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Climate change and extreme weather events increasingly threaten urban transportation systems, challenging
their ability to maintain essential mobility services. Current analytical approaches primarily focus on individual
modes or simplified interactions, failing to capture the complex, non-equilibrium dynamics that emerge when
multiple transportation modes interact under stress. This research introduces a novel Multi-modal Visibility
Graph Irreversibility (MmVGI) framework for analysing transportation system behaviour during extreme
weather events. By integrating concepts from non-equilibrium dynamics with visibility graph analysis, our
approach quantifies complex interactions between different transportation modes and reveals the underlying
mechanisms driving system non-equilibrium characteristics. Through a case study in the City of London during
an extreme rainfall event, we demonstrate that transportation system adaptation exhibits clear hierarchical
patterns across different road types. While primary roads maintain stable dynamics dominated by motorised
transport, secondary networks show complex patterns of modal interaction, with cycling emerging as a crucial
component in system adaptation. The strong correlation between unique and combined irreversibility mea-
surements provides evidence for genuine higher-order interactions that cannot be reduced to simpler modal
combinations. These findings advance both theoretical understanding of urban system dynamics and practical
approaches to transportation management, offering valuable insights for urban planners and policymakers in
developing more resilient, adaptive transportation systems for future climate challenges.

1. Introduction

Climate change has emerged as one of the most pressing challenges
facing modern cities, with extreme weather events becoming increas-
ingly frequent and intense [1,2]. Among various urban infrastructure
systems, surface transportation networks are particularly vulnerable to
climate-related disruptions, yet they are critical for maintaining urban
mobility and economic activities [3]. Understanding how multi-modal
surface transportation systems - including buses, private cars, bicycles,
and pedestrians - respond to and recover from extreme weather events
has become crucial for urban resilience. The complexity of multi-modal
surface transportation systems under extreme conditions stems from
their intricate patterns of interaction and interdependence [4]. During
severe weather events, these interactions become more pronounced as
travellers adapt their mode choices and routes in response to

* Corresponding author.
E-mail address: qiuchen.lu@ucl.ac.uk (Q. Lu).

https://doi.org/10.1016/j.ress.2025.111726

disruptions. For instance, when heavy rainfall affects road conditions,
the interactions between different modes intensify as they compete for
limited usable road space, potentially leading to system-wide instability
[5]. Traditional approaches to analysing transportation systems behav-
iours have primarily focused on normal operating conditions, employing
static network properties or simplified flow models [6]. However, these
methods prove inadequate when studying system behaviour under
extreme weather conditions, where non-linear interactions and complex
adaptation patterns dominate [7-9]. Transportation networks during
extreme events operate far from equilibrium, continuously dissipating
energy and producing entropy as they struggle to maintain functionality
[10]. The second law of thermodynamics provides a fundamental
framework for understanding such non-equilibrium systems. In the
absence of entropy sinks, a system’s average entropy increases as time
flows forward [11,12]. This principle becomes particularly relevant in
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transportation systems under stress, where the detailed balance condi-
tion breaks down [13], leading to asymmetric transition probabilities
between system states. The entropy production rate (EPR) emerges as a
natural measure of the degree of non-equilibrium [14,15], offering in-
sights into system stability and potential vulnerabilities during extreme
events.

Despite these advances, several critical research gaps remain in our
understanding of transportation systems under extreme conditions.
Current approaches to analysing system behaviour during extreme
weather events primarily focus on individual modes [16] or simplified
interactions [17], failing to capture the complex, non-linear dynamics
that emerge when multiple modes interact under stress. Furthermore,
while existing research has examined transportation systems under
extreme conditions, these studies have not fully revealed the funda-
mental non-equilibrium characteristics that drive system behaviour
during such events [3,18,19]. Understanding these non-equilibrium
properties is crucial because they represent the underlying mecha-
nisms through which transportation systems adapt to and recover from
extreme disruptions. Current approaches typically focus on describing
observed phenomena rather than uncovering the physical principles that
govern system evolution during stress [20,21]. Thus, a fundamental gap
exists in understanding how irreversibility manifests across different
organisational levels in transportation systems, particularly during
extreme weather events. To address these gaps, this study develops a
comprehensive framework based on non-equilibrium dynamics for
analysing multi-modal transportation systems under extreme weather
conditions. We introduce the Multi-modal Visibility Graph Irrevers-
ibility (MmVGI) framework, which enables the quantification of com-
plex interactions between different transportation modes during
extreme events. By mapping multi-modal traffic patterns to visibility
graphs, our approach captures both the temporal evolution of traffic
states and the spatial organisation of modal interactions. Additionally,
we develop methods for measuring unique contributions to system
irreversibility, enabling the identification of genuine higher-order in-
teractions that cannot be reduced to simpler modal combinations.

The remainder of this paper is organised as follows. Section 2 reviews
relevant literature on transportation system analysis, non-equilibrium
dynamics, and their applications. Section 3 presents our theoretical
foundation and methodology for quantifying multimodal irreversibility.
Section 4 demonstrates the application of our approach through real-
world case studies. Section 5 discusses the implications of our findings
and their practical significance. Finally, Section 6 concludes the paper
with a summary of key contributions and future research directions.

2. Literature review
2.1. Transportation system dynamics

The theoretical foundations of traffic flow analysis were established
in the 1950s and 1960s through seminal works by Lighthill and
Whitham and Richards, who developed the fundamental hydrodynamic
theory of traffic flow [22]. These studies introduced wave propagation
concepts to traffic analysis, establishing the LWR model that remains
influential today. Subsequent work by Greenshields provided empirical
foundations for understanding the relationship between traffic density
and flow [23]. During the 1970s and 1980s, researchers expanded these
foundations to incorporate network-level analysis. Daganzo [24]
developed the cell transmission model, while Newell [25] introduced
simplified theories of traffic flow that balanced theoretical rigor with
practical applicability. These developments enabled better understand-
ing of network-wide traffic phenomena, though they primarily focused
on vehicular traffic in isolation. The 1990s saw increasing attention to
multi-modal transportation analysis. Ben-Akiva and Lerman [26]
developed comprehensive frameworks for analysing travel behaviour
across different modes, while cellular automata models [27] is intro-
duced to represent multiple vehicle types. These studies began to

Reliability Engineering and System Safety 266 (2026) 111726

address the complexity of modal interactions, though often under
simplified assumptions. Recent decades have witnessed significant ad-
vances in understanding transportation system dynamics. Mishra et al.
[28] developed methods for analysing cross-modal interactions in urban
networks, while Xiong et al. [29], Gallotti and Barthelemy [30] explored
the dynamics of mode switching behaviour. Zhang et al. [31] introduced
frameworks for studying system-wide responses to disruptions, partic-
ularly focusing on the propagation of congestion across different modes.
Studies of transportation system resilience have emerged as a crucial
research direction. Sohouenou et al. [32] and Bucar et al. [33] analysed
system responses to extreme events, while Huang [34] developed
frameworks for quantifying system adaptability. These studies have
highlighted the importance of understanding both structural and dy-
namic aspects of transportation system resilience.

However, several significant limitations in current approaches have
become apparent. First, while existing models can effectively describe
individual mode behaviour, they struggle to capture the complex in-
teractions between different modes, particularly during disruptions
[35-37]. As noted by Lynn et al. [38], traditional approaches often fail
to account for the non-linear nature of these interactions. In this context,
nonlinearity refers both to disproportionate system responses, such as
tipping points in congestion [39,40], and more importantly, to emergent
higher-order effects where the dynamics of a multi-modal group cannot
be explained by simply summing its constituent pairwise interactions
[41]. Second, most existing frameworks assume near-equilibrium con-
ditions or simple steady states. The work of Borowska-Stefanska et al.
[13] highlighted how these assumptions break down during extreme
events, when transportation systems operate far from equilibrium. Pan
et al. [42] and Gao et al. [43] demonstrated the need for new theoretical
approaches that can better handle non-equilibrium dynamics. Third,
there remains a significant gap between theoretical models and practical
applications. While researchers like Assaad [44] have attempted to
bridge this gap, the complexity of real-world transportation systems
often exceeds the capabilities of current analytical frameworks. These
frameworks primarily include large-scale simulation models (e.g.,
agent-based models) [45] and equilibrium-based Dynamic Traffic
Assignment (DTA) models [46]. Despite their power, their reliance on
pre-defined behavioural rules and, most critically, on near-equilibrium
assumptions, limits their ability to quantify the fundamental
non-equilibrium dynamics that dominate during severe, transient dis-
ruptions. This limitation becomes particularly apparent when studying
system behaviour under stress [47].

Recent efforts by Song et al. [48] and Duan et al. [49] have begun to
address these limitations by developing more comprehensive frame-
works that integrate multiple analytical approaches. However, a com-
plete understanding of transportation system dynamics, particularly
under extreme conditions, remains elusive. These gaps highlight the
need for new theoretical frameworks that can better capture the
complexity of modern multi-modal transportation systems while
remaining practically applicable.

2.2. Non-equilibrium dynamics theory

The study of non-equilibrium dynamics has evolved significantly
since Onsager’s pioneering work in the 1930s. Onsager established the
fundamental reciprocal relations in near-equilibrium systems, providing
the first rigorous framework for understanding non-equilibrium pro-
cesses [50]. This foundation was extended by Prigogine [51] in the
1960s, who introduced the concept of dissipative structures and devel-
oped systematic approaches to analysing systems far from equilibrium.
Significant advances in EPR (Entropy Production Rate) theory emerged
in the 1990s through the work of Evans et al. [52] and Gallavotti and
Cohen [53], who developed the fluctuation theorem for non-equilibrium
steady states. These developments were complemented by Jarzynski
[11], who established the relationship between non-equilibrium work
and equilibrium free energy differences. Crooks further extended these
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concepts, providing a more general framework for understanding
non-equilibrium processes [54]. The application of these theories to
complex systems has seen remarkable progress. Seifert [55] developed
stochastic thermodynamics, providing tools for analysing small systems
subject to thermal fluctuations. Van den Broeck and Esposito extended
these approaches to coupled systems and developed frameworks for
analysing information flows in non-equilibrium processes [56,57]. In
recent years, researchers have focused increasingly on applying
non-equilibrium concepts to real-world systems. Skinner et al. [58]
developed methods for measuring entropy production in biological
systems, while Nartallo-Kaluarachchi et al. [14] applied these ap-
proaches to neuroscience fields. These studies have demonstrated the
broad applicability of non-equilibrium frameworks while also revealing
the challenges in adapting them to specific contexts.

