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Abstract

Soft tissue sarcomas (STS) are a heterogeneous group of mesenchymal
malignancies, often treated with neoadjuvant radiotherapy (RT) to improve local
control. However, the genomic impact of RT on STS remains poorly understood. This
thesis investigates the mutational and transcriptomic responses of STS to RT using
whole-exome sequencing (WES), RNA sequencing (RNAseq), and the highly

sensitive NanoSeq technology.

Initial WES analyses of pre- and post-RT tumour samples revealed a low tumour
mutational burden (TMB) with no significant increase in single nucleotide variants
(SNVs) or small insertions and deletions (indels) post-treatment. Given the known
role of RT in inducing DNA damage, | hypothesised that conventional WES might
lack the sensitivity to detect low-frequency mutations. To address this, | employed
NanoSeq, a duplex sequencing approach capable of detecting rare mutations with
unprecedented accuracy. Analysis of paired pre- and post-RT samples using
NanoSeq demonstrated a significant increase in indels and a shift toward
microhomology-mediated end joining, suggesting a mutational footprint of RT

previously undetectable with standard sequencing.

Transcriptomic analysis revealed differentially expressed genes and pathways when
comparing pre- and post-RT samples, shedding light on the molecular response to
RT and identifying potential biomarkers of disease. A machine learning model trained
on gene expression data successfully distinguished patients with favourable vs. poor

post-RT outcomes.

These findings provide novel insights into the genomic and transcriptomic effects of
RT on STS. By leveraging high-resolution sequencing technologies, this work
enhances our understanding of RT-induced mutagenesis and lays the foundation for
improved patient stratification based on molecular response. This research identifies
potential biomarkers of disease progression and therapeutic targets, which, with
further research and validation, could inform both post-RT surveillance strategies

and the development of adjuvant treatment approaches in clinical practice.



Impact Statement

Radiotherapy is a widely used treatment for soft tissue sarcomas (STS), yet its long-
term effects on the tumour genome and transcriptome remain incompletely
understood. This thesis applies cutting-edge sequencing methodologies to
investigate how neoadjuvant RT reshapes the molecular landscape of STS, with

significant implications for both clinical practice and future research.

From an academic perspective, this work advances our understanding of the
mutational consequences of RT. The application of NanoSeg—a highly sensitive
duplex sequencing approach—revealed an increased burden of low-frequency
mutations, particularly small insertions and deletions, which were undetectable using
conventional whole-exome sequencing (WES). This demonstrates that traditional
sequencing approaches may underestimate the extent of genomic alterations
caused by treatment. The observed shift toward microhomology-mediated repair
mechanisms aligns with known mutational processes induced by DNA damage,

providing new avenues for investigating RT resistance mechanisms.

Beyond academia, this research has potential clinical implications. The identification
of differentially expressed genes and pathway alterations post-RT offers valuable
biomarkers that could predict patient outcomes. A machine learning model trained
on gene expression data successfully stratified patients based on their likelihood of
disease progression, highlighting the feasibility of integrating molecular profiling into
clinical decision-making. These findings could contribute to the development of
biomarker-driven treatment strategies, allowing clinicians to personalise post-RT

surveillance and therapeutic interventions.

At a broader level, this thesis contributes to the growing field of radiogenomics, with
potential applications in other tumour types treated with RT. By refining our
understanding of RT-induced molecular changes, this research supports efforts to
mitigate therapy-associated risks, optimise patient monitoring, and inform the design

of novel therapeutic strategies that leverage molecular vulnerabilities induced by RT.



In summary, this work bridges the gap between genomic research and clinical
application, providing a molecular framework for understanding RT response in STS.
Through improved detection of RT-induced mutations and identification of
transcriptomic biomarkers that could be used for patient risk stratification, this
research has the potential to influence both future studies and clinical practice,

ultimately improving outcomes for STS patients.
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Chapter 1 Introduction

Chapter 1. Introduction
1.1 Introduction to soft tissue sarcomas

Soft tissue sarcomas (STS) are rare malignant tumours arising from mesenchymal
tissues, including muscle, fat, blood vessels, and connective tissue. They account
for approximately 1% of all adult malignancies and have an annual incidence of 5
per 100,000 individuals globally (Sbaraglia, Bellan et al. 2021). These tumours
represent a highly heterogeneous group, with over 80 histological subtypes classified
by the Whole Health Organization based on a combination of morphological,
immunohistochemical, and molecular characteristics (WHO 2020). Additionally
individual subtypes tend to have a distinct pattern of presentation including the
anatomical site, age distribution, behaviour, response to treatment, and prognosis
(Hayes, Nixon et al. 2024).

STS can arise anywhere in the body, but approximately 50% occur in the extremities,
particularly the thighs. Other common sites include the retroperitoneum (30%) and
the trunk or head and neck (15%) (Sbaraglia and Dei Tos 2019). The diversity in
anatomical presentation correlates with specific histological subtypes, such as
myxoid liposarcoma, which typically affects the thighs of younger adults, and
myxofibrosarcoma, commonly found in the elderly and located superficially (above
the fascia) (Sbaraglia and Dei Tos 2019).

Given their origin from mesenchymal tissues, sarcomas are fundamentally distinct
from carcinomas, which originate from epithelial cells and represent some of the
most common cancers worldwide. Their biological behaviour is closely linked to their
putative origin from mesenchymal stem cells (MSCs), multipotent progenitor cells
responsible for generating connective tissues such as bone, cartilage, fat, and
muscle. MSCs are not only essential for tissue differentiation and repair but are also
implicated in tumour initiation and progression. Their inherent properties, including
extensive self-renewal, plasticity, and immunomodulatory functions, are thought to
contribute to the aggressive and heterogeneous nature of sarcomas (Rodriguez,
Rubio et al. 2012, O’'Donnell lll, Mufioz et al. 2025).
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In addition to MSCs, cancer stem cells (CSCs) play a pivotal role in sarcomagenesis.
Sharing many characteristics with MSCs, CSCs are a subpopulation of tumour cells
that exhibit resistance to conventional therapies, driving tumour heterogeneity,
recurrence, and metastasis. These characteristics are particularly relevant in high-
grade sarcomas, where therapeutic challenges are pronounced (O’Donnell IlI,
Mufoz et al. 2025).

Understanding the heterogeneity of soft tissue sarcomas is critical for optimising
diagnosis, management, and research. To provide a foundation for the subsequent
discussion, Table 1 summarises the key features, common anatomical locations, and

prognosis of the sarcoma subtypes examined in this study.
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Table 1. Soft tissue sarcomas subtypes included in this study

Diagnosis

Key Features

Common

Locations

Prognosis

Alveolar soft part
sarcoma (Paoluzzi
and Maki 2019)
Clear cell sarcoma
(Ibrahim, Jensen
et al. 2018)
Dedifferentiated
liposarcoma
(Thway 2019)
Extraskeletal
myxoid
chondrosarcoma
(Stacchiotti, Baldi
et al. 2020)
Malignant mixed
tumour (Hornick
and Fletcher
2003)

Malignant

peripheral nerve

sheath tumour
(Yao, Zhou et al.
2023)
Myxofibrosarcoma
(Vanni, De Vita et
al. 2022)

Myxoid
liposarcoma
(Abaricia and
Hirbe 2018)

Characteristic ASPL::TFE3

fusion; often slow-growing

EWSR1::ATF1 fusion; mimics

melanoma histologically

High-grade component alongside

well-differentiated liposarcoma

Low-grade malignancy; often

presents with a myxoid stroma

Rare; derived from salivary or
glandular tissue; histologically

diverse

Associated with NF1 in many

cases; spindle cell morphology

High recurrence rate; seen in
elderly patients; myxoid stroma

with pleomorphic spindle cells

Round cell component predicts
aggressive behaviour; sensitive

to radiotherapy
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Extremities,

trunk

Extremities,

tendons

Retroperit-
oneum,

extremities

Proximal

extremities

Head, neck,
salivary
glands

Trunk,
proximal

extremities

Extremities,
superficial
tissues
Thigh,

retroperito-

neum

Poor, as metastases are

common at diagnosis

Poor; high metastatic

potential

Poor if dedifferentiation

is extensive

Better prognosis
compared to other

subtypes

Poor if high-grade

Poor if large or deep

Moderate, worse with

deep tissue involvement

Good prognosis with

localised disease



Pleomorphic
leiomyosarcoma
(Nicolas, Tamboli
et al. 2010)
Pleomorphic
liposarcoma
(Anderson and Jo
2019)

Spindle cell
sarcoma NOS
Synovial sarcoma
(Gazendam,
Popovic et al.
2021)
Undifferentiated
pleomorphic
sarcoma (Hames-
Fathi, Nottley et
al. 2022)

Derived from smooth muscle
cells; high mitotic index and

pleomorphism

Aggressive, pleomorphic cells;

lacks the typical myxoid

component

Diagnosis of exclusion; similar to
other spindle cell sarcomas
Characterised by SS18::SSX

fusion; monophasic or biphasic

histology

Formerly known as malignant

fibrous histiocytoma; highly

aggressive
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Uterus,
retroperito-

neum

Extremities

Extremities

Extremities,
para-

articular

Extremities,

trunk

Poor prognosis,
particularly in deep

locations

Poor; prone to

metastasis

Variable, depends on
grade and size
Intermediate; 5-year
survival ~50-60%

Poor; 5-year survival
~30-50%
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1.2 The challenge to provide a timely and accurate diagnosis

Given their rarity and significant morphological heterogeneity, the accurate diagnosis
of soft tissue sarcomas requires specialised expertise that is typically concentrated
in high-volume tertiary referral centres. The challenges associated with diagnosing
these tumours stem from their wide spectrum of histological subtypes, overlapping
features with benign mimics, and the frequent need for advanced molecular and
immunohistochemical testing. While the diversity of sarcomas reflects their
complexity, this heterogeneity also poses significant barriers to achieving accurate
and timely diagnoses, particularly in non-specialist settings (Hayes, Nixon et al.
2024).

For instance, spindle cell morphology can be observed in benign entities such as
nodular fasciitis or in aggressive malignancies like leiomyosarcoma, emphasising the
importance of a systematic diagnostic approach (Sbaraglia and Dei Tos 2019,
Sbaraglia, Bellan et al. 2021). Diagnostic accuracy is significantly enhanced in
centralised institutions, where multidisciplinary teams—including pathologists,
radiologists, surgeons, and oncologists—collaborate to refine classifications and
treatment plans. These teams integrate clinical data, multimodal imaging,
morphology, immunohistochemistry, and molecular techniques like fluorescence in
situ hybridisation (FISH) and next-generation sequencing to achieve precise

diagnoses (Hayes, Nixon et al. 2024).

The identification of specific translocations, such as SS78::SSX in synovial sarcoma
(Turc-Carel, Dal Cin et al. 1986), EWSR1::ATF1 in clear cell sarcoma (Wang,
Mayordomo et al. 2009), or CIC::DUX4 in CIC-DUX4 sarcoma (Brahmi, Vanacker et
al. 2022) has transformed diagnostic confidence and improved the classification of
certain challenging cases. Similarly, immunohistochemical markers like MUC4 and
NGS for CTNNB1 mutations have been pivotal in distinguishing low-grade
fibromyxoid sarcomas from mimics such as desmoid fibromatosis respectively (Doyle,
Moller et al. 2011). Use of these molecular tests has facilitated the recognition of rare
or atypically presenting sarcomas. Synovial sarcomas, traditionally associated with

extremities, have increasingly been reported in visceral locations such as the
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gastrointestinal tract (Requena, Longacre et al. 2024) and lungs (Roy, Das et al.
2012).

