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The bi-phasic behaviour of grey matter 
networks after the first demyelinating attack
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Multiple sclerosis can be considered a network disease. Accumulating evidence recognizes the following importance of grey matter 
networks: they only require high-resolution anatomical scans for their extraction, they capture changes beyond detectable atrophy 
and their alteration is associated with disability progression and cognitive impairment. Therefore, it is crucial to understand their be
haviours over the initial years of the disease. This observational longitudinal study aimed to investigate changes in grey matter net
works after the first demyelinating attack, and how they correlate with brain damage, disability, and conversion to multiple 
sclerosis over 3–5 years. So far, in multiple sclerosis, network construction has only been based on cortical grey matter, neglecting 
a possible role for deep grey matter. We applied a radiomics-based network methodology incorporating both deep and cortical 
grey matter. Patients recruited within 3 months of disease onset and healthy controls attended study visits at 6 months, 1 year, 3 years 
and 5 years. Study visits included physical and cognitive scales and brain MRI scans. Individual grey matter networks were con
structed by computing the correlations between T1w-based radiomic features extracted from any pair of regions of the 
Brainnetome atlas and characterized with measures of network integration (global efficiency and characteristic path length), segrega
tion (clustering coefficient and modularity), resilience (assortativity) and smallworldness. Additionally, eigenvector centrality was 
computed for all brain regions as a measure of nodal influence. We enrolled 89 patients (median follow-up 7 months, range 0–75) 
and 31 healthy controls. Patients showed higher global efficiency, lower shortest characteristic path length and higher smallworldness 
than controls suggesting a reorganization that prioritize more efficient global communication over local processing. Over time, pa
tients’ networks converged towards healthy controls’ values by increasing the shortest characteristic path length and decreasing 
the smallworldness. Assortativity, and the eigenvector centrality in the right ventromedial putamen decreased compared with controls. 
All the observed changes were driven by non-converters to multiple sclerosis. This study shows that grey matter networks adopt a 
biphasic behaviour. They respond to the demyelinating event with an increase in nodal integration and then converge to healthy con
trol values. In the process, however, their network resilience is compromised. This suggests that a single demyelinating event has long
er-lasting effects on grey matter networks, even in non-converters, and that studying these networks may reveal relevant changes that 
are not captured by conventional MRI in the early years of the disease.
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Introduction
Multiple sclerosis is a chronic disease with CNS damage char
acterized by inflammation, demyelination and neurodegenera
tion.1 Advances in MRI have improved our understanding of 
these processes in vivo,2 but MRI measures of CNS damage 
still provide an incomplete view.3 Multiple sclerosis is also a 
network disease: the brain’s capacity to compensate for struc
tural damage through functional reorganization diminishes 
over time and this can contribute to disability.4

Many studies have now characterized grey matter net
works in multiple sclerosis, both at group5-9 and individual 
level.10-14 These network analyses offer valid biological sub
strates15 and clinical relevance as they correlate with pro
gression11 and cognitive decline,13,14 even when adjusting 
for grey matter atrophy. However, only two studies have ex
amined the behaviour of grey matter networks at the onset of 
multiple sclerosis, one possessed a cross-sectional design12

and the other used a group-level analysis.6 The early stages 
of multiple sclerosis can provide crucial insights into its 
pathogenesis and the development and progression of the 
disease. It is therefore of particular interest to understand 
how grey matter networks evolve in the early stages of re
lapsing–remitting multiple sclerosis and clinically isolated 
syndrome (CIS). Additionally, current literature is only 
based on cortical grey matter networks, neglecting a possible 
role for deep grey matter. The deep grey matter appears to 
play an important role in the progression of the disease16-18

and alterations in its structures may be present from the be
ginning and proceed throughout the disease.19

In this study, we consecutively recruited patients after their 
first demyelinating event who were followed up over up to 5 
years. We extracted single-subject grey matter networks from 
both deep and cortical grey matter using a radiomics-based 
methodology,20 which can evaluate more complex features 
compared with conventional volumetric analyses.21

Our aim was to understand how grey matter networks 
evolve during the first years of the disease and if changes 
are related to brain damage and disability accrual.

