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A B S T R A C T

Hydrogen borrowing is an increasingly important catalytic process in the synthesis of pharmaceutical in
termediates and active drug compounds. Its mechanism is typically described as a three-step sequence: alcohol 
oxidation, additive alkylation (or arylation) and hydrogen reduction. While the mechanistic steps are well 
established, the development of predictive kinetic models is critical to enabling process scalability and auto
mation. In this work, the hydrogen borrowing mechanism is embedded within a model-based design of exper
iments (MBDoE) framework for controlling automated laboratory experimentation via a cloud service. A case 
study involving benzyl alcohol and benzylamine reaction over a Ru catalyst was conducted. Candidate kinetic 
models were developed to describe the dynamics of reactants, intermediates and products based on experimental 
data. Leveraging MBDoE in combination with a novel sequential parameter estimation technique informed by the 
reaction network, two statistically adequate and identifiable kinetic models were identified. Although initially 
indistinguishable based on standard experimental data, in-silico simulations exploiting structural differences 
between the models show that catalyst amount acts as a key model discrimination factor. This work demonstrates 
how reaction-informed model discrimination through targeted experimental design can advance understanding 
and control of hydrogen borrowing synthesis, laying the foundation for more robust and scalable processes in the 
pharmaceutical industry.

1. Introduction

Many pharmaceutical companies still rely on batch manufacturing 
and traditional technologies, such as basic sensors and analog in
struments (Powner and Yalcinkaya, 1995; Lee et al., 2015; Wichrowski 
et al., 2020; Rossi, 2022; NASEM National Academies of Sciences, En
gineering, and Medicine, 2024; Kaylor, 2025). While these technologies 
have been reliable over the years, they pose challenges for scalability 
and consistent quality assurance – especially as global demand for 
medicines continues to grow. Between 2018 and 2021, hundreds of 
drugs were recalled annually due to quality-related issues, highlighting 
the significant health and economic consequences of current limitations 
(Destro and Barolo, 2022). In response, industry experts and regulatory 
bodies have strongly advocated for the implementation of industry 4.0 
technologies within the pharmaceutical sector. These include robotics, 
artificial intelligence (AI), cloud computing, digitalization, continuous 
manufacturing and process analytics technologies (PAT), Collectively, 

these technologies are positioned to modernize pharmaceutical 
manufacturing and address long-standing challenges in process effi
ciency and product quality (Yu et al., 2019; Fisher et al., 2019). Indeed, 
many of these technologies and their implementations rely on mathe
matical modeling to support real-time control, optimization and process 
design (Destro and Barolo, 2022; Chatterjee et al., 2017). These models 
are typically developed following two broad approaches: (1) 
data-driven, and (2) physics-based. While data-driven approaches offer 
faster development and greater computational efficiency, physics-based 
models provide deeper process understanding, improved robustness and 
better extrapolation capabilities. Moreover, they align more closely with 
the pharmaceutical industry’s quality-by-design (QbD) principles (Yu 
et al., 2014), supporting regulatory compliance and systematic process 
control.

By applying mathematical models, one can define and explore the 
design space of pharmaceutical processes – the range of operating con
ditions under which product quality can be assured – an essential 
component of QbD. Beyond regulatory compliance, this design space 
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can also be optimized for economic performance using design of ex
periments (DoE) methodologies (Chatterjee et al., 2017; Collins, 2018). 
Traditional DoE techniques, such as factorial designs (Box and Draper, 
1987; Yuangyai et al., 2010), and randomized experiments (Caliński and 
Kageyama, 2000), are widely used. However, when a mechanistic model 
is available, more targeted experimental design is possible through 
model-based design of experiments (MBDoE) (Franceschini and Mac
chietto, 2008). MBDoE leverages the underlying process model to design 
optimal experiments that yield maximally informative data, enabling 
accurate parameter estimation (Franceschini and Macchietto, 2008), 
or/and 2) model discrimination (Waldron et al., 2019). Using 
physics-based models, MBDoE can tailor experimental campaigns to fit 
available resources while improving model performance in terms of 
both parameter uncertainty and predictive capability (Franceschini and 
Macchietto, 2008). To be effective MBDoE requires not only robust 
models but also efficient parameter estimation algorithms and experi
mental scheduling systems. Our recent publication demonstrated the 
application of online MBDoE techniques to automate a cloud-based 
experimental platform, executing a sequence of optimal steady-state 
experiments in a smart flow reactor (Agunloye et al., 2024). This plat
form integrates the experimental subsystem, known as the LabBot, with 
a software subsystem called the SimBot, which houses the MBDoE al
gorithms used for kinetic model identification. Together, the 
LabBot-SimBot system enables automated experimentation informed by 
real-time model analysis, demonstrating a novel approach to 

accelerating pharmaceutical process development.
In this study, we apply this cloud-based MBDoE platform to a 

hydrogen borrowing reaction system. Hydrogen borrowing is an 
emerging synthetic methodology under exploration by the pharmaceu
tical industry for new drug discovery (Leonard et al., 2015; 
Reed-Berendt et al., 2021). While historically many drugs were isolated 
from natural sources, today’s pharmaceutical compounds are predomi
nantly produced via multi-step organic syntheses from precursors such 
as alcohols, amines, amides and esters (Karimi et al., 2015; Kent et al., 
2016). These synthesis frequently involve alkylation and arylation re
actions – transformations well-suited to the hydrogen borrowing strat
egy. Hydrogen borrowing enables such transformations via a flexible 
catalytic cycle consisting of: (1) alcohol oxidation, (2) nucleophilic 
substitution (e.g., alkylation or arylation), and (3) hydrogen transfer 
(reduction). This mechanism supports chain elongation and ring con
struction and is therefore valuable in expanding chemical diversity in 
drug candidates (Reed-Berendt et al., 2021). Because the mechanism can 
be described through a well-established kinetic framework (e.g., based 
on Arrhenius expressions), it is ideally suited for physics-based modeling 
and MBDoE-based experimentation.

In this study, we supplement the standard MBDoE workflow with a 
sequential parameter estimation technique, tailored to the hydrogen 
borrowing reaction network. This enhancement improves the numerical 
solution of parameter estimation and model discrimination under con
ditions of limited data – crucial for developing an autonomous, cloud- 
controlled laboratory platform.

This paper presents a comprehensive study of kinetic model identi
fication for hydrogen borrowing synthesis using the LabBot-SimBot 
platform. Section 2 introduces the chemical reactions and experi
mental setup within the LabBot. Section 3 details the modeling frame
work and parameter estimation procedures implemented in the SimBot. 
Section 4 presents and discusses the application of MBDoE for kinetic 
model identification and discrimination. Section 5 concludes with im
plications for process development and automation in pharmaceutical 
research.