Despite advances in molecular diagnostics and multidisciplinary care, diagnostic
inaccuracies remain a significant concern, particularly in non-specialist settings. In a
study of 348 cases referred to a specialist sarcoma centre, major diagnostic
discrepancies—those with the potential to significantly alter clinical management—
were observed in 16.4% of cases (Thway, Wang et al. 2014). Additionally, 11.8% of
cases had minor discrepancies, which, although not affecting treatment plans,
highlight the challenges of accurate classification in this complex tumour group.
Alarmingly, 23.5% of all discrepancies involved reclassification from benign to
malignant or vice versa. Such discordances underline the inherent difficulties in
interpreting soft tissue tumours in non-specialist environments, particularly given

their rarity and diverse histological appearances.

The consequences of diagnostic inaccuracies are profound. For example,
dedifferentiated liposarcomas, which necessitate aggressive surgical intervention,
may be misdiagnosed as benign lipomas without molecular confirmation of MDM2
amplification using immunohistochemistry or FISH (Gambella, Bertero et al. 2023).
Similarly, misclassification of benign lesions as malignant can lead to unnecessary
overtreatment, including unwarranted chemotherapy, radiotherapy, or radical
surgery. The increasing complexity of soft tissue tumour diagnosis, driven by the
integration of ancillary molecular techniques, requires both specialised expertise and

access to timely testing facilities.

The study also highlighted the role of interpretational errors and the limited use of
specific immunohistochemical markers in non-specialist settings as key contributors
to diagnostic discrepancies. For instance, immunohistochemical markers such as h-
caldesmon, CDK4, and beta-catenin, essential for leiomyosarcomas, well-
differentiated/dedifferentiated liposarcomas, and desmoid fibromatosis, respectively,
were either not utilised or misinterpreted in several cases (Thway, Wang et al. 2014).
The findings emphasise the need for centralised review by specialist sarcoma

pathologists, as recommended by the National Institute for Health and Care
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Excellence (NICE) and the Royal College of Pathologists in the UK (Cyril Fisher
2022).

UK guidelines, including those from NICE, recommend that all suspected soft tissue
sarcomas are managed within specialist centres by multidisciplinary teams (MDTs)
to ensure timely and accurate diagnosis (Hayes, Nixon et al. 2024). Turnaround
times for suspected sarcoma biopsies should ideally be within two weeks to facilitate
prompt treatment planning, particularly for high-grade or rapidly progressing tumours.
Specialist centres, such as the London Sarcoma Service, are equipped to streamline
the diagnostic process through the integration of in-house testing, MDT discussions,
and rapid turnaround times, particularly critical for high-grade sarcomas requiring

urgent intervention.

However, differences between public and private healthcare systems can influence
the diagnostic pathway. Private care pathways often outsource samples or rely on
non-specialist testing, which can lead to delays in diagnosis. In contrast, specialist
centres minimise such delays by prioritising in-house testing and expediting
molecular diagnostics when needed, ensuring that patients receive timely treatment.
Greater standardisation and coordination between public and private pathways could
mitigate delays and ensure all patients benefit from the expertise available in

specialist centres.
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1.3 The genomics of soft tissue sarcomas

Soft tissue sarcomas exhibit a diverse range of genomic features, reflecting their
heterogeneity and distinct biological behaviours. Broadly, they can be categorised
into two groups based on analysis of their genomic profiles: translocation-driven
sarcomas and those with complex genomic alterations. This dichotomy underscores
the importance of genomic characterisation for understanding tumour biology,

guiding treatment decisions, and refining prognostic predictions.

Translocation-associated sarcomas are characterised by specific chromosomal
translocations that result in fusion oncoproteins. These fusions are critical drivers of
oncogenesis, acting by dysregulating transcriptional networks and cellular pathways.
In contrast, sarcomas with complex genomic profiles, such as undifferentiated
pleomorphic sarcoma (UPS) and dedifferentiated liposarcoma (ddLPS), exhibit
widespread genomic instability, including chromothripsis, copy number alterations,
and aneuploidy. These patterns of genomic alteration have significant implications
for clinical management, with translocation-driven sarcomas often benefiting from
targeted therapeutic strategies, while complex genomic sarcomas pose greater

challenges due to their heterogeneity and treatment resistance.

1.3.1 Translocation associated sarcomas

A defining feature of translocation-associated sarcomas is the presence of specific,
recurrent chromosomal translocations that lead to the formation of fusion genes. For
example, myxoid liposarcoma, which represents one of the subtypes included in this
study, is characterised by a t(12;16)(q13;p11) translocation, resulting in the
FUS::DDIT3 fusion gene (Abaricia and Hirbe 2018). This fusion protein acts as an
aberrant transcription factor, disrupting adipocytic differentiation and driving

tumourigenesis.

Another key example is synovial sarcoma, which is defined by the
t(X;18)(p11.2;911.2) translocation, resulting in the SS718::SSX fusion gene
(Gazendam, Popovic et al. 2021). This fusion disrupts chromatin remodelling and

transcriptional regulation, driving oncogenesis. Synovial sarcoma predominantly
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affects young adults and typically arises in the extremities. The identification of the
SS818::SSX fusion gene is critical for diagnosis and has become essential in the
pathological workup for these tumours. While FISH testing is routinely used, recent
immunohistochemical markers have become available that can detect the novel

fusion protein (Zaborowski, Vargas et al. 2020).

Beyond diagnosis, translocation-driven sarcomas hold promise for targeted
therapies. While myxoid liposarcoma is highly sensitive to radiotherapy, ongoing
research aims to identify molecular vulnerabilities linked to the FUS::DDIT3 fusion
that could lead to novel therapeutic interventions. The FUS::DDIT3 fusion blocks
adipocytic differentiation and leads to an increase in immature adipocytes.
Trabectedin, a molecule originally extracted from sea squirts, has been shown to
bind to this novel fusion and allows the tumour to differentiate thereby reducing its

malignant potential (Craparotta, Mannarino et al. 2024).

Similarly, synovial sarcoma represents a promising candidate for immunotherapy
approaches, including T-cell receptor-based therapies targeting the SS18-SSX
fusion protein (Mavroeidis, Napolitano et al. 2024 ). The success of targeted therapies
in other translocation-driven sarcomas, such as tyrosine kinase inhibitors in
gastrointestinal stromal tumours (GISTs) (Serrano and Bauer 2022), shows the
potential for similar approaches in myxoid liposarcoma, synovial sarcoma, amongst

others.

Recent large-scale genomic sequencing studies performed at Memorial Sloan
Kettering have refined the molecular landscape of translocation-associated
sarcomas (Nacev, Sanchez-Vega et al. 2022). Nacev et al. identified additional
recurrent alterations in synovial sarcoma, including CDKN2A/B deletions and RB1
loss, suggesting that beyond the primary fusion event, secondary cell cycle
dysregulation contributes to disease progression. In myxoid liposarcoma, PIK3CA
mutations were present in 25% of cases, suggesting PI3K pathway activation as a
potential therapeutic target (Gounder, Agaram et al. 2022). These findings reinforce
the need for comprehensive molecular profiling to uncover additional oncogenic

drivers as well as identifying therapeutic targets in translocation-driven sarcomas.
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1.3.2 Complex genomic sarcomas

Sarcomas with complex genomic profiles, such as undifferentiated pleomorphic
sarcoma (UPS) and dedifferentiated liposarcoma (DDLPS), are characterised by
widespread genomic instability. Unlike translocation-driven sarcomas, these
subtypes lack specific, recurrent chromosomal translocations and instead exhibit
extensive chromothripsis, copy number alterations (CNAs), and whole-genome
duplication (WGD) (Steele, Tarabichi et al. 2019, Steele, Abbasi et al. 2022).

1.3.2.1 Chromothripsis

Chromothripsis is particularly prevalent in sarcomas, affecting 54% of liposarcomas,
24% of fibrosarcomas, and 23% of sarcomas overall (Cortés-Ciriano, Lee et al.
2020). This catastrophic event results in hundreds of genomic rearrangements within
single chromosomes, leading to oncogene amplification and tumour progression. In
dedifferentiated liposarcoma, chromothripsis frequently targets MDM2 and CDK4,

genes crucial for cell cycle regulation (Cortés-Ciriano, Lee et al. 2020).

Micronuclei formation and telomere crisis have been identified as primary
mechanisms driving chromothripsis in sarcomas (Cortés-Ciriano, Lee et al. 2020).
Micronuclei formation occurs when fragmented chromosomes become encapsulated
outside the main nucleus, leading to defective DNA replication and chaotic
rearrangements. Telomere crisis, caused by critically short telomeres, triggers

chromosomal fusion events that further fuel genomic instability.

1.3.2.2 Whole genome doubling

Whole genome doubling (WGD) is a key feature of complex genomic sarcomas,
occurring in a significant proportion of cases and contributing to extensive
chromosomal imbalances and aneuploidy. This genomic event, in which the entire
set of chromosomes is duplicated—sometimes multiple times—provides a selective
advantage by increasing tolerance to additional structural alterations, thereby
promoting tumour evolution and heterogeneity. Large-scale analyses have shown

that WGD frequently precedes chromothripsis, reinforcing the hypothesis that
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genome duplication acts as a catalyst for further genomic instability (Steele, Abbasi
et al. 2022).

Sarcomas were among the tumour types with the highest levels of copy number
alterations, with WGD-associated signatures strongly linked to poor prognosis. WGD
has been identified as a recurrent event in undifferentiated pleomorphic sarcoma
(UPS), leiomyosarcoma, and osteosarcoma, correlating it with higher mutational
burdens, enhanced tumour aggressiveness, and poorer patient survival outcomes
(Steele, Tarabichi et al. 2019, Nacev, Sanchez-Vega et al. 2022).

Additionally, a subset of sarcomas exhibited copy number patterns consistent with
homologous recombination deficiency (HRD), suggesting that some WGD+ tumours
may be vulnerable to PARP inhibitors or platinum-based chemotherapy (Steele,
Abbasi et al. 2022). Given the impact of WGD on tumour evolution, understanding
its role in driving treatment resistance and shaping the sarcoma genome remains a

crucial area for further investigation.

1.3.2.3 Extrachromosomal DNA

Emerging evidence suggests that extrachromosomal DNA (ecDNA) contributes to
sarcoma progression by amplifying oncogenes and driving tumour evolution. Unlike
chromosomal amplifications, ecDNA consists of circular DNA fragments that
promote rapid adaptation and therapy resistance (Kim, Nguyen et al. 2020, Bailey,
Pich et al. 2024). A large-scale study identified ecDNA in 17.1% of tumours, with
particularly high prevalence in liposarcomas (54.9%) (Kim, Nguyen et al. 2020).

Clinically, ecDNA-positive tumours exhibit increased metastasis rates, intratumoural
heterogeneity, and resistance to cytotoxic chemotherapy (Bailey, Pich et al. 2024).
In sarcomas, ecDNA frequently harbours oncogenes such as MDM2, CDK4, and
HMGAZ2, particularly in dedifferentiated liposarcoma (Kim, Nguyen et al. 2020). There
is also evidence that ecDNA may contribute to immune evasion, potentially impacting
responses to immune checkpoint inhibitors (Bailey, Pich et al. 2024). Although

ecDNA represents a promising therapeutic target, current research remains in early
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stages. Potential approaches include inhibitors that disrupt ecDNA formation or
reintegration, such as PARP inhibitors and chromatin-modulating drugs (Dong, He
et al. 2023).

