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As quantum computing progresses towards the early fault-tolerant regime, quantum error correc-
tion will play a crucial role in protecting qubits and enabling logical Clifford operations. However, the
number of logical qubits will initially remain limited, posing challenges for resource-intensive tasks
like magic state distillation. It is therefore essential to develop efficient methods for implementing
non-Clifford operations, such as small-angle rotations, to maximise the computational capabilities
of devices within these constraints. In this work, we introduce mitigated magic dilution (MMD) as
an approach to synthesise small-angle rotations by employing quantum error mitigation techniques
to sample logical Clifford circuits given noisy encoded magic states. We explore the utility of our
approach for the simulation of the 2D Fermi-Hubbard model. We identify evolution time regimes
where MMD outperforms state-of-the-art synthesis techniques in the number of noisy encoded magic
states required for square lattices up to size 8× 8. Moreover, we demonstrate that our method can
provide a practical advantage that is quantified by a better-than-quadratic improvement in the re-
source requirements for small-angle rotations over classical simulators. This work paves the way
for early fault-tolerant demonstrations on devices supporting millions of quantum operations, the
so-called MegaQuOp regime.

I. INTRODUCTION

Recent progress in experimental demonstrations of
quantum error correction and logical computation [1–5]
has encouraged research towards practical applications
of early fault-tolerant quantum computers [6–9]. The
Gottesman-Knill theorem [10] shows that universal quan-
tum computation necessitates non-Clifford gates. Imple-
menting these gates typically requires the preparation
of magic states or non-stabiliser states where resource-
intensive techniques such as magic state distillation [11]
are used to improve their fidelity. Despite ongoing re-
search in reducing the associated overhead of these fac-
tories [12–14], resource analysis of fault-tolerant imple-
mentations of large algorithms using magic state distil-
lation require millions of physical qubits [15–18]. In the
anticipated early fault-tolerant era, where useful magic
state distillation factories cannot be accommodated due
to physical qubit limitations, we investigate quantum er-
ror mitigation as a promising alternative.

Quantum error mitigation (QEM) is generally consid-
ered in the context of estimating the expectation value
of an observable using a quantum circuit, for example
in variational quantum eigensolvers [19] and statistical
versions of phase estimation [20–24]. QEM methods im-
prove the accuracy of the estimated expectation value
by reducing the noise-induced bias in the circuit [25, 26].
This is done through post-processing of the measurement
outcomes from an ensemble of circuit implementations
and so is distinct from quantum error correction which

∗ zcaplut@ucl.ac.uk
† Current address: Nu Quantum, 21 JJ Thompson Avenue, Cam-
bridge, CB3 0FA, United Kingdom

reduces the logical error rate for each individual circuit
run [26]. Consequently, most error mitigation techniques
require additional sampling that increases with the noise
in the circuit, resulting in asymptotically unfavourable
scaling [26, 27].

Despite this, QEM techniques could thrive in the early
fault-tolerant regime when applied at the logical level
by focusing on their pre-asymptotic behaviour prior to
the exponential scaling becoming impractical [6, 28]. As
per the standard magic state model [11], we assume that
logical Clifford operations are ideal; these may be imple-
mented transversely depending on the error-correcting
code and underlying hardware. Meanwhile, non-Clifford
operations are subject to noise due to imperfect encoded
magic states. Given this model, we leverage methods
from QEM to simulate single-qubit Z-rotation gates in
this work, which are an integral part of many quantum
algorithms.

QEM ideas have previously been proposed to simulate
circuits containing T gates such as in Ref. [27]. A single-
qubit Z-rotation gate could then be realized by synthesis-
ing into error-corrected Clifford gates and encoded noisy
T gates, for example, using the Ross–Selinger method
[29]. This leads to a T -count (total number of T gates)
that scales as O(log2(1/ϵsynth)) with accuracy ϵsynth of
the resultant rotation. The sampling overhead also in-
creases dramatically with the inverse accuracy. This is
counter-intuitive as magic resource theory [30–34] shows
that a small-angle Z-rotation gate is a less powerful re-
source than a T gate, and yet they are more costly to
implement. This perspective hints towards a much more
efficient approach to QEM where small-angle Z-rotation
gates have a low gate and sampling overhead assuming
error-corrected Clifford gates with sufficiently low noise
levels. This direction has been explored in the Noisy-
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Intermediate Scale Quantum (NISQ) setting [35] but not
in the context of early fault-tolerant quantum computing.

In this paper, we introduce a framework that applies
the quasiprobability method [31, 36] to explore the ad-
vantages of decomposing single-qubit Z-rotation gates
into gates from the Clifford hierarchy [37]. A conceptual
starting point is to consider the following two-step pro-
cess: first, use magic state dilution [38] to convert a high
magic resource into many low magic resources; and sec-
ond, use quantum error mitigation to reduce any inherent
noise or noise introduced in the dilution process. While
each of these two steps could be cast as separate convex
optimisation problems, it is more elegant and optimal
to compress them. Therefore, rather than implementing
these processes independently, our approach unifies them
into a single optimisation problem, which we introduce
as mitigated magic dilution (MMD). Specifically, we use
convex optimisation to find the optimal sample complex-
ity of performing small-angle single-qubit rotations from
noisy encoded magic states.

There has been significant progress in the preparation
of encoded magic states. For example, in Ref. [39], it
was shown that encoded magic states can be prepared
with a logical error rate of ∼ 0.4 × 10−3 under the as-
sumption of ideal single-qubit operations and depolarised
two-qubit gates with 0.1% error rate using post-selection.
Moreover, there are several improvements to the state
preparation of non-stabiliser states for arbitrary small-
angle rotations that could offer further advantages to the
results presented in this paper, which we examine in Sec-
tion V.

We compare our framework against a baseline classical
approach where small-angle single-qubit rotations are de-
composed into Clifford operations, similar to Refs. [30–
34]. Notably, we demonstrate a polynomial advantage,
the magnitude of which depends on the quality of initial
magic state preparation. We quantify this advantage in
terms of the polynomial degree of magic resource sav-
ing of our method. For encoded magic states prepared
with 1% dephasing noise, this saving is better than cu-
bic, while for 0.1% dephasing noise we find a saving of
degree approximately 11.43. Moreover, we show that our
method can improve upon a state-of-the-art classical sim-
ulator, the sum-over-Cliffords stabilizer extent method
[34], offering a 2.37 degree of magic resource saving.

To evaluate the practical benefits of this approach, we
study the resource requirements to simulate the time
evolution of the 2D Fermi-Hubbard model. The 2D
Fermi-Hubbard model [40, 41] is of notable interest in
the early fault-tolerant regime [6, 42] due to its impor-
tance in condensed matter physics (e.g., to understand
high-temperature superconductivity [43] and the Mott
metal-insulator transition [44]), as well as its simplic-
ity arising from its highly regular lattice structure. Our
analysis in Section IV demonstrates that MMD is a more
resource-efficient method than direct gate synthesis, re-
quiring fewer magic states in total. Moreover, the ex-
pected number of magic states per sample is significantly

smaller, and therefore MMD is particularly amenable to
early fault-tolerant devices.

