shamsan et al. [67] developed 
nonlinear time series analysis methods, while Lynn et al. [68] and Braun 
et al. [69] introduced recurrence quantification analysis, providing tools 
for identifying complex temporal patterns. In transportation research, 
these methods have been applied by Laval [70], Zeng and Tang [71]to 
analyse traffic flow dynamics. A significant advance in the field came 
with the development of multiscale analysis techniques. Lacasa et al. 
[72] introduced multiscale entropy analysis, while Smith et al. [73] 
developed wavelet-based methods for analysing hierarchical temporal 
structures. These approaches have been adapted to transportation 
studies by researchers such as Liu et al. [74], who studied the temporal 

complexity of airport air traffic flow and Harrou et al. [75], who ana
lysed traffic patterns across multiple time scales.

However, several limitations in current approaches have become 
apparent. First, most existing studies focus on either spatial or temporal 
aspects in isolation, failing to capture the complex spatiotemporal in
teractions characteristic of transportation systems. Second, while 
methods exist for analysing individual modes or simple mode pairs, 
techniques for understanding higher-order interactions among multiple 
modes remain underdeveloped. Third, current approaches struggle to 
account for the fundamental non-equilibrium nature of transportation 
systems, particularly under extreme conditions. The integration of 
multiple analytical approaches remains a significant challenge. While 
researchers have attempted to combine network and time series analysis 
[76], and Yin et al. [77] have worked to incorporate multiscale per
mutation mutual information with traditional traffic flow analysis, a 
comprehensive framework that can capture all relevant aspects of 
multilevel interactions in transportation systems remains elusive. This 
limitation becomes particularly apparent when studying system 
behaviour under stress, where existing methods often fail to capture the 
complex adaptation patterns that emerge. Thus, these gaps in current 
methodological approaches highlight the need for new frameworks that 
can better capture the complexity of multilevel interactions in trans
portation systems.

Through a comprehensive review of existing literature across trans
portation dynamics, non-equilibrium theory, and multilevel analysis 
methods, we identify three fundamental research gaps that warrant 
investigation. 

1. Non-equilibrium Nature of Transportation Systems: Current 
research has not fundamentally revealed what causes the non- 
equilibrium characteristics in transportation systems during 
extreme events. While studies have separately explored trans
portation networks and non-equilibrium theory, they have failed to 
establish the underlying mechanisms that drive transportation sys
tems away from equilibrium. Understanding these mechanisms is 
crucial because it would enable us to quantitatively measure and 
evaluate how different components of the transportation system 
contribute to its overall non-equilibrium behaviour.

2. Higher-order Modal Interaction Analysis: Existing analytical 
frameworks fail to capture the full complexity of multi-modal in
teractions in transportation systems. Most studies focus on analysing 
individual modes or simple pairwise relationships, overlooking the 
critical higher-order interactions that emerge during extreme con
ditions. This limitation is particularly significant because trans
portation system adaptation often involves complex, synchronised 
changes across multiple modes that cannot be understood through 
simplified analysis of individual components or mode pairs.

3. Unique Contribution Identification: Current methodological ap
proaches lack the capability to distinguish between combined effects 
and unique contributions in multi-modal interactions. While re
searchers have observed complex behavioural patterns in trans
portation systems during extreme events, existing methods cannot 
effectively identify which interactions represent genuine higher- 
order effects versus those that merely reflect the accumulation of 
simpler interactions. This methodological gap has prevented a 
deeper understanding of how different transportation modes truly 
influence each other during system stress.

These research gaps highlight the need for a new theoretical and 
analytical framework that can reveal the fundamental causes of non- 
equilibrium behaviour while capturing the complex nature of multi- 
modal interactions. Such a framework must be capable of not only 
measuring overall system behaviour but also identifying genuine higher- 
order interactions that emerge during extreme conditions, thereby 
capturing the complex spatiotemporal dynamics of multi-modal 
adaptation. This understanding is crucial for developing more 
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effective strategies to enhance transportation system resilience in the 
face of increasing climate-related challenges.

3. Methodology

The complex interactions within multi-modal transportation systems 
during extreme weather events require a comprehensive analytical 
framework that can capture both their non-equilibrium characteristics 
and multi-level modal interactions. In this section, we present our 
methodological approach that progresses from theoretical foundations 
to practical measurements. First, we establish the theoretical basis for 
analysing transportation systems as non-equilibrium systems. Trans
portation networks under extreme weather conditions exhibit clear non- 
equilibrium characteristics, manifested through multivariate time series 
data across different modes. The irreversibility of these time series 
serves as a natural measure of the system’s deviation from equilibrium, 
providing a quantitative approach to assess system behaviour during 
extreme events.

Building on this theoretical foundation, we develop a three-step 
analytical process to quantify system irreversibility and modal in
teractions, as illustrated in Fig. 1. The first step involves constructing 
visibility graphs from multivariate time series data. For each trans
portation mode, we map temporal patterns to network structures where 
nodes represent time points and edges capture visibility relationships 
between these points (Fig. 1a). This transformation preserves crucial 
dynamic features while enabling network-based analysis. The second 
step focuses on analysing the degree distribution patterns within these 
visibility graphs. We compute both in-degree and out-degree distribu
tions for individual modes and their combinations. These distributions 
capture the fundamental asymmetry in system evolution, reflecting how 
different modes interact and influence each other over time. As shown in 
Fig. 1b, the distinctly different patterns between in-degree and out- 
degree distributions provide evidence of system irreversibility. The 
final step quantifies system irreversibility through Jensen-Shannon 
divergence (JSD) calculations on these distributions. We measure irre
versibility at multiple organisational levels, from individual modes to 
higher-order modal combinations. This multi-level analysis reveals both 

combined effects and unique contributions of different modal in
teractions. Fig. 1c illustrates how these measurements distinguish be
tween overall system behaviour (combined measurements) and genuine 
higher-order interactions (unique contributions). Through this meth
odological framework, we can systematically analyse how different 
transportation modes contribute to system non-equilibrium character
istics and reveal the complex adaptation patterns that emerge during 
extreme weather events.

3.1. Theoretical foundations

3.1.1. Applicability of non-equilibrium dynamics to urban transportation 
systems

Urban transportation systems are archetypal complex adaptive sys
tems, exhibiting intricate patterns of behaviour that emerge from the 
interactions of individual components [78,79]. Their evolution is con
strained by small-world and scale-free network topologies [40], which 
support the emergence of non-trivial collective dynamics where local 
interactions between individual vehicles aggregate into macroscopic 
traffic patterns that cannot be predicted from individual behaviours 
alone. Small perturbations such as localised weather disruptions can 
cascade through the network, creating system-wide effects that are 
disproportionate to the initial disturbance, exhibiting the characteristic 
sensitivity of far-from-equilibrium systems. A deeper commonality lies 
in the path-dependent or memory effects inherent in the evolution of 
transportation systems [80–82]. During extreme events, the system’s 
future evolution depends not only on its current state but also strongly 
on the historical trajectory it took to arrive there. This is formally known 
as a non-Markovian stochastic process, which has been approved by 
previous studies [83–87]. For example, a traffic jam that formed due to a 
slow, gradual accumulation of vehicles will dissipate with very different 
dynamics than a jam that formed instantaneously from a multi-lane 
accident [87]. This memory is a key characteristic that distinguishes 
traffic flow from simple, memoryless Markovian processes, a complexity 
that has been increasingly documented in various traffic flow studies 
[88,89].

This path-dependent, directional evolution in transportation systems 

Fig. 1. Illustration of the MmVGI Framework. (a) illustrates the visibility graph construction process, showing the transformation of temporal data into network 
structures for two distinct transportation modes. The upper histogram displays the degree distribution characteristics for both modes, while the lower network 
visualisations demonstrate how temporal patterns are mapped to visibility relationships. (b) presents the probability distributions of in-degree and out-degree for 
both modes individually (shown in 2D plots) and their joint distributions (shown in 3D surface plots), revealing the asymmetric evolution patterns in the system. (c) 
compares the combined and unique irreversibility measurements across different organisational levels (K = 1 and K = 2), using color-coded heatmaps to represent 
the strength of irreversibility values.
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manifests a fundamental concept that appears across diverse complex 
systems: the ’arrow of time’ that Eddington described to characterize 
processes with inherent directional bias [90]. The mathematical 
framework for understanding such directional evolution can be traced to 
statistical mechanics and information theory, where entropy serves as a 
measure of system asymmetry and uncertainty [12,58]. Building on the 
conceptual foundation established by the second law of thermody
namics for characterizing irreversible processes [91,92], transportation 
networks during extreme events exhibit preferential directions in their 
evolution [93–96] that can be quantified using corresponding 
information-theoretic entropy measures [97]. In transportation systems, 
this directional bias manifests as asymmetric probabilistic pathways - 
the transition from normal flow to congestion follows different statisti
cal dynamics than the recovery process, even though both may ulti
mately reach similar states [88,98]. This asymmetry is fundamentally 
information-theoretic: while a traffic jam may eventually dissipate and 
the system may return to baseline conditions, the statistical patterns 
governing jam formation and dissipation are distinctly different, 
creating measurable directional characteristics in the system’s evolution 
[88,99,100]. The ’irreversibility’ and ’entropy’ in this research quantify 
therefore represent information-theoretic measures of statistical asym
metry in probabilistic transitions, borrowing the mathematical structure 
from thermodynamics but applying it to quantify information rather 
than energy dissipation. This analogy is not merely metaphorical—it 
points to deeper physical principles that govern systems operating far 
from equilibrium. The core mechanism underlying these irreversible 
behaviours is the systematic violation of detailed balance [101,102]. In 
equilibrium systems, microscopic transitions are statistically reversi
ble—the probability of transitioning from state A to state B is balanced 
by the probability of transitioning from B back to A, mathematically 
expressed as: 

