
Determining the molecular and pathological responses 

of neoadjuvant radiotherapy on soft tissue sarcomas 

 

 

Steven William George Nottley 

 

 

 

 

University College London 

and 

The Francis Crick Institute 

 

PhD Supervisors: Dr Nischalan Pillay and Prof Peter Van Loo 

 

 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

University College London 

 

 

February 2025 



 

2 

 

Declaration 

 

I Steven Nottley confirm that the work presented in this thesis is my own.  Where 

information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 



 

3 

 

Abstract… 

 

Soft tissue sarcomas (STS) are a heterogeneous group of mesenchymal 

malignancies, often treated with neoadjuvant radiotherapy (RT) to improve local 

control. However, the genomic impact of RT on STS remains poorly understood. This 

thesis investigates the mutational and transcriptomic responses of STS to RT using 

whole-exome sequencing (WES), RNA sequencing (RNAseq), and the highly 

sensitive NanoSeq technology. 

 

Initial WES analyses of pre- and post-RT tumour samples revealed a low tumour 

mutational burden (TMB) with no significant increase in single nucleotide variants 

(SNVs) or small insertions and deletions (indels) post-treatment. Given the known 

role of RT in inducing DNA damage, I hypothesised that conventional WES might 

lack the sensitivity to detect low-frequency mutations. To address this, I employed 

NanoSeq, a duplex sequencing approach capable of detecting rare mutations with 

unprecedented accuracy. Analysis of paired pre- and post-RT samples using 

NanoSeq demonstrated a significant increase in indels and a shift toward 

microhomology-mediated end joining, suggesting a mutational footprint of RT 

previously undetectable with standard sequencing. 

 

Transcriptomic analysis revealed differentially expressed genes and pathways when 

comparing pre- and post-RT samples, shedding light on the molecular response to 

RT and identifying potential biomarkers of disease. A machine learning model trained 

on gene expression data successfully distinguished patients with favourable vs. poor 

post-RT outcomes. 

 

These findings provide novel insights into the genomic and transcriptomic effects of 

RT on STS. By leveraging high-resolution sequencing technologies, this work 

enhances our understanding of RT-induced mutagenesis and lays the foundation for 

improved patient stratification based on molecular response. This research identifies 

potential biomarkers of disease progression and therapeutic targets, which, with 

further research and validation, could inform both post-RT surveillance strategies 

and the development of adjuvant treatment approaches in clinical practice. 
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Impact Statement 

 

Radiotherapy is a widely used treatment for soft tissue sarcomas (STS), yet its long-

term effects on the tumour genome and transcriptome remain incompletely 

understood. This thesis applies cutting-edge sequencing methodologies to 

investigate how neoadjuvant RT reshapes the molecular landscape of STS, with 

significant implications for both clinical practice and future research. 

 

From an academic perspective, this work advances our understanding of the 

mutational consequences of RT. The application of NanoSeq—a highly sensitive 

duplex sequencing approach—revealed an increased burden of low-frequency 

mutations, particularly small insertions and deletions, which were undetectable using 

conventional whole-exome sequencing (WES). This demonstrates that traditional 

sequencing approaches may underestimate the extent of genomic alterations 

caused by treatment. The observed shift toward microhomology-mediated repair 

mechanisms aligns with known mutational processes induced by DNA damage, 

providing new avenues for investigating RT resistance mechanisms. 

 

Beyond academia, this research has potential clinical implications. The identification 

of differentially expressed genes and pathway alterations post-RT offers valuable 

biomarkers that could predict patient outcomes. A machine learning model trained 

on gene expression data successfully stratified patients based on their likelihood of 

disease progression, highlighting the feasibility of integrating molecular profiling into 

clinical decision-making. These findings could contribute to the development of 

biomarker-driven treatment strategies, allowing clinicians to personalise post-RT 

surveillance and therapeutic interventions. 

 

At a broader level, this thesis contributes to the growing field of radiogenomics, with 

potential applications in other tumour types treated with RT. By refining our 

understanding of RT-induced molecular changes, this research supports efforts to 

mitigate therapy-associated risks, optimise patient monitoring, and inform the design 

of novel therapeutic strategies that leverage molecular vulnerabilities induced by RT. 
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In summary, this work bridges the gap between genomic research and clinical 

application, providing a molecular framework for understanding RT response in STS. 

Through improved detection of RT-induced mutations and identification of 

transcriptomic biomarkers that could be used for patient risk stratification, this 

research has the potential to influence both future studies and clinical practice, 

ultimately improving outcomes for STS patients. 

  



 

6 

 

Acknowledgements 

 

This PhD would not have been possible without the support of many people, to whom 

I am deeply grateful. 

 

Firstly, to my wonderful supervisors, Nischalan Pillay and Peter Van Loo, for 

conceiving this project and entrusting me with it. Nischalan, thank you for your time, 

care, and mentorship. You have always gone above and beyond in the support you 

have given me - both academically and personally - for which I will be forever grateful. 

I have grown as a scientist, and I am certain I will be a better pathologist because of 

this experience and training. Peter, thank you for your encouragement, insightful 

advice, and invaluable support in developing both the ideas for this project and my 

bioinformatics skills. 

 

I would also like to thank the members of my thesis committee: Jasmin Fisher, Maria 

Hawkins, and Mahbubl Ahmed for your input and encouragement throughout this 

journey. 

 

To the members of the Pillay and Van Loo labs, you have made this experience truly 

memorable. Thank you for all your support and help over the years: Amy Bowes, 

Sara Waise, Chris Steele, Akanksha Farswan, Christie Davies, Tom Butters, Simon 

Haefliger, Nana Mensah, Tom Lesluyes, Haixi Yan, Toby Baker, Carla Castignani, 

Dolapo, Shadi Hames-Fathi, Maxime Tarabichi, and Jonas Demeulemeester. 

 

To the Royal National Orthopaedic Hospital Pathology Department team, especially 

Adrienne Flannagan, Fernanda Amary, Roberto Tirabosco, and Hongtao Ye. 

 

I am very grateful to Iñigo Martincorena and Federico Abascal for their generosity in 

applying their NanoSeq technique to patients in this cohort and for the informative 

discussions we had regarding data analysis. 

 

A special thanks to Cancer Research UK for funding my Clinical Research Training 

Fellowship. 



 

7 

 

 

I am deeply grateful to the patients who participated in this study - without whom this 

work would not have been possible. 

 

To my friends, who have been a constant throughout this journey: Elissa Franceschi, 

Katie Bend, Beccie Haigh, Ross Tate, Daniel Conway, Daniel Girling, Sunny Sharma, 

James Geer, Max Tobin, Dillon Steele, Brad Coan, Ajay Chamba, Jamie Ramacciotti, 

Julia Dray, Ben Ifrah, Dan Davies, Alex Shavick, Jonathan Gareze, and Anna KT 

Porko. You all bring me so much joy and have been incredibly supportive throughout 

this process. 

 

Thank you to my family, especially my parents, for all their support. A particular 

thanks to my Aunt Judy for her incredible support during the writing of this thesis - I 

am forever grateful. 

 

Finally, this PhD would not have come about if not for my brilliantly talented fiancé, 

Felipe Rodrigues, who inspired and encouraged me to embark on this journey with 

him. Your unwavering belief in me and your continuous love and support through all 

the challenges have helped me overcome every hurdle. The submission of this thesis 

falls on the seventh anniversary of the day we met - you have changed my whole 

perspective on life, and I thank you for all the motivation and love. 

  



 

8 

 

Dedication 

 

This research has been particularly motivated by the tragic loss of two dear friends 

to sarcoma. 

 

Edward Showler was my classmate in medical school, and we graduated together in 

2013. He sadly passed away from Clear Cell Sarcoma in 2017 at the age of 28. In 

his memory, his parents, John and Ellie Showler, established a foundation that has 

since raised nearly a million pounds for Clear Cell Sarcoma research. Much of this 

funding has directly supported work in the Pillay lab, where I have seen firsthand 

how their generosity has advanced our understanding of his disease and is 

contributing towards finding potential treatments. Ed would be very proud. 

 

Jack Holmes passed away in 2024 at the age of 34 from CIC-DUX4 sarcoma. 

Following his diagnosis in 2023, he was determined to make a difference by raising 

funds for sarcoma research. Together, we co-founded Transcend Sarcoma, a charity 

dedicated to funding research into translocation-associated sarcomas. This would 

not have been possible without the incredible dedication of his wife, Rachel Kapo, 

his brother, Mark Holmes, and his friends, Harry Fothergill and Assad Rashid. 

 

 

To Ed and Jack this thesis is dedicated to your memory. 

 

www.edwardshowlerfoundation.com 

 

www.transcendsarcoma.com 

 

http://www.edwardshowlerfoundation.com/
http://www.transcendsarcoma.com/


 

9 

 

Table of Contents 

 
Declaration.. ......................................................................................................... 2 
Abstract……. ........................................................................................................ 3 
Impact Statement ................................................................................................. 4 
Acknowledgements ............................................................................................. 6 
Dedication… ......................................................................................................... 8 
Table of Contents ................................................................................................ 9 
Table of figures .................................................................................................. 13 
List of tables... .................................................................................................... 16 
Abbreviations ..................................................................................................... 17 
 
Chapter 1.Introduction ...................................................................................... 19 

1.1 Introduction to soft tissue sarcomas .......................................................... 19 
1.2 The challenge to provide a timely and accurate diagnosis ....................... 23 
1.3 The genomics of soft tissue sarcomas ...................................................... 26 

1.3.1 Translocation associated sarcomas .................................................... 26 
1.3.2 Complex genomic sarcomas ............................................................... 28 

1.4 Risk factors for the development of soft tissue sarcomas ........................ 32 
1.4.1 Inherited cancer predisposition syndromes ........................................ 32 
1.4.2 Viral associations ................................................................................. 33 
1.4.3 Radiation induced sarcomas ............................................................... 34 

1.5 The treatment of soft tissue sarcomas ...................................................... 38 
1.5.1 Surgery................................................................................................. 38 
1.5.2 Chemotherapy ..................................................................................... 39 
1.5.3 The history of radiotherapy.................................................................. 41 
1.5.4 Preoperative vs. postoperative radiotherapy ...................................... 44 
1.5.5 Histology-specific considerations in radiotherapy .............................. 45 
1.5.6 Current UK radiotherapy guidelines .................................................... 46 
1.5.7 Side effects of radiotherapy................................................................. 47 

1.6 Prognostic factors in soft tissue sarcoma.................................................. 49 
1.6.1 Histological grade ................................................................................ 49 
1.6.2 Tumour size ......................................................................................... 51 
1.6.3 Anatomical site .................................................................................... 52 
1.6.4 Stage at diagnosis ............................................................................... 52 
1.6.5 Resection margin status ...................................................................... 55 
1.6.6 Patient age, performance status, and socioeconomic background ... 56 

1.7 The biological effects of radiotherapy........................................................ 57 
1.7.1 Mutational signatures associated with radiotherapy........................... 57 
1.7.2 Radiation induced mutational signatures ............................................ 58 
1.7.3 Radiation-induced APOBEC mutagenesis ......................................... 59 
1.7.4 ID8 and DNA Repair pathways ........................................................... 59 

1.8 The pathological assessment of the response to radiotherapy ................ 61 
1.8.1 Histopathological features of radiotherapy response ......................... 62 
1.8.2 Correlation with radiological response criteria .................................... 62 
1.8.3 Lack of consensus in pathological reporting ....................................... 63 
1.8.4 Implications for tissue processing and molecular analysis ................ 63 



 

10 

 

1.8.5 Conclusion ........................................................................................... 63 
1.9 Rationale and objectives of this thesis ...................................................... 65 

 
Chapter 2.Materials & Methods ........................................................................ 68 

2.1 Ethics approval and patient sample selection ........................................... 68 
2.1.1 Radiotherapy treatment ....................................................................... 70 
2.1.2 Defining disease progression .............................................................. 70 

2.2 Histological assessment of samples ......................................................... 74 
2.3 Nuclei acid extraction ................................................................................. 74 
2.4 Sequencing protocols ................................................................................ 74 
2.5 Alignment, variant calling, and annotation ................................................ 76 

2.5.1 Computational Resources ................................................................... 76 
2.5.2 Alignment and pre-processing ............................................................ 76 
2.5.3 Variant calling ...................................................................................... 77 
2.5.4 Panel of Normals (PON) generation ................................................... 77 
2.5.5 Functional annotation .......................................................................... 78 
2.5.6 Quality control and filtering .................................................................. 78 
2.5.7 Consensus and manual review ........................................................... 79 
2.5.8 Final filtering criteria ............................................................................ 79 
2.5.9 REVEL score annotation ..................................................................... 80 

2.6 COSMIC cancer genes .............................................................................. 81 
2.7 Copy number analysis ............................................................................... 81 

2.7.1 ASCAT ................................................................................................. 81 
2.7.2 Copy Number analysis methodology .................................................. 82 

2.8 Nanoseq ..................................................................................................... 84 
2.9 Mutational signature analysis .................................................................... 84 
2.10 Processing of RNAseq data .................................................................... 85 
2.11 Differential Gene Expression analysis .................................................... 85 
2.12 Gene Set Enrichment Analysis................................................................ 86 
2.13 Gene Ontology analysis .......................................................................... 86 
2.14 PROGENy pathway activity analysis ...................................................... 86 
2.15 Immune cell inference with xCell ............................................................. 87 
2.16 Gene expression-based modelling of disease progression ................... 87 
2.17 Data management and storage ............................................................... 88 

 
Chapter 3.Genomic responses to neoadjuvant radiotherapy in soft tissue 

sarcomas. ..................................................................................... 89 
3.1 Introduction................................................................................................. 89 
3.2 The mutational landscape of the London Sarcoma Service cohort.......... 91 

3.2.1 Tumour mutational burden varies across and within different subtypes
 91 

3.2.2 Identification of somatic mutations within known cancer genes ........ 94 
3.2.3 Summary ............................................................................................ 107 

3.3 Comparative analysis of somatic mutation burden in pre- and post-
radiotherapy sarcoma samples. .............................................................. 108 

3.3.1 Unpaired comparison of all pre- and post-radiotherapy samples. ... 110 
3.3.2 Unpaired comparison of pre- and post-radiotherapy samples within 

sarcoma subtypes ............................................................................. 111 



 

11 

 

3.3.3 Paired analysis of patients with matching pre- and post-radiotherapy 
samples .............................................................................................. 112 

3.3.4 Assessment of the Indel-to-SNV and the Deletion-to-Insertion ratio114 
3.3.5 Case study of somatic mutation dynamics in patient 58: a longitudinal 

analysis across pre-, post-radiotherapy, and recurrence stages. .... 117 
3.3.6 Summary ............................................................................................ 120 

3.4 Comparison of copy number alterations pre- and post- radiotherapy. ... 121 
3.4.1 Assessing Copy Number Alterations: methods and metrics. ........... 122 
3.4.2 Comparison of copy number alteration metrics across all pre- and 

post-radiotherapy samples ................................................................ 124 
3.4.3 Subtype specific analysis of Copy Number Alteration metrics in pre- 

and post-radiotherapy samples. ........................................................ 127 
3.4.4 Comparative analysis of Copy Number Alteration metrics in paired 

pre- and post-radiotherapy samples. ................................................ 129 
3.4.5 Summary ............................................................................................ 131 

3.5 Mutational signature analysis .................................................................. 132 
3.5.1 Analysis of Single base substitution (SBS) signatures ..................... 132 
3.5.2 Analysis of Indel (ID) signatures ....................................................... 137 
3.5.3 Identification of mismatch repair deficiency ...................................... 143 
3.5.4 Summary ............................................................................................ 146 

3.6 Using NanoSeq to more accurately interrogate the genomic response to 
radiotherapy. ............................................................................................ 147 

3.6.1 Comparison of the frequency of somatic mutations pre- and post-
radiotherapy. ...................................................................................... 149 

3.6.2 Assessment of the Indel-to-SNV and the Deletion-to-Insertion ratios.
 151 

3.6.3 Radiotherapy-induced shift towards microhomology-mediated DNA 
repair. ................................................................................................. 153 

3.6.4 Mutational signature analysis of NanoSeq cohort ............................ 155 
3.6.5 Summary ............................................................................................ 159 

3.7 Discussion of chapter 3 ........................................................................... 160 
 
Chapter 4.The transcriptomic response to neoadjuvant radiotherapy. ... 163 

4.1 Introduction............................................................................................... 163 
4.2 Outline of dataset ..................................................................................... 165 

4.2.1 Summary of dataset .......................................................................... 168 
4.3 Exploratory analysis of transcriptomic data quality and clustering trends.

 169 
4.3.1 Multiregional sampling ....................................................................... 173 
4.3.2 Summary of transcriptome clustering analyses ................................ 176 

4.4 Differential gene expression analysis of pre- and post- radiotherapy 
samples. ................................................................................................... 177 

4.5 Differential gene expression analysis of pre- and post- radiotherapy 
samples by histological subtype .............................................................. 180 

4.5.1 Shared differentially expressed genes between subtypes. .............. 182 
4.5.2 Summary ............................................................................................ 187 

4.6 Gene Set Enrichment Analysis (GSEA) of pre- vs post-radiotherapy 
Samples ................................................................................................... 188 



 

12 

 

4.7 Gene Ontology analysis ........................................................................... 190 
4.8 PROGENy analysis .................................................................................. 194 

4.8.1 Subtype specific analysis .................................................................. 196 
4.8.2 Comparison to TCGA sarcoma samples .......................................... 198 
4.8.3 Summary ............................................................................................ 200 

4.9 Cellular composition analysis using xCell. .............................................. 201 
4.10 Discussion of chapter 4 ......................................................................... 205 

 
Chapter 5.Transcriptomic determinants of radiotherapy response in soft 

tissue sarcomas......................................................................... 208 
5.1 Introduction............................................................................................... 208 
5.2 Clinical characteristics of post-radiotherapy responders vs progressors

 211 
5.3 Differential Gene Expression and Gene Set Enrichment Analysis......... 213 
5.4 PROGENy analysis .................................................................................. 220 
5.5 Cellular composition analysis .................................................................. 222 
5.6 Modelling disease progression in soft tissue sarcomas following 

radiotherapy. ............................................................................................ 224 
5.6.1 External validation of model in the TCGA Sarcoma cohort .............. 233 

5.7 Discussion of chapter 5 ........................................................................... 237 
 
Chapter 6.Discussion ...................................................................................... 241 

6.1 Genomic alterations and mutational signatures following radiotherapy . 242 
6.1.1 The mutational landscape of the LSS cohort .................................... 242 
6.1.2 Somatic mutation burden pre- and post-radiotherapy ...................... 245 
6.1.3 Critical appraisal of methods and limitations .................................... 249 

6.2 Transcriptomic responses to neoadjuvant radiotherapy ......................... 251 
6.2.1 Transcriptomic clustering trends ....................................................... 251 
6.2.2 Differential Gene Expression Analysis .............................................. 253 
6.2.3 Subtype-specific transcriptomic changes post-radiotherapy ............ 259 
6.2.4 Genes with variable expression patterns following radiotherapy ..... 262 
6.2.5 Pathway enrichment analysis highlights immune activation post-

radiotherapy ....................................................................................... 266 
6.2.6 PROGENy analysis identifies androgen signalling as a potential target 

for adjuvant therapy. .......................................................................... 268 
6.3 Transcriptomic determinants of radiotherapy resistance ........................ 270 

6.3.1 Clinical characteristics of responders vs. progressors ..................... 270 
6.3.2 Differential gene expression analysis identifies potential biomarkers of 

disease progression. ......................................................................... 271 
6.4 Summary and future directions................................................................ 273 

 
Chapter 7.Appendix ......................................................................................... 275 

7.1 Publications .............................................................................................. 275 
7.2 Statement of contributions ....................................................................... 276 

 
Reference List .................................................................................................. 277 



 

13 

 

Table of figures 

 

Figure 1.1. A timeline of the history of radiotherapy .............................................. 42 

Figure 2.1. Consort diagram of patient inclusion and sample quality control 

flowchart ............................................................................................................... 70 

Figure 2.2. Overview of the London Sarcoma Service patient cohort, clinical 

features, and sequencing data availability ............................................................. 72 

Figure 2.3. Histological assessment of tumour samples ........................................ 75 

Figure 3.1. Distribution of Tumour Mutational Burden by sarcoma subtype. .......... 92 

Figure 3.2 Oncoplot of somatic mutations in known cancer genes. ....................... 95 

Figure 3.3. Comparison of the frequency of SNVs and indels in pre- and post-

radiotherapy sarcoma samples. .......................................................................... 110 

Figure 3.4. Comparison of the frequency of SNVs and indels pre- and post-

radiotherapy across different histological subtypes. ............................................ 111 

Figure 3.5. Comparison of the frequency of SNVs and indels in paired pre- and 

post-radiotherapy sarcoma samples. .................................................................. 113 

Figure 3.6. Comparison of Deletion-to-Insertion and Indel-to-SNV Ratios ........... 116 

Figure 3.7 Timeline of treatment and disease progression for patient 58 ............ 117 

Figure 3.8. Temporal evolution of somatic mutations in patient 58’s sarcoma 

specimens across treatment stages. ................................................................... 119 

Figure 3.9 Comparison of copy number alteration metrics in pre- and post-

radiotherapy samples .......................................................................................... 125 

Figure 3.10. Comparison of copy number alteration metrics in pre- and post-

radiotherapy myxofibrosarcoma samples ............................................................ 128 

Figure 3.11. Comparison of copy number alteration metrics in paired pre- and post-

radiotherapy samples. ......................................................................................... 130 

Figure 3.12. Distribution of SBS mutational signatures across pre-radiotherapy, 

post-radiotherapy, recurrence, and metastasis samples in WES data. ................ 133 

Figure 3.13. Distribution of SBS mutational signatures across pre-radiotherapy, 

post-radiotherapy, and metastasis samples in WGS data. .................................. 134 

Figure 3.14. Distribution of SBS mutational signatures across sarcoma subtypes.

 ............................................................................................................................ 136 



 

14 

 

Figure 3.15. Distribution of indel mutational signatures across pre-radiotherapy, 

post-radiotherapy, recurrence, and metastasis samples in WES data. ................ 139 

Figure 3.16. Distribution of indel mutational signatures across pre-radiotherapy, 

post-radiotherapy, and metastasis samples in WGS data. .................................. 140 

Figure 3.17. Distribution of Indel Mutational Signatures across sarcoma subtypes.

 ............................................................................................................................ 142 

Figure 3.18. Expression of mismatch repair genes.............................................. 144 

Figure 3.19. Indels and SNVs per Cell Pre- and Post-Radiotherapy. .................. 150 

Figure 3.20. Comparison of Indel-to-SNV and Deletion-to-Insertion ratios .......... 152 

Figure 3.21. Proportion of microhomology Indels to total Indels pre- and post-

radiotherapy. ....................................................................................................... 154 

Figure 3.22. Single base substitution signatures pre- and post-radiotherapy 

samples across the NanoSeq cohort. .................................................................. 156 

Figure 3.23. Indel (ID) mutational signatures in pre- and post-radiotherapy samples 

across the NanoSeq cohort. ................................................................................ 158 

Figure 4.1. PCA plot demonstrating histological subtypes. .................................. 170 

Figure 4.2 UMAP demonstrating clustering of samples according to histological 

subtype. .............................................................................................................. 171 

Figure 4.3. PCA plot demonstrating the radiotherapy status of the samples. ...... 172 

Figure 4.4. PCA plot demonstrating the effect of radiotherapy in patients with multi-

region sampling of resection specimens. ............................................................ 174 

Figure 4.5. PCA plot demonstrating the effect of sequencing batch. ................... 175 

Figure 4.6. Volcano plot of differential gene expression following radiotherapy. .. 178 

Figure 4.7. Top differentially expressed genes following radiotherapy. ............... 179 

Figure 4.8. Upset plot displaying unique and shared differentially expressed genes 

following radiotherapy across histological subtypes. ........................................... 183 

Figure 4.9. Heatmap of differentially expressed genes observed in at least three 

sarcoma subtypes following radiotherapy............................................................ 186 

Figure 4.10. Heatmap of enriched Hallmark pathways in post-radiotherapy 

Samples. ............................................................................................................. 189 

Figure 4.11. Top 30 Upregulated GO Biological Processes following radiotherapy.

 ............................................................................................................................ 191 

Figure 4.12. Top 30 Downregulated GO Biological Processes following 

radiotherapy. ....................................................................................................... 193 



 

15 

 

Figure 4.13. PROGENy pathway activity scores pre- and post-radiotherapy ....... 195 

Figure 4.14. PROGENy pathway scores pre- and post-radiotherapy .................. 197 

Figure 4.15. Comparison of PROGENy scores in myxofibrosarcomas between the 

TCGA and the radiotherapy datasets .................................................................. 199 

Figure 4.16. Changes in cellular composition identified by xCell analysis following 

radiotherapy. ....................................................................................................... 202 

Figure 5.1. Volcano plot of differential gene expression between progressors and 

responders following radiotherapy....................................................................... 214 

Figure 5.2. Top differentially expressed genes in patients with subsequent disease 

progression. ........................................................................................................ 215 

Figure 5.3. Enriched Hallmark pathways in progressors vs. responders following 

radiotherapy. ....................................................................................................... 218 

Figure 5.4. PROGENy pathway activity scores for responders vs. progressors. . 221 

Figure 5.5. Changes in cellular composition identified by xCell analysis in 

progressors following radiotherapy...................................................................... 223 

Figure 5.6. LASSO Cross-validation plot. ............................................................ 227 

Figure 5.7. Confusion matrix evaluating the model on the testing data ............... 230 

Figure 5.8. ROC curve for the post-RT progression classifier on the held-out test 

set. ...................................................................................................................... 232 

Figure 5.9. Kaplan–Meier overall survival by RF score ....................................... 235 

 



 

16 

 

List of tables... 

 

Table 1. Soft tissue sarcomas subtypes included in this study .............................. 21 

Table 2. FNCLCC grading system......................................................................... 50 

Table 3.1. High pathogenicity missense mutations................................................ 98 

Table 3.2. Moderate pathogenicity missense mutations ........................................ 99 

Table 3.3. COSMIC cancer genes mutated in multiple patients across cohort. ... 103 

Table 3.4. COSMIC cancer genes mutated in each sarcoma subtype ................ 105 

Table 4.1 Clinical characteristics of all patient samples ....................................... 166 

Table 4.2. Clinical characteristics of paired patient samples ............................... 167 

Table 4.3. Numbers of differentially expressed genes following radiotherapy broken 

down by histological subtype. .............................................................................. 181 

Table 4.4. Differentially expressed genes following radiotherapy that are shared 

between multiple soft tissue sarcoma subtypes. ................................................. 184 

Table 5.1. Summary of histological subtypes and disease progression status in 

post-radiotherapy cohort. .................................................................................... 212 

Table 5.2. Performance metrics of the Random Forest progression prediction 

model .................................................................................................................. 231 

 



 

17 

 

Abbreviations 

 

ASPS   Alveolar Soft Part Sarcoma 

CCS   Clear Cell Sarcoma 

CNA   Copy Number Alteration 

CNV   Copy Number Variation 

COSMIC  Catalogue of Somatic Mutations in Cancer 

ddLPS  Dedifferentiated Liposarcoma 

EMC   Extraskeletal Myxoid Chondrosarcoma 

FFPE   Formalin-Fixed Paraffin-Embedded 

FDR   False Discovery Rate 

GSEA   Gene Set Enrichment Analysis 

ID   Insertion and Deletion Mutational Signature 

IMRT   Intensity-Modulated Radiotherapy 

INDEL  Insertion/Deletion 

LASSO  Least Absolute Shrinkage and Selection Operator 

MEC   Myoepithelial Carcinoma 

MFS   Myxofibrosarcoma 

MMEJ   Microhomology-Mediated End Joining 

mLPS   Myxoid Liposarcoma 

NMEJ   Non-Microhomology-Mediated End Joining 

NGS   Next-Generation Sequencing 

PCA   Principal Component Analysis 

pLMS   Pleomorphic Leiomyosarcoma 

pLPS   Pleomorphic Liposarcoma 

PROGENy  Pathway Activity Inference Tool 

ROC   Receiver Operating Characteristic 

RT   Radiotherapy 

SBS   Single Base Substitution Mutational Signature 

SNV   Single Nucleotide Variant 

SpCS   Spindle Cell Sarcoma 

SS   Synovial Sarcoma 

TCGA   The Cancer Genome Atlas 



 

18 

 

TMB   Tumour Mutational Burden 

UMAP  Uniform Manifold Approximation and Projection 

UPS   Undifferentiated Pleomorphic Sarcoma 

VAF   Variant Allele Frequency 

WES   Whole Exome Sequencing 

WGS   Whole Genome Sequencing



Chapter 1 Introduction 

19 

 

Chapter 1. Introduction 

1.1 Introduction to soft tissue sarcomas  

Soft tissue sarcomas (STS) are rare malignant tumours arising from mesenchymal 

tissues, including muscle, fat, blood vessels, and connective tissue. They account 

for approximately 1% of all adult malignancies and have an annual incidence of 5 

per 100,000 individuals globally (Sbaraglia, Bellan et al. 2021). These tumours 

represent a highly heterogeneous group, with over 80 histological subtypes classified 

by the Whole Health Organization based on a combination of morphological, 

immunohistochemical, and molecular characteristics (WHO 2020). Additionally 

individual subtypes tend to have a distinct pattern of presentation including the 

anatomical site, age distribution, behaviour, response to treatment, and prognosis 

(Hayes, Nixon et al. 2024). 

 

STS can arise anywhere in the body, but approximately 50% occur in the extremities, 

particularly the thighs. Other common sites include the retroperitoneum (30%) and 

the trunk or head and neck (15%) (Sbaraglia and Dei Tos 2019). The diversity in 

anatomical presentation correlates with specific histological subtypes, such as 

myxoid liposarcoma, which typically affects the thighs of younger adults, and 

myxofibrosarcoma, commonly found in the elderly and located superficially (above 

the fascia) (Sbaraglia and Dei Tos 2019).  

 

Given their origin from mesenchymal tissues, sarcomas are fundamentally distinct 

from carcinomas, which originate from epithelial cells and represent some of the 

most common cancers worldwide. Their biological behaviour is closely linked to their 

putative origin from mesenchymal stem cells (MSCs), multipotent progenitor cells 

responsible for generating connective tissues such as bone, cartilage, fat, and 

muscle. MSCs are not only essential for tissue differentiation and repair but are also 

implicated in tumour initiation and progression. Their inherent properties, including 

extensive self-renewal, plasticity, and immunomodulatory functions, are thought to 

contribute to the aggressive and heterogeneous nature of sarcomas (Rodriguez, 

Rubio et al. 2012, O’Donnell III, Muñoz et al. 2025). 
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In addition to MSCs, cancer stem cells (CSCs) play a pivotal role in sarcomagenesis. 

Sharing many characteristics with MSCs, CSCs are a subpopulation of tumour cells 

that exhibit resistance to conventional therapies, driving tumour heterogeneity, 

recurrence, and metastasis. These characteristics are particularly relevant in high-

grade sarcomas, where therapeutic challenges are pronounced (O’Donnell III, 

Muñoz et al. 2025).   

 

Understanding the heterogeneity of soft tissue sarcomas is critical for optimising 

diagnosis, management, and research. To provide a foundation for the subsequent 

discussion, Table 1 summarises the key features, common anatomical locations, and 

prognosis of the sarcoma subtypes examined in this study. 
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Table 1. Soft tissue sarcomas subtypes included in this study 

 

Diagnosis Key Features Common 

Locations 

Prognosis 

Alveolar soft part 

sarcoma (Paoluzzi 

and Maki 2019) 

Characteristic ASPL::TFE3 

fusion; often slow-growing 

Extremities, 

trunk 

Poor, as metastases are 

common at diagnosis 

Clear cell sarcoma 

(Ibrahim, Jensen 

et al. 2018) 

EWSR1::ATF1 fusion; mimics 

melanoma histologically 

Extremities, 

tendons 

Poor; high metastatic 

potential 

Dedifferentiated 

liposarcoma 

(Thway 2019) 

High-grade component alongside 

well-differentiated liposarcoma 

Retroperit-

oneum, 

extremities 

Poor if dedifferentiation 

is extensive 

Extraskeletal 

myxoid 

chondrosarcoma 

(Stacchiotti, Baldi 

et al. 2020) 

Low-grade malignancy; often 

presents with a myxoid stroma 

Proximal 

extremities 

Better prognosis 

compared to other 

subtypes 

Malignant mixed 

tumour (Hornick 

and Fletcher 

2003) 

Rare; derived from salivary or 

glandular tissue; histologically 

diverse 

Head, neck, 

salivary 

glands 

Poor if high-grade 

Malignant 

peripheral nerve 

sheath tumour 

(Yao, Zhou et al. 

2023) 

Associated with NF1 in many 

cases; spindle cell morphology 

Trunk, 

proximal 

extremities 

Poor if large or deep 

Myxofibrosarcoma 

(Vanni, De Vita et 

al. 2022) 

High recurrence rate; seen in 

elderly patients; myxoid stroma 

with pleomorphic spindle cells 

Extremities, 

superficial 

tissues 

Moderate, worse with 

deep tissue involvement 

Myxoid 

liposarcoma 

(Abaricia and 

Hirbe 2018) 

Round cell component predicts 

aggressive behaviour; sensitive 

to radiotherapy 

Thigh, 

retroperito-

neum 

Good prognosis with 

localised disease 



Chapter 1 Introduction 

22 

 

Pleomorphic 

leiomyosarcoma 

(Nicolas, Tamboli 

et al. 2010) 

Derived from smooth muscle 

cells; high mitotic index and 

pleomorphism 

Uterus, 

retroperito-

neum 

Poor prognosis, 

particularly in deep 

locations 

Pleomorphic 

liposarcoma 

(Anderson and Jo 

2019) 

Aggressive, pleomorphic cells; 

lacks the typical myxoid 

component 

Extremities Poor; prone to 

metastasis 

Spindle cell 

sarcoma NOS 

Diagnosis of exclusion; similar to 

other spindle cell sarcomas 

Extremities Variable, depends on 

grade and size 

Synovial sarcoma 

(Gazendam, 

Popovic et al. 

2021) 

Characterised by SS18::SSX 

fusion; monophasic or biphasic 

histology 

Extremities, 

para-

articular 

Intermediate; 5-year 

survival ~50-60% 

Undifferentiated 

pleomorphic 

sarcoma (Hames-

Fathi, Nottley et 

al. 2022) 

Formerly known as malignant 

fibrous histiocytoma; highly 

aggressive 

Extremities, 

trunk 

Poor; 5-year survival 

~30-50% 
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1.2 The challenge to provide a timely and accurate diagnosis 

Given their rarity and significant morphological heterogeneity, the accurate diagnosis 

of soft tissue sarcomas requires specialised expertise that is typically concentrated 

in high-volume tertiary referral centres. The challenges associated with diagnosing 

these tumours stem from their wide spectrum of histological subtypes, overlapping 

features with benign mimics, and the frequent need for advanced molecular and 

immunohistochemical testing. While the diversity of sarcomas reflects their 

complexity, this heterogeneity also poses significant barriers to achieving accurate 

and timely diagnoses, particularly in non-specialist settings (Hayes, Nixon et al. 

2024).  

 

For instance, spindle cell morphology can be observed in benign entities such as 

nodular fasciitis or in aggressive malignancies like leiomyosarcoma, emphasising the 

importance of a systematic diagnostic approach (Sbaraglia and Dei Tos 2019, 

Sbaraglia, Bellan et al. 2021). Diagnostic accuracy is significantly enhanced in 

centralised institutions, where multidisciplinary teams—including pathologists, 

radiologists, surgeons, and oncologists—collaborate to refine classifications and 

treatment plans. These teams integrate clinical data, multimodal imaging, 

morphology, immunohistochemistry, and molecular techniques like fluorescence in 

situ hybridisation (FISH) and next-generation sequencing to achieve precise 

diagnoses (Hayes, Nixon et al. 2024).   

 

The identification of specific translocations, such as SS18::SSX in synovial sarcoma 

(Turc-Carel, Dal Cin et al. 1986), EWSR1::ATF1 in clear cell sarcoma (Wang, 

Mayordomo et al. 2009), or CIC::DUX4 in CIC-DUX4 sarcoma (Brahmi, Vanacker et 

al. 2022) has transformed diagnostic confidence and improved the classification of 

certain challenging cases. Similarly, immunohistochemical markers like MUC4 and 

NGS for CTNNB1 mutations have been pivotal in distinguishing low-grade 

fibromyxoid sarcomas from mimics such as desmoid fibromatosis respectively (Doyle, 

Möller et al. 2011). Use of these molecular tests has facilitated the recognition of rare 

or atypically presenting sarcomas. Synovial sarcomas, traditionally associated with 

extremities, have increasingly been reported in visceral locations such as the 
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gastrointestinal tract (Requena, Longacre et al. 2024) and lungs (Roy, Das et al. 

2012).  

 

Despite advances in molecular diagnostics and multidisciplinary care, diagnostic 

inaccuracies remain a significant concern, particularly in non-specialist settings. In a 

study of 348 cases referred to a specialist sarcoma centre, major diagnostic 

discrepancies—those with the potential to significantly alter clinical management—

were observed in 16.4% of cases (Thway, Wang et al. 2014). Additionally, 11.8% of 

cases had minor discrepancies, which, although not affecting treatment plans, 

highlight the challenges of accurate classification in this complex tumour group. 

Alarmingly, 23.5% of all discrepancies involved reclassification from benign to 

malignant or vice versa. Such discordances underline the inherent difficulties in 

interpreting soft tissue tumours in non-specialist environments, particularly given 

their rarity and diverse histological appearances. 

 

The consequences of diagnostic inaccuracies are profound. For example, 

dedifferentiated liposarcomas, which necessitate aggressive surgical intervention, 

may be misdiagnosed as benign lipomas without molecular confirmation of MDM2 

amplification using immunohistochemistry or FISH (Gambella, Bertero et al. 2023). 

Similarly, misclassification of benign lesions as malignant can lead to unnecessary 

overtreatment, including unwarranted chemotherapy, radiotherapy, or radical 

surgery. The increasing complexity of soft tissue tumour diagnosis, driven by the 

integration of ancillary molecular techniques, requires both specialised expertise and 

access to timely testing facilities. 

 

The study also highlighted the role of interpretational errors and the limited use of 

specific immunohistochemical markers in non-specialist settings as key contributors 

to diagnostic discrepancies. For instance, immunohistochemical markers such as h-

caldesmon, CDK4, and beta-catenin, essential for leiomyosarcomas, well-

differentiated/dedifferentiated liposarcomas, and desmoid fibromatosis, respectively, 

were either not utilised or misinterpreted in several cases (Thway, Wang et al. 2014). 

The findings emphasise the need for centralised review by specialist sarcoma 

pathologists, as recommended by the National Institute for Health and Care 
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Excellence (NICE) and the Royal College of Pathologists in the UK (Cyril Fisher 

2022). 

 

UK guidelines, including those from NICE, recommend that all suspected soft tissue 

sarcomas are managed within specialist centres by multidisciplinary teams (MDTs) 

to ensure timely and accurate diagnosis (Hayes, Nixon et al. 2024). Turnaround 

times for suspected sarcoma biopsies should ideally be within two weeks to facilitate 

prompt treatment planning, particularly for high-grade or rapidly progressing tumours. 

Specialist centres, such as the London Sarcoma Service, are equipped to streamline 

the diagnostic process through the integration of in-house testing, MDT discussions, 

and rapid turnaround times, particularly critical for high-grade sarcomas requiring 

urgent intervention. 

 

However, differences between public and private healthcare systems can influence 

the diagnostic pathway. Private care pathways often outsource samples or rely on 

non-specialist testing, which can lead to delays in diagnosis. In contrast, specialist 

centres minimise such delays by prioritising in-house testing and expediting 

molecular diagnostics when needed, ensuring that patients receive timely treatment. 

Greater standardisation and coordination between public and private pathways could 

mitigate delays and ensure all patients benefit from the expertise available in 

specialist centres. 
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1.3 The genomics of soft tissue sarcomas 

Soft tissue sarcomas exhibit a diverse range of genomic features, reflecting their 

heterogeneity and distinct biological behaviours. Broadly, they can be categorised 

into two groups based on analysis of their genomic profiles: translocation-driven 

sarcomas and those with complex genomic alterations. This dichotomy underscores 

the importance of genomic characterisation for understanding tumour biology, 

guiding treatment decisions, and refining prognostic predictions. 

 

Translocation-associated sarcomas are characterised by specific chromosomal 

translocations that result in fusion oncoproteins. These fusions are critical drivers of 

oncogenesis, acting by dysregulating transcriptional networks and cellular pathways. 

In contrast, sarcomas with complex genomic profiles, such as undifferentiated 

pleomorphic sarcoma (UPS) and dedifferentiated liposarcoma (ddLPS), exhibit 

widespread genomic instability, including chromothripsis, copy number alterations, 

and aneuploidy. These patterns of genomic alteration have significant implications 

for clinical management, with translocation-driven sarcomas often benefiting from 

targeted therapeutic strategies, while complex genomic sarcomas pose greater 

challenges due to their heterogeneity and treatment resistance. 

 

1.3.1 Translocation associated sarcomas 

A defining feature of translocation-associated sarcomas is the presence of specific, 

recurrent chromosomal translocations that lead to the formation of fusion genes. For 

example, myxoid liposarcoma, which represents one of the subtypes included in this 

study, is characterised by a t(12;16)(q13;p11) translocation, resulting in the 

FUS::DDIT3 fusion gene (Abaricia and Hirbe 2018). This fusion protein acts as an 

aberrant transcription factor, disrupting adipocytic differentiation and driving 

tumourigenesis. 

 

Another key example is synovial sarcoma, which is defined by the 

t(X;18)(p11.2;q11.2) translocation, resulting in the SS18::SSX fusion gene 

(Gazendam, Popovic et al. 2021). This fusion disrupts chromatin remodelling and 

transcriptional regulation, driving oncogenesis. Synovial sarcoma predominantly 
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affects young adults and typically arises in the extremities. The identification of the 

SS18::SSX fusion gene is critical for diagnosis and has become essential in the 

pathological workup for these tumours. While FISH testing is routinely used, recent 

immunohistochemical markers have become available that can detect the novel 

fusion protein (Zaborowski, Vargas et al. 2020).  

 

Beyond diagnosis, translocation-driven sarcomas hold promise for targeted 

therapies. While myxoid liposarcoma is highly sensitive to radiotherapy, ongoing 

research aims to identify molecular vulnerabilities linked to the FUS::DDIT3 fusion 

that could lead to novel therapeutic interventions. The FUS::DDIT3 fusion blocks 

adipocytic differentiation and leads to an increase in immature adipocytes. 

Trabectedin, a molecule originally extracted from sea squirts, has been shown to 

bind to this novel fusion and allows the tumour to differentiate thereby reducing its 

malignant potential   (Craparotta, Mannarino et al. 2024).  

 

Similarly, synovial sarcoma represents a promising candidate for immunotherapy 

approaches, including T-cell receptor-based therapies targeting the SS18-SSX 

fusion protein (Mavroeidis, Napolitano et al. 2024). The success of targeted therapies 

in other translocation-driven sarcomas, such as tyrosine kinase inhibitors in 

gastrointestinal stromal tumours (GISTs) (Serrano and Bauer 2022), shows the 

potential for similar approaches in myxoid liposarcoma, synovial sarcoma, amongst 

others.  

 

Recent large-scale genomic sequencing studies performed at Memorial Sloan 

Kettering have refined the molecular landscape of translocation-associated 

sarcomas (Nacev, Sanchez-Vega et al. 2022). Nacev et al. identified additional 

recurrent alterations in synovial sarcoma, including CDKN2A/B deletions and RB1 

loss, suggesting that beyond the primary fusion event, secondary cell cycle 

dysregulation contributes to disease progression. In myxoid liposarcoma, PIK3CA 

mutations were present in 25% of cases, suggesting PI3K pathway activation as a 

potential therapeutic target (Gounder, Agaram et al. 2022). These findings reinforce 

the need for comprehensive molecular profiling to uncover additional oncogenic 

drivers as well as identifying therapeutic targets in translocation-driven sarcomas. 
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1.3.2 Complex genomic sarcomas 

Sarcomas with complex genomic profiles, such as undifferentiated pleomorphic 

sarcoma (UPS) and dedifferentiated liposarcoma (DDLPS), are characterised by 

widespread genomic instability. Unlike translocation-driven sarcomas, these 

subtypes lack specific, recurrent chromosomal translocations and instead exhibit 

extensive chromothripsis, copy number alterations (CNAs), and whole-genome 

duplication (WGD) (Steele, Tarabichi et al. 2019, Steele, Abbasi et al. 2022). 

 

1.3.2.1 Chromothripsis 

Chromothripsis is particularly prevalent in sarcomas, affecting 54% of liposarcomas, 

24% of fibrosarcomas, and 23% of sarcomas overall (Cortés-Ciriano, Lee et al. 

2020). This catastrophic event results in hundreds of genomic rearrangements within 

single chromosomes, leading to oncogene amplification and tumour progression. In 

dedifferentiated liposarcoma, chromothripsis frequently targets MDM2 and CDK4, 

genes crucial for cell cycle regulation (Cortés-Ciriano, Lee et al. 2020). 

 

Micronuclei formation and telomere crisis have been identified as primary 

mechanisms driving chromothripsis in sarcomas (Cortés-Ciriano, Lee et al. 2020). 

Micronuclei formation occurs when fragmented chromosomes become encapsulated 

outside the main nucleus, leading to defective DNA replication and chaotic 

rearrangements. Telomere crisis, caused by critically short telomeres, triggers 

chromosomal fusion events that further fuel genomic instability. 

 

1.3.2.2 Whole genome doubling 

Whole genome doubling (WGD) is a key feature of complex genomic sarcomas, 

occurring in a significant proportion of cases and contributing to extensive 

chromosomal imbalances and aneuploidy. This genomic event, in which the entire 

set of chromosomes is duplicated—sometimes multiple times—provides a selective 

advantage by increasing tolerance to additional structural alterations, thereby 

promoting tumour evolution and heterogeneity. Large-scale analyses have shown 

that WGD frequently precedes chromothripsis, reinforcing the hypothesis that 
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genome duplication acts as a catalyst for further genomic instability (Steele, Abbasi 

et al. 2022).  

 

Sarcomas were among the tumour types with the highest levels of copy number 

alterations, with WGD-associated signatures strongly linked to poor prognosis. WGD 

has been identified as a recurrent event in undifferentiated pleomorphic sarcoma 

(UPS), leiomyosarcoma, and osteosarcoma, correlating it with higher mutational 

burdens, enhanced tumour aggressiveness, and poorer patient survival outcomes 

(Steele, Tarabichi et al. 2019, Nacev, Sanchez-Vega et al. 2022).  