Even when quantum computers have an asymptotic
speedup over classical computing they can fail to have
an in-practice speed-up for example problems of a rel-
evant size [45], and so it is crucial to make such com-
parison. Here, we consider the example problem of a
Fermi-Hubbard model with a 6 × 6 square lattice and
evolution time t = 0.25 as a strong candidate for quan-
tum advantage. We find that our MMD method requires
a circuit with only 1037 non-Clifford gate teleportations
(on average) and 5.34 × 106 samples. Even with error
correction overheads, a sample per second is a conser-
vative runtime estimate, taking a single quantum com-
puter 62 days for all samples. For the same calculation,
the sum-over-Cliffords stabilizer extent method would re-
quire a 5.18 × 1017 seconds runtime, which would take
1.64 × 104 years to complete when assuming a million
classical processors in parallel. Thereby, our MMD pro-
tocol facilitates a significant reduction in runtime over
the the sum-over-Cliffords classical simulator for conser-
vative time evolution and lattice sizes of interest. Com-
bined with a Pauli-based model of computation [46], such
an application would require logical error rates of ap-
proximately 1 part in a millon, the so-called MegaQuOp
regime [9].

This paper is structured as follows. In Section II we
briefly summarise the quasiprobability method. In Sec-
tion III, we introduce our framework in two steps, work-
ing in the channel representation of all unitary gates
U throughout, which are denoted as U(·) = U(·)U†.
We first present the application of the quasiprobability
method to target Z rotation channels over diagonal Clif-
ford + T channels in Section III A using a linear com-
bination of channels decomposition. We then generalise
this to decompositions over diagonal Clifford + T 1

n chan-
nels in Section III B. Finally, in Section IV, we demon-
strate the practical applicability of our framework for
a second-order Trotter simulation of the Fermi-Hubbard
model with comparison to gate synthesis.

II. QUASIPROBABILITY METHOD

The motivation behind the quasiprobability method is
that an ideal quantum operation can be decomposed into

a basis set of noisy operations. Let U t(ρ) = U tρU t† be
the ideal target unitary channel of a quantum operation
U t and let {Un

i } be a set of channels corresponding to
the noisy operations that can be performed on a given
quantum hardware. The noise on these operations would
typically be characterised using a tomography procedure
[26, 47]. We can then write the following decomposition,
hereafter referred to as the linear combinations of chan-
nels (LCC) decomposition

U t =
∑
i

xiUn
i (1)
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where xi are real coefficients that can be positive or neg-
ative such that Eq. (1) is a quasiprobability representa-
tion.

It follows that the expectation value of an observable
O for the target operation can be written in terms of the
expectation value of the noisy operations as

Tr
[
OU t(ρ)

]
= Tr

[
O
∑
i

xiUn
i (ρ)

]
=

∑
i

xiTr
[
OUn

i (ρ)
]
.

(2)

The expectation values Tr
[
OUn

i (ρ)
]

associated with
noisy channels Un

i can be estimated using Monte Carlo
sampling. Each noisy operation Un

i , specified by index
i, is applied with probability |xi|/

∑
i |xi|, and the re-

sulting expectation value is multiplied by sign(xi)
∑

i |xi|
[26, 31]. From this, an estimate of the ideal expectation
value can be calculated up to an accuracy ϵ and proba-
bility greater than 1 − δ, where

δ = 2 exp

(
−Nϵ2

2(
∑

i |xi|)2

)
(3)

and the number of samples N is determined by Hoeffd-
ing’s inequality to be

N =
2

ϵ2

(∑
i

|xi|
)2

ln

(
2

δ

)
. (4)

Thus, the number of samples scale as O
(
λ2/ϵ2

)
up

to logarithmic factors, with λ =
∑

i |xi|. The quantity
λ2 is referred to as the sampling overhead of using this
method over finding the expectation value of the ideal
target channel directly [26, 27].

III. METHODOLOGY

A. Linear Combination of Channels (LCC)
Decomposition

We first demonstrate how the quasiprobability method
can be used to decompose target Z-rotation channels. In
the simplest case, we consider a diagonal Cliffords + T
channel decomposition, forming an overcomplete basis
set to ensure that we can optimise this decomposition
with respect to the sampling overhead.

Consider the action of a small-angle Z-rotation channel
Rθ

z(ρ) = Rz(θ)ρ(Rz(θ))† acting on a state represented by
density matrix ρ in Fig. 1, where Rz(θ) = exp(−i(θ/2)Z)
is a gate representing a rotation about the Z-axis with
angle θ. In this geometric picture, we label eight channels
corresponding to the action of a basis set of gates

G = {T k : 1 ≤ k ≤ 8}
= {I, T, S, ST, Z, ZT, ZS, ZST},

(5)

FIG. 1. Action of T k rotation channels (where 1 ≤ k ≤ 8)
on a density matrix ρ. The eight operations (in red) form
the initial basis set G. The target rotation channel Rθ

z(ρ) is
shown in blue.

which forms a cyclic group (G,×) generated by the T
gate under multiplication. We represent these gates in
their channel representation to form a set G such that

G = {T k(ρ) = (T k)ρ(T k)† : 1 ≤ k ≤ 8}. (6)

The LCC decomposition is given by

Rθ
z(·) =

∑
U∈G

xUU(·)U† =
∑
U∈G

xUU(·), (7)

where Rθ
z(·) represents the single qubit Z-rotation chan-

nel for the Rz(θ) gate. This is a quasiprobability decom-
position such that the coefficients xU are real and satisfy∑

U∈G xU = 1. The quantity λ is defined as the l1-norm
of the coefficients in this decomposition, that is

λ = ∥x∥1 =
∑
U∈G

|xU |, (8)

such that λ2 is the sampling overhead of each decompo-
sition from Hoeffding’s inequality [25, 27].

It can be noted that the decomposition in Eq. (7) is
not unique over a chosen basis set and so it is important
to minimise the sampling overhead over different solu-
tions. We define the optimal decomposition for a given
Z-rotation channel as the decomposition into elements
of G with the minimum λ, which we denote as ΛG(Rθ

z).
This can be written as

ΛG(Rθ
z(·)) = min

{
λ = ∥xU∥1

∣∣∣∣Rθ
z(·) =

∑
U∈G

xUU(·)
}
.