1.3.2.4 Hypermutation and Mismatch Repair Deficiency

While most soft tissue sarcomas exhibit a relatively low tumour mutational burden
(TMB), a subset of undifferentiated pleomorphic sarcomas (UPS) and other complex
genomic sarcomas exhibit hypermutation (defined as a TMB of > 10 mutations per
megabase), often associated with mismatch repair deficiency (MMR-D) (TCGA 2017,
Steele, Tarabichi et al. 2019). In a genomic study of undifferentiated sarcomas,
approximately 15% of cases were found to harbour a hypermutator phenotype, with
over 15,000 somatic mutations per tumour (Steele, Tarabichi et al. 2019). Notably,
only 2.1% of 7,494 sarcomas sequenced in a study of 44 different sarcoma subtypes
exhibited MMR deficiency. These tumours had a median TMB of 6.5 mutations/Mb,
which is significantly higher than in MMR-proficient tumours of 2.4 mutations/Mb
(Gounder, Agaram et al. 2022).

MMR-D in sarcomas can arise via several mechanisms, including germline or
somatic pathogenic variants in MLH1, MSH2, MSH6, or PMS2; MLH1 promoter
hypermethylation; and structural alterations (e.g., deletions/rearrangements or loss
of heterozygosity) that result in loss of MMR protein function (Steele, Tarabichi et al.
2019). Notably, these hypermutated sarcomas tend to have elevated immune
infiltration and upregulation of immune-related gene expression signatures,
suggesting potential sensitivity to immune checkpoint inhibitors (ICls) (TCGA 2017,
Steele, Tarabichi et al. 2019). Gounder et al. further highlighted that only 0.3% of
sarcomas exhibit microsatellite instability (MSI-H), suggesting that while mismatch
repair deficiency is present, MSl is rare, differentiating sarcomas from other MMR-D

cancers like colorectal or endometrial carcinoma.
Hypermutated sarcomas with mismatch repair deficiency represent a distinct

subgroup within complex genomic sarcomas that may have important therapeutic

implications. Given their high tumour mutational burden (TMB) and increased
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immune infiltration, these tumours show similarities to MMR-deficient colorectal and
endometrial cancers, which have demonstrated strong responses to immune
checkpoint blockade (e.g., anti-PD1/PD-L1 therapy) (Steele, Tarabichi et al. 2019,
Shiravand, Khodadadi et al. 2022).
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1.4 Risk factors for the development of soft tissue sarcomas

While most cases arise sporadically, several environmental, genetic, and viral factors
have been implicated in sarcoma pathogenesis. These include inherited cancer

predisposition syndromes, viral infections, and prior exposure to ionising radiation.

1.4.1 Inherited cancer predisposition syndromes

A subset of STS arise in individuals with inherited germline mutations in tumour
suppressor genes, predisposing them to cancer development. The most well-

characterised syndromes associated with soft tissue sarcomas include:

Li-Fraumeni syndrome: Caused by germline TP53 mutations, predisposes
individuals to a spectrum of malignancies, including rhabdomyosarcoma,
leiomyosarcoma, and undifferentiated pleomorphic sarcoma (UPS). TP53-mutant

sarcomas often exhibit early onset and high genomic instability (Correa 2016).

Neurofibromatosis type 1: This autosomal dominant disorder results from
mutations in NF1, a tumour suppressor gene encoding neurofibromin. NF1 patients
have an increased risk of malignant peripheral nerve sheath tumours (MPNSTSs),
which arise from plexiform neurofibromas and exhibit complex genomic alterations
(Gutmann, Ferner et al. 2017).

Retinoblastoma (RB17) gene mutations: Germline RB1 mutations significantly
increase the risk of osteosarcomas and soft tissue sarcomas (STS), particularly after
radiotherapy. RB1 loss disrupts cell cycle regulation, leading to uncontrolled
proliferation and tumourigenesis. In hereditary retinoblastoma survivors, the risk of
STS is substantially elevated, with incidence rising sharply after age 30. Compared
to the general population, these individuals face a 500-fold higher risk of STS in

irradiated regions (Kleinerman, Schonfeld et al. 2019).

32



Chapter 1 Introduction

1.4.2 Viral associations

Although viral oncogenesis is well-established in certain epithelial cancers for
example HPV and cervical squamous cell carcinoma (Tjalma, Van Waes et al. 2005),
its role in soft tissue sarcomas is less frequent but well-documented in specific

subtypes.

Human herpesvirus 8 (HHV-8): Kaposi sarcoma (KS), caused by HHV-8/KSHV, is
uniquely driven by viral oncogenes rather than clonal oncogenic transformation. KS
tumours have an exceptionally low mutational burden and exhibit an angiogenic
spindle cell proliferation, particularly in immunosuppressed individuals, including
those with HIV/AIDS (Phipps, Bhinder et al. 2025).

Epstein-Barr virus (EBV) has been linked to leiomyosarcomas, particularly in
immunosuppressed individuals, including post-transplant patients and those with
HIV. EBV-associated smooth muscle tumours (EBV-SMTs) exhibit distinct molecular
features, including lower genomic instability compared to conventional
leiomyosarcomas but recurrent gains in oncogenes such as RUNX1, CCND2, and

ETS2, suggesting a unique viral-driven oncogenesis pathway (Wah, Mok et al. 2023).
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1.4.3 Radiation induced sarcomas

Exposure to ionising radiation is a well-recognised risk factor for secondary
malignancies, particularly radiation induced sarcomas (RISs). While most cases
occur following radiotherapy, RISs can also develop after exposure to other sources
of ionising radiation. These tumours arise within previously irradiated tissues,
typically 5 to 30 years post-treatment, though some cases have been reported after
over five decades (Lesluyes, Baud et al. 2019). RISs account for <5% of all sarcomas,
with  undifferentiated pleomorphic sarcoma (UPS), angiosarcoma, and
leiomyosarcoma being amongst the most common subtypes (Inchaustegui, Kon-Liao
et al. 2023). Compared to sporadic soft tissue sarcomas (STS), RISs are more

aggressive, often diagnosed late, and associated with poorer outcomes.

1.4.3.1 The genomic and mutational landscape of radiation induced

sarcomas

Radiation-induced sarcomas (RISs) exhibit distinct genomic alterations that
differentiate them from sporadic sarcomas. They are characterised by high levels of
structural rearrangements and genomic instability, comparable to sarcomas with
complex genetics (Lesluyes, Baud et al. 2019). A notable feature is the frequent
deletion of CDKN2A/CDKNZ2B (9p21.3) (71% in RIS vs. 39% in sporadic sarcomas),
leading to cell cycle deregulation via the RB1 and p53 pathways.

Unlike sporadic sarcomas, where deletions and mutations follow chromatin
accessibility patterns, RISs exhibit a random distribution of deletions across the
genome. In sporadic tumours, DNA damage and repair efficiency are influenced by
chromatin structure, meaning mutations are more likely to occur in open
(euchromatic) regions that are transcriptionally active and accessible to repair
mechanisms. In contrast, radiation-induced DNA damage occurs in a stochastic
manner, generating breaks indiscriminately across the genome, independent of
chromatin accessibility (Behjati, Gundem et al. 2016). This suggests that RIS
development is driven by direct radiation-induced DNA breaks, rather than selection

for specific genomic vulnerabilities.
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Following radiation therapy, cells attempt to repair double-strand breaks (DSBs), but
RISs predominantly rely on non-homologous end-joining (NHEJ) and
microhomology-mediated end-joining (MMEJ) - both of which are error-prone repair
mechanisms. Unlike homologous recombination, which uses an intact template for
accurate repair, NHEJ and MMEJ function without a template, leading to imprecise

repair outcomes (Seol, Shim et al. 2018).

e NHEJ directly ligates broken DNA ends but frequently results in small
insertions or deletions (indels) due to the loss or addition of nucleotides at the
breakpoint.

e MMEJ is a subtype of alternative NHEJ (A-NHEJ) and it is even more error-
prone requiring trimming of DNA ends before aligning short microhomology
sequences (2-20 bp). This process always results in deletions, as the

intervening sequence is lost during repair

RISs exhibit a high burden of MMEJ-associated deletions, often flanked by
microhomology sequences, which can be detected through next-generation
sequencing. MMEJ is strongly implicated in chromosomal instability, particularly in
the formation of chromosomal translocations and complex structural variants. Unlike
NHEJ, which predominantly generates small indels, MMEJ-mediated repair
frequently results in large deletions and translocations, often flanked by short regions
of microhomology. Studies in mammalian cells have demonstrated that MMEJ
promotes chromosomal rearrangements when multiple DSBs occur simultaneously,
leading to promiscuous end joining between incorrect chromosomes (Seol, Shim et
al. 2018). The accumulation of these mutations over time drives tumour progression,
contributing to the aggressive clinical behaviour of RISs (Behjati, Gundem et al.
2016).

RISs also harbour radiation-specific mutational signatures, including an excess of
balanced inversions, a rare structural rearrangement type that is significantly
enriched in radiation-associated malignancies compared to sporadic tumours
(Behjati, Gundem et al. 2016). In post-radiotherapy angiosarcomas, MYC
amplifications are present in 96% of cases, making them a defining molecular feature

absent in the majority of sporadic angiosarcomas (Lesluyes, Baud et al. 2019).
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1.4.3.2 Post-radiotherapy angiosarcoma as a model for RISs

Post-radiotherapy angiosarcomas (PRAs), particularly those arising after breast
cancer treatment, are among the most well-characterised radiation-induced
sarcomas (RISs) and provide key insights into the genomic consequences of
radiotherapy (Lesluyes, Baud et al. 2019, Dermawan, Chi et al. 2023). Although
angiosarcoma is not the primary focus of this thesis, PRAs serve as a valuable model
for understanding radiotherapy-induced mutational landscapes, particularly in
relation to mutation burden, copy number alterations, and DNA repair mechanisms.
Comparative genomic analyses between 44 PRAs and 135 sporadic angiosarcomas
revealed distinct molecular differences, reinforcing the radiation-driven oncogenesis
of PRAs (Dermawan, Chi et al. 2023). A defining feature is the high frequency of
MYC amplifications, detected in 75% of PRAs compared to just 13% of sporadic
cases, making MYC a radiation-specific biomarker, particularly in breast/chest wall
PRAs.

PRAs exhibit enrichment in FLT4, CRKL, HRAS, and KMT2D mutations, implicating
MAP kinase and Hippo—Merlin pathway activation in their pathogenesis. Given these
oncogenic drivers, PRAs develop more rapidly than other RISs, with a median
latency of 8 years, significantly shorter than radiation-induced undifferentiated
pleomorphic sarcomas (UPS) (18.5 years) and malignant peripheral nerve sheath
tumours (MPNSTSs) (12.5 years).

In addition to their shorter latency, PRAs harbour fewer TP53 (9%) and CDKN2A/B
deletions (2%) than other RIS subtypes, suggesting they follow a distinct molecular
path to tumour development compared to radiation-induced UPS, which frequently
harbours TP53 mutations. Interestingly, despite their oncogenic changes, PRAs
have a lower fraction of genome altered (FGA) than other RISs, indicating less

extensive structural disruption compared to UPS and MPNSTSs.
Mutational signature analysis of PRAs identified profiles associated with DNA repair

deficiencies, including defective mismatch repair (MMR) and replication slippage,

though specific COSMIC signatures were not reported in the study.
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1.4.3.3 Clinical outcomes and management of radiation induced sarcomas

A systematic review of 1,371 RIS patients across 21 studies highlights worse
survival, higher recurrence rates, and more limited treatment options compared to

de novo soft tissue sarcomas (Inchaustegui, Kon-Liao et al. 2023).

Treatment approaches

Surgical resection remains the primary treatment, performed in 68% of cases, with
limb-salvage surgery attempted in 74%. However, achieving negative margins (RO)
is challenging, with only 58% of cases attaining clear margins, lower than in de novo
STS. Chemotherapy is used in 29% of RIS patients, though its efficacy remains

uncertain (Inchaustegui, Kon-Liao et al. 2023).