 

Additionally, a subset of sarcomas exhibited copy number patterns consistent with 

homologous recombination deficiency (HRD), suggesting that some WGD+ tumours 

may be vulnerable to PARP inhibitors or platinum-based chemotherapy (Steele, 

Abbasi et al. 2022). Given the impact of WGD on tumour evolution, understanding 

its role in driving treatment resistance and shaping the sarcoma genome remains a 

crucial area for further investigation. 

 

1.3.2.3 Extrachromosomal DNA 

Emerging evidence suggests that extrachromosomal DNA (ecDNA) contributes to 

sarcoma progression by amplifying oncogenes and driving tumour evolution. Unlike 

chromosomal amplifications, ecDNA consists of circular DNA fragments that 

promote rapid adaptation and therapy resistance (Kim, Nguyen et al. 2020, Bailey, 

Pich et al. 2024). A large-scale study identified ecDNA in 17.1% of tumours, with 

particularly high prevalence in liposarcomas (54.9%) (Kim, Nguyen et al. 2020).  

 

Clinically, ecDNA-positive tumours exhibit increased metastasis rates, intratumoural 

heterogeneity, and resistance to cytotoxic chemotherapy (Bailey, Pich et al. 2024). 

In sarcomas, ecDNA frequently harbours oncogenes such as MDM2, CDK4, and 

HMGA2, particularly in dedifferentiated liposarcoma (Kim, Nguyen et al. 2020). There 

is also evidence that ecDNA may contribute to immune evasion, potentially impacting 

responses to immune checkpoint inhibitors (Bailey, Pich et al. 2024). Although 

ecDNA represents a promising therapeutic target, current research remains in early 
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stages. Potential approaches include inhibitors that disrupt ecDNA formation or 

reintegration, such as PARP inhibitors and chromatin-modulating drugs (Dong, He 

et al. 2023). 

 

1.3.2.4 Hypermutation and Mismatch Repair Deficiency 

While most soft tissue sarcomas exhibit a relatively low tumour mutational burden 

(TMB), a subset of undifferentiated pleomorphic sarcomas (UPS) and other complex 

genomic sarcomas exhibit hypermutation (defined as a TMB of > 10 mutations per 

megabase), often associated with mismatch repair deficiency (MMR-D) (TCGA 2017, 

Steele, Tarabichi et al. 2019). In a genomic study of undifferentiated sarcomas, 

approximately 15% of cases were found to harbour a hypermutator phenotype, with 

over 15,000 somatic mutations per tumour (Steele, Tarabichi et al. 2019). Notably, 

only 2.1% of 7,494 sarcomas sequenced in a study of 44 different sarcoma subtypes 

exhibited MMR deficiency. These tumours had a median TMB of 6.5 mutations/Mb, 

which is significantly higher than in MMR-proficient tumours of 2.4 mutations/Mb 

(Gounder, Agaram et al. 2022). 

 

MMR-D in sarcomas can arise via several mechanisms, including germline or 

somatic pathogenic variants in MLH1, MSH2, MSH6, or PMS2; MLH1 promoter 

hypermethylation; and structural alterations (e.g., deletions/rearrangements or loss 

of heterozygosity) that result in loss of MMR protein function (Steele, Tarabichi et al. 

2019). Notably, these hypermutated sarcomas tend to have elevated immune 

infiltration and upregulation of immune-related gene expression signatures, 

suggesting potential sensitivity to immune checkpoint inhibitors (ICIs) (TCGA 2017, 

Steele, Tarabichi et al. 2019). Gounder et al. further highlighted that only 0.3% of 

sarcomas exhibit microsatellite instability (MSI-H), suggesting that while mismatch 

repair deficiency is present, MSI is rare, differentiating sarcomas from other MMR-D 

cancers like colorectal or endometrial carcinoma. 

 

Hypermutated sarcomas with mismatch repair deficiency represent a distinct 

subgroup within complex genomic sarcomas that may have important therapeutic 

implications. Given their high tumour mutational burden (TMB) and increased 
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immune infiltration, these tumours show similarities to MMR-deficient colorectal and 

endometrial cancers, which have demonstrated strong responses to immune 

checkpoint blockade (e.g., anti-PD1/PD-L1 therapy) (Steele, Tarabichi et al. 2019, 

Shiravand, Khodadadi et al. 2022).  
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1.4 Risk factors for the development of soft tissue sarcomas 

While most cases arise sporadically, several environmental, genetic, and viral factors 

have been implicated in sarcoma pathogenesis. These include inherited cancer 

predisposition syndromes, viral infections, and prior exposure to ionising radiation. 

 

1.4.1 Inherited cancer predisposition syndromes 

A subset of STS arise in individuals with inherited germline mutations in tumour 

suppressor genes, predisposing them to cancer development. The most well-

characterised syndromes associated with soft tissue sarcomas include: 

 

Li-Fraumeni syndrome: Caused by germline TP53 mutations, predisposes 

individuals to a spectrum of malignancies, including rhabdomyosarcoma, 

leiomyosarcoma, and undifferentiated pleomorphic sarcoma (UPS). TP53-mutant 

sarcomas often exhibit early onset and high genomic instability (Correa 2016). 

 

Neurofibromatosis type 1: This autosomal dominant disorder results from 

mutations in NF1, a tumour suppressor gene encoding neurofibromin. NF1 patients 

have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs), 

which arise from plexiform neurofibromas and exhibit complex genomic alterations 

(Gutmann, Ferner et al. 2017). 

 

Retinoblastoma (RB1) gene mutations: Germline RB1 mutations significantly 

increase the risk of osteosarcomas and soft tissue sarcomas (STS), particularly after 

radiotherapy. RB1 loss disrupts cell cycle regulation, leading to uncontrolled 

proliferation and tumourigenesis. In hereditary retinoblastoma survivors, the risk of 

STS is substantially elevated, with incidence rising sharply after age 30. Compared 

to the general population, these individuals face a 500-fold higher risk of STS in 

irradiated regions (Kleinerman, Schonfeld et al. 2019). 
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1.4.2 Viral associations 

Although viral oncogenesis is well-established in certain epithelial cancers for 

example HPV and cervical squamous cell carcinoma (Tjalma, Van Waes et al. 2005), 

its role in soft tissue sarcomas is less frequent but well-documented in specific 

subtypes. 

 

Human herpesvirus 8 (HHV-8): Kaposi sarcoma (KS), caused by HHV-8/KSHV, is 

uniquely driven by viral oncogenes rather than clonal oncogenic transformation. KS 

tumours have an exceptionally low mutational burden and exhibit an angiogenic 

spindle cell proliferation, particularly in immunosuppressed individuals, including 

those with HIV/AIDS (Phipps, Bhinder et al. 2025). 

 

Epstein-Barr virus (EBV) has been linked to leiomyosarcomas, particularly in 

immunosuppressed individuals, including post-transplant patients and those with 

HIV. EBV-associated smooth muscle tumours (EBV-SMTs) exhibit distinct molecular 

features, including lower genomic instability compared to conventional 

leiomyosarcomas but recurrent gains in oncogenes such as RUNX1, CCND2, and 

ETS2, suggesting a unique viral-driven oncogenesis pathway (Wah, Mok et al. 2023). 
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1.4.3 Radiation induced sarcomas 

Exposure to ionising radiation is a well-recognised risk factor for secondary 

malignancies, particularly radiation induced sarcomas (RISs). While most cases 

occur following radiotherapy, RISs can also develop after exposure to other sources 

of ionising radiation. These tumours arise within previously irradiated tissues, 

typically 5 to 30 years post-treatment, though some cases have been reported after 

over five decades (Lesluyes, Baud et al. 2019). RISs account for <5% of all sarcomas, 

with undifferentiated pleomorphic sarcoma (UPS), angiosarcoma, and 

leiomyosarcoma being amongst the most common subtypes (Inchaustegui, Kon-Liao 

et al. 2023). Compared to sporadic soft tissue sarcomas (STS), RISs are more 

aggressive, often diagnosed late, and associated with poorer outcomes. 

 

1.4.3.1 The genomic and mutational landscape of radiation induced 

sarcomas 

Radiation-induced sarcomas (RISs) exhibit distinct genomic alterations that 

differentiate them from sporadic sarcomas. They are characterised by high levels of 

structural rearrangements and genomic instability, comparable to sarcomas with 

complex genetics (Lesluyes, Baud et al. 2019). A notable feature is the frequent 

deletion of CDKN2A/CDKN2B (9p21.3) (71% in RIS vs. 39% in sporadic sarcomas), 

leading to cell cycle deregulation via the RB1 and p53 pathways. 

 

Unlike sporadic sarcomas, where deletions and mutations follow chromatin 

accessibility patterns, RISs exhibit a random distribution of deletions across the 

genome. In sporadic tumours, DNA damage and repair efficiency are influenced by 

chromatin structure, meaning mutations are more likely to occur in open 

(euchromatic) regions that are transcriptionally active and accessible to repair 

mechanisms. In contrast, radiation-induced DNA damage occurs in a stochastic 

manner, generating breaks indiscriminately across the genome, independent of 

chromatin accessibility (Behjati, Gundem et al. 2016). This suggests that RIS 

development is driven by direct radiation-induced DNA breaks, rather than selection 

for specific genomic vulnerabilities. 
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Following radiation therapy, cells attempt to repair double-strand breaks (DSBs), but 

RISs predominantly rely on non-homologous end-joining (NHEJ) and 

microhomology-mediated end-joining (MMEJ) - both of which are error-prone repair 

mechanisms. Unlike homologous recombination, which uses an intact template for 

accurate repair, NHEJ and MMEJ function without a template, leading to imprecise 

repair outcomes (Seol, Shim et al. 2018). 

 

• NHEJ directly ligates broken DNA ends but frequently results in small 

insertions or deletions (indels) due to the loss or addition of nucleotides at the 

breakpoint. 

• MMEJ is a subtype of alternative NHEJ (A-NHEJ) and it is even more error-

prone requiring trimming of DNA ends before aligning short microhomology 

sequences (2–20 bp). This process always results in deletions, as the 

intervening sequence is lost during repair 

 

RISs exhibit a high burden of MMEJ-associated deletions, often flanked by 

microhomology sequences, which can be detected through next-generation 

sequencing. MMEJ is strongly implicated in chromosomal instability, particularly in 

the formation of chromosomal translocations and complex structural variants. Unlike 

NHEJ, which predominantly generates small indels, MMEJ-mediated repair 

frequently results in large deletions and translocations, often flanked by short regions 

of microhomology. Studies in mammalian cells have demonstrated that MMEJ 

promotes chromosomal rearrangements when multiple DSBs occur simultaneously, 

leading to promiscuous end joining between incorrect chromosomes (Seol, Shim et 

al. 2018). The accumulation of these mutations over time drives tumour progression, 

contributing to the aggressive clinical behaviour of RISs (Behjati, Gundem et al. 

2016). 

 

RISs also harbour radiation-specific mutational signatures, including an excess of 

balanced inversions, a rare structural rearrangement type that is significantly 

enriched in radiation-associated malignancies compared to sporadic tumours 

(Behjati, Gundem et al. 2016). In post-radiotherapy angiosarcomas, MYC 

amplifications are present in 96% of cases, making them a defining molecular feature 

absent in the majority of sporadic angiosarcomas (Lesluyes, Baud et al. 2019). 
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1.4.3.2 Post-radiotherapy angiosarcoma as a model for RISs 

Post-radiotherapy angiosarcomas (PRAs), particularly those arising after breast 

cancer treatment, are among the most well-characterised radiation-induced 

sarcomas (RISs) and provide key insights into the genomic consequences of 

radiotherapy (Lesluyes, Baud et al. 2019, Dermawan, Chi et al. 2023). Although 

angiosarcoma is not the primary focus of this thesis, PRAs serve as a valuable model 

for understanding radiotherapy-induced mutational landscapes, particularly in 

relation to mutation burden, copy number alterations, and DNA repair mechanisms. 

Comparative genomic analyses between 44 PRAs and 135 sporadic angiosarcomas 

revealed distinct molecular differences, reinforcing the radiation-driven oncogenesis 

of PRAs (Dermawan, Chi et al. 2023). A defining feature is the high frequency of 

MYC amplifications, detected in 75% of PRAs compared to just 13% of sporadic 

cases, making MYC a radiation-specific biomarker, particularly in breast/chest wall 

PRAs. 

 

PRAs exhibit enrichment in FLT4, CRKL, HRAS, and KMT2D mutations, implicating 

MAP kinase and Hippo–Merlin pathway activation in their pathogenesis. Given these 

oncogenic drivers, PRAs develop more rapidly than other RISs, with a median 

latency of 8 years, significantly shorter than radiation-induced undifferentiated 

pleomorphic sarcomas (UPS) (18.5 years) and malignant peripheral nerve sheath 

tumours (MPNSTs) (12.5 years). 

 

In addition to their shorter latency, PRAs harbour fewer TP53 (9%) and CDKN2A/B 

deletions (2%) than other RIS subtypes, suggesting they follow a distinct molecular 

path to tumour development compared to radiation-induced UPS, which frequently 

harbours TP53 mutations. Interestingly, despite their oncogenic changes, PRAs 

have a lower fraction of genome altered (FGA) than other RISs, indicating less 

extensive structural disruption compared to UPS and MPNSTs. 

 

Mutational signature analysis of PRAs identified profiles associated with DNA repair 

deficiencies, including defective mismatch repair (MMR) and replication slippage, 

though specific COSMIC signatures were not reported in the study. 
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1.4.3.3 Clinical outcomes and management of radiation induced sarcomas 

A systematic review of 1,371 RIS patients across 21 studies highlights worse 

survival, higher recurrence rates, and more limited treatment options compared to 

de novo soft tissue sarcomas (Inchaustegui, Kon-Liao et al. 2023). 

 

Treatment approaches 

Surgical resection remains the primary treatment, performed in 68% of cases, with 

limb-salvage surgery attempted in 74%. However, achieving negative margins (R0) 

is challenging, with only 58% of cases attaining clear margins, lower than in de novo 

STS. Chemotherapy is used in 29% of RIS patients, though its efficacy remains 

uncertain (Inchaustegui, Kon-Liao et al. 2023). 

 

For recurrent or metastatic disease, chemotherapy remains the standard of care, 

with doxorubicin, ifosfamide, gemcitabine, and docetaxel commonly used. However, 

there is limited data on whether RISs respond differently to chemotherapy than 

sporadic STS, as most clinical trials do not stratify RIS patients separately (Dickson 

2014). 

 

Targeted therapies such as pazopanib (a tyrosine kinase inhibitor) and VEGF 

inhibitors (e.g., bevacizumab, sorafenib) have shown some efficacy in radiation-

associated angiosarcomas, but their role in other RIS subtypes remains unclear. 

 

Clinical outcomes: RIS vs. Sporadic STS 

• 5-Year Overall Survival: 45% in RIS compared to ~60% in sporadic STS, 

reflecting poorer prognosis. 

• Local Recurrence Rate: 39% in RIS, significantly higher than the 6.5%–9% 

seen in sporadic STS, likely due to surgical challenges in irradiated tissue. 

• Metastasis Rate: 27% in RIS, lower than the ~50% reported for high-grade 

sporadic STS, though still a significant concern. 

 

RIS tumours are more aggressive, harder to resect, and have limited treatment 

options, contributing to high recurrence rates. While re-irradiation may improve local 

control, achieving negative margins remains a challenge. 
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1.5 The treatment of soft tissue sarcomas 

Soft tissue sarcomas require a multimodal treatment approach, guided by tumour 

histology, size, location, and stage at presentation. The cornerstone of treatment is 

surgical excision, aiming for complete tumour removal with negative margins while 

preserving function. However, in many cases, radiotherapy plays a crucial role in 

improving local disease control, either as an adjunct to surgery or, in some cases, as 

a definitive treatment. The role of systemic therapy, including chemotherapy and 

targeted agents, is more selective and primarily applies to specific histological 

subtypes with higher chemosensitivity or in the setting of advanced disease. 

 

In this section, I will first discuss surgical management, followed by the role of 

chemotherapy in both the neoadjuvant, adjuvant, and metastatic settings. I will then 

introduce the history of radiotherapy, providing context for its modern applications. 

This leads into discussions on preoperative vs. postoperative radiotherapy, 

histology-specific considerations, current UK radiotherapy guidelines, and 

concluding with a review of potential side effects. 

 

1.5.1 Surgery 

Surgical excision with negative margins is the primary treatment for localised STS. 

The UK guidelines emphasise that all sarcoma cases should be managed within a 

specialist multidisciplinary team (MDT) setting to ensure optimal outcomes (Hayes, 

Nixon et al. 2024). Key principles include: 

 

• Wide local excision is the standard approach, aiming for microscopically negative 

(R0) margins. 

• Planned marginal resection with RT may be an option where function-

preserving surgery is required. 

• Re-excision should be considered if positive margins (R1/R2) are found, unless 

adjuvant RT is deemed sufficient. 

• Amputation is reserved for cases where limb-sparing surgery is not possible. 
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For tumours in functionally sensitive locations (e.g., retroperitoneum, head and neck), 

the balance between achieving clear margins and preserving organ function is crucial. 

Plastic surgical reconstruction is often required in limb-sparing approaches. 

 

1.5.2 Chemotherapy 

The role of chemotherapy in soft tissue sarcomas (STS) is largely histology subtype 

dependent. Unlike many other solid tumours, chemotherapy does not consistently 

improve overall survival in most adult-type STS. However, for certain subtypes with 

higher chemosensitivity, systemic therapy remains an integral component of 

treatment, particularly in the neoadjuvant, adjuvant, and metastatic settings. 

 

Neoadjuvant and adjuvant chemotherapy 

Neoadjuvant chemotherapy (administered before surgery) may be considered in 

selected high-risk cases, particularly for patients with large, deep, high-grade 

extremity or truncal STS, where it may help downstage the tumour and improve 

resectability. Certain histological subtypes, including myxoid liposarcoma, synovial 

sarcoma, and desmoplastic small round cell tumour (DSRCT), are known to be more 

responsive to chemotherapy and may benefit from this approach. 

 

The role of adjuvant chemotherapy, given postoperatively, remains controversial. 

Current UK guidelines (Hayes, Nixon et al. 2024) do not recommend routine use of 

adjuvant chemotherapy but suggest that it can be considered for high-risk patients.  

 

Risk stratification tools, such as the Sarculator nomogram (Pasquali, Palmerini et al. 

2022), provide an evidence-based means of identifying these patients. The 

Sarculator integrates clinicopathological factors (discussed in more detail in section 

1.6) such as tumour size, depth, grade, histological subtype, and patient age to 

predict 10-year overall survival and metastasis-free survival. Patients with a 

predicted 10-year overall survival of less than 50–60% are the most likely to benefit 

from systemic therapy. Thus, for these high-risk individuals, chemotherapy may be 

a reasonable option, though the decision must be weighed against potential toxicity 

and patient preferences. 
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Chemotherapy in metastatic STS 

In patients with advanced or metastatic STS, chemotherapy is primarily palliative, 

aimed at controlling disease progression and alleviating symptoms rather than 

achieving cure. The choice of regimen depends on tumour histology, prior treatments, 

and patient performance status. 

 

First-line therapy typically involves doxorubicin, either as a single agent or in 

combination with ifosfamide, particularly for patients requiring a higher response rate. 

Ifosfamide alone is often preferred in synovial sarcoma, which has shown particular 

chemosensitivity. For patients with leiomyosarcoma or undifferentiated pleomorphic 

sarcoma (UPS), the combination of gemcitabine and docetaxel is a commonly used 

alternative (Hayes, Nixon et al. 2024). Beyond conventional cytotoxic agents, 

targeted therapies such as trabectedin (Craparotta, Mannarino et al. 2024) have 

demonstrated efficacy in translocation-related sarcomas, particularly myxoid 

liposarcoma and leiomyosarcoma. Additionally, pazopanib, a tyrosine kinase 

inhibitor (TKI), is an option for patients with non-liposarcoma STS who have 

progressed on prior chemotherapy. 

 

For select patients with oligometastatic pulmonary disease, metastasectomy may be 

considered, particularly in synovial sarcoma and leiomyosarcoma, where surgical 

removal of lung metastases has been associated with prolonged survival in carefully 

selected cases. However, the decision to proceed with surgical intervention requires 

a multidisciplinary approach, considering disease burden, response to systemic 

therapy, and patient fitness. 

 

While chemotherapy remains a valuable tool in select high-risk patients, its use 

should be individualised, incorporating tumour biology, prognostic risk stratification 

(such as Sarculator), and patient-specific factors to guide clinical decision-making. 
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1.5.3 The history of radiotherapy  

The history of radiotherapy is deeply intertwined with the discovery of X-rays and 

radioactivity, marking a transformative era in cancer treatment. The field began in 

1895, when Wilhelm Röntgen discovered X-rays (Röntgen 1896), leading to their 

immediate application in medicine. Just a year later, Victor Despeignes in France 

attempted the first recorded use of X-rays to treat a patient with presumed gastric 

cancer (Despeignes 1896), though the patient ultimately succumbed to the disease. 

That same year, Emil Grubbe in Chicago claimed to be the first to use X-rays for 

treating a breast cancer patient, marking the beginning of radiotherapy as a clinical 

discipline. Almost simultaneously, Henri Becquerel discovered natural radioactivity 

in 1896 (Becquerel 1896), and in 1898, Marie and Pierre Curie isolated radium, a 

naturally radioactive element (Curie 1898). These pioneering breakthroughs 

established the foundation for external beam radiotherapy (EBRT) and 

brachytherapy (Figure 1.1). 

 

Early clinical use and fractionation (1899–1930s) 

By the early 1900s, X-ray therapy was being used for superficial tumours, particularly 

skin cancers. In Sweden (1899), Thor Stenbeck and Tage Sjögren successfully 

treated patients with skin cancer, proving that X-rays could eradicate tumours. 

However, deep-seated tumours remained challenging, as early X-ray machines had 

limited penetration and caused severe skin toxicity (Connell and Hellman 2009). A 

key case in New Haven (1902) involved Clarence Skinner, who may have cured one 

of the first deep-seated tumours with X-ray therapy, despite its limitations. 

 

A major breakthrough in radiobiology came in 1911, when Claudius Regaud 

demonstrated that fractionating radiation doses—delivering them in small, repeated 

sessions instead of a single large dose—reduced normal tissue toxicity while 

maintaining tumour control (Foray 2012). Henri Coutard (1920s–1930s) later applied 

fractionated radiotherapy to head and neck cancers, establishing dose fractionation 

as a fundamental principle of modern radiotherapy (Prakash, Kumar Upadhyay et al. 

2024). 
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Figure 1.1. A timeline of the history of radiotherapy 

 

 

The megavoltage era: from Kilovoltage to Linacs (1940s–1950s) 

Early radiotherapy machines relied on Coolidge tubes (1913), which produced low-

energy (kilovoltage) X-rays. These machines had limited penetration, causing severe 

skin damage while being ineffective for deep tumours. The development of 

megavoltage therapy revolutionised the field (Connell and Hellman 2009): 

• Cobalt-60 teletherapy (1948): The first high-energy gamma ray therapy system 

was introduced, significantly improving deep tumour penetration while reducing 

skin toxicity. 

• First linear accelerator (1953, Hammersmith Hospital, London): Linear 

accelerators (linacs) became the standard for high-energy external beam 

radiotherapy, delivering better dose control and sparing surrounding healthy 

tissues. 

 

Advances in imaging and 3D treatment planning (1970s–1990s) 

In the 1970s, the introduction of computed tomography (CT) imaging transformed 

radiotherapy by allowing precise tumour visualisation (Schulz, Stein et al. 2021). This 

led to the shift from 2D conventional radiotherapy to 3D conformal radiotherapy (3D-

CRT), enabling tumour-specific dose sculpting and reducing radiation exposure to 

healthy tissues (Connell and Hellman 2009). 

 

The 1990s saw a major breakthrough with the development of intensity-modulated 

radiotherapy (IMRT) (Cho 2018), which allowed radiation doses to be shaped with 

unprecedented precision around the tumour. This was followed by image-guided 
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radiotherapy (IGRT) (Grégoire, Guckenberger et al. 2020) and stereotactic body 

radiotherapy (SBRT) (Ricardi, Badellino et al. 2015) in the early 2000s, enabling 

high-dose, targeted treatment for small tumours, particularly in lung and brain 

cancers. 

 

Proton therapy and the future of radiotherapy (1990s – Today) 

One of the most significant modern advances is proton beam therapy (PBT). Unlike 

X-rays, protons deposit their energy at a precise depth (Bragg peak), minimising 

radiation exposure to surrounding normal tissues. While proton therapy was first 

proposed in 1946 by Robert Wilson, widespread clinical use only began in the 

1990s, with the establishment of dedicated proton therapy centres. Today, PBT is 

widely used for paediatric cancers, base-of-skull tumours, and other radiation-

sensitive malignancies, offering better tissue sparing than conventional photon 

therapy (Mohan 2022). 

 

Radiotherapy continues to evolve with the development of cutting-edge technologies 

designed to improve treatment precision and minimise side effects. Adaptive 

radiotherapy (ART) utilises real-time imaging to continuously adjust radiation delivery 

throughout the course of treatment, allowing for modifications in response to changes 

in tumour size, shape, and position (Dona Lemus, Cao et al. 2024). MR-guided linear 

accelerators integrate magnetic resonance imaging (MRI) with radiotherapy, 

enabling real-time tumour tracking and improving accuracy, particularly for tumours 

in anatomically complex or mobile regions (Bryant, Weygand et al. 2023). Another 

emerging innovation is Flash radiotherapy, which delivers ultra-high dose rates in a 

single fraction, potentially reducing toxicity to surrounding healthy tissues while 

maintaining effective tumour control (Lin, Gao et al. 2021). These advancements 

represent the future of radiotherapy, aiming to further enhance patient outcomes 

through increased personalisation and precision. 

 

Global impact of radiotherapy 

Over more than a century, radiotherapy has evolved from the crude application of X-

rays to a highly sophisticated and indispensable pillar of cancer treatment. What 

began as an experimental approach in the late 19th century is now a precisely 

targeted, technologically advanced therapy, capable of eradicating tumours, 
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preserving organ function, and providing symptom relief for millions of patients 

worldwide.  

 

Radiotherapy plays a critical role in both curative and palliative care, often used 

alongside surgery and systemic therapies to maximise treatment effectiveness. 

With over 50% of all cancer patients requiring radiotherapy at some stage of their 

treatment, it remains one of the most effective and widely utilised cancer treatments, 

contributing to approximately 40% of all cancer cures (Baskar, Lee et al. 2012). 

 

1.5.4 Preoperative vs. postoperative radiotherapy 

Radiotherapy (RT) plays a key role in the management of soft tissue sarcomas (STS), 

particularly in improving local disease control and enabling limb-sparing surgery. 

According to the UK guidelines for the management of STS (Hayes, Nixon et al. 

2024), RT should be considered for tumours with a high risk of local recurrence, 

either in the preoperative or postoperative setting. Historically, postoperative RT was 

the standard approach following surgery, based on early trials demonstrating a 

significant reduction in local recurrence rates from above 30% to below 10%, 

although no survival benefit was observed (Pisters, Harrison et al. 1996, Yang, 

Chang et al. 1998, Gronchi 2015).  

 

Preoperative RT has become increasingly favoured due to its reduced long-term 

toxicity compared to postoperative RT (O'Sullivan, Davis et al. 2002). While both 

approaches achieve similar local control rates, preoperative RT allows for smaller 

treatment fields and lower doses (50 Gy vs. 60–66 Gy in the postoperative setting), 

reducing the risk of late effects such as fibrosis and joint stiffness (Hayes, Nixon et 

al. 2024, Noeuveglise, Tessier et al. 2024). However, acute wound healing 

complications are more common with preoperative RT, necessitating careful patient 

selection. 

 

Gronchi (2015) also highlighted the importance of individualising RT use, noting that 

while most STS patients historically received RT routinely, many derived no clear 

benefit. 70% of patients would not have had a recurrence even without RT, and 10% 
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recur despite it. This stresses the importance of selecting patients for RT based on 

their individual recurrence risk rather than applying it universally. 

 

1.5.5 Histology-specific considerations in radiotherapy 

STS is not a single disease but comprises over 80 histological subtypes, each with 

varying sensitivity to RT. Myxoid liposarcoma (MLS) is particularly radiosensitive, 

with over 50% of tumours demonstrating a major response to preoperative RT, often 

leading to significant tumour shrinkage before surgery (Chung, Deheshi et al. 2009). 

The UK guidelines (Hayes, Nixon et al. 2024) also emphasise this radiosensitivity 

and support the use of preoperative RT for MLS, particularly for borderline-resectable 

tumours, where tumour downsizing may facilitate surgical excision. 

 

Conversely, certain other STS subtypes, such as undifferentiated pleomorphic 

sarcoma (UPS) and pleomorphic liposarcoma, have a higher baseline risk of local 

recurrence, making RT a critical component of their management. For low-risk 

subtypes, such as well-differentiated liposarcoma, RT may not be necessary if the 

tumour is completely resected with adequate margins. 
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1.5.6 Current UK radiotherapy guidelines 

Radiotherapy, either preoperative or postoperative, combined with surgery provides 

similar local control and survival rates to radical resection. The addition of RT 

therefore allows for limb-sparing surgery. In many UK centres, preoperative RT is 

routine practice, with the standard regimen being 50 Gy over five weeks, followed by 

surgery four to six weeks after RT completion (Hayes, Nixon et al. 2024). 

 

Despite this approach, clinical, radiological and pathological responses to RT vary 

both between and within STS histological subtypes (Messiou, Bonvalot et al. 2016, 

Kocakavuk, Anderson et al. 2021). While good responses are typically observed in 

myxoid liposarcoma, predicting clinical or pathological outcomes for RT across all 

sarcoma subtypes remains challenging, especially for high-grade tumours. 

 

The UK guidelines (Hayes, Nixon et al. 2024) recommend a multidisciplinary 

approach, where RT decisions should be tailored based on tumour histology, grade, 

location, and resectability. Key recommendations include: 

 

• Preoperative RT (50 Gy in 25 fractions) is preferred when feasible, 

particularly in histologies with high radiosensitivity (e.g., MLS) or where 

surgical margins are expected to be close. 

 

• Postoperative RT (60–66 Gy in 30–33 fractions) is used when margins are 

positive or close after surgery. 

 

• Surgery alone may be sufficient for low-grade tumours or cases where wide-

margin resection is achievable without functional compromise. 

 

Despite these advances, the optimal role of RT in some STS subtypes remains 

uncertain, as large randomised controlled trials are difficult due to the rarity of the 

disease. As Gronchi (2014) noted, evidence generation in rare cancers requires 

collaborative efforts, and retrospective data often guide difficult decision-making. 
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1.5.7 Side effects of radiotherapy 

Radiotherapy remains central to modern cancer treatment, with advancements in 

precision techniques significantly improving tumour targeting while minimising 

damage to surrounding normal tissues. However, despite these improvements, 

radiation-induced side effects remain a major challenge, affecting both short- and 

long-term patient outcomes. 

 

Radiation side effects can be broadly classified into acute and late effects. Acute 

effects occur during or shortly after treatment and are typically caused by direct 

damage to rapidly dividing cells. These include mucositis, skin reactions 

(radiodermatitis), nausea, fatigue, and inflammation of irradiated organs, such as 

pneumonitis following lung irradiation. While many acute effects resolve after 

treatment, they can be debilitating and impact a patient’s quality of life (Barazzuol, 

Coppes et al. 2020). 

 

Late side effects of radiotherapy can develop months to years after treatment, often 

leading to chronic and sometimes irreversible complications. These effects are 

primarily driven by persistent inflammation, fibrosis, vascular damage, and stem cell 

depletion in irradiated tissues. In soft tissue sarcoma patients, particularly those 

treated with limb-sparing surgery and radiotherapy, these late toxicities can 

significantly impact mobility, function, and quality of life. The severity of complications 

depends on radiation dose, treatment technique, and the volume of normal tissue 

exposed (Barazzuol, Coppes et al. 2020). 

 

One of the most common and debilitating late effects is radiation-induced fibrosis, 

which leads to stiffness, contractures, and reduced limb mobility. When large 

portions of a joint are included in the radiation field, fibrosis can result in permanent 

contractures, limiting range of motion and functional independence. Studies have 

shown that 20% of STS patients develop joint contractures following radiotherapy, 

which can impair daily activities and require long-term physiotherapy or orthotic 

support (Stinson, Delaney et al. 1991). 
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Muscle atrophy and weakness are also frequent complications, with up to 20% of 

patients experiencing significant reductions in strength. This is often accompanied 

by radiation-induced damage to nerves and blood vessels, leading to neuropathy, 

chronic pain, and sensory deficits. In some cases, pain is severe enough to require 

long-term analgesic management. Lymphoedema, a result of lymphatic damage, 

affects nearly one in five patients, causing persistent limb swelling, heaviness, and 

an increased risk of recurrent infections (Stinson, Delaney et al. 1991). 

 

Bone complications are another major concern, with 6% of patients developing 

pathological fractures due to radiation-induced bone fragility. This is particularly 

problematic in weight-bearing bones, such as the femur or tibia, where fractures can 

lead to prolonged immobility, surgical interventions, or even limb amputation in 

severe cases. Additionally, vascular damage within irradiated tissues can impair 

healing, increasing the risk of chronic ulcers and infection, particularly in the lower 

extremities (Stinson, Delaney et al. 1991).  

 

The cumulative burden of these late toxicities can severely impact mobility, 

independence, and overall quality of life. Many patients require assistive devices 

such as canes, crutches, or orthotic braces, while some may face permanent 

functional disability. The use of modern radiotherapy techniques, such as intensity-

modulated radiotherapy (IMRT) and proton therapy has helped to reduce late toxicity, 

but radiation-related functional impairments remain a significant long-term challenge 

in patients. Careful patient selection, treatment planning, and rehabilitation strategies 

are essential to minimise these effects while maintaining optimal oncological control. 
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1.6 Prognostic factors in soft tissue sarcoma 

The prognosis of soft tissue sarcomas is influenced by a range of factors, including 

histological grade, tumour size, anatomical location, stage at diagnosis, resection 

margins, and patient-related characteristics such as age and performance status 

(Lebas, Le Fèvre et al. 2023, Díaz Casas, Villacrés et al. 2024). Understanding these 

factors is critical for risk stratification, guiding treatment decisions, and providing 

accurate survival estimates. These factors will be briefly discussed below. 

 

1.6.1 Histological grade 

Histological grade is one of the strongest independent prognostic factors in STS and 

is incorporated into widely used staging systems such as the AJCC (American Joint 

Committee on Cancer) staging system. The grading system recommended by the 

European Organisation for Research and Treatment of Cancer (EORTC) is the 

French Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) 

grading system (Cyril Fisher 2022). 

 

The FNCLCC system scores tumours based on three separate categories (Table 2) 

(Trojani, Contesso et al. 1984, Guillou, Coindre et al. 1997): 

 

The individual scores for tumour differentiation, mitotic count, and necrosis are 

summed to determine the histological grade of the tumour. Tumours are classified 

as follows: 

 

Grade 1 (low grade): Total score of 2 or 3 

Grade 2 (intermediate grade): Total score of 4 or 5 

Grade 3 (high grade): Total score of 6, 7, or 8 

 

High-grade sarcomas are strongly associated with worse clinical outcomes, including 

increased rates of local recurrence, distant metastasis, and poorer overall survival 

(Lee, Kim et al. 2021). 
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Table 2. FNCLCC grading system 

Soft tissue sarcoma grading criteria set by the French Fédération Nationale des 

Centres de Lutte Contre le Cancer. Adapted from the RCPath soft tissue sarcoma 

dataset (Cyril Fisher 2022). 

Category Score Criteria 

Tumour 
Differentiati
on 

1 Sarcoma histologically very similar to normal adult 
mesenchymal tissue 

2 Sarcoma of defined histological subtype (e.g. 
myxofibrosarcoma) 

3 Sarcoma of uncertain type, embryonal, and 
undifferentiated sarcomas 

Mitosis 
Count 

1 0–9 mitoses per 10 high-power fields (HPF) (2 sq 
mm) 

2 10–19 mitoses per 10 HPF (2 sq mm) 

3 >20 mitoses per 10 HPF (2 sq mm) 

Microscopic 
Tumour 
Necrosis 

0 No necrosis 

1 <50% tumour necrosis 

2 >50% tumour necrosis 

 

 

A recent study highlighted the significant impact of histological grade on prognosis. 

For instance, grade 3 sarcomas were found to have a significantly higher risk of local 

recurrence compared to lower-grade sarcomas and a markedly increased risk of 

distant metastasis (Díaz Casas, Villacrés et al. 2024). Poorly differentiated tumours, 

as reflected in higher FNCLCC grading scores, are predictive of aggressive 

behaviour, systemic progression, and increased mortality. The study further 

emphasised that tumour size (>5 cm), deep fascial involvement, and inadequate 

surgical margins exacerbate these risks. 
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1.6.2 Tumour size 

Tumour size is a key component of AJCC staging and directly correlates with 

metastatic risk. The most recent AJCC 8th edition subdivides size categories 

depending on the site. For tumours arising in the extremities, the superficial trunk, 

and retroperitoneum, the cut-offs are as follows (Cyril Fisher 2022): 

 

T1: ≤5 cm 

T2: >5 cm and ≤10 cm 

T3: >10 cm and ≤15 cm 

T4: >15 cm 

 

Tumours arising in the head and neck or in the thoracic or abdominal viscera have 

their own specific staging criteria. 

 

Larger tumours (>5 cm) are associated with: 

 

Worse disease-free survival (DFS): Larger tumours are more likely to recur locally 

or metastasise, reducing the duration of DFS. For example, tumours >10 cm exhibit 

a threefold increase in metastatic risk compared to tumours ≤5 cm (Lee, Kim et al. 

2021, Lebas, Le Fèvre et al. 2023). 

Higher risk of distant metastases: The probability of metastasis to the lungs or 

other distant sites increases significantly with tumour size. In sarcomas larger than 

10 cm, lung metastases are particularly common, further contributing to poor 

outcomes (Lebas, Le Fèvre et al. 2023, Díaz Casas, Villacrés et al. 2024). 

 

In addition to size, the anatomical location of the tumour also significantly impacts 

prognosis. Retroperitoneal sarcomas are particularly challenging due to their location 

and often reach a substantial size before detection, with many exceeding 15 cm at 

diagnosis. This delayed presentation arises from their asymptomatic progression 

until they exert mass effects on adjacent organs. Consequently, surgical excision is 

more complex, often requiring multi-organ en bloc resections to achieve negative 

margins. Despite such efforts, retroperitoneal sarcomas are associated with worse 

survival outcomes compared to sarcomas in the extremities, with five-year overall 
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survival (OS) rates ranging from 39% to 70% depending on the subtype and 

resection margins (Guo, Zhao et al. 2022). Moreover, local recurrence remains the 

primary cause of mortality, with rates as high as 75% in patients without distant 

metastases. 

 

The prognostic significance of tumour size highlights the importance of early 

diagnosis and intervention. Smaller tumours identified and treated at an earlier stage 

are associated with improved outcomes, stressing the need for vigilance in 

diagnosing and staging soft tissue sarcomas. This has led to one of the key 

recommendations from the UK guidelines on the management of soft tissue 

sarcomas which states that “any patient with an unexplained lump that is increasing 

in size, should be considered for a direct access ultrasound scan to be performed 

within 2 weeks” (Hayes, Nixon et al. 2024).  

 

1.6.3 Anatomical site 

The anatomical location of STS influences prognosis due to differences in surgical 

resectability, metastatic potential, and response to treatment. 

 

Extremity sarcomas (limbs) generally have a better prognosis than those in 

retroperitoneal or visceral locations (Lebas, Le Fèvre et al. 2023, Díaz Casas, 

Villacrés et al. 2024). Retroperitoneal sarcomas as previously discussed tend to be 

diagnosed at larger sizes, often >15 cm, making complete resection difficult, with 

worse five-year survival rates (~40-50%) (Guo, Zhao et al. 2022).  

 

1.6.4 Stage at diagnosis 

In the UK, STS is staged using the AJCC TNM system, which incorporates tumour 

size (T), lymph node involvement (N), and distant metastases (M) (Cyril Fisher 2022, 

Hayes, Nixon et al. 2024). 

 

Unlike carcinomas, which typically metastasise through lymphatic channels, soft 

tissue sarcomas (STS) predominantly spread haematogenously, with the lungs, liver, 
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and bones being the most common metastatic sites (Pennacchioli, Tosti et al. 2012). 

While lymphatic involvement is rare in STS compared to carcinomas, certain 

subtypes exhibit a higher propensity for lymph node metastasis (LNM). For example, 

one study found clear cell sarcoma, epithelioid sarcoma, angiosarcoma, and small 

cell sarcoma had LNM rates of 15.9%, 13.1%, 6.1%, and 19.1%, respectively. These 

rates are markedly higher than the overall LNM incidence in STS, which remains low 

at approximately 3.5% (Keung, Chiang et al. 2018). 

 

The likelihood of LNM varies not only by histological subtype but also by tumour 

location. For example, head, neck, and visceral sarcomas demonstrate slightly 

higher LNM rates compared to those arising in the extremities with 5.8% of head and 

neck sarcomas and 5.1% of intra-abdominal sarcomas having nodal involvement, 

compared to just 2% in the extremities. 

 

The clinical significance of LNM in STS is profound. In the absence of distant 

metastases (M0), LNM is associated with a worse overall survival (OS). For instance, 

patients with isolated LNM (pN1M0) experience a median OS of 2.4 years, 

significantly shorter than the 8.5 years seen in patients without nodal or distant 

metastases (N0M0). Moreover, histological subtypes like angiosarcoma and clear 

cell sarcoma tend to have particularly poor prognoses when associated with LNM, 

with median OS as low as 19.4 months for angiosarcoma. 

These findings show the importance of accurately staging lymph node involvement, 

particularly in histologies at higher risk of nodal spread. However, current practice 

often lacks consistency in pathologically evaluating lymph nodes in STS. A significant 

proportion of cases rely on clinical rather than pathological confirmation of nodal 

disease, which may affect staging accuracy and subsequent management. 

 

The M stage in the AJCC TNM system reflects the presence of distant metastases, 

a critical determinant of prognosis in soft tissue sarcomas. As mentioned earlier, 

haematogenous spread, rather than lymphatic spread, is the predominant route of 

metastatic dissemination in STS. The lungs are the most common site of metastases, 

and account for over 90% of metastases, followed by the liver and bones. 
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Patients presenting with distant metastases (M1 stage) have significantly poorer 

outcomes compared to those with localised disease. Median overall survival (OS) for 

patients with metastatic STS is approximately 12 months, although recent 

advancements in treatment, including systemic therapies, have extended survival in 

some cases to around 18 months (Hayes, Nixon et al. 2024). This remains markedly 

worse than the survival rates observed in early-stage disease. 

 

The presence of distant metastases often limits curative treatment options, with 

management typically focusing on systemic therapies such as chemotherapy or 

targeted agents. In some cases, metastasectomy (e.g., resection of pulmonary 

metastases) may be considered, especially in patients with limited disease burden, 

though this approach is not suitable for all subtypes (Sardenberg, Figueiredo et al. 

2010). 

 

Given the poor prognosis associated with metastatic STS, accurate staging with 

imaging modalities such as CT scans and PET scans is essential. Early detection of 

metastases informs treatment planning, helping clinicians determine whether the 

goal of care should be curative or palliative. 

 

A study from the UK, analysing data on soft tissue sarcoma cases between 2013 

and 2017, provides recent survival rates based on disease stage (Bacon, Wong et 

al. 2023): 

 

Stage I: Low-grade, small tumours with no metastases have the most favourable 

prognosis, with a five-year survival rate of approximately 85-90%. 

 

Stage II/III: Patients with high-grade or larger tumours, who often require multimodal 

treatment including surgery, radiotherapy, and systemic therapy, have a five-year 

survival rate ranging from 50-70%. 

 

Stage IV: The presence of distant metastases confers a significantly worse 

prognosis, with a five-year survival rate of less than 20%, reflecting the aggressive 

nature of advanced STS and the limited efficacy of systemic therapies in metastatic 

disease. 
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1.6.5 Resection margin status 

Surgical resection is the mainstay of curative treatment for soft tissue sarcomas 

(STS), with margin status being a critical determinant of prognosis and recurrence 

risk. The Royal College of Pathologists' dataset highlights the importance of accurate 

margin reporting, including measurements in millimetres and tissue type at the 

margin (e.g., fascia, muscle, fat), with margins classified as follows (Cyril Fisher 

2022): 

 

• R0 Resection (Negative Margins): Clear surgical margins with no tumour 

cells at the inked edge are associated with the lowest recurrence rates and 

best survival outcomes, making this the gold standard for STS surgery. 

• R1 Resection (Microscopic Residual Disease): Margins with microscopic 

tumour presence increase recurrence risk. Adjuvant radiotherapy is often 

employed to improve local control and reduce recurrence. 

• R2 Resection (Macroscopic Residual Disease): Macroscopic tumour left 

behind leads to a significantly poorer prognosis, with five-year survival rates 

below 30%. R2 resections are generally considered palliative. 

 

 

The European Society for Medical Oncology – European Reference Network for rare 

adult solid cancers (ESMO-EURACAN) guidelines (Casali, Abecassis et al. 2018) 

recommend R0 resection as the primary objective, particularly for extremity tumours 

where wide margins are achievable. For R1 resections, reoperation in a reference 

centre is advised if adequate margins can be achieved without major morbidity. In 

cases where re-excision is not feasible, adjuvant radiotherapy is strongly 

recommended to improve local control. 

 

For retroperitoneal sarcomas or tumours near critical structures, achieving R0 

margins may not be feasible. ESMO guidelines state that planned R1 resections can 

yield acceptable outcomes when combined with radiotherapy. The impact of R1 

margins varies by tumour subtype, location, and margin characteristics. 
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Additionally, marginal excision may be appropriate for certain low-grade tumours, 

such as atypical lipomatous tumours, where local recurrence rates are low, and 

radiotherapy may not be necessary. These situations highlight the need for 

individualised surgical strategies that balance safety with patient quality of life. 

Indication of the use of a marginal excision should be put on the pathology request 

form when a specimen is submitted for pathological assessment. 

 

1.6.6 Patient age, performance status, and socioeconomic background 

Age, performance status, and socioeconomic factors significantly influence survival 

outcomes in patients with soft tissue sarcomas (STS). Older patients, particularly 

those aged >65 years, tend to have poorer prognoses. A population-based study 

from England reported that while the overall five-year net survival for STS was 65%, 

survival rates were significantly lower in older age groups, attributed to comorbidities 

and reduced tolerance for aggressive treatments (Bacon, Wong et al. 2023). 