(9)
By definition, ΛG(Rθ

z) ≥ 1 where ΛG(Rθ
z) = 1 if Rθ

z ∈ G
for some group G representing the basis set of channels.
The solution to Eq. (9) is equivalent to minimising the
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sampling overhead λ2 over the basis set of channels, thus
ΛG(Rθ

z(·)) finds the optimal decomposition of Rθ
z(·) for

the chosen group G. This can be further expressed as
a convex optimisation problem to solve a linear system
given by

ΛG(Rθ
z(·)) = min∥x∥1 subject to Ax = b. (10)

Here, vector b represents m elements of the target channel
Rθ

z expressed in a vectorised form, and A is an m × n
matrix, with n columns for the basis set of channels in the
decomposition and m rows of elements that specify each
channel (see Eq. (A1) and Eq. (A2) as an example). The
jth column of matrix A can be generated by determining

the vectorised form of the jth channel Uj(·) = Uj(·)U†
j

for Uj ∈ G and j ∈ {1, 2, . . . , n}. Where possible, we also
make a concerted effort to minimise the number of non-
zero elements in x whilst keeping the optimal sampling
overhead constant.

For the ideal basis set of channels G defined in Eq. (6),
we use CVXPY [48, 49] to solve Eq. (10) and find that
decompositions of the form

Rθ
z(·) = xII(·) + xTT (·) + xZZ(·) (11)

are optimal, with

ΛG(Rθ
z(·)) = (

√
2 − 1) sin (θ) + cos (θ) (12)

for 0 ≤ θ ≤ π
4 . Additionally, considering subsets of G

with only 2 elements, we find that a solution to the opti-
misation problem cannot be found, and therefore 3 con-
tributions are required (see Appendix A).

As a classical baseline, we consider the subset of G that
are Clifford operations, denoted as C. In that case, the
optimal decomposition consists of {I,S,Z} channels and
the corresponding l1-norm ΛC is

ΛC(Rθ
z(·)) = sin (θ) + cos (θ). (13)

We compare this baseline to our quantum protocol by
considering (Λ2

G)γ = Λ2
C , which implicitly defines γ where

γ(θ) =
ln(ΛC(Rθ

z))

ln(ΛG(Rθ
z))

. (14)

Consequently, we interpret γ as the polynomial degree
of magic resource saving of the optimal decomposition
over G compared to the optimal decomposition over C,
for a specified target rotation channel. As θ → 0, γ ap-
proaches

√
2 + 1 ≈ 2.41 > 2, indicating a slightly better-

than-quadratic advantage of decomposing a (very) small-
angle rotation into a quasiprobability decomposition of
{I, T ,Z} channels instead of {I,S,Z} channels. From
this, we can now proceed to generalise these findings to
achieve a better advantage for small-angle rotations by
our choice of G from the Clifford hierarchy.

B. Climbing the Clifford Hierarchy

From Eq. (12) and Eq. (13), it can be seen that the
optimal channel decompositions over our choice of G and
C respectively are of the form {I,Rϕ

z ,Z}. Specifically,
ϕ = π/2 for Rϕ

z = S and ϕ = π/4 for Rϕ
z = T with

optimality valid within the range 0 ≤ θ ≤ ϕ. Therefore,
for smaller target rotations, we can minimise ΛG(Rθ

z(·))
further by including Rϕ

z channels with smaller ϕ in our
choice of G.

First, we let i ∈ Z≥0 and define n = 2i−1. We then
choose G to be

G = {T k
n (ρ) = (T

k
n )ρ(T

k
n )† : 1 ≤ k ≤ 8n}, (15)

where T
1
n is an nth-root T gate from the (i + 2)-th level

of the Clifford hierarchy, and ϕ = π/4n. Therefore, i = 0
represents the S gate, i = 1 represents the T gate, and so
on. These T

1
n gates can be implemented by a generalised

gate teleportation circuit as shown in Fig. 2.

...
...

|ψ⟩ S n
√
T |ψ⟩

|T ⟩ = T |+⟩

|
√
T ⟩ =

√
T |+⟩

| n
√
T ⟩ = n

√
T |+⟩

FIG. 2. Generalised teleportation circuit to implement a n
√
T

gate using i distinct magic states, where n = 2i−1, and Clif-
ford operations. Boxes and gates with a dashed line are clas-
sically controlled; they are only implemented if the measure-
ment below obtains an outcome with eigenvalue −1.

We find that the LCC decomposition for Eq. (10) with
G as Eq. (15) that minimises the sampling overhead is
given by

Rθ
z(·) = xII(·) + xnT

1
n (·) + xZZ(·), (16)

with corresponding ΛG(Rθ
z(·)) as

ΛG(Rθ
z(·)) = cos(θ) +

sin(θ)

sin(ϕ)

(
1 − cos(ϕ)

)
. (17)

For small-angle rotations, ΛG(Rθ
z(·)) can be approxi-

mated to be

ΛG(Rθ
z(·)) ≈ 1 + θ

(
1 − cos(ϕ)

sin(ϕ)

)
, (18)
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with a degree of resource saving compared to a Clifford
decomposition of

γ =
sin(ϕ)

1 − cos(ϕ)
= cot

(
ϕ

2

)
(19)

in the limit of small θ (see Appendix B 1). Therefore in

the {I, T 1
n ,Z} decomposition, climbing the Clifford hi-

erarchy in terms of T 1
n channels results in a larger degree

of saving compared to the {I,S,Z} Clifford decomposi-
tion.

We now consider the case where the non-Clifford chan-
nels in our basis set are subject to noise, as originally
motivated in the quasiprobability method. Non-Clifford
operations (in our case T 1

n ) can be implemented via
encoded gate teleportation circuits using noisy encoded
magic states and error-corrected Clifford gates as shown
in Fig. 2. The most relevant noise channel for these diag-
onal rotation gates in our basis set is the dephasing noise
channel (see Appendix C), which is defined as

ε(·) = (1 − p)(·) + pZ(·)Z, (20)

where p quantifies the amount of dephasing noise. The
action of the dephasing noise channel on a unitary chan-
nel in our basis set of unitary operations is given as

Udeph(·) = ε(U ideal(·)) = (1 − p)U ideal(·) + pZ ◦ U ideal(·).
(21)

As the number of iterations of the teleportation circuit
increases for the implementation of gates from higher lev-
els of the Clifford hierarchy (Fig. 2), we find that the de-
phasing noise changes correspondingly. We assume that
each non-stabiliser state |T 1

n ⟩ is prepared with uniform
(independent of θ) fidelity. However, in Section V, we
discuss how θ-dependent fidelities could lead to further
performance improvements.

If the dephasing noise for a T gate implementation
(requiring a |T ⟩ magic state) is p, the effective dephasing

noise for a T
1
n gate can be found by considering the er-

rors on the non-stabiliser states that lead to an error on
the T

1
n gate. For example, the probability of a Z error

acting on a T
1
2 gate is given by the probability of an error

occurring on either the |T ⟩ or |T 1
2 ⟩ state [50], that is

peff = p

(
1 − p

2

)
+

p

2
(1 − p) =

3

2
p− p2 <

3

2
p, (22)

where we take into account that there is a 50% probabil-
ity that a T gate correction needs to be applied (recall

Fig. 2). Therefore, the effective dephasing noise on a T
1
n

gate is bounded by peff =
(
2 − n−1

)
p.