2. Hydrogen borrowing chemical synthesis

Hydrogen borrowing is a widely used catalytic reaction for 
increasing molecular complexity in organic compounds bearing alcohol 
functionalities (Reed-Berendt et al., 2021). The reaction occurs when 
three substances are present: an alcohol {a}, an amine {b}, and a metal 
catalyst {c}, reacting in three steps. In the first step, the metal oxidizes 

Nomenclature

Scalars
ci ith Species concentration
Ea,j Activation energy of reaction j
Ji,j Model prediction divergences
J1,2,3,… Joint divergence
kj Kinetic rate constant for jth reaction
kj,ref Rate constant of reaction j at Tref

Ns Total number of samples
Nm Number of models
pi Probability density function for model i
rj Reaction rate (mol/s.L) for the jth reaction
R Universal gas constant equal to 8.31 kJ

mol.K
T Reactor temperature
νij Stoichiometric coefficient
τ Space time
κ Condition number

χ2 Chi-square statistic

Vectors
c∈Nnc Vector of the state variables (concentrations)
H Fisher information matrix corresponds
u∈Nnu Vector of manipulated variables
U Unitary matrix whose columns are the normalized 

eigenvectors of H
x∈RNx Vector of state variables
ẋ First derivative of the state variables
ŷ∈RNy Vector of model predictions for measurements y
θ∈Nnθ Vector of the kinetic parameters to be identified
∑0 Preliminary variance-covariance matrix of model 

parameters
∑y Measurement error covariance matrix
Λ Diagonal matrix of the eigenvalues
∑i Covariance matrix for model i predictions

Fig. 1. Hydrogen borrowing reaction scheme with 3 elementary chemical steps 
involving chemical species {a}, {b} and {c} as starting materials; {d}, {e}, and 
{g} as intermediate species; {c}, {f} and {h} as final products (Reed-Berendt 
et al., 2021).
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the alcohol to its aldehyde {d} by borrowing hydrogen (metal hydride 
{e}). In the second step, the aldehyde combines with the amine, which 
acts as a nucleophile, to form intermediate {g} and a by-product {f}. In 
the third step, the metal catalyst releases the borrowed hydrogen to 
convert the intermediate to a stable product {h}. Fig. 1 shows the 
hydrogen borrowing reaction scheme.

The reaction was carried out in the LabBot reactor subsystem, a 
smart flow experimental setup controlled remotely via a cloud system 
using the SimBot software subsystem. The LabBot subsystem includes 3 
pumps, 2 tee-pieces, a tubular reactor coil, a sampling valve (SV) and a 
back-pressure regulator (BPR). The sampling valve was used to send a 
sample for high performance liquid chromatography (HPLC) for online 
analysis. Fig. 2 shows the LabBot and SimBot subsystems and their in
teractions within the cloud-based system. Further details about the 
LabBot automation can be found in a recent publication (Agunloye et al., 
2024) while the SimBot modules relevant to the hydrogen borrowing 
study will be discussed in Section 3. The LabBot operating ranges for the 
various pieces of equipment were set, with pumps calibrated to operate 
between 0.3 and 3 mL/mins, and the reactor temperature controlled 
within the range of 200 – 250 0C. The stock concentrations of the spe
cific reactants used in this study - benzyl alcohol (0.6 M), and benzyl 

amine (0.2 M)) - were selected to ensure that both reactants and prod
ucts could be accurately measured over the range of the conditions 
explored. Note that the stock concentrations differ from the reactor inlet 
concentrations flowing from the second tee-piece. The metal catalyst 
was fixed at 1 mol% of the amine to reduce the number of pumps 
required, allowing a wider window of reactant ratios to be explored. An 
inert internal standard was used to calibrate reactants’ concentrations in 
the HPLC, enabling accurate measurement of unreacted benzyl alcohol, 
unreacted benzyl amine, biphenylamine, and triphenylamine (at long 
space times). Note that the catalyst is in homogeneous solution with the 
reactants (Huang et al., 2021).

Based on the measurements presented later in Section 4, the syn
thesis can be explained using two cycles of the hydrogen borrowing 
scheme as illustrated in Fig. 3. In Cycle 1, the metal first oxidizes benzyl 
alcohol to benzyl aldehyde by borrowing hydrogen. Then, benzyl alde
hyde combines with benzylamine to form unstable biphenyl imine, 
which on reaction with the borrowed hydrogen reduces to biphenyl 
amine. Cycle 2 produces triphenylamine by combining biphenylamine 
with benzylaldehyde to form unstable triphenyl imine that reduces on 
reacting with borrowed hydrogen. While Cycle 1 consumes both benzyl 
alcohol and benzyl amine in a molar ratio of 1:1, Cycle 2 consumes 

Fig. 2. Schematic of the cloud-based approach comprising the LabBot subsystem, a physical, automated experimental setup composed of various enabling equipment 
and the SimBot subsystem comprising 5 modules implemented in Python and integrated with the cloud services for data access and setpoints specification.

Fig. 3. Scheme to describe the formation of measured species from the starting reactants based on hydrogen borrowing.
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benzyl alcohol and biphenyl amine in the same ratio of 1:1 when it 
occurs. The complete hydrogen borrowing reaction would therefore 
require a stoichiometric ratio of 2:1 benzyl alcohol to benzyl amine. 
However, the inlet concentration ratios for most of the synthesis ex
periments were less than two, as presented in Section 4 with benzyl
amine inlet concentration fixed at 0.1 M while that of benzyl alcohol 
changing from 0.054 to 0.231 M. Thus, in the synthesis, conversion is 
defined as the fraction of reacted benzyl alcohol compared to the inlet 
concentration as this is limiting reactant and should be equal or greater 
than the amount of benzyl amine when present in stoichiometric 
amounts. However, the measurements consistently showed that the 
reverse was the case: benzyl amine conversion was greater than benzyl 
alcohol. To explain these measurements, we assumed that benzyl amine 
converts via a side reaction. Fig. 3 shows the scheme of reactions 
applicable in this case study. In Section 4, we report the results from this 
scheme and from that, not considering the side reaction in Appendix 1 in 
the electronic supplementary information (ESI). In the following section, 
we derive models for this reaction scheme and we detail the procedure 
for model identification.