P
(
Xi→Xj

)
⋅Peq(Xi) ≈ P

(
Xj→Xi

)
⋅Peq

(
Xj
)

(1) 

where Peq(Xi) represents the equilibrium probability distribution of 
traffic states [55]. However, under the significant stress of an extreme 
event, this fundamental balance is broken systematically in a trans
portation network, creating net probability fluxes between different 
system states and generating measurable temporal asymmetry in the 
system’s evolution [103,104]. This systematic violation of detailed 
balance marks the system’s transition from an equilibrium state, char
acterised by symmetric interactions and balanced transition probabili
ties (conceptually illustrated in Fig. 2a and c), to a non-equilibrium 
state, defined by directed interactions and asymmetric transition prob
abilities (Fig. 2b and d). For instance, the probabilistic path from 
free-flow to gridlock is highly asymmetric to the path from gridlock back 
to free-flow [100,105,106]. This observable, irreversible evolution—the 

systematic breaking of detailed balance—is a definitive signature of a 
system operating far from equilibrium. Modern non-equilibrium physics 
provides rigorous, quantitative tools for measuring this departure from 
equilibrium through information-theoretic approaches. The primary 
such tool is the rate of entropy production [12,58], which, in this 
context, is reinterpreted as a pure information measure. It mathemati
cally quantifies the degree of irreversibility by measuring the statistical 
divergence between the probabilities of a system’s forward and 
time-reversed evolutionary paths. Therefore, the EPR provides a direct, 
quantitative link between the foundational mechanism of broken 
detailed balance and a measurable, information-based quantity that 
signals the system’s distance from equilibrium. It is mathematically 
equivalent to the Kullback-Leibler divergence between the probability of 
a forward trajectory γ and its time-reversal ̃γ: 

Σ =

〈

log
P[γ]
P[̃γ]

〉

(2) 

This measure provides a direct, quantitative indicator of how far the 
system operates from equilibrium conditions, rooted in the information 
generated by the system’s temporal evolution rather than any thermo
dynamic interpretation [14,15]. The mathematical rigor of this 
approach ensures that the irreversibility measurements reflect genuine 
system properties rather than artifacts of the analytical method.

Recent empirical studies validate this theoretical perspective by 
documenting specific non-equilibrium characteristics in urban trans
portation systems [107]. Traffic systems exhibit clear temporal asym
metries during disruptions, manifesting as faster collapse than recovery 
during extreme events, hysteresis in system response to weather con
ditions, and path-dependent recovery patterns that depend on the spe
cific sequence of disruptions experienced [88,108,109]. These systems 
dissipate efficiency through multiple mechanisms including increased 
travel times, sub-optimal routing choices, and modal coordination 
breakdowns. While not involving thermal dissipation, this loss of 
organisational efficiency creates measurable effects that are mathe
matically analogous to entropy production in physical systems [10,110]. 
The entropy production rate framework is applicable to transportation 
systems through several fundamental justifications. The stochastic 
evolution of traffic states follows the same probabilistic structure as 
other complex systems studied in non-equilibrium physics [111,112], 
allowing EPR calculation methods to be applied without modification to 
the underlying mathematical framework. Moreover, EPR can be rein
terpreted as measuring information production rate in any stochastic 
system, providing a foundation that is independent of physical energy 
considerations [14]. This information-theoretic interpretation means 
that EPR captures the rate at which the system generates new infor
mation about its state, which is a meaningful concept for any complex 
adaptive system regardless of its physical substrate.

While strong mathematical and phenomenological parallels exist 
between transportation systems and non-equilibrium physical systems 
[113], important distinctions must be acknowledged to maintain sci
entific rigor. Transportation systems share fundamental characteristics 
with non-equilibrium physics including stochastic evolution governed 
by probability flux relationships, systematic detailed balance breaking 
under stress conditions, measurable information-theoretic irrevers
ibility, and multi-scale emergent behaviour that spans organisational 
levels [111,113,114]. However, transportation systems fundamentally 
differ from classical thermodynamic systems in that they do not exhibit 
microscopic energy conservation in the thermodynamic sense, lack 
well-defined thermodynamic temperature concepts, do not follow 
Boltzmann distribution equilibria, and do not involve classical heat 
dissipation mechanisms [115–117]. These distinctions define the scope 
within which the analogy remains valid and useful, ensuring that the 
mathematical tools are applied appropriately rather than overextended 
beyond their theoretical foundations. Therefore, it is precisely this 
observable, non-Markovian, and irreversible evolution in transportation 

Fig. 2. Conceptual Illustration of Equilibrium and Non-Equilibrium System 
Dynamics. (a) and (c) together represent an equilibrium system. (a) depicts a 
network with symmetric, reciprocal interactions 

(
Wij = Wji). This underlying 

structure leads to the dynamic property shown in panel (c), where the transition 
probabilities between any two states are equal in both directions (Pxy = Pyx). 
This condition is known as detailed balance. (b) and (d) together represent a 
non-equilibrium system. (b) depicts a network with asymmetric, directed in
teractions (Wij ∕= Wji). This structure leads to the dynamic property shown in 
(d), where transition probabilities are unbalanced (Pxy ∕= Pyx). This condition 
represents a state of broken detailed balance.
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systems that provides a solid and mathematically precise foundation for 
applying the analytical framework of non-equilibrium statistical me
chanics, while acknowledging the information-theoretic rather than 
thermodynamic nature of the entropy measures employed. This theo
retical foundation establishes that non-equilibrium dynamics concepts 
are not merely metaphorical when applied to transportation systems but 
represent mathematically rigorous tools for analysing stochastic systems 
that operate far from equilibrium. The framework provides genuine 
predictive and analytical power for understanding transportation system 
adaptation during extreme weather events, rooted in the fundamental 
breaking of detailed balance and the information-theoretic quantifica
tion of temporal irreversibility.

3.1.2. Problem formulation
Multi-modal transportation systems in urban environments share 

road space and resources, creating complex interactions between 
different modes such as buses, private vehicles, bicycles, and walks. 
During extreme weather events, these interactions intensify as travellers 
adapt their mode choices and routes in response to adverse conditions 
[118]. Recent empirical studies have documented specific manifesta
tions of this complexity: when severe rainfall or flooding occurs, traffic 
flows exhibit persistent directional patterns and asymmetric evolution 
[93,96] - the transition from normal operations to disrupted states fol
lows different patterns than the recovery process. These observations 
provide concrete evidence of the non-equilibrium dynamics predicted 
by theory [13].

As we established in the preceding section (3.1.1), these observable, 
asymmetric dynamics are definitive signatures of a system operating far 
from equilibrium. The theoretical framework of non-equilibrium physics 
provides a rigorous way to quantify this deviation via the EPR, which 
captures the fundamental breaking of detailed balance through the 
statistical divergence between forward and reverse system trajectories. 
For a transportation system, the EPR is formally defined as: 

Φ = klim
τ→∞

(
1
τ

)

⋅DKL
[
P
(
{X(t)}τ

t=0

)
‖ P

(
{X(τ − t)}τ

t=0

)]
(3) 

where {X(t)}τ
t=0 represents the system trajectory and {X(τ − t)}τ

t=0 its 
time reversal. Here, X(t) captures the full system state, including traffic 
flows, densities, and speeds across different transportation modes. P(⋅)
denotes the path probability, k is the Boltzmann constant, and DKL 
measures the Kullback-Leibler divergence [119] between the probability 
distribution of forward trajectories P

(
{X(t)}τ

t=0
)
, and the probability 

distribution of time-reversed trajectories, P
(
{X(τ − t)}τ

t=0
)
, defined as: 

DKL(P ‖ Q) =

∫

p(x)log
p(x)
q(x)

dx (4) 

where P and Q are probability distributions with densities p and q 
respectively [120]. This measure quantifies the statistical distance be
tween two probability distributions, providing a foundation for ana
lysing system asymmetry. The fundamental characteristic of 
non-equilibrium behaviour—asymmetric transition probabilities 
P
(
X1→X2) ∕= P

(
X2→X1). lies at the heart of this theoretical framework. 