As a result of this, the l1-norm for the {I, ε(T 1
n ),Z}

decomposition transforms from the ideal case in Eq. (17)
to the following:

ΛG(Rθ
z(·)) =

∣∣∣∣ cos2
(
θ

2

)
−

[
cos2

(
ϕ

2

)
− peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)

∣∣∣∣
+

∣∣∣∣ sin(θ)

(1 − 2peff) sin(ϕ)

∣∣∣∣
+

∣∣∣∣ sin2

(
θ

2

)
−
[

sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)

∣∣∣∣.
(23)

In Fig. 3 we present ΛG(Rθ
z) as function of θ for

{I, ε(T 1
n ),Z} decompositions with n ∈ {0.5, 1, 2, 4, 8}

for p = 0.1% dephasing noise, where n = 0.5 corresponds
to the S channel.

In particular, we are interested in the degree of magic
resource saving γ to benchmark against the classical Clif-
ford decomposition. As θ → 0, γ with respect to the
{I,S,Z} Clifford decomposition is approximated by (see
Appendix B 2)

1

γ
≈ csc(ϕ)

(1 − 2peff)
− cot(ϕ). (24)

From Fig. 4, we find that for p = 0.1% and in the
limit of small θ, we can achieve at least a ∼ 2.4 degree
of saving in the simplest case of a {I, ε(T ),Z} decompo-
sition, and greater than ∼ 11.4 degree of saving relative

to the Clifford decomposition by replacing T with a T 1
8

channel.

We further note the dependence of ΛG(Rθ
z) on the de-

phasing noise p. For p = 0.1%, increasing n in our proto-
col results in a greater advantage up to n = 8, as shown
in Fig. 4. However, for higher p, this is not always the
case. In fact, for 1% dephasing noise, going beyond n = 2
presents no further improvement in resource saving as
shown in Table I (see Appendix D for corresponding val-

ues of ln(ΛG(Rθ
z))). In other words, the {I, ε(T 1

2 ),Z}
decomposition is optimal and provides a lower bound of
∼ 3.6 degree of saving for small θ. In general, the small-
est value of n that provides the optimal saving can be
found by maximising γ with respect to n (indicated in
bold in Table I).

A further useful metric to consider is the expected
number of magic states required per sample for an opti-
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FIG. 3. ΛG(Rθ
z) as a function of target rotation angle θ for

different optimal decompositions of the form {I, ε(T
1
n ),Z}

including the optimal Clifford decomposition of {I,S,Z}.
A dephasing error of 0.1% is assumed for non-Clifford state
preparation.
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FIG. 4. Degree of magic resource saving γ as a function of
target rotation angle θ for different optimal decompositions of

the form {I, ε(T
1
n ),Z} relative to the optimal Clifford decom-

position of {I,S,Z}. A dephasing error of 0.1% is assumed
for non-Clifford state preparation.

mal decomposition of the form Eq. (16) which we derive
from the proportion of |xn| relative to ΛG(Rθ

z), and the
total number of magic states (per sample) required to

implement a T
1
n gate using Fig. 2:

E =

(
2 − 1

n

) ∣∣xn

∣∣
ΛG(Rθ

z)
. (25)

In this expression, xn is the coefficient of the T 1
n term in

the LCC decomposition of the form {I, ε(T 1
n ),Z}, and

ΛG is the l1-norm of the coefficients in this decomposition.

TABLE I. Degree of magic resource saving γ for a ba-
sis set of channels G with optimal channel decomposition

{I, ε(T
1
n ),Z} relative to the {I,S,Z} channel combination

for increasing n up to the sixth level of the Clifford hierarchy,
with non-Clifford gates subject to dephasing noise with prob-
ability p.

n ϕ Rϕ
z γ (Small θ)

p = 0.01% p = 0.1% p = 0.5% p = 1.0%

1 π
4

T 2.41 2.40 2.33 2.26

2 π
8

√
T 5.01 4.84 4.19 3.58

4 π
16

4
√
T 9.97 8.58 5.27 3.52

8 π
32

8
√
T 18.88 11.43 4.10 2.24

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Rotation Angle  (Multiple of  radians)

0.0

0.1

0.2

0.3

0.4

0.5

Ex
pe

ct
ed

 N
um

be
r o

f M
ag

ic 
St

at
es MMD with n = 1

MMD with n = 2
MMD with n = 3
MMD with n = 4

FIG. 5. Expected number of magic states E per sample as
a function of target rotation angle θ for different optimal de-

compositions of the form {I, ε(T
1
n ),Z} relative to the opti-

mal Clifford decomposition of {I,S,Z}. A dephasing error
of 0.1% is assumed for non-Clifford state preparation.

As the target rotation angle θ decreases, |xn| also de-
creases, resulting in a smaller number of expected magic
states. Thus, this method “dilutes” magic resource in
simulating smaller rotations from T 1

n channels of higher
magic resource. This dilution phenomenon is evident in
Fig. 5, which shows the expected number of magic states
(per sample) decreasing with the rotation angle θ.

We also present a comparison of our quantum proto-
col to the classical sum-over-Cliffords simulation method
[34]. The total runtime of this method scales as O(ξ/ϵ4)
where ξ is the stabilizer extent and ϵ is the precision of the
simulation. Therefore, the sum-over-Cliffords method
has a worse scaling w.r.t. the desired precision than
MMD where the scaling is proportional to 1/ϵ2 as in
Eq. (4). In the small θ limit, the stabilizer extent for
a Z-rotation is given by

ξ(R(θ)) = exp(tan(π/8)θ). (26)

Therefore, we can define a resource saving degree γSE such
that (Λ2

G)γSE = ξ analogously to Eq. (24). This results
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in

γSE(θ) =
ln(ξ(R(θ)))

2 ln(ΛG(Rθ
z))

. (27)

We present this with the caveat that MMD has an ad-
ditional advantage with respect to precision ϵ scaling,
which is not captured by γSE.

TABLE II. Degree of magic resource saving γSE for a ba-
sis set of channels G with optimal channel decomposition

{I, ε(T
1
n ),Z} relative to the stabiliser extent method for in-

creasing n up to the sixth level of the Clifford hierarchy, with
non-Clifford gates subject to dephasing noise with probability
p.

n ϕ Rϕ
z γSE (Small θ)

p = 0.01% p = 0.1% p = 0.5% p = 1.0%

1 π
4

T 0.50 0.50 0.48 0.47

2 π
8

√
T 1.04 1.00 0.87 0.74

4 π
16

4
√
T 2.07 1.78 1.09 0.73

8 π
32

8
√
T 3.91 2.37 0.85 0.46

As shown in Table II, the MMD method is able to
achieve a better-than-quadratic advantage for p = 0.1%
dephasing noise with respect to the stabilizer extent.
Meanwhile for higher dephasing noise, our method pro-
vides comparable performance with a slight increase in
magic resource for p = 1.0%.