 

Younger patients with good performance status (ECOG 0-1) demonstrate better 

long-term survival, even in cases of high-grade disease. The European Society for 

Medical Oncology (ESMO) guidelines emphasise the need for individualising 

treatment plans to account for age, tumour biology, and performance status (Casali, 

Abecassis et al. 2018) 

 

Socioeconomic background also impacts outcomes in STS. The Bacon et al. study 

highlights disparities in survival linked to socioeconomic status. Patients in the most 

deprived quintile had a five-year net survival rate of approximately 55%, compared 

to 70% in the least deprived quintile. These disparities may reflect inequalities in 

access to care, delayed diagnoses, or differences in treatment availability (Bacon, 

Wong et al. 2023). 
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1.7 The biological effects of radiotherapy  

Radiotherapy primarily exerts its therapeutic effects by inducing extensive DNA 

damage in cancer cells, ultimately leading to cell death. The energy from ionising 

radiation generates DNA double-strand breaks (DSBs), which, if left unrepaired or 

misrepaired, trigger apoptosis or mitotic catastrophe. Ionising radiation also 

generates reactive oxygen species (ROS), which cause single-strand breaks (SSBs) 

and oxidative base modifications, further compromising genomic integrity (Horsman 

MR 2009). In addition to direct DNA cleavage, radiation can induce chemical 

modifications such as 5’ hydroxyls, 3’ phosphates, and covalent DNA-protein 

crosslinks, which require resolution before DSB repair can occur (Borrego-Soto, 

Ortiz-Lopez et al. 2015). 

 

The ability of a tumour to repair radiation-induced DNA damage influences its 

sensitivity to treatment. Tumours deficient in homologous recombination repair 

(HRR), such as those with BRCA1/2 mutations, exhibit heightened radiosensitivity 

due to their inability to accurately repair DSBs (Ernestos, Nikolaos et al. 2010). In 

contrast, tumours with an overactive non-homologous end-joining (NHEJ) pathway 

(discussed previously in section 1.4.3.1) may demonstrate radiation resistance, as 

NHEJ rapidly, albeit error-prone, ligates broken DNA ends (Morgan and Lawrence 

2015). The relative reliance on different DNA repair pathways contributes to tumour-

specific responses to radiotherapy. This underlies the rationale for radiosensitising 

agents such as PARP inhibitors, which exploit DNA repair deficiencies to enhance 

radiation efficacy (Angel, Zarba et al. 2021). 

 

1.7.1 Mutational signatures associated with radiotherapy 

Mutational signatures are distinct patterns of somatic mutations found in cancer 

genomes that reflect the biological processes causing genetic alterations. These 

signatures arise due to endogenous processes, such as spontaneous deamination 

or replication errors, or exogenous exposures, such as ionising radiation, ultraviolet 

light, or chemotherapy. By analysing large sequencing datasets, computational 

methods allow us to identify and categorise these signatures, helping to reveal the 

underlying mechanisms of mutagenesis. 
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One key approach for identifying mutational signatures is trinucleotide context 

analysis. Mutations are classified based on the flanking bases surrounding a mutated 

site, leading to 96 possible mutation types. This level of granularity is crucial because 

many mutagens exhibit sequence specificity, and analysing mutations in their 

sequence context improves the accuracy of signature extraction. 

 

To systematically identify mutational signatures, non-negative matrix factorization 

(NMF) is applied to mutation frequency data across multiple cancer genomes. NMF 

is a mathematical technique that deconstructs complex mutational spectra into a set 

of underlying signatures. Each extracted signature is then compared against known 

reference signatures, such as those curated in COSMIC, allowing for the attribution 

of mutations to specific mutational processes (Alexandrov, Nik-Zainal et al. 2013).  

 

Mutational signatures are broadly classified into several categories, including single 

base substitution (SBS) signatures, doublet base substitution (DBS) signatures, 

insertion-deletion (ID) signatures, and, more recently, copy number alteration (CNA) 

signatures (Alexandrov, Kim et al. 2020, Steele, Abbasi et al. 2022).  

 

1.7.2 Radiation induced mutational signatures 

Several studies have identified mutational signatures enriched in post-radiotherapy 

malignancies. Behjati et al. (2016) performed whole-genome sequencing on 

radiation-associated secondary malignancies and identified two characteristic 

mutational features: 

• An excess of balanced inversions, a rare form of structural rearrangement. 

• An increased burden of small deletions, which were validated in a separate cohort 

of prostate cancer patients who had received radiotherapy. 

 

Research on thyroid cancers arising after the Chernobyl nuclear disaster found a 

radiation dose-dependent increase in small deletions and simple/balanced structural 

variants, particularly an increased deletion-to-SNV ratio (Morton, Karyadi et al. 

2021). These findings suggest that radiation-induced DSBs are frequently repaired 
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through error-prone mechanisms such as NHEJ, leading to characteristic genomic 

alterations, including deletions. 

 

1.7.3 Radiation-induced APOBEC mutagenesis 

Beyond direct DSB induction, ionising radiation has been implicated in the activation 

of endogenous mutagenic processes, particularly the APOBEC cytosine deaminase 

family. APOBEC enzymes preferentially induce C>T or C>G substitutions at TpC 

dinucleotides, corresponding to mutational signatures SBS2 and SBS13 (Alexandrov, 

Kim et al. 2020).  

 

Kocakavuk et al. (2021) identified enrichment of SBS2 and SBS13 in gliomas and 

metastatic tumours following radiotherapy, suggesting that APOBEC mutagenesis 

might occur in post-radiotherapy tumours. However, rather than direct induction by 

radiation, the study proposed that APOBEC-driven mutagenesis may be a secondary 

effect of DNA damage repair. This aligns with previous findings that APOBEC 

enzymes act on single-stranded DNA, which can be transiently generated during the 

repair of radiation-induced DSBs (Schlegel, Jodelka et al. 2006). 

 

Crucially, Morton et al. (2021) found no significant association between radiation 

dose and APOBEC mutational signatures (SBS2/SBS13) in thyroid cancers from the 

Chernobyl cohort. Although SBS2 and SBS13 made up 6.2% and 6.4% of attributed 

mutations, their presence was not linked to radiation exposure. This suggests that 

APOBEC activity may be involved in tumour progression but is not a direct 

consequence of radiation exposure. 

 

1.7.4 ID8 and DNA Repair pathways 

Insertion-deletion signature ID8, which is associated with microhomology-mediated 

end joining (MMEJ), has been identified in multiple radiation-exposed tumour cohorts. 

A significant increase in ID8 was noted in gliomas following radiotherapy in the 

GLASS cohort (Kocakavuk, Anderson et al. 2021) and in post-radiotherapy papillary 

thyroid carcinomas (Morton, Karyadi et al. 2021). However, further analysis 
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suggested that classical non-homologous end joining (c-NHEJ), rather than MMEJ, 

is the primary repair mechanism for radiation-induced DSBs. 

 

The identification of clonal small deletions and the enrichment of radiation-associated 

ID8 signatures suggest that radiotherapy induces genomic instability through error-

prone DSB repair pathways, predominantly classical NHEJ. These findings highlight 

the role of radiotherapy in shaping the mutational landscape of soft tissue sarcomas 

and the importance of understanding these alterations in the context of tumour 

biology. Further characterisation of these mutational processes will help refine our 

understanding of how radiotherapy impacts tumour evolution and may provide 

insights into potential therapeutic vulnerabilities. 
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1.8 The pathological assessment of the response to 

radiotherapy 

Assessing the pathological response to radiotherapy in soft tissue sarcomas 

presents significant challenges for histopathologists. This process involves both 

macroscopic and microscopic evaluations, each of which is subject to limitations in 

sampling and interpretation. 

 

At a macroscopic level, the primary issue is accurate recording of the proportion of 

necrosis and of the residual tumour. In the UK, Royal College of Pathologists 

(RCPath) guidelines recommend documenting tumour size, colour, consistency, and 

necrosis as a percentage of the total tumour mass (Cyril Fisher 2022). However, 

quantifying necrosis macroscopically is prone to error, as it relies on gross 

appearance rather than cellular assessment. 

 

At a microscopic level, the challenge lies in distinguishing treatment-related changes 

from tumour-related necrosis and ensuring representative sampling of viable tumour. 

The RCPath guidelines recommend sampling one block per 10 mm of the tumour’s 

longest dimension, with a maximum of 12 blocks, though high-grade tumours may 

require fewer (Cyril Fisher 2022). However, this approach inherently biases against 

necrotic areas, as pathologists typically prioritise viable tumour for microscopic 

examination. 

 

To improve standardisation, the European Organization for Research and Treatment 

of Cancer - Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) has proposed 

an alternative approach: sampling and blocking an entire representative central slice 

of the tumour (Wardelmann, Haas et al. 2016). However, selecting a truly 

"representative" slice remains subjective and introduces its own sampling bias. 
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1.8.1 Histopathological features of radiotherapy response 

Histological features suggestive of radiotherapy-induced changes include: 

• Necrosis 

• Ghost cells (cells with loss of nuclear and cytoplasmic detail) 

• Granulation tissue and fibrosis 

• Hemosiderin deposition 

• Foamy macrophages 

• Calcifications and inflammatory changes.   

 

An important limitation of assessing tumour necrosis alone is that pre-treatment 

necrosis cannot be reliably distinguished from post-radiotherapy necrosis. 

 

1.8.2 Correlation with radiological response criteria 

To improve response assessment, correlation with radiological imaging has been 

proposed. The Response Evaluation Criteria in Solid Tumours (RECIST), which 

relies on tumour shrinkage, is often not useful in soft tissue sarcomas, as most do 

not significantly decrease in size following radiotherapy (Betgen, Haas et al. 2013, 

Wardelmann, Haas et al. 2016). In some cases, tumours may even increase in size 

due to cystic transformation or haemorrhage, a phenomenon known as 

pseudoprogression. 

 

An alternative is the Choi criteria, originally developed for gastrointestinal stromal 

tumours (GISTs). These criteria assess response based on both size reduction and 

changes in tumour density on imaging. Studies have shown that the Choi criteria 

outperform RECIST in predicting soft tissue sarcoma response to chemotherapy and 

radiotherapy outcome (Stacchiotti, Verderio et al. 2012). 

 

Additionally, MRI techniques such as diffusion-weighted imaging (DWI) and contrast-

enhanced MRI have been explored as tools for estimating tumour necrosis post-

radiotherapy. One study demonstrated that MRI-derived necrosis percentages 

correlated well with histopathological assessment, though distinguishing true 
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necrosis from oedema or tumour recurrence remains challenging (Monsky, Jin et al. 

2012, Nichelli and Casagranda 2021)  

 

1.8.3 Lack of consensus in pathological reporting 

Despite multiple proposed approaches, no consensus exists on the optimal method 

for reporting pathological response to radiotherapy in sarcomas. Some studies report 

percentage necrosis, while others quantify viable tumour percentage. The EORTC-

STBSG scoring system, which categorises response into five tiers based on viable 

tumour percentage, was tested in an independent cohort of 100 sarcoma patients’ 

post-radiotherapy. However, neither the EORTC response score nor percentage 

viable tumour were prognostic  (Wardelmann, Haas et al. 2016). 

 

1.8.4 Implications for tissue processing and molecular analysis 

From a molecular research perspective, variability in sampling and tissue processing 

poses challenges for genomic and transcriptomic studies. DNA and RNA extraction 

from formalin-fixed, paraffin-embedded (FFPE) samples requires sufficient viable 

tumour cells, as excessive necrosis can interfere with sequencing protocols. This 

highlights the importance of optimising tumour sampling methods, particularly in 

studies seeking to define molecular biomarkers of radiotherapy response. 

 

1.8.5 Conclusion 

The lack of standardisation in pathological response assessment presents a major 

challenge in understanding the effects of radiotherapy in sarcomas. While 

percentage necrosis remains the most commonly reported metric, it is inherently 

limited by sampling bias and the inability to distinguish pre-existing from treatment-

induced necrosis. Alternative methods, such as MRI-derived necrosis 

measurements and Choi criteria, may improve response evaluation but require 

further validation.  
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Future efforts should focus on refining the pathological assessment of radiotherapy 

response by incorporating objective and reproducible metrics that better reflect 

tumour biology. While radiological and histopathological criteria remain the current 

standard, they have limitations in accurately capturing the molecular impact of 

radiotherapy. By characterising the genomic alterations and mutational processes 

induced by radiotherapy, this thesis aims to understand the biological consequences 

of treatment, which could ultimately inform the development of molecular biomarkers 

for response assessment in soft tissue sarcomas. 
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1.9 Rationale and objectives of this thesis 

Radiotherapy is a key component in the management of soft tissue sarcomas, 

enabling limb-sparing surgery and improving local control. However, its clinical 

efficacy varies significantly across histological subtypes, and the absence of robust 

molecular biomarkers limits the ability to personalise treatment. There are no 

published studies using clinical material describing the short-term molecular changes 

that occur during and immediately after therapy. In the setting of local recurrence or 

metastasis, where patients have received radiotherapy, prior studies have identified 

broad genomic changes including `mutational signatures and activation of DNA 

repair pathways, however the precise molecular mechanisms underpinning 

radiotherapy response remain poorly understood. This is largely due to the lack of 

comprehensive multi-omics analyses directly comparing pre- and post-radiotherapy 

tumour samples, as well as the limited ability to distinguish treatment-induced 

changes from tumour-intrinsic alterations. 

 

Although previous work has characterised some mutational consequences of 

radiation exposure in secondary malignancies and radiation-induced sarcomas, 

studies focusing on primary soft tissue sarcomas treated with neoadjuvant 

radiotherapy remain limited. Moreover, existing analyses often rely on bulk 

sequencing approaches with low sensitivity, making it challenging to resolve low-

frequency mutations, copy number alterations, or changes in the tumour 

microenvironment. Additionally, the histology-specific variability in genomic and 

transcriptomic responses to radiotherapy remains unclear, despite growing evidence 

that certain subtypes, such as myxoid liposarcoma, demonstrate a higher sensitivity 

to treatment. 

 

Furthermore, while histopathological and radiological criteria are used to assess 

radiotherapy response, their accuracy in predicting treatment outcomes is limited. 

The lack of standardised pathological criteria complicates efforts to integrate 

molecular findings into clinical practice, and there remains an urgent need to define 

reproducible and biologically meaningful markers of radiotherapy response. 
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To address these gaps, this thesis applies whole-exome sequencing (WES), whole-

genome sequencing (WGS), RNA sequencing (RNAseq), and high-sensitivity 

sequencing methods (NanoSeq) to characterise the genomic and transcriptomic 

alterations induced by radiotherapy in soft tissue sarcomas. By leveraging these 

high-resolution sequencing approaches, this study aims to provide a comprehensive 

understanding of how the genomic and transcriptomic landscape of soft tissue 

sarcomas is altered following radiotherapy, while also exploring potential predictive 

biomarkers of treatment response. These findings will enhance our understanding of 

radiotherapy-induced mutagenesis, define molecular changes associated with 

treatment response, and lay the groundwork for future biomarker development to 

guide personalised therapeutic strategies. 
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The specific objectives of this thesis are: 

 

1. To characterise radiotherapy-induced genomic alterations. 

• Quantify and compare somatic mutations, including SNVs and indels, in pre- and 

post-radiotherapy tumour samples. 

• Investigate copy number alterations (CNAs) and mutational signatures to identify 

radiotherapy-induced genomic changes. 

 

2. To analyse the transcriptional landscape in response to radiotherapy. 

• Identify differentially expressed genes and enriched biological pathways in pre- 

and post-radiotherapy tumour samples. 

• Explore how transcriptomic responses differ between sarcoma histological 

subtypes. 

 

3. To identify histology-specific variability. 

• Determine whether different sarcoma subtypes exhibit distinct genomic and 

transcriptomic responses to radiotherapy. 

 

4. To establish a molecular framework for understanding radiotherapy 

response. 

• Use multi-omics data to refine our understanding of radiotherapy-induced 

mutagenesis. 

• Provide a foundation for future biomarker discovery by characterising molecular 

patterns associated with treatment response. 
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Chapter 2. Materials & Methods 

2.1 Ethics approval and patient sample selection  

This study was approved by the NHS Health Research Authority (REC reference 

16/NW/0769). Patient tissue and clinical data were obtained from the Royal National 

Orthopaedic Hospital biobank in collaboration with the London Sarcoma Service. All 

patients had provided informed consent for research use. 

 

A total of 122 patients were assessed for inclusion in the study. These patients were 

identified by Dr Nischalan Pillay and Dr Mahbubl Ahmed. Eligibility criteria were: 

 

• Histologically confirmed soft tissue sarcoma. All included cases underwent 

histological review to confirm diagnosis and eligibility (see section 2.2). 

• Treatment at the London Sarcoma Service with standard of care pre-operative 

(neoadjuvant) radiotherapy (see section 2.1.1). 

• Availability of diagnostic (pre-radiotherapy) tumour tissue and, where applicable, 

matched post-radiotherapy resection tissue. 

• Adequate tissue quality and quantity for downstream molecular assays (RNA-

seq, NanoSeq, WES) and histological review. 

• Sufficient clinical and treatment data to confirm radiotherapy dose, fractionation, 

timing, and follow up data. 

 

Sixty-one patients were excluded for the following reasons: 

 

Post-operative radiotherapy only (n = 24): Patients received radiotherapy only 

after surgery, with no pre-radiotherapy (diagnostic) tumour tissue available. 

 

Radiotherapy not completed (n = 3): Radiotherapy was not given, stopped early, 

declined, or administered with palliative intent only. 

 

No viable tumour in available tissue (n = 6): Resection specimens showed 

complete pathological response or extensive necrosis, leaving no viable tumour for 

analysis. 
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Insufficient or unavailable tissue (n = 12): Diagnostic or resection blocks were 

missing, untraceable, or contained insufficient tumour material for sequencing; in 

some cases, paired normal tissue was not available. 

 

Eligibility not confirmed (n = 16): Treated outside the specialist London Sarcoma 

Service, preventing confirmation of radiotherapy dose, timing, and delivery. 

 

The final study cohort comprised 61 patients. Of these: 

 

• NanoSeq was performed on 10 samples, 9 of which passed quality control 

(QC). 

• DNA sequencing (WES/WGS) was performed on 70 samples, 67 passed QC. 

• RNA-seq was performed on 122 samples, 117 passed QC. 

 

A Consort-style schematic summarising the inclusion and exclusion process is 

shown in Figure 2.1. 
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Figure 2.1. Consort diagram of patient inclusion and sample quality control 

flowchart 

The diagram summarises patient selection, reasons for exclusion, and the number 
of samples processed for sequencing assays. 
 

2.1.1 Radiotherapy treatment 

All patients received standard of care treatment through the London sarcoma 

service. All patients received 50 Gy of intensity modulated radiotherapy (IMRT) 

delivered in 25 fractions (see section 1.5.6).  

 

The median interval between completion of neoadjuvant radiotherapy and surgical 

resection was 46 days (range: 13–84 days), with a mean of approximately 46.1 days. 

This was broadly consistent across the cohort, reflecting the standard practice in our 

centre of scheduling surgery around six to seven weeks after completion of treatment. 

 

2.1.2 Defining disease progression 

In the introduction, I noted that there are no universally established histological or 

radiological standards for defining response or progression in this context. Therefore, 
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in the later chapters, when distinguishing between progressors and responders, I 

rely on clinical follow-up data. 

 

Patients were classified as progressors if they experienced either local recurrence 

or death from disease during the follow-up period. Responders were defined as 

those with no evidence of recurrence or disease-related mortality within the follow-

up timeframe. 

 

Of the 61 patients in the study, 25 were classified as progressors. This group 

included 4 patients who developed local recurrence (median follow-up: 2,448 days; 

range: 2,124–2,602 days) and 21 patients who died of disease (median follow-up: 

892 days; range: 223–2,637 days). The combined progressor group had a median 

follow-up time of 955 days (range: 223–2,637 days). 

The remaining 36 patients were classified as responders, with a median follow-up 

time of 2,584 days (range: 1,391–3,744 days). 

 

A final list of included patients, their clinical characteristics, and sequencing data 

availability is presented in Figure 2.2.  
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Figure 2.2. Overview of the London Sarcoma Service patient cohort, clinical 

features, and sequencing data availability 

The heatmap summarises clinical metadata and sequencing data availability for 61 
patients in the study. The Patient metadata panel shows histological subtype, 
radiotherapy (RTx) response status, tumour site, and sex. Histological subtypes 
include: MFS (myxofibrosarcoma), mLPS (myxoid liposarcoma), SS (synovial 
sarcoma), pLPS (pleomorphic liposarcoma), SpCS (spindle cell sarcoma), UPS 
(undifferentiated pleomorphic sarcoma), ddLPS (dedifferentiated liposarcoma), 
pLMS (pleomorphic leiomyosarcoma), EMC (extraskeletal myxoid 
chondrosarcoma), ASPS (alveolar soft part sarcoma), CCS (clear cell sarcoma), 
MLS (myxoid liposarcoma), MMT (malignant myoepithelial tumour), and MPNST 
(malignant peripheral nerve sheath tumour). RTx response status is categorised 
as: Responder, Progressor – recurrence, and Progressor – died of disease. 
Tumour site is recorded as arm, leg, or trunk; sex as female (F) or male (M). 
The DNA sequencing panel shows availability of whole exome sequencing (WES), 
whole genome sequencing (WGS), and NanoSeq data across the following time 
points: pre-RTx, post-RTx, recurrence, and metastasis. The RNA sequencing 
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panel shows RNA-seq data availability at pre-RTx, post-RTx, multi-region post-
RTx, recurrence, and metastasis. Green shading indicates available data, grey 
shading indicates missing data. 
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2.2 Histological assessment of samples 

Histological assessment of all available biopsy, resection, and, where applicable, 

recurrence and metastatic samples was performed by two pathologists, Steven 

Nottley (SN) and Dr Nischalan Pillay (NP). Samples were excluded from nucleic acid 

extraction if they exhibited insufficient tumour cellularity (<20%) or excessive 

necrosis, as these factors could compromise sequencing quality. Each sample was 

systematically evaluated for tumour cellularity, percentage of viable tumour, and 

proportion of necrosis (Figure 2.3). 

 

2.3 Nuclei acid extraction 

For formalin-fixed paraffin-embedded (FFPE) tissue, 4 × 10 µm sections were cut 

from each tumour block and nucleic acids extracted using the truXTRAC FFPE total 

NA Ultra Kit – Column (Covaris) according to the manufacturer’s protocol. For each 

patient, both DNA and RNA were obtained from the same FFPE block, ensuring that 

whole-exome sequencing (WES) and RNA-seq data originated from the same 

physical tumour sample. Whole-genome sequencing (WGS) and NanoSeq analyses 

were performed on DNA extracted from fresh frozen tissue taken from the designated 

pre-, post-, recurrence-, or metastasis-radiotherapy sample as recorded. Matched 

germline DNA was isolated from the patient’s peripheral blood. 

 

2.4 Sequencing protocols 

DNA Sequencing: 

DNA samples were sent to Macrogen (Amsterdam) for library preparation using the 

Twist Human Core Exome library kit (Twist Bioscience). Quality control (QC) was 

performed, and samples meeting QC criteria were sequenced on an Illumina 

NovaSeq platform. Whole exome sequencing (WES) was conducted using 150 bp 

paired-end (PE) libraries to achieve a targeted mapped coverage of 250X. 

 

For germline whole-exome sequencing, normal DNA from matched blood samples 

underwent library preparation using the Twist Human Core Exome kit and were 
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sequenced on the Illumina NovaSeq platform with 150 bp paired-end reads at 50X 

mapped coverage. 

 

 

 

 

 

 

Figure 2.3. Histological assessment of tumour samples 

Representative histological sections demonstrating tumour cellularity and necrosis 
evaluation. Tumour samples were assessed for cellularity, percentage of viable 
tumour, and extent of necrosis, key factors influencing sequencing quality. The case 
shown was assessed as high tumour cellularity (~50%) with ~20% necrosis. 
(A) Low-power view of core biopsies demonstrating tumour architecture. (B) 
Medium-power view highlighting areas of tumour necrosis (upper left). (C) Medium-
power view showing tumour-stroma interaction and variability in tumour cellularity. 
(D) High-power view of a region with high tumour cellularity, with scattered admixed 
inflammatory cells. 
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RNA Sequencing: 

RNA was extracted from FFPE tissue using the truXTRAC FFPE total NA Ultra Kit – 

Column (Covaris). As expected for FFPE-derived material, RNA integrity numbers 

(RIN) were low, ranging from 1.1 to 2.3. Samples were sent to Macrogen 

(Amsterdam) for further quality control, where RNA quality was assessed using 

DV200 metrics (percentage of RNA fragments >200 nucleotides). Samples with 

DV200 >40% proceeded to library preparation using the TruSeq RNA Exome kit 

(Illumina) using 100ng of input RNA. Sequencing was performed on an Illumina 

NovaSeq 6000 S4 platform with 100 bp paired-end reads, generating ~50 million 

read pairs (~100 million total reads) per sample, providing sufficient depth for 

downstream transcriptomic analyses. No correlation was observed between RIN 

values and downstream expression data quality, but samples failing the DV200 

threshold were not sequenced. 

 

2.5 Alignment, variant calling, and annotation 

2.5.1 Computational Resources 

The alignment, variant calling, and generation of ensemble VCFs were performed on 

the UCL Myriad high-performance computing (HPC) cluster. The alignment stage 

used 32 CPU cores per job, while variant calling was performed with 8-core jobs. 

Java (v1.8.0_92) and Samtools (v1.9) were used across multiple stages, including 

alignment, variant calling, and panel of normals generation. 

2.5.2 Alignment and pre-processing 

Whole exome sequencing (WES) and whole genome sequencing (WGS) raw data 

in the form of fastq files were obtained from Macrogen. They were processed using 

the bcbio pipeline (Chapman, Kirchner et al. 2021), a community-developed 

bioinformatics framework for variant calling and analysis. The sequencing reads 

were aligned to the hg38 reference genome (1000g-20150219) using BWA-MEM 

(v0.7.17) (Li 2013), which is derived from the 1000 Genomes Project's release of 

hg38.  
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The alignment pipeline included duplicate marking (Picard v2.27.4), base quality 

score recalibration, and local realignment around indels using the Genome Atlas 

Toolkit - GATK (v4.2.6.1). Alignment parameters were optimised for paired-end 

sequencing, with multi-threading enabled (-t 8) for efficient processing. Quality 

control checks were further enhanced using Qualimap (v2.2.2d) to assess alignment 

metrics and sequencing depth. 

2.5.3 Variant calling 

Variant calling was conducted using a tumour-normal paired analysis approach to 

identify somatic mutations. The samples were processed with a configuration file 

specifying the use of three different variant callers: Mutect2 (GATK v4.2.6.1) 

(Benjamin, Sato et al. 2019), Strelka2 (v2.9.10) (Kim, Scheffler et al. 2018), and 

VardDict (v1.8.2) (Lai, Markovets et al. 2016). These tools were run in ensemble 

mode, requiring at least two variant callers to support a given mutation for inclusion 

in the final variant call set.  

 

Variant calling was restricted to the exonic regions defined by the Twist Bioscience 

Exome Capture (hg38) target regions (Twist_Exome_Target_hg38.bed) available 

from (https://www.twistbioscience.com/resources/data-files/ngs-human-core-

exome-panel-bed-file). 

 

2.5.4 Panel of Normals (PON) generation 

To improve the accuracy of somatic variant calling and reduce false positives, a 

Panel of Normals (PON) was generated using GATK Mutect2 (v4.2.5.0). Since the 

samples were derived from formalin-fixed paraffin-embedded (FFPE) tissue, they are 

prone to sequencing artefacts and technical noise. The PON helps to filter out 

recurrent sequencing artefacts, FFPE-induced damage, and germline variants that 

might otherwise be misclassified as somatic mutations in tumour samples.  

 

1. Mutect2 Variant Calling: 

• Each of the 54 normal samples was processed individually to generate 

normal VCFs. 
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• Variant calling used the hg38 reference genome and gnomAD (v2.1.1, af-

only-gnomad.hg38.vcf.gz). 

 

2. GenomicsDBImport: 

• Normal VCFs were combined into a GenomicsDB database using GATK 

GenomicsDBImport (v4.2.5.0), with intervals defined by the Twist 

Bioscience Exome Capture (hg38) target regions. 

 

3. Final PON Creation: 

• GATK CreateSomaticPanelOfNormals (v4.2.5.0) was used to generate a 

single PON VCF file for downstream somatic mutation filtering. 

 

2.5.5 Functional annotation 

Post-variant calling annotation was performed using Variant Effect Predictor 

(Ensembl-VEP, v104.3) (McLaren, Gil et al. 2016), which provides functional 

consequences for each variant. Additional annotation was carried out against ClinVar 

(2021-01-10) (Landrum, Lee et al. 2016) and dbSNP (v154-20210112) (Sherry, Ward 

et al. 2001). 

 

2.5.6 Quality control and filtering 

To ensure the reliability and accuracy of mutation analysis in WES and WGS data, 

stringent filtering criteria were applied to distinguish high-quality somatic mutations 

from sequencing artefacts and low-confidence calls. Given that the samples were 

derived from formalin-fixed paraffin-embedded (FFPE) tissue, filtering steps were 

necessary to mitigate common FFPE-induced artefacts. 

 

The first stage of filtering involved applying the PASS filters from each of the three 

variant callers, ensuring that only high-confidence variants were retained. To further 

eliminate potential sequencing artefacts, the DKFZ Bias Filter 

(https://github.com/DKFZ-ODCF/DKFZBiasFilter) was employed to exclude variants 

affected by strand bias or sequencing damage. Additionally, variants with a 
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frequency greater than 0.0004 in any gnomAD (v2.1.1) subpopulation were removed 

to focus on somatic mutations and exclude common polymorphisms.  

 

Post-filtering quality control was conducted using MultiQC (v1.13a) (Ewels, 

Magnusson et al. 2016) to aggregate reports from all processing steps, ensuring 

uniformity in sequencing depth, mapping quality, and variant calling accuracy. Three 

biopsy-derived WES samples failed this QC step and were removed from 

downstream analysis. 

 

2.5.7 Consensus and manual review 

For WES data, a consensus approach was implemented: a variant was retained if 

identified by at least two out of the three variant callers. Single nucleotide variants 

(SNVs) not included in the ensemble VCF underwent manual review using the 

Integrative Genomics Viewer (IGV) (Robinson, Thorvaldsdóttir et al. 2011), where 

visually validated variants were "rescued" and included in the final dataset. The 

column ensemble_or_rescue in the mutation data indicates whether a variant was 

included in the ensemble VCF ('e') or manually rescued ('r'). 

 

Given the lower frequency and complexity of insertions and deletions (indels), all 

indels identified by the mutation callers were manually reviewed using IGV to ensure 

accuracy. 

 

For WGS data, the same ensemble approach was used; however, due to the 

significantly higher number of variants, manual review was not conducted. Instead, 

only variants present in the ensemble VCF (i.e., identified by at least two of the three 

variant callers) were retained in the final dataset.  

 

2.5.8 Final filtering criteria 

After compiling the final list of ensemble and rescued mutations, additional criteria 

were applied to refine the dataset further: 
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• Coverage: A minimum depth of 20x was required for SNVs in both tumour and 

normal samples, while INDELs required a minimum depth of 30x. 

• Variant Allele Frequency (VAF): SNVs were required to have a tumour VAF of 

at least 5% and a normal VAF of no more than 1%. INDELs required a tumour 

VAF of at least 5% and a normal VAF of no more than 1%. 

• Read Counts: SNVs were retained if they had at least 4 alternate reads in the 

tumour sample and no more than 1 alternate read in the normal sample. INDELs 

required at least 5 alternate reads in the tumour sample and no more than 1 

alternate read in the normal sample. 

• Homopolymer Regions: Mutations in homopolymer regions were filtered out 

due to the increased likelihood of sequencing-induced artefacts in these 

repetitive sequences. 

• Mapping Quality: A minimum mapping quality (MAPQ) score of 60 (Phred-

scaled) was required for inclusion. 

• Directional Presence: Mutations had to be detected in both forward and reverse 

strands to rule out strand-specific artefacts. 

 

By implementing these stringent filtering steps, a high-confidence dataset of somatic 

mutations was generated, balancing sensitivity and specificity to ensure reliable and 

reproducible results.  

 

2.5.9 REVEL score annotation 

The final list of high-quality mutations was annotated with REVEL (Rare Exome 

Variant Ensemble Learner) scores, which predict the pathogenicity of missense 

mutations. REVEL is an ensemble-based tool that integrates multiple pathogenicity 

predictors, including SIFT, PolyPhen-2, MutationTaster, and CADD, to generate a 

consensus score (Ioannidis, Rothstein et al. 2016). 

 

Precomputed REVEL scores were downloaded from Zenodo 

(https://zenodo.org/records/7072866). The REVEL annotation file 

(revel_with_transcript_ids.txt, 6.5GB) was processed in R Studio in chunks to 



Chapter 5. Results 

 

81 

 

efficiently match variants based on chromosome, genomic position, reference allele, 

and alternate allele. 

 

2.6 COSMIC cancer genes 

The COSMIC Cancer Gene Census (v100) was used to identify and annotate 

cancer-related genes in this study. The gene list was obtained from the Catalogue of 

Somatic Mutations in Cancer (COSMIC) database, accessible at: 

https://cancer.sanger.ac.uk/cosmic/download/cosmic/v100/cancergenecensus  

 

2.7 Copy number analysis  

2.7.1 ASCAT 

Copy number alterations were analysed using ASCAT (v3.1.0) (Van Loo, Nordgard 

et al. 2010), a method designed to estimate tumour purity, ploidy, and allele-specific 

copy number from sequencing data. Since formalin-fixed paraffin-embedded (FFPE) 

samples can introduce technical biases, ASCAT was used to correct for such 

artefacts and infer accurate copy number states. This was performed on the UCL 

Myriad HPC cluster using R (v4.2.0). 

 

Preprocessing steps 

• Tumour and matched normal BAM files were processed using ASCAT’s 

ascat.prepareHTS function. 

• Allele-specific log R ratios (LogR) and B allele frequencies (BAF) were 

extracted for each sample. 

Reference files included: 

• hg38 reference genome 

• Twist Exome Capture target regions 

• Battenberg allele and loci indices 

• Problematic loci exclusion file 

 

 

https://cancer.sanger.ac.uk/cosmic/download/cosmic/v100/cancergenecensus
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ASCAT segmentation and Copy Number estimation 

• LogR and BAF values were corrected for GC content and replication timing 

biases. 

• ASCAT segmentation (ascat.aspcf) was performed to identify breakpoints in 

copy number alterations, applying a penalty of 70 to reduce over-segmentation. 

• Final copy number profiles were generated using ascat.runAscat, estimating 

tumour ploidy and purity. 

 

2.7.2 Copy Number analysis methodology 

ASCAT segmentation files were processed alongside sample metadata, with 

analysis restricted to exonic regions based on Twist Bioscience Exome Capture 

(hg38). Log2 copy number values from the segmentation files were used to quantify 

deviations from the diploid state. The primary objectives were to quantify the fraction 

of the genome altered (FGA), the number of breakpoints, and the total number of 

copy number alterations (CNAs). 

 

2.7.2.1 Fraction of Genome Altered (FGA) Calculation 

To assess genomic instability, FGA was calculated using two complementary 

methods: 

 

Method 1: FGA Based on Log2 Copy number alteration (log2 CNV) 

This method identifies genomic regions where the total copy number deviates 

significantly from the diploid state. The log₂ CNV was calculated as: 

 

 

 

Segments were considered altered if log₂ CNV exceeded ±0.2, indicating a 

substantial deviation from the expected diploid copy number (2 copies per region). 

FGA was then computed as: 



Chapter 5. Results 

 

83 

 

 

 

 

This method primarily captures copy number gains and losses based on deviations 

from the expected diploid state. 

 

Method 2: FGA based on Copy Number deviations and allele-specific 

imbalances 

This method I developed extends Method 1 by incorporating allele-specific 

imbalances, which can indicate loss of heterozygosity (LOH) and regions of allelic 

imbalance. Segments were considered altered if either: 

1. Total copy number ≠ 2, indicating a gain or loss relative to the diploid state. 

2. Major and minor allele counts differed, signifying allelic imbalance. 

 

FGA (Method 2) was calculated using a similar formula to Method 1, but with broader 

criteria for defining altered segments, incorporating both copy number changes and 

allele-specific imbalances. 

 

 

 

2.7.2.2 Additional Copy Number metrics – breakpoints and CNAs 

Breakpoints: The number of transitions between adjacent copy number segments 

within each sample. A breakpoint is defined as a change in copy number state within 

a chromosome, representing genomic rearrangements or instability. The total 

number of breakpoints was computed per sample by summing the transitions across 

all chromosomes. 

 

Total CNAs: The total number of distinct copy number alteration (CNA) events 

identified in each sample. A CNA was considered unique based on the chromosome, 

start position, and end position of each segment.  
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2.7.2.3 Statistical analysis 

Pairwise comparisons of pre- and post-radiotherapy samples were conducted using 

two-tailed t-tests. 

 

2.8 Nanoseq 

To achieve higher sensitivity in detecting low-frequency mutations, I used NanoSeq, 

a duplex sequencing approach designed to minimise sequencing errors and improve 

the resolution of somatic mutation detection (Abascal, Harvey et al. 2021). Unlike 

conventional whole-genome sequencing (WGS) or whole-exome sequencing (WES), 

which are often limited by sequencing errors and low sensitivity for detecting rare 

variants, NanoSeq employs duplex sequencing which is an error-correction 

technique involving sequencing both strands of a DNA molecule independently. This 

method significantly reduces background noise, achieving an error rate of fewer than 

five errors per billion base pairs which is two orders of magnitude lower than typical 

somatic mutation loads. This allows for accurate detection of low-frequency single 

nucleotide variants (SNVs) and small insertions and deletions (indels), particularly in 

samples with low tumour purity or minimal mutational burden. 

 

DNA from fresh frozen tumour tissue samples from five separate patients, each with 

paired pre- and post-radiotherapy specimens were sent to the Martincorena group 

at the Wellcome Trust Sanger Institute, where they underwent sequencing following 

the NanoSeq protocol. The resulting variant call format (VCF) files and somatic 

mutation counts were returned for downstream analysis. I subsequently performed 

mutational signature analysis on these data to characterise the mutation patterns 

and assess genomic changes induced by radiotherapy. 

 

2.9 Mutational signature analysis 

Mutational signatures were identified using SigProfilerExtractor (v1.1.24), applying 

non-negative matrix factorization (NMF) to decompose mutation profiles into their 

underlying processes based on trinucleotide context. Analyses were performed 
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using Python (v3.10.12), with SBS96 and ID83 mutational contexts extracted relative 

to the GRCh38 reference genome (Alexandrov, Nik-Zainal et al. 2013). 

 

2.10  Processing of RNAseq data 

Raw RNAseq data were processed using bcbio-nextgen, aligning reads to hg38 with 

STAR and quantifying transcript expression and generating counts with Salmon 

(v1.9.0) (Patro, Duggal et al. 2017). Fusion transcripts were identified using 

EricScript (Benelli, Pescucci et al. 2012). 

 

2.11  Differential Gene Expression analysis 

Differential gene expression analyses were performed using DESeq2 (v1.42.1) 

(Love, Huber et al. 2014) in R (v3.2.1.). The analysis in the pre vs post-radiotherapy 

comparison controlled for inter-patient variability by including Patient ID and 

Histology as covariates in the model. Raw transcript counts were obtained from 

Salmon (v1.9.0) quantification and processed using tximport (v1.30.0) to aggregate 

transcript-level estimates to gene-level counts. 

 

Data pre-processing steps included: 

• Filtering out genes with fewer than 10 counts in at least three samples to 

remove low-expression genes. 

• Variance stabilising transformation (VST) for quality control. 

• Principal Component Analysis (PCA) and Uniform Manifold Approximation 

and Projection (UMAP) to assess sample clustering using the inbuilt plotPCA 

function from DESeq2 and umap  (v0.2.10.0) R packages respectively. 

Differential expression analysis was conducted using a paired Wald test with a 

design formula of ~ Histology + Patient_ID + Sample_type, comparing post-

radiotherapy to pre-radiotherapy samples.  

 

Log₂ fold change shrinkage was applied using the apeglm method (Zhu, Ibrahim et 

al. 2018) to reduce noise in low-expressed genes. Adjusted p-values were computed 
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using the Benjamini-Hochberg correction, and significant genes were defined as 

those with: 

• adjusted p-value (padj) < 0.05  

• Log₂ fold change > ± 1 

 

2.12  Gene Set Enrichment Analysis  

To identify biological pathways enriched in differentially expressed genes, GSEA was 

performed using fgsea (v1.28.0) in R (Korotkevich, Sukhov et al. 2016). The ranked 

gene list was generated based on signed -log10(p-value) weighted by log₂ fold 

change, prioritising both significance and effect size. The analysis used Hallmark 

gene sets from the Molecular Signatures Database  (Liberzon, Birger et al. 2015). 

Pathways were considered significantly enriched if: 

 

• Adjusted p-value (padj) < 0.05. 

• Normalised Enrichment Score (NES) > 0 (upregulated) or NES < 0 

(downregulated). 

 

2.13  Gene Ontology analysis 

Gene Ontology (GO) enrichment analysis for Biological Processes (BP) was 

performed in R (v4.3.1) using clusterProfiler (v4.10.1) (Yu, Wang et al. 2012), 

identifying overrepresented pathways among differentially expressed genes. Genes 

with adjusted p-value (padj) < 0.05 were analysed, with separate tests for 

upregulated and downregulated genes. Benjamini-Hochberg correction was applied. 

 

2.14  PROGENy pathway activity analysis 

To infer pathway activity from gene expression data, PROGENy (v1.24.0) (Schubert, 

Klinger et al. 2018) was used to estimate pathway scores based on a set of 

predefined pathway-responsive genes. Transcript abundance was quantified using 

Salmon (v1.9.0) to generate TPM values. These values were then transformed using 
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variance stabilising transformation (VST) from DESeq2 (v1.42.1) to normalise 

expression data. 

 

PROGENy scores were computed for 14 canonical signalling pathways. To account 

for multi-region sampling, expression values from multiple regions of the same 

tumour were averaged (mean) before pathway inference. Statistical comparisons 

were performed between progressors and responders, using Wilcoxon rank-sum 

tests to assess pathway activity differences with significance thresholds set at p < 

0.05. 

 

2.15  Immune cell inference with xCell 

Immune cell proportions were estimated using xCell (v1.1.0) (Aran, Hu et al. 2017), 

a gene signature-based deconvolution method. Transcript abundance was quantified 

using Salmon (v1.9.0), and TPM values were normalised using variance stabilising 

transformation (VST) from DESeq2 (v1.42.1). To account for multi-region sampling, 

expression values from multiple tumour regions were averaged (mean) before 

deconvolution. 

 

Immune cell compositions were compared between paired pre- and post-

radiotherapy samples, as well as between progressors and responders. Wilcoxon 

signed-rank tests were used to assess differences between conditions, with 

statistical significance defined as adjusted p < 0.05 (Benjamini-Hochberg correction). 

 

2.16  Gene expression-based modelling of disease 

progression 

To develop a gene expression-based model for predicting disease progression 

following radiotherapy, transcript abundance was quantified using Salmon (v1.9.0), 

and variance stabilising transformation (VST) from DESeq2 (v1.42.1) was applied. 

Only post-radiotherapy samples that passed quality control were included. 
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Feature selection was performed using LASSO (Least Absolute Shrinkage and 

Selection Operator) regression (Tibshirani 2018), implemented via the glmnet 

package (v4.1.8) in R (Hastie and Qian 2014). The optimal regularisation parameter 

(lambda) was determined through 10-fold cross-validation, selecting genes most 

predictive of progression. A Random Forest (RF) classifier was then trained on the 

selected genes using caret (v6.0.94) (Kuhn, Wing et al. 2020) and randomForest 

(v4.7.1.2) (Liaw and Wiener 2002), with stratified 10-fold cross-validation to evaluate 

model performance. 

 

2.17  Data management and storage 

All data generated in this study is securely stored on UCL servers, with access 

restricted to members of Dr Nischalan Pillay’s research group. Data management 

and sharing were conducted in accordance with the UCL Research Data Policy, 

ensuring compliance with institutional and ethical guidelines. The full policy can be 

accessed at: 

https://rdr.ucl.ac.uk/articles/presentation/UCL_Research_Data_Policy_2024/25579

800/1?file=45790287  

 

 

 

 

 

 

 

  

https://rdr.ucl.ac.uk/articles/presentation/UCL_Research_Data_Policy_2024/25579800/1?file=45790287
https://rdr.ucl.ac.uk/articles/presentation/UCL_Research_Data_Policy_2024/25579800/1?file=45790287
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Chapter 3. Genomic responses to neoadjuvant 

radiotherapy in soft tissue sarcomas. 

3.1 Introduction 

Radiotherapy (RT) is a key component of multimodal therapy for soft tissue 

sarcomas (STS), improving local disease control and enabling limb-sparing surgery. 

However, the molecular consequences of RT on tumour genomes remain poorly 

defined. While previous research has described general mutational processes 

associated with radiation exposure, there is limited understanding of how 

neoadjuvant RT specifically impacts primary STS. This chapter aims to address this 

knowledge gap by characterising genomic alterations in pre- and post-radiotherapy 

STS samples, focusing on mutational burden, copy number changes, and mutational 

signatures. 

 

Cohort overview 

This genomic study includes 56 patients treated at the London Sarcoma Service, 

encompassing 12 different histological subtypes of STS. Tumour samples were 

collected pre- and/or post-RT, providing a unique opportunity to assess direct 

genomic changes induced by therapy. Whole exome sequencing (WES) and Whole 

genome sequencing (WGS) was used to analyse broad genomic alterations, while 

NanoSeq, a high-sensitivity sequencing approach, was applied to detect low-

frequency mutations, enhancing resolution beyond traditional WES. 

 

Objectives of this chapter 

This chapter specifically addresses the following questions: 

• What is the mutational burden of pre- and post-radiotherapy STS samples? 

• Are there specific mutational signatures enriched in post-radiotherapy samples, 

indicative of RT-induced DNA damage? 

• Does RT induce copy number alterations (CNAs), and do these changes vary by 

histological subtype? 

• How do sequencing approaches (WES vs. NanoSeq) compare in capturing these 

RT-induced genomic changes? 
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By integrating both bulk sequencing data and high-sensitivity targeted sequencing, 

this chapter aims to distinguish therapy-driven mutations from pre-existing tumour-

intrinsic alterations. 

 

Structure of this chapter 

The chapter begins with an analysis of the baseline mutational landscape of pre-

treatment STS samples, contextualising them against prior large-scale sarcoma 

genomic studies (e.g., TCGA, MSKCC cohorts). This is followed by comparative 

analyses of somatic mutations in pre- and post-RT samples, including single 

nucleotide variants (SNVs), small insertions/deletions (indels), and their ratios. Copy 

number alterations (CNAs) are then assessed across the cohort, with a particular 

focus on subtype-specific responses to RT. Finally, mutational signature analysis is 

performed, leveraging both WES and NanoSeq data to identify potential RT-specific 

mutagenic processes. 
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3.2 The mutational landscape of the London Sarcoma Service 

cohort.  