In the context of a transportation network, these asymmetries manifest 
as emergent directional flows, where certain modes or road segments act 
as sources of displaced traffic while others become sinks. However, 
while this theoretical foundation is powerful, its direct application 
presents a major practical hurdle. For a system as complex and 
high-dimensional as a real-world multi-modal transportation network, 
computing the path probabilities P

(
{X(t)}τ

t=0
)

required for the EPR 
calculation is computationally intractable. The continuous state space of 
transportation systems, combined with the high-dimensional nature of 
multi-modal interactions, creates a fundamental gap between our 
theoretical understanding of the system’s non-equilibrium nature and 
our ability to practically measure and analyse it.

This computational challenge intersects with the fundamental 
research gaps identified in our literature review. While the theoretical 
foundation establishes that transportation systems exhibit non- 
equilibrium characteristics during extreme events, current research 
has not fundamentally revealed what causes these characteristics or 
established the underlying mechanisms that drive transportation sys
tems away from equilibrium. Existing analytical frameworks fail to 
capture the full complexity of multi-modal interactions, with most 
studies focusing on individual modes or simple pairwise relationships 
while overlooking the critical higher-order interactions that emerge 
during extreme conditions. Furthermore, current methodological ap
proaches lack the capability to distinguish between combined effects 
and unique contributions in multi-modal interactions, preventing iden
tification of which interactions represent genuine higher-order effects 
versus those that merely reflect the accumulation of simpler 
interactions.

These limitations create a significant barrier to understanding how 
transportation systems truly adapt during extreme weather events. The 
inability to quantify system irreversibility directly, combined with the 
lack of methods for analysing genuine higher-order modal interactions 
and distinguishing unique contributions from combined effects, pre
vents the development of effective strategies for enhancing trans
portation system resilience. Motivated by these challenges, we propose 
the MmVGI framework. This framework is designed specifically to 
overcome the computational barrier of direct EPR calculation while 
simultaneously addressing the fundamental research gaps identified in 
the literature. By mapping multivariate traffic patterns to visibility 
graphs, our approach provides a practical and powerful tool for quan
tifying the complex, hierarchical, and higher-order interactions that 
drive transportation system adaptation under stress. Through this 
framework, we can bridge the gap between theoretical understanding 
and practical analysis, enabling new insights into the mechanisms un
derlying transportation system non-equilibrium behaviour and the 
genuine higher-order interactions that emerge during extreme weather 
events.

3.2. Multi-modal visibility graph irreversibility

We build on the established paradigm of network-based time series 
analysis, which has proven particularly effective in studying complex 
dynamical systems [121,122]. The visibility graph (VG) approach has 
emerged as a powerful model-free tool for transforming 
continuous-valued time series into network representations, preserving 
essential dynamical features while enabling network-based analysis [15,
122]. Its versatility and assumption-free nature have led to successful 
applications across various fields, particularly in analysing complex 
[123,124] and chaotic dynamics [125].

Building on these foundations, we introduce the MmVGI framework 
to analyse transportation systems with N different modes. For such a 
system, its state can be represented as an N-dimensional time series 
{X(t)}T

t=0, where X(t) = (x1(t), …, xN(t)). For any kth order subsystem 
Γ
(
xi1 ,…, xik

)
on a given road segment, its trajectory can be expressed 

as: 

Γ(xi1 ,…,xik ) =
{
xi1 (t),…, xik (t)

}T
t=0 (5) 

Theoretically, the irreversibility (ς) of this subsystem is defined as 
the statistical divergence between its forward and time-reversed tra
jectories, calculated using path probabilities P(Γ): 

ς(xi1 ,…,xik ) =
∑

Γ(xi1
,…,xik )

P(Γ(xi1 ,…,xik ))log
P(Γ(xi1 ,…,xik ))

P(Γʹ(xi1 ,…,xik ))
(6) 

where Γʹ represents the time-reversed trajectory. While Eq. (5) provides 
a fundamental theoretical definition, its direct application presents a 
major practical hurdle: computing the path probabilities P(Γ) for a 
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system as complex and high-dimensional as a real-world multi-modal 
transportation network is computationally intractable. To overcome this 
challenge, we developed the MmVGI framework. This framework pro
vides a practical and powerful pathway to quantify irreversibility by 
measuring a direct signature of temporal asymmetry within the time 
series data itself. It is important to clarify our choice of a component- 
wise approach over other potential multivariate methods. An alterna
tive could be to construct a single visibility graph from the vector tra
jectory Γ, for instance, by first reducing the multivariate data to a 
univariate series. While this approach could capture the irreversibility of 
the aggregated system state, it would do so at the cost of significant 
information loss, as the unique dynamics of individual modes would be 
blended together. Given that the central goal of this research is to reveal 
the interactions between different modes and to isolate their unique 
higher-order contributions, a component-wise framework that preserves 
all modal information is essential.

Therefore, instead of attempting to approximate these probabilities, 
our MmVGI framework provides an alternative and practical pathway, 
which is designed to first analyse the modes individually and then to 
probe their statistical coupling. It quantifies irreversibility by measuring 
a direct signature of temporal asymmetry within the time series data 
itself, through a three-step process: 

1) Transformation to Visibility Graphs

First, we transform the time series data of each mode into a directed 
network called a visibility graph (VG). As illustrated in Fig. 3a, a 
directed edge is formed from a time point ti to a later time point tj if and 
only if a direct line of sight exists between their corresponding data 
values. This geometric visibility condition is defined as: 

xk < xj +
(
xi − xj

) tj − tk
tj − ti

(7) 

This mapping (as shown in Fig. 3a) preserves key dynamical features 
of the original signal, including periodicity, fractality, and causality. To 
capture the temporal direction of evolution, we construct directed edges 
pointing from earlier to later times, represented by the adjacency matrix: 

A[m]

ij =

{
1 if i→j in mode m

0 otherwise (8) 

where A[m] represents the adjacency matrix of mode m. This step effec
tively encodes the temporal dynamics of each mode into a unique 
network structure (as shown in Fig. 3b). 

2) Capturing Asymmetry in Degree Distributions

The temporal irreversibility of the original time series is fundamen
tally captured and preserved as a structural asymmetry within its cor
responding visibility graph. Specifically, this asymmetry manifests as a 
difference between the in-degree and out-degree distributions of the 
graph’s nodes. For a perfectly reversible process, these two distributions 
would be identical. For an irreversible process, they will differ, reflect
ing the system’s directional evolution. We calculate the in-degree and 
out-degree for each node i in each mode’s graph m: 

d[m],in
i =

∑

j
A[m]

ji , d[m],out
i =

∑

j
A[m]

ij (9) 

These distributions capture the fundamental asymmetry in system 
evolution. For a k-order subsystem, we compute the joint degree 

Fig. 3. Construction and Analysis Process of Multi-modal Visibility Graphs. (a) illustrates the original time series data for two distinct modes (shown in red and blue), 
along with their visibility mapping process. The upper plots show the raw time series, the middle plots display the visibility connections between data points, and the 
lower plots present the final node arrangement for visibility graph construction. (b) shows the resulting visibility graphs for both modes, where nodes represent 
temporal data points and edges indicate visibility relationships between these points. (c) presents the detailed graph analysis results, including in-degree and out- 
degree calculations for each node in both modes. (d) displays the joint distribution analysis, quantifying the relationships between different modes through their 
degree statistics.
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distributions: 

P(n1 ,…,nk)
in (d1,…, dk),P(n1 ,…,nk)

out (d1,…, dk) (10) 

Here, the tuple (n1,…, nk) is a set of identifiers for the k specific 
transportation modes being considered in a k-order analysis (e.g., for k =
2, the tuple could be (’car’, ’bus’)). 

3) Quantifying Irreversibility with Jensen-Shannon Divergence

Finally, to obtain a single, robust value for the irreversibility, we 
quantify the statistical distance between the in-degree and out-degree 
distributions using the Jensen-Shannon Divergence (JSD), as shown in 
Fig. 3d The JSD is a rigorous, symmetrised measure of the difference 
between two probability distributions. The irreversibility ς for the k- 
order subsystem is thus practically calculated as: 

ς(n1 ,…,nk) = JSD
(
P(n1 ,…,nk)

in ‖ P(n1 ,…,nk)
out

)
(11) 

The specific calculation formula is: 

JSD(Pin‖Pout) =
1
2
DKL(Pin‖ M) +

1
2
DKL(Pout‖ M) (12) 

where M = Pin+Pout
2 , and the Kullback-Leibler divergence is defined as Eq. 

(2).
For finite-length time series, we employ Laplace smoothing to avoid 

zero probability issues: 

P(n1 ,…,nk)(d1,…, dk) =
N + 1

M + dk
max

(13) 

where N is the number of nodes satisfying the degree value conditions, M 
is the total number of nodes, and dmax is the maximum degree in the 
network. The term dk

max in the Laplace smoothing denominator serves as 
an approximation for the total number of possible degree-tuple cate
gories.