3. Section 3: Model development and identification procedure

The LabBot subsystem for hydrogen borrowing presented in the 
previous section generated experimental data and exchanged commu
nication via the cloud with the Simbot subsystem, the software that 
generated the experimental setpoints. The Simbot software imple
mented in Python programming language as illustrated by Fig. 2 com
prises 5 modules: model development, preliminary design of experiment 
(DoE), parameter estimation, model-based design of experiment 
(MBDoE) applications and model validation. Further details about the 
communication protocol between the LabBot and SimBot can be found 
in our recent publication (Agunloye et al., 2024).

3.1. Model development module

For model development, we employed material balance equations to 
describe the evolution of each chemical components influenced by the 
various chemical reactions in the LabBot plug flow reactor. We describe 
the plug flow reactor system operating at steady state as: 

dci

dτ = −
∑Nr

j=1
νijrj (1) 

where ci is the ith species concentration, rj is the reaction rate 
(mols− 1 L− 1) of the jth reaction with the νij the stoichiometric coeffi
cient, respectively and τ is the space time. To express rj and νij, we need 
balanced chemical equations of the various mechanistic steps reported 
in Fig. 3. This introduces new intermediate chemical species outside the 
measured components. The measured components are benzyl alcohol, 
benzylamine and diphenylamine, while intermediates are involved in 
the first and second hydrogen borrowing cycles. Table 1 shows a 
breakdown of six potential kinetic models derived from Fig. 3, each with 
increasing complexity:(1) Model 1 accounts for 5 components in 3 
chemical steps; (2) Model 2 accounts for 7 components in 3 chemical 
steps; (3) Model 3 accounts for 8 components in 4 chemical steps; (4) 
Model 4 accounts for 9 components in 5 chemical steps; (5) Model 5 
accounts for 10 components; (6) and lastly Model 6 accounts for 11 
components in 6 chemical steps, to describe the scheme completely.

The rate in the j-th reaction has been expressed according to a power 
law model as: 

rj = kjcick (2) 

where ci is the ith species concentration, and kj the reaction rate constant 
whose temperature dependence is given by the Arrhenius equation, 
written in a reparametrized form as (Schwaab et al., 2008): 

kj = kj,ref e

[

−
Ea,j
R

(
1
T−

1
Tref

)]

(3) 

kj,ref is the rate constant of reaction j at Tref , Ea,j is the activation 
energy of reaction j, T is the reactor temperature, R is the universal gas 
constant equal to 8.31 kJ

mol.K. Parameters kj,ref and Ea,j are calculated 
using parameter estimation.

The models obtained by coupling the reactor model in Eq. (1) and the 
rate equations in Eq. (2) are expressed in terms of differential and 
algebraic equations (DAEs) generally written as: 

f
(

dc
dτ (τ), c(τ),u(τ), θ, τ

)

= 0, with c(0) = c0 (4) 

Table 1 
A breakdown of the six derived models for the scheme in Fig. 3 with their components, chemical steps and rate equations.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Step 1 BnOH→
r1 BnCHO BnOH +

Me→r1 BnCHO + MeH2

BnOH +

Me→r1 BnCHO + MeH2

BnOH +

Me→r1 BnCHO + MeH2

BnOH +

Me→r1 BnCHO + MeH2

BnOH + Me→r1 BnCHO +

MeH2

Step 2 BnCHO + BnNH2→
r2 Pmono BnCHO +

BnNH2→
r2 Pmono

BnCHO +

BnNH2→
r2 Pmono

BnCHO +

BnNH2→
r2 Imine

BnCHO +

BnNH2→
r2 Imine +

H2O

BnCHO +

BnNH2→
r2 Imine + H2O

Step 3 BnNH2→
r3 Product X BnNH2→

r3 Product X BnCHO +

Pmono→r3 Pbis
Imine +

MeH2→
r3 Pmono

Imine +

MeH2→
r3 Pmono

Imine + MeH2→
r3 Pmono

Step 4 ​ ​ BnNH2→
r4 Product X BnCHO +

Pmono→r4 Pbis
BnCHO +

Pmono→r4 Pbis
BnCHO + Pmono→r4 Di −
imine + H2O

Step 5 ​ ​ ​ BnNH2→
r5 Product X BnNH2→

r5 Product X Diimine + H2→
r5 Pbis

Step 6 ​ ​ ​ ​ ​ BnNH2→
r6 Product X

Number of 
components

5 7 8 9 10 11

Rate equations r1 = k1c1 

r2 = k2c2c3 

r3 = k3c3

r1 = k1c1c6 

r2 = k2c2c3 

r3 = k3c3

r1 = k1c1c6 

r2 = k2c2c3 

r3 = k3c2c4 

r4 = k4c3

r1 = k1c1c6 

r2 = k2c2c3 

r3 = k3c9 

r4 = k4c2c4 

r5 = k5c3

r1 = k1c1c6 

r2 = k2c2c3 

r3 = k2c9 

r4 = k2c2c4 

r5 = k5c3

r1 = k1c1c6 

r2 = k2c2c3 

r3 = k3c7c9 

r4 = k4c2c4 

r5 = k5c6c10 

r6 = k6c3

Chemical 
species

c1 = BnOH, c2 = BnCHO, c3 

= BnNH2, c4 = Pmono, c5 =

X

+

c6 = Me, c7 = MH2

+

c8 = Pbis
+

c9 = Imine
+

c10 = H2O
+

c11 = Di − imine
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with c ∈ Nnc being the vector of the state variables (concentrations of the 
chemical species in this case), u ∈ Nnu being the vector of manipulated 
variables (reactants’ inlet concentrations, and reactor temperature), θ ∈

Nnθ being the vector of the kinetic parameters to be identified, θ = […,

kj,ref ,Ea,j,…].

3.2. Parameter estimation module

Developed models comprise nonlinear equations describing 
sequential and coupled chemical steps and can be a reliable represen
tation of the chemical system if parameters are estimated precisely. Bard 
discussed the standard approach for nonlinear parameter estimation of a 
full parameter set from experimental data (Bard, 1974). Nonlinear 
models for sequential and coupled chemical steps pose another problem: 
high parameter correlation. Past authors including Yue et al., Srinath 
and Gunawan, and Thomson et al. decorrelated the parameters focusing 
on a parameter subset judged based on available data (Yue et al., 2006; 
Srinath and Gunawan, 2010; Thompson et al., 2010). This strategy has 
been formalized into various algorithms for decorrelating the model 
parameters using the Fisher information matrix (Franceschini and 
Macchietto, 2008). In this work, we present a sequential parameter 
estimation (SPE) technique that is informed by the measurements and 
the developed kinetic models for the hydrogen borrowing reaction. We 
apply the SPE by first selecting an identifiable parameter subset for 
preliminary estimation and then fixing this subset of parameters to 
improve the estimation of the remaining parameters. We discuss the 
standard and sequential parameter estimation approaches in the 
following sections.