In this section I characterise the single nucleotide variants (SNVs) and 

insertion/deletion (indel) mutations within this London Sarcoma Service (LSS) cohort 

of soft tissue sarcomas. I begin with quantifying the tumour mutational burden across 

the cohort and then move on to describing both the frequency and distribution of 

somatic mutations across the subtypes examined with particular attention paid to 

known cancer genes and relating the findings in this study to what has previously 

been shown in the current literature. 

 

3.2.1 Tumour mutational burden varies across and within different 

subtypes 

A total of 70 samples, representing 56 unique patients, underwent somatic mutation 

analysis. This comprised 65 WES and 5 WGS samples. Following the stringent 

criteria outlined in the methods, a total of 21,510 mutations were identified across 70 

samples. The median number of SNVs and INDELs called for the 65 WES samples 

was 33 and 2, and for the 5 WGS samples was 3873 and 145 respectively.  

 

The tumour mutational burden (TMB) was calculated for the samples by normalising 

the number of mutations detected to the size of the genomic region sequenced. For 

the WES samples, the TMB was determined by dividing the total number of 

mutations by the total exome size. Specifically, this was the amount that was 

sequenced and was calculated using the sum of the targeted regions listed in the 

Twist Exome Target hg38 bed file, which is approximately 33 Mb. For WGS samples, 

the TMB was calculated by dividing the total number of mutations by the entire 

genome size, which is approximately 3200 Mb. The results from both WES and WGS 

samples were then combined. The TMB ranged between 0.5 and 1.7 mutations/Mb 

with a median TMB across the samples of 1.07 mutations/Mb (Figure 3.1). A TCGA 

analysis of 206 soft tissue sarcomas representing 6 different subtypes found an 

average TMB of 1.06 per Mb (2017), therefore my results are consistent with this 

study.  
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Figure 3.1. Distribution of Tumour Mutational Burden by sarcoma subtype. 

This scatter plot shows the distribution of tumour mutational burden (TMB) across 
various sarcoma subtypes, measured in mutations per megabase (Mut/Mb) and 
displayed on a logarithmic scale. Each dot represents an individual sample, with 
colours indicating different sarcoma subtypes. Red horizontal lines indicate the 
median TMB for each subtype. TMB values were normalised to the sequenced 
genomic region size, with whole-exome sequencing (WES) samples normalised to 
the exome and whole-genome sequencing (WGS) samples to the entire genome. 
Subtypes are ordered by decreasing median TMB, from left to right: MFS 
(Myxofibrosarcoma, 1.7), pLMS (Pleomorphic Leiomyosarcoma, 1.4), pLPS 
(Pleomorphic Liposarcoma, 1.3), ddLPS (Dedifferentiated Liposarcoma, 1.1), UPS 
(Undifferentiated Pleomorphic Sarcoma, 1.0), CCS (Clear Cell Sarcoma, 0.9), SpCS 
(Spindle Cell Sarcoma, 0.8), mLPS (Myxoid Liposarcoma, 0.6), MEC (Myoepithelial 
Carcinoma, 0.6), ASPS (Alveolar Soft Part Sarcoma, 0.6), EMC (Extraskeletal 
Myxoid Chondrosarcoma, 0.5), and SS (Synovial Sarcoma, 0.5).  
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Most of the tumour samples exhibit TMB values that are closely clustered around the 

median value, indicating a relatively consistent mutational burden within most 

histological subtypes. However, there are notable exceptions where outliers 

significantly deviate from the median. Specifically, myxofibrosarcoma (MFS) and 

undifferentiated pleomorphic sarcoma (UPS) exhibit the most significant deviations 

from the median TMB, with maximum values reaching 13.6 and 15.8 mutations per 

megabase (Mut/Mb) respectively. These differences of 11.9 Mut/Mb from the median 

for MFS and 14.8 Mut/Mb for UPS indicate substantial variability within these 

subtypes, driven by outlier tumour samples with exceptionally high mutational 

burdens. Spindle cell sarcoma (NOS) (which is not a specific subtype) also shows 

notable variability, with a maximum TMB of 3.44 Mut/Mb, resulting in a difference of 

2.59 Mut/Mb from the median, though this is less pronounced compared to the 

variability observed in MFS and UPS. In contrast, other subtypes display minimal 

deviations from the median, indicating a more uniform TMB across samples.  
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3.2.2 Identification of somatic mutations within known cancer genes 

I next aimed to investigate the specific mutations occurring in known cancer-related 

genes within these sarcoma samples. Figure 3.2 shows an oncoplot, which 

represents the mutation profiles across different samples and sarcoma subtypes. 

 

The oncoplot was constructed by filtering the high-quality mutation dataset 

comprising the identified 21,510 mutations from 56 patients to include only those 

mutations found in genes known to be associated with cancer. Using the COSMIC 

cancer gene list (version 100) (Sondka, Bamford et al. 2018) which comprises 581 

genes known to be associated with cancer to filter this dataset, I identified 530 

mutations across 45 samples. Variants with less impactful on protein function such 

as silent mutations and mutations in non-coding regions (those occurring in regions 

labelled as Intron, 3'UTR, 5'UTR, 3'Flank, and 5'Flank) were excluded to focus on 

mutations that are more likely to have functional consequences. This resulted in a 

final set of 130 mutations seen in 51 samples representing 41 unique patients. 
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Figure 3.2 Oncoplot of somatic mutations in known cancer genes. 

This heatmap visualises the different types of somatic mutations identified within the 
COSMIC cancer genes. Each column represents an individual sample, while each 
row corresponds to a specific gene. The samples are annotated at the top with their 
Tumour Mutational Burden (TMB), histological subtype, and sample type, as 
indicated in the legend. The genes are ordered by in decreasing frequency of 
mutations across all samples.  
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3.2.2.1 Analysis of missense mutations 

Most of the mutations were missense mutations, with 94 instances identified, making 

it the most common type of mutation observed. Missense mutations involve a single 

nucleotide change that result in the substitution of one amino acid for another in the 

protein product, potentially altering the function of the protein. This predominance of 

missense mutations is consistent with expectations, as these mutations are the most 

common type of somatic mutations found in cancer (Vogelstein, Papadopoulos et al. 

2013). The most common genes with missense mutations in this cohort were TP53, 

PIK3CA, MTOR with 5, 4, and 3 instances identified respectively. 

 

To evaluate the functional relevance of the missense mutations observed in this 

cohort, the Rare Exome Variant Ensemble Learner (REVEL) (Ioannidis, Rothstein et 

al. 2016) was employed. REVEL is a machine learning-based tool that integrates 

scores from multiple pathogenicity prediction methods, including SIFT (Kumar, 

Henikoff et al. 2009), PolyPhen-2 (Adzhubei, Schmidt et al. 2010), MutationAssessor 

(Reva, Antipin et al. 2011), and others. It is specifically designed to predict the 

pathogenicity of missense mutations based on their likelihood to affect protein 

function. The REVEL score ranges from 0 to 1, with higher scores indicating a greater 

likelihood of pathogenicity. Scores ≥0.75 were classified as “High,” 0.5–0.74 as 

“Moderate,” and <0.5 as “Likely Benign,” according to thresholds previously 

established in the literature (Garcia, de Andrade et al. 2022, Hopkins, Wakeling et al. 

2023). 

 

Using REVEL to analyse and categorise the missense mutations identified within the 

COSMIC cancer genes in this cohort, 14 mutations were categorised as "High" 

pathogenicity (Table 3.1) and 16 as "Moderate" pathogenicity (Table 3.2). The 

remaining mutations were classified as "Likely Benign".  

 
To determine whether these mutations had been previously reported in published 

studies, I queried the cBioPortal for Cancer Genomics. cBioPortal (Cerami, Gao et 

al. 2012) is a publicly accessible platform offering integrative visualization and 

analysis tools for large-scale cancer genomics datasets. Using this platform, I cross-

referenced the mutated genes identified in this cohort against all sarcoma datasets, 
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including TCGA and MSKCC studies (Barretina, Taylor et al. 2010, 2017, Gounder, 

Agaram et al. 2022, Nacev, Sanchez-Vega et al. 2022), to evaluate whether the 

mutations were previously reported or represented novel findings within their 

respective histological subtypes.  
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Table 3.1. High pathogenicity missense mutations 

Missense mutations classified as "High" pathogenicity by REVEL (scores ≥0.75). In 
the Gene column, bold entries represent novel mutations. Numbers in parentheses 
indicate the frequency of mutations in that gene within the corresponding tumour 
type, based on the cBioPortal database. Sample types include Pre RT (pre-
radiotherapy), Post RT (post-radiotherapy), and Recurrence/Metastasis. 
 

Patient ID Histology Sample type Gene 

32 Alveolar soft part sarcoma Metastasis GNAQ, TP53 (4/66) 

6 Myxofibrosarcoma Pre RT CBLB, PAX5 (1/194)  

12 Myxofibrosarcoma Pre RT FGFR1  

44 Myxofibrosarcoma Pre RT NOTCH1 (1/194) 

54 Myxofibrosarcoma Pre RT TP53 (66/194) 

55 Myxofibrosarcoma Pre RT CACNA1D (1/194) 

53 Myxoid liposarcoma Post RT TP53 (25/183) 

25 Pleomorphic 

leiomyosarcoma 

Pre RT TP53 (677/1228) 

58 Spindle cell sarcoma (NOS) Recurrence MSN 

40 Undifferentiated 

pleomorphic sarcoma 

Pre RT HOXC13, RAF1 (1/590), 

TP53 (267/590) 
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Table 3.2. Moderate pathogenicity missense mutations 

Missense mutations classified as "Moderate" pathogenicity by REVEL (scores 0.5–
0.74). In the Gene column, bold entries represent novel mutations. Numbers in 
parentheses indicate the frequency of mutations in that gene within the 
corresponding tumour type, based on the cBioPortal database. Sample types 
include Pre RT (pre-radiotherapy), Post RT (post-radiotherapy), and 
Recurrence/Metastasis. 
 

Patient ID Histology Sample type Gene 

32 Alveolar soft part sarcoma Metastasis ACVR2A 

61 Clear cell sarcoma Metastasis ERBB3 

8 Myxofibrosarcoma Post RT ZFHX3 (4/194) 

16 Myxofibrosarcoma Pre RT AKT1 

17 Myxofibrosarcoma Pre RT LMNA 

48 Myxofibrosarcoma Post RT ATRX (22/194) 

50 Myxofibrosarcoma Post RT KMT2C (4/194) 

24 Pleomorphic leiomyosarcoma Pre RT JAK3 (1/1228) 

45 Pleomorphic leiomyosarcoma Pre RT FOXP1 (4/1228), 

SLC34A2  

58 Spindle cell sarcoma Recurrence FGFR1 (2/590), 

PIK3CA (17/590) 

1 Synovial sarcoma Post RT CTNNB1 (10/353) 

20 Synovial sarcoma Pre RT SMAD3 

40 Undifferentiated pleomorphic 

sarcoma 

Pre RT BCL9L (1/590), 

FBXW7  
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High pathogenicity mutations, including those in CACNA1D, NOTCH1, PAX5, RAF1, 

and TP53 were found to have been previously reported in their respective subtypes 

in cBioPortal, reinforcing their clinical and biological relevance (Table 3.1). For 

example, TP53 mutations were frequently observed across multiple subtypes, 

consistent with its role as a key tumour suppressor gene. However, novel mutations 

were also identified in this analysis, including GNAQ in alveolar soft part sarcoma, 

CBLB and FGFR1 in myxofibrosarcoma, MSN in spindle cell sarcoma, and HOXC13 

in undifferentiated pleomorphic sarcoma, highlighting potentially unexplored 

pathogenic mechanisms in these tumours. 

 

Moderate pathogenicity mutations similarly included both previously reported and 

novel findings. Reported mutations included ATRX, BCL9L, CTNNB1, FGFR1, 

FOXP1, JAK3, KMT2C, PIK3CA, and ZFHX3 which were detected in their respective 

tumour subtypes (Table 3.2). Novel mutations identified in this category included 

ACVR2A in alveolar soft part sarcoma, ERBB3 in clear cell sarcoma, AKT1 and 

LMNA in myxofibrosarcoma, SLC34A2 in pleomorphic leiomyosarcoma, SMAD3 in 

synovial sarcoma, and FBXW7 in undifferentiated pleomorphic sarcoma.  

 

These findings highlight the well-documented heterogeneity of soft tissue sarcomas, 

as evidenced by the identification of both well-characterised mutations, such as 

TP53, and novel mutations, including HOXC13 and GNAQ. By integrating REVEL 

scores with publicly available cancer genomics datasets, such as those in cBioPortal, 

this analysis provides a practical framework for prioritising mutations based on 

predicted pathogenicity. High pathogenicity mutations, such as those in TP53 and 

NOTCH1, are well-known to drive cancer progression and likely have direct 

functional consequences. In contrast, moderate pathogenicity mutations, such as 

those in ATRX and KMT2C, may play a contributory role, potentially interacting with 

other genomic alterations to influence tumour behaviour. Experimental validation 

would be required to elucidate the functional significance of these missense 

mutations and better understand their roles in sarcoma pathogenesis. 
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3.2.2.2 Analysis of frameshift and nonsense mutations 

In addition to missense mutations, there were 13 instances each of frameshift 

deletions and nonsense mutations. Frameshift deletions, which occur when 

nucleotides are deleted from the DNA sequence in numbers that are not multiples of 

three, result in a shift of the amino acid codon reading frame, often leading to a 

truncated, non-functional protein. Nonsense mutations introduce a premature stop 

codon into the DNA sequence, also resulting in a truncated protein. Both types of 

mutations are typically associated with loss of function and are frequently observed 

in tumour suppressor genes. As in this cohort, frameshift deletions were identified in 

the well-known tumour suppressor genes ATRX, CDKN2A, RB1, and TP53. 

Nonsense mutations were identified in the tumour suppressor genes APC, ATRX, 

HNF1A, PTEN, SMARCA4, and TP53.  

 

There were also smaller numbers of other mutation types: frameshift insertions (2 

instances - FOXO3, and TP53), in-frame deletions (1 instance - EP300), in-frame 

insertions (1 instance - COL1A1), splice region mutations (3 instances – ARNT, and 

ERBB4), and splice site mutations (3 instances - KMT2D, and PTCH1). Frameshift 

insertions, like deletions, can cause significant disruption to the resulting protein, 

while in-frame deletions and insertions result in the addition or removal of amino 

acids without altering the overall reading frame, which may or may not affect protein 

function depending on the location and context. Splice region and splice site 

mutations affect the process by which introns are removed from pre-mRNA, 

potentially leading to the inclusion of intronic sequences in the mRNA or the 

exclusion of exonic sequences, which can have an adverse effect on the resulting 

protein. 
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3.2.2.3 Recurrently mutated genes in the LSS cohort 

Analysis of the LSS cohort identified 17 genes that were recurrently mutated in more 

than one patient. This includes missense mutations with any REVEL score. Table 

3.3 provides a summary of these genes, including the specific sarcoma subtypes 

affected and the number of patients in which each gene was mutated. The most 

frequently mutated genes were TP53, ATRX, and PIK3CA, which were found to be 

mutated in 9, 4, and 4 patients, respectively. 

 

TP53 was found to be mutated across several sarcoma subtypes, including 

pleomorphic liposarcoma, myxoid liposarcoma, pleomorphic leiomyosarcoma, 

undifferentiated pleomorphic sarcoma, and myxofibrosarcoma. These findings are 

consistent with those from a large study performed using the MSK IMPACT targeted 

sequencing (Zehir, Benayed et al. 2017) panel on 2,138 sarcomas. They reported 

TP53 mutations in 68% of pleomorphic liposarcoma cases, 3% of myxoid 

liposarcoma cases, 45% of pleomorphic leiomyosarcoma cases, 43% of 

undifferentiated pleomorphic sarcoma cases, and 26% of myxofibrosarcoma cases 

(Nacev, Sanchez-Vega et al. 2022). In their cohort of 13 alveolar soft part sarcomas, 

none had a TP53 mutation. This tumour is typically caused by a ASPSCR1::TFE3 

fusion (Sicinska, Kola et al. 2024) . In the LSS cohort the TP53 mutation was 

identified only in the metastasis sample but not in the primary tumour.  

 

Similarly, ATRX mutations in the LSS cohort were identified in myxofibrosarcoma 

and undifferentiated pleomorphic sarcoma, which is in line with the same study that 

found ATRX mutations in 10% of myxofibrosarcoma cases and 18% of 

undifferentiated pleomorphic sarcoma cases (Nacev, Sanchez-Vega et al. 2022). 

Both TP53 and ATRX have also been found to be recurrently mutated in 27 and 38% 

respectively of a cohort of 76 undifferentiated pleomorphic sarcomas (Steele, 

Tarabichi et al. 2019) from the London Sarcoma Service.   
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Table 3.3. COSMIC cancer genes mutated in multiple patients across cohort. 

This table lists the COSMIC cancer-related genes that were found to be mutated in 
more than one patient across the different sarcoma subtypes. Alveolar Soft Part 

Sarcoma (ASPS), Clear Cell Sarcoma (CCS), Dedifferentiated Liposarcoma (ddLPS), 
Extraskeletal Myxoid Chondrosarcoma (EMC), Myoepithelial Carcinoma (MEC), 
Myxofibrosarcoma (MFS), Myxoid Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma (pLMS), 
Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS), 
Undifferentiated Pleomorphic Sarcoma (UPS). 

 

Gene Histological subtype(s) No. of 
patients 

TP53 pLPS, mLPS, pLMS, ASPS, UPS, 
MFS  

9 

ATRX MFS, UPS 4 

PIK3CA mLPS , SpCS, CCS 4 

ACVR2A ASPS, UPS 2 

BCR MFS, mLPS 2 

CACNA1
D 

MFS 2 

CREBBP MEC, mLPS 2 

ERBB4 pLPS, MFS 2 

FBXW7 EMC, UPS 2 

FGFR1 MFS, SpCS 2 

KMT2D UPS, SpCS 2 

LRP1B UPS, MFS 2 

NOTCH1 ASPS, MFS 2 

NTRK3 pLPS, mLPS 2 

PAX5 MFS, pLMS 2 

PREX2 MFS 2 

ROS1 MFS, UPS 2 
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PIK3CA mutations were observed in myxoid liposarcoma, spindle cell sarcoma, and 

clear cell sarcoma. Likewise PIK3CA mutations were present in 27% of myxoid 

liposarcoma cases and 5% of spindle cell sarcoma cases of the MSK IMPACT study 

(Nacev, Sanchez-Vega et al. 2022). Unlike in this cohort, they did not report a 

PIK3CA mutation in their cohort of 16 clear cell sarcomas. 

 

3.2.2.4 Somatic mutations identified in each histological subtype 

Table 3.4 summarises the COSMIC cancer-related genes mutated within each 

histological subtype, along with the number of patients affected for each gene. The 

data highlight both shared mutations within subtypes and unique mutations in 

individual cases. It is evident that some tumour subtypes harbour a greater number 

of somatic mutations within cancer genes compared to others, even after accounting 

for differences in sample sizes across subtypes. 

 

For instance, myxofibrosarcoma (MFS) exhibited a diverse range of mutations 

across 43 different cancer-related genes, with ATRX, CACNA1D, PREX2, and TP53 

being mutated in 3, 2, 2, and 2 patients, respectively. Similarly, undifferentiated 

pleomorphic sarcoma (UPS) showed mutations in 21 different cancer genes, with 

TP53 mutations found in 2 patients. These findings suggest that MFS and UPS may 

have a more heterogeneous mutational landscape, potentially contributing to their 

variable clinical behaviour and treatment responses. 
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Table 3.4. COSMIC cancer genes mutated in each sarcoma subtype 

This table presents a detailed overview of the cancer-related genes that were 
mutated in each sarcoma subtype, along with the number of different patients in 
which each gene was mutated shown in parenthesis. Genes highlighted in bold are 
mutated in multiple patients. 
 

Subtype No. of 
Patients 

Genes (No. of Patients) 

Myxofibrosarcom
a 

18 ATRX (3), CACNA1D (2), PREX2 (2), TP53 
(2), AKT1 (1), APC (1), BCR (1), CALR (1), 
CBLB (1), CDKN2A (1), CHD4 (1), EIF3E (1), 
EP300 (1), ERBB4 (1), FCRL4 (1), FGFR1 (1), 
HLF (1), HMGA2 (1), HNF1A (1), IKBKB (1), 
KDR (1), LMNA (1), LRP1B (1), MED12 (1), 
MUTYH (1), NOTCH1 (1), NUP214 (1), PALB2 
(1), PAX5 (1), PDE4DIP (1), PTCH1 (1), PTEN 
(1), QKI (1), RB1 (1), RNF213 (1), ROS1 (1), 
RPL10 (1), RXRA (1), SND1 (1), STAG2 (1), 
TRIP11 (1), WT1 (1), ZFHX3 (1) 

Synovial sarcoma 4 CAMTA1 (1), COL1A1 (1), CTNNB1 (1), 
NTRK1 (1), SMAD3 (1) 

Myxoid 
Liposarcoma 

4 PIK3CA (2), TP53 (2), BCR (1), CREBBP (1), 
NTRK3 (1), RBM10 (1),  

Pleomorphic 
Leiomyosarcoma 

3 AR (1), ARNT (1), ELK4 (1), ERG (1), FOXO3 
(1), FOXP1 (1), JAK3 (1), PAX5 (1), PTPN13 
(1), SLC34A2 (1), SMARCA4 (1), TBL1XR1 
(1), TP53 (1) 

Pleomorphic 
Liposarcoma 

3 ERBB4 (1), FBXO11 (1), IRS4 (1), MUC1 (1), 
NTRK3 (1), TP53 (1) 

Extraskeletal 
Myxoid 
Chondrosarcoma 

2 ETV6 (1), FBXW7 (1) 

Spindle cell 
sarcoma 

2 APOBEC3B (1), FGFR1 (1), KMT2D (1), MSN 
(1), PIK3CA (1), PRDM16 (1), PTK6 (1) 

Undifferentiated 
Pleomorphic 
Sarcoma 

2 TP53 (2), ACVR2A (1), ATRX (1), AXIN2 (1), 
BCL9L (1), BRCA1 (1), DNMT3A (1), FBXW7 
(1), HOXC13 (1), KDM5C (1), KLF6 (1), 
KMT2D (1), LATS2 (1), LRP1B (1), NCOR2 
(1), NF1 (1), PPFIBP1 (1), PTPRC (1), RAF1 
(1), ROS1 (1), SRC (1) 

Alveolar Soft Part 
Sarcoma 

1 ACVR2A (1), NOTCH1 (1), TP53 (1) 

Clear Cell 
Sarcoma 

1 ERBB3 (1), MTOR (1), PIK3CA (1), RNF43 (1) 

Myoepithelial 
Carcinoma 

1 CREBBP (1) 
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In contrast, subtypes such as myoepithelial carcinoma (MEC), extraskeletal myxoid 

chondrosarcoma (EMC), and alveolar soft part sarcoma (ASPS) had fewer mutated 

cancer-related genes (1, 2, and 3 genes, respectively). This observation suggests a 

more limited role for single nucleotide variants (SNVs) and small insertions or 

deletions (Indels) as potential driver mutations in these tumour types. Notably, 

subtypes such as synovial sarcoma, extraskeletal myxoid chondrosarcoma, myxoid 

liposarcoma, myoepithelial carcinoma, alveolar soft part sarcoma, and clear cell 

sarcoma are known to harbour specific gene fusions that drive tumourigenesis. In 

contrast, subtypes like myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic 

leiomyosarcoma, undifferentiated pleomorphic sarcoma, spindle cell sarcoma, and 

dedifferentiated liposarcoma typically lack recurrent fusion genes, reflecting a 

different molecular pathogenesis. 

 

Integration of RNA sequencing data obtained for many of these patients (detailed in  

Chapter 4) corroborated the presence of fusion mRNA transcripts in many cases. 

For example: 

• Patient 9 and Patient 29, both diagnosed with EMC, were found to have 

canonical EWSR1::NR4A3 and TCF12::NR4A3 fusions, respectively. 

• Patient 32, diagnosed with ASPS, exhibited the characteristic 

ASPSCR1::TFE3 fusion. 

 

These results underscore the complexity of sarcoma genomics, where some 

subtypes are driven predominantly by gene fusions, while others display a broader 

spectrum of somatic mutations. 
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3.2.3 Summary 

The findings presented in this section confirm that the mutation profiles observed 

within this cohort are consistent with previously reported data for soft tissue 

sarcomas, reinforcing the reliability of both the sequencing and somatic mutation 

calling methods used. This alignment with existing literature provides a reliable 

foundation for the comparative analyses of pre- and post-radiotherapy samples 

presented in the following sections.  
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3.3 Comparative analysis of somatic mutation burden in pre- 

and post-radiotherapy sarcoma samples.  

While radiotherapy is known to cause DNA damage, its direct effect on the mutation 

burden of soft tissue sarcomas remains uncertain. Previous studies suggest that 

radiotherapy does not significantly increase the overall tumour mutational burden 

(TMB) in STS, which typically exhibits a low baseline mutation rate of approximately 

1 mutation per megabase (Mb) (see Section 1.3). However, this does not exclude 

the possibility of subtle mutational shifts following treatment, particularly in the 

distribution of single nucleotide variants (SNVs) and insertion/deletion mutations 

(indels). In other cancers, radiation exposure has been associated with an increase 

in indel mutations, particularly deletions, due to the involvement of error-prone DNA 

repair mechanisms such as non-homologous end joining (NHEJ) and 

microhomology-mediated end joining (MMEJ) (see Section 1.4.3.1). Given that 

radiotherapy induces double-strand breaks (DSBs), it is reasonable to hypothesise 

that the Indel-to-SNV ratio in STS may be altered post-treatment, with a shift toward 

a higher frequency of deletions relative to insertions. 

 

The extent of these changes is likely to vary across different histological subtypes of 

STS. Although no prior studies have systematically analysed pre- vs. post-

radiotherapy mutation burden in sarcomas, some subtypes may be more prone to 

radiation-induced genomic changes based on their baseline levels of genomic 

instability. For example, dedifferentiated liposarcoma (ddLPS) and 

myxofibrosarcoma (MFS) are known to exhibit extensive chromosomal alterations 

and ongoing genome evolution, making them potential candidates for higher 

mutation burden post-radiotherapy. In contrast, synovial sarcoma (SS) and clear cell 

sarcoma (SpCS) typically have comparatively more stable genomes with 

characteristic fusion drivers, suggesting they may accumulate fewer additional 

mutations following radiotherapy. If significant differences emerge between 

histologies, this could indicate that intrinsic genomic stability influences the extent of 

radiotherapy-induced mutagenesis, an important consideration for future research 

into subtype-specific responses to treatment. 
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To investigate these potential effects, this section systematically compares the 

somatic mutation burden in pre- and post-radiotherapy sarcoma samples using 

whole exome sequencing (WES). The analysis begins with an unpaired comparison 

of all pre- and post-radiotherapy samples to determine whether radiotherapy leads 

to a global increase in SNVs or indels across the cohort. This is followed by a 

histology-specific analysis, where mutation counts are examined separately for 

subtypes with sufficient sample numbers to detect statistical differences. Additionally, 

a paired comparison of patients with available matched pre- and post-radiotherapy 

samples is conducted to assess individual-level mutational changes, which helps 

account for inter-patient variability. Lastly, the Indel-to-SNV ratio and Deletion-to-

Insertion ratio are examined to determine whether radiotherapy induces a 

preferential shift toward indel formation, particularly deletions, which would be 

consistent with known mechanisms of radiation-induced mutagenesis. 

 

Although a significant increase in TMB is not expected, the findings from this analysis 

will clarify whether radiotherapy results in more subtle but biologically relevant 

mutational changes in STS. If an increase in the Indel-to-SNV ratio or a shift toward 

deletions is observed, this would suggest that radiotherapy is driving specific 

mutational processes in these tumours, likely through its impact on DNA repair 

pathways. Furthermore, if distinct histology-specific differences emerge, this could 

indicate that some STS subtypes are more prone to radiation-induced genomic 

alterations than others, potentially due to their baseline genomic stability or inherent 

DNA repair mechanisms. These results will provide the groundwork for later sections, 

which will explore copy number alterations and mutational signatures to further 

characterise the genomic consequences of radiotherapy in STS. 
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3.3.1 Unpaired comparison of all pre- and post-radiotherapy samples. 

The initial analysis aimed to determine if there was a difference in the number of 

SNVs or indels following radiotherapy. There was no significant difference in the 

number of SNVs (p = 0.88) or indels (p = 0.17) when comparing all pre- to all post-

radiotherapy whole exome sequencing (WES) samples (Figure 3.3). For SNVs, 46 

pre-radiotherapy samples were compared to 15 post-radiotherapy samples, with 

median SNV counts of 32.5 and 33, respectively. For indels, 37 pre-radiotherapy 

samples were compared to 12 post-radiotherapy samples, with median indel 

counts of 3 in the pre-radiotherapy group and 2 in the post-radiotherapy group. 

 

      

Figure 3.3. Comparison of the frequency of SNVs and indels in pre- and post-

radiotherapy sarcoma samples. 

This figure shows the distribution of the number of SNVs (left panel) and Indels (right 
panel) in tumour samples collected before (pre-RT) and after radiotherapy (post-RT). 
Each point represents a tumour sample, coloured by its histological subtype. The p-
values for the comparisons between pre-RT and post-RT were calculated using the 
Wilcoxon rank-sum test (unpaired) and are shown in the title of each panel. The 
boxes display the interquartile range with the median indicated by the horizontal line, 
and the whiskers extend to 1.5 times the interquartile range. The y-axis is broken to 
better visualise samples with lower mutation counts, while still displaying the two 
outliers. Alveolar Soft Part Sarcoma (ASPS), Dedifferentiated Liposarcoma (ddLPS), 

Extraskeletal Myxoid Chondrosarcoma (EMC), Myoepithelial Carcinoma (MEC), 
Myxofibrosarcoma (MFS), Myxoid Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma (pLMS), 
Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS), 
Undifferentiated Pleomorphic Sarcoma (UPS). 
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3.3.2 Unpaired comparison of pre- and post-radiotherapy samples within 

sarcoma subtypes 

To assess whether radiotherapy impacted the number of SNVs and indels within 

individual subtypes, I focused on subtypes with sufficient pre- and post-radiotherapy 

samples for statistical analysis. Six subtypes met this criterion: dedifferentiated 

liposarcoma, myxofibrosarcoma, myxoid liposarcoma, pleomorphic liposarcoma, 

spindle cell sarcoma, and synovial sarcoma. No statistically significant differences 

were observed in the number of SNVs or indels post-radiotherapy across any of 

these subtypes (Figure 3.4). 

 

 

 
 

      
Figure 3.4. Comparison of the frequency of SNVs and indels pre- and post-

radiotherapy across different histological subtypes. 

This figure illustrates the number of SNVs (left panel) and indels (right panel) in 
tumour samples before and after radiotherapy separated by histological subtype. The 
p-values for the comparisons between pre-RT and post-RT were calculated using 
the Wilcoxon rank-sum test (unpaired) and are shown in the title of each panel. The 
boxes display the interquartile range with the median indicated by the horizontal line, 
and the whiskers extend to 1.5 times the interquartile range. Dedifferentiated 

Liposarcoma (ddLPS), Myxofibrosarcoma (MFS), Myxoid Liposarcoma (mLPS), Pleomorphic 
Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS). 
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3.3.3 Paired analysis of patients with matching pre- and post-

radiotherapy samples 

I conducted a paired analysis on patients for whom both pre- and post-radiotherapy 

samples were available. There was no significant difference in the number of SNVs 

(p = 0.49) or indels (p = 0.36) following radiotherapy (Figure 3.5).  

 

In 6 out of the 7 patients, the number of indels remained stable post-radiotherapy. 

Notably, in patient 50 (diagnosed with myxofibrosarcoma), there was a loss of one 

indel after radiotherapy. Specifically, this was a TG frameshift deletion mutation in 

the EPHA1 gene, detected in the pre-radiotherapy biopsy but absent in the post-

radiotherapy resection specimen. This absence in the post-treatment sample could 

reflect a potential treatment effect, wherein the mutation bearing cells were 

selectively killed by radiotherapy, or it may be attributed to sampling variation 

between the biopsy and resection specimen. Specifically, the mutation may have 

been present only in a subclone of the tumour that was sampled in the biopsy but 

not in the resected specimen, leading to its absence in the post-radiotherapy sample. 

This kind of variation is not uncommon, as tumour heterogeneity can result in certain 

mutations being detected in one sample but not in another (Gerlinger, Rowan et al. 

2012, Jamal-Hanjani, Wilson et al. 2017). 
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Figure 3.5. Comparison of the frequency of SNVs and indels in paired pre- and 

post-radiotherapy sarcoma samples. 

The results of 7 patients with paired pre- and post-radiotherapy whole exome 
sequencing SNV and Indel mutation data are presented here. No significant 
difference is seen in the number of SNVs or Indels. Paired t-test. Myxofibrosarcoma 

(MFS), Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma 
(SS). 
  



Chapter 5. Results 

 

114 

 

3.3.4 Assessment of the Indel-to-SNV and the Deletion-to-Insertion ratio 

In addition to comparing the frequency of SNVs and indels, I further investigated 

specific metrics to assess the genomic impact of radiotherapy. The two key metrics 

analysed were the Indel-to-SNV ratio and the Deletion-to-Insertion ratio across pre-

radiotherapy, post-radiotherapy, metastasis, and recurrence samples. 

 

These ratios specifically quantify the balance between different types of mutations, 

such as the ratio of indels relative to SNVs and the tendency for deletions over 

insertions. An increased Indel-to-SNV ratio may indicate that radiotherapy has 

heightened the frequency of double-strand breaks, leading to more error-prone repair 

processes like non-homologous end joining (NHEJ), which can result in a higher 

occurrence of insertions and deletions compared to point mutations. This would align 

with previous studies, such as an analysis of radiation-associated gliomas, where an 

increased burden of indels relative to the overall mutation profile was observed 

following radiotherapy exposure (Kocakavuk, Anderson et al. 2021). Additionally, 

findings from radiation-exposed populations, such as those studied in the aftermath 

of the Chernobyl disaster, have also highlighted similar increases in DNA repair-

associated mutational patterns, emphasising the role of radiation in driving genomic 

instability (Morton, Karyadi et al. 2021).  

 

Meanwhile, a higher Deletion-to-Insertion ratio could suggest that radiotherapy-

driven DNA damage is more likely to be resolved through deletion events, potentially 

due to specific vulnerabilities in the genome to radiation-induced breaks. This is 

consistent with the findings from prior research that identified a propensity for 

deletions in radiation-exposed tissues (Behjati, Gundem et al. 2016). 

 

The deletion-to-insertion ratio was assessed across pre-radiotherapy, post-

radiotherapy, metastasis, and recurrence samples (Figure 3.6A). The median ratio 

was 1.0 in both pre- and post-radiotherapy samples, indicating no significant change 

following treatment. Metastasis samples exhibited a higher median ratio of 1.89, 

while recurrence samples showed the highest median ratio of 4.0, suggesting a 

greater prevalence of deletions compared to insertions in these groups. A statistically 

significant difference was observed between pre-radiotherapy and recurrence 
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samples (p = 2e-05), while differences between pre-radiotherapy and post-

radiotherapy or metastasis samples were not significant. 

 

The indel-to-SNV ratio was also analysed (Figure 3.6B), revealing a median value of 

0.067 in pre-radiotherapy samples, which slightly decreased to 0.048 in post-

radiotherapy samples. Metastasis samples showed a similar median ratio of 0.056, 

whereas recurrence samples had a notably higher median of 0.221, indicating an 

increased indel burden in cases of recurrent disease. However, the differences in the 

indel-to-SNV ratio between pre-radiotherapy and the other sample types did not 

reach statistical significance. 
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Figure 3.6. Comparison of Deletion-to-Insertion and Indel-to-SNV Ratios 

Boxplots of (A) Deletion-to-Insertion ratio and (B) Indel-to-SNV ratio across pre-
radiotherapy (pre_RT), post-radiotherapy (post_RT), metastasis, and recurrence 
samples. Each point represents an individual tumour sample, coloured by 
histological subtype. The statistical comparisons between pre-radiotherapy and 
other sample types (post-radiotherapy, metastasis, and recurrence) are shown 
above each boxplot, with p-values obtained using t-tests. Asterisks indicate levels of 
statistical significance (**** p < 0.0001), while 'ns' denotes non-significant 
differences. The centre line of the box plot represents the median value, with the 
edges of the box indicating the interquartile range, and the whiskers extending to 1.5 
times the interquartile range. 
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3.3.5 Case study of somatic mutation dynamics in patient 58: a 

longitudinal analysis across pre-, post-radiotherapy, and recurrence 

stages. 

Longitudinal analyses of somatic mutations provide valuable insights into the 

evolutionary dynamics of tumours in response to treatment and disease progression. 

This case study examines the mutational landscape of patient 58, a 53-year-old male 

diagnosed with spindle cell sarcoma of the triceps, by sequencing tumour specimens 

collected at three key time points: pre-radiotherapy, post-radiotherapy, and at 

recurrence. The analysis captures the relative stability of somatic mutations 

immediately following radiotherapy and highlights the emergence of additional 

mutations at recurrence, reflecting possible clonal evolution over time. 

 

The patient commenced radiotherapy 25 days after diagnosis, receiving a total of 50 

Gy in 25 fractions. The tumour was resected 32 days post-radiotherapy (89 days 

after diagnosis), with final staging recorded as ypT2b Nx Mx (TNM8). Recurrence 

was detected 71 days after the initial resection and excised 154 days later (186 days 

post-radiotherapy). Sadly, the patient succumbed to the disease 104 days after 

recurrence resection, 347 days post-diagnosis (Figure 3.7). 

 

 

 

Figure 3.7 Timeline of treatment and disease progression for patient 58 

This timeline summarises the patient's treatment course, from diagnosis through 
radiotherapy, surgical interventions, recurrence, and eventual disease progression. 
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Sequencing analysis revealed comparable numbers of SNVs in the pre- and post-

radiotherapy samples, with 22 SNVs identified pre-radiotherapy and 28 post-

radiotherapy (Figure 3.8). Of these, 19 SNVs (86%) persisted across both time 

points, indicating minimal genomic alterations immediately following treatment. 

Three SNVs were unique to the pre-radiotherapy sample, while 26 additional SNVs 

were identified in the recurrence specimen that were absent in earlier samples. 

Additionally, 12 SNVs were shared in the recurrence specimen: 11 common to both 

the pre- and post-radiotherapy samples, and one exclusive to the pre-radiotherapy 

sample. 

 

Analysis of indels showed no new mutations immediately post-radiotherapy. The 

same indels in genes C4A, PLSCR4, and ZG16B were present in both the pre- and 

post-radiotherapy samples. In contrast, the recurrence specimen displayed seven 

additional indels in ARGLU1, C3AR1, CHD8, FAM171B, SLC5A2, SPATS2L, and 

PRKCZ, which were absent from the earlier samples. This suggests ongoing clonal 

evolution and selection in the intervening period post-radiotherapy. 

 

The timing of sample collection provides additional context. The post-radiotherapy 

sample was collected 32 days after treatment, while the recurrence specimen was 

obtained 186 days later. The additional SNVs and indels in the recurrence sample 

may reflect clonal expansion of mutations emerging after radiotherapy. Mutations 

induced by radiotherapy might not have reached detectable levels within the initial 

32-day window, particularly without sufficient clonal growth to exceed the variant 

allele frequency (VAF) thresholds for this bulk WES analysis. Alternatively, some of 

the mutations observed in the recurrence specimen could have been subclonal in 

the post-radiotherapy sample but fell below detection limits. 

 

To further investigate potential subclonal dynamics, I attempted to reconstruct the 

clonal architecture using Conipher (Grigoriadis, Huebner et al. 2024), a tool for 

subclonal phylogenetic analysis. Unfortunately, the low number of detectable 

mutations in this case precluded the identification of definitive subclonal 

relationships. 

 

  



Chapter 5. Results 

 

119 

 

 
Figure 3.8. Temporal evolution of somatic mutations in patient 58’s sarcoma 

specimens across treatment stages. 

Heatmaps show the presence or absence of SNVs and Indel mutations across three 
stages Pre-, Post-radiotherapy, and recurrence for patient 58 who was diagnosed 
with a spindle cell sarcoma. 
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3.3.6 Summary 

The analysis presented in this section indicates that radiotherapy does not induce 

significant changes in the frequency of somatic SNVs or indels in soft tissue sarcoma 

samples, as shown by both unpaired and paired comparisons across multiple 

sarcoma subtypes. Across different subtypes and individual cases, mutational 

profiles remained largely consistent before and after radiotherapy, suggesting that 

any radiotherapy-related mutational shifts may be subtle or influenced by time-

dependent factors, rather than being immediately apparent. The case study of patient 

58 suggests that time may be necessary for clonal outgrowth to reveal radiotherapy-

related mutations, as indicated by the emergence of unique mutations in the 

recurrence sample. Alternatively, whole-exome sequencing may have limitations in 

detecting subtle mutational differences in sarcomas with inherently low tumour 

mutational burden (TMB), highlighting the need for more sensitive approaches in 

future studies. 

  



Chapter 5. Results 

 

121 

 

3.4 Comparison of copy number alterations pre- and post- 

radiotherapy. 

Copy number alterations (CNAs) play a critical role in cancer progression, influencing 

tumour growth, metastasis, and treatment response (Zack, Schumacher et al. 2013, 

Steele, Abbasi et al. 2022). Several studies have demonstrated that CNAs can also 

affect radiotherapy outcomes, though research has predominantly focused on other 

cancer types. For instance, in prostate cancer, CNAs in PTEN (loss) and c-MYC 

(gain) have been linked to an increased risk of biochemical relapse after radiotherapy, 

suggesting that genomic instability can influence treatment failure (Zafarana, 

Ishkanian et al. 2012). Similarly, in breast cancer, CNAs at chromosome 8p11-12 

have been shown to predict poor survival and resistance to both chemotherapy and 

radiotherapy, reinforcing the role of CNA-driven tumour evolution (Moelans, van 

Maldegem et al. 2018). In lung cancer, somatic CNAs have been associated with 

progression-free survival following radiotherapy, with high SCNA levels correlating 

with poorer outcomes, particularly in lung adenocarcinoma (Kou, Wu et al. 2021). 

Additionally, CNAs in genes involved in DNA repair (PRMT5 and APE1) have been 

implicated in radiation resistance in oral squamous cell carcinoma, suggesting that 

structural genomic alterations can impact sensitivity to treatment (Izumi, Rychahou 

et al. 2023). 

 

Despite these findings in other malignancies, the impact of radiotherapy on CNA 

dynamics in soft tissue sarcomas remains poorly understood. Some evidence 

suggests that radiation exposure can induce large deletions and increase genome-

wide instability, as observed in gliomas, where post-radiotherapy samples exhibited 

an enrichment of large deletions spanning chromosome-arm lengths (Kocakavuk, 

Anderson et al. 2021). However, studies specifically analysing pre- vs. post-

radiotherapy CNAs in sarcomas are limited, with most research focusing on 

radiation-induced secondary sarcomas rather than the genomic consequences of 

radiotherapy in primary tumours (Lesluyes, Baud et al. 2019). 

 

In this section, I present a systematic comparison of CNAs detected in pre- and post-

radiotherapy soft tissue sarcoma samples, focusing on the extent of genome-wide 

copy number changes. Given the well-documented CNA-driven effects in other 
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cancers, understanding how radiotherapy shapes the genomic architecture of 

sarcomas helps us better understand tumour evolution, treatment resistance, and 

potential therapeutic vulnerabilities. 

 

 

3.4.1 Assessing Copy Number Alterations: methods and metrics. 

Copy number alterations were identified using the ASCAT (Allele-Specific Copy 

number Analysis of Tumours) algorithm (Van Loo, Nordgard et al. 2010), which 

accounts for tumour purity and ploidy, allowing accurate detection of both total copy 

number changes and allele-specific imbalances. Using ASCAT I compared the 

fraction of the genome altered, the total number of CNAs, and the total number of 

breakpoints in pre- and post-radiotherapy samples. 

 

The fraction of genome altered (FGA) was calculated as the total length of altered 

genomic segments divided by the total length of the sequenced genomic regions. To 

quantify the FGA, two distinct methods were employed to determine whether a 

genomic segment was altered.  

 

Method 1 focuses on regions where the total copy number deviates from the 

expected diploid state, identifying significant gains or losses of chromosomal 

material. This method uses the formula log2 CNV (copy number alteration) > ±0.2 to 

determine whether a genomic segment is altered. This approach has been widely 

used in previous studies (Xi, Lee et al. 2016, Rizvi, Sanchez-Vega et al. 2018, Caso, 

Sanchez-Vega et al. 2020, Pariyar, Johns et al. 2021), but it does not consider allele-

specific information. 

 

Therefore, I developed Method 2, which expands on the rationale of Method 1 by 

incorporating allele-specific imbalances. In Method 1, only total copy number 

changes are considered, meaning that while it captures significant deviations in the 

overall number of copies for a given region it does not differentiate between the major 

and minor alleles within that region. This limitation can overlook more subtle forms 

of genomic instability, such as loss of heterozygosity (LOH) or regions where the 
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major and minor alleles are imbalanced, such as one allele being gained while the 

other remains unchanged or is lost. Method 2 improves upon this by detecting both 

total copy number changes and imbalances between the two alleles. By capturing 

regions where the major and minor alleles differ, Method 2 provides a more nuanced 

view of genomic instability, identifying additional forms of chromosomal alteration 

that Method 1 might miss. 

 

Additionally, two other metrics were analysed, the total number of CNAs, and the 

total number of breakpoints. These metrics provide complementary insights into the 

possible role of radiotherapy in affecting genomic instability. The total number of 

CNAs represents distinct regions of the genome where there has been a gain or loss 

of chromosomal material. Each CNA corresponds to an independent event, such as 

a loss or gain, where the copy number has deviated from the normal diploid state. 

To calculate the total number of CNAs, I counted the unique chromosomal regions 

with altered copy numbers. This metric reflects the extent of genomic regions 

affected by copy number alterations. By comparing the number of CNAs pre- and 

post-radiotherapy, I aimed to assess whether radiotherapy increases overall 

genomic instability by introducing new copy number changes. 

 

Conversely, the total number of breakpoints represents transitions between different 

copy number states within the genome. A single CNA can contain multiple 

breakpoints if there are shifts between copy number states, for example, following 

genomic episodes of chromothripsis (Stephens, Greenman et al. 2011). Breakpoints 

provide a measure of the structural complexity of the genome, indicating the 

frequency of genomic rearrangements. Even if the number of CNAs remains 

constant, an increase in breakpoints suggests more intricate structural changes. To 

calculate the total number of breakpoints, I counted the transitions between altered 

segments identified by ASCAT. Comparing breakpoints pre- and post-radiotherapy 

reveals whether radiotherapy induces additional rearrangements or increases 

genomic complexity. 