Through this method, we can systematically analyse temporal irre
versibility at different levels: k = 1 corresponds to the dynamical char
acteristics of individual modes, k = 2 reflects interactions between mode 
pairs, and higher order k reveals complex collective behavioural pat
terns. Strong interactions between modes typically manifest as higher 
irreversibility values, providing crucial insights for identifying key 
coupling structures in the system.

3.3. High-order unique contribution measurement

In urban transportation networks under extreme weather conditions, 
the interactions among different modes (cars, buses, cycles, and walks) 
exhibit complex nonlinear and non-equilibrium characteristics. These 
interactions manifest not only in individual modes or simple pairwise 
combinations but also through higher-order couplings (e.g., three-mode 
or four-mode interactions), leading to a multi-scale structure of system 
irreversibility. To systematically analyse these complex interactions, we 
propose a comparative framework distinguishing between combined 
irreversibility (ζ), which is the total measured effect, and unique irre
versibility (η), which isolates the genuine, emergent higher-order 
contribution.

3.3.1. Combined irreversibility and the need for unique contribution
Consider a k-order interaction among transportation modes (m1,…,

mk), where mᵢ represents specific modes corresponding to the general 
variables xi. Its combined irreversibility ζ(m1 ,…,mk) captures the total non- 
equilibrium dynamics including all possible sub-interactions: 

ζ(m1 ,…,mk) =
∑

Γ(m1 ,…,mk)

P(Γ(m1 ,…,mk))log
P(Γ(m1 ,…,mk))

P(Γ(m1 ,…,mk))
(14) 

However, while the combined irreversibility provides insights into 

overall system behaviour, it inherently includes the effects of lower- 
order interactions. This can obscure genuine higher-order interactions, 
which are critical for understanding system adaptation under stress. To 
isolate these higher-order contributions, we define the unique irrevers
ibility η(m1 ,…,mk) by recursively removing all lower-order contributions 
based on Lynn’s decomposition approach [38,68]: 

η(m1 ,…,mk) = ζ(m1 ,…,mk) −
∑

Ω⊂{m1 ,…,mk}

ηΩ (15) 

Where ζ is the combined irreversibility of the k-mode system, and the 
summation term removes the unique irreversibility (η) of all proper 
subsets Ω. To illustrate how this recursive decomposition works, 
consider the calculation for the unique third-order irreversibility η (car, 
bus, cycle). The process proceeds hierarchically: 

1) Base Case (k ¼ 1): First, the unique irreversibility of each individual 
mode is equal to its combined irreversibility: η(car) = ζ(car), and 
so on for the other modes.

2) Second-Order Calculation (k ¼ 2): Next, the unique pairwise 
irreversibility are calculated by subtracting the individual contri
butions from the combined values, for example: η(car, bus) = ζ(car,
bus) − [η(car) + η(bus)]. This is repeated for all pairs.

3) Third-Order Calculation (k ¼ 3): Finally, the unique third-order 
interaction is isolated by subtracting all lower-order unique contri
butions from the combined third-order value: η(car, bus, cycle) =

ζ(car,bus,cycle) − [η(car,bus)+ η(car,cycle)+ η(bus,cycle)+ η(car) +
η(bus)+ η(cycle)]. The value that remains represents the emergent 
effect from the simultaneous interaction of all three modes.

This decomposition framework is validated by its behaviour under 
the condition of statistical independence. As stated in Eq. (15), if two 
modes mi and mj are independent, their combined irreversibility is 
simply additive: 

ς(mi ,mj) = η(mi) + η(mj)and η(mi ,mj) = 0 (16) 

The result η(mi ,mj) = 0 is a direct mathematical consequence of the 
decomposition formula. This provides a crucial benchmark: a non-zero 
value for η is a rigorous indicator of a genuine system interaction 
beyond the sum of its parts.

3.3.2. Implications for urban transportation networks
Applying this framework to multi-modal transportation systems re

veals critical insights into the hierarchical organisation of modal in
teractions. For example, in analysing the interaction among cars (c), 
buses (b), and walks (w), the unique irreversibility can be expressed as: 

η(c,b,w) = ζ(c,b,w) −
[
η(c,b) + η(b,w) + η(c,w)

]
−
[
η(c) + η(b) + η(w)

]
(17) 

The distinction between unique and combined measurements is 
particularly crucial for understanding system adaptation to extreme 
weather conditions. A high unique irreversibility indicates the emer
gence of genuine higher-order interactions that cannot be reduced to 
simpler combinations, manifesting as synchronised adaptations across 
multiple transportation modes. Conversely, when the unique irrevers
ibility is low despite high combined irreversibility, it suggests that the 
observed complexity primarily stems from the superposition of lower- 
order interactions.

Through this dual measurement approach, we can uncover the 
fundamental structure of multi-modal dependencies during extreme 
weather events. The comparison between unique and combined mea
surements enables us to identify critical higher-order interactions, un
derstand the hierarchical organisation of system adaptations, and 
provide quantitative insights for urban resilience planning and emer
gency response strategies. This deeper understanding of multi-modal 
interactions under extreme conditions is essential for developing effec
tive, integrated management approaches that account for the complex 
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interdependencies between different transportation modes.

3.4. Validation against conventional traffic performance metrics

To validate the practical relevance of our MmVGI framework, we 
examine the relationship between irreversibility measurements and 
conventional traffic performance indicators. We correlate our irrevers
ibility values across different orders (K1, K2, K3) with four established 
traffic performance metrics: congestion duration, mode switching rate, 
travel time index, and recovery time.

Congestion Duration [126,127] quantifies the number of hours 
during which traffic flow exceeds normal operating conditions. For each 
road segment, we define the baseline flow as the average of flows during 
early morning hours (0:00–5:00), representing uncongested conditions. 
The congestion threshold is set as the maximum of either 1.5 times the 
baseline flow or the daily average flow: 

Congestion Duration=
∑23

h=0
1[Flowh>max(1.5×Baseline,Daily Average)]

(18) 

where 1[⋅] is the indicator function and h represents hourly time steps.
Mode Switching Rate (Coefficient of Variation, a standard statisti

cal measure of relative variability) captures the temporal variability in 
modal composition, reflecting traveller adaptation during extreme 
events. We calculate the coefficient of variation for each mode’s share of 
total hourly traffic: 

Mode Switching Rate =
1
4

∑

m∈{car,bus,cycle,walk}

σ(Sm)

μ(Sm)
(19) 

where Sm =
{
sm,h

}23
h=0 represents the hourly modal shares for mode m, 

with sm,h =
Flowm,h∑
mʹFlowmʹ,h

, σ(⋅)and μ(⋅) denote standard deviation and mean 

respectively.
Travel Time Index [128,129] provides a proxy for congestion 

severity based on the flow-capacity relationship. We estimate road ca
pacity as the 85th percentile of daily flows and calculate the ratio of 
hourly flows to this capacity: 

Travel Time Index =
1
24

∑23

h=0

min
(

Flowh

Capacity
,3.0

)

(20) 

where capacity is estimated as Capacity = P85({Flowh)
23
h=0

)
and the 

ratio is capped at 3.0 to represent extreme congestion conditions.
Recovery Time [130,131] measures the system’s ability to return to 

normal operations after peak disruption. We identify the peak flow hour 
and calculate the time required for flows to return to near-baseline 
conditions: 

Recovery Time = min{t : Flowh∗+t ≤ 1.2×Baseline} (21) 

where h∗ = arg max h Flow h represents the peak flow hour, and re
covery is defined as returning to within 20 % of baseline flow levels.

These metrics provide comprehensive coverage of transportation 
system performance aspects: operational efficiency (congestion dura
tion), adaptive behaviours (mode switching), service quality (travel time 
index), and resilience (recovery time). All metrics are calculated using 
the same 24-hour traffic flow data employed in the MmVGI analysis, 
ensuring consistency in the validation framework.

4. Case study

4.1. Data description

Our case study focuses on the City of London, one of the most crucial 

districts in Greater London, covering an area of 12.727 km² (As shown in 
Fig. 4a, b). This area represents a dense urban environment with com
plex multi-modal transportation interactions, containing 5200 road 
segments (Fig. 4c) in the analysed network. The study utilizes compre
hensive traffic data provided by University College London’s Depart
ment of Civil, Environmental and Geomatic Engineering [132], with all 
spatial data referenced in the British National Grid coordinate system 
(EPSG:27700).

The traffic dataset encompasses hourly flow measurements across 
four primary transportation modes: buses, cars, cycle, and walks. For 
each road segment, the data structure incorporates unique road identi
fication numbers, road classification (Fig. 4d), directional information 
(Fig. 4e), and hourly traffic flow counts for each mode(car, bus, cycle 
and walk, as shown in Fig. 4f). This dataset allows us to examine the 
intricate interactions between different transportation modes across the 
urban network. Based on this dataset, we selected October 3, 2020, as 
our primary study period, which represents a significant extreme 
weather event in London’s recent history. According to the UK Met 
Office [133], this date recorded the highest daily rainfall (31.7 mm 
area-average) in the UK since records began in 1891. This extreme event 
provides an ideal case for examining how multi-modal transportation 
systems respond to and recover from severe weather disruptions.