However, several significant limitations in current approaches have
become apparent. First, most applications of non-equilibrium theory
focus on relatively simple systems or idealised models. The work of Farsi
et al. [59] highlighted the difficulties in extending these frameworks to
complex, real-world systems with multiple interacting components.
Second, while theoretical frameworks exist for analysing steady-state
behaviour, understanding transient dynamics and responses to
extreme perturbations remains challenging [60]. The gap between
theoretical developments and practical applications is particularly
evident in transportation research. While researchers like Li et al. [61]
have attempted to apply non-equilibrium concepts to traffic flow anal-
ysis, and Zhou et al. [62] have explored entropy production in trans-
portation networks. However, their application to large-scale
transportation systems, particularly under extreme conditions, remains
limited. These gaps highlight the need for new theoretical approaches
that can better bridge the gap between fundamental non-equilibrium
physics and the practical challenges of analysing complex trans-
portation systems.

2.3. Multilevel interaction analysis methods

Recent decades have witnessed extensive research on analysing
multilevel interactions in complex systems. Scholars in network science
have made significant contributions to understanding the structural
aspects of multilevel systems. Watts and Strogatz [63] pioneered the
study of small-world networks, while Barabasi and Albert [64] intro-
duced scale-free network concepts, laying the groundwork for analysing
complex network structures. Building on these foundations, Newman
[65] and others developed methods for community detection and hier-
archical structure analysis in networks, enabling deeper insights into
system organisation across multiple scales. The application of network
analysis to transportation systems has evolved significantly. Gallotti and
Barthelemy [30] developed multilayer network models for urban
transportation, while Wang et al. [66] extended these approaches to
incorporate temporal dynamics. These studies revealed important pat-
terns in mode interactions, though they primarily focused on structural
rather than dynamic aspects. Lin et al. [3] integrated network theory
with traffic flow analysis, providing new insights into how network to-
pology influences system performance. Time series analysis has emerged
as another crucial approach for studying multilevel interactions.
Traditional methods based on correlation analysis have been enhanced
by more sophisticated techniques. Shamsan et al. [67] developed
nonlinear time series analysis methods, while Lynn et al. [68] and Braun
et al. [69] introduced recurrence quantification analysis, providing tools
for identifying complex temporal patterns. In transportation research,
these methods have been applied by Laval [70], Zeng and Tang [71]to
analyse traffic flow dynamics. A significant advance in the field came
with the development of multiscale analysis techniques. Lacasa et al.
[72] introduced multiscale entropy analysis, while Smith et al. [73]
developed wavelet-based methods for analysing hierarchical temporal
structures. These approaches have been adapted to transportation
studies by researchers such as Liu et al. [74], who studied the temporal
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complexity of airport air traffic flow and Harrou et al. [75], who ana-
lysed traffic patterns across multiple time scales.

However, several limitations in current approaches have become
apparent. First, most existing studies focus on either spatial or temporal
aspects in isolation, failing to capture the complex spatiotemporal in-
teractions characteristic of transportation systems. Second, while
methods exist for analysing individual modes or simple mode pairs,
techniques for understanding higher-order interactions among multiple
modes remain underdeveloped. Third, current approaches struggle to
account for the fundamental non-equilibrium nature of transportation
systems, particularly under extreme conditions. The integration of
multiple analytical approaches remains a significant challenge. While
researchers have attempted to combine network and time series analysis
[76], and Yin et al. [77] have worked to incorporate multiscale per-
mutation mutual information with traditional traffic flow analysis, a
comprehensive framework that can capture all relevant aspects of
multilevel interactions in transportation systems remains elusive. This
limitation becomes particularly apparent when studying system
behaviour under stress, where existing methods often fail to capture the
complex adaptation patterns that emerge. Thus, these gaps in current
methodological approaches highlight the need for new frameworks that
can better capture the complexity of multilevel interactions in trans-
portation systems.

Through a comprehensive review of existing literature across trans-
portation dynamics, non-equilibrium theory, and multilevel analysis
methods, we identify three fundamental research gaps that warrant
investigation.

1. Non-equilibrium Nature of Transportation Systems: Current
research has not fundamentally revealed what causes the non-
equilibrium characteristics in transportation systems during
extreme events. While studies have separately explored trans-
portation networks and non-equilibrium theory, they have failed to
establish the underlying mechanisms that drive transportation sys-
tems away from equilibrium. Understanding these mechanisms is
crucial because it would enable us to quantitatively measure and
evaluate how different components of the transportation system
contribute to its overall non-equilibrium behaviour.

2. Higher-order Modal Interaction Analysis: Existing analytical
frameworks fail to capture the full complexity of multi-modal in-
teractions in transportation systems. Most studies focus on analysing
individual modes or simple pairwise relationships, overlooking the
critical higher-order interactions that emerge during extreme con-
ditions. This limitation is particularly significant because trans-
portation system adaptation often involves complex, synchronised
changes across multiple modes that cannot be understood through
simplified analysis of individual components or mode pairs.

3. Unique Contribution Identification: Current methodological ap-
proaches lack the capability to distinguish between combined effects
and unique contributions in multi-modal interactions. While re-
searchers have observed complex behavioural patterns in trans-
portation systems during extreme events, existing methods cannot
effectively identify which interactions represent genuine higher-
order effects versus those that merely reflect the accumulation of
simpler interactions. This methodological gap has prevented a
deeper understanding of how different transportation modes truly
influence each other during system stress.

These research gaps highlight the need for a new theoretical and
analytical framework that can reveal the fundamental causes of non-
equilibrium behaviour while capturing the complex nature of multi-
modal interactions. Such a framework must be capable of not only
measuring overall system behaviour but also identifying genuine higher-
order interactions that emerge during extreme conditions, thereby
capturing the complex spatiotemporal dynamics of multi-modal
adaptation. This understanding is crucial for developing more
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effective strategies to enhance transportation system resilience in the
face of increasing climate-related challenges.

3. Methodology

The complex interactions within multi-modal transportation systems
during extreme weather events require a comprehensive analytical
framework that can capture both their non-equilibrium characteristics
and multi-level modal interactions. In this section, we present our
methodological approach that progresses from theoretical foundations
to practical measurements. First, we establish the theoretical basis for
analysing transportation systems as non-equilibrium systems. Trans-
portation networks under extreme weather conditions exhibit clear non-
equilibrium characteristics, manifested through multivariate time series
data across different modes. The irreversibility of these time series
serves as a natural measure of the system’s deviation from equilibrium,
providing a quantitative approach to assess system behaviour during
extreme events.

Building on this theoretical foundation, we develop a three-step
analytical process to quantify system irreversibility and modal in-
teractions, as illustrated in Fig. 1. The first step involves constructing
visibility graphs from multivariate time series data. For each trans-
portation mode, we map temporal patterns to network structures where
nodes represent time points and edges capture visibility relationships
between these points (Fig. 1a). This transformation preserves crucial
dynamic features while enabling network-based analysis. The second
step focuses on analysing the degree distribution patterns within these
visibility graphs. We compute both in-degree and out-degree distribu-
tions for individual modes and their combinations. These distributions
capture the fundamental asymmetry in system evolution, reflecting how
different modes interact and influence each other over time. As shown in
Fig. 1b, the distinctly different patterns between in-degree and out-
degree distributions provide evidence of system irreversibility. The
final step quantifies system irreversibility through Jensen-Shannon
divergence (JSD) calculations on these distributions. We measure irre-
versibility at multiple organisational levels, from individual modes to
higher-order modal combinations. This multi-level analysis reveals both

Reliability Engineering and System Safety 266 (2026) 111726

combined effects and unique contributions of different modal in-
teractions. Fig. 1c illustrates how these measurements distinguish be-
tween overall system behaviour (combined measurements) and genuine
higher-order interactions (unique contributions). Through this meth-
odological framework, we can systematically analyse how different
transportation modes contribute to system non-equilibrium character-
istics and reveal the complex adaptation patterns that emerge during
extreme weather events.

3.1. Theoretical foundations

3.1.1. Applicability of non-equilibrium dynamics to urban transportation
systems

Urban transportation systems are archetypal complex adaptive sys-
tems, exhibiting intricate patterns of behaviour that emerge from the
interactions of individual components [78,79]. Their evolution is con-
strained by small-world and scale-free network topologies [40], which
support the emergence of non-trivial collective dynamics where local
interactions between individual vehicles aggregate into macroscopic
traffic patterns that cannot be predicted from individual behaviours
alone. Small perturbations such as localised weather disruptions can
cascade through the network, creating system-wide effects that are
disproportionate to the initial disturbance, exhibiting the characteristic
sensitivity of far-from-equilibrium systems. A deeper commonality lies
in the path-dependent or memory effects inherent in the evolution of
transportation systems [80-82]. During extreme events, the system’s
future evolution depends not only on its current state but also strongly
on the historical trajectory it took to arrive there. This is formally known
as a non-Markovian stochastic process, which has been approved by
previous studies [83-87]. For example, a traffic jam that formed due to a
slow, gradual accumulation of vehicles will dissipate with very different
dynamics than a jam that formed instantaneously from a multi-lane
accident [87]. This memory is a key characteristic that distinguishes
traffic flow from simple, memoryless Markovian processes, a complexity
that has been increasingly documented in various traffic flow studies
[88,89].