 

By analysing the fraction of the genome altered, along with both the number of CNAs 

and breakpoints, it is possible to obtain a more comprehensive understanding of 

whether radiotherapy influences copy number. 
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3.4.2 Comparison of copy number alteration metrics across all pre- and 

post-radiotherapy samples 

The analysis demonstrated that radiotherapy induces chromosomal alterations 

detectable at the genomic level. Using Method 1, which evaluates total copy number 

changes, a significant increase in the fraction of genome altered (FGA) was observed 

post-radiotherapy, with the median FGA increasing from 31% to 64% (p = 0.04) 

(Figure 3.9). This finding highlights the impact of radiotherapy on large-scale 

genomic stability. In contrast, incorporating allele-specific imbalances with Method 2 

resulted in an increase in FGA from 38% to 81%; however, this change did not reach 

statistical significance (p = 0.1). This suggests that the primary genomic changes 

induced by radiotherapy may involve broader chromosomal alterations rather than 

allele-specific imbalances. 

 

The total number of breakpoints, which reflect the frequency of transitions between 

different copy number states, did not significantly change between pre- and post-

radiotherapy samples, with median values of 34 and 38, respectively (p = 0.18). This 

suggests that, although radiotherapy introduces chromosomal alterations, it does not 

significantly increase the frequency of genomic rearrangements or structural 

complexity. Similarly, the total number of CNAs showed no significant difference 

between pre- and post-radiotherapy samples, with median values of 57 and 61, 

respectively (p = 0.18), indicating that the overall number of copy number events 

remains stable. 
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Figure 3.9 Comparison of copy number alteration metrics in pre- and post-

radiotherapy samples 

This figure compares the fraction of genome altered (FGA), total number of 
breakpoints, and total number of copy number alterations (CNAs) between pre- and 
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post-radiotherapy samples across multiple histological soft tissue sarcoma subtypes. 
The fraction of genome altered (Method 1) panel shows regions where total copy 
number deviates from the expected diploid state (log2 CNV > ±0.2).  The fraction of 
genome altered (Method 2) panel includes both total copy number changes and 
allele-specific imbalances (total copy number ≠ 2 or allele-specific imbalances). The 
total number of breakpoints panel represents transitions between distinct copy 
number states. The total number of CNAs panel shows the total count of unique 
CNAs per sample. Each data point is coloured based on histological subtype, and 
the radiotherapy status (pre-RT or post-RT) is shown along the x-axis. P-values were 
calculated using an unpaired t-test. The violin plot shows the distribution of the data, 
with the width representing the density of values at different levels. The centre line 
of the embedded box plot represents the median value, with the edges of the box 
indicating the interquartile range, and the whiskers extending to 1.5 times the 
interquartile range. 
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3.4.3 Subtype specific analysis of Copy Number Alteration metrics in pre- 

and post-radiotherapy samples. 

To explore whether the changes in copy number might be specific to certain 

subtypes, I stratified the analysis by histological subtypes with sufficient pre- and 

post-radiotherapy samples. These subtypes included synovial sarcoma, 

myxofibrosarcoma, pleomorphic liposarcoma, and spindle cell sarcoma. Of these 

four subtypes, myxofibrosarcoma (Figure 3.10) was the only one to show a 

significant difference between pre- and post-radiotherapy samples. In this subgroup, 

there was a significant increase in the fraction of genome altered post-radiotherapy 

using both Method 1 (49% to 68%, p = 0.004) and Method 2 (79% to 85%, p = 0.02), 

suggesting a subtype specificity to radiotherapy-induced copy number changes in 

this subtype.  

 

Although there was a decrease in both the median total number of breakpoints (from 

50 to 38) and CNAs (from 73 to 61) in the post-radiotherapy samples, these changes 

were not statistically significant (both p = 0.3). The other subtypes, pleomorphic 

liposarcoma, synovial sarcoma, and spindle cell sarcoma, showed no significant 

differences across the metrics tested, indicating that the genomic response to 

radiotherapy may vary among different sarcoma types.  
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Figure 3.10. Comparison of copy number alteration metrics in pre- and post-

radiotherapy myxofibrosarcoma samples 

This figure compares the fraction of genome altered (FGA), total number of 
breakpoints, and total number of copy number alterations (CNAs) between pre- and 
post-radiotherapy myxofibrosarcoma samples. The fraction of genome altered 
(Method 1) panel shows regions where total copy number deviates from the 
expected diploid state (log2 CNV > ±0.2). The fraction of genome altered (Method 
2) panel includes both total copy number changes and allele-specific imbalances 
(total copy number ≠ 2 or allele-specific imbalances). The total number of 
breakpoints panel represents transitions between distinct copy number states. The 
total number of CNAs panel shows the total count of unique CNAs per sample. P-
values were calculated using an unpaired t-test. The violin plot shows the distribution 
of the data, with the width representing the density of values at different levels. The 
centre line of the embedded box plot represents the median value, with the edges of 
the box indicating the interquartile range, and the whiskers extending to 1.5 times 
the interquartile range. 
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3.4.4 Comparative analysis of Copy Number Alteration metrics in paired 

pre- and post-radiotherapy samples. 

I performed a paired analysis with the six patients for whom I had matching pre- and 

post-radiotherapy samples (Figure 3.11). There was no significant difference in the 

fraction of genome altered, total number of breakpoints, or total number of copy 

number alterations.  
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Figure 3.11. Comparison of copy number alteration metrics in paired pre- and post-

radiotherapy samples. 

This figure compares the fraction of genome altered (FGA), total number of 
breakpoints, and total number of copy number alterations (CNAs) between the 6 
patients with paired pre- and post-radiotherapy samples. The fraction of genome 
altered (Method 1) panel shows regions where total copy number deviates from the 
expected diploid state (log2 CNV > ±0.2). The fraction of genome altered (Method 
2) panel includes both total copy number changes and allele-specific imbalances 
(total copy number ≠ 2 or allele-specific imbalances). The total number of 
breakpoints panel represents transitions between distinct copy number states. The 
total number of CNAs panel shows the total count of unique CNAs per sample. P-
values were calculated using a paired t-test. The violin plot shows the distribution of 
the data, with the width representing the density of values at different levels. The 
centre line of the embedded box plot represents the median value, with the edges of 
the box indicating the interquartile range, and the whiskers extending to 1.5 times 
the interquartile range. 
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3.4.5 Summary 

In this section, the comparison of copy number alterations (CNAs) between pre- and 

post-radiotherapy samples highlighted both global and subtype-specific changes. 

Post-radiotherapy samples demonstrated no significant increase in the overall 

number of CNAs; however, an increased Fraction of Genome Altered (FGA) was 

seen. This suggests an expansion of regions with chromosomal gains or losses 

following radiotherapy. Specifically, myxofibrosarcoma showed notable differences 

in the FGA post-treatment, highlighting potential heterogeneity in radiotherapy 

response among different sarcoma types. Importantly, the lack of a marked increase 

in CNA counts but an expansion in FGA may imply that radiotherapy could lead to 

an enlargement of pre-existing altered regions rather than the formation of entirely 

new CNAs.  
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3.5 Mutational signature analysis  

In this section, I aimed to assess whether there were differences in the mutational 

signatures between pre- and post-radiotherapy tumour samples. Mutational 

signatures are characteristic patterns of mutations that reflect the underlying 

mechanisms of acquired DNA damage and repair (Alexandrov, Nik-Zainal et al. 2013, 

Alexandrov, Kim et al. 2020). Analysing these signatures can give clues as to both 

the mechanisms and aetiology of tumourigenesis as well as how radiotherapy can 

influence the mutational landscape of tumours.  

 

Previous studies have identified specific mutational signatures associated with 

radiation-induced damage, such as SBS18, which is linked to oxidative stress 

caused by radiotherapy, and indel signatures like ID8, which reflect error-prone DNA 

repair mechanisms such as non-homologous end joining (NHEJ) (Kocakavuk, 

Anderson et al. 2021). 

 

I used SigProfiler (Alexandrov, Nik-Zainal et al. 2013) to decompose the single base 

substitution (SBS) and Indel (ID) mutations identified in the whole exome (WES) and 

whole genome (WGS) tumour samples into COSMIC mutational signatures. 

 

3.5.1 Analysis of Single base substitution (SBS) signatures 

Five SBS signatures were identified across both the WES and WGS datasets (Figure 

3.12 and Figure 3.13 respectively). These include SBS1, SBS2, SBS3, SBS5, and 

SBS13, which were detected in both WES and WGS tumour samples. Additionally, 

a sixth signature, SBS15, was observed exclusively in the WES samples. 
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Figure 3.12. Distribution of SBS mutational signatures across pre-radiotherapy, 

post-radiotherapy, recurrence, and metastasis samples in WES data. 

The bar plot illustrates the number of somatic single base substitution (SBS) 
mutations attributed to various mutational signatures for each sample type. The 
samples are grouped based on their treatment status, including pre-radiotherapy 
(Pre RT), post-radiotherapy (Post RT), recurrence (R), and metastasis (M). Each bar 
represents the contribution of specific SBS signatures within individual samples, with 
different colours corresponding to each signature. 
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Figure 3.13. Distribution of SBS mutational signatures across pre-radiotherapy, 

post-radiotherapy, and metastasis samples in WGS data. 

The bar plot illustrates the number of somatic single base substitution (SBS) 
mutations attributed to various mutational signatures for two separate patients. Each 
bar represents the contribution of specific SBS signatures within individual samples, 
with different colours corresponding to each signature. Pre-radiotherapy (Pre RT) 
and post-radiotherapy (Post RT). Clear cell sarcoma (CCS), pleomorphic 
leiomyosarcoma (pLMS). 
 

 
The SBS signatures identified in these samples reflect a range of biological 

processes associated with cancer development. SBS1, often called “clock-like”, is 

linked to aging and arises from the spontaneous or enzymatic deamination of 

methylated cytosines, resulting in C>T mutations that accumulate over time; this 

signature is common across various cancer types (Alexandrov, Nik-Zainal et al. 2013, 

Alexandrov, Kim et al. 2020). Both SBS2 and SBS13 are associated with the activity 

of APOBEC enzymes, which cause C>T and C>G mutations specifically at TpC 

dinucleotides. The presence of these APOBEC-associated mutations indicates 

increased genomic instability, which is a hallmark of many cancers, and these 

signatures are seen in a wide range of cancer types including sarcomas (Alexandrov, 

Nik-Zainal et al. 2013, Alexandrov, Kim et al. 2020). SBS3 while not specific  is 

suggestive of homologous recombination deficiency (HRD), and is commonly linked 

to mutations in BRCA1 or BRCA2 genes and frequently observed in cancers such 
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as breast and ovarian cancer, but has also been seen in sarcomas (Alexandrov, Nik-

Zainal et al. 2013, Alexandrov, Kim et al. 2020). SBS5, is another "clock-like" 

signature with a currently undetermined cause. It is found across a wide range of 

tissues and correlates with age, accumulating mutations in both normal and 

cancerous cells.  

 

Lastly, SBS15 is associated with defective DNA mismatch repair (MMR) and is often 

found in tumours with microsatellite instability (MSI), making it particularly prevalent 

in cancers like colorectal and endometrial cancer that exhibit MMR deficiency 

(Alexandrov, Nik-Zainal et al. 2013, Alexandrov, Kim et al. 2020).  

 

I have split the tumour samples in to show whether the samples are pre- or post-

radiotherapy, metastasis or recurrence samples. All 6 SBS signatures (SBS 1, 2, 3, 

5, 13, and 15) were identified in the pre-radiotherapy samples (Figure 3.12). In the 

post-radiotherapy samples the same signatures except for SBS2 were identified. In 

the 2 recurrence samples SBS signatures 1, 3, 5, 15 were seen. Lastly in the 2 

metastasis samples the SBS signatures 1, 5, 13, 15 were identified. In Figure 3.13, 

the WGS samples showed SBS1, SBS3, and SBS5 in all samples. SBS2 was 

identified in the pre-radiotherapy clear cell sarcoma sample but this was not present 

in the post-radiotherapy or metastasis sample. SBS2 and SBS13 was identified in 

post-radiotherapy and metastasis samples of pleomorphic leiomyosarcoma.  

 
There are differences in the SBS signatures identified in the WES samples 

depending on the histological subtype (Figure 3.14). The clock-like signatures SBS1 

and SBS5 are seen in all subtypes sequenced.  

 

SBS2 (APOBEC related) was seen in single case in each of pleomorphic 

leiomyosarcoma (1 of 4 samples), pleomorphic liposarcoma (1 of 5), synovial 

sarcoma (1 of 8) and myxofibrosarcoma (1 of 23). SBS13 (also APOBEC related) 

was seen in myxoid liposarcoma (1 of 8 samples), pleomorphic leiomyosarcoma (2 

of 4 samples), pleomorphic liposarcoma (1 of 5) and myxofibrosarcoma (3 of 23). 

 

SBS3 (associated with homologous recombination deficiency) was seen in 

dedifferentiated liposarcoma (1 of 3 samples), myxoid liposarcoma (1 of 8), 
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pleomorphic leiomyosarcoma (1 of 4), pleomorphic liposarcoma (2 of 5), spindle cell 

sarcoma (1 of 6), synovial sarcoma (2 of 8), and myxofibrosarcoma (13 of 23).  

 

Lastly SBS15 (associated with MMR deficiency) was seen in alveolar soft part 

sarcoma (1 of 2 samples), myxoid liposarcoma (1 of 8), pleomorphic leiomyosarcoma 

(2 of 4), pleomorphic liposarcoma (1 of 5), synovial sarcoma (2 of 8), 

myxofibrosarcoma (4 of 23), and undifferentiated pleomorphic sarcoma (3 of 3). 

 

 

 

Figure 3.14. Distribution of SBS mutational signatures across sarcoma subtypes. 

The bar plot illustrates the number of somatic single base substitution (SBS) 
mutations attributed to various mutational signatures for each sample broken up by 
histological subtype. Alveolar Soft Part Sarcoma (ASPS), Dedifferentiated 
Liposarcoma (ddLPS), Extraskeletal Myxoid Chondrosarcoma (EMC), Myoepithelial 
Carcinoma (MEC), Myxoid Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma 
(pLMS), Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial 
Sarcoma (SS), Myxofibrosarcoma (MFS), and Undifferentiated Pleomorphic 
Sarcoma (UPS). 
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3.5.2 Analysis of Indel (ID) signatures 

There were different ID signatures identified in the WES and WGS data (Figure 3.15 

and Figure 3.16 respectively). ID1, ID2, ID9, and ID23 were identified in both WES 

and WGS tumour samples. Additionally, ID7, ID8, and ID10 signatures were seen in 

WES tumour samples.  

 

The ID (Indel) signatures identified in these samples reflect and are attributed to 

various mutational processes. ID1 and ID2 are commonly associated with aging and 

reflects the accumulation of small insertions (ID1) and deletions (ID2) over time, often 

linked to cell division and DNA replication errors. This signature is observed across 

numerous cancer types. ID1 and ID2 are also frequently associated with DNA 

mismatch repair (MMR) deficiency, leading to replication slippage and indel 

mutations, particularly in repetitive DNA regions (Alexandrov, Nik-Zainal et al. 2013, 

Alexandrov, Kim et al. 2020). 

 

ID7 is linked to MMR deficiency, similar to ID2, and is often observed in tumours with 

MSI and has been identified previously in gastric adenocarcinoma(Alexandrov, Kim 

et al. 2020). ID8 is associated double stranded break repair by non-homologous end 

joining and has been seen in tissues post-radiotherapy(Alexandrov, Kim et al. 2020, 

Kocakavuk, Anderson et al. 2021). ID23 is associated with aristolochic acid exposure 

(Senkin, Moody et al. 2024). ID9 and ID10 have an unknown aetiology.  

 

Different signatures were seen depending on where the samples are pre- or post- 

radiotherapy, metastasis or recurrence samples (Figure 3.15). ID2 ID7, ID8, ID9, 

ID10, ID23 were identified in the pre-radiotherapy samples. ID7, ID8, ID10, and ID23 

were the only signatures identified in the post-radiotherapy samples. ID1, ID8, ID23 

were seen in the recurrence samples, and ID23 was seen in the metastasis sample.  

 

There were no changes in the ID signatures called for the two patients with WGS 

performed on the tumour samples in their pre- or post-radiotherapy samples (Figure 

3.16). The patient with clear cell sarcoma was found to have signatures ID1, ID2, 

and ID9 in the each of the pre-radiotherapy, post-radiotherapy, and metastasis 
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samples. The patient with pleomorphic leiomyosarcoma likewise had ID1, ID2, ID9, 

and ID23 in both the post-radiotherapy and metastasis samples. 
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Figure 3.15. Distribution of indel mutational signatures across pre-radiotherapy, 

post-radiotherapy, recurrence, and metastasis samples in WES data. 

The bar plot illustrates the number of Indel (ID) mutations attributed to various 
mutational signatures for each sample type. The samples are grouped based on their 
treatment status, including pre-radiotherapy (Pre RT), post-radiotherapy (Post RT), 
recurrence (R), and metastasis (M). Each bar represents the contribution of specific 
ID signatures within individual samples, with different colours corresponding to each 
signature. 
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Figure 3.16. Distribution of indel mutational signatures across pre-radiotherapy, 

post-radiotherapy, and metastasis samples in WGS data. 

The bar plot illustrates the number of Indel (ID) mutations attributed to various 
mutational signatures for two separate patients. Each bar represents the contribution 
of specific ID signatures within individual samples, with different colours 
corresponding to each signature. Pre-radiotherapy (Pre RT) and post-radiotherapy 
(Post RT). Clear cell sarcoma (CCS), pleomorphic leiomyosarcoma (pLMS). 
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ID signatures by histological subtype 

No ID signatures were seen in all subtypes examined (Figure 3.17).  

 

ID1 was identified in undifferentiated pleomorphic sarcoma (1 of 2 samples).  

 

ID2 was seen in spindle cell sarcoma (1 of 6), synovial sarcomas (1 of 3), 

myxofibrosarcoma (1 of 20), and undifferentiated pleomorphic sarcoma (1 of 2). 

 

ID7 was seen in myxofibrosarcoma (5 of 20 samples), and undifferentiated 

pleomorphic sarcoma (1 of 2). 

 

ID8 was seen in dedifferentiated liposarcoma (1 of 2 samples), myoepithelial 

carcinoma (1 of 1), myxoid liposarcoma (1 of 6), pleomorphic leiomyosarcoma (1 of 

4), pleomorphic liposarcoma (3 of 5), myxofibrosarcoma (9 of 20 samples), and 

undifferentiated pleomorphic sarcoma (1 of 2). 

 

ID9 was seen in myxoid liposarcoma (2 of 5 samples), and myxofibrosarcoma (1 of 

20). 

 

ID10 was seen in dedifferentiated liposarcoma (1 of 2 samples), Extraskeletal myxoid 

chondrosarcoma (1 of 1), myxoid liposarcoma (3 of 6), pleomorphic liposarcoma (2 

of 5), spindle cell sarcoma (1 of 6), and synovial sarcoma (2 of 3). 

 

Lastly ID23 was seen in pleomorphic leiomyosarcoma (3 of 4 samples), spindle cell 

sarcoma (4 of 6), and myxofibrosarcoma (6 of 20). Given that ID23 is associated with 

aristolochic acid exposure, it is possible that this represents a spurious signature. 

Alternatively, this finding could suggest a previously unrecognised role of Aristolochic 

acid exposure as a risk factor in the development of these sarcomas. 
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Figure 3.17. Distribution of Indel Mutational Signatures across sarcoma subtypes. 

The bar plot illustrates the number of Indel (ID) mutations attributed to various 
mutational signatures for each sample broken up by histological subtype. Alveolar 
Soft Part Sarcoma (ASPS), Dedifferentiated Liposarcoma (ddLPS), Extraskeletal 
Myxoid Chondrosarcoma (EMC), Myoepithelial Carcinoma (MEC), Myxoid 
Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma (pLMS), Pleomorphic 
Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS), 
Myxofibrosarcoma (MFS), and Undifferentiated Pleomorphic Sarcoma (UPS). 
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3.5.3 Identification of mismatch repair deficiency 

Interestingly, two patient samples - RT40 (undifferentiated pleomorphic sarcoma) 

and RT45 (myxofibrosarcoma), both had a very high tumour mutational burden 

relative to the other cases (previously discussed in section 3.2) have high numbers 

and proportions of SBS15 and ID7 mutations which are associated with MMR. 

 

Examining the mutations identified in the WES data, no mutations were identified in 

the genes related to MMR (MLH1, MSH2, MSH6, and PMS2) (Pećina-Šlaus, Kafka 

et al. 2020). Both samples did show mutations within TP53, a gene associated with 

genomic instability, which could contribute to an overall increase in the tumour 

mutation burden. To further explore potential MMR deficiencies, I examined the 

associated bulk RNAseq data to review the expression levels of the MMR genes. 

 

RNA expression analysis revealed relatively low expression of MLH1 in sample RT40 

and MSH2 in sample RT45 compared to the other 115 sequenced samples (Figure 

3.18). Low expression of MLH1 could potentially result from promoter 

hypermethylation, a known mechanism for MLH1 silencing in cancers with 

microsatellite instability (MSI) (Kane, Loda et al. 1997). Although MSH2 is not 

typically silenced by promoter hypermethylation, alternative regulatory 

mechanisms—such as loss of heterozygosity (LOH) or post-translational instability 

due to reduced MSH6 levels—could explain the observed reduction in MSH2 

expression in RT45. 
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Figure 3.18. Expression of mismatch repair genes 

Normalised RNA gene expression levels of mismatch repair (MMR) genes in 117 
soft tissue sarcoma, highlighting MLH1, MSH2, MSH6, and PMS2. Each dot 
represents the Normalised expression level of a specific MMR gene in an individual 
tumour sample. Grey dots correspond to the expression levels across all other 
samples, providing a reference distribution for each gene. The samples of interest, 
RT40 (Undifferentiated Pleomorphic Sarcoma, UPS) and RT45 (Myxofibrosarcoma, 
MFS), are highlighted in purple and orange, respectively. 
 

 

To investigate further, I conducted a copy number analysis using the ASCAT output 

and identified several regions with LOH involving MMR genes in both samples. In 

RT40 (Undifferentiated Pleomorphic Sarcoma), a homozygous deletion of the MLH1 

gene on chromosome 3 was detected. Given that MLH1 is an essential component 

of the mismatch repair (MMR) pathway, its complete loss definitively establishes 

MMR deficiency in this sample. This explains the high tumour mutational burden 

observed in RT40, as well as the prominent SBS15 and ID7 mutational signatures, 

both of which are hallmarks of MMR-deficient cancers. 

 

In RT45 (Myxofibrosarcoma), LOH was observed for multiple MMR genes, including 

MLH1, MSH2, MSH6, and PMS2, with one allele lost for each of these genes. While 
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not a complete deletion, this partial loss may have impaired MMR function, 

particularly given the functional dependence of MLH1-PMS2 and MSH2-MSH6 

complexes. However, unlike RT40, where MMR deficiency is clearly explained by 

complete MLH1 loss, the extent of MMR impairment in RT45 remains uncertain. 

 

These findings confirm that the homozygous deletion of MLH1 in RT40 is the key 

driver of its hypermutator phenotype, as MMR deficiency due to MLH1 loss is well-

established across multiple cancers. The LOH in RT45, while suggestive of MMR 

involvement, does not provide the same level of certainty. This difference between 

the two cases highlights the importance of complete gene loss in driving a fully MMR-

deficient state. 

 

It is important to note that the data for these two patient tumour samples were 

obtained from pre-radiotherapy biopsy specimens. The post-radiotherapy resection 

specimens showed extensive therapy-related necrosis. Histological examination of 

all tissue blocks revealed an insufficient number of viable tumour cells (indicative of 

a strong pathological response) for DNA and RNA sequencing studies. Both patients 

had similar staging of the resection specimen (ypT2b Nx Mx – TNM8). Upon 

reviewing the available clinical information, the patient with undifferentiated 

pleomorphic sarcoma in the thigh, diagnosed at age 76, remains disease-free 8 

years post-treatment. Unfortunately, despite both patients showing an excellent 

pathological response to radiotherapy, the patient with myxofibrosarcoma in the 

shoulder, diagnosed at age 67, developed lung metastases 224 days post-

radiotherapy and succumbed to the disease 522 days following treatment. 

 

While not extensively investigated, there is growing evidence that mismatch repair-

deficient tumours may be more sensitive to radiotherapy (Shin, Tut et al. 2013, 

Reijnen, Küsters-Vandevelde et al. 2019), as demonstrated here by the strong 

pathological response and absence of local recurrence in both cases. However 

overall disease-free survival can still be impacted by distant metastasis. In this 

instance, despite an excellent local response to radiotherapy, it is possible that 

metastasis in the patient with myxofibrosarcoma developed prior to treatment (albeit 

clinically undetectable on original staging), ultimately affecting survival outcomes. 
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3.5.4 Summary 

In this section, I investigated the mutational signatures in pre- and post-radiotherapy 

sarcoma samples to identify any distinct mutational effects attributable to 

radiotherapy. Using SigProfiler, I identified 6 SBS signatures (SBS1, SBS2, SBS3, 

SBS5, SBS13, and SBS15) and 7 ID signatures (ID1, ID2, ID7, ID8, ID9, ID10, and 

ID23) across the samples.  

 

SBS1 and SBS5, associated with endogenous aging processes, were consistently 

present in all samples. Conversely, SBS2 and SBS13, linked to APOBEC activity, 

and SBS3, associated with homologous recombination deficiency, were detected 

only in specific subtypes, indicating underlying genomic instabilities in certain 

sarcomas. Notably, SBS18, previously linked to radiotherapy, was absent. 

 

For indel signatures, ID1 and ID2—related to aging and DNA mismatch repair 

deficiency—were observed in multiple subtypes, while ID8, associated with double-

strand break repair, appeared in both pre- and post-radiotherapy samples. 

 

These findings suggest that, within the sensitivity limits of whole-exome sequencing, 

radiotherapy does not introduce a new mutational profile or significantly alter the 

existing mutational landscape in soft tissue sarcomas. The stable prevalence of SBS 

and ID signatures pre- and post-radiotherapy suggests that radiotherapy has a 

limited impact on mutational signatures detectable by whole-exome sequencing. 

This stability may indicate that radiotherapy-induced changes in sarcomas are either 

minimal or require higher-resolution methods, such as whole-genome sequencing, 

or high-resolution duplex sequencing techniques such as NanoSeq to detect more 

subtle or subclonal alterations. 
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3.6 Using NanoSeq to more accurately interrogate the 

genomic response to radiotherapy.  

In section 3.3, I presented the results of a comparison of the number of somatic 

mutations in soft tissue sarcomas pre- and post-radiotherapy. These results were 

generated using bulk Whole Exome Sequencing (WES) on formalin-fixed, paraffin-

embedded (FFPE) tumour tissue. Based on the literature, an increase in small 

insertions and deletions (indels) was expected following radiotherapy due to its 

known effect on inducing DNA damage. However, the WES data did not show any 

significant changes in the number of SNVs or indels post-treatment. 

 

The tumour mutational burden (TMB) in this cohort of WES samples was low (mean 

TMB 1.07 mutations/Mb), with a median of 3 indels identified in pre-radiotherapy 

samples and 2 indels post-radiotherapy. 

 

I hypothesised that the limited resolution of bulk WES, especially when applied to 

FFPE tissue, might have missed subtle genomic alterations, particularly those 

present at low variant allele frequencies (VAFs) or in subclonal populations. 

Moreover, cancer genome sequencing studies have demonstrated that indels in 

coding regions of the genome are generally low because of a selection bias 

constraint that attempts to preserve protein function (de la Chaux, Messer et al. 2007, 

Martincorena, Raine et al. 2017). In bulk sequencing, signals from subclonal 

mutations are often diluted by the predominant clonal population, making it 

challenging to detect low-frequency variants such as indels. This limitation is further 

exacerbated by the degraded quality of DNA in FFPE samples. Consequently, key 

genomic changes induced by radiotherapy, particularly indels in minor subclonal 

populations, might have gone undetected with WES. 

 

To address this, I collaborated with the Martincorena group at the Welcome Trust 

Sanger Institute who developed the recently described NanoSeq method (Abascal, 

Harvey et al. 2021), a highly sensitive sequencing technology designed to detect 

low-frequency mutations, including indels and single nucleotide variants (SNVs), at 

a higher resolution. NanoSeq uses duplex sequencing, which reads both DNA 

strands and filters out sequencing errors, allowing for the detection of rare variants 
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even in low-purity tumour samples or those with a low mutational burden. The 

sequencing error rate is estimated to be less than five errors per billion base pairs 

which is reportedly two orders of magnitude lower than usual somatic mutation loads. 

 

Using DNA extracted from fresh frozen tissue on 5 patients on both the pre- and 

post-radiotherapy samples they performed the sequencing technique and returned 

the aligned and processed VCF files along with counts of somatic mutations on which 

I performed the downstream analyses shown below.   

 

NanoSeq was conducted on 5 patients with different sarcoma subtypes. These were 

patient 7 (pleomorphic liposarcoma), patient 19 (Myxofibrosarcoma), patient 27 

(Dedifferentiated liposarcoma), patient 36 (Synovial sarcoma), and lastly patient 58 

(Spindle cell sarcoma). The pre-radiotherapy biopsy for patient 19 

(myxofibrosarcoma) showed evidence on contamination during quality control and 

so has been removed from the subsequent analyses.  
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3.6.1 Comparison of the frequency of somatic mutations pre- and post-

radiotherapy. 

The paired comparison of the number of indels and SNVs per cell before and after 

radiotherapy revealed distinct patterns (Figure 3.19). The indel and SNV mutation 

counts were normalised to the estimated cellular content of each sample to enable 

a more precise comparison of mutation rates. 

 

The number of indels per cell demonstrated a significant increase following 

radiotherapy (p = 0.01), particularly in dedifferentiated liposarcoma and spindle cell 

sarcoma. The median number of indels per cell rose from 177 to 690 in these four 

patients after treatment, suggesting a pronounced effect of radiotherapy on the 

generation of small insertions and deletions. 

 

In contrast, the number of SNVs per cell did not show a significant change post-

radiotherapy (p = 0.8). The median number of SNVs decreased from 3813 to 2814 

following radiotherapy. However, patient-specific responses varied: dedifferentiated 

liposarcoma, synovial sarcoma, and spindle cell sarcoma showed increases in SNVs 

of 19%, 18%, and 16%, respectively. Conversely, pleomorphic liposarcoma 

demonstrated a 52% reduction in SNVs. These findings demonstrate the 

heterogeneity in genomic responses to radiotherapy across different sarcoma 

subtypes. 
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Figure 3.19. Indels and SNVs per Cell Pre- and Post-Radiotherapy. 

Paired comparisons of indels per cell and SNVs per cell for each patient (PT). Indels 
per cell increased significantly post-radiotherapy (p = 0.01), while SNVs per cell did 
not show a significant difference (p = 0.8). Dashed lines connect pre- and post- 
radiotherapy values for individual patients across different histologies. 
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3.6.2 Assessment of the Indel-to-SNV and the Deletion-to-Insertion ratios. 

The Indel-to-SNV and Deletion-to-Insertion ratios (see section 3.3.4), derived from 

the NanoSeq data, provide insight into the genomic impact of radiotherapy. The 

Indel-to-SNV ratio increased significantly from a median of 0.05 in pre-radiotherapy 

samples to 0.2 in post-radiotherapy samples (p = 0.002; Figure 3.20A). This finding 

suggests that radiotherapy elevates the frequency of double-strand breaks, leading 

to more indels through error-prone repair mechanisms such as non-homologous end 

joining (NHEJ). 

 

To further deconstruct this increase, indels were separated into deletions and 

insertions. The Insertion-to-SNV ratio (Figure 3.20B) showed a slight rise from a 

median of 0.009 pre-radiotherapy to 0.01 post-radiotherapy (p = 0.04), indicating a 

mild increase in insertion events. By contrast, the Deletion-to-SNV ratio (Figure 

3.20C) exhibited a more pronounced change, increasing from a median of 0.04 to 

0.2 post-radiotherapy (p = 0.005). These results highlight deletions as the primary 

contributors to the elevated Indel-to-SNV ratio, consistent with observations from 

previous studies on papillary thyroid cancer and gliomas (Kocakavuk, Anderson et 

al. 2021, Morton, Karyadi et al. 2021), where deletions were prominent in radiation-

induced and post-radiotherapy tumours respectively. 

 

The Deletion-to-Insertion ratio also increased (Figure 3.20D), rising from a median 

of 3.6 before radiotherapy to 9.6 after treatment. However, this change did not reach 

statistical significance (p = 0.08). While this trend suggests a preference for deletions 

in resolving radiotherapy-induced DNA damage, there appears to be variability 

among samples. 
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Figure 3.20. Comparison of Indel-to-SNV and Deletion-to-Insertion ratios 

Boxplots of (A) Indel-to-SNV ratio, (B) Insertion-to-SNV ratio, (C) Deletion-to-SNV 
ratio, and (D) Deletion-to-Insertion ratio across pre-radiotherapy (Pre) and post-
radiotherapy (Post) samples. Each point represents an individual tumour sample, 
coloured by histological subtype. Statistical comparisons between pre- and post-
radiotherapy samples are displayed above each boxplot, with p-values calculated 
using paired t-tests. The centre line of the box plot represents the median value, with 
the edges of the box indicating the interquartile range, and the whiskers extending 
to 1.5 times the interquartile range. 
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3.6.3 Radiotherapy-induced shift towards microhomology-mediated DNA 

repair. 

In light of the previous findings in this section, which demonstrated genomic changes 

post-radiotherapy, I aimed to investigate potential shifts in DNA damage repair 

pathways, specifically examining the reliance on microhomology-mediated end 

joining (MMEJ) for repair. MMEJ is an error-prone DNA repair pathway typically 

activated in response to DNA double-strand breaks, which are a known consequence 

of radiotherapy. This pathway introduces specific indel mutations, termed 

microhomology-mediated indels, that reflect reduced repair fidelity. Given the 

increased mutation burden observed in post-radiotherapy samples, I hypothesised 

that the MMEJ pathway might be more frequently utilised following radiotherapy. 

 

Across all four patients, there was a significant increase in the proportion of 

microhomology-mediated indels following radiotherapy (paired t-test, p = 0.002). 

Specifically, the median proportion increased from 6% in pre-radiotherapy samples 

to 27% post-radiotherapy, and the median number of microhomology-mediated 

indels per cell rose from 9 to 151 (Figure 3.21). This marked increase suggests that 

post-radiotherapy, tumours are utilising the MMEJ pathway more frequently. 
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Figure 3.21. Proportion of microhomology Indels to total Indels pre- and post-

radiotherapy. 

Stacked bar plot showing the proportion of microhomology-mediated indels relative 
to other indels in four patients.  
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3.6.4 Mutational signature analysis of NanoSeq cohort 

In this section, I used SigProfiler to decompose the single base substitution (SBS) 

and insertion/deletion (ID) mutations identified in VCF files from the NanoSeq cohort 

into COSMIC mutational signatures. This analysis aimed to explore any mutational 

signatures linked to radiotherapy in the cohort, as well as to understand the 

underlying mutational processes within the sarcoma subtypes. 

 

Single Base Substitution Signatures 

Three distinct SBS signatures—SBS1, SBS5, and SBS40a—were detected across 

all samples (Figure 3.22). The clock-like signatures SBS1 and SBS5 were detected 

across multiple samples. SBS1 was present in all subtypes except dedifferentiated 

liposarcoma. SBS5 was seen in all subtypes except the pre-radiotherapy biopsy of 

dedifferentiated liposarcoma. SBS40a, which is a signature of unknown aetiology, 

appeared in both pre- and post-radiotherapy samples of dedifferentiated liposarcoma 

as well as in the post-radiotherapy sample of pleomorphic liposarcoma. 

 

A Wilcoxon signed-rank test was used to assess whether the mutational burden of 

these SBS signatures changed significantly following radiotherapy. No significant 

differences were observed for SBS1 (p = 0.42), SBS5 (p = 0.88), or SBS40a (p = 1), 

indicating that radiotherapy did not introduce substantial new SBS mutations. 
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Figure 3.22. Single base substitution signatures pre- and post-radiotherapy 

samples across the NanoSeq cohort. 

Single base substitution (SBS) mutational signatures in pre- and post-radiotherapy 
Stacked bar plots show the counts of COSMIC SBS signatures (SBS1, SBS5, and 
SBS40a) across five patients, with each bar representing the prevalence of each 
signature in pre- and post-radiotherapy samples. Dedifferentiated liposarcoma 
(ddLPS), myxofibrosarcoma (MFS), pleomorphic liposarcoma (pLPS), spindle cell 
sarcoma (SpCS), and synovial sarcoma (SS). 
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Indel Signatures 

Five distinct ID signatures—ID1, ID2, ID5, ID8, and ID9—were identified (Figure 

3.23), showing some variability across samples. ID1 and ID2, commonly associated 

with aging and DNA mismatch repair deficiencies, were consistently present. ID5 and 

ID9 have an unknown aetiology. 

 

The Wilcoxon signed-rank test for paired pre- and post-radiotherapy samples 

showed no statistically significant differences for ID1 (p = 0.20), ID2 (p = 0.42), ID5 

(p = 0.25), and ID9 (p = 0.18). However, ID8, which has been linked to double-strand 

break repair processes, was observed exclusively in all post-radiotherapy samples. 

This finding suggests a possible association between ID8 and radiotherapy-induced 

mutational processes, though statistical significance was not achieved (p = 0.13), 

likely due to the small sample size and absence of ID8 mutations in pre-radiotherapy 

samples, limiting the statistical power. 

 

The lack of significant changes in SBS and most ID signatures indicates that 

radiotherapy, as detectable by NanoSeq in this cohort, does not dramatically alter 

the mutational signature profile. However, while not statistically significant the 

presence of ID8 identified exclusively in post-radiotherapy samples hints at a 

potential link to radiotherapy-induced mutagenic processes, warranting further 

investigation with larger cohorts. 
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Figure 3.23. Indel (ID) mutational signatures in pre- and post-radiotherapy samples 

across the NanoSeq cohort. 

Stacked bar plots illustrate the counts of COSMIC ID signatures (ID1, ID2, ID5, ID8, 
and ID9) across five patients, showing the variability of these signatures before and 
after radiotherapy. Dedifferentiated liposarcoma (ddLPS), myxofibrosarcoma (MFS), 
pleomorphic liposarcoma (pLPS), spindle cell sarcoma (SpCS), and synovial 
sarcoma (SS). 
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3.6.5 Summary 

In this section, NanoSeq was applied to detect low-frequency mutations and subtle 

genomic changes in soft tissue sarcomas, overcoming the limitations of whole-

exome sequencing in capturing radiotherapy-induced mutations. The increased 

sensitivity of NanoSeq allowed for a deeper examination of mutation types and DNA 

repair mechanisms post-radiotherapy. 

 

NanoSeq analysis showed a statistically significant rise in indels per cell after 

radiotherapy, across all sarcoma subtypes examined. While SNVs per cell did not 

significantly increase overall, there were subtype-specific increases in SNVs 

suggested sarcoma-specific genomic responses. The Indel-to-SNV ratio also rose, 

mainly due to an increase in deletions, indicating a potential elevation in double-

strand break repair events. Additionally, a notable increase in microhomology-

mediated indels post-radiotherapy suggested a shift towards the error-prone 

microhomology-mediated end joining (MMEJ) repair pathway, potentially 

contributing to genomic instability. 

 

Mutational signature analysis revealed the consistent presence of the clock-like 

SBS1 and SBS5 signatures across the cohort. These signatures were observed in 

both pre- and post-radiotherapy samples. Additionally, SBS40a, a signature of 

unknown aetiology, was detected in some samples pre- and post-radiotherapy, 

further highlighting the background mutational processes within these sarcomas. 

 

Six indel signatures were identified: ID1, ID2, ID5, ID8, and ID9. ID1 and ID2, 

commonly associated with aging and DNA mismatch repair deficiencies, were 

observed consistently across samples, while ID5 and ID9, which are of unknown 

aetiology, showed some variability. Notably, ID8 - a signature associated with 

double-strand break repair — was uniquely present in post-radiotherapy samples, 

hinting at a potential radiotherapy-induced mutational effect. The emergence of ID8 

post-treatment may reflect a radiotherapy-specific response, activating repair 

pathways associated with DNA double-strand breaks and potentially contributing to 

genomic instability. 
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3.7 Discussion of chapter 3 

The findings in this chapter improve our understanding of the genomic consequences 

of radiotherapy in soft tissue sarcomas (STS), particularly in relation to tumour 

mutational burden (TMB), copy number alterations (CNAs), and mutational 

signatures. While radiotherapy is known to cause DNA damage, its effect on somatic 

mutation burden in STS has remained unclear. This study demonstrated that 

radiotherapy does not significantly increase overall TMB, aligning with previous 

reports of low baseline mutation rates (~1 mutation per Mb) in STS. However, subtle 

shifts in the Indel-to-SNV and Deletion-to-Insertion ratios suggest an increased 

reliance on error-prone DNA repair pathways following radiation exposure. 

 

Copy Number Alterations and chromosomal instability 

CNA analysis revealed that the fraction of genome altered (FGA) increased post-

radiotherapy, suggesting a role for radiotherapy-induced chromosomal instability in 

STS. While CNAs have been linked to radiotherapy response in cancers such as 

lung adenocarcinoma and breast cancer, their role in sarcomas remains 

underexplored. Additionally, pre-existing genomic alterations must be distinguished 

from treatment-induced changes, as exemplified by a homozygous MLH1 deletion in 

RT40, a pre-radiotherapy biopsy sample. These observations emphasise the need 

to differentiate between baseline chromosomal instability and radiotherapy-driven 

CNA evolution when evaluating post-treatment genomic changes. 

 

Mutational signature and NanoSeq analysis  

Mutational signature analysis was severely limited by the low number of mutations 

detected by WES, making it difficult to confidently attribute signatures or compare 

pre- and post-radiotherapy samples. The median number of SNVs and indels in the 

WES data was only 33 and 2 per sample, respectively, while the WGS data (available 

for only five samples) showed a median of 3873 SNVs and 145 indels per sample. 

Given these limitations, mutational signature attribution from WES carries a high 

degree of uncertainty, and comparisons between pre- and post-radiotherapy 

samples must be interpreted with caution. Similarly I would hypothesise that 

conventional WGS might also show a limited change in the detectable mutation rate 

post-radiotherapy. Due to the relatively short duration of exposure, there would be 
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insufficient time for significant clonal outgrowths that could be detectable by WGS 

unless undertaken at ultra-high depth (>1000x). 

 

To overcome this, NanoSeq was employed, enabling the detection of low-frequency 

mutations with much higher sensitivity. This analysis revealed a significant increase 

in the number of indels following radiotherapy, with the median number of indels per 

cell rising from 177 pre-radiotherapy to 690 post-radiotherapy across four patients. 

This represents a nearly fourfold increase in indels, making it the most striking post-

radiotherapy genomic change identified in this study. Additionally, the median 

number of SNVs decreased from 3813 to 2814 post-radiotherapy, suggesting 

potential shifts in mutational processes and repair pathway engagement. 

 

NanoSeq provided a more reliable assessment of mutational processes than WES. 

SBS1 and SBS5, associated with endogenous aging, were consistently detected, 

while SBS40a (of unknown aetiology) appeared in some cases but was not linked to 

radiotherapy. No radiation-associated SBS signatures (e.g., SBS18) were detected 

post-radiotherapy, confirming that radiotherapy does not drive a distinct single base 

substitution mutational signature in STS. 

 

In contrast, indel (ID) signature analysis provided evidence of potential radiotherapy-

induced effects. Five ID signatures (ID1, ID2, ID5, ID8, and ID9) were detected, with 

ID8 emerging exclusively in all post-radiotherapy samples. ID8 has previously been 

linked to double-strand break repair via non-homologous end joining (NHEJ) (see 

Section 1.7.4), suggesting that radiotherapy-induced DNA damage may drive 

increased reliance on this error-prone repair pathway. The significant rise in overall 

indels post-radiotherapy, coupled with the presence of ID8 in all post-treatment 

samples, strongly suggests that radiotherapy promotes genomic instability through 

mutagenic repair processes. While statistical significance was not reached due to 

small sample size, these findings warrant further validation in larger cohorts. 

 

Future Directions 

While TMB remained stable post-radiotherapy, the significant rise in indels and copy 

number alterations (CNAs) suggests that radiotherapy alters DNA repair dynamics 

in STS, potentially influencing tumour evolution. Future studies should investigate 
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whether radiotherapy-induced shifts toward error-prone repair pathways (e.g., 

MMEJ) contribute to treatment resistance or recurrence. Longitudinal multi-omics 

profiling combined with functional validation (e.g., DNA repair assays, CRISPR-

based studies) will be essential to determine whether these changes create 

targetable vulnerabilities for improving sarcoma treatment. 
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Chapter 4. The transcriptomic response to 

neoadjuvant radiotherapy.  

4.1 Introduction 

While Radiotherapy (RT) is known to cause DNA damage, its broader effects on 

tumour biology - particularly at the transcriptomic level - remain poorly understood. 

In Chapter 3, genomic analyses revealed no recurrent somatic variants or copy 

number alterations consistently induced by RT across subtypes, aligning with the 

known genomic heterogeneity of STS. However, NanoSeq analysis identified a 

significant increase in indels post-RT, with the emergence of ID8, a signature 

associated with double strand break repair via non-homologous end joining. These 

findings indicate that while RT does not generate a distinct SNV-based mutational 

signature, it likely induces genomic instability through increased reliance on error-

prone DNA repair mechanisms. 

 

Given the absence of recurrent RT-induced driver mutations, this raises a key 

question: do STS tumours instead exhibit shared transcriptional responses to RT? 

Exploring the transcriptomic landscape could reveal adaptive cellular programs that, 

despite underlying genomic heterogeneity, may be targetable for therapeutic 

intervention. If RT induces predictable changes in gene expression or pathway 

activity, these could represent potential vulnerabilities that could be leveraged for 

combination therapies to enhance treatment efficacy. 

 

Despite the molecular diversity of STS, prior studies suggest that certain 

transcriptional programs, such as stress response and immune modulation, may be 

conserved across tumour types (McKelvey, Hudson et al. 2018, Wang, Lynch et al. 

2024). However, little is known about how RT reshapes the transcriptome in STS. 

This chapter addresses this gap by identifying radiotherapy-induced gene 

expression changes, altered signalling pathways, and transcriptional responses that 

may contribute to tumour adaptation. 
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Objectives of this chapter 

This chapter specifically addresses the following questions: 

 

• Do STS tumours exhibit shared transcriptional responses to RT despite their 

genomic heterogeneity? 

• Which genes and pathways are consistently altered following RT across sarcoma 

subtypes? 