In recent decades, there has been an effort to redefine the 
phenotypes of multiple sclerosis using MRI abnormalities 
which reflect pathogenetic mechanisms.17 Therefore, our 
work also assessed whether changes in grey matter networks 
distinguished between people who converted to multiple 
sclerosis because of new clinical and/or MRI activity, and 
people who did not (i.e. CIS).

Materials and methods
Standard protocol approvals, 
registrations and patient consents
This study was conducted at University College London 
(UCL), Queen Square Institute of Neurology (UCL ethical 
committee approval: 13/LO/1762; 13/0231-CIS2013). All 
subjects gave written informed consent.

Participants
We prospectively recruited patients at the onset of their first 
demyelinating episode from the National Hospital of 
Neurology and Neurosurgery and Moorfields Eye Hospital 
in London, United Kingdom. Inclusion criteria were assess
ment within 3 months of symptom onset; age between 18 
and 65 years; and ability to provide written informed con
sent in English and undergo MRI. Exclusion criteria included 
known neurological disease (other than CIS or multiple 
sclerosis); the presence of antibodies against aquaporin-4 
or myelin oligodendrocyte glycoprotein, routinely assessed 
in patients with optic neuritis or myelitis; pregnancy or 
breastfeeding; and the presence of magnetically sensitive or 
otherwise MRI-incompatible implants. We also recruited 
age and sex-matched healthy controls.

All participants underwent the same MRI protocol at 
study entry, 6 months, 1 year, 3 years and 5 years. 
Additionally, patients had a comprehensive clinical assess
ment, detailed below, at each time point (Fig. 1). Multiple 
sclerosis was diagnosed based on the 2017 revision of the 
McDonald criteria. At baseline, patients had a lumbar punc
ture if clinically indicated. Individuals who did not meet the 
2017 revision of the McDonald criteria during the course of 
the study were defined as CIS.

MRI protocol
We used a 3T Achieva MRI scanner (Philips Medical Systems, 
Best, Netherlands), upgraded to a 3T Philips Ingenia CX dur
ing the study, with a 32-channel head coil. All participants 
underwent structural MRI of the brain at each visit including 
the following sequences: axial proton density (PD)/ 
T2-weighted imaging; 3D T1-weighted magnetization- 
prepared turbo field echo; and 3D fluid-attenuated inversion 
recovery (FLAIR).

For clinical purposes, all subjects at each time point also 
underwent spinal cord MRI including sagittal PD- and 
T2-weighted imaging. Patients also had pre- and post- 
gadolinium sequences of brain and spinal cord. Sequences 
characteristics are summarized in Supplementary Table 1.

MRI processing
For all patients, white matter lesions were automatically seg
mented on 3D FLAIR and 3D T1w scans using SAMSEG,22

while FreeSurfer 7.223 was used to obtain estimated total 
intracranial volume (eTIV)24 and gray matter volumes. 
Thalamic volume was also calculated and then normalized 
for eTIV.

Network construction and metric 
extraction
To obtain single-subject grey matter networks, we used the re
gional radiomics similarity networks (R2SNs) approach.20

Briefly, each T1-weighted volume was nonlinearly registered 
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to the Montreal Neurological Institute (MNI) space using the 
SyN method implemented in Advanced Normalization Tools 
(ANTs),25 and resampled to 1 mm3 voxel resolution. Then, a 
series of radiomics features (N = 47)26 were extracted for 246 
regions defined by the Brainnetome Atlas.27 The parcellation 
scheme is a fundamental element in the construction of connect
ivity matrices, as it defines the nodes of the network and conse
quently shapes the calculation and interpretation of brain 
connectivity patterns.28 The Brainnetome Atlas was utilized 
as it provides a fine-grained sampling of both cortical and sub
cortical regions derived from information on both anatomical 
and functional connections, and for consistency and reproduci
bility with previous works by Zhao and colleagues.20,29 After 
feature scaling and redundancy elimination, we obtained indi
vidual 246 × 246 radiomics similarity matrices where each 
node represents a region of the Brainnetome Atlas, and edges 
are computed as the Pearson’s correlation coefficient between 