For recurrent or metastatic disease, chemotherapy remains the standard of care,
with doxorubicin, ifosfamide, gemcitabine, and docetaxel commonly used. However,
there is limited data on whether RISs respond differently to chemotherapy than
sporadic STS, as most clinical trials do not stratify RIS patients separately (Dickson
2014).

Targeted therapies such as pazopanib (a tyrosine kinase inhibitor) and VEGF
inhibitors (e.g., bevacizumab, sorafenib) have shown some efficacy in radiation-

associated angiosarcomas, but their role in other RIS subtypes remains unclear.

Clinical outcomes: RIS vs. Sporadic STS
e 5-Year Overall Survival: 45% in RIS compared to ~60% in sporadic STS,
reflecting poorer prognosis.
e Local Recurrence Rate: 39% in RIS, significantly higher than the 6.5%—-9%
seen in sporadic STS, likely due to surgical challenges in irradiated tissue.
e Metastasis Rate: 27% in RIS, lower than the ~50% reported for high-grade

sporadic STS, though still a significant concern.

RIS tumours are more aggressive, harder to resect, and have limited treatment
options, contributing to high recurrence rates. While re-irradiation may improve local

control, achieving negative margins remains a challenge.
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1.5 The treatment of soft tissue sarcomas

Soft tissue sarcomas require a multimodal treatment approach, guided by tumour
histology, size, location, and stage at presentation. The cornerstone of treatment is
surgical excision, aiming for complete tumour removal with negative margins while
preserving function. However, in many cases, radiotherapy plays a crucial role in
improving local disease control, either as an adjunct to surgery or, in some cases, as
a definitive treatment. The role of systemic therapy, including chemotherapy and
targeted agents, is more selective and primarily applies to specific histological

subtypes with higher chemosensitivity or in the setting of advanced disease.

In this section, | will first discuss surgical management, followed by the role of
chemotherapy in both the neoadjuvant, adjuvant, and metastatic settings. | will then
introduce the history of radiotherapy, providing context for its modern applications.
This leads into discussions on preoperative vs. postoperative radiotherapy,
histology-specific considerations, current UK radiotherapy guidelines, and

concluding with a review of potential side effects.

1.5.1 Surgery

Surgical excision with negative margins is the primary treatment for localised STS.
The UK guidelines emphasise that all sarcoma cases should be managed within a
specialist multidisciplinary team (MDT) setting to ensure optimal outcomes (Hayes,
Nixon et al. 2024). Key principles include:

e Wide local excision is the standard approach, aiming for microscopically negative
(RO) margins.

e Planned marginal resection with RT may be an option where function-
preserving surgery is required.

e Re-excision should be considered if positive margins (R1/R2) are found, unless
adjuvant RT is deemed sufficient.

e Amputation is reserved for cases where limb-sparing surgery is not possible.
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For tumours in functionally sensitive locations (e.g., retroperitoneum, head and neck),
the balance between achieving clear margins and preserving organ function is crucial.

Plastic surgical reconstruction is often required in limb-sparing approaches.

1.5.2 Chemotherapy

The role of chemotherapy in soft tissue sarcomas (STS) is largely histology subtype
dependent. Unlike many other solid tumours, chemotherapy does not consistently
improve overall survival in most adult-type STS. However, for certain subtypes with
higher chemosensitivity, systemic therapy remains an integral component of

treatment, particularly in the neoadjuvant, adjuvant, and metastatic settings.

Neoadjuvant and adjuvant chemotherapy

Neoadjuvant chemotherapy (administered before surgery) may be considered in
selected high-risk cases, particularly for patients with large, deep, high-grade
extremity or truncal STS, where it may help downstage the tumour and improve
resectability. Certain histological subtypes, including myxoid liposarcoma, synovial
sarcoma, and desmoplastic small round cell tumour (DSRCT), are known to be more

responsive to chemotherapy and may benefit from this approach.

The role of adjuvant chemotherapy, given postoperatively, remains controversial.
Current UK guidelines (Hayes, Nixon et al. 2024) do not recommend routine use of

adjuvant chemotherapy but suggest that it can be considered for high-risk patients.

Risk stratification tools, such as the Sarculator nomogram (Pasquali, Palmerini et al.
2022), provide an evidence-based means of identifying these patients. The
Sarculator integrates clinicopathological factors (discussed in more detail in section
1.6) such as tumour size, depth, grade, histological subtype, and patient age to
predict 10-year overall survival and metastasis-free survival. Patients with a
predicted 10-year overall survival of less than 50-60% are the most likely to benefit
from systemic therapy. Thus, for these high-risk individuals, chemotherapy may be
a reasonable option, though the decision must be weighed against potential toxicity

and patient preferences.
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Chemotherapy in metastatic STS

In patients with advanced or metastatic STS, chemotherapy is primarily palliative,
aimed at controlling disease progression and alleviating symptoms rather than
achieving cure. The choice of regimen depends on tumour histology, prior treatments,

and patient performance status.

First-line therapy typically involves doxorubicin, either as a single agent or in
combination with ifosfamide, particularly for patients requiring a higher response rate.
Ifosfamide alone is often preferred in synovial sarcoma, which has shown particular
chemosensitivity. For patients with leiomyosarcoma or undifferentiated pleomorphic
sarcoma (UPS), the combination of gemcitabine and docetaxel is a commonly used
alternative (Hayes, Nixon et al. 2024). Beyond conventional cytotoxic agents,
targeted therapies such as trabectedin (Craparotta, Mannarino et al. 2024) have
demonstrated efficacy in translocation-related sarcomas, particularly myxoid
liposarcoma and leiomyosarcoma. Additionally, pazopanib, a tyrosine kinase
inhibitor (TKI), is an option for patients with non-liposarcoma STS who have

progressed on prior chemotherapy.

For select patients with oligometastatic pulmonary disease, metastasectomy may be
considered, particularly in synovial sarcoma and leiomyosarcoma, where surgical
removal of lung metastases has been associated with prolonged survival in carefully
selected cases. However, the decision to proceed with surgical intervention requires
a multidisciplinary approach, considering disease burden, response to systemic

therapy, and patient fitness.
While chemotherapy remains a valuable tool in select high-risk patients, its use

should be individualised, incorporating tumour biology, prognostic risk stratification

(such as Sarculator), and patient-specific factors to guide clinical decision-making.
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1.5.3 The history of radiotherapy

The history of radiotherapy is deeply intertwined with the discovery of X-rays and
radioactivity, marking a transformative era in cancer treatment. The field began in
1895, when Wilhelm Rdntgen discovered X-rays (Rdntgen 1896), leading to their
immediate application in medicine. Just a year later, Victor Despeignes in France
attempted the first recorded use of X-rays to treat a patient with presumed gastric
cancer (Despeignes 1896), though the patient ultimately succumbed to the disease.
That same year, Emil Grubbe in Chicago claimed to be the first to use X-rays for
treating a breast cancer patient, marking the beginning of radiotherapy as a clinical
discipline. Almost simultaneously, Henri Becquerel discovered natural radioactivity
in 1896 (Becquerel 1896), and in 1898, Marie and Pierre Curie isolated radium, a
naturally radioactive element (Curie 1898). These pioneering breakthroughs
established the foundation for external beam radiotherapy (EBRT) and

brachytherapy (Figure 1.1).

Early clinical use and fractionation (1899-1930s)

By the early 1900s, X-ray therapy was being used for superficial tumours, particularly
skin cancers. In Sweden (1899), Thor Stenbeck and Tage Sjogren successfully
treated patients with skin cancer, proving that X-rays could eradicate tumours.
However, deep-seated tumours remained challenging, as early X-ray machines had
limited penetration and caused severe skin toxicity (Connell and Hellman 2009). A
key case in New Haven (1902) involved Clarence Skinner, who may have cured one

of the first deep-seated tumours with X-ray therapy, despite its limitations.

A major breakthrough in radiobiology came in 1911, when Claudius Regaud
demonstrated that fractionating radiation doses—delivering them in small, repeated
sessions instead of a single large dose—reduced normal tissue toxicity while
maintaining tumour control (Foray 2012). Henri Coutard (1920s—1930s) later applied
fractionated radiotherapy to head and neck cancers, establishing dose fractionation
as a fundamental principle of modern radiotherapy (Prakash, Kumar Upadhyay et al.
2024).
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Milestones in radiotherapy

Emerging

technologies: MR-
First reported use of X-rays lonisation chambers Introduction of CT Introduction of IMRT guided radiotherapy,
to treat cancer (Victor introduced, improving imaging, enabling 3D and stereotactic FLASH radiotherapy
Despeignes, France) radiation dose measurement treatment planning radiotherapy

[ wilhelm Réntgen
discovers X-rays

Marie and Pierre Curie
discover radium

|

Coolidge tube developed,

allowing higher-energy X-
ray production

First Cobalt-60
teletherapy unit
installed in Canada

First dedicated Adoption of proton beam
proton therapy therapy for paediatric
centres established and complex tumours

Development of 3D Advances in image-
conformal radiotherapy | guided radiotherapy
(IGRT) and adaptive

radiotherapy

First medical linear
accelerator (linac)
installed at Hammersmith
Hospital, London

Figure 1.1. A timeline of the history of radiotherapy

The megavoltage era: from Kilovoltage to Linacs (1940s-1950s)

Early radiotherapy machines relied on Coolidge tubes (1913), which produced low-

energy (kilovoltage) X-rays. These machines had limited penetration, causing severe

skin damage while being ineffective for deep tumours. The development of

megavoltage therapy revolutionised the field (Connell and Hellman 2009):

e Cobalt-60 teletherapy (1948): The first high-energy gamma ray therapy system
was introduced, significantly improving deep tumour penetration while reducing
skin toxicity.

e First linear accelerator (1953, Hammersmith Hospital, London): Linear
accelerators (linacs) became the standard for high-energy external beam
radiotherapy, delivering better dose control and sparing surrounding healthy

tissues.

Advances in imaging and 3D treatment planning (1970s-1990s)

In the 1970s, the introduction of computed tomography (CT) imaging transformed
radiotherapy by allowing precise tumour visualisation (Schulz, Stein et al. 2021). This
led to the shift from 2D conventional radiotherapy to 3D conformal radiotherapy (3D-
CRT), enabling tumour-specific dose sculpting and reducing radiation exposure to
healthy tissues (Connell and Hellman 2009).

The 1990s saw a major breakthrough with the development of intensity-modulated
radiotherapy (IMRT) (Cho 2018), which allowed radiation doses to be shaped with

unprecedented precision around the tumour. This was followed by image-guided
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radiotherapy (IGRT) (Grégoire, Guckenberger et al. 2020) and stereotactic body
radiotherapy (SBRT) (Ricardi, Badellino et al. 2015) in the early 2000s, enabling
high-dose, targeted treatment for small tumours, particularly in lung and brain

cancers.

Proton therapy and the future of radiotherapy (1990s — Today)

One of the most significant modern advances is proton beam therapy (PBT). Unlike
X-rays, protons deposit their energy at a precise depth (Bragg peak), minimising
radiation exposure to surrounding normal tissues. While proton therapy was first
proposed in 1946 by Robert Wilson, widespread clinical use only began in the
1990s, with the establishment of dedicated proton therapy centres. Today, PBT is
widely used for paediatric cancers, base-of-skull tumours, and other radiation-
sensitive malignancies, offering better tissue sparing than conventional photon
therapy (Mohan 2022).