• How do transcriptomic responses vary by histological subtype? 

 

By integrating differential expression analysis, pathway enrichment, and tumour 

phenotypic comparisons, this chapter aims to identify potentially targetable 

transcriptional responses to RT in STS. 

 

Structure of this chapter 

The chapter begins with a clinical overview of the cohort, outlining histological 

distribution and patient characteristics. Next, exploratory transcriptomic analyses, 

including principal component analysis (PCA) and UMAP clustering, assess global 

transcriptional shifts following RT. 

 

Differential gene expression analysis is performed to identify genes that are 

significantly upregulated or downregulated post-RT across STS subtypes. To gain 

biological insight, gene set enrichment analysis (GSEA) and PROGENy pathway 

analysis are used to determine RT-induced changes in cellular signalling pathways. 

Additionally, Gene Ontology (GO) enrichment analysis characterises the functional 

roles of differentially expressed genes, while xCell immune deconvolution assesses 

changes in immune cell composition following radiotherapy. 
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4.2 Outline of dataset 

To investigate the impact of radiotherapy on the transcriptome of soft tissue 

sarcomas, I identified 61 patients treated by the London Sarcoma Service who 

underwent neoadjuvant radiotherapy. Of these 61, 58 patients had FFPE tissue (pre- 

and postoperatively) and 1 had fresh frozen tissue available for RNA extraction and 

sequencing. For 58 patient samples, RNA extraction yielded sufficient quantities 

(minimum 265 ng, median 5.5 μg) and concentrations (minimum 5.3 ng/μl, median 

111 ng/μl) for sequencing. The only exception was the pre-radiotherapy biopsy from 

patient 57, which had insufficient concentration for sequencing. 

 

A total of 119 samples from 58 patients were sent for sequencing. One sample was 

repeated (patient 4 - post-radiotherapy sample) due to initial poor-quality sequencing. 

The repeated sample successfully passed quality control. Two samples (patient 42 

and patient 56 - pre-radiotherapy biopsies) did not pass quality control after 

sequencing, and there was insufficient tissue to attempt a repeat extraction. 

 

The median number of sequenced reads per sample was 118.3 million (range 90.3 

– 131.1 million). 

 

Summary of Samples and Patients 

• Total number of patients: 57 

• Total number of sequenced samples that passed QC: 117 

• Number of pre-radiotherapy biopsy samples: 54 (from 54 separate 

patients) 

• Number of post-radiotherapy resection samples: 55 (from 43 separate 

patients) 

• Number of paired pre- and post-radiotherapy patients: 40 

• Number of recurrence samples: 3 (from 3 separate patients) 

• Number of metastasis samples: 5 (from 5 separate patients) 

 

40 patients had matched pre- and post-radiotherapy tumour samples sequenced. 

Four patients (patients 4, 24, 32, and 61) had an additional metastasis sample 

sequenced. Patient 58 also had a tumour recurrence sample sequenced. 
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Additionally, 4 patients (patient 39, patient 46, patient 48, and patient 58) underwent 

multi-region sampling from the post-radiotherapy resection specimen.  

 

Clinical Breakdown of all 57 patients 

The histological breakdown of cases is shown in Table 4.1. 

 

• Age at diagnosis: ranged between 17 to 89 years old (median 56 years, 

mean 53 years). 

• Gender distribution: 38 males and 19 females, resulting in a male-to-female 

ratio of 2:1. 

 
 
Table 4.1 Clinical characteristics of all patient samples 

This table breaks down the patients in the study according to histological diagnosis. 

Diagnosis Symbol No. of 

patients 

Male:Female Age 

range 

Myxofibrosarcoma MFS 21 14:7 46 – 89  

Myxoid liposarcoma mLPS 7 6:1 37 – 48 

Synovial sarcoma SS 7 4:3 22 – 56  

Pleomorphic liposarcoma PLS 4 3:1 31 – 57  

Dedifferentiated liposarcoma ddLPS 3 2:1 71 – 72  

Pleomorphic leiomyosarcoma pLMS 3 2:1 57 – 78  

Undifferentiated pleomorphic 

sarcoma 

UPS 3 2:1 29 – 76  

Extraskeletal myxoid 

chondrosarcoma 

EMC 2 2:0 56 – 63  

Malignant peripheral nerve 

sheath tumour 

MPNST 2 0:2 40 – 59  

Spindle cell sarcoma NOS SpCS 2 2:0 17 – 53  

Alveolar soft part sarcoma ASPS 1 0:1 27 

Clear cell sarcoma CCS 1 0:1 28 

Malignant mixed tumour MMT 1 1:0 17 
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Clinical Breakdown of the 40 paired patients 

For some analyses data was restricted to matched patient samples. Below is the 

breakdown of the clinical characteristics of these samples (see Table 4.2). 

 

• Age at diagnosis: ranged between 17 to 89 years old (median 56yrs, mean 

51yrs).  

• Gender distribution: 26 males and 14 females giving a male to female ratio 

of 1.9:1. 

 

 

Table 4.2. Clinical characteristics of paired patient samples 

Diagnosis Symbol No. of 

patients 

Male:Female Age 

range 

Myxofibrosarcoma MFS 13 8:5 46 – 89  

Synovial sarcoma SS 7 4:3 22 – 56  

Pleomorphic liposarcoma PLS 4 3:1 31 – 57  

Dedifferentiated liposarcoma ddLPS 3 2:1 71 – 72  

Myxoid liposarcoma MLS 2 2:0 38 – 42 

Pleomorphic leiomyosarcoma pLMS 2 1:1 57 – 78  

Extraskeletal myxoid 

chondrosarcoma 

EMC 2 2:0 56 – 63  

Spindle cell sarcoma SpCS 2 2:0 17 – 53  

Undifferentiated pleomorphic 

sarcoma 

UPS 1 1:0 29   

Malignant peripheral nerve 

sheath tumour 

MPNST 1 0:1 59  

Alveolar soft part sarcoma ASPS 1 0:1 27 

Clear cell sarcoma CCS 1 0:1 28 

Malignant mixed tumour MMT 1 1:0 17 
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4.2.1 Summary of dataset 

This bulk RNAseq dataset comprises 117 tumour samples from 57 different patients, 

representing 13 distinct soft tissue sarcoma subtypes. This includes 54 pre-

radiotherapy biopsies from 54 patients, 55 post-radiotherapy resection samples from 

43 patients, 3 recurrence samples from 3 patients, and 5 metastasis samples from 5 

patients. 

 

Matched pre- and post-radiotherapy samples are available for 40 patients. 

 

To the best of my knowledge, this represents the largest and most comprehensive 

soft tissue sarcoma bulk RNAseq dataset with matched human patient samples pre- 

and post-neoadjuvant radiotherapy. This clinically annotated dataset provides a solid 

foundation for examining transcriptomic changes induced by radiotherapy and for 

identifying potential biomarkers of treatment response and disease progression. 
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4.3 Exploratory analysis of transcriptomic data quality and 

clustering trends. 

To explore the RNAseq data, I initially performed principal component analysis 

(PCA), a widely used dimensionality reduction technique for assessing variability 

within high-dimensional data. The PCA plot in Figure 4.1 shows that tumours of 

certain histological subtypes tend to cluster together. For example, synovial sarcoma 

samples are grouped in the lower-left area of the plot, while myxofibrosarcoma 

samples cluster to the right. This clustering indicates that the gene expression 

profiles within these subtypes are relatively homogeneous. Similar clustering 

patterns have been reported in previous studies on soft tissue sarcomas, which 

observed some clustering alongside overlap between histological subtypes (TCGA 

2017, Lesluyes, Baud et al. 2019). To further visualise this pattern, I used Uniform 

Manifold Approximation and Projection (UMAP), as shown in Figure 4.2, which 

supports the PCA findings. 

 

The effect of radiotherapy on the transcriptome, however, appears to be less 

pronounced than the differences attributable to histological subtype (Figure 4.3). The 

samples do not cluster distinctly by radiotherapy status, suggesting that the 

transcriptomic changes induced by radiotherapy are not as significant as the inherent 

gene expression profiles associated with each histological subtype. 

 

Interestingly, the samples do cluster well by patient ID, showing a high degree of 

similarity between the pre-radiotherapy biopsy and the post-radiotherapy resection 

specimen(s) from the same patient. This consistency highlights the reliability and 

robustness of the FFPE RNA extraction and sequencing methodology, even in the 

absence of technical replicates. 
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Figure 4.1. PCA plot demonstrating histological subtypes.  

Samples are coloured by histological subtype. The sample labels show the patient 
ID number followed by whether the sample was pre- or post-radiotherapy. Where 
patients have had multiple post-radiotherapy samples sequenced this is indicated 
with a number at the end of the label. 
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Figure 4.2 UMAP demonstrating clustering of samples according to histological 

subtype. 

Samples are coloured by histological subtype. The sample labels show the patient 
ID number followed by whether the sample was pre- or post-radiotherapy. Where 
patients have had multiple post-radiotherapy samples sequenced this is indicated 
with a number at the end of the label. 
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Figure 4.3. PCA plot demonstrating the radiotherapy status of the samples. 

Samples are coloured by radiotherapy status. The sample labels show the patient ID 
number followed by whether the sample was pre- or post-radiotherapy. Where 
patients have had multiple post-radiotherapy samples sequenced this is indicated 
with a number at the end of the label. 
 
 
 

 

 

 

 

 

 

 

 

  



Chapter 5. Results 

 

173 

 

4.3.1 Multiregional sampling 

To ensure confidence in downstream analyses, I examined whether temporal and 

spatial sampling differences between biopsy and resection specimens would impact 

the results. To this end, I performed multiregional RNA sequencing on resection 

specimens from four patients, with each resection sampled from four separate FFPE 

blocks representing distinct tumour regions. PCA analysis of the RNAseq data 

showed that samples clustered by their patient ID, without clear separation between 

pre-radiotherapy biopsies and post-radiotherapy resection specimens (Figure 4.4).  

 

The consistency observed in the transcriptomes of the five samples per patient, 

across all four patients, suggests limited transcriptional spatial heterogeneity within 

soft tissue sarcomas at the bulk RNAseq level. This finding supports the reliability of 

using a single sample for analysis and reinforces the reproducibility of the 

methodology used in this study.  
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Figure 4.4. PCA plot demonstrating the effect of radiotherapy in patients with 

multi-region sampling of resection specimens. 

Samples are coloured by radiotherapy status. The sample labels show the patient ID 
number followed by whether the sample was pre- or post-radiotherapy.  
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The samples in this study were sequenced in 4 batches. Batch 1 was the initial pilot 

study, batch 2 and 3 contained the rest of the FFPE samples. Batch 4 was the 

sequencing of the clear cell sarcoma case (patient 61). This was the only sample 

where the bulk RNA sequencing was performed on fresh frozen tissue. Principal 

component analysis shows no clustering by sequencing batch (Figure 4.5).  

 

 

Figure 4.5. PCA plot demonstrating the effect of sequencing batch. 

The samples are coloured by the sequencing batch. The sample labels show the 
patient ID number followed by whether the sample was pre- or post-radiotherapy. 
Where patients have had multiple post-radiotherapy samples sequenced this is 
indicated with a number at the end of the label. 
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4.3.2 Summary of transcriptome clustering analyses 

The transcriptome analyses using PCA and UMAP show that while soft tissue 

sarcomas exhibit diverse gene expression profiles, samples tend to cluster primarily 

by histological subtype rather than by radiotherapy status. Some overlap between 

different histological diagnoses is observed. 

 

The consistent clustering of multi-region samples from the same patient underscores 

the reliability and reproducibility of both the RNA extraction and sequencing methods. 

This is further supported by the lack of clustering according to sequencing batch. 
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4.4 Differential gene expression analysis of pre- and post- 

radiotherapy samples. 

To investigate changes in gene expression following radiotherapy, I conducted 

differential gene expression analysis on 40 patients with matched pre- and post-

radiotherapy samples. This analysis excluded 14 patients with only unpaired pre-

radiotherapy biopsies and 3 patients with only unpaired post-radiotherapy resections. 

Using paired samples helps control for inter-patient variability, which enhances the 

reliability of the results, even if this comes at the expense of a reduced sample size 

and potentially lower statistical power. 

 

Differential expression analysis was conducted in R using the DESeq2 package. 

Results are displayed in the volcano plot (Figure 4.6). Applying a threshold of Log₂ 

fold change > 1 and an adjusted p-value (padj) < 0.05, I identified 140 differentially 

expressed genes. Among these, 107 genes were upregulated, and 33 genes were 

downregulated following radiotherapy. The top differentially expressed genes 

(though with Log₂ fold change > 1.5) are highlighted in Figure 4.7.  
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Figure 4.6. Volcano plot of differential gene expression following radiotherapy. 

The volcano plot shows changes in gene expression between pre- and post-
radiotherapy samples. The dashed vertical lines represent the significance 

threshold at Log₂ fold change of ±1, and the horizontal dashed line marks an 
adjusted p-value (padj) of <0.05. 
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Figure 4.7. Top differentially expressed genes following radiotherapy. 

This bar plot displays the top 42 differentially expressed genes with a Log₂ fold 
change > 1.5, show genes that exhibit the most substantial changes in expression 
post-radiotherapy.  
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4.5 Differential gene expression analysis of pre- and post- 

radiotherapy samples by histological subtype 

The results present above in section 4.4 reflect the combined differential gene 

expression analysis across 13 different histological subtypes. To investigate 

potential subtype-specific changes and identify genes shared between subtypes, I 

next performed differential gene expression analyses on patients from subtypes with 

sufficient paired samples. This analysis included 35 patients across the following 

subtypes: myxofibrosarcoma (13), synovial sarcoma (7), pleomorphic liposarcoma 

(4), dedifferentiated liposarcoma (3), myxoid liposarcoma (2), pleomorphic 

leiomyosarcoma (2), extraskeletal myxoid chondrosarcoma (2), and spindle cell 

sarcoma (2). 

 

Across this cohort, a total of 1403 genes were differentially expressed following 

radiotherapy. The majority of these genes (1216 genes, or 86.7%) were subtype 

specific. Each subtype showed between 68 and 503 differentially expressed genes, 

with 42% to 83% of these genes being unique to a specific subtype (Table 4.3).   
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Table 4.3. Numbers of differentially expressed genes following radiotherapy 

broken down by histological subtype. 

Tumour type Number of 

differentially 

expressed 

genes 

Number of unique 

differentially 

expressed genes 

Unique genes 

per subtype 

(%) 

Myxofibrosarcoma 503 420 83 

Synovial sarcoma 12 5 42 

Pleomorphic 

liposarcoma 

117 82 70 

Dedifferentiated 

liposarcoma 

68 40 58 

Myxoid 

liposarcoma 

445 346 78 

Pleomorphic 

leiomyosarcoma 

198 137 69 

Extraskeletal 

myxoid 

chondrosarcoma 

94 50 53 

Spindle cell 

sarcoma 

184 136 74 
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4.5.1 Shared differentially expressed genes between subtypes. 

A total of 187 genes were differentially expressed in at least two subtypes. The most 

commonly observed shared genes were HBA2 and HBB, which were differentially 

expressed in six subtypes: myxofibrosarcoma (MFS), myxoid liposarcoma (MLS), 

pleomorphic leiomyosarcoma (pLMS), dedifferentiated liposarcoma (ddLPS), spindle 

cell sarcoma (SpCS), and extraskeletal myxoid chondrosarcoma (EMC). The next 

most commonly shared gene was F13A1, differentially expressed in four subtypes 

(MFS, MLS, pLMS, and ddLPS). Additionally, 21 genes were differentially expressed 

in three subtypes, and 163 genes were differentially expressed in two subtypes. A 

complete list of shared genes and their respective tumour types is provided in Table 

4.4. 

 

The number of unique and shared differentially expressed genes varies across 

sarcoma subtypes, with relatively few genes overlapping between them. No two 

subtypes share more than 19 unique genes (notably between MFS and MLS, as well 

as MLS and pLMS). Most subtypes exhibit largely distinct transcriptional profiles, 

though some genes are shared across multiple subtypes in small numbers. These 

patterns are visualised in Figure 4.8, where an upset plot illustrates the extent of 

gene overlap, emphasizing the predominantly unique transcriptional landscapes of 

different sarcoma subtypes. 
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Figure 4.8. Upset plot displaying unique and shared differentially expressed genes 

following radiotherapy across histological subtypes. 

Each subtype’s differentially expressed genes following radiotherapy are shown, 
highlighting both the number of unique and shared genes across these histologies. 
Myxofibrosarcoma (MFS), myxoid liposarcoma (MLS), pleomorphic 
leiomyosarcoma (pLMS), spindle cell sarcoma (SpCS), pleomorphic liposarcoma 
(PLS), extraskeletal myxoid chondrosarcoma (EMC), dedifferentiated liposarcoma 
(ddLPS), and synovial sarcoma (SS).  
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Table 4.4. Differentially expressed genes following radiotherapy that are shared 

between multiple soft tissue sarcoma subtypes. 
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Differential gene expression analysis identified 24 genes with shared transcriptional 

changes across multiple sarcoma subtypes following radiotherapy. These genes 

were selected based on their differential expression in at least three subtypes, 

suggesting a common transcriptional response to treatment. The heatmap in Figure 

4.9 illustrates these expression changes, highlighting patterns of radiotherapy-

induced gene regulation across sarcoma subtypes. 

 

Several genes exhibit consistently increased expression post-radiotherapy, including 

SERPINE1, RGS1, MT1X, FGF7, IFIT3, CRK, F13A1, CCN1, and PDK4. In contrast, 

ANO5, LOXHD1, NOTCH4, DMD, SOX18, HBA1, HBA2, and HBB show consistent 

decreases in expression across multiple subtypes. 

 

Interestingly, some genes display varied expression changes depending on the 

subtype, suggesting subtype-specific responses. These genes include CASQ1, 

PRSS12, JPH1, MYOM3, TAGLN, and ZBTB16. 

 

These findings suggest that while certain genes exhibit a common response to 

radiotherapy across sarcoma subtypes, others demonstrate subtype-specific 

expression patterns, highlighting the complexity of sarcoma transcriptomic 

responses to treatment. 
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Figure 4.9. Heatmap of differentially expressed genes observed in at least three 

sarcoma subtypes following radiotherapy. 

Genes with Log₂ fold changes of less than ±1 are coloured white to indicate minimal 
expression change. Red and blue denote upregulation and downregulation, 
respectively, with intensity reflecting the magnitude of the fold change. 
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4.5.2 Summary 

This section examined gene expression changes following radiotherapy across 

various sarcoma subtypes. By analysing paired pre- and post-radiotherapy samples, 

I aimed to control for inter-patient variability and achieve more reliable results. 

Differential gene expression analysis on 40 paired samples from 13 sarcoma 

subtypes identified 140 significantly altered genes post-radiotherapy, with the 

majority (107) showing upregulation. 

 

Subtype-specific analyses revealed considerable variability, with most differentially 

expressed genes being unique to individual subtypes. However, a subset of genes 

was consistently altered across multiple subtypes. For instance, SERPINE1 

displayed a consistent increase in expression, while the haemoglobin genes HBA1, 

HBA2, and HBB consistently decreased across subtypes. Other genes, such as 

CASQ1, exhibited subtype-specific responses, being upregulated in two subtypes 

but downregulated in another. These findings highlight both shared and subtype-

specific mechanisms in response to radiotherapy. 
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4.6 Gene Set Enrichment Analysis (GSEA) of pre- vs post-

radiotherapy Samples 

To further investigate the biological processes influenced by radiotherapy, I 

performed Gene Set Enrichment Analysis (GSEA) on the differential gene 

expression (DGE) results from paired pre- and post-radiotherapy samples. This 

analysis aimed to identify enriched cellular pathways involved in the response to 

radiotherapy across various sarcoma subtypes. 

 

I used the Hallmark gene sets which were developed by the Broad Institute (Liberzon, 

Birger et al. 2015). They represent a curated collection of 50 gene sets that cover 

essential biological processes and signalling pathways. These pathways are 

associated with fundamental aspects of cellular function, disease mechanisms, and 

developmental processes, providing a framework for interpreting large and complex 

gene expression datasets. By consolidating related genes into distinct biological 

pathways, the Hallmark gene sets reduce redundancy, making it easier to discern 

broader biological trends rather than isolated gene-level changes. Key pathways 

include those related to cell proliferation, inflammation, immune response, 

metabolism, and DNA repair; all processes potentially impacted by radiotherapy. 

 

The GSEA results revealed both significantly upregulated and downregulated 

pathways following radiotherapy (Figure 4.10). Notably, several immune-related 

pathways were significantly upregulated, including interferon gamma response, 

TNFA signalling via NFKB, and inflammatory response, suggesting a strong immune 

activation in response to radiotherapy. Other pathways such as allograft rejection 

and interferon alpha response were also enriched, further supporting an immune-

modulatory effect of the treatment. 

 

Conversely, several proliferation pathways were significantly downregulated. These 

included MYC targets, G2M checkpoint, and E2F targets, indicating a potential 

reduction in tumour cell proliferation activity post-radiotherapy. This pattern aligns 

with the therapeutic goal of radiotherapy, which is to damage tumour cells and inhibit 

their growth. 
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These findings suggest that radiotherapy induces a complex response in soft tissue 

sarcomas, characterised by upregulation of immune pathways and downregulation 

of proliferative pathways.  

 

 

 

Figure 4.10. Heatmap of enriched Hallmark pathways in post-radiotherapy 

Samples. 

This heatmap displays the normalised enrichment scores (NES) of significantly 
enriched Hallmark pathways following radiotherapy. The colour intensity reflects 
the NES, with red indicating upregulation and blue indicating downregulation post-
radiotherapy. 
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4.7 Gene Ontology analysis  

To further characterise the biological processes affected by radiotherapy, I 

performed a Gene Ontology (GO) enrichment analysis on the differentially expressed 

genes identified between pre- and post-radiotherapy samples (section 4.4). Unlike 

the Hallmark pathway-focused Gene Set Enrichment Analysis (GSEA), which 

aggregates lists of genes into broad curated pathways, GO analysis categorises 

genes based on specific biological processes, molecular functions, and cellular 

components (Ashburner, Ball et al. 2000, The Gene Ontology Consortium 2018).  

 

The GO enrichment analysis of upregulated genes highlighted a strong enrichment 

of immune and inflammatory processes (Figure 4.11). Key biological processes 

significantly upregulated included T cell activation, cytokine-mediated signalling, and 

immune response-regulating signalling pathways. Additional processes, such as 

leukocyte migration, lymphocyte proliferation, and response to external stimuli, were 

also prominent among the top upregulated pathways. These results suggest that 

radiotherapy activates various immune-related processes, potentially enhancing the 

anti-tumour immune response within the tumour microenvironment. 
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Figure 4.11. Top 30 Upregulated GO Biological Processes following radiotherapy. 

This dot plot displays the top 30 upregulated Gene Ontology (GO) Biological 
Processes identified in post-radiotherapy samples. The size of each dot represents 
the number of genes involved in the process, while the colour intensity indicates 
the adjusted p-value, with red representing the most statistically significant 
processes. The x-axis represents the GeneRatio, defined as the ratio of genes 
associated with each GO term relative to the total number of upregulated genes. 
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Conversely, the GO enrichment analysis of downregulated genes revealed a distinct 

set of biological processes, primarily related to cell cycle regulation and DNA 

metabolism (Figure 4.12). Significantly downregulated processes included mRNA 

processing, RNA splicing, chromosome segregation, and DNA conformation 

changes. Additionally, pathways related to mitotic processes, such as spindle 

organisation, sister chromatid segregation, and mitotic nuclear division, were among 

the most significantly downregulated processes. These findings align with the 

observed reduction in proliferative pathways following radiotherapy seen in the 

GSEA analysis, suggesting a suppression of tumour cell growth and division. 

 

Overall, these GO analysis results highlight the dual impact of radiotherapy on the 

transcriptome, with upregulated immune processes suggesting an activated immune 

response and downregulated cell cycle-related processes indicating decreased 

tumour proliferation. 
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Figure 4.12. Top 30 Downregulated GO Biological Processes following 

radiotherapy. 

This dot plot displays the top 30 downregulated Gene Ontology (GO) Biological 
Processes identified in post-radiotherapy samples. The size of each dot represents 
the number of genes involved in the process, while the colour intensity indicates 
the adjusted p-value, with red representing the most statistically significant 
processes. The x-axis represents the GeneRatio, defined as the ratio of genes 
associated with each GO term relative to the total number of upregulated genes. 
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4.8 PROGENy analysis 

To investigate the impact of radiotherapy on the molecular pathways in soft tissue 

sarcomas, I used the PROGENy (Pathway RespOnsive GENes) R package 

(Schubert, Klinger et al. 2018). PROGENy is designed to infer pathway activity from 

bulk gene expression data. Unlike GSEA analysis (see section 4.5) which is 

designed to determine whether a predefined set of genes show a statistically 

significant differences between two biological states, PROGENy is designed to 

predict the activity of signalling pathways based on the expression of their 

downstream target genes, reportedly offering a more direct measure of pathway 

dynamics.  

 

The development of PROGENy involved compiling a comprehensive list of pathway-

responsive genes from experimental data, allowing the method to provide a more 

accurate and functional interpretation of pathway dynamics based on observed gene 

expression profiles. This data was curated from a variety of experimental platforms, 

including 581 perturbation experiments where specific pathways were activated or 

inhibited. The authors also used microarray gene expression and drug sensitivity 

data from the Cancer Cell Line Encyclopedia (CCLE), Gene expression data from 

The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). 

 

From these sources they derived pathway-specific signatures for 14 major signalling 

pathways (Androgen, EGFR, Estrogen, MAPK, Hypoxia, JAK-STAT, NF-kB, p53, 

PI3K, TGF-β, TNFα, TRAIL (apoptosis), VEGF, and Wnt.). These signatures are sets 

of genes that consistently respond to pathway activation or inhibition. These 

signatures are then used to score new gene expression data, providing an estimate 

of pathway activity. The scores are continuous values that reflect the level of pathway 

activity. Positive scores indicate higher pathway activity, while negative scores 

suggest reduced activity.  

 

A comparison of pre- and post-radiotherapy pathway activity scores is shown in 

Figure 4.13. I performed paired t-tests to compare the pathway activity scores 

between matched pre- and post-radiotherapy samples. Notably, the Androgen 

(P<0.0001), JAK-STAT (P = 0.0001), NF-kB (P = 0.005), p53 (P < 0.0001), and TNFα 
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(P = 0.0001) pathways showed significant increase following radiotherapy. There 

was a statistically significant decrease in PI3K (P = 0.00169) pathway activity. 

 

 

 

Figure 4.13. PROGENy pathway activity scores pre- and post-radiotherapy 

PROGENy pathway activity scores comparing all pre- and post-radiotherapy paired 
samples (Paired t test). 
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4.8.1 Subtype specific analysis 

I wanted to see if the changes in these pathways were seen across sarcoma 

subtypes or whether they were subtype specific. For samples where there were 

enough paired pre- and post-radiotherapy patient samples for statistical testing 

PROGENy scores were calculated. There were enough patients for the following 

subtypes: myxofibrosarcoma (n = 14 patients), synovial sarcoma (n = 7), and 

pleomorphic liposarcoma (n = 4). 

 

When analysed by histological subtype, distinct patterns emerged (Figure 4.14). 

Statistically significant changes were observed in myxofibrosarcomas with increases 

seen in the Androgen (P = 0.0002), JAK-STAT (P = 0.0284), p53 (P < 0.0001), NF-

kB (P = 0.0391), TNFα (P = 0.0222), and Wnt (P = 0.0342) pathways. There was a 

decrease in the PI3K (P < 0.0001) pathways activity score. In the synovial sarcomas 

only the p53 pathway showed a statistically significant increase following 

radiotherapy (P = 0.0429). None of the other 14 pathways showed a statistically 

significant difference in the myxofibrosarcomas, synovial sarcomas, or the 

pleomorphic liposarcomas.  

 

These findings suggest that radiotherapy causes distinct pathway activity changes 

in different histological subtypes of soft tissue sarcomas. The significant pathways 

identified may play important roles in the response to radiotherapy and could serve 

as potential targets for therapeutic intervention. 
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Figure 4.14. PROGENy pathway scores pre- and post-radiotherapy 

PROGENy pathway scores for myxofibrosarcoma (MFS), synovial sarcoma (SS), 
pleomorphic liposarcoma (pLPS) pre- and post-radiotherapy (Paired t test). 
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4.8.2 Comparison to TCGA sarcoma samples 

The sarcoma samples sequenced by the TCGA (TCGA 2017) were treatment naïve 

(both chemotherapy and radiotherapy). I wanted to see if the PROGENy pathway 

activity scores in the TCGA data resembled my pre-radiotherapy scores and to see 

if there was a difference between the TCGA scores and the post-radiotherapy scores. 

 

There were 17 myxofibrosarcoma cases within the TCGA dataset. These were 

compared to the 14 patients paired pre- and post-radiotherapy dataset (Figure 4.15). 

There was a statistically significant increase in the Androgen (P < 0.0001), TNFα (P 

= 0.0362) pathways. There was a significant decrease in the PI3K (P = 0.00499) 

activity score between the TCGA and the post-radiotherapy samples. There was no 

statistically significant difference in the remainder of the other 14 pathways. 
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Figure 4.15. Comparison of PROGENy scores in myxofibrosarcomas between the 

TCGA and the radiotherapy datasets 

PROGENy pathway activity scores for myxofibrosarcomas from the TCGA, pre- and 
post-radiotherapy datasets (Unpaired two-tailed t test between TCGA and post-
radiotherapy samples). Only significant pathways  
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4.8.3 Summary 

This PROGENy analysis revealed significant pathway activity changes in multiple 

soft tissue sarcomas following radiotherapy, suggesting potential molecular 

mechanisms underlying the response to treatment. Across all samples, radiotherapy 

significantly increased activity in the Androgen, JAK-STAT, NF-kB, p53, and TNFα 

pathways, while PI3K pathway activity decreased. 

 

When examined by histological subtype, distinct patterns emerged. 

Myxofibrosarcoma showed widespread pathway activation post-radiotherapy, while 

synovial sarcoma exhibited a notable increase only in the activity of the p53 pathway 

and pleomorphic liposarcoma showed no changes in any pathways.  

 

Further comparison of my post-radiotherapy myxofibrosarcoma cases with 

treatment-naïve TCGA myxofibrosarcoma samples highlighted a similar increase in 

the Androgen and TNFα pathways and a decrease in PI3K activity post-radiotherapy, 

further underscoring these pathway-specific responses. 

 

These findings overall indicate that radiotherapy elicits heterogeneous pathway 

responses across different sarcoma subtypes. This emphasises the need for 

subtype-specific therapeutic strategies. The observed increase in Androgen pathway 

activity post-radiotherapy raises the possibility that certain sarcomas could become 

more responsive to anti-androgen therapies as an adjuvant treatment. This suggests 

a potential avenue for targeted intervention that, while speculative, could be valuable 

to explore in future studies to enhance patient outcomes.  
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4.9 Cellular composition analysis using xCell. 

Given the prominent immune signalling signatures identified in the GSEA and GO 

analyses, I conducted an xCell analysis (Aran, Hu et al. 2017) to further investigate 

the cellular composition including those of immune cells within the tumour 

microenvironment. Given that bulk RNAseq data captures gene expression 

averaged across all cell types in a sample, the resulting gene expression patterns 

may reflect not only changes intrinsic to tumour cells but also shifts in the cellular 

composition of the sample. This can be particularly relevant in the context of immune-

related pathways, where an influx or reduction of specific immune cell populations 

could potentially influence the overall transcriptomic profile. 

 

The primary aim of this analysis was to determine if changes in immune cell 

populations could be influencing the observed gene expression patterns, particularly 

those related to inflammation and immune signalling. By analysing the immune 

composition with xCell, I sought to clarify whether the immune-related pathways seen 

in the GSEA and GO results were, in part, a reflection of shifts in immune cell 

abundance rather than solely gene expression changes within tumour cells. 
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Figure 4.16. Changes in cellular composition identified by xCell analysis 

following radiotherapy. 

This bar plot displays the significantly altered cell populations identified by xCell 
analysis, estimating the relative abundance of cell types within bulk RNAseq data. 
"Relative abundance" reflects the proportion of specific cell types within the overall 
tumour sample. Red bars indicate cell types with increased abundance post-
radiotherapy, while blue bars show those with decreased abundance.  
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The xCell analysis (Figure 4.16) showed significant changes in 20 out of 64 cell types 

analysed following radiotherapy, highlighting a shift in the tumour’s immune 

landscape. Notably, there was an increase in the abundance of macrophages and T 

cells, both of which play key roles in the immune response to tumours. The elevated 

presence of macrophages could indicate an immune response to radiotherapy-

induced tumour cell damage. Depending on their polarisation state, these 

macrophages could either promote an anti-tumour immune response (in the case of 

pro-inflammatory M1 macrophages) or contribute to immune suppression and 

tumour progression (in the case of anti-inflammatory M2 macrophages) (Beach, 

MacLean et al. 2022). The increase in T cells, particularly cytotoxic T cells, suggests 

a potential enhancement of the anti-tumour immune response, which could support 

the therapeutic effects of radiotherapy (Sharabi, Lim et al. 2015).  

 

The increase in activated dendritic cells (aDCs) following radiotherapy suggests that 

there may be an enhancement of antigen presentation within the tumour 

microenvironment. Dendritic cells are critical for capturing antigens, processing 

them, and presenting them to T cells, thereby initiating and shaping the adaptive 

immune response. The presence of more activated dendritic cells could mean that 

radiotherapy is promoting a pro-immunogenic environment, where tumour antigens 

released following radiotherapy are more readily presented to T cells, potentially 

enhancing their activation and function (Sharabi, Lim et al. 2015). 

 

The shifts in immune cell populations seen in Figure 4.16 likely contribute to the 

upregulation of immune pathways observed in the GSEA and GO analyses, 

suggesting that some of the immune-related gene expression changes are a 

reflection of altered immune cell composition within the tumour microenvironment. 

However, it is important to note that while immune cell composition explains part of 

the observed transcriptomic shifts, it is unlikely to fully account for all the enriched 

pathways. The observed gene expression patterns are likely a combination of 

immune cell changes and intrinsic gene expression responses within tumour and 

stromal cells following radiotherapy. 

 

The results of this xCell analysis highlights the challenge and complexity of 

interpreting bulk RNAseq data, where cellular composition changes can confound 
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differential gene expression analyses. These findings suggest that future studies 

might benefit from using spatial transcriptomic approaches, which would allow for 

more precise localisation of immune cells within the tumour tissue. By providing the 

spatial context, these techniques could enable the exclusion of immune cells from 

differential gene expression, GSEA, and GO analyses, leading to a more accurate 

characterisation of tumour-specific transcriptional responses to radiotherapy. 
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4.10  Discussion of chapter 4 

This chapter examined the transcriptional response of soft tissue sarcomas to 

neoadjuvant radiotherapy, addressing whether shared transcriptional changes 

contribute to tumour adaptation. Given the absence of recurrent RT-induced driver 

mutations in Chapter 3, but evidence of genomic instability, this chapter explored 

whether RT elicits conserved gene expression changes that may be therapeutically 

relevant. 

 

Transcriptional responses to radiotherapy 

Clustering analyses using PCA and UMAP demonstrated that histological subtype 

exerted a stronger influence on gene expression than RT status, indicating that 

intrinsic tumour biology remains the dominant factor shaping transcriptomic profiles. 

However, differential gene expression analysis identified 140 significantly altered 

genes post-RT (107 upregulated, 33 downregulated), suggesting that despite 

intertumoural heterogeneity, RT induces specific transcriptional changes. Many of 

these genes were associated with cell stress, inflammation, and immune activation, 

while genes linked to proliferation and cell cycle progression were downregulated. 

This suggests that RT may suppress tumour growth while simultaneously triggering 

an adaptive immune response to cellular damage. 

 

Pathway modulation and adaptive responses 

Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) analysis provided 

functional insights, highlighting upregulation of inflammatory pathways such as 

interferon signalling, TNFα response, and p53 activation, alongside downregulation 

of MYC targets and G2M checkpoint genes, suggesting reduced proliferative 

capacity. This dual effect of RT - enhancing immune-related processes while 

inhibiting tumour growth pathways aligns with prior studies demonstrating RT-

induced stress responses and immune priming. 

 

While individual transcriptional responses varied across histological subtypes, with 

different sets of upregulated and downregulated genes, many of the affected 

pathways were shared. This suggests that despite the molecular heterogeneity of 

STS, RT elicits common biological responses at the pathway level. For example, 
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inflammatory and immune-related pathways were consistently upregulated, while 

cell cycle and proliferation-related pathways were downregulated across multiple 

subtypes. However, histology-specific adaptations were also evident, with 

dedifferentiated liposarcoma and synovial sarcoma exhibiting distinct transcriptional 

profiles, reinforcing the importance of considering tumour context in evaluating 

treatment responses. 

 

To further explore RT-induced pathway modulation, PROGENy analysis revealed 

increased activity in the Androgen, P53, JAK-STAT, NF-κB, and TNFα pathways, 

consistent with stress and inflammatory responses. A notable decrease in PI3K 

activity was also detected, suggesting that RT may suppress this survival pathway 

post-treatment. Future research could explore whether targeting these upregulated 

pathways in high-risk patients in the form of adjuvant treatment could improve 

outcomes by preventing tumour adaptation or immune escape. 

 

Immune activation: Direct RT effect or secondary adaptation? 

xCell immune deconvolution provided further evidence of an immunogenic shift 

following RT, with significant increases in macrophages and T cells across multiple 

subtypes. The increase in cytotoxic T cells, in particular, aligns with the immune 

activation signatures detected in pathway enrichment analyses, suggesting that RT 

enhances tumour immunogenicity. However, whether these changes reflect direct 

RT-induced immune activation (e.g., cytokine release following DNA damage) or a 

secondary tumour-driven adaptation (e.g., immune evasion mechanisms) remains 

unclear. While RT has been shown to remodel the immune microenvironment in 

other cancers, its effects in STS remain poorly characterised. Further research is 

needed to determine whether these immune alterations promote sustained anti-

tumour activity or contribute to immune suppression and recurrence. 

 

Conclusions  

These findings demonstrate that RT-induced transcriptional changes, while subtle 

compared to intertumoural differences, reflect key biological adaptations that could 

influence tumour progression or response to therapy. This chapter highlights how 

immune activation, stress adaptation, and altered pathway signalling may play a 
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more significant role in post-RT tumour behaviour than discrete genomic mutations 

alone. 

 

However, the extent of these transcriptional changes varies between tumours, 

raising the question of whether they correlate with clinical outcomes. Chapter 5 

directly investigates this by stratifying post-radiotherapy samples based on patient 

response, identifying gene expression patterns associated with RT resistance and 

progression. By determining whether specific transcriptomic features predict 

therapeutic response, the next chapter aims to uncover potential biomarkers or 

intervention targets for optimising STS treatment. 
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Chapter 5. Transcriptomic determinants of 

radiotherapy response in soft tissue sarcomas 

5.1 Introduction 

Neoadjuvant radiotherapy (RT) is an integral component of soft tissue sarcoma 

(STS) treatment, yet patient responses vary widely, with some achieving durable 

remission while others develop recurrence or metastasis. Identifying transcriptomic 

determinants of RT response is critical for refining treatment strategies, guiding post-

treatment surveillance, and informing personalised therapeutic approaches. 

 

Several transcriptomic prognostic models have been developed for STS, including 

CINSARC (Chibon, Lagarde et al. 2010), the Genomic Grade Index (GGI) (Bertucci, 

Finetti et al. 2012), and hypoxia-associated signatures (Yang, Forker et al. 2017). 

These signatures have demonstrated prognostic value by distinguishing tumours 

based on chromosomal instability, histological grade, and hypoxia-related 

transcriptional activity, all factors associated with metastatic potential and tumour 

aggressiveness. However, they have primarily been derived from treatment-naïve 

tumours and do not account for the transcriptional changes induced by RT. Given 

the significant differences between pre- and post-RT sarcomas observed in Chapter 

4, this chapter aims to identify RT-specific transcriptomic determinants of treatment 

response and progression risk. 

 

By stratifying tumours based on patient outcomes, this analysis seeks to identify 

gene expression signatures and pathways associated with RT resistance. While prior 

studies have shown that transcriptomic signatures can predict tumour 

aggressiveness, they have not specifically addressed whether RT-induced 

transcriptional changes influence disease progression. Given that RT has been 

shown to modulate the immune microenvironment in sarcomas, with increased CD8+ 

T-cell infiltration and altered expression of immune checkpoints (Sharma, Bode et al. 

2013), the immune landscape may be a key determinant of progression post-RT. 

Integrating immune deconvolution and pathway enrichment analyses allows for a 
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deeper exploration of whether immune-related transcriptional programs distinguish 

responders from progressors. 

 

The ultimate goal of this work is to identify biomarkers that can help and improve 

clinical decision making. A robust predictive signature could inform follow-up plans, 

enabling intensified surveillance and adjuvant therapy in high-risk patients while also 

guiding de-escalation strategies for those unlikely to benefit from or are responder 

particularly well to RT, thereby reducing unnecessary toxicity. Additionally, this work 

seeks to uncover potential therapeutic targets for post-RT interventions, with a focus 

on whether transcriptional programs activated in progressors reveal actionable 

vulnerabilities that could be leveraged for combination therapies. 

 

Unlike previous signatures, which were largely developed in treatment-naïve STS, 

this work focuses specifically on post-RT tumour biology, addressing a critical gap in 

the field. By integrating transcriptomic data with patient outcomes and machine 

learning-based modelling, this chapter builds upon the findings of Chapters 3 and 4, 

providing a clinically relevant framework for predicting STS progression post-RT. 
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Objectives of this chapter 

This chapter seeks to answer the following key questions: 

 

• Are there specific gene expression changes associated with disease progression 

after RT? 

• Which biological pathways are enriched in progressors, and do they reflect 

mechanisms of RT resistance? 

• Does the tumour immune microenvironment differ between responders and 

progressors? 

• Can a predictive model be developed to stratify patients based on post-RT 

transcriptomic profiles? 

 

 

Structure of this chapter 

The chapter begins with an overview of the clinical characteristics of responders and 

progressors, detailing differences in histological subtypes and disease progression 

timelines. This is followed by a differential gene expression analysis to identify genes 

associated with post-RT disease progression. Gene set enrichment and pathway 

analysis further contextualise these findings, highlighting biological processes linked 

to progression. Next, I assess differences in tumour immune composition using xCell, 

examining how immune features may contribute to disease progression. Finally, I 

present the development of a predictive model for disease progression based on 

post-RT gene expression signatures, aiming to establish a clinically relevant 

framework for patient stratification. 
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5.2 Clinical characteristics of post-radiotherapy responders 

vs progressors 

The post-radiotherapy cohort consists of 43 patients with 52 available RNA 

samples, distributed across 13 different histological subtypes. Among these, 26 

patients showed no evidence of disease progression, with a median follow-up time 

of 6.8 years (range: 3.8–10.3 years) from the end of intensity-modulated radiation 

therapy (IMRT). The median time from the end of IMRT to surgical resection for this 

group was 44 days (range 28 to 60 days). 

 

In contrast, 17 patients experienced disease progression, defined as metastasis or 

recurrence, with a median time to progression following IMRT of 236 days (range: -

31 days to 5.3 years). Of those who progressed, 14 patients ultimately died from 

their disease, with a median time from IMRT to death of 2.2 years (range: 223 days 

to 7.2 years). The median time from the end of IMRT to surgical resection for this 

group was 48 days (range 13 to 84 days).  

 

Age differences between responders and progressors 

Responders were generally older than progressors, with a median age of 60 years 

compared to 46 years. A two-sample t-test confirmed this difference was statistically 

significant (p = 0.01). While the precise role of age in influencing radiotherapy 

response was not explored in depth in this study, this difference should be taken into 

consideration in subsequent analyses. Future studies incorporating multivariable 

models may help determine whether age acts as a confounding factor in response 

to radiotherapy. 

 

A breakdown of the histological subtypes and their progression status is shown in 

Table 5.1. 
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Table 5.1. Summary of histological subtypes and disease progression status in 

post-radiotherapy cohort. 

This table presents the distribution of histological subtypes and disease progression 
status among 43 patients with post-radiotherapy RNA samples. Progression status 
is categorised into "Responders" (no evidence of disease progression) and 
"Progressors" (progression defined as metastasis or recurrence). The number of 
progressors who died of disease is shown in the final column. ASPS (Alveolar Soft 
Part Sarcoma), CCS (Clear Cell Sarcoma), ddLPS (Dedifferentiated Liposarcoma), 
EMC (Extraskeletal Myxoid Chondrosarcoma), MEC (Myoepithelial Carcinoma), 
MFS (Myxofibrosarcoma), mLPS (Myxoid Liposarcoma), MPNST (Malignant 
Peripheral Nerve Sheath Tumour), pLMS (Pleomorphic Leiomyosarcoma), pLPS 
(Pleomorphic Liposarcoma), SpCS (Spindle Cell Sarcoma), SS (Synovial Sarcoma), 
and UPS (Undifferentiated Pleomorphic Sarcoma). 
 

Subtype  Total Number Responders Progressors Died of disease 

ASPS  1 0 1 0 

CCS  1 0 1 1 

ddLPS  3 2 1 0 

EMC  2 2 0 0 

MEC  1 0 1 1 

MFS  15 13 2 2 

mLPS 2 0 2 2 

MPNST 1 1 0 0 

pLMS 2 1 1 1 

pLPS 4 0 4 3 

SpCS 2 1 1 1 

SS 7 5 2 2 

UPS 2 1 1 1 
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5.3 Differential Gene Expression and Gene Set Enrichment 

Analysis. 

In order to investigate the transcriptomic changes associated with disease 

progression in post-radiotherapy sarcomas, I performed a comprehensive differential 

gene expression and gene set enrichment analysis. This analysis sought to highlight 

both specific genes and pathways differentially regulated in patients with disease 

progression, potentially revealing mechanisms that contribute to tumour radio-

resistance. 

 

Differential expression analysis was conducted in R using the DESeq2 package. 

Results are displayed in the volcano plot (Figure 5.1). Applying a threshold of Log₂ 

fold change > 1 and an adjusted p-value (padj) < 0.05, I identified 586 differentially 

expressed genes. Among these, 315 genes were upregulated, and 271 genes were 

downregulated in patients who went on to have subsequent disease progression. 

The top differentially expressed genes are highlighted in Figure 5.2. An in-depth 

discussion of the top differentially expressed genes is presented in the next chapter 

in section 6.3.2. 
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Figure 5.1. Volcano plot of differential gene expression between progressors and 

responders following radiotherapy. 

The volcano plot illustrates changes in gene expression between patients with 
disease progression (progressors) and those without progression (responders) 
following radiotherapy. The dashed vertical lines represent the significance 

threshold at Log₂ fold change of ±1, and the horizontal dashed line marks an 
adjusted p-value (padj) of <0.05. 
 