This path-dependent, directional evolution in transportation systems
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Fig. 1. Illustration of the MmVGI Framework. (a) illustrates the visibility graph construction process, showing the transformation of temporal data into network
structures for two distinct transportation modes. The upper histogram displays the degree distribution characteristics for both modes, while the lower network
visualisations demonstrate how temporal patterns are mapped to visibility relationships. (b) presents the probability distributions of in-degree and out-degree for
both modes individually (shown in 2D plots) and their joint distributions (shown in 3D surface plots), revealing the asymmetric evolution patterns in the system. (c)
compares the combined and unique irreversibility measurements across different organisational levels (K = 1 and K = 2), using color-coded heatmaps to represent

the strength of irreversibility values.
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manifests a fundamental concept that appears across diverse complex
systems: the ’arrow of time’ that Eddington described to characterize
processes with inherent directional bias [90]. The mathematical
framework for understanding such directional evolution can be traced to
statistical mechanics and information theory, where entropy serves as a
measure of system asymmetry and uncertainty [12,58]. Building on the
conceptual foundation established by the second law of thermody-
namics for characterizing irreversible processes [91,92], transportation
networks during extreme events exhibit preferential directions in their
evolution [93-96] that can be quantified using corresponding
information-theoretic entropy measures [97]. In transportation systems,
this directional bias manifests as asymmetric probabilistic pathways -
the transition from normal flow to congestion follows different statisti-
cal dynamics than the recovery process, even though both may ulti-
mately reach similar states [88,98]. This asymmetry is fundamentally
information-theoretic: while a traffic jam may eventually dissipate and
the system may return to baseline conditions, the statistical patterns
governing jam formation and dissipation are distinctly different,
creating measurable directional characteristics in the system’s evolution
[88,99,100]. The ’irreversibility’ and ’entropy’ in this research quantify
therefore represent information-theoretic measures of statistical asym-
metry in probabilistic transitions, borrowing the mathematical structure
from thermodynamics but applying it to quantify information rather
than energy dissipation. This analogy is not merely metaphorical—it
points to deeper physical principles that govern systems operating far
from equilibrium. The core mechanism underlying these irreversible
behaviours is the systematic violation of detailed balance [101,102]. In
equilibrium systems, microscopic transitions are statistically reversi-
ble—the probability of transitioning from state A to state B is balanced
by the probability of transitioning from B back to A, mathematically
expressed as:

P(Xi—X,) Pay(X) ~ P(X,=X)-Peg (X)) W

where P, (X;) represents the equilibrium probability distribution of
traffic states [55]. However, under the significant stress of an extreme
event, this fundamental balance is broken systematically in a trans-
portation network, creating net probability fluxes between different
system states and generating measurable temporal asymmetry in the
system’s evolution [103,104]. This systematic violation of detailed
balance marks the system’s transition from an equilibrium state, char-
acterised by symmetric interactions and balanced transition probabili-
ties (conceptually illustrated in Fig. 2a and c), to a non-equilibrium
state, defined by directed interactions and asymmetric transition prob-
abilities (Fig. 2b and d). For instance, the probabilistic path from
free-flow to gridlock is highly asymmetric to the path from gridlock back
to free-flow [100,105,106]. This observable, irreversible evolution—the

Undirected Directed Balanced Unbalanced
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Fig. 2. Conceptual Illustration of Equilibrium and Non-Equilibrium System
Dynamics. (a) and (c) together represent an equilibrium system. (a) depicts a
network with symmetric, reciprocal interactions (W; = Wj). This underlying
structure leads to the dynamic property shown in panel (c), where the transition
probabilities between any two states are equal in both directions (Pyy, = Pyy).
This condition is known as detailed balance. (b) and (d) together represent a
non-equilibrium system. (b) depicts a network with asymmetric, directed in-
teractions (Wj # Wj;). This structure leads to the dynamic property shown in
(d), where transition probabilities are unbalanced (P, # Pyx). This condition
represents a state of broken detailed balance.
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systematic breaking of detailed balance—is a definitive signature of a
system operating far from equilibrium. Modern non-equilibrium physics
provides rigorous, quantitative tools for measuring this departure from
equilibrium through information-theoretic approaches. The primary
such tool is the rate of entropy production [12,58], which, in this
context, is reinterpreted as a pure information measure. It mathemati-
cally quantifies the degree of irreversibility by measuring the statistical
divergence between the probabilities of a system’s forward and
time-reversed evolutionary paths. Therefore, the EPR provides a direct,
quantitative link between the foundational mechanism of broken
detailed balance and a measurable, information-based quantity that
signals the system’s distance from equilibrium. It is mathematically
equivalent to the Kullback-Leibler divergence between the probability of
a forward trajectory y and its time-reversal 7:

T = <log%> (2)

This measure provides a direct, quantitative indicator of how far the
system operates from equilibrium conditions, rooted in the information
generated by the system’s temporal evolution rather than any thermo-
dynamic interpretation [14,15]. The mathematical rigor of this
approach ensures that the irreversibility measurements reflect genuine
system properties rather than artifacts of the analytical method.

Recent empirical studies validate this theoretical perspective by
documenting specific non-equilibrium characteristics in urban trans-
portation systems [107]. Traffic systems exhibit clear temporal asym-
metries during disruptions, manifesting as faster collapse than recovery
during extreme events, hysteresis in system response to weather con-
ditions, and path-dependent recovery patterns that depend on the spe-
cific sequence of disruptions experienced [88,108,109]. These systems
dissipate efficiency through multiple mechanisms including increased
travel times, sub-optimal routing choices, and modal coordination
breakdowns. While not involving thermal dissipation, this loss of
organisational efficiency creates measurable effects that are mathe-
matically analogous to entropy production in physical systems [10,110].
The entropy production rate framework is applicable to transportation
systems through several fundamental justifications. The stochastic
evolution of traffic states follows the same probabilistic structure as
other complex systems studied in non-equilibrium physics [111,112],
allowing EPR calculation methods to be applied without modification to
the underlying mathematical framework. Moreover, EPR can be rein-
terpreted as measuring information production rate in any stochastic
system, providing a foundation that is independent of physical energy
considerations [14]. This information-theoretic interpretation means
that EPR captures the rate at which the system generates new infor-
mation about its state, which is a meaningful concept for any complex
adaptive system regardless of its physical substrate.

While strong mathematical and phenomenological parallels exist
between transportation systems and non-equilibrium physical systems
[113], important distinctions must be acknowledged to maintain sci-
entific rigor. Transportation systems share fundamental characteristics
with non-equilibrium physics including stochastic evolution governed
by probability flux relationships, systematic detailed balance breaking
under stress conditions, measurable information-theoretic irrevers-
ibility, and multi-scale emergent behaviour that spans organisational
levels [111,113,114]. However, transportation systems fundamentally
differ from classical thermodynamic systems in that they do not exhibit
microscopic energy conservation in the thermodynamic sense, lack
well-defined thermodynamic temperature concepts, do not follow
Boltzmann distribution equilibria, and do not involve classical heat
dissipation mechanisms [115-117]. These distinctions define the scope
within which the analogy remains valid and useful, ensuring that the
mathematical tools are applied appropriately rather than overextended
beyond their theoretical foundations. Therefore, it is precisely this
observable, non-Markovian, and irreversible evolution in transportation
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systems that provides a solid and mathematically precise foundation for
applying the analytical framework of non-equilibrium statistical me-
chanics, while acknowledging the information-theoretic rather than
thermodynamic nature of the entropy measures employed. This theo-
retical foundation establishes that non-equilibrium dynamics concepts
are not merely metaphorical when applied to transportation systems but
represent mathematically rigorous tools for analysing stochastic systems
that operate far from equilibrium. The framework provides genuine
predictive and analytical power for understanding transportation system
adaptation during extreme weather events, rooted in the fundamental
breaking of detailed balance and the information-theoretic quantifica-
tion of temporal irreversibility.

3.1.2. Problem formulation

Multi-modal transportation systems in urban environments share
road space and resources, creating complex interactions between
different modes such as buses, private vehicles, bicycles, and walks.
During extreme weather events, these interactions intensify as travellers
adapt their mode choices and routes in response to adverse conditions
[118]. Recent empirical studies have documented specific manifesta-
tions of this complexity: when severe rainfall or flooding occurs, traffic
flows exhibit persistent directional patterns and asymmetric evolution
[93,96] - the transition from normal operations to disrupted states fol-
lows different patterns than the recovery process. These observations
provide concrete evidence of the non-equilibrium dynamics predicted
by theory [13].

As we established in the preceding section (3.1.1), these observable,
asymmetric dynamics are definitive signatures of a system operating far
from equilibrium. The theoretical framework of non-equilibrium physics
provides a rigorous way to quantify this deviation via the EPR, which
captures the fundamental breaking of detailed balance through the
statistical divergence between forward and reverse system trajectories.
For a transportation system, the EPR is formally defined as:

@ = kim (1) i [P(X(0},.) || P(EX(7 )] ®)

where {X(t)},_, represents the system trajectory and {X(r —t)},_, its
time reversal. Here, X(t) captures the full system state, including traffic
flows, densities, and speeds across different transportation modes. P(-)
denotes the path probability, k is the Boltzmann constant, and Dg;
measures the Kullback-Leibler divergence [119] between the probability
distribution of forward trajectories P({X(t)}; ), and the probability
distribution of time-reversed trajectories, P({X(z — t)};_,), defined as:

Da(p | Q) = [ p)logh 3 ax @

where P and Q are probability distributions with densities p and q
respectively [120]. This measure quantifies the statistical distance be-
tween two probability distributions, providing a foundation for ana-
lysing system asymmetry. The fundamental characteristic of
non-equilibrium  behaviour—asymmetric transition probabilities
P(X'—X?) # P(X?>-X'). lies at the heart of this theoretical framework.
In the context of a transportation network, these asymmetries manifest
as emergent directional flows, where certain modes or road segments act
as sources of displaced traffic while others become sinks. However,
while this theoretical foundation is powerful, its direct application
presents a major practical hurdle. For a system as complex and
high-dimensional as a real-world multi-modal transportation network,
computing the path probabilities P({X(t)}{_,) required for the EPR
calculation is computationally intractable. The continuous state space of
transportation systems, combined with the high-dimensional nature of
multi-modal interactions, creates a fundamental gap between our
theoretical understanding of the system’s non-equilibrium nature and
our ability to practically measure and analyse it.