3.2.1. Standard nonlinear parameter estimation
Model parameters can be estimated via nonlinear optimization by 

fitting the model to experimental measurements, which comprise 
random experimental error. To account for the random nature of the 
error of experimental measurements, the objective function for param
eter estimation (PE) is defined using the likelihood function and opti
mized by minimizing the negative log-likelihood (Bard, 1974): 

obj = min
θ

[

log(2π)NsNy +
∑Ns

s=1

∑Ny

k=1
logdetVy +(ŷ − y)TΣy

− 1(ŷ − y)

]

(5) 

subject to the model equations and the state space constraints: 

f(ẋ(τ),x(τ), u(τ), θ, τ ) = 0 (6) 

ŷ(τ) = g(x(τ)) (7) 

x(0) = x0 (8) 

φ =
[
uT , τ,x0

T]T (9) 

x(τ) ∈ X (10) 

where x ∈ RNx is the vector of state variables; ẋ is the first derivative of 
the state variables; u ∈ RNu is the vector of inputs or control variables 
that define the condition of an experiment; θ ∈ RNθ is the vector of model 
parameters; ̂y ∈ RNy is the vector of model predictions for measurements 
y; Σy is the measurement error covariance matrix; and Ns is the total 
number of samples. Eq. (6) gives the differential equations resulting 
from the material balance on the components, while Eq. (7) gives the 
algebraic equations relating measurements to the state variables. Eqs. 
(8) and (9) define the initial conditions and experimental design vector, 
respectively, with the state variables being in the state space as illus
trated in (10).

The resulting problem is an optimization problem which requires 
two steps: integration of the DAEs and constrained nonlinear optimi
zation of Eq. (5). DAEs can be integrated symbolically using the 
orthogonal collocation method reported in the work of Biegler (2010)
and implemented in the CasADi (an acronym for Computer algebra 
systems for Algorithmic Differentiation) Python library (Andersson 
et al., 2019; CasADi, 2024) to obtain a set of algebraic equations (Bynum 
et al., 2021) that are solved using IPOPT (an acronym for Interior Point 
OPTimizer), an algorithm for large-scale nonlinear optimization of 
continuous systems (Wächter and Biegler, 2006; AGI Ansys Government 
Initiative, 2024). IPOPT evaluates the set of parameter values θ̂ that 
minimizes the Lagrangian function of the negative log-likelihood vari
able term and the resulting algebraic equations. The resulting 
Lagrangian expression can, however, prohibit the optimization algo
rithm from achieving a unique solution in the full parameter estimation, 
some parameters exhibiting high correlation thereby making the model 
practically non-identifiable (Shahmohammadi and McAuley, 2019).

Table 2 
Experimental design space of control variables employed in the hydrogen 
borrowing case study of benzylamine and benzyl alcohol.

Limits c1(0) (M) c2(0) (M) τ(min) Temp(◦C)

Lower 0.100 0.050 1.0 200
Upper 0.100 0.250 15.0 250

Fig. 4. 10 preliminary experiments with 3 control variables of BnOH conc, space time and reactor temperature designed using the Latin hypercube sampling while 
keeping BnNH constant at 0.1 M: in the experimental design space (a) and the corresponding experimental trajectory (b).
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3.2.2. Sequential parameter estimation
Various strategies have been applied to identify nonlinear chemical 

kinetic models (Vajda et al., 1989; Quaglio et al., 2019). In a sequential 
parameter estimation (SPE) strategy (Shahmohammadi and McAuley, 
2019) parameters are decorrelated by manipulating the Fisher infor
mation matrix (FIM), an Nθ × Nθ symmetrical matrix. A non-invertible 
FIM indicates that the model is non-identifiable. FIM manipulation in
cludes matrix reduction, single-value decomposition, or matrix trans
formation. In this work, we explore the leave-out (LO) procedure of 
sequential parameter estimation, an approach under matrix reduction 
that determines a subset of estimable parameters in a model and leaves 
the rest of the parameters at their nominal values (Thompson et al., 
2010; Shahmohammadi and McAuley, 2019). The authors (Thompson 
et al., 2010; Shahmohammadi and McAuley, 2019) categorized the pa
rameters fixed at their nominal values into three: (1) parameters that 
have small effects on the model prediction, (2) parameters that have 
correlated effects with more influential parameters and (3) parameters 
whose values are relatively well-known.

Knowledge about the process can help in categorizing the parame

ters. In the hydrogen borrowing scheme, the first chemical step is fully 
decoupled from other chemical steps. Benzyl alcohol, which is the 
reactant, does not participate in any parallel or subsequent steps. Con
centration measurements of benzyl alcohol can thus be used to estimate 
the Arrhenius parameters for this chemical step. Other chemical steps 
such as the additive arylation and the reduction of the complex inter
mediate cannot be decoupled like this. Therefore, in the sequential PE, 
we will first estimate the values for the pre-exponential factor and the 
activation energy (θ1, θ2) for the oxidation of benzyl alcohol to benzyl 
aldehyde in a sub model fOx(θ1, θ2) describing this reaction in PE 1. 
Subsequently, on estimating and fixing the parametric values of the 
oxidation sub model, we will estimate the values of the remaining pa
rameters (i.e., θ3,θ4, …,θP) in the complete hydrogen borrowing model 
in PE 2. This sequential PE differs from a standard PE, which evaluates 
the full parameter set in a single stage. The sequential PE steps are listed 
in Algorithm 1. 

Algorithm 1. : Sequential parameter estimation  

Table 3 
Outlet measurements from the LabBot system and the corresponding performance of the synthesis at each synthesis condition using reactants conversions, and product 
yields: diphenylamine (Pmono) and triphenylamine (Pbis). Max and min values in each column are indicated in green and red, respectively. The LabBot system re
ported zero for PBis outlet concentrations in these 10 experiments.