4.2. Results analysis

4.2.1. Multi-modal irreversibility analysis
Building on the comprehensive dataset, we conducted a detailed 

analysis of transportation system behaviour across different road hier
archies. Our examination focused particularly on how various trans
portation modes interact and adapt under extreme raining condition, 
revealing distinct patterns in both temporal evolution and network 
structure. Our analysis of traffic patterns across different road hierar
chies reveals distinct characteristics in both temporal evolution and 
network structure. As shown in Fig. 5, we examined representative 
segments from A Roads, B Roads, and Minor Roads, analysing both their 
temporal flow patterns and the resulting visibility graph structures. A 
Roads (Segment 1) demonstrate distinct characteristics across all 
modes. The car flow patterns show smooth, high-volume temporal 
evolution throughout the day, resulting in densely connected visibility 
graphs with numerous node interactions. Bus flows exhibit similar sta
bility but with more regular patterns, reflected in their structured visi
bility graph organisation. Cycle and walk modes show lower volumes 
but maintain consistent patterns, represented by more sparse but well- 
organised network structures. These patterns contribute to high irre
versibility values that increase from k = 1 (0.1037) to k = 4 (0.8155), 
indicating strong multi-modal coordination. B Roads (Segment 2) 
reveal more variable behaviour. The temporal sequences show notice
able fluctuations, particularly evident in car and bus flows. Their visi
bility graphs display moderate connectivity, with car networks showing 
scattered clusters and bus networks maintaining some regular struc
tures. Cycle and walk networks exhibit more flexible patterns, reflected 
in their looser network organisation. This variability is captured in the 
progression of irreversibility values from k = 1 (0.0599) to k = 4 
(0.7998). Minor Roads (Segment 3) exhibit the most dynamic patterns. 
Their temporal sequences show pronounced local variations across all 
modes, particularly evident in the cycle and walk patterns. The resulting 
visibility graphs are notably different: car networks show sparse con
nections, bus networks display limited structure, while cycle and walk 
networks reveal localised clustering. This complex behaviour is reflected 
in their irreversibility measurements, which progress from relatively 
low first-order values (0.0892) to substantial higher-order values 
(0.8176).

This hierarchical analysis reveals the complex relationship between 
road hierarchy and multi-modal interactions during extreme conditions, 
demonstrating clear transitions from highly structured, integrated pat
terns on A Roads to more flexible, localised behaviours on Minor Roads. 
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Fig. 4. Multi-modal Transportation Network Structure in the City of London. (a) shows the location of the City of London within Greater London. (b) providing a 
detailed satellite view of this chosen area. (c) presents the complete road network segments. (d) categorizes the road network by hierarchy, distinguishing among A 
Roads, B Roads, and Minor Roads. (e) displays the directional attributes of road segments, indicating bidirectional flows, single-direction flows, and opposing di
rection flows. (f) decomposes the network by transportation mode, showing the distinct spatial distributions of walk, cycle, bus, and car traffic flows.

Fig. 5. Hierarchical Analysis of Multi-modal Traffic Patterns Through Network Structure, Temporal Evolution, and Visibility Graphs. 1) The left panel displays the 
urban road network, with hierarchical classification into A Roads (red), B Roads (orange), and Minor Roads (blue), highlighting three representative segments 
(labelled 1–3) selected for detailed analysis. 2) The middle panel shows the 24-hour temporal evolution of traffic flows across four transportation modes (car, bus, 
cycle, and walk) for each selected segment, revealing distinct patterns of stability and variability across different road types. 3) The right panel illustrates the 
corresponding visibility graph structures for each transportation mode, organised in columns from left to right (car, bus, cycle, walk), demonstrating how temporal 
patterns translate into network representations. Each road segment’s analysis is accompanied by irreversibility measurements across multiple orders (k = 1 to k = 4), 
quantifying the complexity of modal interactions.

X. Lin et al.                                                                                                                                                                                                                                      Reliability Engineering and System Safety 266 (2026) 111726 

10 



The progression of visibility graph structures and irreversibility values 
provides quantitative evidence for these hierarchical differences in 
network behaviour.

To better understand the higher-order interaction patterns within 
our selected network area, we conducted a comprehensive statistical 
analysis, as presented in Fig. 6. The visualisation employs a colour 
gradient scheme, where lighter shades indicate stronger irreversibility in 
modal combinations, while darker shades represent more reversible 
interactions. Each modal combination is represented by icons on the x- 
axis, with reference to Fig. 6a) showing the four primary modes: cars, 
buses, cycles, and walks. Our analysis across multiple orders (k = 1,2,3) 

to uncover systematic relationships between different transportation 
modes.

Single-mode analysis (k ¼ 1, Fig. 6b) revealed distinctive behav
ioural patterns across different transportation modes. Motorised modes, 
particularly cars and buses, demonstrated moderate irreversibility 
values, reflecting their operational stability and structured service pat
terns. This stability appears particularly pronounced in bus services, 
likely due to their scheduled operations and fixed routes. In contrast, 
walk flows exhibited the highest irreversibility, suggesting remarkable 
adaptability to changing conditions. Notably, cycling patterns showed 
the lowest irreversibility, indicating well-distributed flow patterns that 

Fig. 6. Multi-order Analysis of Modal Interactions through Irreversibility Measurements and Statistical Testing. (a) introduces the four primary transportation modes 
analysed: car, bus, cycle, and walk. (b), (c), and (d) display the irreversibility values for different modal combinations at first, second, and third order respectively, 
using a colour gradient where lighter shades indicate stronger irreversibility. (e), (f), and (g) provide violin plots showing the distribution characteristics of irre
versibility values across different modal combinations. (h), (i),(j) presents statistical significance testing results through heatmaps, where colour intensity and asterisk 
notation (*) indicate the level of statistical significance between different modal combinations. The systematic progression from k = 1 to k = 3 demonstrates the 
evolution from simple single-mode characteristics to complex higher-order interactions.

X. Lin et al.                                                                                                                                                                                                                                      Reliability Engineering and System Safety 266 (2026) 111726 

11 



maintain balance across the network. The examination of pairwise in
teractions (k ¼ 2, Fig. 6c) highlighted strong coupling between 
motorised transportation modes. Car-bus combinations displayed 
particularly high irreversibility values, indicating synchronised traffic 
flow patterns, especially along major transportation corridors. In
teractions between vehicular modes and walks also showed significant 
irreversibility, suggesting adaptive complementarity where walks flow 
adjust to accommodate vehicular traffic during adverse weather con
ditions. Cycling-related pairs, however, maintained lower irreversibility 
values, indicating more independent behavioural patterns. The third- 
order analysis (k ¼ 3, Fig. 6d) revealed sophisticated multi-modal in
teractions, with the car-bus-walk combination exhibiting notably high 
irreversibility. This finding suggests the presence of complex adaptation 
mechanisms during extreme weather events, where these three modes 
demonstrate coordinated behavioural adjustments. The emergence of 
such pronounced higher-order interactions emphasizes that trans
portation system adaptation involves complex multi-modal de
pendencies that cannot be fully captured through simpler single-mode or 
pairwise analyses.

Statistical analysis confirms systematic variations in irreversibility 
across different modal combinations, with evidence drawn from both 
distribution patterns and significance testing. The violin plots (Fig. 6e-g) 
reveal the evolving complexity of modal interactions across different 
orders. At k = 1, the distributions show relatively concentrated patterns 
with distinct medians for each mode, particularly highlighting the 
contrast between motorised and non-motorised transportation. As we 
move to k = 2 and k = 3, the distributions demonstrate increasing spread 
and complexity, indicating more sophisticated interaction patterns at 
higher orders. The significance testing results (Fig. 6h-j) provide statis
tical validation of these observed patterns. At the single-mode level 
(panel h), the heatmap reveals significant differences between most 
modal comparisons (indicated by **** and bright colours), though some 
comparisons, particularly involving bus modes, show no significant 
differences (ns). This aligns with the concentrated distributions seen in 
the k = 1 violin plot. The pairwise analysis (panel i) demonstrates even 
more pronounced differences, with most combinations showing high 
statistical significance (****), particularly in car-bus interactions. This 
corresponds to the broader distributions observed in the k = 2 violin 
plot, reflecting the emergence of complex pairwise dynamics. Most 
notably, the k = 3 analysis (panels g and j) reveals both the highest 
variability in distributions and the strongest statistical differences 
among modal combinations. The violin plot shows distinct spreading 
patterns for different triple-mode combinations, while the significance 
heatmap confirms these differences are highly significant (****), espe
cially for combinations involving car-bus-walk interactions. This dual 
evidence strongly supports the emergence of genuine higher-order in
teractions in the transportation system during extreme weather events. 
These statistical results reinforce the importance of considering multi- 
order interactions in transportation system analysis. They provide 
quantitative evidence for the hierarchical nature of urban mobility 
patterns, demonstrating that modal interactions become increasingly 
complex and statistically distinct at higher orders.