Reliability Engineering and System Safety 266 (2026) 111726

This computational challenge intersects with the fundamental
research gaps identified in our literature review. While the theoretical
foundation establishes that transportation systems exhibit non-
equilibrium characteristics during extreme events, current research
has not fundamentally revealed what causes these characteristics or
established the underlying mechanisms that drive transportation sys-
tems away from equilibrium. Existing analytical frameworks fail to
capture the full complexity of multi-modal interactions, with most
studies focusing on individual modes or simple pairwise relationships
while overlooking the critical higher-order interactions that emerge
during extreme conditions. Furthermore, current methodological ap-
proaches lack the capability to distinguish between combined effects
and unique contributions in multi-modal interactions, preventing iden-
tification of which interactions represent genuine higher-order effects
versus those that merely reflect the accumulation of simpler
interactions.

These limitations create a significant barrier to understanding how
transportation systems truly adapt during extreme weather events. The
inability to quantify system irreversibility directly, combined with the
lack of methods for analysing genuine higher-order modal interactions
and distinguishing unique contributions from combined effects, pre-
vents the development of effective strategies for enhancing trans-
portation system resilience. Motivated by these challenges, we propose
the MmVGI framework. This framework is designed specifically to
overcome the computational barrier of direct EPR calculation while
simultaneously addressing the fundamental research gaps identified in
the literature. By mapping multivariate traffic patterns to visibility
graphs, our approach provides a practical and powerful tool for quan-
tifying the complex, hierarchical, and higher-order interactions that
drive transportation system adaptation under stress. Through this
framework, we can bridge the gap between theoretical understanding
and practical analysis, enabling new insights into the mechanisms un-
derlying transportation system non-equilibrium behaviour and the
genuine higher-order interactions that emerge during extreme weather
events.

3.2. Multi-modal visibility graph irreversibility

We build on the established paradigm of network-based time series
analysis, which has proven particularly effective in studying complex
dynamical systems [121,122]. The visibility graph (VG) approach has
emerged as a powerful model-free tool for transforming
continuous-valued time series into network representations, preserving
essential dynamical features while enabling network-based analysis [15,
122]. Its versatility and assumption-free nature have led to successful
applications across various fields, particularly in analysing complex
[123,124] and chaotic dynamics [125].

Building on these foundations, we introduce the MmVGI framework
to analyse transportation systems with N different modes. For such a
system, its state can be represented as an N-dimensional time series
{X(t)}[TZO, where X(t) = (x1(t), ..., xn(t)). For any kg order subsystem
I'(x;,...,X;) on a given road segment, its trajectory can be expressed
as:

T

rlnmie) = {x (1), 0, (0} 5)

Theoretically, the irreversibility (¢) of this subsystem is defined as
the statistical divergence between its forward and time-reversed tra-
jectories, calculated using path probabilities P(T):

(xi1 e Xige )
(1) ety ) (%) )] P(C\ai))
¢ r(‘;ﬁk )P(F )log p(r G

(6)
where I” represents the time-reversed trajectory. While Eq. (5) provides
a fundamental theoretical definition, its direct application presents a
major practical hurdle: computing the path probabilities P(T') for a
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system as complex and high-dimensional as a real-world multi-modal
transportation network is computationally intractable. To overcome this
challenge, we developed the MmVGI framework. This framework pro-
vides a practical and powerful pathway to quantify irreversibility by
measuring a direct signature of temporal asymmetry within the time
series data itself. It is important to clarify our choice of a component-
wise approach over other potential multivariate methods. An alterna-
tive could be to construct a single visibility graph from the vector tra-
jectory T, for instance, by first reducing the multivariate data to a
univariate series. While this approach could capture the irreversibility of
the aggregated system state, it would do so at the cost of significant
information loss, as the unique dynamics of individual modes would be
blended together. Given that the central goal of this research is to reveal
the interactions between different modes and to isolate their unique
higher-order contributions, a component-wise framework that preserves
all modal information is essential.

Therefore, instead of attempting to approximate these probabilities,
our MmVGI framework provides an alternative and practical pathway,
which is designed to first analyse the modes individually and then to
probe their statistical coupling. It quantifies irreversibility by measuring
a direct signature of temporal asymmetry within the time series data
itself, through a three-step process:

1) Transformation to Visibility Graphs

First, we transform the time series data of each mode into a directed
network called a visibility graph (VG). As illustrated in Fig. 3a, a
directed edge is formed from a time point t; to a later time point ¢; if and
only if a direct line of sight exists between their corresponding data
values. This geometric visibility condition is defined as:
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G — &
G-t

X < X5+ (% — X)) )

This mapping (as shown in Fig. 3a) preserves key dynamical features
of the original signal, including periodicity, fractality, and causality. To
capture the temporal direction of evolution, we construct directed edges
pointing from earlier to later times, represented by the adjacency matrix:

{

where A" represents the adjacency matrix of mode m. This step effec-
tively encodes the temporal dynamics of each mode into a unique
network structure (as shown in Fig. 3b).

1 if i—j in mode m

AlM — ;
0 otherwise

y

(8

2) Capturing Asymmetry in Degree Distributions

The temporal irreversibility of the original time series is fundamen-
tally captured and preserved as a structural asymmetry within its cor-
responding visibility graph. Specifically, this asymmetry manifests as a
difference between the in-degree and out-degree distributions of the
graph’s nodes. For a perfectly reversible process, these two distributions
would be identical. For an irreversible process, they will differ, reflect-
ing the system’s directional evolution. We calculate the in-degree and
out-degree for each node i in each mode’s graph m:

dl[m]‘in _ ZA[m] d[m].ou[ _ ZAI[}m]
J J

i i
These distributions capture the fundamental asymmetry in system
evolution. For a k-order subsystem, we compute the joint degree
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Fig. 3. Construction and Analysis Process of Multi-modal Visibility Graphs. (a) illustrates the original time series data for two distinct modes (shown in red and blue),
along with their visibility mapping process. The upper plots show the raw time series, the middle plots display the visibility connections between data points, and the
lower plots present the final node arrangement for visibility graph construction. (b) shows the resulting visibility graphs for both modes, where nodes represent
temporal data points and edges indicate visibility relationships between these points. (c) presents the detailed graph analysis results, including in-degree and out-
degree calculations for each node in both modes. (d) displays the joint distribution analysis, quantifying the relationships between different modes through their

degree statistics.
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distributions:
P (dy ), P (dy L d) (10)

Here, the tuple (ni,...,n) is a set of identifiers for the k specific
transportation modes being considered in a k-order analysis (e.g., fork =
2, the tuple could be (’car’, *bus’)).

3) Quantifying Irreversibility with Jensen-Shannon Divergence

Finally, to obtain a single, robust value for the irreversibility, we
quantify the statistical distance between the in-degree and out-degree
distributions using the Jensen-Shannon Divergence (JSD), as shown in
Fig. 3d The JSD is a rigorous, symmetrised measure of the difference
between two probability distributions. The irreversibility ¢ for the k-
order subsystem is thus practically calculated as:

g(m ..... i) :JSD(PE:L””W‘) H P‘()r:llt ..... nk)) a1

The specific calculation formula is:

1 1
‘]SD(PinHPOUt) = EDKL (PmH M) + EDKL (PoutH M) (12)

where M = BintPout and the Kullback-Leibler divergence is defined as Eq.
(2).

For finite-length time series, we employ Laplace smoothing to avoid
zero probability issues:

N+1

Prm(dy L dy) = —
M+ d,,

13

where N is the number of nodes satisfying the degree value conditions, M
is the total number of nodes, and dpq. is the maximum degree in the
network. The term d¥, in the Laplace smoothing denominator serves as
an approximation for the total number of possible degree-tuple cate-
gories.

Through this method, we can systematically analyse temporal irre-
versibility at different levels: k = 1 corresponds to the dynamical char-
acteristics of individual modes, k = 2 reflects interactions between mode
pairs, and higher order k reveals complex collective behavioural pat-
terns. Strong interactions between modes typically manifest as higher
irreversibility values, providing crucial insights for identifying key
coupling structures in the system.

3.3. High-order unique contribution measurement

In urban transportation networks under extreme weather conditions,
the interactions among different modes (cars, buses, cycles, and walks)
exhibit complex nonlinear and non-equilibrium characteristics. These
interactions manifest not only in individual modes or simple pairwise
combinations but also through higher-order couplings (e.g., three-mode
or four-mode interactions), leading to a multi-scale structure of system
irreversibility. To systematically analyse these complex interactions, we
propose a comparative framework distinguishing between combined
irreversibility ({), which is the total measured effect, and unique irre-
versibility (), which isolates the genuine, emergent higher-order
contribution.

3.3.1. Combined irreversibility and the need for unique contribution
Consider a k-order interaction among transportation modes (my, ...,
my), where m;i represents specific modes corresponding to the general
variables xi. Its combined irreversibility ¢™ ™) captures the total non-
equilibrium dynamics including all possible sub-interactions:
my.,...,m
) 14)

r(myemy)

However, while the combined irreversibility provides insights into
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overall system behaviour, it inherently includes the effects of lower-
order interactions. This can obscure genuine higher-order interactions,
which are critical for understanding system adaptation under stress. To
isolate these higher-order contributions, we define the unique irrevers-

,1("!1 ,,,,, m) _ é‘(ml~~-~~mk) _ Z ,]9 (15)

Where { is the combined irreversibility of the k-mode system, and the
summation term removes the unique irreversibility () of all proper
subsets Q. To illustrate how this recursive decomposition works,
consider the calculation for the unique third-order irreversibility n (car,
bus, cycle). The process proceeds hierarchically:

1) Base Case (k = 1): First, the unique irreversibility of each individual
mode is equal to its combined irreversibility: n(car) = {(car), and
so on for the other modes.