Inlet condi�ons Outlet condi�ons
Exp 
No

Temp 
(oC)

res 
�me 

(mins)

BnNH 
(M)

BnOH 
(M)

BnNH 
(M)

BnOH 
(M)

Pmono 
(M)

Pbis 
(M)

OH 
conversion

(%)

NH 
conversion

(%)

Pmono 
yield (%)

1 227.603 12.055 0.100 0.1978 0.0690 0.1760 0.0073 0 11.046 31.181 23.200

2 240.636 10.317 0.100 0.0546 0.0624 0.0480 0.0063 0 12.078 37.739 16.689

3 204.214 8.679 0.100 0.1051 0.0767 0.0988 0.0018 0 6.008 23.536 7.621

4 203.720 14.982 0.100 0.2309 0.0752 0.2171 0.0036 0 5.995 25.065 14.246

5 230.240 11.471 0.100 0.1615 0.0674 0.1460 0.0070 0 9.582 32.788 21.226

6 236.360 6.377 0.100 0.1362 0.0684 0.1245 0.0056 0 8.634 31.783 17.424

7 214.463 4.675 0.100 0.0972 0.0792 0.0920 0.0022 0 5.369 21.019 10.205

8 247.791 13.439 0.100 0.1201 0.0605 0.0839 0.0096 0 30.110 39.654 24.258

9 219.322 3.735 0.100 0.0797 0.0815 0.0770 0.0022 0 3.342 18.723 11.925

10 242.078 7.688 0.100 0.2060 0.0708 0.1692 0.0088 0 17.857 29.413 29.670
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3.3. Model performance analysis

To investigate model reliability and the precision of the estimated 
parameters, we employ the following mathematical tools: χ2 lack-of-fit 
test, Akaike information criterion (AIC) and a scalar measure of the 
Fisher information matrix.

3.3.1. The χ2 lack-of-fit test
The χ2 distribution is a statistic for testing the goodness-of-fit (or 

conversely, lack-of-fit) of a model to the data (Stewart et al., 1998). It 
assumes the residuals 

(
ysk − ŷsk

)2 to be normally distributed and tests 
whether the model sum of residuals is below a reference value χ2

ref 

estimated from the χ2 distribution of the model degrees of freedom and 
the model confidence probability. The model degrees of freedom is given 

Table 4 
χ2, AIC and Fisher information analyses for the six models indicating better model performance with the sequential PE than with the standard PE: values shown in red 
indicating unacceptable performance while models shown in green are acceptable.

Model Standard PE Sequential PE

χ2 χ2
ref AIC FIM-D χ2 χ2

ref AIC FIM-D

1 Model 1 79.67 60.48 24.73 0.00 26.49 60.48 10.38 397.00
2 Model 2 79.66 83.68 24.72 0.02 26.48 83.68 10.38 397.36
3 Model 3 55.75 92.81 24.07 0.00 23.01 92.81 12.54 0.00
4 Model 4 23.29 101.88 16.70 0.00 23.01 101.88 16.54 0.00
5 Model 5 23.29 113.15 16.70 0.00 23.01 113.15 16.55 0.00
6 Model 6 32.18 122.11 24.91 0.00 23.02 122.11 20.55 0.00

Fig. 5. Model 1 parity plots for the 10 experiments showing the results of sequential PE (b) are more accurate than the standard PE (a).
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by NexpNy − Nθ while the confidence probability is specified (a 0.95 
confidence probability is used in this work). The chi-square value is 
defined as: 

χ̂2
=
∑Nexp

s=1

∑Ny

k=1

(ysk − ŷsk)
2

σ2
kk

(11) 

where ysk, ŷsk are the kth entry of y at the sth experiment of the measured 
and predicted response, respectively. Additionally, σ2

kk is the variance of 
the kth measured response and the kth diagonal entry of the measure
ment’s variance-covariance. The χ̂2 is compared with a tabulated 
reference value χ2

ref , which is the inverse of the cumulative distribution 
function of χ2 distribution at 1 − α confidence level (usually α = 0.05 % 
or 0.01 %) with NexpNy − Nθ degrees of freedom. The value of the χ̂2 

needs to be as small as possible and ideally less than χ2
ref . Note that as the 

degrees of freedom increase, the reference value χ2
ref of the χ2 distribu

tion also increases, since the distribution spreads out to accommodate 
more sources of variability in the model (Casella and Berger, 2002).

3.3.2. Akaike information criterion
Akaike information criterion (AIC) (Akaike, 1975) is a criterion used 

to penalize against overfitting the data with a complex parametric 
model. AIC depends on the χ2 value and the number of parameters. 
Assuming normally distributed error with a constant variance, the 
expression (Burnham and Anderson, 2004; Gkioulekas and Papa
georgiou, 2018) is: 

AIC =
(
Nexp ∗ Ny

)
log
(

χ̂2/(Nexp ∗ Ny
) )

+2 ∗ Nθ (12) 

The model with the smallest AIC value is preferred as it represents 
the best trade-off between fitting model performance and complexity in 
terms of model parameters.

3.3.3. Fisher information matrix
The Fisher information matrix H corresponds to the inverse of the 

Nθ × Nθ posterior covariance matrix of parameter uncertainties V, 
which can be computed using the estimated parameters and expressed as 
(Galvanin et al., 2015): 

V(θ̂, φ) =

(

H(θ̂, φ) +
∑− 1

0

)− 1

(13) 

with 

Hlĺ (θ̂,φ) =
∑Nexp

S

∑Ny

k

∑Ny

ḱ
Skḱ

∂ŷsk

∂θl

∂ŷT
sḱ

∂θĺ
(14) 

Σ0 is the preliminary approximation of the variance-covariance 
matrix of the parameters, which contains the initial information on 
parametric uncertainty; skkʹ is the kkʹ element of the Ny × Ny inverse of 

the variance-covariance matrix of the measurement errors Σy; ∂̂ysk
∂θl 

is the 
parameter sensitivity of ŷsk the kth entry of ŷ at the sth experiment with 
respect to θl. As a square matrix, the determinant of H denoted as |H| can 
be calculated and used as a scalar measure of the Fisher information 
matrix.

The matrix H is approximately the Hessian matrix of the objective 
function in Eq. (5) and must be positive-definite as a sufficient condition 
for a local minimum (Bard, 1974). Thus, for H being non-singular its 

Fig. 6. Model 1 parameter sensitivity plots for responses BnOH (a), BnNH (b), Pmono (c) and the parameter contribution to FIM (d) with the Standard PE and 
sequential PE; Arrhenius parameters 1–6 denoting θ1, θ2, …, θ6, respectively.
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determinant used in this work as an identifiability metric must be 
greater than zero. In numerical computations, the condition number of a 
matrix, which is the ratio of largest to smallest eigenvalues, can be used 
to check the matrix singularity. Via the eigen decomposition, H can be 
expressed as (Stroud and Dexter, 2020): 

H = UΛUT (15) 

where U is the unitary matrix whose columns are the normalized ei
genvectors of H while Λ is the diagonal matrix of the eigenvalues. Then 
the condition number is: 

κ =
λmax

λmin
(16) 

For numerical convergence of the objective function to a solution, 
Bard reported a maximum value of 105 for the condition number (Bard, 
1974).