Radiotherapy continues to evolve with the development of cutting-edge technologies
designed to improve treatment precision and minimise side effects. Adaptive
radiotherapy (ART) utilises real-time imaging to continuously adjust radiation delivery
throughout the course of treatment, allowing for modifications in response to changes
in tumour size, shape, and position (Dona Lemus, Cao et al. 2024). MR-guided linear
accelerators integrate magnetic resonance imaging (MRI) with radiotherapy,
enabling real-time tumour tracking and improving accuracy, particularly for tumours
in anatomically complex or mobile regions (Bryant, Weygand et al. 2023). Another
emerging innovation is Flash radiotherapy, which delivers ultra-high dose rates in a
single fraction, potentially reducing toxicity to surrounding healthy tissues while
maintaining effective tumour control (Lin, Gao et al. 2021). These advancements
represent the future of radiotherapy, aiming to further enhance patient outcomes

through increased personalisation and precision.

Global impact of radiotherapy

Over more than a century, radiotherapy has evolved from the crude application of X-
rays to a highly sophisticated and indispensable pillar of cancer treatment. What
began as an experimental approach in the late 19th century is now a precisely

targeted, technologically advanced therapy, capable of eradicating tumours,
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preserving organ function, and providing symptom relief for millions of patients

worldwide.

Radiotherapy plays a critical role in both curative and palliative care, often used
alongside surgery and systemic therapies to maximise treatment effectiveness.

With over 50% of all cancer patients requiring radiotherapy at some stage of their
treatment, it remains one of the most effective and widely utilised cancer treatments,

contributing to approximately 40% of all cancer cures (Baskar, Lee et al. 2012).

1.5.4 Preoperative vs. postoperative radiotherapy

Radiotherapy (RT) plays a key role in the management of soft tissue sarcomas (STS),
particularly in improving local disease control and enabling limb-sparing surgery.
According to the UK guidelines for the management of STS (Hayes, Nixon et al.
2024), RT should be considered for tumours with a high risk of local recurrence,
either in the preoperative or postoperative setting. Historically, postoperative RT was
the standard approach following surgery, based on early trials demonstrating a
significant reduction in local recurrence rates from above 30% to below 10%,
although no survival benefit was observed (Pisters, Harrison et al. 1996, Yang,
Chang et al. 1998, Gronchi 2015).

Preoperative RT has become increasingly favoured due to its reduced long-term
toxicity compared to postoperative RT (O'Sullivan, Davis et al. 2002). While both
approaches achieve similar local control rates, preoperative RT allows for smaller
treatment fields and lower doses (50 Gy vs. 60-66 Gy in the postoperative setting),
reducing the risk of late effects such as fibrosis and joint stiffness (Hayes, Nixon et
al. 2024, Noeuveglise, Tessier et al. 2024). However, acute wound healing
complications are more common with preoperative RT, necessitating careful patient

selection.
Gronchi (2015) also highlighted the importance of individualising RT use, noting that

while most STS patients historically received RT routinely, many derived no clear

benefit. 70% of patients would not have had a recurrence even without RT, and 10%
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recur despite it. This stresses the importance of selecting patients for RT based on

their individual recurrence risk rather than applying it universally.

1.5.5 Histology-specific considerations in radiotherapy

STS is not a single disease but comprises over 80 histological subtypes, each with
varying sensitivity to RT. Myxoid liposarcoma (MLS) is particularly radiosensitive,
with over 50% of tumours demonstrating a major response to preoperative RT, often
leading to significant tumour shrinkage before surgery (Chung, Deheshi et al. 2009).
The UK guidelines (Hayes, Nixon et al. 2024) also emphasise this radiosensitivity
and support the use of preoperative RT for MLS, particularly for borderline-resectable

tumours, where tumour downsizing may facilitate surgical excision.

Conversely, certain other STS subtypes, such as undifferentiated pleomorphic
sarcoma (UPS) and pleomorphic liposarcoma, have a higher baseline risk of local
recurrence, making RT a critical component of their management. For low-risk
subtypes, such as well-differentiated liposarcoma, RT may not be necessary if the

tumour is completely resected with adequate margins.
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1.5.6 Current UK radiotherapy guidelines

Radiotherapy, either preoperative or postoperative, combined with surgery provides
similar local control and survival rates to radical resection. The addition of RT
therefore allows for limb-sparing surgery. In many UK centres, preoperative RT is
routine practice, with the standard regimen being 50 Gy over five weeks, followed by

surgery four to six weeks after RT completion (Hayes, Nixon et al. 2024).

Despite this approach, clinical, radiological and pathological responses to RT vary
both between and within STS histological subtypes (Messiou, Bonvalot et al. 2016,
Kocakavuk, Anderson et al. 2021). While good responses are typically observed in
myxoid liposarcoma, predicting clinical or pathological outcomes for RT across all

sarcoma subtypes remains challenging, especially for high-grade tumours.

The UK guidelines (Hayes, Nixon et al. 2024) recommend a multidisciplinary
approach, where RT decisions should be tailored based on tumour histology, grade,

location, and resectability. Key recommendations include:

e Preoperative RT (50 Gy in 25 fractions) is preferred when feasible,
particularly in histologies with high radiosensitivity (e.g., MLS) or where

surgical margins are expected to be close.

e Postoperative RT (60-66 Gy in 30-33 fractions) is used when margins are

positive or close after surgery.

e Surgery alone may be sufficient for low-grade tumours or cases where wide-

margin resection is achievable without functional compromise.

Despite these advances, the optimal role of RT in some STS subtypes remains
uncertain, as large randomised controlled trials are difficult due to the rarity of the
disease. As Gronchi (2014) noted, evidence generation in rare cancers requires

collaborative efforts, and retrospective data often guide difficult decision-making.
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1.5.7 Side effects of radiotherapy

Radiotherapy remains central to modern cancer treatment, with advancements in
precision techniques significantly improving tumour targeting while minimising
damage to surrounding normal tissues. However, despite these improvements,
radiation-induced side effects remain a major challenge, affecting both short- and

long-term patient outcomes.

Radiation side effects can be broadly classified into acute and late effects. Acute
effects occur during or shortly after treatment and are typically caused by direct
damage to rapidly dividing cells. These include mucositis, skin reactions
(radiodermatitis), nausea, fatigue, and inflammation of irradiated organs, such as
pneumonitis following lung irradiation. While many acute effects resolve after
treatment, they can be debilitating and impact a patient’s quality of life (Barazzuol,
Coppes et al. 2020).

Late side effects of radiotherapy can develop months to years after treatment, often
leading to chronic and sometimes irreversible complications. These effects are
primarily driven by persistent inflammation, fibrosis, vascular damage, and stem cell
depletion in irradiated tissues. In soft tissue sarcoma patients, particularly those
treated with limb-sparing surgery and radiotherapy, these late toxicities can
significantly impact mobility, function, and quality of life. The severity of complications
depends on radiation dose, treatment technique, and the volume of normal tissue

exposed (Barazzuol, Coppes et al. 2020).

One of the most common and debilitating late effects is radiation-induced fibrosis,
which leads to stiffness, contractures, and reduced limb mobility. When large
portions of a joint are included in the radiation field, fibrosis can result in permanent
contractures, limiting range of motion and functional independence. Studies have
shown that 20% of STS patients develop joint contractures following radiotherapy,
which can impair daily activities and require long-term physiotherapy or orthotic

support (Stinson, Delaney et al. 1991).
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Muscle atrophy and weakness are also frequent complications, with up to 20% of
patients experiencing significant reductions in strength. This is often accompanied
by radiation-induced damage to nerves and blood vessels, leading to neuropathy,
chronic pain, and sensory deficits. In some cases, pain is severe enough to require
long-term analgesic management. Lymphoedema, a result of lymphatic damage,
affects nearly one in five patients, causing persistent limb swelling, heaviness, and

an increased risk of recurrent infections (Stinson, Delaney et al. 1991).

Bone complications are another major concern, with 6% of patients developing
pathological fractures due to radiation-induced bone fragility. This is particularly
problematic in weight-bearing bones, such as the femur or tibia, where fractures can
lead to prolonged immobility, surgical interventions, or even limb amputation in
severe cases. Additionally, vascular damage within irradiated tissues can impair
healing, increasing the risk of chronic ulcers and infection, particularly in the lower

extremities (Stinson, Delaney et al. 1991).

The cumulative burden of these late toxicities can severely impact mobility,
independence, and overall quality of life. Many patients require assistive devices
such as canes, crutches, or orthotic braces, while some may face permanent
functional disability. The use of modern radiotherapy techniques, such as intensity-
modulated radiotherapy (IMRT) and proton therapy has helped to reduce late toxicity,
but radiation-related functional impairments remain a significant long-term challenge
in patients. Careful patient selection, treatment planning, and rehabilitation strategies

are essential to minimise these effects while maintaining optimal oncological control.
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1.6 Prognostic factors in soft tissue sarcoma

The prognosis of soft tissue sarcomas is influenced by a range of factors, including
histological grade, tumour size, anatomical location, stage at diagnosis, resection
margins, and patient-related characteristics such as age and performance status
(Lebas, Le Févre et al. 2023, Diaz Casas, Villacrés et al. 2024). Understanding these
factors is critical for risk stratification, guiding treatment decisions, and providing

accurate survival estimates. These factors will be briefly discussed below.

1.6.1 Histological grade

Histological grade is one of the strongest independent prognostic factors in STS and
is incorporated into widely used staging systems such as the AJCC (American Joint
Committee on Cancer) staging system. The grading system recommended by the
European Organisation for Research and Treatment of Cancer (EORTC) is the
French Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC)

grading system (Cyril Fisher 2022).

The FNCLCC system scores tumours based on three separate categories (Table 2)
(Trojani, Contesso et al. 1984, Guillou, Coindre et al. 1997):

The individual scores for tumour differentiation, mitotic count, and necrosis are
summed to determine the histological grade of the tumour. Tumours are classified

as follows:

Grade 1 (low grade): Total score of 2 or 3
Grade 2 (intermediate grade): Total score of 4 or 5
Grade 3 (high grade): Total score of 6, 7, or 8

High-grade sarcomas are strongly associated with worse clinical outcomes, including
increased rates of local recurrence, distant metastasis, and poorer overall survival
(Lee, Kim et al. 2021).
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Table 2. FNCLCC grading system

Soft tissue sarcoma grading criteria set by the French Fédération Nationale des
Centres de Lutte Contre le Cancer. Adapted from the RCPath soft tissue sarcoma
dataset (Cyril Fisher 2022).

Category Score Criteria

Tumour 1 Sarcoma histologically very similar to normal adult

Differentiati mesenchymal tissue

on 2 Sarcoma of defined histological subtype (e.g.
myxofibrosarcoma)

3 Sarcoma of uncertain type, embryonal, and
undifferentiated sarcomas

Mitosis 1 0-9 mitoses per 10 high-power fields (HPF) (2 sq
Count mm)
2 10-19 mitoses per 10 HPF (2 sqg mm)
3 >20 mitoses per 10 HPF (2 sqg mm)
Microscopic 0 No necrosis
Tumour 1 <50% tumour necrosis
Necrosis 2 >50% tumour necrosis

A recent study highlighted the significant impact of histological grade on prognosis.
Forinstance, grade 3 sarcomas were found to have a significantly higher risk of local
recurrence compared to lower-grade sarcomas and a markedly increased risk of
distant metastasis (Diaz Casas, Villacrés et al. 2024 ). Poorly differentiated tumours,
as reflected in higher FNCLCC grading scores, are predictive of aggressive
behaviour, systemic progression, and increased mortality. The study further
emphasised that tumour size (>5 cm), deep fascial involvement, and inadequate

surgical margins exacerbate these risks.
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1.6.2 Tumour size

Tumour size is a key component of AJCC staging and directly correlates with
metastatic risk. The most recent AJCC 8th edition subdivides size categories
depending on the site. For tumours arising in the extremities, the superficial trunk,

and retroperitoneum, the cut-offs are as follows (Cyril Fisher 2022):

T1:<5cm
T2: >5 cm and <10 cm
T3: >10 cm and €15 cm

T4: >15cm

Tumours arising in the head and neck or in the thoracic or abdominal viscera have

their own specific staging criteria.