interregional radiomics features (Fig. 1B). To obtain a compre
hensive characterization of the topological properties of the ob
tained grey matter networks, we used the Brain Connectivity 
Toolbox (https://sites.google.com/site/bctnet/) to extract global 
measures of network integration (global efficiency, characteris
tic path length), segregation (clustering coefficient, modularity) 
and resilience (assortativity).30 Additionally, smallworldness 
was computed as the ratio between the normalized clustering 
coefficient and the normalized characteristic path length,31

and eigenvector centrality was extracted for all brain regions 
as a measure of nodal influence (Fig. 1C).30

Clinical tests
All subjects at all time points completed the following tests: 
the Expanded Disability Status Scale (EDSS)32; the Multiple 
Sclerosis Functional Composite (MSFC)33 including the 
Timed 25-Foot Walk (T25-FW), 9-Hole Peg Test (9-HPT) 
and Paced Auditory Serial Addition Test (PASAT); and the 
Brief International Cognitive Assessment for Multiple 
Sclerosis (BICAMS)34 including Symbol Digit Modality 
Test (SDMT), Brief Visuospatial Memory Test-Revised 
(BVMT-R) and California Verbal Learning Test second edi
tion (CVLT-II). We used raw scores for our analysis.

Statistical analysis
We performed descriptive and statistical analysis using Stata/ 
SE 15.1 (Stata Corporation, College Station, TX, USA).

Baseline analysis
We used multivariable linear regression with robust standard 
errors to assess differences between patients and controls in 
brain volumes and network metrics with age at baseline and 
sex as covariates. We also assessed steroids effects on base
line analysis. If significant differences were found, we tested 
the dependence of the altered network metrics on brain vo
lumes (if altered) and lesion volume by adding these variables 
as predictors in the model. We conducted a sub-group ana
lysis comparing brain volumes and network metrics between 
CIS, McDonald 2017 multiple sclerosis and controls. 
Finally, we assessed the effect of altered network metrics 
and brain volumes on disability scores.

Longitudinal analysis
We used multilevel mixed-effects models to determine the ef
fect of group (patients versus controls), age, sex, time (ex
pressed as months from the baseline assessment) and 
group–time interaction on brain volumes and network 
metrics over time. Random effects were patient- and visit- 
specific intercepts and slopes to account for individual vari
ability. We used an unstructured covariance between 
residuals for repeated measurements of the same individual. 
If a significant group effect was found, we assessed the effect 
of brain volumes (if altered), lesion volume, disease- 
modifying treatments (binary variable) and relapses on the 
altered network metrics. We repeated the analysis defining 

Figure 1 Study methods. (A) Study plan; (B) network 
extraction; (C) network metrics. Network extraction is adapted 
from Zhao et al. Regional radiomics similarity networks (R2SNs) in 
the human brain: reproducibility, small-world properties and a 
biological basis. Network Neuroscience. 2021;5(3):783. doi:10.1162/ 
NETN_A_00200.20 AAL, Automated Anatomical Labelling; BL, 
baseline; BICAMS, Brief International Cognitive Assessment for 
Multiple Sclerosis; Char., characteristic; Coeff., coefficient; EDSS, 
expanded Disability Status Scale; FLAIR, FLuid-Attenuated 
Inversion Recovery; GAD, gadolinium; M, months; MNI, Montreal 
Neurological Institute; MSFC, Multiple Sclerosis Functional 
Composite; ROI, region of interest; Y, year(s).
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the group factor as CIS, McDonald 2017 multiple sclerosis 
converters, or controls. We assessed if network metric altera
tions were associated with changes in disability scores over 
time. Finally, we assessed if alterations in network metrics 
at baseline could predict disability and brain volume changes 
over time.