2) Second-Order Calculation (k = 2): Next, the unique pairwise
irreversibility are calculated by subtracting the individual contri-
butions from the combined values, for example: 5(car, bus) = {(car,
bus) — [n(car) + n(bus)]. This is repeated for all pairs.

3) Third-Order Calculation (k = 3): Finally, the unique third-order
interaction is isolated by subtracting all lower-order unique contri-
butions from the combined third-order value: 5(car, bus, cycle) =
¢{(car,bus,cycle) — [(car,bus) + n(car,cycle) + n(bus,cycle) + n(car) +
n(bus) + n(cycle)]. The value that remains represents the emergent
effect from the simultaneous interaction of all three modes.

This decomposition framework is validated by its behaviour under
the condition of statistical independence. As stated in Eq. (15), if two
modes m; and m; are independent, their combined irreversibility is
simply additive:

g(m"mf) =pm) 4 n(mf)and r](”'f'mf) =0 (16)

The result r](m"mf) = 0 is a direct mathematical consequence of the
decomposition formula. This provides a crucial benchmark: a non-zero
value for 5 is a rigorous indicator of a genuine system interaction
beyond the sum of its parts.

3.3.2. Implications for urban transportation networks

Applying this framework to multi-modal transportation systems re-
veals critical insights into the hierarchical organisation of modal in-
teractions. For example, in analysing the interaction among cars (c),
buses (b), and walks (w), the unique irreversibility can be expressed as:

”(c.b.w) — C(c.b,w) _

[0 4 %) g — [5© 4 y® 4 4] an

The distinction between unique and combined measurements is
particularly crucial for understanding system adaptation to extreme
weather conditions. A high unique irreversibility indicates the emer-
gence of genuine higher-order interactions that cannot be reduced to
simpler combinations, manifesting as synchronised adaptations across
multiple transportation modes. Conversely, when the unique irrevers-
ibility is low despite high combined irreversibility, it suggests that the
observed complexity primarily stems from the superposition of lower-
order interactions.

Through this dual measurement approach, we can uncover the
fundamental structure of multi-modal dependencies during extreme
weather events. The comparison between unique and combined mea-
surements enables us to identify critical higher-order interactions, un-
derstand the hierarchical organisation of system adaptations, and
provide quantitative insights for urban resilience planning and emer-
gency response strategies. This deeper understanding of multi-modal
interactions under extreme conditions is essential for developing effec-
tive, integrated management approaches that account for the complex
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interdependencies between different transportation modes.

3.4. Validation against conventional traffic performance metrics

To validate the practical relevance of our MmVGI framework, we
examine the relationship between irreversibility measurements and
conventional traffic performance indicators. We correlate our irrevers-
ibility values across different orders (K1, K2, K3) with four established
traffic performance metrics: congestion duration, mode switching rate,
travel time index, and recovery time.

Congestion Duration [126,127] quantifies the number of hours
during which traffic flow exceeds normal operating conditions. For each
road segment, we define the baseline flow as the average of flows during
early morning hours (0:00-5:00), representing uncongested conditions.
The congestion threshold is set as the maximum of either 1.5 times the
baseline flow or the daily average flow:

23
Congestion Duration = Z 1[Flow;, >max(1.5 x Baseline, Daily Average)]
h=0

(18)

where 1[] is the indicator function and h represents hourly time steps.

Mode Switching Rate (Coefficient of Variation, a standard statisti-
cal measure of relative variability) captures the temporal variability in
modal composition, reflecting traveller adaptation during extreme
events. We calculate the coefficient of variation for each mode’s share of
total hourly traffic:

(Sm)

19
(Sm) a9

1
Mode Switching Rate = =

me {car.bus,cycle.walk)ﬂ

where S, = {sm,h}iio represents the hourly modal shares for mode m,

with s, p = %, o(-)and p(-) denote standard deviation and mean

respectively.

Travel Time Index [128,129] provides a proxy for congestion
severity based on the flow-capacity relationship. We estimate road ca-
pacity as the 85th percentile of daily flows and calculate the ratio of
hourly flows to this capacity:

(20)

. 1 & . [ Flow,
Travel Time Index = 2% hg(; mm( )

Capacity’

where capacity is estimated as Capacity = P85({Flowh)ﬁio> and the

ratio is capped at 3.0 to represent extreme congestion conditions.

Recovery Time [130,131] measures the system’s ability to return to
normal operations after peak disruption. We identify the peak flow hour
and calculate the time required for flows to return to near-baseline
conditions:

Recovery Time = min{t : Flow.,, < 1.2 x Baseline} 21

where h* = arg max , Flow ; represents the peak flow hour, and re-
covery is defined as returning to within 20 % of baseline flow levels.

These metrics provide comprehensive coverage of transportation
system performance aspects: operational efficiency (congestion dura-
tion), adaptive behaviours (mode switching), service quality (travel time
index), and resilience (recovery time). All metrics are calculated using
the same 24-hour traffic flow data employed in the MmVGI analysis,
ensuring consistency in the validation framework.

4. Case study
4.1. Data description

Our case study focuses on the City of London, one of the most crucial
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districts in Greater London, covering an area of 12.727 km? (As shown in
Fig. 4a, b). This area represents a dense urban environment with com-
plex multi-modal transportation interactions, containing 5200 road
segments (Fig. 4c) in the analysed network. The study utilizes compre-
hensive traffic data provided by University College London’s Depart-
ment of Civil, Environmental and Geomatic Engineering [132], with all
spatial data referenced in the British National Grid coordinate system
(EPSG:27700).

The traffic dataset encompasses hourly flow measurements across
four primary transportation modes: buses, cars, cycle, and walks. For
each road segment, the data structure incorporates unique road identi-
fication numbers, road classification (Fig. 4d), directional information
(Fig. 4e), and hourly traffic flow counts for each mode(car, bus, cycle
and walk, as shown in Fig. 4f). This dataset allows us to examine the
intricate interactions between different transportation modes across the
urban network. Based on this dataset, we selected October 3, 2020, as
our primary study period, which represents a significant extreme
weather event in London’s recent history. According to the UK Met
Office [133], this date recorded the highest daily rainfall (31.7 mm
area-average) in the UK since records began in 1891. This extreme event
provides an ideal case for examining how multi-modal transportation
systems respond to and recover from severe weather disruptions.

4.2. Results analysis

4.2.1. Multi-modal irreversibility analysis

Building on the comprehensive dataset, we conducted a detailed
analysis of transportation system behaviour across different road hier-
archies. Our examination focused particularly on how various trans-
portation modes interact and adapt under extreme raining condition,
revealing distinct patterns in both temporal evolution and network
structure. Our analysis of traffic patterns across different road hierar-
chies reveals distinct characteristics in both temporal evolution and
network structure. As shown in Fig. 5, we examined representative
segments from A Roads, B Roads, and Minor Roads, analysing both their
temporal flow patterns and the resulting visibility graph structures. A
Roads (Segment 1) demonstrate distinct characteristics across all
modes. The car flow patterns show smooth, high-volume temporal
evolution throughout the day, resulting in densely connected visibility
graphs with numerous node interactions. Bus flows exhibit similar sta-
bility but with more regular patterns, reflected in their structured visi-
bility graph organisation. Cycle and walk modes show lower volumes
but maintain consistent patterns, represented by more sparse but well-
organised network structures. These patterns contribute to high irre-
versibility values that increase from k = 1 (0.1037) to k = 4 (0.8155),
indicating strong multi-modal coordination. B Roads (Segment 2)
reveal more variable behaviour. The temporal sequences show notice-
able fluctuations, particularly evident in car and bus flows. Their visi-
bility graphs display moderate connectivity, with car networks showing
scattered clusters and bus networks maintaining some regular struc-
tures. Cycle and walk networks exhibit more flexible patterns, reflected
in their looser network organisation. This variability is captured in the
progression of irreversibility values from k = 1 (0.0599) to k = 4
(0.7998). Minor Roads (Segment 3) exhibit the most dynamic patterns.
Their temporal sequences show pronounced local variations across all
modes, particularly evident in the cycle and walk patterns. The resulting
visibility graphs are notably different: car networks show sparse con-
nections, bus networks display limited structure, while cycle and walk
networks reveal localised clustering. This complex behaviour is reflected
in their irreversibility measurements, which progress from relatively
low first-order values (0.0892) to substantial higher-order values
(0.8176).

This hierarchical analysis reveals the complex relationship between
road hierarchy and multi-modal interactions during extreme conditions,
demonstrating clear transitions from highly structured, integrated pat-
terns on A Roads to more flexible, localised behaviours on Minor Roads.
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A Road B Road = Minor Road 1 Both direction inDirection mm inOppositeDirection
d e
Fig. 4. Multi-modal Transportation Network Structure in the City of London. (a) shows the location of the City of London within Greater London. (b) providing a
detailed satellite view of this chosen area. (c) presents the complete road network segments. (d) categorizes the road network by hierarchy, distinguishing among A

Roads, B Roads, and Minor Roads. (e) displays the directional attributes of road segments, indicating bidirectional flows, single-direction flows, and opposing di-
rection flows. (f) decomposes the network by transportation mode, showing the distinct spatial distributions of walk, cycle, bus, and car traffic flows.
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Fig. 5. Hierarchical Analysis of Multi-modal Traffic Patterns Through Network Structure, Temporal Evolution, and Visibility Graphs. 1) The left panel displays the
urban road network, with hierarchical classification into A Roads (red), B Roads (orange), and Minor Roads (blue), highlighting three representative segments
(labelled 1-3) selected for detailed analysis. 2) The middle panel shows the 24-hour temporal evolution of traffic flows across four transportation modes (car, bus,
cycle, and walk) for each selected segment, revealing distinct patterns of stability and variability across different road types. 3) The right panel illustrates the
corresponding visibility graph structures for each transportation mode, organised in columns from left to right (car, bus, cycle, walk), demonstrating how temporal
patterns translate into network representations. Each road segment’s analysis is accompanied by irreversibility measurements across multiple orders (k = 1 to k = 4),

quantifying the complexity of modal interactions.
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The progression of visibility graph structures and irreversibility values
provides quantitative evidence for these hierarchical differences in
network behaviour.