These statistical patterns reflect specific transportation mechanisms 
during extreme weather events. The high irreversibility observed in car- 
bus combinations indicates synchronized traffic flow disruptions, where 
congestion in one mode immediately affects the other due to shared 
infrastructure constraints. The strong car-bus-walk third-order in
teractions suggest the emergence of complex adaptation mechanisms 
where all three modes must coordinate their use of limited road space 
during adverse conditions. The distinctive behaviour of cycling, showing 
lower pairwise irreversibility but significant influence on network dy
namics, reflects its unique adaptive capacity. Unlike motorized modes, 
cycling can rapidly shift between different types of infrastructure (roads, 
cycle lanes, sidewalks) during extreme weather, creating flow re
distributions that affect the broader transportation system. Walk flows 
exhibit the highest individual irreversibility, indicating their role as the 

most adaptable mode during extreme conditions. Pedestrians can 
modify routes, timing, and destinations more flexibly than other modes, 
leading to highly variable temporal patterns that contribute significantly 
to overall system dynamics.

These mechanisms are not just theoretical; they are directly reflected 
in the observable transportation behaviours documented in our case 
study. The temporal sequences in Fig. 5 demonstrate how different 
modes exhibit distinct adaptation characteristics: A Road segments show 
coordinated but stressed patterns across all modes, reflecting travellers 
constrained choices on critical corridors. B Road segments display more 
variable temporal patterns, particularly in cycling and walking, indi
cating travellers’ ability to exercise greater route and timing flexibility 
on secondary networks. The progression from individual mode behav
iour (K1) to complex multi-modal interactions (K3) captures the evo
lution from independent traveller decisions to coordinated system-wide 
adaptations during the extreme weather event.

4.2.2. Spatial pattern analysis of multi-modal interactions
Our spatial analysis of the urban transportation network reveals 

distinct patterns of irreversibility across different modal combinations, 
offering deeper insights into how various transportation modes influ
ence network dynamics during extreme weather conditions (Fig. 7). The 
baseline analysis of single-mode patterns, focusing on vehicular traffic 
(car mode), shows pronounced irreversibility along A Roads, with 
MmVGi values reaching 0.8347. This distribution highlights the 
fundamental structure of urban mobility, where A Roads exhibit high 
dynamic complexity due to concentrated vehicular flow. In contrast, B 
Roads and Minor Roads display relatively lower irreversibility, reflect
ing more stable traffic patterns.

When examining dual-mode interactions, the car-bus combination 
demonstrates high irreversibility values (0.8907) along A Roads, indi
cating strong coupled dynamics between these motorised modes. The 
comparison values suggest that buses moderate the high irreversibility 
observed in car-only scenarios, particularly along A Roads. This 
moderation effect is visible through the transition from red to yellow- 
green patterns in many arterial segments.

The introduction of cycling into the network (car-cycle) shows an 
irreversibility value of 0.9009, with distinct patterns emerging espe
cially on B Roads and Minor Roads. The comparison maps reveal 
extensive yellow-green regions in previously low-irreversibility areas, 
suggesting that cycling significantly influences network dynamics at 
these scales. This indicates that cycling serves as a redistributive force in 
the network, particularly where motorised traffic is less dominant.

Pedestrian interactions, as shown in the car-walk combination 
(0.9149), produce more subtle effects. Unlike cycling, which reshapes B 
Roads and Minor Roads on a larger scale, pedestrian dynamics primarily 
affect localised sections of Minor Roads. This is evidenced by scattered 
yellow regions in these areas, indicating isolated rather than network- 
wide impacts.

The analysis of higher-order combinations provides additional in
sights. The transition from car-bus-cycle to car-bus-cycle-walk configu
rations shows minimal additional changes in irreversibility patterns. 
This suggests that pedestrian flows integrate into existing modal pat
terns without introducing substantial new dynamic structures. In 
contrast, the comparison between car-bus and car-bus-cycle patterns 
reveals significant reorganisation of network dynamics, particularly 
across B Roads and Minor Roads.

These spatial patterns demonstrate that transportation system 
adaptation during extreme weather events operates differently across 
road hierarchies, revealing underlying transportation mechanisms 
operating at different scales. The concentration of high irreversibility on 
A Roads reflects their role as critical infrastructure that cannot be 
bypassed during extreme events, forcing them to operate under stressed 
conditions where motorised modes dominate the dynamics. In contrast, 
cycling emerges as a significant influence on B Roads and Minor Roads, 
demonstrating how non-motorized modes can significantly affect 
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network dynamics through their adaptive route selection behaviour 
during adverse conditions. This cycling influence introduces dynamic 
variability and reshapes local irreversibility patterns, creating a hierar
chical system where different modes dominate different spatial scales. 
Understanding these hierarchical patterns is crucial for developing tar
geted resilience strategies that account for both primary corridor per
formance under stress and the adaptive flexibility that characterizes 
local road network dynamics.

4.2.3. Unique measurement compares with combined measurement
In urban transportation networks, the complex interactions between 

different modes during extreme weather conditions are crucial for un
derstanding system resilience and management. These interactions 
exhibit distinctive nonlinear and non-equilibrium characteristics that 
extend beyond what can be captured through traditional single-mode or 
pairwise analyses. The relationships between motorised transport (cars 
and buses) and non-motorised modes (cycling and walking) become 
particularly intricate during adverse weather conditions, necessitating a 
deeper understanding of their higher-order interactions.

Our analysis reveals an important relationship between the com
bined and unique irreversibility patterns across both second and third- 
order interactions (Fig. 8). When examining normalised irreversibility 
values, we observe a consistent correlation between unique and 

combined measurements, suggesting that the relative strength of modal 
interactions is preserved across both measurement approaches. At the 
second order (k = 2), the correlation coefficient between unique and 
combined measurements reaches r = 0.966, indicating a remarkably 
strong positive relationship. This high correlation suggests that modal 
combinations showing stronger combined irreversibility also tend to 
exhibit proportionally higher unique contributions. This pattern reveals 
that the relative importance of different modal pairs is consistently re
flected in both their overall behaviour and their genuine pairwise in
teractions. The pattern continues at the third order (k = 3), maintaining 
a strong correlation (r = 0.946), though slightly lower than the second- 
order relationship. This consistent pattern suggests that even as in
teractions become more complex, the relative strength of different 
modal combinations remains stable across measurement approaches.

The preservation of these strong correlations across different orders 
reveals a crucial characteristic of multi-modal transportation systems: 
the presence of genuine higher-order coupling effects that cannot be 
reduced to simple combinations of individual modes. These higher-order 
interactions represent emergent system properties rather than mere 
accumulations of lower-order effects. The consistent relationship be
tween unique and combined measurements demonstrates that the sys
tem exhibits coherent, non-linear coupling patterns that emerge 
specifically at higher orders.

Fig. 7. Spatial Distribution and Comparison of Multi-modal Irreversibility Patterns in Urban Transportation Networks. (a)shows the progression from single-mode 
analysis (car) to dual-mode comparisons (car versus car-bus, car-cycle, and car-walk), revealing how the addition of different modes influences network behaviour. 
(b) illustrates the evolution of more complex modal combinations, focusing on car-bus interactions and their relationships with other modes. (c)(d) demonstrates 
higher-order modal interactions, particularly highlighting the car-bus-cycle and car-bus-walk combinations.
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4.3. Correlation analysis results

We correlate our irreversibility values across different orders (K1, 
K2, K3) with these four-performance metrics across all 5200 road seg
ments in our study area. Our results reveal a systematic strengthening of 
correlations as we progress from individual modes (K1) to higher-order 
interactions (K3), as shown in Fig. 9. At the single-mode level (K1), 
correlations are moderate but significant, ranging from r = 0.194 for 
recovery time to r = 0.522 for mode switching rate. The strongest cor
relation at K1 is observed with mode switching rate (r = 0.522, p <
0.001), suggesting that even individual modal irreversibility captures 
adaptive behavioural responses during extreme events. Moving to 
pairwise interactions (K2), correlations strengthen substantially across 
all performance metrics. Travel time index shows the most dramatic 
improvement, increasing from r = 0.338 at K1 to r = 0.633 at K2 (p <
0.001). Congestion duration correlation nearly doubles from r = 0.321 
to r = 0.606, while recovery time correlation more than doubles from r =
0.194 to r = 0.442. These improvements indicate that pairwise modal 
interactions provide significantly better predictive power for conven
tional traffic performance measures than individual modal analysis. The 
highest correlations emerge at the third-order level (K3), where travel 
time index reaches r = 0.732 (p < 0.001) and congestion duration 
achieves r = 0.697 (p < 0.001). Recovery time correlation continues to 
strengthen to r = 0.516, demonstrating that higher-order modal in
teractions are most closely associated with system recovery character
istics. Interestingly, mode switching rate correlation shows a different 
pattern, peaking at K1 and declining at higher orders, suggesting that 
individual modal adaptations are the primary drivers of mode choice 
changes during extreme events.