Our missing data analysis procedures used missing at ran
dom (MAR) assumptions. We included patients who were 
lost at follow up once it was determined that this had hap
pened randomly. We considered as significant P-values less 
than 0.05. For the local regional analyses (i.e. the 246 regions 
from the Brainnetome atlas), we applied the Benjamini and 
Hochberg false discovery rate correction for multiple com
parisons and we report the q-values.35

Initial plans were to analyze network metric changes over 
a 5-year follow-up. However, our recruitment for the fifth 
year was affected by the COVID pandemic. For the most 
considerate use of the data collected, our first analyses used 
the data only up to 3 years of follow-up. We then separately 
explored the results at 5 years.

Results
Demographics
We recruited 89 patients and 31 controls. No clinically rele
vant comorbidity was reported. Of these, 37 patients and 

6 controls completed 3-year follow-up. Patients and controls 
did not differ in age and sex. One patient failed the algorithm 
for network extraction and was discarded from the analysis. 
Demographic characteristics and clinical features are re
ported in Table 1.

Baseline
Brain and lesion volumes
All patients had lower subcortical grey matter volume than 
controls (β = −2 [95% confidence interval (CI) = −4, 
−0.3], P = 0.02). Multiple sclerosis patients also had lower 
normalized thalamic volumes than controls (Table 2).

Global network metrics
At baseline, patients overall had higher global efficiency 
(β = 0.006 [0.003, 0.01], P = 0.001), lower shortest charac
teristic path length (β = −1 [−2, −0.4], P = 0.002) and higher 
smallworldness (β = 0.05 [0.02, 0.07], P = 0.002) (Table 2; 
Fig. 2). Subcortical grey matter volume, lesion volume, age 
and sex were not correlated with these findings. Steroid ex
posure did not have a significant impact with baseline net
work metrics. Subgroup analysis showed that while both 
multiple sclerosis and CIS patients had higher global effi
ciency than healthy controls, only CIS patients had lower 
characteristic path length and higher smallworldness than 
healthy controls (Table 2).

Table 1 Demographics and clinical characteristics

Patients 
(n = 89)

Controls 
(n = 31) P-value

Sex 
(female/male)

59 / 30 17 / 14 >0.05a

Median (range) age at baseline 
(years)

32 (20–53) 31 (22 ± 49) >0.05b

CIS subtype 
(N)

optic neuritis 73 - -
brainstem/cerebellum 7
spinal cord 5
hemisphere 4

Disease classification at baseline 
(CIS/RRMS %)

70/30% - -

Steroids at baseline 
(N, %)

45, 51%

6-month follow-up 
(N, CIS/RRMS %)

61, 38/62% 25, - -

12-month follow-up 
(N, CIS/RRMS %)

62, 35.5/65.5% 18, - -

3-year follow-up 
(N, CIS/RRMS %)

37, 27/73% 6, - -

Median (range) EDSS 
(at baseline)

1 (0–3.5) - -

Median (range) EDSS 
(at 3 years)

1 (0–3) - -

Mean (± SD) T2 lesion volume (ml) 
(at baseline)

3.2 ± 3.6 - -

DMT at 3-year follow-up 
(no/yes)

16 / 21 - -

CIS, clinically isolated syndrome; DMT, disease-modifying treatment; EDSS, Expanded Disability Status Scale; RRMS, relapsing–remitting multiple sclerosis; SD,  standard deviation.
aP-value derived from Pearson’s chi-square test. bP-value derived from linear regression.
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Eigenvector centrality
Patients did not differ significantly in eigenvector centrality 
from controls (q-value > 0.05).

Disability scores
We did not find any significant relationship between either 
deep grey matter volume or altered network metrics and dis
ability scores.