Larger tumours (>5 cm) are associated with:

Worse disease-free survival (DFS): Larger tumours are more likely to recur locally
or metastasise, reducing the duration of DFS. For example, tumours >10 cm exhibit
a threefold increase in metastatic risk compared to tumours <5 cm (Lee, Kim et al.
2021, Lebas, Le Févre et al. 2023).

Higher risk of distant metastases: The probability of metastasis to the lungs or
other distant sites increases significantly with tumour size. In sarcomas larger than
10 cm, lung metastases are particularly common, further contributing to poor

outcomes (Lebas, Le Févre et al. 2023, Diaz Casas, Villacrés et al. 2024).

In addition to size, the anatomical location of the tumour also significantly impacts
prognosis. Retroperitoneal sarcomas are particularly challenging due to their location
and often reach a substantial size before detection, with many exceeding 15 cm at
diagnosis. This delayed presentation arises from their asymptomatic progression
until they exert mass effects on adjacent organs. Consequently, surgical excision is
more complex, often requiring multi-organ en bloc resections to achieve negative
margins. Despite such efforts, retroperitoneal sarcomas are associated with worse

survival outcomes compared to sarcomas in the extremities, with five-year overall
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survival (OS) rates ranging from 39% to 70% depending on the subtype and
resection margins (Guo, Zhao et al. 2022). Moreover, local recurrence remains the
primary cause of mortality, with rates as high as 75% in patients without distant

metastases.

The prognostic significance of tumour size highlights the importance of early
diagnosis and intervention. Smaller tumours identified and treated at an earlier stage
are associated with improved outcomes, stressing the need for vigilance in
diagnosing and staging soft tissue sarcomas. This has led to one of the key
recommendations from the UK guidelines on the management of soft tissue
sarcomas which states that “any patient with an unexplained lump that is increasing
in size, should be considered for a direct access ultrasound scan to be performed

within 2 weeks” (Hayes, Nixon et al. 2024).

1.6.3 Anatomical site

The anatomical location of STS influences prognosis due to differences in surgical

resectability, metastatic potential, and response to treatment.

Extremity sarcomas (limbs) generally have a better prognosis than those in
retroperitoneal or visceral locations (Lebas, Le Févre et al. 2023, Diaz Casas,
Villacrés et al. 2024). Retroperitoneal sarcomas as previously discussed tend to be
diagnosed at larger sizes, often >15 cm, making complete resection difficult, with

worse five-year survival rates (~40-50%) (Guo, Zhao et al. 2022).

1.6.4 Stage at diagnosis

In the UK, STS is staged using the AJCC TNM system, which incorporates tumour
size (T), lymph node involvement (N), and distant metastases (M) (Cyril Fisher 2022,
Hayes, Nixon et al. 2024).

Unlike carcinomas, which typically metastasise through lymphatic channels, soft

tissue sarcomas (STS) predominantly spread haematogenously, with the lungs, liver,
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and bones being the most common metastatic sites (Pennacchioli, Tosti et al. 2012).
While lymphatic involvement is rare in STS compared to carcinomas, certain
subtypes exhibit a higher propensity for ymph node metastasis (LNM). For example,
one study found clear cell sarcoma, epithelioid sarcoma, angiosarcoma, and small
cell sarcoma had LNM rates of 15.9%, 13.1%, 6.1%, and 19.1%, respectively. These
rates are markedly higher than the overall LNM incidence in STS, which remains low

at approximately 3.5% (Keung, Chiang et al. 2018).

The likelihood of LNM varies not only by histological subtype but also by tumour
location. For example, head, neck, and visceral sarcomas demonstrate slightly
higher LNM rates compared to those arising in the extremities with 5.8% of head and
neck sarcomas and 5.1% of intra-abdominal sarcomas having nodal involvement,

compared to just 2% in the extremities.

The clinical significance of LNM in STS is profound. In the absence of distant
metastases (MO0), LNM is associated with a worse overall survival (OS). For instance,
patients with isolated LNM (pN1MO) experience a median OS of 2.4 years,
significantly shorter than the 8.5 years seen in patients without nodal or distant
metastases (NOMO). Moreover, histological subtypes like angiosarcoma and clear
cell sarcoma tend to have particularly poor prognoses when associated with LNM,
with median OS as low as 19.4 months for angiosarcoma.

These findings show the importance of accurately staging lymph node involvement,
particularly in histologies at higher risk of nodal spread. However, current practice
often lacks consistency in pathologically evaluating lymph nodes in STS. A significant
proportion of cases rely on clinical rather than pathological confirmation of nodal

disease, which may affect staging accuracy and subsequent management.

The M stage in the AJCC TNM system reflects the presence of distant metastases,
a critical determinant of prognosis in soft tissue sarcomas. As mentioned earlier,
haematogenous spread, rather than lymphatic spread, is the predominant route of
metastatic dissemination in STS. The lungs are the most common site of metastases,

and account for over 90% of metastases, followed by the liver and bones.
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Patients presenting with distant metastases (M1 stage) have significantly poorer
outcomes compared to those with localised disease. Median overall survival (OS) for
patients with metastatic STS is approximately 12 months, although recent
advancements in treatment, including systemic therapies, have extended survival in
some cases to around 18 months (Hayes, Nixon et al. 2024). This remains markedly

worse than the survival rates observed in early-stage disease.

The presence of distant metastases often limits curative treatment options, with
management typically focusing on systemic therapies such as chemotherapy or
targeted agents. In some cases, metastasectomy (e.g., resection of pulmonary
metastases) may be considered, especially in patients with limited disease burden,
though this approach is not suitable for all subtypes (Sardenberg, Figueiredo et al.
2010).

Given the poor prognosis associated with metastatic STS, accurate staging with
imaging modalities such as CT scans and PET scans is essential. Early detection of
metastases informs treatment planning, helping clinicians determine whether the

goal of care should be curative or palliative.

A study from the UK, analysing data on soft tissue sarcoma cases between 2013
and 2017, provides recent survival rates based on disease stage (Bacon, Wong et
al. 2023):

Stage I: Low-grade, small tumours with no metastases have the most favourable

prognosis, with a five-year survival rate of approximately 85-90%.

Stage Il/lll: Patients with high-grade or larger tumours, who often require multimodal
treatment including surgery, radiotherapy, and systemic therapy, have a five-year

survival rate ranging from 50-70%.

Stage IV: The presence of distant metastases confers a significantly worse
prognosis, with a five-year survival rate of less than 20%, reflecting the aggressive
nature of advanced STS and the limited efficacy of systemic therapies in metastatic

disease.
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1.6.5 Resection margin status

Surgical resection is the mainstay of curative treatment for soft tissue sarcomas
(STS), with margin status being a critical determinant of prognosis and recurrence
risk. The Royal College of Pathologists' dataset highlights the importance of accurate
margin reporting, including measurements in millimetres and tissue type at the
margin (e.g., fascia, muscle, fat), with margins classified as follows (Cyril Fisher
2022):

¢ RO Resection (Negative Margins): Clear surgical margins with no tumour
cells at the inked edge are associated with the lowest recurrence rates and
best survival outcomes, making this the gold standard for STS surgery.

e R1 Resection (Microscopic Residual Disease): Margins with microscopic
tumour presence increase recurrence risk. Adjuvant radiotherapy is often
employed to improve local control and reduce recurrence.

e R2 Resection (Macroscopic Residual Disease): Macroscopic tumour left
behind leads to a significantly poorer prognosis, with five-year survival rates

below 30%. R2 resections are generally considered palliative.

The European Society for Medical Oncology — European Reference Network for rare
adult solid cancers (ESMO-EURACAN) guidelines (Casali, Abecassis et al. 2018)
recommend RO resection as the primary objective, particularly for extremity tumours
where wide margins are achievable. For R1 resections, reoperation in a reference
centre is advised if adequate margins can be achieved without major morbidity. In
cases Wwhere re-excision is not feasible, adjuvant radiotherapy is strongly

recommended to improve local control.

For retroperitoneal sarcomas or tumours near critical structures, achieving RO
margins may not be feasible. ESMO guidelines state that planned R1 resections can
yield acceptable outcomes when combined with radiotherapy. The impact of R1

margins varies by tumour subtype, location, and margin characteristics.
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Additionally, marginal excision may be appropriate for certain low-grade tumours,
such as atypical lipomatous tumours, where local recurrence rates are low, and
radiotherapy may not be necessary. These situations highlight the need for
individualised surgical strategies that balance safety with patient quality of life.
Indication of the use of a marginal excision should be put on the pathology request

form when a specimen is submitted for pathological assessment.

1.6.6 Patient age, performance status, and socioeconomic background

Age, performance status, and socioeconomic factors significantly influence survival
outcomes in patients with soft tissue sarcomas (STS). Older patients, particularly
those aged >65 years, tend to have poorer prognoses. A population-based study
from England reported that while the overall five-year net survival for STS was 65%,
survival rates were significantly lower in older age groups, attributed to comorbidities

and reduced tolerance for aggressive treatments (Bacon, Wong et al. 2023).

Younger patients with good performance status (ECOG 0-1) demonstrate better
long-term survival, even in cases of high-grade disease. The European Society for
Medical Oncology (ESMO) guidelines emphasise the need for individualising
treatment plans to account for age, tumour biology, and performance status (Casali,
Abecassis et al. 2018)

Socioeconomic background also impacts outcomes in STS. The Bacon et al. study
highlights disparities in survival linked to socioeconomic status. Patients in the most
deprived quintile had a five-year net survival rate of approximately 55%, compared
to 70% in the least deprived quintile. These disparities may reflect inequalities in
access to care, delayed diagnoses, or differences in treatment availability (Bacon,
Wong et al. 2023).
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1.7 The biological effects of radiotherapy

Radiotherapy primarily exerts its therapeutic effects by inducing extensive DNA
damage in cancer cells, ultimately leading to cell death. The energy from ionising
radiation generates DNA double-strand breaks (DSBs), which, if left unrepaired or
misrepaired, trigger apoptosis or mitotic catastrophe. lonising radiation also
generates reactive oxygen species (ROS), which cause single-strand breaks (SSBs)
and oxidative base modifications, further compromising genomic integrity (Horsman
MR 2009). In addition to direct DNA cleavage, radiation can induce chemical
modifications such as 5’ hydroxyls, 3’ phosphates, and covalent DNA-protein
crosslinks, which require resolution before DSB repair can occur (Borrego-Soto,
Ortiz-Lopez et al. 2015).

The ability of a tumour to repair radiation-induced DNA damage influences its
sensitivity to treatment. Tumours deficient in homologous recombination repair
(HRR), such as those with BRCA1/2 mutations, exhibit heightened radiosensitivity
due to their inability to accurately repair DSBs (Ernestos, Nikolaos et al. 2010). In
contrast, tumours with an overactive non-homologous end-joining (NHEJ) pathway
(discussed previously in section 1.4.3.1) may demonstrate radiation resistance, as
NHEJ rapidly, albeit error-prone, ligates broken DNA ends (Morgan and Lawrence
2015). The relative reliance on different DNA repair pathways contributes to tumour-
specific responses to radiotherapy. This underlies the rationale for radiosensitising
agents such as PARP inhibitors, which exploit DNA repair deficiencies to enhance

radiation efficacy (Angel, Zarba et al. 2021).