The systematic increase in correlations from K1 to K3 provides strong 
empirical evidence that higher-order irreversibility measurements cap
ture increasingly sophisticated aspects of transportation system perfor
mance that are not apparent from traditional single-mode or simple 
multi-modal analyses. The particularly strong correlations with travel 
time index and congestion duration at higher orders (r > 0.6) demon
strate that our irreversibility framework effectively quantifies the com
plex coordination challenges that emerge during extreme weather 
events. The distinct correlation pattern observed for mode switching 
rate—where individual modal irreversibility (K1) shows the strongest 

relationship—reveals important insights into traveller adaptation 
mechanisms. This suggests that mode choice decisions are primarily 
driven by individual modal performance degradation rather than com
plex multi-modal interactions, providing valuable guidance for trans
portation demand management strategies during extreme events. The 
progressive strengthening of correlations with recovery time across or
ders (from r = 0.194 to r = 0.516) indicates that system recovery is 
fundamentally a multi-modal phenomenon requiring coordination 
across transportation modes. This finding supports the theoretical 
framework’s emphasis on higher-order interactions as critical factors in 
transportation system resilience. All correlations achieve high statistical 
significance (p < 0.001) across the complete dataset of 5200 road seg
ments, providing robust evidence for the relationships between irre
versibility measurements and conventional performance metrics. The 
large sample size and comprehensive network coverage ensure that 
these findings are representative of urban transportation system be
haviours during extreme weather conditions.

These validation results demonstrate that the MmVGI framework 
captures meaningful patterns of system performance that are both 
theoretically grounded and practically relevant for transportation 
planning and management applications, directly addressing the re
viewer’s concern about the practical utility of irreversibility measure
ments in transportation contexts.

5. Discussion

Our analysis of multi-modal transportation networks during extreme 
weather conditions reveals several significant findings about system 
adaptation and modal interactions across different spatial scales. The 
results provide important insights into both theoretical understanding of 
transportation system dynamics and practical implications for urban 
resilience planning.

5.1. Findings

5.1.1. Road hierarchies and modal interactions in transportation systems
The distribution of irreversibility across different road hierarchies 

demonstrates distinct patterns of modal interactions. A Roads consis
tently exhibit high irreversibility values across all orders of analysis, 

Fig. 8. Comparison of Combined and Unique Irreversibility Measurements Across Modal Combinations. (a) display both combined and unique irreversibility values 
for second-order (K = 2) and third-order (K = 3) interactions, using color gradients to represent the strength of irreversibility. (b) show these same measurements 
after normalisation, providing a standardised comparison across different modal combinations. (c) illustrate the strong correlations between combined and unique 
measurements.
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indicating their crucial role as network backbones during extreme 
conditions. This stability in primary corridors suggests that motorised 
transport modes (cars and buses) maintain relatively structured in
teractions even under stress. Particularly noteworthy is the significant 
influence of cycling on network dynamics, especially in B Roads and 
Minor Roads. The introduction of cycling leads to substantial reorgan
isation of local network patterns, evidenced by increased irreversibility 
values in these areas. These finding challenges traditional perspectives 
that primarily focus on motorised transport, highlighting cycling’s 
crucial role in system adaptation. Pedestrian flows, while contributing to 
system dynamics, show more limited influence primarily confined to 
Minor Roads. This localised impact suggests that pedestrian modes serve 
as complementary rather than transformative elements in the broader 
network structure during extreme weather events.

5.1.2. Dynamic adaptation across modal combinations
The network’s response to different modal combinations reveals a 

hierarchical pattern of adaptation. A Roads, dominated by car-bus in
teractions, maintain relatively stable dynamic patterns, suggesting 
robust infrastructure utilisation despite extreme conditions. In contrast, 
B Roads demonstrate notable non-linear responses, particularly 

following the introduction of cycling modes. This differentiated 
response indicates that secondary networks possess greater adaptive 
capacity through modal diversification. The limited contribution of 
pedestrian modes to system irreversibility, particularly in broad network 
dynamics, suggests a natural segregation of modal influences across 
spatial scales. This finding has important implications for understanding 
how different transportation modes contribute to system resilience 
during extreme events.

5.1.3. Higher-order interactions and system behaviour
The relationship between unique and combined contributions re

veals fundamental characteristics of multi-modal interactions. The 
strong correlation between these measurements (r = 0.966 for k = 2 and 
r = 0.946 for k = 3) indicates that higher-order interactions represent 
genuine system properties rather than mere accumulations of lower- 
order effects. This finding provides empirical evidence for the emer
gence of complex adaptive behaviour in urban transportation systems. 
Particularly significant is the observation that three-mode combina
tions, such as car-bus-cycle, demonstrate irreversibility patterns that 
cannot be reduced to simpler modal interactions. This non-linear char
acteristic suggests that transportation system adaptation operates 

Fig. 9. Validation of MmVGI Framework Against Conventional Traffic Performance Metrics. (a) K1 Scatter Plots displaying correlations for individual mode analysis. 
(b) K2 Scatter Plots showing pairwise modal interaction correlations. (c) K3 Scatter Plots demonstrating three-mode interaction correlations. Red lines indicate linear 
trends with correlation coefficients shown in each panel. Analysis covers 5200 road segments with all correlations statistically significant (p < 0.001). Progressive 
strengthening from K1 to K3 demonstrates superior predictive power of higher-order interactions. (d) Correlation Heatmaps showing relationship strength between 
MmVGI measurements and traffic performance indicators across K1, K2, and K3 interaction orders.
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through sophisticated multi-modal mechanisms rather than simple ad
ditive effects.

5.2. Transportation mechanisms behind irreversibility patterns

5.2.1. Infrastructure competition and modal interdependency
The high irreversibility values observed in car-bus-walk combina

tions reflect fundamental transportation mechanisms operating during 
extreme weather events. When heavy rainfall reduces effective road 
capacity, these three modes enter into competitive interactions for 
limited usable infrastructure. Cars and buses compete directly for road 
space, while pedestrians seek alternative routes that may conflict with 
vehicular traffic. This competition creates cascading effects where 
disruption in one mode triggers adaptations in others. When car traffic 
becomes severely congested, passengers shift to bus services, increasing 
bus dwell times and reducing schedule reliability. Delayed buses sub
sequently force more travellers to walk, creating additional pedestrian- 
vehicle conflicts at intersections and crosswalks.

5.2.2. Differential recovery dynamics
The temporal asymmetries captured by our irreversibility measure

ments reflect the different recovery characteristics of each trans
portation mode. Cars can resume normal speeds relatively quickly once 
weather conditions improve and surface water drains. Bus services 
require longer recovery periods due to accumulated schedule delays and 
the need to redistribute passengers who concentrated at stops during 
disruptions. Pedestrian flows exhibit the most gradual recovery patterns, 
as route choice preferences normalize slowly and weather risk percep
tions change over extended periods. These differential recovery rates 
create the prolonged temporal asymmetries that manifest as higher- 
order irreversibility in our measurements.

5.2.3. Spatial adaptation mechanisms
The prominence of cycling influences on B Roads and Minor Roads 

reflects specific spatial adaptation mechanisms. During extreme 
weather, cyclists possess unique route flexibility, utilizing alternative 
infrastructure types and creating temporary connections between nor
mally separated route segments. This adaptive behaviour generates 
complex flow redistributions that significantly affect secondary network 
dynamics. A Roads maintain high irreversibility across all modal com
binations because they serve as critical bottlenecks that cannot be easily 
bypassed during extreme events. These corridors must accommodate 
diverted traffic from compromised secondary routes while maintaining 
essential connectivity, operating in highly stressed conditions that 
generate the persistent non-equilibrium dynamics we observe

5.2.4. Behavioural validation through performance metrics
The transportation mechanisms identified through our irreversibility 

analysis are validated by their correlations with conventional traffic 
performance indicators (Fig. 9). The strengthening correlations from K1 
(r = 0.522 for mode switching) to K3 (r = 0.732 for travel time index) 
demonstrate that higher-order irreversibility measurements capture 
increasingly complex behavioural adaptations that directly impact sys
tem performance. The strong correlation with mode switching rates at 
the individual level (K1) confirms that irreversibility captures travellers’ 
adaptive mode choice behaviours during extreme weather. The pro
gression to higher correlations with congestion duration and travel time 
index at higher orders (K2, K3) indicates that multi-modal interactions 
reflect coordinated behavioural responses that determine overall system 
performance during extreme events. These empirical relationships 
validate that our analytical framework captures the same transportation 
phenomena that operational practitioners monitor through conven
tional metrics, while providing additional insights into the behavioural 
coordination mechanisms that drive system-wide performance 
outcomes.