Longitudinal
Out of the 88 patients included in the baseline analysis, 37 
were assessed at the three-year follow-up, of whom 27 had 
converted to multiple sclerosis (73%).

Brain and lesion volumes
Over time, we did not observe changes in brain volumes in 
patients compared with healthy controls (Table 3).

Global network metrics
Over time, in all patients the shortest characteristic path 
length increased (β = 0.03 [0.006, 0.05], P = 0.01), and 
both smallworldness and assortativity decreased (β = −0.001 
[−0.002, −0.0001], P = 0.03; β = −0.0004 [−0.0007, 
−0.00003], P = 0.03, respectively) compared to healthy con
trols. Age, sex, lesion volume, use of disease-modifying treat
ments and relapses were not correlated to the observed 
changes. In the subgroup analysis, only the non-converters 
showed these changes in global network metrics when com
pared with healthy controls (Table 3, Fig. 3).

Eigenvector centrality
Over time, all patients had a greater decrease in eigenvector 
centrality than healthy controls in the right ventromedial pu
tamen (β = − 0.03 [−0.04, −0.01], P = 0.00004, q-value =  
0.01) (see Supplementary Table 2). Age, sex, lesion volume, 
use of disease-modifying treatments and relapses were not 
correlated to the observed changes.

Disability
Changes in disability were dependent from relapses, and in
dependent from changes in global and local network metrics, 
and use of disease-modifying treatments. We observed an im
provement in the T25-FW speed (β = −0.0005[−0.0008, 
−0.0002], P = 0.004) maintained when adding relapses to 
the model (Table 4).

Five-year follow-up
Twenty-three patients and six healthy controls completed 
five-year follow-up. Among patients, nine remained as CIS 
and 14 had converted to multiple sclerosis. Patients showed 
a decrease in deep grey matter volume compared to controls 
(β = −0.01 [−0.02, −0.004] P = 0.007) that was associated 
with multiple sclerosis conversions, and not with relapses 
and use of disease-modifying treatments (Table 5). We ob
served weak evidence for a decrease in assortativity in pa
tients compared with controls (β = −0.0003 [−0.0006, T
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−0.0000007], P = 0.06). CIS patients showed an increase in 
clustering coefficient and characteristic path length, and a 
decrease in smallworldness (Table 5). There was deterior
ation in T25-FW performance (β = −0.0006 [−0.0008, 
−0.0003], P < 0.0001) independent from relapses, changes 
in global network metrics and use of disease-modifying 
treatments.

Discussion
By examining grey matter networks at the earliest stage of 
the disease, we have provided evidence for bi-phasic behav
iour. The networks responded to the initial demyelinating at
tack by increasing nodal integration (i.e. reducing shortest 
path length and increasing global efficiency). Their topology 
also deviated from the small-world configuration typical of 
natural biological systems,36 which normally provides bal
ance between short and long-range connections, in favour 
of a more clustered configuration (i.e. a high smallworldness, 
typical of regular networks, such as lattices).

Then, over 3 years they began to realign back towards 
healthy control metrics (i.e. by increasing shortest path 
length and decreasing smallworldness). The fact that this 
process of network re-normalization has been driven by non- 
converters has different implications. On the one hand, this 
means that when there is again inflammatory disease activity 
(i.e. in converters), grey matter networks respond by shifting 
to a more integrated configuration, as witnessed after the 
first attack. On the other hand, this may indicate more effi
cient repair mechanisms in non-converters, either sustained 
by remyelinating processes inside the lesion or processes pro
moting cortical plasticity. These complex dynamics of brain 

connectivity in early multiple sclerosis call for further re
search into the mechanisms underpinning these changes.

We also observed reduction in assortativity over time in 
patients. Assortativity is the tendency for nodes to connect 
with others that have a similar degree of connectivity. 
Higher assortativity means that highly connected regions 
(hubs) prefer to connect with other hubs, while less con
nected regions connect with each other. So as networks at
tempt to restore their normal organization, highly 
connected nodes may lose their preferential links with other 
hubs with a possible negative impact on the network resili
ence. This result implies that even a single demyelinating at
tack can leave longer-lasting changes in the grey matter 
network structure, even in patients remaining CIS. Hence 
grey matter networks can detect changes that would not be 
observable on conventional MRI, thereby offering addition
al pathobiological insights into clinically early stages.