IV. FERMI-HUBBARD MODEL SIMULATION

The Fermi-Hubbard model describes the behaviour
of interacting electrons in 2D materials. The Hubbard
Hamiltonian is composed of hopping terms Hh which
represent the kinetic energy of electrons that can tunnel
between neighbouring lattice sites, and interaction terms
Hi which represent the potential energy due to the on-
site repulsion of electrons. For this analysis, we consider
Hi subject to a chemical potential shift as per Ref. [6].
The resulting Hamiltonian takes the form

H = Hh + Hi

=
∑
σ∈↑,↓

∑
i̸=j

Ri,ja
†
i,σaj,σ +

u

4

∑
i

ẑi,↑ẑi,↓
(28)

where a, a† are the creation and annihilation operators re-
spectively, u is the repulsive interaction strength between
spin-up and spin-down electrons at each site, and ẑ is re-
lated to the number operator n̂ = a†a by ẑ = (2n̂ − 1).
The hopping strength is defined as Ri,j = τ if i, j are
nearest-neighbour lattice sites, allowing electrons to tun-
nel between adjacent sites, and Ri,j = 0 otherwise. We
choose parameters that lie within the regime widely con-
sidered to be classically challenging for simulation [6, 42].
As such, we set u/τ = 8 and consider 2D square lattices
of size L×L with L ∈ {4, 6, 8}. The total number of spin
orbitals is given by N = 2L2.
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t
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N
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m
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2D Fermi-Hubbard Model with L = 6
MMD with n = 0.5
MMD with n = 1
MMD with n = 2
MMD with n = 4
MMD with n = 8
Stabilizer Extent

FIG. 6. Number of samples (Nsample) required to perform
MMD for the second-order Trotterised time evolution of the
2D Fermi-Hubbard model in the limit of large (106) Trotter
steps.

To estimate the resource requirements for simulating
the Fermi-Hubbard model using MMD, we employ the
Fermionic swap network Trotter step algorithm to imple-
ment a second-order Trotterisation of the system, follow-
ing Ref. [51]. We determine the number of rotations and
corresponding angle of rotations required for each second-
order Trotter step. Specifically, for r Trotter steps,
Nh = 8Nr arbitrary rotations of angle θh = τt/4r are
needed to simulate the hopping terms, while Ni = Nr/2
arbitrary rotations of angle θi = ut/4r are required to
simulate the interaction terms. This makes use of a slight
improvement upon Ref. [51] due to the shifted form of
the interaction Hamiltonian [6].

From this, we calculate the number of magic states
required per sample as

Nm = NhEh + NiEi, (29)

where the number of magic states Eh(i) (per sample) for
each rotation is given by

Eh(i) =

(
2 − 1

n

) ∣∣xn

∣∣
ΛG(Rθh(i)

z )
(30)

in analogy to Eq. (25).
The total number of samples (Nsample) is calculated

from Hoeffding’s inequality to be

Nsample =
2 ln(2/δ)

ϵ2sample,EM

[
(ΛG(Rθh

z ))2Nh(ΛG(Rθi
z ))2Ni

]
.

(31)

Here we take the probability of error mitigation failing,
δ to be 0.01 and the error bound for failure mitigation
ϵsample,EM to be 0.02. The total number of magic states
over all samples then becomes

Ntotal = Nm ×Nsample. (32)
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FIG. 7. Number of magic states over all samples (Ntotal) to perform MMD for the second-order Trotterised time evolution of
the 2D Fermi-Hubbard model compared to gate synthesis. Results are shown for an L× L lattice with L ∈ {4, 6, 8}.

Considering the exponential scaling of the sampling over-
head, we first evaluate the total number of samples for
which our framework is practically feasible as a function
of the evolution time t. We assume a dephasing noise
of p = 0.1% throughout the analysis in this section. In
the limit of large Trotter steps for the MMD method, the
number of samples for a lattice size of L = 6 scales with
t as per Fig. 6.

We see that a purely classical implementation of our
MMD method (for which n = 0.5) requires 1070 samples
to simulate t = 0.35, whereas a quantum implementation
of our method (so n ≥ 1) requires from 1031 to 107 sam-
ples as n increases. We also overlay the upper-bounded
runtime scaling of the stabilizer extent method with pre-
cision ϵ = 0.01 in Fig. 6.

We finally present a representative comparison of this
framework with direct gate synthesis methods. Asymp-
totically optimal unitary synthesis is possible using the
Ross-Selinger method [29] with improvements possible
by employing random compiling as shown in Ref. [52].
Adding an ancillary qubit, mixed fallback techniques
[53, 54] obtain the best T -count known to date:

Tsynth = 0.53 log2

(
NR

ϵsynth

)
+ 4.86, (33)

where NR = Nh + Ni is the total number of rotations.
To ensure a fair comparison, we allow an error bud-

get of ϵsynth + ϵtrotter = 0.01, a favourable sampling er-
ror ϵsample,RS = 0.01, and Nsample is a constant. Here,
ϵtrotter = WFSt

3/s2 is the Trotter error for the Fermionic
swap network algorithm, taking WFS values from Ref.
[51]. From this, we optimise the number of required Trot-
ter steps s that minimise NRTsynth for gate synthesis.

In Fig. 7, we see that the MMD method provides a sig-
nificant reduction in the magic state count for very small
t, for all cases of n. Smaller lattice sizes see up to a few
orders of magnitude saving and could provide an advan-
tage for longer t compared to direct gate synthesis. To
achieve the same advantage as the lattice size and evo-
lution time increases, MMD requires gates from higher
levels (larger n) of the Clifford hierarchy as shown. In
particular, for L = 4, 6 and 8, MMD presents at least an

order of magnitude resource saving for time evolution up
to 0.8, 0.35 and 0.2 respectively.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented our mitigated magic
dilution framework for implementing small-angle single-
qubit Z-rotations, making use of error mitigation to pro-
vide an advantage in terms of the sampling overhead
when benchmarked against a classical approach.

We have further identified a use-case of mitigated
magic dilution for simulating time evolution of the Fermi-
Hubbard Hamiltonian using Trotterisation. Through
this, we have demonstrated a resource benefit of imple-
menting mitigated magic dilution over conventional di-
rect synthesis when taking into account the number of
magic states and sampling overhead. Thus, our frame-
work is suitable for early fault-tolerant quantum com-
puters. Broadly speaking, our approach is more advan-
tageous for algorithms containing a large number of very
small angle rotations, such as Trotterised simulations.
Our work hints towards a wide variety of directions for
future work when larger angle rotations are encountered,
including hybrid approaches with MMD used for small
angles and synthesis used for larger angles, and hybrid
approaches where the gate set G used in MMD includes
partially synthesised rotations.