Fig. 7. Model 2 parameter sensitivity plots for responses BnOH (a), BnNH (b), Pmono (c) and the parameter contribution to FIM (d) with the standard PE and 
sequential PE; Arrhenius parameters 1–6 denoting θ1, θ2, …, θ6, respectively.

Table 5 
Condition numbers of the FIM obtained for Models 1–6 using the standard and 
sequential parameter estimation techniques: values in red are deemed unac
ceptable (i.e., value below the threshold of 5. • 104) while those in green 
acceptable.

Model Condition number κ =
λmax

λmin

Standard PE Sequential PE

Model 1 7.97 • 107 1.02 • 104

Model 2 8.93 • 104 1.02 • 104

Model 3 8.07 • 1021 1.37 • 109

Model 4 3.90 • 106 4.15 • 107

Model 5 3.77 • 1021 4.15 • 107

Model 6 1.40 • 107 6.46 • 1011

Table 6 
Parameter values and their respective t-values calculated using the sequential parameter estimation at Tref = 225℃.

θ θ1 θ2 θ3 θ4 θ5 θ6

ki
(
M− 1s− 1)/

Eai(kJ/mol)
k1 Ea1 k2 Ea2 k3 Ea3

Model 1 Parameter values 1.4E− 4 110 0.02 9.95E− 8 4.7E− 4 37.1
t-value 
(tref (95 %)= 2.0)

48.6 63.3 0.2 5.8E− 8 37.5 21.3

Model 2 Parameter values 0.14 110 0.02 9.96E− 8 4.7E− 4 37.1
t-value 
(tref (95 %)= 2.0)

21.8 63.9 0.2 5.8E− 8 37.8 21.3
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3.4. MBDoE module

The MBDoE module employs one or more identifiable candidate ki
netic models, i.e. models characterised by a non-singular Fisher infor
mation matrix, to design optimal experimental conditions resulting in 
the most informative data. With two or more models satisfying pre
liminary parameter testing, we employ MBDoE for model discrimination 
to select the best model among them. This technique computes experi
ments that maximize the joint divergence among the models, which is a 
linear combination of the pairwise divergences Ji,j. The joint divergence 
J1,2,3,… is (Box and Hill, 1967): 

J1,2,3,… =
∑

i∕=j
LiLiJi,j (17) 

where subscript 1, 2, 3 counts the number of satisfactory models, Li is the 
likelihood of model i. The pairwise divergence is given as (Bard, 1974): 

Ji,j =

∫
[
pi(x) − pj(x)

]
log

[
pi(x)

/
pj(x)

]
dx (18) 

where pi is the model i probability density function.
These expressions are not computationally tractable. Computation

ally tractable forms that have been employed include the Hunter-Reiner 
and Buzzi-Ferrari criteria (Buzzi-Ferraris et al., 1990; Olofsson et al., 
2019). For the Hunter-Reiner criteria, the expression is (Olofsson et al., 
2019; Hunter and Reiner, 1965): 

∑M− 1

i=1

∑M

j=i+1

[(
yn+1

i − yn+1
j)TQ

(
yn+1

i − yn+1
j)
]

(19) 

where Q is a diagonal scaling matrix.
This criterion neither accounts for parameter uncertainty nor does it 

require experimental error for the divergence criterion for multiple 
models when designing experiments for discrimination. For the Buzzi- 
Ferrari criteria, the expression is (Buzzi-Ferraris et al., 1990): 

∑M− 1

i=1

∑M

j=i+1

[(
yn+1

i − yn+1
j)TΣij

− 1( yn+1
i − yn+1

j)+ trace(2ΣyΣij
− 1)
]

(20) 

where 

Σij = 2Σy + Σi + Σj (21) 

Σi(uexp+1) is the model i posterior prediction covariance matrix for 
the marginal posterior experiment: 

Σi(uexp+1) = GiΘi
− 1Gi

T (22) 

Gi
(
uexp+1

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x1

∂θ1

∂x1

∂θ2

∂x2

∂θ1

∂x2

∂θ2

⋯
∂x1

∂θP

…
∂x2

∂θP

⋮ ⋮
∂xn

∂θ1

∂xn

∂θ2

⋱ ⋮

…
∂xn

∂θP

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23) 

This criterion accounts for parameter uncertainty and experimental 
error when designing experiments for discrimination.

Following experimentation at the designed condition for model 
discrimination and re-estimating the model parameters with updated 
experimental data, statistical analysis can be re-employed on the reca
librated models to test their predictions and decide on the best model. 
The predictions have associated χ2 values that can be calculated and 
used to obtain the maximum likelihood Li for each model with the 
expression: 

Li =
1
χ2

⃒
⃒
⃒
⃒
i

(24) 

Bard expressed (Bard, 1974) the values of the maximum likelihood 
for two models in a probability ratio L1/L2, which can then be used as a 
criterion to decide on the best model. The probability ratio must be 
larger (or lower) than a particular value M (or its inverse 1/M), calcu
lated using the expected confidence in the results as: 

M =
(1 − α2)

α1
(25) 

where α1 is the maximum error permitted in Model 1 from the true 
model while α2 is the maximum error permitted in Model 2 from the true 
model. For instance, where the error permitted in each alternative 
model must not exceed 5 %, M = (1 − 0.05)/0.05 = 19. The probability 
ratio must be greater than 19 to select Model 1 as the best model (or less 
than 1/19 to select Model 2 as the best model). The decision is incon
clusive otherwise. For more than two alternative models, the probability 
fraction pf can be used as: 

pf =
Li

∑Nm

i=1
Li

(26) 

where Nm is the number of models.

4. Results and discussions

In this section, we analyse the parameter estimation techniques on 
the developed models and subject identifiable models to model 
discrimination.