To better understand the higher-order interaction patterns within
our selected network area, we conducted a comprehensive statistical
analysis, as presented in Fig. 6. The visualisation employs a colour
gradient scheme, where lighter shades indicate stronger irreversibility in
modal combinations, while darker shades represent more reversible
interactions. Each modal combination is represented by icons on the x-
axis, with reference to Fig. 6a) showing the four primary modes: cars,
buses, cycles, and walks. Our analysis across multiple orders (k = 1,2,3)
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to uncover systematic relationships between different transportation
modes.

Single-mode analysis (k = 1, Fig. 6b) revealed distinctive behav-
ioural patterns across different transportation modes. Motorised modes,
particularly cars and buses, demonstrated moderate irreversibility
values, reflecting their operational stability and structured service pat-
terns. This stability appears particularly pronounced in bus services,
likely due to their scheduled operations and fixed routes. In contrast,
walk flows exhibited the highest irreversibility, suggesting remarkable
adaptability to changing conditions. Notably, cycling patterns showed
the lowest irreversibility, indicating well-distributed flow patterns that
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Fig. 6. Multi-order Analysis of Modal Interactions through Irreversibility Measurements and Statistical Testing. (a) introduces the four primary transportation modes
analysed: car, bus, cycle, and walk. (b), (c), and (d) display the irreversibility values for different modal combinations at first, second, and third order respectively,
using a colour gradient where lighter shades indicate stronger irreversibility. (e), (f), and (g) provide violin plots showing the distribution characteristics of irre-
versibility values across different modal combinations. (h), (i),(j) presents statistical significance testing results through heatmaps, where colour intensity and asterisk
notation (*) indicate the level of statistical significance between different modal combinations. The systematic progression from k = 1 to k = 3 demonstrates the
evolution from simple single-mode characteristics to complex higher-order interactions.
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maintain balance across the network. The examination of pairwise in-
teractions (k = 2, Fig. 6¢) highlighted strong coupling between
motorised transportation modes. Car-bus combinations displayed
particularly high irreversibility values, indicating synchronised traffic
flow patterns, especially along major transportation corridors. In-
teractions between vehicular modes and walks also showed significant
irreversibility, suggesting adaptive complementarity where walks flow
adjust to accommodate vehicular traffic during adverse weather con-
ditions. Cycling-related pairs, however, maintained lower irreversibility
values, indicating more independent behavioural patterns. The third-
order analysis (k = 3, Fig. 6d) revealed sophisticated multi-modal in-
teractions, with the car-bus-walk combination exhibiting notably high
irreversibility. This finding suggests the presence of complex adaptation
mechanisms during extreme weather events, where these three modes
demonstrate coordinated behavioural adjustments. The emergence of
such pronounced higher-order interactions emphasizes that trans-
portation system adaptation involves complex multi-modal de-
pendencies that cannot be fully captured through simpler single-mode or
pairwise analyses.

Statistical analysis confirms systematic variations in irreversibility
across different modal combinations, with evidence drawn from both
distribution patterns and significance testing. The violin plots (Fig. 6e-g)
reveal the evolving complexity of modal interactions across different
orders. At k = 1, the distributions show relatively concentrated patterns
with distinct medians for each mode, particularly highlighting the
contrast between motorised and non-motorised transportation. As we
move to k = 2 and k = 3, the distributions demonstrate increasing spread
and complexity, indicating more sophisticated interaction patterns at
higher orders. The significance testing results (Fig. 6h-j) provide statis-
tical validation of these observed patterns. At the single-mode level
(panel h), the heatmap reveals significant differences between most
modal comparisons (indicated by **** and bright colours), though some
comparisons, particularly involving bus modes, show no significant
differences (ns). This aligns with the concentrated distributions seen in
the k = 1 violin plot. The pairwise analysis (panel i) demonstrates even
more pronounced differences, with most combinations showing high
statistical significance (****), particularly in car-bus interactions. This
corresponds to the broader distributions observed in the k = 2 violin
plot, reflecting the emergence of complex pairwise dynamics. Most
notably, the k = 3 analysis (panels g and j) reveals both the highest
variability in distributions and the strongest statistical differences
among modal combinations. The violin plot shows distinct spreading
patterns for different triple-mode combinations, while the significance
heatmap confirms these differences are highly significant (****), espe-
cially for combinations involving car-bus-walk interactions. This dual
evidence strongly supports the emergence of genuine higher-order in-
teractions in the transportation system during extreme weather events.
These statistical results reinforce the importance of considering multi-
order interactions in transportation system analysis. They provide
quantitative evidence for the hierarchical nature of urban mobility
patterns, demonstrating that modal interactions become increasingly
complex and statistically distinct at higher orders.

These statistical patterns reflect specific transportation mechanisms
during extreme weather events. The high irreversibility observed in car-
bus combinations indicates synchronized traffic flow disruptions, where
congestion in one mode immediately affects the other due to shared
infrastructure constraints. The strong car-bus-walk third-order in-
teractions suggest the emergence of complex adaptation mechanisms
where all three modes must coordinate their use of limited road space
during adverse conditions. The distinctive behaviour of cycling, showing
lower pairwise irreversibility but significant influence on network dy-
namics, reflects its unique adaptive capacity. Unlike motorized modes,
cycling can rapidly shift between different types of infrastructure (roads,
cycle lanes, sidewalks) during extreme weather, creating flow re-
distributions that affect the broader transportation system. Walk flows
exhibit the highest individual irreversibility, indicating their role as the
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most adaptable mode during extreme conditions. Pedestrians can
modify routes, timing, and destinations more flexibly than other modes,
leading to highly variable temporal patterns that contribute significantly
to overall system dynamics.

These mechanisms are not just theoretical; they are directly reflected
in the observable transportation behaviours documented in our case
study. The temporal sequences in Fig. 5 demonstrate how different
modes exhibit distinct adaptation characteristics: A Road segments show
coordinated but stressed patterns across all modes, reflecting travellers
constrained choices on critical corridors. B Road segments display more
variable temporal patterns, particularly in cycling and walking, indi-
cating travellers’ ability to exercise greater route and timing flexibility
on secondary networks. The progression from individual mode behav-
iour (K1) to complex multi-modal interactions (K3) captures the evo-
lution from independent traveller decisions to coordinated system-wide
adaptations during the extreme weather event.

4.2.2. Spatial pattern analysis of multi-modal interactions

Our spatial analysis of the urban transportation network reveals
distinct patterns of irreversibility across different modal combinations,
offering deeper insights into how various transportation modes influ-
ence network dynamics during extreme weather conditions (Fig. 7). The
baseline analysis of single-mode patterns, focusing on vehicular traffic
(car mode), shows pronounced irreversibility along A Roads, with
MmVGi values reaching 0.8347. This distribution highlights the
fundamental structure of urban mobility, where A Roads exhibit high
dynamic complexity due to concentrated vehicular flow. In contrast, B
Roads and Minor Roads display relatively lower irreversibility, reflect-
ing more stable traffic patterns.

When examining dual-mode interactions, the car-bus combination
demonstrates high irreversibility values (0.8907) along A Roads, indi-
cating strong coupled dynamics between these motorised modes. The
comparison values suggest that buses moderate the high irreversibility
observed in car-only scenarios, particularly along A Roads. This
moderation effect is visible through the transition from red to yellow-
green patterns in many arterial segments.

The introduction of cycling into the network (car-cycle) shows an
irreversibility value of 0.9009, with distinct patterns emerging espe-
cially on B Roads and Minor Roads. The comparison maps reveal
extensive yellow-green regions in previously low-irreversibility areas,
suggesting that cycling significantly influences network dynamics at
these scales. This indicates that cycling serves as a redistributive force in
the network, particularly where motorised traffic is less dominant.

Pedestrian interactions, as shown in the car-walk combination
(0.9149), produce more subtle effects. Unlike cycling, which reshapes B
Roads and Minor Roads on a larger scale, pedestrian dynamics primarily
affect localised sections of Minor Roads. This is evidenced by scattered
yellow regions in these areas, indicating isolated rather than network-
wide impacts.

The analysis of higher-order combinations provides additional in-
sights. The transition from car-bus-cycle to car-bus-cycle-walk configu-
rations shows minimal additional changes in irreversibility patterns.
This suggests that pedestrian flows integrate into existing modal pat-
terns without introducing substantial new dynamic structures. In
contrast, the comparison between car-bus and car-bus-cycle patterns
reveals significant reorganisation of network dynamics, particularly
across B Roads and Minor Roads.

These spatial patterns demonstrate that transportation system
adaptation during extreme weather events operates differently across
road hierarchies, revealing underlying transportation mechanisms
operating at different scales. The concentration of high irreversibility on
A Roads reflects their role as critical infrastructure that cannot be
bypassed during extreme events, forcing them to operate under stressed
conditions where motorised modes dominate the dynamics. In contrast,
cycling emerges as a significant influence on B Roads and Minor Roads,
demonstrating how non-motorized modes can significantly affect
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Fig. 7. Spatial Distribution and Comparison of Multi-modal Irreversibility Patterns in Urban Transportation Networks. (a)shows the progression from single-mode
analysis (car) to dual-mode comparisons (car versus car-bus, car-cycle, and car-walk), revealing how the addition of different modes influences network behaviour.
(b) illustrates the evolution of more complex modal combinations, focusing on car-bus interactions and their relationships with other modes. (c)(d) demonstrates
higher-order modal interactions, particularly highlighting the car-bus-cycle and car-bus-walk combinations.

network dynamics through their adaptive route selection behaviour
during adverse conditions. This cycling influence introduces dynamic
variability and reshapes local irreversibility patterns, creating a hierar-
chical system where different modes dominate different spatial scales.
Understanding these hierarchical patterns is crucial for developing tar-
geted resilience strategies that account for both primary corridor per-
formance under stress and the adaptive flexibility that characterizes
local road network dynamics.