A key assumption we have made in our MMD method
is that all magic states are prepared with the same fi-
delity. Consequently, we observed optimal performance
at some finite level of the Clifford hierarchy, fixed by the
fidelity. However, recent literature indicates that this can
be improved such that magic states of smaller rotations—
and therefore gates higher in the Clifford hierarchy—can
be prepared with a lower logical error rate [8, 55]. This is
particularly relevant for this work as it suggests that the
optimal performance will be at even higher Clifford hier-
archy levels, leading to higher degrees of magic resource
saving and hence speedup. Recent methods including
magic state cultivation [56] to construct high fidelity |T ⟩
magic states also complement the methods we present in
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this paper, however further research is needed to deter-
mine the feasibility and effectiveness of applying similar
techniques to other magic states such as |T 1

2 ⟩ for higher
levels of the Clifford hierarchy.

It would be interesting to further analyse the resource
requirements when compiling down to lattice surgery op-
erations for particular algorithms. Since our scheme uses
repeated teleportation circuits (recall Fig. 2), these can
be realised with logical ZZ measurements without us-
ing Hadamard gates or patch rotations. In contrast,
when using the gate synthesis approach, we require ei-
ther Hadamard gates that take a long time to execute
[57, 58], or a fast data block structure that comes with
an additional qubit overhead compared to compact lay-
outs [46].

The Trotterised time evolution studied in this paper
lends itself well into statistical phase estimation for fu-
ture work. Furthermore, we have studied the effect of
single-qubit dephasing noise channels, however for spe-
cific quantum hardware, it may be worthwhile to explore
other noise models. Finally, further advancements in bet-
ter logical magic states as discussed earlier will improve
the advantages presented in this paper.

We have compared our approach against two families
of near-Clifford simulators. Clearly, there are a range
of other simulators to consider, including tensor network
simulators that are suited to shallow local circuits on 2D
arrays of qubits [59]. However, our techniques are di-
rectly applicable to simulating systems with long-range
interactions or in higher-dimensional geometries, and in
such settings tensor-network methods perform poorly.
Conversely, we envisage further improvements to miti-
gated magic dilution by extending to a dyadic decom-
position approach similar to that used in some classical
simulators [32].
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Appendix A: Minimum Requirement of Three Channels

In the general case, A and b in Eq. (10) can be written in matrix form as

A =

 cos2 (ϕ1

2 ) cos2 (ϕ2

2 ) cos2 (ϕ3

2 ) · · ·
cos (ϕ1

2 ) sin (ϕ1

2 ) cos (ϕ2

2 ) sin (ϕ2

2 ) cos (ϕ3

2 ) sin (ϕ3

2 ) · · ·
sin2 (ϕ1

2 ) sin2 (ϕ2

2 ) sin2 (ϕ3

2 ) · · ·

 , (A1)

and

b =

 cos2 ( θ
2 )

cos ( θ
2 ) sin ( θ

2 )

sin2 ( θ
2 ).

 . (A2)

Specifically for the two channel case, we have cos2 (ϕ1

2 ) cos2 (ϕ2

2 )

cos (ϕ1

2 ) sin (ϕ1

2 ) cos (ϕ2

2 ) sin (ϕ2

2 )

sin2 (ϕ1

2 ) sin2 (ϕ2

2 )

[
x1

x2

]
=

 cos2 ( θ
2 )

cos ( θ
2 ) sin ( θ

2 )

sin2 ( θ
2 ),

 (A3)

from which we write three simultaneous equations:

x1 cos2
(
ϕ1

2

)
+ x2 cos2

(
ϕ2

2

)
= cos2

(
θ

2

)
, (A4a)

x1 cos

(
ϕ1

2

)
sin

(
ϕ1

2

)
+ x2 cos

(
ϕ2

2

)
sin

(
ϕ2

2

)
= cos

(
θ

2

)
sin

(
θ

2

)
, (A4b)

x1 sin2

(
ϕ1

2

)
+ x2 sin2

(
ϕ2

2

)
= sin2

(
θ

2

)
. (A4c)

Upon solving Eq. (A4a) and Eq. (A4c), we obtain

x1 + x2 = 1, (A5)
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which arises due to the unitarity of the channels. From this, we can find two solutions for x1 by substituting this into
Eq. (A4a) and Eq. (A4b) respectively, resulting in

x1 =
cos((θ + ϕ1)/2) sin((θ + ϕ2)/2)

cos((ϕ1 + ϕ2)/2) sin((ϕ1 + ϕ2)/2)

=
sin((θ + ϕ1)/2) sin((θ + ϕ2)/2)

sin((ϕ1 + ϕ2)/2) sin((ϕ1 + ϕ2)/2)
.

(A6)

Therefore all three equations in this overdetermined system are only satisfied when

ϕ1 = θ + 2kπ ⇒ x1 = 1, x2 = 0 (A7)

or

ϕ2 = θ + 2kπ ⇒ x1 = 0, x2 = 1, (A8)

where k ∈ Z, i.e., the trivial case of only a single channel in the decomposition. So, for multiple channels in the
decomposition, at least three channels are required.

Appendix B: LCC Decomposition for {I, T
1
n ,Z} Channels

In the main text, we showed that the optimal decompositions found using convex optimisation were of the form
{I, T 1

n ,Z} for both ideal and noisy T 1
n channels. In the following sections, we derive the l1-norm and γ corresponding

to these optimal decompositions.

1. Ideal Case

A T 1
n channel can be written as a Z-rotation channel with rotation angle ϕ,

Rϕ
z (ρ) = e−iϕ

2 Zρei
ϕ
2 Z

= cos2
(
ϕ

2

)
ρ + sin2

(
ϕ

2

)
ZρZ + i cos

(
ϕ

2

)
sin

(
ϕ

2

)
[ρZ − Zρ],

(B1)

where ϕ = π
4n . Recall that n = 2i−1 where i ∈ Z≥0 such that i = 0 is the S channel, i = 1 is the T channel, etc.

For an LCC decomposition in terms of {I,Rϕ
z ,Z} channels, we obtain

Rθ
z(ρ) = x0I(ρ) + x1Rϕ

z (ρ) + x2Z(ρ)

= x0ρ + x1

(
cos2

(
ϕ

2

)
ρ + i cos

(
ϕ

2

)
sin

(
ϕ

2

)
[ρZ − Zρ] + sin2

(
ϕ

2

)
ZρZ

)
+ x2ZρZ

=

(
x0 + cos2

(
ϕ

2

)
x1

)
ρ + i cos

(
ϕ

2

)
sin

(
ϕ

2

)
x1[ρZ − Zρ] +

(
sin2

(
ϕ

2

)
x1 + x2

)
ZρZ

= cos2
(
θ

2

)
ρ + i cos

(
θ

2

)
sin

(
θ

2

)
[ρZ − Zρ] + sin2

(
θ

2

)
ZρZ.