 

 

 

  



Chapter 5. Results 

 

215 

 

 

 

Figure 5.2. Top differentially expressed genes in patients with subsequent disease 

progression. 

This bar plot displays the top differentially expressed genes between patients with 
disease progression (progressors) compared to those without progression 
(responders) following radiotherapy. 
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Gene Set Enrichment Analysis 

Subsequently I performed Gene Set Enrichment Analysis (GSEA) to identify 

enriched biological pathways that distinguish progressors from responders. The 

hallmark pathways analysis revealed significant enrichment in several pathways 

(Figure 5.3). Upregulated pathways in progressors included E2F and MYC targets, 

G2M Checkpoint, and Epithelial-Mesenchymal Transition (EMT), highlighting a trend 

toward pathways associated with cell cycle progression, proliferation, and 

metastasis. These pathways are consistent with aggressive tumour behaviours, 

potentially correlating with the observed clinical progression in these patients 

(Schulze, Oshi et al. 2020, Huang, Hong et al. 2022, Chida, Oshi et al. 2023). 

 

Conversely, in the progressors, several pathways commonly associated with 

immune response, inflammation, and cellular stress appear to be significantly 

downregulated. Notably, pathways such as Interferon Gamma and Alpha signalling 

and IL6-JAK-STAT3 signalling are reduced, potentially indicating a weakened 

immune response. Interferons, crucial components of the innate immune system, are 

typically involved in activating immune cells, promoting antigen presentation, and 

enhancing cytotoxicity against tumour cells. The downregulation of interferon 

pathways suggests a diminished capacity for immune cells to recognise and attack 

tumour cells effectively, potentially allowing for immune evasion by the tumour 

(Johnson, O'Keefe et al. 2018, Jorgovanovic, Song et al. 2020, Shi, Yao et al. 2022). 

 

In addition, TNFα signalling via NFκB and the Inflammatory Response pathways are 

also downregulated, which may indicate suppressed inflammation within the tumour 

microenvironment. TNFα and NFκB play pivotal roles in orchestrating immune 

responses and promoting inflammation, which can limit tumour growth by activating 

immune cells. Reduced activity in these pathways may create a less hostile 

environment for tumour cells, reducing immune surveillance and potentially thereby 

facilitating tumour growth and progression without interference from inflammatory 

defences (Karin 2006, Wu and Zhou 2010, Alim, Keane et al. 2024). 

 

Moreover, the downregulation of Reactive Oxygen Species (ROS) and Apoptosis 

pathways suggest that progressors may be less susceptible to cell death. The ROS 

pathway typically generates oxidative stress within cells, a state that can lead to 
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apoptosis when it becomes excessive. A reduction in ROS and apoptosis pathways 

might imply that tumour cells in progressors are better equipped to resist the 

damaging effects of oxidative stress, allowing them to survive longer under adverse 

the conditions induced by radiotherapy (Kumari, Badana et al. 2018). 
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Figure 5.3. Enriched Hallmark pathways in progressors vs. responders following 

radiotherapy. 

This heatmap displays the enriched hallmark pathways identified through Gene Set 
Enrichment Analysis (GSEA) comparing progressors (patients with disease 
progression) to responders (patients without progression) following radiotherapy. 
The colour scale represents the Normalised Enrichment Score (NES), with red 
indicating upregulation and blue indicating downregulation. 
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Summary 

Overall, these findings suggest that tumours in progressors foster an environment 

conducive to both aggressive growth and immune evasion. Upregulated pathways, 

including E2F and MYC targets, G2M Checkpoint, Epithelial-Mesenchymal 

Transition, and Hypoxia, indicate enhanced cell cycle progression, proliferation, and 

metastatic potential. Concurrently, downregulated pathways related to Interferon 

signalling, IL6-JAK-STAT3, TNFα-NFκB signalling, Inflammatory Response, ROS, 

and Apoptosis suggest reduced immune activity, inflammation, and apoptosis. 

Together, these transcriptomic changes suggest possible mechanisms that enable 

the tumour to evade immune detection and resist radiotherapy. 
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5.4 PROGENy analysis 

To explore differences in signalling pathway activity between patients with disease 

progression (progressors) and those without progression (responders) following 

radiotherapy, I performed pathway activity analysis using PROGENy (Schubert, 

Klinger et al. 2018). This pathway-level analysis offers an additional layer of insight 

beyond gene-level changes identified in the differential gene expression (DGE) 

analysis and the broader enrichment patterns from gene set enrichment (GSEA) 

analyses. While DGE focuses on individual gene expression changes and GSEA 

identifies sets of genes linked to specific biological functions, PROGENy directly 

infers pathway activity, enabling a functional interpretation of the molecular data. This 

approach provides a targeted view of pathway dynamics following radiotherapy, 

aiming to identify differences that could shed light on mechanisms underlying 

radioresistance and disease progression. 

 

The pathway activity scores for the 14 signalling pathways assessed by PROGENy 

were compared between progressors and responders, as shown in Figure 5.4. 

 

Hypoxia was the only pathway with a statistically significant difference between the 

two groups (p-value 0.03). Progressors demonstrated higher hypoxia pathway 

activity scores than responders, suggesting that hypoxia-related signalling might 

support survival and progression in the post-radiotherapy microenvironment. All 

other pathways, including NF-κB, p53, JAK-STAT, and PI3K, did not reach statistical 

significance. 
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Figure 5.4. PROGENy pathway activity scores for responders vs. progressors. 

Box plots showing pathway activity scores for responders and progressors across 
14 major signalling pathways, derived from PROGENy analysis. Each box 
represents the interquartile range (IQR) of pathway activity scores, with the central 
line indicating the median value. Whiskers extend to 1.5 times the IQR.  
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5.5 Cellular composition analysis 

To conclude the analysis of differential gene expression and pathway activity in 

progressors post-radiotherapy, an xCell analysis was performed to assess shifts in 

cellular composition within the tumour microenvironment (Figure 5.5). This analysis 

builds on findings from Chapter 4, where xCell was used to investigate cellular 

composition in pre- versus post-radiotherapy samples. Here, the focus is on 

identifying changes specific to progressors to understand how cellular dynamics 

might contribute to disease progression following radiotherapy. 

 

The xCell analysis revealed significant alterations in the relative abundance of 

specific cell types. Notably, smooth muscle cells and class-switched memory B-cells 

were more abundant in the progressors post-radiotherapy. This increased smooth 

muscle cell presence might reflect tissue remodelling or fibrotic responses within the 

tumour microenvironment, potentially contributing to a pro-tumourigenic environment. 

Class-switched memory B-cells may indicate an adaptive immune response, 

although their precise role in progression remains to be clarified. In contrast, there 

was a decrease in CD4+ memory T-cells and microvascular endothelial cells (mv 

Endothelial cells), which could signify an impaired immune response and reduced 

vascular integrity, possibly facilitating immune evasion and tumour survival. 

 

These changes in cellular composition, coupled with the upregulation of hypoxia-

related pathways observed in the PROGENy analysis, suggest that progressors 

might experience a microenvironment shift towards hypoxic, fibrotic, and potentially 

immunosuppressive conditions. This altered tumour microenvironment could 

enhance survival and resilience against radiotherapy effects, emphasising the 

importance of considering cellular composition in understanding tumour response to 

treatment. 
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Figure 5.5. Changes in cellular composition identified by xCell analysis in 

progressors following radiotherapy. 

This bar plot displays the significantly altered cell populations identified by xCell 
analysis, estimating the relative abundance of cell types within bulk RNAseq data. 
"Relative abundance" reflects the proportion of specific cell types within the overall 
tumour sample. Red bars indicate cell types with increased abundance in 
progressors post-radiotherapy, while blue bars show those with decreased 
abundance.  
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5.6 Modelling disease progression in soft tissue sarcomas 

following radiotherapy. 

Predicting disease progression in patients with soft tissue sarcomas after 

radiotherapy could enable personalised follow-up strategies and guide adjuvant 

treatment decisions to improve patient outcomes. While previous chapters have 

characterised the genomic and transcriptomic effects of RT, it remains unclear 

whether post-RT transcriptional profiles can distinguish patients who experience 

disease progression from those who remain progression-free. 

 

This section describes the development and evaluation of a predictive model for 

disease progression using bulk RNA sequencing data from post-radiotherapy tumour 

resection specimens. The goal is to determine whether specific gene expression 

patterns are associated with disease progression and could be used to refine risk 

stratification. Identifying transcriptional features linked to poor outcomes may also 

help prioritise patients for intensified surveillance or future studies investigating post-

RT targeted interventions or adjuvant therapy. 

 

Data preparation and normalisation 

Normalised gene expression profiles were generated from Salmon quantification 

using tximport and DESeq2. Counts were normalised with DESeq2 size factors and 

then mapped from Ensembl IDs to HGNC symbols.  

 

Where multiple Ensembl IDs mapped to the same HGNC symbol, expression was 

averaged (mean) per gene symbol. Values were log2(x+1) transformed to stabilise 

variance. 

For patients with multiple post-RT tumour samples, expression was averaged across 

samples so that each patient contributed a single profile (one row per patient, one 

column per gene). 

 

Candidate gene discovery (training cohort only) 

To avoid information leakage between the testing and training data, the list of 

candidate genes for the model was defined using the training set only. Within the 

training patients, a differential expression analysis using DESeq2 was performed 
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comparing progressors vs non-progressors (the design included histology as a 

model covariate). Genes meeting the significance threshold (padj < 0.05) were 

carried forward as the starting feature set. Test set patients were not used for this 

step. 

 

Model development 

To build a progression classifier, I used a two-stage pipeline:  

1. select features with LASSO 

2. train a Random Forest on those features.  

All modelling decisions (feature selection and tuning) were made inside the training 

set only. The testing set was used once at the end for unbiased evaluation. 

 

 

Feature selection with LASSO 

LASSO (Least Absolute Shrinkage and Selection Operator) is a statistical technique 

used to identify which features in the dataset are most associated with disease 

progression following radiotherapy. This method helps in selecting a subset of 

features (in this case genes) that are most predictive of an outcome (Tibshirani 2018). 

It works by adding a penalty to a regression model that shrinks the coefficients of 

less important features to zero, effectively removing them from the model. This 

process helps in preventing overfitting - where the model fits the training data too 

closely, including its noise and outliers. This can lead to poor performance on new 

unseen data. By focusing on the most relevant features, LASSO enhances the 

model's predictive power and ensures better generalisation in new data. 

 

I fit a binomial LASSO model on the training patients and chose the penalty by 

stratified 3-fold cross-validation optimising AUC (small k was used to keep ~10 

samples per fold for stable AUC estimates). Using the lambda.min solution, LASSO 

selected a 20-gene panel: 

  

ADGRG6, ALDH1A2, APLN, CAP2P1, CCNE2, CLEC12B, CYP11A1, FAT2, 

KRTAP5-7, LINC03033, LRRC1, MAGED4, OR1L8, POLD4, RFXAP, TBC1D3F, 

TIAM2, TP53TG1, UCN2, ZNF454. 
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Cross-validation and selection of optimal Lambda 

Cross-validation is a method used to evaluate how well a predictive model 

generalises to an independent dataset. It is an important step because it helps 

ensure the model's reliability. The process involves partitioning the data into subsets, 

training the model on some subsets, and validating it on the remaining ones. This is 

repeated multiple times to ensure that the model performs consistently across 

different subsets of data. By doing this, cross-validation helps to avoid overfitting, 

ensuring that the model's performance is not just a result of peculiarities in the 

training data. 

 

In the context of LASSO, the penalty term applied to the regression coefficients is 

controlled by a parameter called lambda. The choice of lambda is critical because it 

determines the strength of the penalty, which in turn influences the number of 

features (genes) selected and thus model's complexity. Cross-validation is used to 

find the best lambda value, which strikes the right balance between bias and variance. 

This optimal lambda minimises prediction error by ensuring the model is neither too 

simple (high bias) nor too complex (high variance), providing the best trade-off 

between model accuracy and generalisability. 

 

The selection of which lambda value to use is done after reviewing the cross-

validation plot (Figure 5.6). Choosing the minimum lambda (lambda.min) value 

meant that the model was created using the 20 genes mentioned above.  

 

Alternatively, there is a choice of using the lambda.1se value which represents the 

largest lambda value that is within one standard error of the minimum cross-validated 

error (lambda.min). This often results in a simpler model with fewer features (genes), 

which can help to prevent overfitting and improve generalisation to new data. In this 

case, using the lambda.1se value, generated a model using fewer genes (n = 16) 

but this performed worse on the data, so I proceeded with lambda.min. 
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Figure 5.6. LASSO Cross-validation plot.  

The x-axis shows log(λ), the regularisation strength. The y-axis shows mean cross-
validated AUC (higher is better). Vertical bars are ±1 SE. The dashed lines mark 
lambda.min (highest mean AUC) and lambda.1se (largest λ within one SE of the 
best). Numbers above the curve indicate the count of genes at each λ. 
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Data Splitting 

The data was split into training and testing sets using a method called stratified 

sampling. Stratified sampling maintains the same proportion of progressed and non-

progressed cases in both training and testing sets, making the evaluation more 

reliable. The data was split into training (75%) and testing (25%) sets.  

 

Summary of LASSO model training 

The LASSO model was trained on the training set using cross-validation to determine 

the best lambda value. Cross-validation involved repeatedly splitting the training data 

into subsets, training the model on some subsets, and validating it on the remaining 

ones to find the lambda that provided the best performance.  

 

The data partitioning for stratified sampling, the cross-validation, the model training, 

and the model evaluation was performed using the R package caret. 

 

Generating a Random Forest model  

To predict disease progression, a Random Forest model was built using the features 

(genes) selected by the LASSO model. Random Forest (Breiman 2001) is a very 

popular machine learning algorithm that is well-suited for high-dimensional data. It is 

commonly used in classification tasks (e.g., predicting disease presence) and 

regression tasks (e.g., predicting house prices).  

 

The Random Forest algorithm works by building numerous decision trees and then 

aggregating the results to arrive at a prediction (Rigatti 2017). 

 

1. Building multiple trees: During training, Random Forest constructs 

numerous decision trees using different subsets of the training data and 

features. Each tree is trained on a bootstrap sample (random subset with 

replacement) and uses a random subset of features for making splits, 

ensuring each tree is unique. 

2. Aggregating predictions: The final prediction combines all individual tree 

predictions. For classification tasks, this involves majority voting; for 

regression tasks, it involves averaging predictions. This aggregation 

enhances model accuracy and reduces overfitting. 
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I trained a Random Forest classifier on the LASSO-selected genes. Model 

hyperparameters were tuned using stratified 10-fold cross-validation within the 

training set, with AUC as the optimisation target and class balance preserved in each 

fold. After tuning, I refit the model on the full training data and evaluated it once on 

the held-out test set, converting predicted probabilities to class labels at a 0.5 

threshold. 

 

Model evaluation  

The final model was applied once to the held-out test set (10 patients: 4 progressed, 

6 non-progressed). The confusion matrix is shown in Figure 5.7, and summary 

performance metrics are reported in Table 5.2 (Sensitivity, Specificity, PPV, NPV, 

Accuracy, and AUC). 

 

Discrimination was summarised by ROC AUC (Figure 5.8). The model outputs a 

probability of progression for each patient (0–1). To turn this into a yes/no call for 

progression, a threshold T is chosen: if p ≥ T the patient is labelled “progressed”; if 

p < T they are labelled “non-progressed”. I used the conventional T = 0.5 (i.e., call 

“progressed” only when the estimated risk is ≥ 50%). I also derived a data-driven 

threshold from the training cross-validation using the Youden index (the point that 

maximises sensitivity + specificity − 1 on the ROC curve), which gave T = 0.454. 

Both thresholds produced the same classifications on the test set — none of the test 

probabilities fell between 0.454 and 0.50 — so the results are not driven by a finely 

tuned cut-point.  
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Figure 5.7. Confusion matrix evaluating the model on the testing data 

This matrix demonstrates the predictions of the model. 
 

 

Summary of model performance 

On the test set the model showed modest performance overall. Discrimination was 

fair (AUC = 0.67). At a 0.5 threshold it prioritised specificity over sensitivity —correctly 

identifying 50% of progressors but 83% of non-progressors (PPV 67%, NPV 71%, 

Accuracy 70%). 

 

In practical terms, as calibrated here the model would miss about half of those who 

later progressed, limiting immediate clinical utility. Given that the testing set was 

small (n = 10) these estimates are imprecise, but taken together the results are best 

viewed as proof-of-concept rather than a currently deployable risk tool. 
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Table 5.2. Performance metrics of the Random Forest progression prediction 

model 

Test Definition Results 

Sensitivity The ability of the model to correctly identify 

patients who have progressed.  

TP / (TP + FN) 

50% 

Specificity The ability of the model to correctly identify 

patients who have not progressed 

TN / (TN + FP) 

83% 

Positive Predictive 

Value 

The proportion of positive predictions that are 

actually true positives 

TP / (TP + FP ) 

67% 

Negative Predictive 

Value 

The proportion of negative predictions that are 

actually true negatives. 

TN / (TN + FN) 

71% 

Accuracy The proportion of correct predictions (both true 

positives and true negatives) 

(TP + TN) / (TP + TN + FP + FN) 

70% 

AUC A measurement to quantify the overall ability of 

the model to discriminate between positive and 

negative classes. 

0.67 
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Figure 5.8. ROC curve for the post-RT progression classifier on the held-out test 

set. 

Curve derived from random-forest probabilities on the independent test cohort (n 
= 10; progressed = 4, non-progressed = 6). AUC = 0.67. The diagonal line shows 
chance. Threshold 0.50 (Youden 0.454 gave identical calls). 
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5.6.1 External validation of model in the TCGA Sarcoma cohort 

The classifier was developed on post radiotherapy tumour resections. To understand 

whether it captures general prognosis or is specifically related to radiotherapy, I 

applied the model to an independent sarcoma cohort of 206 patients from the TCGA 

(TCGA 2017) and asked two questions:  

1. Is the score prognostic for overall survival across all patients in the cohort? 

2. Does its association with outcome differ by receipt of adjuvant radiotherapy 

(i.e. a predictive signal)? 

 

Data preparation and normalisation 

I used TCGA-SARC raw RNAseq counts (GRCh38) and the accompanying clinical 

meta data. To mirror the training pipeline I retained primary tumour samples only 

(sample-type code “01” in the TCGA barcode). When a patient had multiple RNAseq 

aliquots (technical replicates), I combined them to a single patient-level profile 

(summing counts per gene before normalisation). Counts were then normalised 

using DESeq2 size factors, Ensembl IDs were mapped to HGNC symbols (and as in 

my model I averaged expression when multiple Ensembl IDs mapped to the same 

symbol), and values were subsequently log2(x+1) transformed. This produced a final 

matrix (arranged as patients × genes) to which I applied the model. 

 

Applying the trained classifier to TCGA SARC dataset 

The 20-gene random-forest model derived from the internal training set was carried 

forward unchanged and applied to TCGA SARC dataset. After harmonising gene 

symbols, 18/20 features (genes) were available. 2 Genes - CYP11A1 and TBC1D3F 

were absent. To keep the model structure intact without adding information, these 

two columns were inferred and filled with a neutral value (the median of the available 

signature features across patients), which is a conservative choice that tends to 

dilute rather than inflate signal. 

 

For each TCGA patient the model outputs a probability of progression between 0 

and 1 (hereafter called the “RF score”), where higher values indicate a higher 

predicted risk of disease progression. 
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Clinical information used for the model  

From the available TCGA SARC clinical information I used information on overall 

survival (“OS_event”) and days (“OS days”) to create the model. The OS survival 

event was recorded as ‘alive’ or ‘dead’ and of the 206 patients there were 78 

recorded deaths.  

 

Radiotherapy exposure was taken from the “radiation treatment adjuvant” field and 

coded as a two-level factor (RT or No RT). It is important to note that the TCGA 

RNAseq data is all derived from treatment naïve patients and that the history is of 

adjuvant and not neoadjuvant radiotherapy. 

 

Results of prognostic association 

Using a Cox proportional hazards regression model where OS ~ RF score, found no 

evidence that the score is prognostic for overall survival where the Hazard ratio = 

0.89 per 1-unit increase in the 0 – 1 RF score (95% CI 0.09 – 8.52, p = 0.92). Splitting 

the patients at the median RF score into 2 group – RF score high and low – did. Not 

show any statistically significant difference in outcome (Figure 5.9). 
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Figure 5.9. Kaplan–Meier overall survival by RF score 

Patients were split at the median RF progression probability (High vs Low). Curves 
show overall survival (days). The number at risk and the log-rank p-value are 
displayed.  
 
 

Results of radiotherapy predictive association 

To see whether the model scores are different depending on the clinical history of 

radiotherapy, I tested the model using the interaction: OS ~ RF score × RT_any.  

This model was restricted to the 197 patients for whom there was recorded 

information in the “radiation treatment adjuvant” field. Of the 197 patients, 58 patients 

received adjuvant radiotherapy. Of the 58 patients who received radiotherapy, there 

were 20 recorded deaths. Of the 139 patients with no history of adjuvant radiotherapy 

there were 57 deaths.  

 

The results showed that there was no evidence of a differential association by RT 

status: the interaction HR = 1.32 per 1-SD increase in the RF score (95% CI 0.75–

2.34; p = 0.33). So, while for each one–standard deviation higher score, the relative 
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increase in hazard was 32% greater in the RT group than in the No RT group, this 

difference was not statistically significant. 

 

Looking within groups gave the same message – the No RT group (n=139; 57 

deaths) results showed the HR = 0.53 per 1-SD (95% CI 0.04–7.04; p = 0.63) and in 

the RT group (n=58; 20 deaths) the HR = 8.24 per 1-SD (95% CI 0.05–1315; p = 

0.42). The very wide confidence intervals reflect the small RT subgroup and limited 

number of events. 

 

Summary of external validation results 
In TCGA-SARC the score was neither prognostic nor predictive. That said, these null 

findings should be read with caution. The radiotherapy subgroup was still small (58 

patients; 20 deaths), which limits power for interaction testing. There is also an 

endpoint mismatch: the model was trained to predict progression, whereas TCGA 

provides overall survival data only. The data types differ (TCGA fresh-frozen RNA-

seq vs our FFPE-derived profiles), and 2 of the 20 genes in the signature (CYP11A1, 

TBC1D3F) were absent and had to be imputed, which would tend to dilute signal 

rather than create it.  

 

Most importantly, the model was built on post-radiotherapy resection specimens, 

while TCGA samples are treatment-naïve. In light of the pre- versus post-RT 

expression changes shown in Chapter 4, limited generalisability of this post-RT 

model to untreated samples is biologically reasonable. Overall, the TCGA analysis 

suggests the signature is not a general prognostic marker, and if it has value, it is 

likely to only be specific to post-RT biology and should be tested in the future in a 

matched, post-RT external cohort with progression endpoints. 
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5.7 Discussion of chapter 5 

This chapter investigated transcriptomic differences between soft tissue sarcomas 

that responded to radiotherapy and those that progressed despite treatment. By 

stratifying post-RT tumour samples based on patient outcomes, I aimed to identify 

gene expression changes and pathway alterations associated with treatment 

resistance. These findings I hope can provide potential biomarkers and therapeutic 

targets that could inform risk stratification and post-RT management strategies. 

 

Transcriptomic signatures of disease progression 

Differential gene expression analysis revealed that progressors exhibited 

upregulation of pathways associated with cell cycle progression (E2F targets, G2M 

checkpoint) and epithelial-mesenchymal transition (EMT), suggesting an increased 

proliferative and invasive phenotype. These findings are consistent with prior studies 

in STS that have linked tumour aggressiveness to transcriptomic programs 

associated with genomic instability and dedifferentiation (Chibon, Lagarde et al. 

2010). In contrast, responders showed higher expression of immune-related 

pathways, particularly interferon signalling and inflammatory response genes, 

reinforcing the hypothesis that immune activation may contribute to durable disease 

control post-RT. 

 

The observation that immune pathways were downregulated in progressors is of 

particular interest, given the emerging role of the immune microenvironment in RT 

response. While RT can enhance tumour immunogenicity, leading to T-cell 

recruitment and immune priming, some tumours may evade immune surveillance 

post-treatment through mechanisms such as PD-L1 upregulation or recruitment of 

immunosuppressive cells (McKelvey, Hudson et al. 2018, Wang, Lynch et al. 2024). 

These findings suggest that further investigation into the role of immune modulation 

in post-RT STS is warranted. 

 

Pathway enrichment analysis reveals hypoxia-driven radioresistance 

Pathway-level analysis using PROGENy identified hypoxia as the only significantly 

enriched pathway in progressors, supporting the well-established role of hypoxia in 

radioresistance and tumour progression. Hypoxia-related gene expression 
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signatures have been linked to aggressive tumour phenotypes, poor prognosis, and 

treatment resistance in multiple cancers (Aggerholm-Pedersen, Sørensen et al. 2016, 

Yang, Forker et al. 2017). These signatures highlight the role of HIF1α-mediated 

transcriptional programs, which drive tumour adaptation through metabolic 

reprogramming, angiogenesis, immune evasion, and enhanced DNA damage repair. 

Furthermore, CAIX (carbonic anhydrase IX), a well-characterised endogenous 

marker of tumour hypoxia, has been validated as a prognostic immunohistochemical 

biomarker in STS and could potentially serve as a screening tool to stratify patients 

(Forker, Gaunt et al. 2018). 

 

The enrichment of hypoxia in progressors within this study suggests that STS 

tumours that fail RT may exhibit a transcriptomic profile consistent with previously 

identified hypoxia signatures. This finding aligns with evidence that hypoxic tumours 

are more likely to metastasise and resist treatment. Notably, hypoxia-driven gene 

expression changes in STS have not been extensively explored in the post-

radiotherapy setting, reinforcing the novelty of these results. 

 

Targeting hypoxia-mediated resistance mechanisms represents a promising 

therapeutic strategy. HIF1α inhibitors, metabolic interventions, and hypoxia-

activated prodrugs have shown preclinical efficacy in reversing hypoxia-driven 

resistance (Bui, Nguyen et al. 2022, Kao, Bai et al. 2023). However, their role in the 

post-radiotherapy setting in STS remains unexplored. Given the increasing 

availability of functional imaging techniques such as hypoxia PET scans (Gouel, 

Decazes et al. 2023) and molecular biomarkers, future studies should investigate 

whether integrating hypoxia-targeting therapies post-RT could improve patient 

outcomes. 

 

These findings underscore the importance of considering tumour oxygenation status 

when evaluating response heterogeneity in STS. By identifying hypoxia-driven 

transcriptional changes in progressors, this study highlights a potential biomarker for 

treatment resistance and provides a rationale for incorporating hypoxia-targeted 

interventions in post-RT therapeutic strategies. 
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Cellular composition and the tumour microenvironment 

Using xCell deconvolution, I identified changes in the tumour microenvironment 

between responders and progressors. In particular, progressors exhibited increased 

smooth muscle cell and memory B-cell signatures, which may reflect stromal 

remodelling and immune adaptation. The presence of class-switched memory B-

cells in progressors raises questions regarding the role of B-cell responses in STS 

immune evasion, as prior studies have suggested that B-cell infiltration can both 

promote and suppress tumour progression depending on context. Conversely, the 

relative decrease in CD4+ memory T-cells and microvascular endothelial cells in 

progressors suggests that loss of adaptive immune function and reduced vascular 

integrity that may contribute to poor outcomes. 

 

Modelling disease progression  

The final section of this chapter explored whether post-RT gene expression could 

predict subsequent disease progression. I used LASSO to select features and 

trained a Random Forest classifier. On the test data the model showed modest 

discrimination (AUC = 0.67) with Accuracy 70%, Sensitivity 50%, Specificity 83%, 

PPV 67%, and NPV 71%.  

 

I then attempted external validation in TCGA-SARC. The model did not demonstrate 

prognostic or predictive ability there. This is not entirely surprising: the TCGA 

radiotherapy subset is small (58 patients; 20 events), the endpoint differs (my model 

was trained for progression, whereas TCGA provides overall survival), the 

tissue/platforms are not matched (FFPE RNA-seq vs fresh-frozen), two signature 

genes — CYP11A1 and TBC1D3F — were absent from TCGA, and, crucially, my 

model was derived from post-RT specimens whereas TCGA is largely treatment-

naïve. Chapter 4 shows clear pre- vs post-RT transcriptional shifts, so limited transfer 

from a post-RT model to a treatment-naïve cohort is biologically plausible. 

 

One key challenge in predictive modelling is distinguishing causative transcriptional 

changes from those that may be passenger effects of tumour progression. Future 

studies should validate this model in an independent post-RT cohort with disease 

progression endpoints; integrate additional clinical variables (e.g., age, histological 

subtype, grade, and resection margins) and assess whether combining 
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transcriptomic signatures with genomic alterations (e.g., copy number variations or 

mutational burden) improves predictive power.  

 

Future directions and clinical implications 

These results highlight potential avenues for post-RT risk stratification and 

therapeutic targeting: 

• Refining follow-up frequency: If validated, gene expression signatures 

associated with progression could inform more personalised post-RT monitoring, 

identifying patients who may benefit from intensified imaging surveillance or 

earlier intervention. 

• Targeting hypoxia-associated resistance: Given the enrichment of hypoxia-

related pathways in progressors, exploring whether hypoxia-targeted therapies 

(e.g., HIF1α inhibitors, anti-angiogenic agents) could improve outcomes in high-

risk patients may be a worthwhile avenue for future studies. 

• Immune-based interventions: The immune-related differences observed in 

responders vs. progressors suggest that immune checkpoint inhibitors or 

therapies aimed at restoring immune surveillance could be evaluated in post-RT 

STS settings. 

 

Conclusions 

This chapter builds upon the findings of Chapters 3 and 4 by integrating clinical 

outcomes with transcriptomic profiling to explore predictors of post-RT disease 

progression in STS. While RT-induced transcriptional changes were previously 

characterised in Chapter 4, this chapter demonstrates that progressors exhibit 

distinct gene expression patterns compared to responders, particularly in pathways 

related to cell cycle progression, hypoxia adaptation, and immune suppression. The 

predictive modelling approach suggests that transcriptomic features may hold 

promise for stratifying post-RT patients based on progression risk, though further 

validation is needed.  
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Chapter 6. Discussion 

This thesis investigates the genomic and transcriptomic effects of neoadjuvant 

radiotherapy in soft tissue sarcomas, aiming to identify molecular biomarkers 

predictive of treatment response and disease progression. Through a multi-omics 

approach integrating whole exome sequencing, RNA sequencing, pathway analysis, 

and predictive modelling, this work provides a deeper understanding of RT-induced 

alterations across multiple sarcoma subtypes. 

 

Key findings from each chapter have been discussed in detail at the end of their 

respective sections. Rather than reiterating all results, this chapter focuses on a few 

select themes that hold relevance for understanding RT responses in STS. 

Specifically, I will explore: 

 

• The impact of radiotherapy on genomic instability and mutational burden 

(Chapter 3) 

• The transcriptional landscape of post-radiotherapy tumours (Chapter 4) 

• The potential for transcriptomic biomarkers to predict disease progression 

(Chapter 5) 

 

These discussions will be framed within the broader context of sarcoma biology and 

therapeutic response, evaluating how these findings contribute to existing knowledge 

and identifying areas for future translational research. The chapter will also critically 

assess the study’s limitations and implications for clinical application, particularly in 

refining patient risk stratification and treatment personalisation. 
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6.1 Genomic alterations and mutational signatures following 

radiotherapy 

This section discusses the key genomic findings detailed in Chapter 3, focusing on 

the mutational landscape, somatic mutation burden, and mutational signatures within 

the London Sarcoma Service (LSS) cohort.  

 

6.1.1 The mutational landscape of the LSS cohort 

6.1.1.1 Tumour mutational burden and hypermutated samples 

My analysis using WES on the LSS cohort demonstrated a mean TMB of 1.07 

mut/Mb. This aligns with data from a 2017 TCGA analysis of 206 soft tissue 

sarcomas representing six different subtypes, which found an average TMB of 1.06 

mutations/Mb (TCGA 2017). In the TCGA cohort, two hypermutated cases (defined 

as a TMB ≥10 mutations/Mb) were identified, representing approximately 1% of the 

dataset. These hypermutated tumours (histological subtypes not given) were 

characterised by mismatch repair deficiency and associated with a COSMIC SBS 6 

Signature, reflecting the mutational processes driven by defective DNA mismatch 

repair. These tumours had a frameshift mutation in MSH6 and low expression of 

MSH2, highlighting known causes of DNA mismatch repair. 

 

A more recent study from Memorial Sloan Kettering (MSK) analysed 2138 sarcomas 

representing 45 different histological subtypes and reported a median TMB of 2.4 

mutations/Mb (Gounder, Agaram et al. 2022). They found, 3.9% of samples in the 

MSK cohort were hypermutated (TMB ≥10 mutations/Mb). Hypermutation was 

predominantly observed in undifferentiated pleomorphic sarcoma (UPS) and 

angiosarcoma. Notably, hypermutation in cutaneous angiosarcoma was attributed to 

UV-induced mutational processes, reflecting the environmental exposure associated 

with this subtype. Interestingly, this same UV signature was seen in several of the 

hypermutated UPS samples while other UPS samples showing a predominance of 

“aging” related signatures. 
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In this LSS cohort, two hypermutated cases were identified: one myxofibrosarcoma 

(MFS) and one UPS. These tumours exhibited TMB values exceeding 10 

mutations/Mb, consistent with the proportion reported by MSK. Both hypermutated 

tumours in the LSS cohort demonstrated mutational signatures associated with 

mismatch repair deficiency (SBS15 and ID7), despite the absence of mutations in 

key MMR genes (MLH1, MSH2, MSH6, PMS2). Instead, reduced expression of MMR 

genes (e.g., low MLH1 expression in UPS and low MSH2 expression in MFS) was 

found. Examination of their copy number status revealed loss of heterozygosity or 

homozygous deletions of MMR genes, likely contributed to the observed 

hypermutation phenotype. This contrasts with the TCGA cohort, where 

hypermutation was directly linked to mutations in the MMR genes. 

 

It should be noted however that the method of TMB calculation differs between these 

studies and this may account for some variability in the findings. The MSK study 

employed the MSK-IMPACT targeted sequencing panel (Cheng, Mitchell et al. 2015), 

which captures 341–468 cancer-associated genes, whereas the TCGA cohort and 

the LSS cohort calculated TMB using whole exome and whole genome sequencing. 

Targeted sequencing panels like MSK-IMPACT may underestimate TMB by 

excluding non-coding and intergenic regions, yet they provide clinically validated 

approximations for large-scale analyses. The broader scope of WES/WGS, while 

more comprehensive, introduces variability due to differences in sequencing depth 

between samples and studies as well as different analytical pipelines used in calling 

mutations. Discrepancies in the proportion of hypermutated cases may also reflect 

differences in cohort composition. The MSK cohort encompassed 45 subtypes, with 

a larger representation of hypermutation-prone subtypes like UPS and 

angiosarcoma. In contrast, the LSS cohort contains fewer subtypes, and the TCGA 

fewer still.  

 

The repeated observation of hypermutated tumours seen in this LSS cohort 

underscores the genomic heterogeneity of sarcomas and raises questions about the 

mechanisms underlying hypermutation beyond MMR deficiency. While 

hypermutation is often associated with improved responses to immune checkpoint 

inhibitors (Graham, Pritchard et al. 2021), clinical outcomes in the LSS cohort were 

variable, with one hypermutated case demonstrating long-term disease-free survival 
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and the other developing metastases (see section 3.5.3) post-radiotherapy. These 

findings suggest that hypermutation alone may not predict therapeutic outcomes and 

must be interpreted in the context of tumour subtype, immune microenvironment, 

and clinical factors like grade, stage, and resection margin status. 

 

6.1.1.2 Novel mutations identified in the LSS cohort 

Novel somatic mutations were identified in the LSS cohort (Section 3.2.2), some of 

which had high REVEL scores (Ioannidis, Rothstein et al. 2016), indicating a strong 

likelihood of pathogenicity. These include GNAQ, CBLB, FGFR1, MSN, and 

HOXC13 (see Table 3.1). These mutations are noteworthy not only because of their 

rarity but also due to their potential functional significance, either as oncogenic 

drivers or as contributors to key biological processes underlying the development of 

disease progression. 

 

Mutations in metastasis and recurrence samples 

The GNAQ mutation, identified in a metastatic alveolar soft part sarcoma (ASPS) 

sample, and the MSN mutation, found in a recurrence spindle cell sarcoma (NOS) 

sample, were not detected in the corresponding pre-radiotherapy biopsies. This 

strongly suggests that these mutations arose as a consequence of radiotherapy-

induced mutagenesis or it could represent sampling bias with subclones containing 

the mutations not being represented in the sequenced tissue. Although these 

mutations could represent passenger events, their emergence post-treatment raises 

the possibility that they may contribute to tumour recurrence or metastasis, 

potentially through clonal selection or by driving further tumour evolution. 

 

The GNAQ gene encodes a G-protein subunit involved in cell signalling and has 

been implicated in the development of uveal melanoma (Silva-Rodríguez, 

Fernández-Díaz et al. 2022) and vascular tumours (Jansen, Müller et al. 2021). Its 

role in metastatic ASPS is less clear, but its activation could theoretically promote 

signalling pathways associated with cell proliferation or migration. Similarly, MSN 

encodes Moesin, a cytoskeletal linker protein involved in maintaining cell shape and 
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motility which has previously been shown to be overexpressed in colorectal cancer 

and associated with poor survival (Huang, Wei et al. 2023). 

 

These novel mutation findings emphasise the dual impact of radiotherapy: its primary 

purpose of eliminating tumour cells and its unintended potential to contribute to 

genomic changes that drive recurrence or metastasis. Understanding the functional 

consequences of such mutations could lead to development of strategies to mitigate 

these effects. 

 

Potential driver mutations in pre-radiotherapy samples 

In contrast, the mutations identified in the pre-radiotherapy samples from 

myxofibrosarcoma (CBLB and FGFR1) and undifferentiated pleomorphic sarcoma 

(HOXC13) are more likely to represent primary oncogenic drivers. These mutations 

were present before the onset of treatment, making it more plausible that they 

contributed to tumour initiation or progression rather than arising because of 

radiotherapy. 

 

6.1.2 Somatic mutation burden pre- and post-radiotherapy 

Comparative analyses of pre- and post-radiotherapy sarcoma samples using WES 

revealed no significant differences in the number of SNVs (p = 0.88) or indels (p = 

0.17) across the cohort (Figure 3.3).  Similarly, paired analyses of seven patient 

samples found no significant changes in SNVs (p = 0.49) or indels (p = 0.36) following 

radiotherapy (Figure 3.5). These findings suggest that radiotherapy does not 

immediately induce substantial mutational changes detectable by WES. 

 

However, the higher-resolution NanoSeq WGS data provided additional insights into 

mutational changes induced by radiotherapy at a subclonal level. NanoSeq revealed 

a significant (p = 0.01), increase in the indel burden with the median number of indels 

per cell rising from 177 in pre-radiotherapy samples to 690 in post-radiotherapy 

samples (Figure 3.19). Furthermore, the indel-to-SNV ratio increased (Figure 3.20) 

from 0.05 to 0.2 (p = 0.002). This increase was primarily driven by deletions, as 

indicated by a higher deletion-to-insertion ratio observed in post-radiotherapy 
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samples. These findings underscore the sensitivity of NanoSeq in detecting low-

frequency mutations that may not be captured by WES, suggesting that 

radiotherapy-induced mutational effects could be more pronounced than initially 

apparent from the bulk WES data and are induced in individual cells or small clones 

of cells. 

 

This pattern becomes even more pronounced in recurrence samples, where the 

Del:Ins ratio rose significantly compared to pre-radiotherapy samples (median ratio: 

4.0 vs. 1.0, p = 2e-05; Figure 3.6A). In contrast, post-radiotherapy samples had a 

median ratio of 1.0, indicating no immediate increase in deletion prevalence following 

treatment. Metastasis samples showed an intermediate median Del:Ins ratio of 1.89, 

further supporting the hypothesis of time-dependent mutational dynamics. This 

delayed emergence of deletions may reflect the time taken for clonal selection of 

radiation-induced mutations or ongoing genomic instability in tumour cells surviving 

treatment. 

 

The longitudinal case study of patient 58 (see section 3.3.5) provides additional 

support for this hypothesis. Tumour samples collected pre-radiotherapy, post-

radiotherapy (32 days after treatment), and at recurrence (186 days after treatment) 

showed stable SNV numbers between pre- and post-radiotherapy samples (22 vs. 

28), with 86% of mutations shared across both time points. However, the recurrence 

sample contained 26 novel SNVs and 7 additional indels absent from earlier samples, 

suggesting that radiotherapy-induced mutations may initially exist at low variant allele 

frequencies (VAF) and become detectable only after clonal expansion. The 32-day 

interval between radiotherapy and post-treatment sample collection may have been 

insufficient to capture these mutational dynamics, while the 186-day interval allowed 

sufficient time for clonal growth and enrichment of deleterious mutations. 

 

Findings from other cancers, such as those linked to radiation exposure, provide 

additional context. Studies of papillary thyroid carcinomas following the Chernobyl 

disaster (Morton, Karyadi et al. 2021) revealed a dose-dependent enrichment of 

small deletions and structural variants in radiation-exposed tumours, which the 

number of mutation inversely correlating with distance from the Chernobyl disaster 

site. Many of these deletions were clonal and reflected non-homologous end-joining 
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(NHEJ) repair, a mechanism activated in response to double-strand breaks. These 

mutations were detected in tumour samples taken several decades following 

radiation exposure.  

 

Similarly, analyses of radiation-associated second malignancies (Behjati, Gundem 

et al. 2016) identified high proportions of deletions, particularly in breast and sarcoma 

cases, further reinforcing the contribution of NHEJ to the genomic landscape of 

radiation-induced tumours. These findings align with the elevated Del:Ins ratio 

observed in both NanoSeq data and recurrence samples from this LSS cohort. 

 

Radiotherapy-associated mutational signatures, such as COSMIC ID8, have also 

been detected more prominently in recurrent tumours. A study comparing primary 

and recurrent gliomas (Kocakavuk, Anderson et al. 2021) demonstrated an 

enrichment of ID8 in recurrence samples, emphasising the delayed mutational 

effects of radiotherapy through clonal evolution and tumour progression. 

 

In the NanoSeq data from this study, COSMIC ID8 was uniquely detected in all five 

post-radiotherapy samples (Figure 3.23), whereas it was absent in all pre-

radiotherapy samples. This finding highlights the impressive sensitivity of NanoSeq 

in detecting subtle mutational changes induced by radiotherapy. ID8, associated with 

non-homologous end joining (NHEJ) repair mechanisms, is characterised by 

deletions ≥5 bp without microhomology, reflecting the error-prone nature of this 

pathway. Its consistent presence across post-radiotherapy samples suggests that 

radiotherapy activates specific DNA repair processes that leave a distinct genomic 

signature. Importantly, the absence of ID8 in pre-radiotherapy samples supports its 

association with radiotherapy rather than pre-existing tumour biology. 

 

Integrating these WES and NanoSeq findings demonstrates the complementary 

nature of these techniques. Bulk WES provides an overview of the mutational 

landscape by capturing SNVs and indels across the coding genome. However, its 

limited sensitivity for detecting low-frequency mutations or subtle subclonal changes, 

such as small deletions with low VAFs, which underscores the need for higher-

resolution approaches. NanoSeq, a WGS “single molecule” technique by contrast, 

revealed significant increases in indels, particularly deletions, that likely contribute to 
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tumour evolution over time. These findings suggest that radiotherapy-induced 

mutagenesis may not be fully apparent immediately after treatment but becomes 

more evident during recurrence as subclonal mutations clonally expand. 

 

Future studies could leverage the sensitivity of NanoSeq and similar high-resolution 

techniques to monitor subclonal dynamics and pinpoint the precise timing of 

radiotherapy-induced mutagenesis. For example, spatially mapped longitudinal 

sampling of tumours at multiple time points post-radiotherapy, coupled with single-

cell sequencing, could provide a clearer understanding of how radiation-induced 

mutations evolve and clonally expand throughout the tumours.  

 

Additionally, integrating multi-omics approaches, such as transcriptomics to explore 

changes in gene expression or epigenomics to identify shifts in chromatin 

accessibility, could reveal pathways implicated in immune evasion or therapy 

resistance. Targeting dysregulated pathways with DNA repair inhibitors, such as 

PARP inhibitors (Sun, Chu et al. 2023)  or ATM inhibitors (García, Kirsch et al. 2022), 

may offer a strategy to mitigate the effects of radiotherapy-induced mutagenesis and 

improve clinical outcomes in sarcomas. 
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6.1.3 Critical appraisal of methods and limitations 

This study represents a comprehensive effort to investigate the genomic effects of 

neoadjuvant radiotherapy in soft tissue sarcomas. However, several methodological 

limitations and areas for potential improvement in hindsight deserve discussion. 

 

Tissue availability and sample size 

A significant limitation of this study was the small number of paired pre- and post-

radiotherapy samples, with only seven patients included in the paired analysis. This 

restricted sample size limited the statistical power of the comparisons and may have 

hindered the detection of subtle genomic changes induced by radiotherapy. A larger 

cohort of paired samples would have provided a more robust dataset to validate 

these findings. However, the availability of frozen tissue, particularly for both pre- and 

post-radiotherapy samples, was a major constraint. Most samples were formalin-

fixed paraffin-embedded (FFPE), which despite the optimisation of high-quality 

nucleic acid extraction through use of the Covaris machine still poses challenges for 

high-quality DNA extraction and downstream analyses. 

 

Choice of sequencing approach 

Whole-exome sequencing (WES) was selected for this study due to its cost-

effectiveness and focus on coding regions. However, in hindsight, whole-genome 

sequencing (WGS) might have been a more suitable approach, especially given the 

low tumour mutational burden (TMB) observed in this LSS cohort. WGS could have 

captured a broader spectrum of genomic alterations, including non-coding mutations 

and structural variants, providing additional insights into radiotherapy-induced 

mutagenesis. The higher resolution of WGS would likely have increased the number 

of mutations detected, allowing for more statistically significant comparisons and a 

more nuanced understanding of the genomic response to radiotherapy. Whilst I had 

the opportunity to investigate WGS of sarcoma through Genomics England, that 

dataset was unsuitable due to a lack of paired pre-and post-radiotherapy samples. 

 

  



Reference List 

 

250 

 

Sensitivity to low-frequency mutations 

The low TMB observed in most samples presented challenges for detecting 

radiotherapy-induced genomic changes by WES. While NanoSeq was employed for 

increased sensitivity to low-frequency mutations, this technique was applied to only 

a subset of samples. Expanding the use of high-sensitivity techniques like NanoSeq 

across all samples might have enhanced the ability to identify subclonal mutations 

and other subtle genomic alterations associated with radiotherapy. 