Interestingly, Tur et al.6 also reported a bi-phasic behav
iour after the first demyelinating attack, but only in people 
who converted to multiple sclerosis. In addition to the differ
ent methodology, the discrepancy in results may be due to 
the characteristics of their cohort, which at baseline included 
only CIS patients recruited in the pre-treatment era and used 
the less sensitive 2010 revision of the McDonald criteria. 
Nevertheless, this concordance highlights the robustness of 
our findings and is consistent with the idea that grey matter 
networks analysis provides complementary information to 
standard analyses of structural damage.

Other studies have focused on single-subject grey matter 
networks.37 Replicating the results of a previous group-level 
study,9 both our group12 and Fleischer et al.10 showed an in
crease in the clustering coefficient in patients with CIS and 
early multiple sclerosis, respectively. An increased clustering 

Figure 2 Boxplots for global network metrics differences between patients and controls at baseline. P-values are from multivariable 
linear regression with robust standard errors to assess differences between patients (N 89) and controls (N 31) in network metrics with age at 
baseline and sex as covariates.
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coefficient indicates strengthened local information flow in 
grey matter networks. Since it was not associated with 
changes in cognitive and physical function, it may suggest 
a compensatory mechanism in response to the initial attack. 
It is interesting to note that this finding in CIS goes beyond 
this specific methodology of network analysis.38 Multiple 
sclerosis patients may not be able to adopt this strategy 
due to other underlying mechanisms that promote white 
and grey matter damage.39 Furthermore, the confirmation 
of these results at the five-year follow-up (Table 5, P =  
0.03), despite the smaller sample size, suggests that these 
changes in network properties are consistent and endure 
over time.

This hypothesis is consistent with the observed shift to
wards a more regular network (i.e. increased smallworld
ness), which is characterized by nodes that are densely 
connected to their clique of neighbours. As we have captured 
morphometric similarity across brain regions, the increase in 
smallworldness suggests a non-random, regionally coordi
nated pattern of tissue change, possibly reflecting micro
structural remodelling (e.g. synaptic pruning, glial 
activation) as a system-wide response to the demyelinating 
insult.

While we also documented this shift in topology in our 
previous multicentre study,12 because of its cross-sectional 
design, we could not capture the dynamic changes over 
time. Notably, the analysis of single-subject grey matter net
works in advanced multiple sclerosis,13 like studies using the 
same methodology in dementia,40 showed that cognitively 
impaired patients tend towards random network topology. 
However, unlike the subjects in our cohort, these patients al
ready had evident grey matter atrophy. Thus, we can now 
confirm that the more clustered organization in CIS and early 
multiple sclerosis represents an early network response to the 
inflammatory episode, which then reverts to healthy control 
values over time, but can become random if substantial neu
rodegeneration occurs. It is also important to note that most 
network measures were resistant to change over time, sug
gesting some stability in the brain’s grey matter network 
structure, even in the presence of disease (Fig. 3).

On the other hand, these compensatory findings may re
flect underlying processes that precede the onset of the first 
clinical event. Such early adaptations could involve the pres
ervation of function despite accumulating damage. These ob
servations raise important questions about the ‘true’ onset of 
pathological changes and the dynamics of grey matter net
work changes in early multiple sclerosis. Further studies in 
high-risk cohorts (i.e. individuals with radiologically isolated 
syndromes or genetic predispositions) are needed to confirm 
that these patterns are present before clinical manifestation.