4.2.3. Unique measurement compares with combined measurement

In urban transportation networks, the complex interactions between
different modes during extreme weather conditions are crucial for un-
derstanding system resilience and management. These interactions
exhibit distinctive nonlinear and non-equilibrium characteristics that
extend beyond what can be captured through traditional single-mode or
pairwise analyses. The relationships between motorised transport (cars
and buses) and non-motorised modes (cycling and walking) become
particularly intricate during adverse weather conditions, necessitating a
deeper understanding of their higher-order interactions.

Our analysis reveals an important relationship between the com-
bined and unique irreversibility patterns across both second and third-
order interactions (Fig. 8). When examining normalised irreversibility
values, we observe a consistent correlation between unique and
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combined measurements, suggesting that the relative strength of modal
interactions is preserved across both measurement approaches. At the
second order (k = 2), the correlation coefficient between unique and
combined measurements reaches r = 0.966, indicating a remarkably
strong positive relationship. This high correlation suggests that modal
combinations showing stronger combined irreversibility also tend to
exhibit proportionally higher unique contributions. This pattern reveals
that the relative importance of different modal pairs is consistently re-
flected in both their overall behaviour and their genuine pairwise in-
teractions. The pattern continues at the third order (k = 3), maintaining
a strong correlation (r = 0.946), though slightly lower than the second-
order relationship. This consistent pattern suggests that even as in-
teractions become more complex, the relative strength of different
modal combinations remains stable across measurement approaches.

The preservation of these strong correlations across different orders
reveals a crucial characteristic of multi-modal transportation systems:
the presence of genuine higher-order coupling effects that cannot be
reduced to simple combinations of individual modes. These higher-order
interactions represent emergent system properties rather than mere
accumulations of lower-order effects. The consistent relationship be-
tween unique and combined measurements demonstrates that the sys-
tem exhibits coherent, non-linear coupling patterns that emerge
specifically at higher orders.
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measurements.

4.3. Correlation analysis results

We correlate our irreversibility values across different orders (K1,
K2, K3) with these four-performance metrics across all 5200 road seg-
ments in our study area. Our results reveal a systematic strengthening of
correlations as we progress from individual modes (K1) to higher-order
interactions (K3), as shown in Fig. 9. At the single-mode level (K1),
correlations are moderate but significant, ranging from r = 0.194 for
recovery time to r = 0.522 for mode switching rate. The strongest cor-
relation at K1 is observed with mode switching rate (r = 0.522, p <
0.001), suggesting that even individual modal irreversibility captures
adaptive behavioural responses during extreme events. Moving to
pairwise interactions (K2), correlations strengthen substantially across
all performance metrics. Travel time index shows the most dramatic
improvement, increasing from r = 0.338 at K1 tor = 0.633 at K2 (p <
0.001). Congestion duration correlation nearly doubles from r = 0.321
tor =0.606, while recovery time correlation more than doubles from r =
0.194 to r = 0.442. These improvements indicate that pairwise modal
interactions provide significantly better predictive power for conven-
tional traffic performance measures than individual modal analysis. The
highest correlations emerge at the third-order level (K3), where travel
time index reaches r = 0.732 (p < 0.001) and congestion duration
achieves r = 0.697 (p < 0.001). Recovery time correlation continues to
strengthen to r = 0.516, demonstrating that higher-order modal in-
teractions are most closely associated with system recovery character-
istics. Interestingly, mode switching rate correlation shows a different
pattern, peaking at K1 and declining at higher orders, suggesting that
individual modal adaptations are the primary drivers of mode choice
changes during extreme events.

The systematic increase in correlations from K1 to K3 provides strong
empirical evidence that higher-order irreversibility measurements cap-
ture increasingly sophisticated aspects of transportation system perfor-
mance that are not apparent from traditional single-mode or simple
multi-modal analyses. The particularly strong correlations with travel
time index and congestion duration at higher orders (r > 0.6) demon-
strate that our irreversibility framework effectively quantifies the com-
plex coordination challenges that emerge during extreme weather
events. The distinct correlation pattern observed for mode switching
rate—where individual modal irreversibility (K1) shows the strongest
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relationship—reveals important insights into traveller adaptation
mechanisms. This suggests that mode choice decisions are primarily
driven by individual modal performance degradation rather than com-
plex multi-modal interactions, providing valuable guidance for trans-
portation demand management strategies during extreme events. The
progressive strengthening of correlations with recovery time across or-
ders (from r = 0.194 to r = 0.516) indicates that system recovery is
fundamentally a multi-modal phenomenon requiring coordination
across transportation modes. This finding supports the theoretical
framework’s emphasis on higher-order interactions as critical factors in
transportation system resilience. All correlations achieve high statistical
significance (p < 0.001) across the complete dataset of 5200 road seg-
ments, providing robust evidence for the relationships between irre-
versibility measurements and conventional performance metrics. The
large sample size and comprehensive network coverage ensure that
these findings are representative of urban transportation system be-
haviours during extreme weather conditions.

These validation results demonstrate that the MmVGI framework
captures meaningful patterns of system performance that are both
theoretically grounded and practically relevant for transportation
planning and management applications, directly addressing the re-
viewer’s concern about the practical utility of irreversibility measure-
ments in transportation contexts.

5. Discussion

Our analysis of multi-modal transportation networks during extreme
weather conditions reveals several significant findings about system
adaptation and modal interactions across different spatial scales. The
results provide important insights into both theoretical understanding of
transportation system dynamics and practical implications for urban
resilience planning.

5.1. Findings

5.1.1. Road hierarchies and modal interactions in transportation systems

The distribution of irreversibility across different road hierarchies
demonstrates distinct patterns of modal interactions. A Roads consis-
tently exhibit high irreversibility values across all orders of analysis,
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indicating their crucial role as network backbones during extreme
conditions. This stability in primary corridors suggests that motorised
transport modes (cars and buses) maintain relatively structured in-
teractions even under stress. Particularly noteworthy is the significant
influence of cycling on network dynamics, especially in B Roads and
Minor Roads. The introduction of cycling leads to substantial reorgan-
isation of local network patterns, evidenced by increased irreversibility
values in these areas. These finding challenges traditional perspectives
that primarily focus on motorised transport, highlighting cycling’s
crucial role in system adaptation. Pedestrian flows, while contributing to
system dynamics, show more limited influence primarily confined to
Minor Roads. This localised impact suggests that pedestrian modes serve
as complementary rather than transformative elements in the broader
network structure during extreme weather events.

5.1.2. Dynamic adaptation across modal combinations

The network’s response to different modal combinations reveals a
hierarchical pattern of adaptation. A Roads, dominated by car-bus in-
teractions, maintain relatively stable dynamic patterns, suggesting
robust infrastructure utilisation despite extreme conditions. In contrast,
B Roads demonstrate notable non-linear responses, particularly
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following the introduction of cycling modes. This differentiated
response indicates that secondary networks possess greater adaptive
capacity through modal diversification. The limited contribution of
pedestrian modes to system irreversibility, particularly in broad network
dynamics, suggests a natural segregation of modal influences across
spatial scales. This finding has important implications for understanding
how different transportation modes contribute to system resilience
during extreme events.

5.1.3. Higher-order interactions and system behaviour

The relationship between unique and combined contributions re-
veals fundamental characteristics of multi-modal interactions. The
strong correlation between these measurements (r = 0.966 for k = 2 and
r = 0.946 for k = 3) indicates that higher-order interactions represent
genuine system properties rather than mere accumulations of lower-
order effects. This finding provides empirical evidence for the emer-
gence of complex adaptive behaviour in urban transportation systems.
Particularly significant is the observation that three-mode combina-
tions, such as car-bus-cycle, demonstrate irreversibility patterns that
cannot be reduced to simpler modal interactions. This non-linear char-
acteristic suggests that transportation system adaptation operates
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through sophisticated multi-modal mechanisms rather than simple ad-
ditive effects.

5.2. Transportation mechanisms behind irreversibility patterns

5.2.1. Infrastructure competition and modal interdependency

The high irreversibility values observed in car-bus-walk combina-
tions reflect fundamental transportation mechanisms operating during
extreme weather events. When heavy rainfall reduces effective road
capacity, these three modes enter into competitive interactions for
limited usable infrastructure. Cars and buses compete directly for road
space, while pedestrians seek alternative routes that may conflict with
vehicular traffic. This competition creates cascading effects where
disruption in one mode triggers adaptations in others. When car traffic
becomes severely congested, passengers shift to bus services, increasing
bus dwell times and reducing schedule reliability. Delayed buses sub-
sequently force more travellers to walk, creating additional pedestrian-
vehicle conflicts at intersections and crosswalks.

5.2.2. Differential recovery dynamics

The temporal asymmetries captured by our irreversibility measure-
ments reflect the different recovery characteristics of each trans-
portation mode. Cars can resume normal speeds relatively quickly once
weather conditions improve and surface water drains. Bus services
require longer recovery periods due to accumulated schedule delays and
the need to redistribute passengers who concentrated at stops during
disruptions. Pedestrian flows exhibit the most gradual recovery patterns,
as route choice preferences normalize slowly and weather risk percep-
tions change over extended periods. These differential recovery rates
create the prolonged temporal asymmetries that manifest as higher-
order irreversibility in our measurements.