 

Tumour heterogeneity 

Another limitation was the inherent tumour heterogeneity within and between 

samples. The genomic differences observed may partly reflect sampling variation 

rather than true treatment-induced effects. This is particularly relevant as biopsies 

were compared with resection specimens, as these may not entirely represent the 

same tumour regions. An ideal experiment would use multi-regional sampling of both 

pre- and post-radiotherapy specimens, combined with both radiological mapping of 

samples and spatial transcriptomic approaches, to provide a more comprehensive 

assessment of tumour heterogeneity and radiotherapy-induced changes.  

 

Recommendations for future studies 

Based on these limitations, future studies should prioritise: 

 

1. Expanding paired cohorts 

Efforts should be made to collect larger numbers of paired pre- and post-radiotherapy 

samples, with a focus on preserving matched frozen tissue wherever feasible. 

 

2. Using Whole-Genome Sequencing 

Transitioning to WGS of pre and post-radiotherapy samples at high depth could allow 

for a more comprehensive analysis of genomic alterations, including non-coding and 

structural changes. 

 

3. Implementing High-sensitivity sequencing techniques 

Employing NanoSeq or other high-sensitivity methods more broadly across cohorts 

could enhance detection of subclonal mutations. 
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4.  Addressing tumour heterogeneity 

Integrating multi-regional sampling and spatially resolved techniques would better 

account for intra-tumoural variability and improve the interpretability of results. 

 

 

6.2 Transcriptomic responses to neoadjuvant radiotherapy 

This section discusses the transcriptomic changes in soft tissue sarcomas following 

neoadjuvant radiotherapy, as detailed in Chapter 4. Key findings discussed include 

the global clustering trends in transcriptomic data, differential gene expression 

analysis, pathway enrichment analyses, and immune composition changes.  

 

6.2.1 Transcriptomic clustering trends 

Principal Component Analysis (PCA) (Figure 4.1) and Uniform Manifold 

Approximation and Projection (UMAP) (Figure 4.2) demonstrated that transcriptomic 

data clustered more strongly by histological subtype than by radiotherapy status. 

This stresses the dominant role of intrinsic tumour characteristics in shaping global 

gene expression profiles, consistent with previous studies in sarcomas, including 

findings from the TCGA (TCGA 2017) and a study comparing post-radiation versus 

sporadic sarcomas (Lesluyes, Baud et al. 2019). In both datasets, sarcoma subtypes, 

such as leiomyosarcoma (LMS) and synovial sarcoma (SS), formed distinct clusters, 

emphasising the influence of intrinsic features specific to the histological subtype 

over external factors like treatment. 

 

Interestingly, in this study, patient-specific clustering highlighted the reproducibility 

and robustness of sequencing data while suggesting that radiotherapy-induced 

transcriptomic effects are subtle or overshadowed by inter-patient variability (Figure 

4.3 and Figure 4.4). Similarly, the Lesluyes study (Lesluyes, Baud et al. 2019) 

observed significant overlap between sporadic and post-radiation sarcomas, 

reinforcing the notion that sarcoma biology, rather than treatment, drives 

transcriptomic clustering patterns. However, some overlaps between histological 
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subtypes were also observed in all studies, reflecting likely shared molecular features 

or pathways between subtypes, particularly those with similar biological origins. 

 

The TCGA study further demonstrated the value of integrating transcriptomic data 

with other omics layers, such as methylation and copy-number variation, to refine 

clustering and reveal molecular subsets within histological subtypes (TCGA 2017). 

For instance, the separation of uterine and soft tissue leiomyosarcomas clusters 

using integrated data highlights the potential for multi-omic approaches to uncover 

finer stratifications not apparent in transcriptomics alone. 

 

Given the limitations of transcriptomics in fully capturing radiotherapy-induced 

changes, epigenetic profiling could offer a complementary approach for sarcoma 

classification and understanding treatment responses. DNA methylation-based 

classifiers, for example, have been effective in stratifying sarcomas into molecular 

subtypes with strong prognostic correlations, even resolving cases previously 

deemed unclassifiable (Koelsche, Schrimpf et al. 2021). Importantly, evidence from 

other cancers highlights that radiotherapy can induce significant epigenetic 

alterations, including changes in DNA methylation and histone modifications. These 

alterations can influence gene expression, DNA repair, and tumour behaviour , as 

demonstrated by studies showing radiotherapy-induced hypermethylation of tumour 

suppressor genes like TP53 and changes in histone methylation that modulate 

radiosensitivity (Wang, Han et al. 2022). 

 

To build on the foundation of this work, future studies should prioritise multi-omic 

integration to capture the interplay between intrinsic tumour characteristics and 

treatment-induced changes. Combining transcriptomic and epigenomic data, 

alongside advanced techniques like spatial transcriptomics and single-cell RNA 

sequencing, could provide a more nuanced understanding of radiotherapy's effects 

on the tumour microenvironment. These approaches hold the potential to reveal 

spatial and cellular heterogeneity, uncover subtle radiotherapy-induced changes, 

and better characterise tumour-stromal interactions far better than the bulk RNAseq 

approach taken here. Furthermore, integrating multi-omic layers may refine 

molecular stratification in sarcomas and identify novel biomarkers or therapeutic 

targets to enhance radiosensitivity and overcome treatment resistance. 
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6.2.2 Differential Gene Expression Analysis 

6.2.2.1 Global transcriptomic changes post-radiotherapy 

Global analysis of 40 paired pre- and post-radiotherapy samples across 13 sarcoma 

subtypes revealed 140 significantly differentially expressed genes, with 107 

upregulated and 33 downregulated post-radiotherapy (Figure 4.6). Key findings 

include the significant downregulation of haemoglobin-related genes (HBA1, HBA2, 

HBB, ALAS2, and HEMGN) and notable upregulation of genes involved in immune 

modulation as well as genes involved in tissue repair and remodelling (Figure 4.7).  

 

6.2.2.2 Haemoglobin-related genes  

The downregulation of haemoglobin-related genes observed in this study represents 

an intriguing finding, given their well-established roles in oxygen transport via 

erythrocytes and emerging evidence of non-canonical functions in cancer biology 

(Lerebours, Vacher et al. 2021, Han, Zhang et al. 2022, Kim, Choi et al. 2023).  

 

Pre-radiotherapy, haemoglobin genes such as HBA1, HBA2, and HBB—encoding 

the alpha and beta globin chains—were highly expressed. Although their functional 

role in sarcomas remains unclear, studies in other cancers suggest that haemoglobin 

genes can play a role in tumour cell survival under stress conditions.  

 

Haemoglobin gene expression was reported in 2009 in tumour cells, independent of 

stromal contamination, using fluorescence-activated cell sorting (FACS) purification 

of colorectal adenocarcinomas (Smith, Culhane et al. 2009). Subsequent studies 

have highlighted the non-canonical roles of haemoglobin genes in cancer biology. 

For example, HBB (haemoglobin beta) is overexpressed in inflammatory breast 

cancer, where it mitigates oxidative stress and supports an aggressive phenotype 

(Lerebours, Vacher et al. 2021). Similarly, in cervical carcinoma, HBB acts as an 

antioxidant by scavenging free radicals, aiding cell survival in oxidative environments 

(Li, Wu et al. 2013). 

 



Reference List 

 

254 

 

In clear cell renal cell carcinoma (ccRCC), HBB expression is associated with poor 

prognosis, shorter recurrence-free survival, and increased tumour aggressiveness. 

Functional studies revealed that HBB suppresses reactive oxygen species (ROS) 

levels, promoting cell proliferation and invasion under hypoxic conditions. Notably, 

oxidative stress itself can upregulate HBB, indicating its role in the redox adaptation 

of tumour cells (Kurota, Takeda et al. 2023). These findings suggest that HBB may 

act as both a survival mechanism in hypoxic microenvironments and a driver of 

malignancy. 

 

Interestingly, haemoglobin genes have been implicated in hypoxic tumour 

environments beyond ccRCC. In lung adenocarcinoma, elevated expression of 

HBQ1, a related haemoglobin gene, reduces ROS levels and supports cell 

proliferation, emphasising the antioxidant and homeostatic roles of haemoglobin in 

cancer progression (Kim, Choi et al. 2023). 

 

This twin role of haemoglobin-related genes in both oxidative stress management 

and tumour aggressiveness highlights their importance in tumour biology and 

potential as therapeutic targets. The functional implications of their expression in 

sarcomas, particularly post-radiotherapy, remain to be elucidated. 

 

In this study, post-radiotherapy downregulation of these genes may reflect changes 

in the tumour microenvironment, such as reduced cellular or metabolic demands for 

haemoglobin-like activity. Alternatively, the suppression could indicate broader shifts 

in transcriptional regulation following treatment, consistent with radiotherapy-induced 

disruption of tumour homeostasis. However, the precise implications of this 

downregulation for vascular remodelling or oxygen delivery remain speculative in the 

absence of direct experimental evidence in these sarcomas. 

 

To further support this idea, additional haemoglobin-related genes, such as ALAS2 

and HEMGN, were also significantly downregulated post-radiotherapy in this study. 

These genes play critical roles in haem biosynthesis, oxidative stress management, 

and erythroid lineage survival, highlighting potential disruptions in these tumour 

microenvironment functions. 
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6.2.2.3 ALAS2 and vascular remodelling  

ALAS2, an enzyme critical for haem biosynthesis, is typically upregulated under 

hypoxic conditions via TGF-β signalling in erythroid cells, facilitating terminal 

differentiation and intracellular haem production essential for oxidative stress 

management and iron homeostasis. Experimental studies in erythroid cell lines 

have demonstrated that hypoxia-induced TGF-β signalling enhances ALAS2 

expression, supporting adaptive metabolic functions during stress (Kaneko, 

Furuyama et al. 2009). Its significant suppression post-radiotherapy, as observed 

here, may reflect the tumour’s diminished ability to counteract oxidative stress, 

further limiting metabolic flexibility and resilience in the hypoxic microenvironment. 

 

This aligns with broader disruptions in vascular integrity following radiotherapy. xCell 

analysis revealed a significant decrease in endothelial cell abundance in post-

radiotherapy samples (Figure 4.16), consistent with vascular remodelling driven by 

radiation-induced endothelial cell damage. Supporting this, previous studies have 

shown that doses exceeding 10 Gy can induce severe vascular damage in tumours, 

leading to reduced perfusion and increased hypoxia (Park, Griffin et al. 2012). 

Radiation-induced endothelial cell apoptosis has been directly linked to impaired 

oxygen delivery and microenvironmental collapse, contributing to tumour cell death 

indirectly by disrupting vascular supply. 

 

Such vascular damage likely amplifies the metabolic stress experienced by tumours, 

further diminishing their capacity for haem biosynthesis. Evidence from prior studies 

suggests that the functional vascular volume in irradiated tumours declines rapidly, 

with profound decreases even at moderate radiation doses (Park, Griffin et al. 2012). 

This reduction in vascular support not only limits oxygen delivery but may also impair 

iron metabolism, an essential factor for haem biosynthesis, compounding the 

suppression of ALAS2 observed here. While the precise mechanisms remain unclear, 

disrupted hypoxia-responsive pathways and reduced endothelial cell survival 

represent plausible factors driving the observed transcriptional changes. 

 

These vascular changes are accompanied by significant transcriptional shifts 

revealed by PROGENy (section 4.8) and GSEA (section 4.6) analyses. PROGENy 
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identified a significant decrease in PI3K activity (P = 0.002), a pathway critical for 

vascular integrity and angiogenesis, aligning with the observed vascular remodelling 

and potential endothelial dysfunction (Kobialka and Graupera 2019). Conversely, 

increased activity in TNFα (P = 0.0001) and NF-κB (P = 0.005) pathways suggests 

heightened inflammatory responses, which may contribute to microenvironmental 

stress and further impair vascular function (Balkwill 2009, Hoesel and Schmid 2013). 

Similarly, GSEA identified enrichment of inflammatory pathways, including TNFα 

signalling via NF-κB and IL6-JAK-STAT3, reinforcing the role of inflammation in 

these radiotherapy-induced changes. 

 

These disruptions likely exacerbate metabolic stress, further impairing the tumour's 

capacity for haem biosynthesis. GSEA also highlighted enrichment of hallmark 

pathways such as hypoxia and reactive oxygen species, reflecting increased 

oxidative and hypoxic stress post-radiotherapy. Alongside the observed 

downregulation of oxidative phosphorylation and related metabolic pathways, these 

findings suggest a potential link between vascular damage, oxidative stress, and 

disrupted hypoxia-responsive pathways that may contribute to the suppression of 

ALAS2. While direct causation cannot be established, these pathways represent 

plausible contributors to the observed transcriptional changes. 

 

6.2.2.4 HEMGN and erythroid differentiation 

Similarly, HEMGN (hemogen), a transcriptional regulator involved in hematopoietic 

stem cell survival and erythroid differentiation, has been shown to modulate 

responses to stress, including irradiation and hypoxia. It plays a protective role by 

negatively regulating interferon-gamma (IFN-γ) signalling, thereby limiting apoptosis 

and promoting survival and regeneration of hematopoietic stem and progenitor cells 

(HSPCs) during hematopoietic stress (Zhao, Liu et al. 2022). Studies in murine 

models have demonstrated that HEMGN expression is significantly induced under 

conditions of irradiation and transplantation stress (Jiang, Yu et al. 2010). This 

induction is critical for maintaining HSPC engraftment and functionality, with 

HEMGN-deficient cells exhibiting impaired engraftment, increased apoptosis, and 

heightened oxidative stress following transplantation. Furthermore, HEMGN 
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supports erythroid differentiation by facilitating chromatin modifications through 

histone acetyltransferases, playing a key role in hematopoietic lineage fidelity. 

 

In the context of this study, the observed decreased expression of HEMGN post-

radiotherapy raises important questions about the underlying mechanisms driving 

this change. One possibility is that radiotherapy-induced vascular damage and 

increased oxidative stress may disrupt erythroid-like lineage functions within the 

tumour microenvironment, leading to reduced HEMGN expression. Alternatively, the 

decreased expression may reflect changes in the cellular composition of the tumour, 

with selective loss of tumour or stromal cell populations that predominantly express 

HEMGN. 

 

Radiotherapy's impact on transcriptional regulation could also play a role, with 

stress-induced signalling pathways, such as those involving interferon-gamma (IFN-

γ) or inflammatory cytokines, potentially suppressing HEMGN transcription as part 

of a broader shift in gene expression. Another explanation could be that the decrease 

in HEMGN represents an adaptive response by the tumour to mitigate excessive 

oxidative stress. 

 

Future directions 

These findings collectively highlight the intricate interplay between haemoglobin-

related gene expression, vascular integrity, inflammation, and oxidative stress in the 

tumour microenvironment. While the precise mechanisms underlying these changes 

remain speculative, the data suggest plausible contributors that warrant further 

investigation. To deepen our understanding of the role of haemoglobin genes in 

sarcomas and their potential impact on radiotherapy outcomes, several areas of 

future research are proposed: 

 

Spatial and cellular expression analysis 

To delineate the spatial and cellular context of haemoglobin gene expression, future 

studies could employ spatial transcriptomics and single-cell RNA sequencing. These 

technologies would enable precise mapping of the localised expression of genes 

such as HBA1, HBA2, and HBB within the tumour microenvironment. By identifying 

the specific tumour or stromal cell populations expressing these genes and their 
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spatial relationships to hypoxic regions and vasculature, we could start to understand 

the functional significance of these genes within sarcomas. 

 

In addition, immunohistochemistry could be used to validate protein-level expression 

and confirm that the detected RNA transcripts are translated into functional proteins. 

Such approaches would provide critical evidence linking haemoglobin gene 

expression to the metabolic and structural adaptations of the tumour 

microenvironment both pre- and post-radiotherapy. 

 

Functional analysis 

To assess the functional roles of haemoglobin genes in sarcoma biology, knockdown 

studies targeting HBA1, HBA2, and HBB could be performed. These experiments 

would help determine the impact of silencing these genes on tumour growth, reactive 

oxygen species (ROS) levels, and radiotherapy sensitivity. Such studies could reveal 

whether these genes play a direct role in modulating tumour progression and 

treatment responses. 

 

Furthermore, direct measurements of tissue oxygen levels in sarcomas with high 

versus low haemoglobin gene expression could provide valuable insights into their 

role in tumour oxygenation, metabolic activity, and radiotherapy efficacy. This line of 

research would help clarify whether haemoglobin gene expression contributes to 

radiotherapy resistance or sensitivity. This could be context dependent and so 

coupling this information with spatial transcriptomic data would be key to address 

this question. 

 

Radiotherapy models 

Developing preclinical radiotherapy models with altered haemoglobin gene 

expression could offer direct evidence of the influence of these genes on treatment 

outcomes. For instance, models engineered to overexpress or suppress HBA1, 

HBA2, or HBB could be used to test the hypothesis that haemoglobin gene 

expression enhances radiotherapy by sustaining oxygen levels or exacerbating 

oxidative stress. These experiments could help establish causality and provide a 

framework for understanding the relationship between haemoglobin gene expression 

and radiotherapy efficacy. 
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Mechanistic studies 

Mechanistic investigations should focus on elucidating the pathways that link 

haemoglobin gene expression with oxidative stress, hypoxia adaptation, and tumour 

cell survival. For example, exploring interactions with hypoxia-inducible factors 

(HIFs) or ROS-regulating proteins could provide insight into the adaptive responses 

of tumour cells in hypoxic environments. 

 

Additionally, it would be valuable to investigate whether haemoglobin gene 

expression correlates with cancer-associated fibroblast (CAF) infiltration or vascular 

remodelling. These factors are known to influence the tumour microenvironment and 

may play a role in modulating treatment responses (Ansems and Span 2020). By 

connecting haemoglobin gene expression with broader aspects of sarcoma biology, 

these future studies could uncover novel therapeutic strategies for improving 

response to radiotherapy. 

 

 

6.2.3 Subtype-specific transcriptomic changes post-radiotherapy 

Further analysis of transcriptomic responses to radiotherapy revealed both shared 

and subtype-specific gene expression changes across soft tissue sarcomas, 

emphasising the heterogeneity of their biological responses to treatment. A total of 

187 genes were differentially expressed in at least two subtypes, with some genes, 

such as the haemoglobin genes HBA2 and HBB, displaying consistent 

downregulation across six subtypes: myxofibrosarcoma (MFS), myxoid liposarcoma 

(MLS), pleomorphic leiomyosarcoma (pLMS), dedifferentiated liposarcoma (ddLPS), 

spindle cell sarcoma (SpCS), and extraskeletal myxoid chondrosarcoma (EMC). 

While the reasons for this downregulation remain unclear, it may reflect broader 

changes in the tumour microenvironment following radiotherapy. One possibility is 

that tumour cells expressing haemoglobin genes may have been more sensitive to 

radiotherapy-induced oxidative stress, leading to their preferential elimination. 

Alternatively, this suppression could result from radiotherapy-induced transcriptional 

reprogramming, potentially driven by changes in vascular integrity, hypoxia, or shifts 

in cellular composition within the tumour microenvironment. 
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6.2.3.1 F13A1 

F13A1, encoding coagulation factor XIII subunit A, was the most commonly 

upregulated gene post-radiotherapy, differentially expressed in four sarcoma 

subtypes (MFS, MLS, pLMS, and ddLPS) (Figure 4.9). Beyond its well-known role in 

blood clot stabilisation, F13A1 contributes to extracellular matrix (ECM) remodelling, 

tissue repair, and angiogenesis - processes that may be activated in response to RT-

induced damage (Lehrer, Dembitzer et al. 2018, Peltier, Roperch et al. 2018, Ercan, 

Mauracher et al. 2021). In glioblastoma, increased F13A1 copy number correlates 

with improved survival, possibly by influencing tumour-associated coagulation 

pathways. Similarly, in lung cancer, F13A1 processing was linked to 

hypercoagulability and a pro-metastatic microenvironment, while in colorectal cancer, 

decreased serum AP-F13A1 suggests sequestration within tumours, facilitating ECM 

remodelling and tumour growth. The consistent upregulation of F13A1 in sarcomas 

post-RT may reflect its involvement in tissue repair and adaptive responses, but its 

role in coagulation raises the possibility of promoting tumour resilience and immune 

evasion. Given its diverse tumour-associated functions, further investigation into 

F13A1’s role in sarcoma biology and its potential as a therapeutic target is warranted, 

particularly in the context of mitigating tumour regrowth and enhancing RT efficacy. 

 

6.2.3.2 SERPINE1 

SERPINE1 (plasminogen activator inhibitor-1, PAI-1) was upregulated in myxoid 

liposarcoma, pleomorphic liposarcoma, and synovial sarcoma post-radiotherapy, 

suggesting a role in tumour adaptation. A known regulator of fibrinolysis and cell 

adhesion, SERPINE1 prevents plasmin-mediated ECM degradation, stabilising the 

extracellular matrix (ECM) and contributing to post-RT tissue repair. In head and 

neck squamous cell carcinoma, SERPINE1 is part of a radioresistance-associated 

gene signature linked to poor prognosis, angiogenesis, and DNA damage repair, as 

well as increased macrophage and CD4+ T cell infiltration (Zhang, Wang et al. 2022). 

In triple-negative breast cancer, SERPINE1 facilitates DNA double-strand break 

repair following RT, enhancing tumour survival, and its inhibition resensitised 

tumours to RT in preclinical models (Su, Wu et al. 2023). In sarcomas, its post-RT 

upregulation may reflect a similar adaptive response, supporting ECM remodelling 
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and DNA repair to promote tumour survival. Targeting SERPINE1-driven pathways 

could enhance RT efficacy by disrupting both ECM dynamics and mechanisms of 

radioresistance. 

6.2.3.3 RGS1 

RGS1 was upregulated following radiotherapy in myxoid liposarcoma, 

dedifferentiated liposarcoma, and myxofibrosarcoma, suggesting a conserved role 

in immune regulation and tumour adaptation. As a key regulator of G-protein-coupled 

receptor (GPCR) signalling, RGS1 influences immune cell migration and 

inflammatory responses. In melanoma, its overexpression is linked to increased 

tumour thickness, mitotic rate, and lymph node metastasis, where it facilitates 

immune evasion through calcium influx regulation and activation of ERK and AKT 

signalling (Yang, Zhang et al. 2023). The impact of radiotherapy on RGS1 expression 

appears cell-type dependent, with studies showing its downregulation in Jurkat cells 

but upregulation in TK6 and HFL1 cells, indicating a variable response to radiation-

induced stress (Chaudhry 2008). The consistent upregulation of RGS1 in post-RT 

sarcomas suggests a potential role in remodelling the tumour microenvironment, 

modulating immune cell infiltration, and contributing to tissue repair. Whether this 

confers a protective or pro-tumorigenic effect remains to be further investigated. 
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6.2.4 Genes with variable expression patterns following radiotherapy 

While the genes discussed above highlight shared transcriptional responses across 

sarcoma subtypes, the results of this study (Figure 4.9) also revealed genes with 

variable expression patterns depending on the subtype.  CASQ1 and TAGLN for 

example exhibited subtype specific expression patterns and are discussed below.   

 

6.2.4.1 Calsequestrin 1 (CASQ1) and calcium signalling in radiotherapy 

response 

Calsequestrin 1 (CASQ1) is a calcium-binding protein primarily located in the 

sarcoplasmic reticulum of skeletal muscles, where it plays a critical role in calcium 

homeostasis by buffering calcium ions and modulating their release during muscle 

contraction. CASQ1 interacts with proteins such as triadin, junctin, and ryanodine 

receptors to regulate calcium release channels and maintain efficient excitation-

contraction coupling. It also directly influences store-operated calcium entry (SOCE) 

by interacting with STIM1 to regulate calcium influx under conditions of sarcoplasmic 

reticulum depletion (Rossi, Gamberucci et al. 2021). In this study, CASQ1 expression 

was found to increase in myxoid liposarcoma (MLS) and myxofibrosarcoma (MFS) 

but decrease in extraskeletal myxoid chondrosarcoma (EMC) following radiotherapy. 

These changes in expression suggest that CASQ1 may play a role in the cellular 

response to radiotherapy, potentially through its established function in regulating 

intracellular calcium levels. Calcium signalling is critical for various cellular processes, 

including proliferation, apoptosis, and stress responses (Patergnani, Danese et al. 

2020), and the observed differential expression of CASQ1 may reflect subtype-

specific differences in how these sarcomas manage calcium homeostasis under the 

stress of radiotherapy. 

 

Additional differentially expressed genes in post-radiotherapy samples further 

highlight the role of calcium signalling in these sarcoma subtypes. For example, 

CACNA1E (Phan, Wang et al. 2017), a voltage-gated calcium channel subunit, and 

CACNA2D1, a calcium channel auxiliary subunit, were differentially expressed in 

MLS, EMC, and synovial sarcoma (SS) (Table 4.4). These genes are essential for 

calcium entry into cells and are involved in numerous calcium-dependent processes, 
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including signalling cascades that regulate cell survival and apoptosis. Similarly, 

RYR1 and RYR2, which encode ryanodine receptors responsible for calcium release 

from the sarcoplasmic reticulum (Wang, Yu et al. 2022), were differentially expressed 

in sarcoma subtypes such as MLS, EMC, spindle cell sarcoma (SpCS), and 

pleomorphic liposarcoma (pLPS) (Table 4.4). These receptors are key regulators of 

intracellular calcium homeostasis, and their dysregulation has been linked to altered 

calcium signalling, genomic instability, and impaired apoptotic pathways, which may 

contribute to subtype-specific responses to radiotherapy-induced stress (Wang, Yu 

et al. 2022). 

 

Further evidence for the role of calcium signalling in radiotherapy responses comes 

from a study on undifferentiated pleomorphic sarcomas (UPS) (Blomain, Soudi et al. 

2025). Blomain et al. demonstrated that radiotherapy imposes significant selective 

pressures on tumour subclones, leading to dynamic changes in their abundance. 

Specifically, subclones that contracted—meaning their prevalence significantly 

decreased—were enriched for mutations in calcium signalling pathways, suggesting 

that disruptions in calcium homeostasis may render these subclones more 

radiosensitive. These findings provide a compelling link between calcium signalling 

and the cellular mechanisms that determine radiotherapy outcomes. Mutations in 

genes involved in calcium transport, storage, and signalling likely impair the ability of 

tumour cells to buffer radiotherapy-induced calcium stress, ultimately leading to their 

elimination. 

 

Blomain et al. also identified significant upregulation of calcium ATPase genes, 

including ATP2A1, ATP2A3, ATP2B1, and ATP2B2, in post-radiotherapy samples. 

Similarly, they also observed the increased expression of CACNA1 and RYR-related 

genes that I have seen in the LSS cohort. These genes overall play critical roles in 

exporting calcium ions from the cytoplasm and maintaining intracellular calcium 

balance. Their upregulation likely reflects a mechanism to mitigate the increased 

calcium flux and cellular stress caused by radiotherapy. Functional experiments 

further demonstrated that inhibiting plasma membrane calcium ATPases using 

Caloxin 2A1 sensitised sarcoma cell lines to radiotherapy.  
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Taken together, these findings emphasise the role of calcium signalling, including 

the function of CASQ1, in mediating cellular responses to radiotherapy. The 

differential expression of CASQ1, CACNA1E, CACNA2D1, RYR1, and RYR2, 

combined with the enrichment of calcium signalling mutations in radiotherapy-

sensitive subclones, highlights how sarcoma subtypes adapt to the unique stress 

conditions imposed by radiotherapy. These findings suggest that targeting calcium 

signalling pathways, either through modulation of calcium transport or inhibition of 

adaptive responses, could enhance radiosensitivity and improve therapeutic 

outcomes. 

 

6.2.4.2 Transgelin (TAGLN) and vascular remodelling  

TAGLN (transgelin), also known as SM22α, is a cytoskeletal protein predominantly 

involved in actin filament stabilisation, with emerging roles in angiogenesis and 

endothelial cell dynamics. In this study, TAGLN was found to be upregulated in 

myxoid liposarcoma (MLS) but downregulated in extraskeletal myxoid 

chondrosarcoma (EMC) and pleomorphic leiomyosarcoma (pLMS) following 

radiotherapy. Such differential expression suggests that TAGLN may contribute to 

the varying vascular responses across sarcoma subtypes under radiotherapy-

induced stress. 

 

TAGLN plays a critical role in endothelial cell elongation, a key process in 

angiogenesis. Under angiogenic stimuli such as VEGF, TAGLN expression supports 

endothelial sprouting and vessel morphogenesis. Conversely, its disruption 

enhances angiogenic behaviours like excessive cord-like structure formation, 

indicating that TAGLN can act as a regulator of endothelial elongation depending on 

the cellular context (Tsuji-Tamura, Morino-Koga et al. 2021).  

 

Radiotherapy-induced vascular remodelling involves complex processes, including 

changes in angiogenesis, immune infiltration, and extracellular matrix (ECM) 

composition (Ahmed, Malachowska et al. 2025) (see section 6.2.2.3). The 

downregulation of TAGLN in EMC and pLMS may reflect a shift towards greater 

endothelial plasticity, facilitating angiogenic remodelling and vessel sprouting in 
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response to vascular damage. In contrast, its upregulation in MLS could indicate an 

effort to stabilise endothelial structures and counteract radiotherapy-induced stress. 

The biology behind the unique “chicken-wire” vascular pattern commonly observed 

in MLS may also influence its reliance on TAGLN to maintain vascular integrity post-

radiotherapy. 

 

 

Radiotherapy has been shown to induce significant vascular damage, including 

endothelial cell death, reduced perfusion, and increased tumour hypoxia. High-dose 

radiation can lead to endothelial apoptosis, impairing vascular support and 

contributing to tumour control (Park, Griffin et al. 2012). However, the extent of 

vascular damage varies across tumour types, with some restoring perfusion through 

angiogenesis while others experience vascular collapse. TAGLN’s differential 

expression may mirror these processes, with MLS favouring stabilisation 

mechanisms through increased TAGLN, while EMC and pLMS adapt by employing 

alternative angiogenic pathways that are less dependent on TAGLN. 

 

These findings are consistent with evidence suggesting that radiotherapy-induced 

tissue regeneration involves molecular pathways such as Wnt and p53 signalling, 

which regulate cytoskeletal and vascular dynamics (Ahmed, Malachowska et al. 

2025). TAGLN-mediated cytoskeletal remodelling may interact with these pathways, 

influencing how tumour microenvironments respond to radiotherapy. The differential 

expression of TAGLN across sarcoma subtypes stresses the role of tumour-specific 

vascular remodelling in determining radiotherapy outcomes. 

 

 

6.2.4.3 Summary 

The limited overlap of differentially expressed genes across sarcoma subtypes, as 

shown in the Upset plot (Figure 4.8) demonstrates the complexity and heterogeneity 

of transcriptomic responses to radiotherapy. While certain subtypes, such as MFS 

and MLS, exhibit the greatest gene overlap, their overall transcriptional responses 

remain largely distinct, highlighting the necessity for therapeutic approaches tailored 
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to each subtype's unique biology. This complexity is further illustrated by the 

coexistence of shared vulnerabilities — such as the consistent suppression of 

haemoglobin-related genes and the upregulation of tissue remodelling pathways like 

F13A1 — and unique adaptations, including subtype-specific alterations in calcium 

signalling and cytoskeletal dynamics. 

 

Future research should prioritise functional studies to unravel the roles of these 

genes in mediating radiotherapy outcomes. Investigating whether shared pathways, 

such as F13A1-mediated ECM remodelling, can be targeted to enhance treatment 

efficacy or whether subtype-specific adaptations, such as CASQ1-driven calcium 

signalling, provide exploitable vulnerabilities will be key to advancing precision 

medicine for sarcomas. Additionally, integrating spatial and single-cell transcriptomic 

techniques will be critical for mapping the cellular origins of these changes and 

understanding their interactions with the tumour microenvironment.  

 

 

6.2.5 Pathway enrichment analysis highlights immune activation post-

radiotherapy 

The findings from this study strongly suggest that radiotherapy stimulates immune 

activation, a phenomenon well-documented in the literature (Deloch, Derer et al. 

2016, Rückert, Flohr et al. 2021). Radiotherapy not only induces direct DNA damage 

to tumour cells but also initiates secondary effects that modify the tumour 

microenvironment, thereby promoting immunogenic cell death (ICD). ICD is 

characterised by the release of damage-associated molecular patterns (DAMPs) 

such as calreticulin, HMGB1, and ATP, which enhance the recruitment and activation 

of antigen-presenting cells (APCs) like dendritic cells. This process facilitates T-cell 

priming and subsequent systemic anti-tumour immune responses. 

 

One of the most intriguing immune-mediated effects of radiotherapy is the abscopal 

effect, where irradiation of a local tumour site results in tumour regression at distant, 

untreated sites. This phenomenon is believed to occur due to radiation-induced 

immune activation, which enhances systemic anti-tumour immunity. Although the 
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abscopal effect was historically considered a rare occurrence, increasing evidence 

suggests that combining RT with immunotherapies, particularly immune checkpoint 

inhibitors, can enhance its frequency and potency. Mechanistically, RT triggers the 

release of tumour antigens, activates the cGAS-STING pathway, and promotes the 

maturation of DCs, leading to a systemic T-cell response against cancer cells at both 

irradiated and non-irradiated sites (Janopaul-Naylor, Shen et al. 2021). 

Recent work has also emphasised that the immunological effects of radiotherapy are 

complex and context-dependent, with both immunostimulatory and 

immunosuppressive components (Rückert, Flohr et al. 2021). While radiotherapy 

enhances antigen presentation, cytokine release, and immune cell infiltration, it can 

also create an immunosuppressive tumour microenvironment. This occurs through 

mechanisms such as the recruitment of regulatory T cells (Tregs), upregulation of 

immunosuppressive cytokines (e.g., TGF-β, IL-10), and increased expression of 

immune checkpoint molecules such as PD-L1. Thus, radiotherapy alone may not 

always generate a strong systemic immune response, and combination strategies 

with immunotherapies are increasingly being explored to overcome these barriers 

(Deloch, Derer et al. 2016, Janopaul-Naylor, Shen et al. 2021, Rückert, Flohr et al. 

2021). 

 

In this study, GSEA and Gene Ontology (GO) analyses revealed significant 

enrichment of immune-related pathways, such as interferon signalling, TNFα 

signalling, and inflammatory response pathways. These results align with the 

documented role of radiotherapy in promoting immune-mediated effects through the 

upregulation of pro-inflammatory cytokines (e.g., IL-6, IL-8, TNF-α) and the 

enhancement of T-cell infiltration (Ahmed, Malachowska et al. 2025). The observed 

activation of pathways such as JAK-STAT (Johnson, O'Keefe et al. 2018) and NF-

κB (Hoesel and Schmid 2013) further supports this, as these are pivotal in 

modulating immune responses. 

 

Conversely, the downregulation of pathways associated with cell proliferation, 

including MYC targets and the G2M checkpoint, highlights the twin therapeutic effect 

of radiotherapy. By suppressing tumour growth and division while concurrently 

activating the immune system, radiotherapy offers a multifaceted approach to cancer 

treatment.  
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6.2.6 PROGENy analysis identifies androgen signalling as a potential 

target for adjuvant therapy. 

Analysis of the PROGENy results, a pathway analysis method that infers pathway 

activity from gene expression data, revealed distinct patterns of pathway activation 

and suppression among different sarcoma subtypes following radiotherapy (see 

section 4.8). These subtype-specific differences highlight the diverse biological 

responses to treatment. In myxofibrosarcoma, radiotherapy was associated with a 

significant increase in the activity of pathways involved in stress and immune 

signalling, including the Androgen, JAK-STAT, p53, NF-κB, TNFα, and Wnt 

pathways (Figure 4.14). At the same time, there was a pronounced decrease in 

PI3K signalling, which may reflect diminished cell survival signalling. These 

changes suggest following radiotherapy there is enhancement of immune and 

stress-related responses while suppression of tumour-promoting pathways. 

 

In contrast, synovial sarcoma exhibited a more focused response, with a significant 

increase observed only in the p53 pathway. While this suggests a more limited 

activation of stress response pathways, it is also possible that the reduced sample 

size (n = 7) limited the power to detect other significant changes in pathway activity. 

Similarly, pleomorphic liposarcoma, with only four paired samples available for 

analysis, showed no statistically significant changes in the pathways analysed. This 

lack of statistical findings may reflect the challenges of achieving sufficient power in 

such a small cohort rather than an absence of biological response. Future studies 

with larger cohorts are warranted to validate and further explore these 

observations. 

 

To further contextualise these findings, pathway activity scores from radiotherapy-

treated samples were compared with treatment-naïve sarcoma samples from the 

TCGA dataset. This comparison (Figure 4.15) showed that in myxofibrosarcoma, the 

post-radiotherapy increases in Androgen and TNFα pathway activity and the 

decrease in PI3K signalling were consistent with the differences observed between 

TCGA samples and post-radiotherapy samples. These findings add evidence to 

support the transformative role of radiotherapy in reshaping tumour biology, inducing 

distinct transcriptomic changes that are not present in untreated sarcomas. 
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The observed post-radiotherapy increase in the activation of the androgen pathway, 

raises the possibilities for therapeutic intervention. Preclinical models of 

desmoplastic small round cell tumours (DSRCTs), have shown that anti-androgen 

therapies, including enzalutamide and AR-directed antisense oligonucleotides (AR-

ASOs), effectively reduce tumour growth by suppressing AR activity and its 

transcriptional program (Lamhamedi-Cherradi, Maitituoheti et al. 2022).  

 

Combining radiotherapy with anti-androgen therapies could provide a novel adjuvant 

approach to suppress this pathway and limit tumour progression. Specifically, 

targeting AR could disrupt both direct androgen-mediated tumourigenic signals and 

the crosstalk between AR and other pathways, such as PI3K, that are modulated by 

radiotherapy.  
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6.3 Transcriptomic determinants of radiotherapy resistance 

This section explores the findings presented in Chapter 5, which focuses on the 

differences in gene expression, pathway activity, and tumour microenvironment 

composition between responders and progressors following radiotherapy. By 

identifying molecular and cellular mechanisms associated with disease progression, 

this analysis provides evidence for new biomarkers and therapeutic targets to 

improving outcomes for patients with soft tissue sarcomas. 

 

6.3.1 Clinical characteristics of responders vs. progressors 

Significant differences in disease trajectories were observed between responders 

and progressors. Responders, who remained recurrence-free, had a median follow-

up of 6.8 years post-radiotherapy. In contrast, progressors had a median 

progression-free interval of 236 days, with most succumbing to their disease within 

787 days of completing RT. These findings demonstrate the urgency of identifying 

predictive biomarkers to better stratify patients for intensified surveillance and 

treatment to improve these outcomes. 

 

The distribution of histological subtypes differed between responders and 

progressors, reflecting known biological behaviour. Pleomorphic liposarcoma (pLPS) 

and myxoid liposarcoma (mLPS), had a 100% progression rate (4/4 and 2/2 cases, 

respectively), while clear cell sarcoma (CCS), myoepithelial carcinoma (MEC), and 

alveolar soft part sarcoma (ASPS) were found exclusively in progressors, aligning 

with their typically poor prognosis. In contrast, myxofibrosarcoma (MFS) and 

dedifferentiated liposarcoma (ddLPS), which are often considered genomically 

complex yet potentially radiosensitive, had higher responder rates (MFS: 13/15; 

ddLPS: 2/3). Extraskeletal myxoid chondrosarcoma (EMC) and malignant peripheral 

nerve sheath tumour (MPNST) only had responders, though their small sample size 

limits interpretation. 

This variability suggests that histology-specific factors may strongly influence RT 

response, reinforcing the need for subtype-specific treatment considerations. 

However, the unequal distribution of subtypes between responders and progressors 

highlights a potential dataset imbalance, particularly the overrepresentation of pLPS 
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and mLPS in progressors and the absence of EMC and MPNST from the progressor 

group. Future studies incorporating larger cohorts or stratifying by histology are 

needed to determine whether these trends reflect genuine biological differences or 

sampling bias. 

 

Age differences were also observed, with responders generally older than 

progressors. The median age at diagnosis was 60 years for responders versus 46 

years for progressors (p = 0.0109, t-test). While the impact of age on RT response 

was not explored in depth, this difference should be considered in future analyses, 

particularly in multivariable models assessing predictors of disease progression. 

 

6.3.2 Differential gene expression analysis identifies potential biomarkers 

of disease progression. 

Differential gene expression (DGE) analysis revealed distinct transcriptional profiles 

distinguishing responders from progressors. Among the most significant findings, PI3 

and PTCHD1 were the two most upregulated genes, while TBC1D3 and SIRPB1 

were the most downregulated (Figure 5.1). These genes and their potential roles will 

be discussed in detail below. Their expression or lack thereof could serve as a 

biomarker to predict disease progression.  

 

PI3 (Elafin) was significantly upregulated in progressors post-radiotherapy (46-fold 

increase), suggesting a role in modulating inflammation and protease activity to 

enhance tumour resilience. Elevated PI3 expression has been associated with 

aggressive tumour behaviour, therapy resistance, and immune evasion across 

multiple cancer types (Saidi, Javerzat et al. 2008, Verbovšek, Motaln et al. 2014, 

Tromp, Boerman et al. 2020).  

 

PTCHD1, primarily studied in neurodevelopmental disorders, showed a 26-fold 

increase in progressors. Though originally linked to Hedgehog signalling, recent 

findings suggest PTCHD1 interacts with cholesterol rather than Sonic Hedgehog, 

indicating a role in lipid metabolism. Its upregulation may reflect metabolic adaptation 

to radiotherapy-induced stress, but conflicting evidence exists regarding its role in 
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treatment response, with some studies linking higher PTCHD1 expression to better 

chemotherapy outcomes (Hiltunen, Timmis et al. 2023, Pastore, Muhammad et al. 

2023).  

 

TBC1D3, an oncogene involved in EGFR and Ras signalling, was 46-fold 

downregulated in progressors. Its overexpression has been linked to aggressive 

tumour phenotypes in various cancers (Wainszelbaum, Charron et al. 2008, Wang, 

Chen et al. 2021). However, its suppression post-radiotherapy suggests a context-

dependent role, potentially reflecting a shift in tumour survival strategies that 

prioritise DNA repair over proliferation in response to radiation-induced stress. 

 

SIRPB1, a regulator of immune responses, was downregulated 12-fold in 

progressors. In other cancers, it has been associated with tumour-associated 

macrophage activation and inflammatory cytokine release  (Geng, Zhao et al. 2024). 

Its reduced expression post-RT may contribute to immune evasion, weakening anti-

tumour immune responses and promoting tumour persistence (Cerchione, 

Guadagnuolo et al. 2019, Song, Qin et al. 2020). 

 

These findings highlight key transcriptional differences in progressors post-

radiotherapy, with upregulated genes potentially driving tumour adaptation and 

survival, while downregulated genes may reflect loss of immune surveillance or 

alterations in proliferative signalling. The consistent dysregulation of these genes 

suggests they may play a role in tumour persistence and progression following RT. 

Further investigation is needed to determine whether these genes could serve as 

biomarkers for post-RT disease progression or as therapeutic targets to mitigate 

treatment resistance. 
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6.4 Summary and future directions 

This study provides a comprehensive assessment of transcriptomic responses to 

radiotherapy in soft tissue sarcomas, identifying key gene expression changes and 

pathway alterations associated with disease progression. However, several 

challenges remain, and further work is needed to validate these findings and explore 

their clinical relevance. 

 

Validation in independent cohorts 

Larger, multi-institutional studies are required to confirm the molecular signatures 

and pathway activities identified in this study. Currently, no publicly available 

datasets exist that match the specific cohort characteristics and treatment context 

analysed here. Collaborative efforts to generate and share transcriptomic datasets 

from post-radiotherapy sarcomas would be essential for external validation. 

 

Spatial transcriptomics and single-cell analysis 

Bulk RNA sequencing provides valuable insights but does not resolve the spatial 

heterogeneity of tumour and immune cell interactions. Spatial transcriptomics and 

single-cell RNA sequencing could help distinguish whether transcriptomic shifts post-

radiotherapy arise from tumour-intrinsic changes or alterations in the tumour 

microenvironment. These techniques would also enable a more detailed exploration 

of immune cell infiltration and its role in treatment response. 

 

Multi-Omics integration 

Beyond transcriptomics, integrating proteomic and epigenomic data could uncover 

additional mechanisms of disease progression and therapy resistance. Proteomics 

may reveal post-transcriptional modifications affecting tumour behaviour, while 

epigenomic profiling could identify regulatory elements driving differential gene 

expression post-radiotherapy. Such multi-omics approaches could help refine 

molecular classifications and identify novel therapeutic vulnerabilities. 
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In summary, this thesis contributes to our understanding of radiotherapy’s molecular 

impact in soft tissue sarcomas, identifying genomic instability, immune modulation, 

and transcriptional predictors of disease progression as key factors shaping post-

radiotherapy tumour evolution. Integrating these findings into future clinical and 

translational efforts could advance biomarker-driven risk stratification, optimise 

patient selection for combination therapies, and maximise radiotherapy efficacy while 

minimising unnecessary toxicity. Identifying patients for increased surveillance or 

therapy de-escalation is a goal in radiation oncology and one I hope that this thesis 

will contribute to the effort of. 
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Chapter 7. Appendix 

7.1 Publications 

The following publications have arisen from work carried out during my PhD:  

 

Nottley, S. W. G. and N. Pillay (2024). "Clear cell sarcoma: a rare cause of a lump 

in the foot." Diagnostic Histopathology 30(1): 81-85. 

 

Haefliger, S., O. Chervova, C. Davies, S. Nottley, S. Hargreaves, V. P. Sumathi, . . . 

S. Beck (2023). "Subclassification of epithelioid sarcoma with potential therapeutic 

impact." The Journal of Pathology 260(4): 368-375. 

 

Hames-Fathi, S., S. W. Nottley and N. Pillay (2022). "Unravelling undifferentiated 

soft tissue sarcomas: insights from genomics." Histopathology 80(1): 109-121. 
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7.2 Statement of contributions 

Unless otherwise stated, all work in this thesis was carried out by me. I am grateful 

to the following individuals for their contributions: 

 

Dr Akanksha Farswan provided the variant call format (VCF) files for the patient with 

Clear Cell Sarcoma (PT61), performing both alignment and variant calling for this 

case. 

 

Christopher Davies provided the salmon counts from the RNA sequencing data for 

PT61. He also extracted DNA from the patients’ blood for sequencing of the normal 

samples and from fresh frozen tissue for the samples sent for NanoSeq analysis. 

 

The NanoSeq samples were sequenced at the Wellcome Trust Sanger Institute, who 

generously conducted the sequencing. VCF files and mutation counts were returned 

for downstream analysis. I had useful discussions with Dr Federico Abascal 

regarding this work. I subsequently performed mutational signature analysis on the 

identified mutations. 

 

Dr Shadi Hames-Fathi provided the processed TCGA RNA sequencing counts data, 

which I used for comparative analysis with my cohort in the PROGENy analysis. 
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