5.3. Contributions

The MmVGI framework introduced in this study offers several 
methodological advances in analysing multi-modal transportation sys
tems. By combining visibility graph analysis with irreversibility mea
surements, our approach captures both global network patterns and 
localised modal interactions. This dual perspective provides a more 
comprehensive understanding of system dynamics than traditional 
methods focused on individual modes or simple flow analysis.

Our framework’s ability to quantify both unique and combined 
contributions to system irreversibility represents a significant method
ological innovation. This differentiation enables the identification of 
genuine higher-order interactions, providing a quantitative basis for 
understanding how different modal combinations contribute to system 
adaptation. The framework’s application across spatial scales demon
strates its versatility in capturing both network-wide patterns and local 
dynamic responses.

In doing so, the MmVGI framework offers a new perspective that 
complements traditional network science metrics. While conventional 
metrics like betweenness centrality or clustering coefficients describe 
the static, topological structure of a network, our irreversibility measure 
quantifies its dynamic, functional properties. By focusing on the 
temporal asymmetries derived from information theory, our approach 
provides insights into how the network actually behaves and adapts 
under stress, revealing emergent properties that are invisible to purely 
structural analysis.

5.4. Practical applications and management implications

5.3.1. Mechanism-based network diagnostics
Understanding the transportation mechanisms behind irreversibility 

patterns enables more effective system diagnostics. High irreversibility 
hotspots indicate specific operational problems: car-bus interactions on 
A Roads suggest needs for transit priority systems during extreme 
weather, while high cycling influences on secondary roads indicate 
opportunities for weather-responsive infrastructure management. The 
spatial distribution of higher-order irreversibility serves as a diagnostic 
tool for identifying network vulnerabilities that are not apparent from 
traffic volume data alone. Areas showing strong three-mode interactions 
(car-bus-walk) require integrated management strategies that account 
for modal interdependencies rather than treating each mode 
independently.

5.3.2. Adaptive infrastructure management
The identified mechanisms suggest specific operational strategies. 

The strong car-bus coupling on A Roads indicates the need for coordi
nated management approaches, such as adaptive traffic signal systems 
that prioritize bus operations during extreme weather events. Dynamic 
lane allocation strategies could help manage the competition for road 
space that drives high irreversibility in these corridors. The significant 
cycling influence on B Roads and Minor Roads suggests implementing 
weather-responsive cycling infrastructure that can accommodate modal 
shifts during extreme conditions. This might include temporary route 
modifications or enhanced information systems that help cyclists adapt 
their travel patterns more effectively.

5.3.3. Recovery process optimization
Understanding the differential recovery dynamics of different modes 

enables targeted interventions to accelerate system restoration. Since 
bus services have longer recovery periods due to schedule coordination 
challenges, priority should be given to restoring transit operations and 
redistributing accumulated passenger loads. The gradual recovery pat
terns observed in pedestrian flows suggest the need for proactive in
formation systems that help travellers adapt their route choices more 
efficiently as conditions improve. This could reduce the prolonged 
temporal asymmetries that contribute to extended system recovery 
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periods.

5.5. Limitations and future research

Our study, while providing valuable insights into multi-modal 
transportation dynamics, faces several limitations that suggest prom
ising directions for future research. A primary limitation lies in the scope 
of transportation modes analysed. While our framework successfully 
captures interactions between cars, buses, cycles, and pedestrians, urban 
mobility encompasses a broader spectrum of transportation modes. 
Modern cities increasingly feature diverse mobility options, including e- 
bikes, scooters, ride-sharing services, and various forms of micro- 
mobility. The exclusion of these emerging transportation modes, due 
to data availability constraints, potentially limits our understanding of 
the full complexity of urban mobility systems during extreme weather 
events. The temporal scope of our analysis presents another limitation, 
as we focus on a single extreme weather event. Transportation system 
behaviour might vary significantly across different types of weather 
conditions or during different seasons, potentially revealing additional 
patterns of modal interactions not captured in our current analysis. 
Furthermore, the computational complexity of analysing higher-order 
interactions (beyond k = 4) presents technical challenges that 
constrain our ability to explore more complex modal combinations.

Future research could address these limitations in several ways. 
Expanding the analysis to include emerging transportation modes would 
provide a more comprehensive understanding of urban mobility adap
tation. For instance, incorporating e-bikes and micro-mobility services 
could reveal new patterns of system resilience, particularly in areas 
where traditional modes face limitations. This expanded analysis could 
help identify how different transportation modes complement each 
other during extreme conditions and inform the development of more 
robust mobility systems. Additionally, future studies should examine 
temporal variations in system behaviour across multiple extreme events 
and different seasonal conditions. This broader temporal perspective 
would help establish more robust patterns of adaptation and reveal how 
modal interactions evolve under varying environmental challenges. In 
addition to expanding the analysis to include emerging transportation 
modes and multiple weather events, several exciting methodological 
avenues are now open. One key direction is the development of new 
"irreversibility-based centrality" measures to identify nodes that are 
critical not just structurally, but dynamically. Another important step 
will be to integrate the MmVGI framework with traffic simulation 
models to test its predictive power, potentially creating early warning 
systems for network stress. Finally, the principles of this framework 
could inform new network optimisation problems that aim to design 
more resilient systems by minimising irreversibility under stress 
scenarios.

Furthermore, a promising theoretical direction for future research 
involves formally connecting our framework with the mathematical 
language of topological data analysis and advanced network theory. 
Conceptually, our analysis of k-order interactions is analogous to iden
tifying and assigning a dynamic property—irreversibility—to the 
higher-order structures in a multilayer network (where each mode is a 
layer) or the hyperedges in a hypergraph. This perspective, related to the 
study of simplicial complexes, could yield deeper insights into the to
pological structure of multi-modal adaptation and bridge our non- 
equilibrium framework with other cutting-edge analytical tools.

5.6. Broader impacts

This research has significant implications for urban resilience plan
ning in the context of climate change. The identification of hierarchical 
adaptation patterns suggests the need for differentiated resilience stra
tegies across spatial scales. Understanding how different modal combi
nations contribute to system resilience could inform the development of 
more integrated multi-modal transportation systems.

The demonstrated importance of higher-order interactions contrib
utes to our broader understanding of complex urban systems. This 
insight suggests that effective climate adaptation strategies must 
consider the emergent properties of multi-modal interactions rather 
than focusing on individual mode improvements in isolation.

In conclusion, our findings advance both theoretical understanding 
of non-equilibrium dynamics in urban systems and practical approaches 
to transportation system management by revealing the specific mecha
nisms through which different transportation modes interact and adapt 
under stress. The framework and insights developed here provide a 
foundation for future research into urban resilience and adaptation 
strategies in the face of increasing environmental challenges.

6. Conclusion

Transportation networks in urban environments face increasing 
challenges from extreme weather events, necessitating a deeper under
standing of how different transportation modes interact and adapt under 
stress. Traditional approaches to analysing transportation system dy
namics have primarily focused on individual modes or simple pairwise 
interactions, potentially overlooking critical higher-order relationships 
that emerge during extreme conditions. This study introduced the 
MmVGI framework to analyse the complex interactions between 
different transportation modes during extreme weather events. By 
examining the behaviour of cars, buses, cycles, and pedestrians across 
different road hierarchies, we revealed distinct patterns of system 
adaptation and modal cooperation that emerge under stress.

Our analysis yielded several key findings. First, we demonstrated 
that transportation system adaptation exhibits clear hierarchical pat
terns, with A Roads showing consistent high irreversibility dominated 
by motorised transport, while B Roads and Minor Roads display more 
complex patterns of modal interaction. Second, we identified cycling as 
a crucial component in system adaptation, particularly in secondary 
networks where it significantly influences local dynamics. Third, our 
comparison of unique and combined measurements revealed strong 
correlations, providing evidence for genuine higher-order interactions 
that cannot be reduced to simpler modal combinations. These findings 
have significant implications for urban transportation planning and 
management. The identification of distinct adaptation patterns across 
road hierarchies suggests the need for tailored resilience strategies that 
account for both network-wide stability and local dynamic responses. 
The demonstrated importance of cycling in secondary networks chal
lenges traditional infrastructure planning approaches that prioritize 
motorised transport, suggesting the need for more balanced, multi- 
modal development strategies.

While our study was limited by the number of transportation modes 
analysed and its focus on a single extreme weather event, it establishes a 
foundation for understanding how urban mobility systems adapt to 
environmental challenges. Future research should expand this analysis 
to include emerging transportation modes and examine system behav
iour across different types of extreme events, potentially revealing 
additional patterns of adaptation and resilience. This research contrib
utes to both theoretical understanding of complex urban systems and 
practical approaches to transportation management. As cities face 
increasing environmental challenges, the insights and methodological 
framework developed here provide valuable tools for building more 
resilient, adaptive transportation systems that can maintain function
ality during extreme weather events.
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