4.1. Parameter estimation analysis

In this section, we discuss the performances of the developed 
hydrogen borrowing kinetic models whose Arrhenius parameters have 
been estimated using the standard full-set parameter estimation and 
sequential parameter estimation techniques. The experimental design 
space φ for the experimental decision variables in the hydrogen 
borrowing reaction between benzyl amine and benzyl alcohol consists of 
an equivalent inlet concentration of benzyl alcohol (to react with a 
constant inlet concentration of benzyl amine), space time and reactor 
temperature, as reported in Table 2. Within this design space, 10 ex
periments were designed using the Latin hypercube sampling (LHS) and 
then executed in the LabBot subsystem. Resulting experimental 

Fig. 8. Divergence region based on the Buzzi-Ferraris criterion in the experi
mental design for discriminating between Models 1 and 2.
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measurements were employed for parameter estimation. These 10 ex
periments are described by the horizontal steps shown in Fig. 4 while 
Table 3 shows their corresponding outlet measurements from the LabBot 
subsystem with products diphenylamine and triphenylamine called 
Pmono and Pbis, respectively.

Table 3 shows zero for the PBis concentration because the amount 
produced in these 10 experiments were too low to be measured by the 
LabBot subsystem. This species was however detected in other experi
ments, not reported in this article, during the preliminary stage to 
familiarize the LabBot setup with the synthesis and determine the 
experimental design space, hence the inclusion of the second cycle in the 
overall mechanism for the hydrogen borrowing reaction between benzyl 
amine and benzyl alcohol. Conversions of benzyl amine and benzyl 
alcohol are also reported, benzyl amine recording higher conversion in 
all the experiments. These conversion data cannot be explained with 
only the hydrogen borrowing scheme which requires 2 moles of benzyl 
alcohol for every mole of benzyl amine to complete the 2 cycles reported 
in Section 2: each of the 2 cycles requires benzyl alcohol while only the 
first cycle requires benzyl amine. To explain this unusual, higher than 

expected conversion, we assume that in addition to reacting in the 
hydrogen scheme, benzylamine decomposes to another substance, 
named X, which could be alkylbenzene, cyclohexanone or benzyl alde
hyde (DTIC Defense Technical Information Center, 1970). Decomposi
tion of benzylamine to one or a combination of these compounds has 
been reported in literature (DTIC Defense Technical Information Center, 
1970; Lewis, 2004; NCBI National Center for Biotechnology Informa
tion, 2023). Thus, we modified the hydrogen scheme as reported in 
Fig. 3 and derived the 6 kinetic models reported in Table 1.

Table 4 shows values of χ2, AIC and FIM-D for the six candidate 
models with their parameters estimated using the standard and 
sequential PE techniques. The χ2 values resulting from the sequential PE 
are lower than those obtained from a standard PE. As the value of χ2 

relates directly with maximizing the negative log-likelihood function, 
the SPE estimated the parameter values more efficiently than the stan
dard PE. To illustrate the optimization efficiency, Model 1 parity plots, 
which graphically describe the χ2 term and model accuracy for the two 
parameter estimation approaches, are shown in Fig. 5. Model 

Fig. 9. Updated parity plot of benzyl amine (BnNH) showing the previous experimental points and the in-silico model discrimination points for Model 1 (A) and 
Model 2 (B) showing similar distributions.
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predictions with sequential parameter estimates are more accurate than 
those with standard full-set parameter estimates. The sequential tech
nique, by decorrelating the parameters, can obtain parametric values 
that minimize the sum of residuals better than the standard full-set 
technique.

Further, the χ2 data adequacy test is satisfied with the sequential PE 
implemented on the six models; the six models can therefore represent 
the data adequately. The standard PE using the χ2 test, however, rejects 

Model 1, the simplest model, as inadequate in describing the experi
mental data. This model also has the second highest AIC value from 
standard PE. Conversely, Model 1 along with Model 2 has the lowest AIC 
value from sequential PE because in this approach the number of pa
rameters term in Eq. (12) dominates over the χ2 term.

Further, from Table 4, the standard PE rejects all the six models as 
unidentifiable and their resulting FIM determinant values are all zero, 
suggesting practical non-identifiability. On the other hand, when SPE is 
used, Models 1 and 2 become identifiable, i.e., they exhibit non-singular 
Fisher information matrix. FIM entries are derived from parameter 
sensitivities as shown in Eq. (14). Fig. 6 presents the parameter sensi
tivity analysis for Model 1 from both parameter estimation methods. 
Subfigures A, B and C display the sensitivity of BnOH, BnNH and Pmono, 
respectively, to variations in individual model parameters. Subfigure D 
summarizes the overall contribution of each parameter to the FIM, 
highlighting which parameters most influence model identifiability and 
which responses are most informative.

The parameter sensitivities of Standard PE for Model 1 shown in 
Fig. 6A, B and C, reveal that the three responses are insensitive to 
changes in parameters θ3 and θ4, which are the Arrhenius parameters for 
the arylation step involving BnNH and BnCHO; these insensitive re
sponses yield values approaching zeros as row/column entries in the 
Nθ × Nθ Fisher information matrix, hence resulting in a determinant 
value approaching zero. For the sequential PE, on the other hand, the 
responses are sensitive to changes in parameters. While reactant BnOH 
responds to changes in only θ1 and θ2, reactant BnNH and product 
Pmono respond to changes in all the parameters. Consequently, the FIM 
entries are non-zero values, yielding a non-singular and invertible 

Fig. 10. the χ2 probabilities of Models 1 and 2 for model discrimination (MD) 
in 10 experiments.

Fig. 11. Model discrimination experiments (MD) via in-silico studies between Models 1 and 2 with catalyst decrease of (a) 1 %, (b) 2 % and (c) 3 %.

E. Agunloye et al.                                                                                                                                                                                                                               Chemical Engineering Research and Design 223 (2025) 30–44 

41 



matrix.
Model 2 exhibits a similar behavior with standard and sequential PEs 

(see Fig. 7). In the former, changing parameters θ3 and θ4 does not have 
a noticeable effect on any of the three measured concentrations (BnNH, 
BnCHO and Pmono), resulting in rows/columns of entries with values 
approaching zeros. In the latter, changing the parameters has at least an 
effect on one of the three measured concentrations. Matrices with zero 
rows/columns are not full-rank and their condition numbers are very 
large (κ ≥ 105), as illustrated in Table 5, which reports the condition 
numbers of the FIM estimated from the two parameter estimation 
techniques for the six models.

Kinetic models developed without accounting for the degradation of 
benzylamine are reported in Appendix 1 in the ES1. These models failed 
the χ2 lack-of-fit test as their χ2 values calculated from both parameter 
estimation techniques are larger than the reference values. We refer to 
the ESI for details.