1.7.1 Mutational signatures associated with radiotherapy

Mutational signatures are distinct patterns of somatic mutations found in cancer
genomes that reflect the biological processes causing genetic alterations. These
signatures arise due to endogenous processes, such as spontaneous deamination
or replication errors, or exogenous exposures, such as ionising radiation, ultraviolet
light, or chemotherapy. By analysing large sequencing datasets, computational
methods allow us to identify and categorise these signatures, helping to reveal the

underlying mechanisms of mutagenesis.
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One key approach for identifying mutational signatures is trinucleotide context
analysis. Mutations are classified based on the flanking bases surrounding a mutated
site, leading to 96 possible mutation types. This level of granularity is crucial because
many mutagens exhibit sequence specificity, and analysing mutations in their

sequence context improves the accuracy of signature extraction.

To systematically identify mutational signatures, non-negative matrix factorization
(NMF) is applied to mutation frequency data across multiple cancer genomes. NMF
is a mathematical technique that deconstructs complex mutational spectra into a set
of underlying signatures. Each extracted signature is then compared against known
reference signatures, such as those curated in COSMIC, allowing for the attribution

of mutations to specific mutational processes (Alexandrov, Nik-Zainal et al. 2013).

Mutational signatures are broadly classified into several categories, including single
base substitution (SBS) signatures, doublet base substitution (DBS) signatures,
insertion-deletion (ID) signatures, and, more recently, copy number alteration (CNA)
signatures (Alexandrov, Kim et al. 2020, Steele, Abbasi et al. 2022).

1.7.2 Radiation induced mutational signatures

Several studies have identified mutational signatures enriched in post-radiotherapy
malignancies. Behjati et al. (2016) performed whole-genome sequencing on
radiation-associated secondary malignancies and identified two characteristic
mutational features:

e An excess of balanced inversions, a rare form of structural rearrangement.

¢ Anincreased burden of small deletions, which were validated in a separate cohort

of prostate cancer patients who had received radiotherapy.

Research on thyroid cancers arising after the Chernobyl nuclear disaster found a
radiation dose-dependent increase in small deletions and simple/balanced structural
variants, particularly an increased deletion-to-SNV ratio (Morton, Karyadi et al.

2021). These findings suggest that radiation-induced DSBs are frequently repaired
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through error-prone mechanisms such as NHEJ, leading to characteristic genomic

alterations, including deletions.

1.7.3 Radiation-induced APOBEC mutagenesis

Beyond direct DSB induction, ionising radiation has been implicated in the activation
of endogenous mutagenic processes, particularly the APOBEC cytosine deaminase
family. APOBEC enzymes preferentially induce C>T or C>G substitutions at TpC
dinucleotides, corresponding to mutational signatures SBS2 and SBS13 (Alexandrov,
Kim et al. 2020).

Kocakavuk et al. (2021) identified enrichment of SBS2 and SBS13 in gliomas and
metastatic tumours following radiotherapy, suggesting that APOBEC mutagenesis
might occur in post-radiotherapy tumours. However, rather than direct induction by
radiation, the study proposed that APOBEC-driven mutagenesis may be a secondary
effect of DNA damage repair. This aligns with previous findings that APOBEC
enzymes act on single-stranded DNA, which can be transiently generated during the
repair of radiation-induced DSBs (Schlegel, Jodelka et al. 2006).

Crucially, Morton et al. (2021) found no significant association between radiation
dose and APOBEC mutational signatures (SBS2/SBS13) in thyroid cancers from the
Chernobyl cohort. Although SBS2 and SBS13 made up 6.2% and 6.4% of attributed
mutations, their presence was not linked to radiation exposure. This suggests that
APOBEC activity may be involved in tumour progression but is not a direct

consequence of radiation exposure.

1.7.4 1ID8 and DNA Repair pathways

Insertion-deletion signature 1D8, which is associated with microhomology-mediated
end joining (MMEJ), has been identified in multiple radiation-exposed tumour cohorts.
A significant increase in ID8 was noted in gliomas following radiotherapy in the
GLASS cohort (Kocakavuk, Anderson et al. 2021) and in post-radiotherapy papillary

thyroid carcinomas (Morton, Karyadi et al. 2021). However, further analysis
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suggested that classical non-homologous end joining (c-NHEJ), rather than MMEJ,

is the primary repair mechanism for radiation-induced DSBs.

The identification of clonal small deletions and the enrichment of radiation-associated
ID8 signatures suggest that radiotherapy induces genomic instability through error-
prone DSB repair pathways, predominantly classical NHEJ. These findings highlight
the role of radiotherapy in shaping the mutational landscape of soft tissue sarcomas
and the importance of understanding these alterations in the context of tumour
biology. Further characterisation of these mutational processes will help refine our
understanding of how radiotherapy impacts tumour evolution and may provide

insights into potential therapeutic vulnerabilities.
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1.8 The pathological assessment of the response to

radiotherapy

Assessing the pathological response to radiotherapy in soft tissue sarcomas
presents significant challenges for histopathologists. This process involves both
macroscopic and microscopic evaluations, each of which is subject to limitations in

sampling and interpretation.

At a macroscopic level, the primary issue is accurate recording of the proportion of
necrosis and of the residual tumour. In the UK, Royal College of Pathologists
(RCPath) guidelines recommend documenting tumour size, colour, consistency, and
necrosis as a percentage of the total tumour mass (Cyril Fisher 2022). However,
quantifying necrosis macroscopically is prone to error, as it relies on gross

appearance rather than cellular assessment.

At a microscopic level, the challenge lies in distinguishing treatment-related changes
from tumour-related necrosis and ensuring representative sampling of viable tumour.
The RCPath guidelines recommend sampling one block per 10 mm of the tumour’s
longest dimension, with a maximum of 12 blocks, though high-grade tumours may
require fewer (Cyril Fisher 2022). However, this approach inherently biases against
necrotic areas, as pathologists typically prioritise viable tumour for microscopic

examination.

To improve standardisation, the European Organization for Research and Treatment
of Cancer - Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) has proposed
an alternative approach: sampling and blocking an entire representative central slice
of the tumour (Wardelmann, Haas et al. 2016). However, selecting a truly

"representative" slice remains subjective and introduces its own sampling bias.
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1.8.1 Histopathological features of radiotherapy response

Histological features suggestive of radiotherapy-induced changes include:
e Necrosis
e Ghost cells (cells with loss of nuclear and cytoplasmic detail)
e Granulation tissue and fibrosis
e Hemosiderin deposition
e Foamy macrophages

e Calcifications and inflammatory changes.

An important limitation of assessing tumour necrosis alone is that pre-treatment

necrosis cannot be reliably distinguished from post-radiotherapy necrosis.

1.8.2 Correlation with radiological response criteria

To improve response assessment, correlation with radiological imaging has been
proposed. The Response Evaluation Criteria in Solid Tumours (RECIST), which
relies on tumour shrinkage, is often not useful in soft tissue sarcomas, as most do
not significantly decrease in size following radiotherapy (Betgen, Haas et al. 2013,
Wardelmann, Haas et al. 2016). In some cases, tumours may even increase in size
due to cystic transformation or haemorrhage, a phenomenon known as

pseudoprogression.

An alternative is the Choi criteria, originally developed for gastrointestinal stromal
tumours (GISTs). These criteria assess response based on both size reduction and
changes in tumour density on imaging. Studies have shown that the Choi criteria
outperform RECIST in predicting soft tissue sarcoma response to chemotherapy and

radiotherapy outcome (Stacchiotti, Verderio et al. 2012).

Additionally, MRI techniques such as diffusion-weighted imaging (DWI) and contrast-
enhanced MRI have been explored as tools for estimating tumour necrosis post-
radiotherapy. One study demonstrated that MRI-derived necrosis percentages

correlated well with histopathological assessment, though distinguishing true
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necrosis from oedema or tumour recurrence remains challenging (Monsky, Jin et al.
2012, Nichelli and Casagranda 2021)

1.8.3 Lack of consensus in pathological reporting

Despite multiple proposed approaches, no consensus exists on the optimal method
for reporting pathological response to radiotherapy in sarcomas. Some studies report
percentage necrosis, while others quantify viable tumour percentage. The EORTC-
STBSG scoring system, which categorises response into five tiers based on viable
tumour percentage, was tested in an independent cohort of 100 sarcoma patients’
post-radiotherapy. However, neither the EORTC response score nor percentage

viable tumour were prognostic (Wardelmann, Haas et al. 2016).

1.8.4 Implications for tissue processing and molecular analysis

From a molecular research perspective, variability in sampling and tissue processing
poses challenges for genomic and transcriptomic studies. DNA and RNA extraction
from formalin-fixed, paraffin-embedded (FFPE) samples requires sufficient viable
tumour cells, as excessive necrosis can interfere with sequencing protocols. This
highlights the importance of optimising tumour sampling methods, particularly in

studies seeking to define molecular biomarkers of radiotherapy response.

1.8.5 Conclusion

The lack of standardisation in pathological response assessment presents a major
challenge in understanding the effects of radiotherapy in sarcomas. While
percentage necrosis remains the most commonly reported metric, it is inherently
limited by sampling bias and the inability to distinguish pre-existing from treatment-
induced necrosis. Alternative methods, such as MRI-derived necrosis
measurements and Choi criteria, may improve response evaluation but require

further validation.
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Future efforts should focus on refining the pathological assessment of radiotherapy
response by incorporating objective and reproducible metrics that better reflect
tumour biology. While radiological and histopathological criteria remain the current
standard, they have limitations in accurately capturing the molecular impact of
radiotherapy. By characterising the genomic alterations and mutational processes
induced by radiotherapy, this thesis aims to understand the biological consequences
of treatment, which could ultimately inform the development of molecular biomarkers

for response assessment in soft tissue sarcomas.
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1.9 Rationale and objectives of this thesis

Radiotherapy is a key component in the management of soft tissue sarcomas,
enabling limb-sparing surgery and improving local control. However, its clinical
efficacy varies significantly across histological subtypes, and the absence of robust
molecular biomarkers limits the ability to personalise treatment. There are no
published studies using clinical material describing the short-term molecular changes
that occur during and immediately after therapy. In the setting of local recurrence or
metastasis, where patients have received radiotherapy, prior studies have identified
broad genomic changes including ‘mutational signatures and activation of DNA
repair pathways, however the precise molecular mechanisms underpinning
radiotherapy response remain poorly understood. This is largely due to the lack of
comprehensive multi-omics analyses directly comparing pre- and post-radiotherapy
tumour samples, as well as the limited ability to distinguish treatment-induced

changes from tumour-intrinsic alterations.

Although previous work has characterised some mutational consequences of
radiation exposure in secondary malignancies and radiation-induced sarcomas,
studies focusing on primary soft tissue sarcomas treated with neoadjuvant
radiotherapy remain limited. Moreover, existing analyses often rely on bulk
sequencing approaches with low sensitivity, making it challenging to resolve low-
frequency mutations, copy number alterations, or changes in the tumour
microenvironment. Additionally, the histology-specific variability in genomic and
transcriptomic responses to radiotherapy remains unclear, despite growing evidence
that certain subtypes, such as myxoid liposarcoma, demonstrate a higher sensitivity

to treatment.

Furthermore, while histopathological and radiological criteria are used to assess
radiotherapy response, their accuracy in predicting treatment outcomes is limited.
The lack of standardised pathological criteria complicates efforts to integrate
molecular findings into clinical practice, and there remains an urgent need to define

reproducible and biologically meaningful markers of radiotherapy response.
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To address these gaps, this thesis applies whole-exome sequencing (WES), whole-
genome sequencing (WGS), RNA sequencing (RNAseq), and high-sensitivity
sequencing methods (NanoSeq) to characterise the genomic and transcriptomic
alterations induced by radiotherapy in soft tissue sarcomas. By leveraging these
high-resolution sequencing approaches, this study aims to provide a comprehensive
understanding of how the genomic and transcriptomic landscape of soft tissue
sarcomas is altered following radiotherapy, while also exploring potential predictive
biomarkers of treatment response. These findings will enhance our understanding of
radiotherapy-induced mutagenesis, define molecular changes associated with
treatment response, and lay the groundwork for future biomarker development to

guide personalised therapeutic strategies.
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The specific objectives of this thesis are:

1. To characterise radiotherapy-induced genomic alterations.

* Quantify and compare somatic mutations, including SNVs and indels, in pre- and
post-radiotherapy tumour samples.