The coefficients xi can be determined by solving three simultaneous equations:

x0 + cos2
(
ϕ

2

)
x1 = cos2

(
θ

2

)
, (B2a)

cos

(
ϕ

2

)
sin

(
ϕ

2

)
x1 = cos

(
θ

2

)
sin

(
θ

2

)
, (B2b)

sin2

(
ϕ

2

)
x1 + x2 = sin2

(
θ

2

)
, (B2c)
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with solutions given by

x0 = cos2
(
θ

2

)
−

(
sin(θ)

sin(ϕ)

)
cos2

(
ϕ

2

)
, (B3a)

x1 =
sin(θ)

sin(ϕ)
, (B3b)

x2 = sin2

(
θ

2

)
−
(

sin(θ)

sin(ϕ)

)
sin2

(
ϕ

2

)
. (B3c)

The l1-norm of this decomposition for target rotation angles 0 ≤ θ ≤ ϕ is

ΛG(Rθ
z) = |x0| + |x1| + |x2|

=

∣∣∣∣ cos2
(
θ

2

)
−
(

sin(θ)

sin(ϕ)

)
cos2

(
ϕ

2

)∣∣∣∣ +

∣∣∣∣ sin(θ)

sin(ϕ)

∣∣∣∣ +

∣∣∣∣ sin2

(
θ

2

)
−

(
sin(θ)

sin(ϕ)

)
sin2

(
ϕ

2

)∣∣∣∣
= cos2

(
θ

2

)
−
(

sin(θ)

sin(ϕ)

)
cos2

(
ϕ

2

)
+

sin(θ)

sin(ϕ)
− sin2

(
θ

2

)
+

(
sin(θ)

sin(ϕ)

)
sin2

(
ϕ

2

)
= cos (θ) +

sin (θ)

sin (ϕ)

(
1 − cos (ϕ)

)
.

(B4)

noting that x2 ≤ 0 while x0, x1 ≥ 0 for this range of θ.
For small rotation angles θ, we approximate

ΛG(Rθ
z) = cos (θ) + sin (θ)

(
1 − cos (ϕ)

sin (ϕ)

)
≈ 1 − θ2

2
+ θ

(
1 − cos (ϕ)

sin (ϕ)

)
≈ 1 + θ

(
1 − cos (ϕ)

sin (ϕ)

)
.

(B5)

Thus γ in Eq. (14) is obtained as follows

γ(θ) =
ln(ΛC(Rθ

z))

ln(ΛG(Rθ
z))

=
ln (1 + θ)

ln

(
1 + θ

( 1−cos (ϕ)
sin (ϕ)

))
≈ θ( 1−cos (ϕ)

sin (ϕ)

)
θ

=
sin (ϕ)

1 − cos (ϕ)
= cot

(
ϕ

2

)
.

(B6)

2. Dephased T
1
n Case

We consider a dephasing noise channel as given by Eq. (21). In the main text, we define an effective dephasing
noise peff, which we use in the following derivation.

The dephasing noise channel can applied to Rϕ
z as follows:

ε(Rϕ
z (ρ)) =(1 − peff)(Rϕ

z (ρ)) + peffZ(Rϕ
z (ρ))Z

=

[
cos2

(
ϕ

2

)
− peff cos (ϕ)

]
ρ + (1 − 2peff)

[
i cos

(
ϕ

2

)
sin

(
ϕ

2

)]
[ρZ − Zρ]

+

[
sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
ZρZ.

(B7)
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The LCC decomposition of the Rθ
z(ρ) channel in terms of {I, ε(Rϕ

z ),Z} is given by

Rθ
z(ρ) = x0I(ρ) + x1ε(Rϕ

z (ρ)) + x2Z(ρ) (B8a)

= x0ρ + x1

[[
cos2

(
ϕ

2

)
− peff cos (ϕ)

]
ρ + (1 − 2peff)

[
i cos

(
ϕ

2

)
sin

(
ϕ

2

)]
[ρZ − Zρ]

+

[
sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
ZρZ

]
+ x2ZρZ

=

(
x0 +

[
cos2

(
ϕ

2

)
− peff cos (ϕ)

]
x1

)
ρ + i(1 − 2peff) cos

(
ϕ

2

)
sin

(
ϕ

2

)
x1[ρZ − Zρ]

+

([
sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
x1 + x2

)
ZρZ

= cos2
(
θ

2

)
ρ + i cos

(
θ

2

)
sin

(
θ

2

)
[ρZ − Zρ] + sin2

(
θ

2

)
ZρZ (B8b)

The coefficients xi can be determined by solving three simultaneous equations:

x0 +

[
cos2

(
ϕ

2

)
− peff cos (ϕ)

]
x1 = cos2

(
θ

2

)
, (B9a)

(1 − 2peff) cos

(
ϕ

2

)
sin

(
ϕ

2

)
x1 = cos

(
θ

2

)
sin

(
θ

2

)
, (B9b)[

sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
x1 + x2 = sin2

(
θ

2

)
. (B9c)

with solutions given by

x0 = cos2
(
θ

2

)
−
[

cos2
(
ϕ

2

)
− peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)
(B10a)

x1 =
sin(θ)

(1 − 2peff) sin(ϕ)
(B10b)

x2 = sin2

(
θ

2

)
−
[

sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)
. (B10c)

The l1-norm of this decomposition is

ΛG(Rθ
z) = |x0| + |x1| + |x2|

=

∣∣∣∣ cos2
(
θ

2

)
−
[

cos2
(
ϕ

2

)
− peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)

∣∣∣∣ +

∣∣∣∣ sin(θ)

(1 − 2peff) sin(ϕ)

∣∣∣∣
+

∣∣∣∣ sin2

(
θ

2

)
−
[

sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)

∣∣∣∣
= cos2

(
θ

2

)
−
[

cos2
(
ϕ

2

)
− peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)
+

sin(θ)

(1 − 2peff) sin(ϕ)

− sin2

(
θ

2

)
+

[
sin2

(
ϕ

2

)
+ peff cos (ϕ)

]
sin(θ)

(1 − 2peff) sin(ϕ)

= cos (θ) − sin(θ)

(1 − 2peff) sin(ϕ)

(
(1 − 2peff) cos (ϕ) − 1

)
= cos (θ) + sin(θ)

(
1

(1 − 2peff)
csc (ϕ) − cot (ϕ)

)
.

(B11)
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for target rotation angles 0 ≤ θ ≪ ϕ. For small θ, we can approximate

ΛG(Rθ
z) = cos (θ) + sin(θ)

(
1

(1 − 2peff)
csc (ϕ) − cot (ϕ)

)
≈ 1 − θ2

2
+ θ

(
1

(1 − 2peff)
csc (ϕ) − cot (ϕ)

)
≈ 1 + θ

(
1

(1 − 2peff)
csc (ϕ) − cot (ϕ)

)
.

(B12)

Therefore, γ becomes

γ(θ) =
ln(ΛC(Rθ

z))

ln(ΛG(Rθ
z))

=
ln (1 + θ)

ln

(
1 + θ

(
1

(1−2peff)
csc (ϕ) − cot (ϕ)

))
≈ θ

θ

(
1

(1−2peff)
csc (ϕ) − cot (ϕ)

)
=

1
csc (ϕ)

(1−2peff)
− cot (ϕ)

.