5.2.3. Spatial adaptation mechanisms

The prominence of cycling influences on B Roads and Minor Roads
reflects specific spatial adaptation mechanisms. During extreme
weather, cyclists possess unique route flexibility, utilizing alternative
infrastructure types and creating temporary connections between nor-
mally separated route segments. This adaptive behaviour generates
complex flow redistributions that significantly affect secondary network
dynamics. A Roads maintain high irreversibility across all modal com-
binations because they serve as critical bottlenecks that cannot be easily
bypassed during extreme events. These corridors must accommodate
diverted traffic from compromised secondary routes while maintaining
essential connectivity, operating in highly stressed conditions that
generate the persistent non-equilibrium dynamics we observe

5.2.4. Behavioural validation through performance metrics

The transportation mechanisms identified through our irreversibility
analysis are validated by their correlations with conventional traffic
performance indicators (Fig. 9). The strengthening correlations from K1
(r = 0.522 for mode switching) to K3 (r = 0.732 for travel time index)
demonstrate that higher-order irreversibility measurements capture
increasingly complex behavioural adaptations that directly impact sys-
tem performance. The strong correlation with mode switching rates at
the individual level (K1) confirms that irreversibility captures travellers’
adaptive mode choice behaviours during extreme weather. The pro-
gression to higher correlations with congestion duration and travel time
index at higher orders (K2, K3) indicates that multi-modal interactions
reflect coordinated behavioural responses that determine overall system
performance during extreme events. These empirical relationships
validate that our analytical framework captures the same transportation
phenomena that operational practitioners monitor through conven-
tional metrics, while providing additional insights into the behavioural
coordination mechanisms that drive system-wide performance
outcomes.
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5.3. Contributions

The MmVGI framework introduced in this study offers several
methodological advances in analysing multi-modal transportation sys-
tems. By combining visibility graph analysis with irreversibility mea-
surements, our approach captures both global network patterns and
localised modal interactions. This dual perspective provides a more
comprehensive understanding of system dynamics than traditional
methods focused on individual modes or simple flow analysis.

Our framework’s ability to quantify both unique and combined
contributions to system irreversibility represents a significant method-
ological innovation. This differentiation enables the identification of
genuine higher-order interactions, providing a quantitative basis for
understanding how different modal combinations contribute to system
adaptation. The framework’s application across spatial scales demon-
strates its versatility in capturing both network-wide patterns and local
dynamic responses.

In doing so, the MmVGI framework offers a new perspective that
complements traditional network science metrics. While conventional
metrics like betweenness centrality or clustering coefficients describe
the static, topological structure of a network, our irreversibility measure
quantifies its dynamic, functional properties. By focusing on the
temporal asymmetries derived from information theory, our approach
provides insights into how the network actually behaves and adapts
under stress, revealing emergent properties that are invisible to purely
structural analysis.

5.4. Practical applications and management implications

5.3.1. Mechanism-based network diagnostics

Understanding the transportation mechanisms behind irreversibility
patterns enables more effective system diagnostics. High irreversibility
hotspots indicate specific operational problems: car-bus interactions on
A Roads suggest needs for transit priority systems during extreme
weather, while high cycling influences on secondary roads indicate
opportunities for weather-responsive infrastructure management. The
spatial distribution of higher-order irreversibility serves as a diagnostic
tool for identifying network vulnerabilities that are not apparent from
traffic volume data alone. Areas showing strong three-mode interactions
(car-bus-walk) require integrated management strategies that account
for modal interdependencies rather than treating each mode
independently.

5.3.2. Adaptive infrastructure management

The identified mechanisms suggest specific operational strategies.
The strong car-bus coupling on A Roads indicates the need for coordi-
nated management approaches, such as adaptive traffic signal systems
that prioritize bus operations during extreme weather events. Dynamic
lane allocation strategies could help manage the competition for road
space that drives high irreversibility in these corridors. The significant
cycling influence on B Roads and Minor Roads suggests implementing
weather-responsive cycling infrastructure that can accommodate modal
shifts during extreme conditions. This might include temporary route
modifications or enhanced information systems that help cyclists adapt
their travel patterns more effectively.

5.3.3. Recovery process optimization

Understanding the differential recovery dynamics of different modes
enables targeted interventions to accelerate system restoration. Since
bus services have longer recovery periods due to schedule coordination
challenges, priority should be given to restoring transit operations and
redistributing accumulated passenger loads. The gradual recovery pat-
terns observed in pedestrian flows suggest the need for proactive in-
formation systems that help travellers adapt their route choices more
efficiently as conditions improve. This could reduce the prolonged
temporal asymmetries that contribute to extended system recovery
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5.5. Limitations and future research

Our study, while providing valuable insights into multi-modal
transportation dynamics, faces several limitations that suggest prom-
ising directions for future research. A primary limitation lies in the scope
of transportation modes analysed. While our framework successfully
captures interactions between cars, buses, cycles, and pedestrians, urban
mobility encompasses a broader spectrum of transportation modes.
Modern cities increasingly feature diverse mobility options, including e-
bikes, scooters, ride-sharing services, and various forms of micro-
mobility. The exclusion of these emerging transportation modes, due
to data availability constraints, potentially limits our understanding of
the full complexity of urban mobility systems during extreme weather
events. The temporal scope of our analysis presents another limitation,
as we focus on a single extreme weather event. Transportation system
behaviour might vary significantly across different types of weather
conditions or during different seasons, potentially revealing additional
patterns of modal interactions not captured in our current analysis.
Furthermore, the computational complexity of analysing higher-order
interactions (beyond k = 4) presents technical challenges that
constrain our ability to explore more complex modal combinations.

Future research could address these limitations in several ways.
Expanding the analysis to include emerging transportation modes would
provide a more comprehensive understanding of urban mobility adap-
tation. For instance, incorporating e-bikes and micro-mobility services
could reveal new patterns of system resilience, particularly in areas
where traditional modes face limitations. This expanded analysis could
help identify how different transportation modes complement each
other during extreme conditions and inform the development of more
robust mobility systems. Additionally, future studies should examine
temporal variations in system behaviour across multiple extreme events
and different seasonal conditions. This broader temporal perspective
would help establish more robust patterns of adaptation and reveal how
modal interactions evolve under varying environmental challenges. In
addition to expanding the analysis to include emerging transportation
modes and multiple weather events, several exciting methodological
avenues are now open. One key direction is the development of new
"irreversibility-based centrality" measures to identify nodes that are
critical not just structurally, but dynamically. Another important step
will be to integrate the MmVGI framework with traffic simulation
models to test its predictive power, potentially creating early warning
systems for network stress. Finally, the principles of this framework
could inform new network optimisation problems that aim to design
more resilient systems by minimising irreversibility under stress
scenarios.

Furthermore, a promising theoretical direction for future research
involves formally connecting our framework with the mathematical
language of topological data analysis and advanced network theory.
Conceptually, our analysis of k-order interactions is analogous to iden-
tifying and assigning a dynamic property—irreversibility—to the
higher-order structures in a multilayer network (where each mode is a
layer) or the hyperedges in a hypergraph. This perspective, related to the
study of simplicial complexes, could yield deeper insights into the to-
pological structure of multi-modal adaptation and bridge our non-
equilibrium framework with other cutting-edge analytical tools.

5.6. Broader impacts

This research has significant implications for urban resilience plan-
ning in the context of climate change. The identification of hierarchical
adaptation patterns suggests the need for differentiated resilience stra-
tegies across spatial scales. Understanding how different modal combi-
nations contribute to system resilience could inform the development of
more integrated multi-modal transportation systems.
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The demonstrated importance of higher-order interactions contrib-
utes to our broader understanding of complex urban systems. This
insight suggests that effective climate adaptation strategies must
consider the emergent properties of multi-modal interactions rather
than focusing on individual mode improvements in isolation.

In conclusion, our findings advance both theoretical understanding
of non-equilibrium dynamics in urban systems and practical approaches
to transportation system management by revealing the specific mecha-
nisms through which different transportation modes interact and adapt
under stress. The framework and insights developed here provide a
foundation for future research into urban resilience and adaptation
strategies in the face of increasing environmental challenges.

6. Conclusion

Transportation networks in urban environments face increasing
challenges from extreme weather events, necessitating a deeper under-
standing of how different transportation modes interact and adapt under
stress. Traditional approaches to analysing transportation system dy-
namics have primarily focused on individual modes or simple pairwise
interactions, potentially overlooking critical higher-order relationships
that emerge during extreme conditions. This study introduced the
MmVGI framework to analyse the complex interactions between
different transportation modes during extreme weather events. By
examining the behaviour of cars, buses, cycles, and pedestrians across
different road hierarchies, we revealed distinct patterns of system
adaptation and modal cooperation that emerge under stress.

Our analysis yielded several key findings. First, we demonstrated
that transportation system adaptation exhibits clear hierarchical pat-
terns, with A Roads showing consistent high irreversibility dominated
by motorised transport, while B Roads and Minor Roads display more
complex patterns of modal interaction. Second, we identified cycling as
a crucial component in system adaptation, particularly in secondary
networks where it significantly influences local dynamics. Third, our
comparison of unique and combined measurements revealed strong
correlations, providing evidence for genuine higher-order interactions
that cannot be reduced to simpler modal combinations. These findings
have significant implications for urban transportation planning and
management. The identification of distinct adaptation patterns across
road hierarchies suggests the need for tailored resilience strategies that
account for both network-wide stability and local dynamic responses.
The demonstrated importance of cycling in secondary networks chal-
lenges traditional infrastructure planning approaches that prioritize
motorised transport, suggesting the need for more balanced, multi-
modal development strategies.

While our study was limited by the number of transportation modes
analysed and its focus on a single extreme weather event, it establishes a
foundation for understanding how urban mobility systems adapt to
environmental challenges. Future research should expand this analysis
to include emerging transportation modes and examine system behav-
iour across different types of extreme events, potentially revealing
additional patterns of adaptation and resilience. This research contrib-
utes to both theoretical understanding of complex urban systems and
practical approaches to transportation management. As cities face
increasing environmental challenges, the insights and methodological
framework developed here provide valuable tools for building more
resilient, adaptive transportation systems that can maintain function-
ality during extreme weather events.
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