This study progresses the field by incorporating certain 
methodological advances. For the first time in multiple scler
osis, we have used radiomics to construct our grey matter 
networks, which might provide a more comprehensive as
sessment of brain tissue compared with simpler measure
ments such as cortical volume/thickness, including the 
characterization of complex microstructural changes. In T
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addition, we have included deep grey matter in the network 
construction. These structures are crucial for cognitive func
tions41 and play a significant role in multiple sclerosis 
progression.42

In our study, patients exhibited deep grey matter atrophy 
at onset, but this did not influence the global grey matter net
work structure and local metrics. However, despite no fur
ther changes in deep grey matter volume over the years, we 
observed decreased eigenvector centrality in the right ventro
medial putamen. Eigenvector centrality measures a node’s 
importance based on the number of connections its neigh
bours make. For instance, in social networks, eigenvector 
centrality can determine the most influential members by 
measuring the significance of their contacts.43 The deep 
grey matter is a central part of the high-capacity backbone 
of the global network structure.44 Therefore, the decrease 
in eigenvector centrality in the putamen may represent hub 
disconnection suffered by the network. Interestingly, there 
was a decrease in deep grey matter volume at five-year 

follow-up, driven, as expected, by multiple sclerosis patients. 
Longer follow-up will clarify if the early changes in eigen
vector centrality in these structures are related to undergoing 
neurodegenerative processes.

Our study has limitations. First, we experienced a partici
pant drop-out during follow-up that limited our sample size. 
However, we used robust multilevel statistical methods that 
can mitigate against missing data points. Second, damage in 
both nodal regions (i.e. the grey matter structures) and the 
connecting white matter tracts may influence grey matter 
structural network metrics. Our study did not explore the 
impact of cortical lesions45 and alterations in the normal- 
appearing tissues,39 making it impossible to disentangle the 
two components. However, we did account for conventional 
measures of brain structural damage. Therefore, our findings 
still have clinical relevance, particularly with considering 
brain atrophy and white matter lesion load. Finally, al
though our study was limited by a relatively small sample 
size at 5 years, we believe it is valuable to report these results 

Figure 3 Global network metrics changes over 3 years in healthy controls, CIS, and MS patients. Scatter plot of global metric values 
for each subject at each visit. Dashed lines represent the means for each variable. P-values are from multilevel mixed-effects models to determine 
the effect of group (patients versus controls), age, sex, time (expressed as months from the baseline assessment), and group–time interaction on 
brain volumes and network metrics over time (6 months: CIS N 23, MS N 38, HC N 25; 1 year: CIS N 22, MS N 40, HC N 18; 3 years: CIS N 10, MS 
N 27 HC N 6). Random effects were patient- and visit-specific intercepts and slopes to account for individual variability. We used an unstructured 
covariance between residuals for repeated measurements of the same individual. BL, baseline; Char., characteristic; CIS, clinically isolated 
syndrome; HCs, healthy controls; M, months; MS, multiple sclerosis; Y, year(s).
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as they contribute to hypothesis-generating research, and 
they also highlight differences between short-term remodel
ing and long-term reorganization.

In conclusion, we have demonstrated that grey matter net
works show relevant changes during the initial years of the 
disease after clinical onset, not captured by conventional 
MRI metrics, encouraging a reappraisal of CIS pathophysio
logical mechanisms. Initially, after the first demyelinating at
tack, CIS and multiple sclerosis networks behave similarly, 
reinforcing the idea that multiple sclerosis is a continuum 
in which clinical phenotypes share common disease mechan
isms46; however, the absence of further attacks over time 
may encourage recovery of network integrity, but at the cost 
of permanent changes. Nevertheless, the re-normalization of 
grey matter networks may indicate a successful resolution of 
inflammation, possibly due to effective repair mechanisms. 
CIS patients whose grey matter networks revert to a healthy 
state may have limited disease or effective plasticity, while 
those who diverge from healthy controls norms may benefit 
from early treatment. The possible role of grey matter net
work metrics as putative biomarkers to detect early changes 
requires future study.

Supplementary material
Supplementary material is available at Brain Communications
online.
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