(B13)

Appendix C: Noise in Generalised Gate Teleportation Circuit

We can show that the generalised gate teleportation circuit in Fig. 2 results in a rotation that differs from the
target rotation θ by either dephasing noise, or coherent errors. We note that coherent errors can be handled through
calibration, and accurate calibration is an underlying assumption required for the estimation of the level of dephasing
noise present.

We proceed by considering a single step of generalised teleportation with noisy states as shown in Fig. 8.

ρ E(ρ) ≈ n
√
Tρ n

√
T

†

σn ≈ | n
√
T ⟩⟨ n

√
T |

n/2
√
T

FIG. 8. A single step of generalised teleportation when the magic state used is an arbitrary mixed state σn. The outcome of
the measurement is denoted m such that the correction is applied if m = 1 (eigenvalue is −1).

The state σn will have an eigenvalue decomposition

σn = |ϕ0⟩⟨ϕ0| + |ϕ1⟩⟨ϕ1| (C1)

where |ϕj⟩ are not individually normalised, but ⟨ϕ0|ϕ0⟩ + ⟨ϕ1|ϕ1⟩ = 1. It is a common assumption to take |ϕ0⟩ =
√

1 − p| n
√
T

†⟩ and |ϕ1⟩ as its orthogonal partner. However, the purpose of this appendix is to allow for a fully general
σn.

After measurement outcome m, ρ gets mapped to

Em(ρ) = κ0,mρκ†
0,m + κ1,mρκ†

1,m, (C2)

where κj,m is the Kraus operator corresponding to teleportation using a pure state |ϕj⟩ after measurement outcome

Page 13 of 16 AUTHOR SUBMITTED MANUSCRIPT - QST-104062.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



14

m. Denoting |ϕj⟩ = Aj |0⟩ + Bj |1⟩, calculating the action of the teleportation circuit one finds

κ0,0 = A0|0⟩⟨0| + B0|1⟩⟨1| =

(
A0 + B0

2

)
I +

(
A0 −B0

2

)
Z, (C3a)

κ0,1 = A0|1⟩⟨1| + B0|0⟩⟨0| =

(
A0 + B0

2

)
I +

(
−A0 + B0

2

)
Z, (C3b)

κ1,0 = A1|0⟩⟨0| + B1|1⟩⟨1| =

(
A1 + B1

2

)
I +

(
A1 −B1

2

)
Z, (C3c)

κ1,1 = A1|1⟩⟨1| + B1|0⟩⟨0| =

(
A1 + B1

2

)
I +

(
−A1 + B1

2

)
Z (C3d)

and so every relevant Kraus operator is diagonal in the Z-basis. Therefore, expanding out the channel we find that

Em(ρ) = Em
0,0ρ + Em

0,1ρZ + Em
1,0Zρ + Em

1,1ZρZ. (C4)

where Em
k,ℓ are numbers depending on A0, A1, B0, A1 that in turn depend on σn.

We are not quite done because in the case where m = 1, we need to apply a correction (i.e. using a magic state
from one level lower in the Clifford hierarchy σn/2). Nonetheless, this correction process will also perform diagonal
Kraus operators, and since the group of diagonal operators is closed in multiplication, we conclude that generalised
teleportation with result in some channel E that is a sum of diagonal Kraus operators. Expanding these out in the
Pauli basis, we will again have an expression of the form

E(ρ) = E0,0ρ + E0,1ρZ + E1,0Zρ + E1,1ZρZ, (C5)

where Ei,j depend on the density matrices of all magic states {σn, σn/2, σn/4, . . . , σ1} in the generalised teleportation
circuit. This means a large number of parameters are involved, but fortunately we can proceed with our proof
using only the form of Eq. (C5) and the following observation: once all corrections are completed (we mix over
all measurement outcomes) the full channel E must be CPTP. Note that, in contrast, each component Em will
be completely positive (CP) but not necessarily trace preserving (TP). Therefore, under the Choi–Jamio lkowski
isomorphism, the Choi state for this channel must be a physical density matrix (Hermitian, positive semi-definite and
trace normalized to unity). Furthermore, due to the form of Eq. (C5), the Choi state has the form

ΦE = (E ⊗ I)(|Φ⟩⟨Φ|) =


a0,0 0 0 a0,1

0 0 0 0

0 0 0 0

a1,0 0 0 a1,1

 . (C6)

where for instance a1,1 = (E0,0 − E0,1 − E1,0 + E1,1)/2. In particular, the Choi state has at most 2 non-zero
eigenvalues, and by the CPTP property we can denote these as p and 1 − p (with 1 ≤ p ≤ 0), so they can be
interpreted as probabilities. Therefore,

ΦE = p|K0⟩⟨K0| + (1 − p)|K1⟩⟨K1| (C7)

where |Kj⟩ are a pair of orthogonal pure states supported on the non-trivial 2 × 2 submatrix of Eq. (C6). We may
now reverse the Choi–Jamio lkowski isomorphism, so that

E(ρ) = pK0ρK
†
0 + (1 − p)K1ρK

†
1 (C8)

where Kj is the single Kraus operator isomorphic to the state |Kj⟩⟨Kj |. Since the state representation is restricted
to a specific submatrix, we can conclude that Kj are unitary operators diagonal in the Z basis and we are free to
choose the global phase. Therefore, there exists angles φj such that Kj = Rz(φj). Finally, since |Kj⟩ are orthogonal

to each other, we can conclude that Tr[K†
1K0] = 0. This orthogonality entails that φ1 is such that K1 = K0Z upto a

global phase. This brings us to the final form

E(ρ) = pRφ0
z (ρ) + (1 − p)ZRφ0

z (ρ)Z (C9)

which has the claimed form of dephasing noise and potentially a coherent error which deviates from the ideal angle ϕ
by a phase of δ = φ0 − ϕ.

We have assumed throughout that physical noise is well characterized. The impact of changes in the magic states
σn affects the form of the resulting channel E . If there is a undesired coherent error, we can adjust the angle of the
prepared magic state σn to eliminate this, thereby leaving only dephasing error as assumed throughout the main text.
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Appendix D: Supplementary Data

TABLE III. ln(ΛG(Rθ
z)) as a function of target rotation angle θ for different optimal decompositions of the form {I, ε(T

1
n ),Z}

including the optimal Clifford decomposition of {I,S,Z}. The values presented here correspond to the relative values used to
calculate γ in Table I.

n ϕ Rϕ
z ln(ΛG(Rθ

z)) (Small θ)

p = 0.01% p = 0.1% p = 0.5% p = 1.0%

0 π
2

S 1.00E-07 1.00E-07 1.00E-07 1.00E-07

1 π
4

T 4.14E-08 4.17E-08 4.28E-08 4.43E-08

2 π
8

√
T 2.00E-08 2.07E-08 2.39E-08 2.40E-08

4 π
16

4
√
T 1.00E-08 1.16E-08 1.90E-08 2.84E-08

8 π
32

8
√
T 5.30E-09 8.75E-09 2.44E-08 4.47E-09
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