4.2. Model-based design of experiment for model discrimination

MBDoE for model discrimination can be applied to Models 1 and 2, 
both of which contain identifiable parameters estimated using the 
sequential parameter technique. The estimated parameter values and 
their associated uncertainties are presented in Table 6, where statistical 
significance is evaluated using t-test values. The formula for calculating 
the t-values is provided in Appendix 2 of the ESI. For each model, two of 
the six parameters exhibited t-values below the reference threshold, 
indicating substantial uncertainty in the estimates. Notably, these pa
rameters are associated with the arylation step in the hydrogen 
borrowing reaction mechanism.

Despite this uncertainty, both models remain statistically identifiable 
and are therefore suitable for in-silico MBDoE-based model discrimi
nation, to design new experiments aimed at maximizing divergence in 
model responses (see Eq. (18)).

Fig. 8 shows the region in the experimental design space obtained via 
in-silico data for model discrimination between Models 1 and 2 using the 
Buzzi-Ferraris criterion (Eq. (20)). The Hunter-Reiner criterion for 
model discrimination (Eq. (19)) yielded identical divergence region (see 
Appendix 3 in the ESI).

To test the potential for model discrimination between Models 1 and 
2, we assumed Model 1 as the true model and employ in-silico data to 
obtain the probability of discriminating between the two most prom
ising kinetic models. To generate the in-silico data, we first designed an 
experiment in the most divergent point within the experimental design 
space as illustrated in Fig. 8, then simulated the designed experiment 
using Model 1 and finally introduced random noise (with zero mean and 
5 × 10− 3 standard deviation) to the Model 1 predictions for BnNH, 
BnOH and Pmono. In line with the hydrogen borrowing chemical syn
thesis discussed in Section 2, the model predictions of other reactive 
chemical species (BnCHO and MH2 in Table 1) gave nearly zero con
centration, while the metal catalyst remained constant at 10− 4M (0.1 % 
of the inlet concentration of BnNH). With the in-silico data added to 10 
prior experimental data, we recalibrated Models 1 and 2 and analysed 
the two models using χ2 probability, derived by combining Eqs. (24) and 
(25). To pass the discrimination test, the probabilities of the two models 
should diverge with new in-silico data, the assumed true model (i.e., 
Model 1) exceeding 0.95 probability while Model 2 was below 0.05. Via 
this procedure, 10 model discrimination experiments were sequentially 
designed and performed in-silico. Fig. 9 shows an updated parity plot for 
benzylamine comprising the 10 previous experimental data (P points) 
and the 10 optimally designed in-silico model discrimination data (MD 
points). The corresponding model discrimination χ2 probabilities of 
Models 1 and 2 are shown in Fig. 10.

As shown, the model probabilities do not diverge but remain close to 
0.5. We simulated for 50 more model discrimination experiments and 
obtained no divergence in information between the two models. We can 

therefore infer that Models 1 and 2 are not distinguishable.
Consequently, we exploit the model structural differences: Model 1 

being zeroth order with respect to the catalyst amount while Model 2 
being first order (see Table 1), assuming the catalyst amount as a new 
experimental design variable (u), which can be set from information 
about catalyst structure and composition (Auepattana-aumrung et al., 
2020). Results from further in-silico model discrimination studies, 
assuming a decrease of 1, 2 and 3 % in catalyst amount are shown in 
Fig. 11. At 1 % catalyst decrease, Model 1 (the true model) still behaves 
similarly as Model 2 (the rival model) with the discrimination proba
bility, which is in favor of the rival model, in the 10 in-silico model 
discrimination experiments ranging between 0.5 and 0.6. The two 
models cannot be distinguished as a threshold probability of 0.95 must 
be reached or exceeded for model distinguishability. At 2 % catalyst 
decrease, the discrimination probability, which is in favor of the true 
model, started at about 0.7, and then increased briefly, exceeding the 
threshold probability of 0.95 at the model discrimination experiment 
#4. Thereafter, the discrimination decreased to about 0.75 at the model 
discrimination experiment #10 as the 2 % catalyst decrease could not 
sustain divergence in the two model predictions and clear model 
distinguishability at 0.95. However, at 3 % catalyst decrease, the 
discrimination probability exceeded 0.99 in the 10 discrimination ex
periments providing clear model discrimination. A catalyst decrease of 
3 % or larger (also investigated in-silico) is therefore required to ensure 
model distinguishability

5. Conclusions

In this work, using previously reported mechanistic theory, we have 
developed kinetic models for the hydrogen borrowing reaction, a com
mon synthetic step employed in the pharmaceutical industry for drug 
discovery. The synthesis was conducted in a smart flow reactor 
controlled via a cloud-based system composed of modules for pre
liminary design of experiments, kinetic model development, parameter 
estimation and model-based design of experiments. In a preliminary 
model development stage, data for measurable species in the LabBot 
obtained from a statistical DoEs were used to identify suitable hydrogen 
borrowing mechanisms and derive candidate kinetic models. Candidate 
models were proposed, from the simplest model, only based on observed 
measurable species, to the most complex model, comprising all chemical 
species including intermediate species involved in the detailed reaction 
mechanism. Two approaches were compared to estimate the kinetic 
parameters of the candidate kinetic models: (i) a standard full-set 
nonlinear parameter estimation (PE) and (ii) a sequential parameter 
estimation (SPE) where only subsets of identifiable parameters are 
sequentially estimated. A Fisher information matrix analysis was used to 
screen out unidentifiable candidate models and showed that a standard 
PE would fail to identify any suitable model from the set of candidate 
models while SPE could identify two identifiable models (Model 1 and 
Model 2) and found them adequate to describe the hydrogen borrowing 
reaction data generated by the LabBot.

The two identifiable models were therefore employed in the MBDoE 
techniques for in-silico model discrimination studies comparing 
different model discrimination criteria, namely the Buzzi-Ferraris cri
terion and the Hunter Reiner criterion. Although the Buzzi-Ferraris 
design criterion identified a region of discrimination in the experi
mental design space, further analysis showed that model discrimination 
between the two models was not possible based on current data, which is 
limited by what species can be monitored. However, exploiting the 
model structural differences in-silico, the catalyst amount was identified 
as a key model discrimination driver to exploit in the experiments, with 
a decrease of at least 3 % in catalyst amount ensuring complete distin
guishability (i.e. discrimination probability higher than 0.99) between 
Model 1, employed as the ground truth, and Model 2. Future validation 
experiments will be needed to confirm the impact of catalyst decrease on 
model discrimination and hence the adequacy of Model 2 in 
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representing reaction kinetics in the hydrogen borrowing system.
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