* Investigate copy number alterations (CNAs) and mutational signatures to identify

radiotherapy-induced genomic changes.

2. To analyse the transcriptional landscape in response to radiotherapy.

« Identify differentially expressed genes and enriched biological pathways in pre-
and post-radiotherapy tumour samples.

» Explore how transcriptomic responses differ between sarcoma histological

subtypes.

3. To identify histology-specific variability.
» Determine whether different sarcoma subtypes exhibit distinct genomic and

transcriptomic responses to radiotherapy.

4. To establish a molecular framework for understanding radiotherapy
response.

» Use multi-omics data to refine our understanding of radiotherapy-induced
mutagenesis.

* Provide a foundation for future biomarker discovery by characterising molecular

patterns associated with treatment response.
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Chapter 2. Materials & Methods
2.1 Ethics approval and patient sample selection

This study was approved by the NHS Health Research Authority (REC reference
16/NW/0769). Patient tissue and clinical data were obtained from the Royal National
Orthopaedic Hospital biobank in collaboration with the London Sarcoma Service. All

patients had provided informed consent for research use.

A total of 122 patients were assessed for inclusion in the study. These patients were

identified by Dr Nischalan Pillay and Dr Mahbubl Ahmed. Eligibility criteria were:

e Histologically confirmed soft tissue sarcoma. All included cases underwent
histological review to confirm diagnosis and eligibility (see section 2.2).

e Treatment at the London Sarcoma Service with standard of care pre-operative
(neoadjuvant) radiotherapy (see section 2.1.1).

e Availability of diagnostic (pre-radiotherapy) tumour tissue and, where applicable,
matched post-radiotherapy resection tissue.

e Adequate tissue quality and quantity for downstream molecular assays (RNA-
seq, NanoSeq, WES) and histological review.

o Sufficient clinical and treatment data to confirm radiotherapy dose, fractionation,

timing, and follow up data.
Sixty-one patients were excluded for the following reasons:

Post-operative radiotherapy only (n = 24): Patients received radiotherapy only

after surgery, with no pre-radiotherapy (diagnostic) tumour tissue available.

Radiotherapy not completed (n = 3): Radiotherapy was not given, stopped early,

declined, or administered with palliative intent only.

No viable tumour in available tissue (n = 6): Resection specimens showed
complete pathological response or extensive necrosis, leaving no viable tumour for

analysis.
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Insufficient or unavailable tissue (n = 12): Diagnostic or resection blocks were
missing, untraceable, or contained insufficient tumour material for sequencing; in

some cases, paired normal tissue was not available.

Eligibility not confirmed (n = 16): Treated outside the specialist London Sarcoma

Service, preventing confirmation of radiotherapy dose, timing, and delivery.
The final study cohort comprised 61 patients. Of these:
e NanoSeq was performed on 10 samples, 9 of which passed quality control
(QC).
e DNA sequencing (WES/WGS) was performed on 70 samples, 67 passed QC.

¢ RNA-seq was performed on 122 samples, 117 passed QC.

A Consort-style schematic summarising the inclusion and exclusion process is

shown in Figure 2.1.
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Post-operative RT only (no pre-RT tissue)
(n=24)

Eligibility not confirmed
(n=18)

Insufficient / unavailable tissue
(n=12)

No viable tumour
(n=8)

Radiotherapy not completed
(n=3)

NanoSeq: 10 samples + 9 passed QC

DMNA sequencing: 70 samples » 67
passed QC

RMA-seq: 122 samples + 117 passed QC

Figure 2.1. Consort diagram of patient inclusion and sample quality control

flowchart

The diagram summarises patient selection, reasons for exclusion, and the number
of samples processed for sequencing assays.

2.1.1 Radiotherapy treatment

All patients received standard of care treatment through the London sarcoma

service. All patients received 50 Gy of intensity modulated radiotherapy (IMRT)

delivered in 25 fractions (see section 1.5.6).

The median interval between completion of neoadjuvant radiotherapy and surgical

resection was 46 days (range: 13—84 days), with a mean of approximately 46.1 days.

This was broadly consistent across the cohort, reflecting the standard practice in our

centre of scheduling surgery around six to seven weeks after completion of treatment.

2.1.2 Defining disease progression

In the introduction, | noted that there are no universally established histological or

radiological standards for defining response or progression in this context. Therefore,
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in the later chapters, when distinguishing between progressors and responders, |

rely on clinical follow-up data.

Patients were classified as progressors if they experienced either local recurrence
or death from disease during the follow-up period. Responders were defined as
those with no evidence of recurrence or disease-related mortality within the follow-

up timeframe.

Of the 61 patients in the study, 25 were classified as progressors. This group
included 4 patients who developed local recurrence (median follow-up: 2,448 days;
range: 2,124-2,602 days) and 21 patients who died of disease (median follow-up:
892 days; range: 223-2,637 days). The combined progressor group had a median
follow-up time of 955 days (range: 223-2,637 days).

The remaining 36 patients were classified as responders, with a median follow-up
time of 2,584 days (range: 1,391-3,744 days).

A final list of included patients, their clinical characteristics, and sequencing data

availability is presented in Figure 2.2.
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Figure 2.2. Overview of the London Sarcoma Service patient cohort, clinical

features, and sequencing data availability

The heatmap summarises clinical metadata and sequencing data availability for 61
patients in the study. The Patient metadata panel shows histological subtype,
radiotherapy (RTx) response status, tumour site, and sex. Histological subtypes
include: MFS (myxofibrosarcoma), mLPS (myxoid liposarcoma), SS (synovial
sarcoma), pLPS (pleomorphic liposarcoma), SpCS (spindle cell sarcoma), UPS
(undifferentiated pleomorphic sarcoma), ddLPS (dedifferentiated liposarcoma),
pLMS (pleomorphic leiomyosarcoma), EMC (extraskeletal myxoid
chondrosarcoma), ASPS (alveolar soft part sarcoma), CCS (clear cell sarcoma),
MLS (myxoid liposarcoma), MMT (malignant myoepithelial tumour), and MPNST
(malignant peripheral nerve sheath tumour). RTx response status is categorised
as: Responder, Progressor — recurrence, and Progressor — died of disease.
Tumour site is recorded as arm, leg, or trunk; sex as female (F) or male (M).

The DNA sequencing panel shows availability of whole exome sequencing (WES),
whole genome sequencing (WGS), and NanoSeq data across the following time
points: pre-RTx, post-RTx, recurrence, and metastasis. The RNA sequencing
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panel shows RNA-seq data availability at pre-RTx, post-RTx, multi-region post-
RTx, recurrence, and metastasis. Green shading indicates available data, grey
shading indicates missing data.
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2.2 Histological assessment of samples

Histological assessment of all available biopsy, resection, and, where applicable,
recurrence and metastatic samples was performed by two pathologists, Steven
Nottley (SN) and Dr Nischalan Pillay (NP). Samples were excluded from nucleic acid
extraction if they exhibited insufficient tumour cellularity (<20%) or excessive
necrosis, as these factors could compromise sequencing quality. Each sample was
systematically evaluated for tumour cellularity, percentage of viable tumour, and

proportion of necrosis (Figure 2.3).

2.3 Nuclei acid extraction

For formalin-fixed paraffin-embedded (FFPE) tissue, 4 x 10 um sections were cut
from each tumour block and nucleic acids extracted using the truXTRAC FFPE total
NA Ultra Kit — Column (Covaris) according to the manufacturer’s protocol. For each
patient, both DNA and RNA were obtained from the same FFPE block, ensuring that
whole-exome sequencing (WES) and RNA-seq data originated from the same
physical tumour sample. Whole-genome sequencing (WGS) and NanoSeq analyses
were performed on DNA extracted from fresh frozen tissue taken from the designated
pre-, post-, recurrence-, or metastasis-radiotherapy sample as recorded. Matched

germline DNA was isolated from the patient’s peripheral blood.

2.4 Sequencing protocols

DNA Sequencing:

DNA samples were sent to Macrogen (Amsterdam) for library preparation using the
Twist Human Core Exome library kit (Twist Bioscience). Quality control (QC) was
performed, and samples meeting QC criteria were sequenced on an lllumina
NovaSeq platform. Whole exome sequencing (WES) was conducted using 150 bp

paired-end (PE) libraries to achieve a targeted mapped coverage of 250X.

For germline whole-exome sequencing, normal DNA from matched blood samples

underwent library preparation using the Twist Human Core Exome kit and were
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sequenced on the lllumina NovaSeq platform with 150 bp paired-end reads at 50X

mapped coverage.

Figure 2.3. Histological assessment of tumour samples

Representative histological sections demonstrating tumour cellularity and necrosis
evaluation. Tumour samples were assessed for cellularity, percentage of viable
tumour, and extent of necrosis, key factors influencing sequencing quality. The case
shown was assessed as high tumour cellularity (~50%) with ~20% necrosis.
(A) Low-power view of core biopsies demonstrating tumour architecture. (B)
Medium-power view highlighting areas of tumour necrosis (upper left). (C) Medium-
power view showing tumour-stroma interaction and variability in tumour cellularity.
(D) High-power view of a region with high tumour cellularity, with scattered admixed
inflammatory cells.
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RNA Sequencing:

RNA was extracted from FFPE tissue using the truXTRAC FFPE total NA Ultra Kit —
Column (Covaris). As expected for FFPE-derived material, RNA integrity numbers
(RIN) were low, ranging from 1.1 to 2.3. Samples were sent to Macrogen
(Amsterdam) for further quality control, where RNA quality was assessed using
DV200 metrics (percentage of RNA fragments >200 nucleotides). Samples with
DV200 >40% proceeded to library preparation using the TruSeq RNA Exome kit
(lumina) using 100ng of input RNA. Sequencing was performed on an lllumina
NovaSeq 6000 S4 platform with 100 bp paired-end reads, generating ~50 million
read pairs (~100 million total reads) per sample, providing sufficient depth for
downstream transcriptomic analyses. No correlation was observed between RIN
values and downstream expression data quality, but samples failing the DV200

threshold were not sequenced.

2.5 Alignment, variant calling, and annotation

2.51 Computational Resources

The alignment, variant calling, and generation of ensemble VCFs were performed on
the UCL Myriad high-performance computing (HPC) cluster. The alignment stage
used 32 CPU cores per job, while variant calling was performed with 8-core jobs.
Java (v1.8.0_92) and Samtools (v1.9) were used across multiple stages, including

alignment, variant calling, and panel of normals generation.

2.5.2 Alignment and pre-processing

Whole exome sequencing (WES) and whole genome sequencing (WGS) raw data
in the form of fastq files were obtained from Macrogen. They were processed using
the bcbio pipeline (Chapman, Kirchner et al. 2021), a community-developed
bioinformatics framework for variant calling and analysis. The sequencing reads
were aligned to the hg38 reference genome (1000g-20150219) using BWA-MEM
(v0.7.17) (Li 2013), which is derived from the 1000 Genomes Project's release of
hg38.
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The alignment pipeline included duplicate marking (Picard v2.27.4), base quality
score recalibration, and local realignment around indels using the Genome Atlas
Toolkit - GATK (v4.2.6.1). Alignment parameters were optimised for paired-end
sequencing, with multi-threading enabled (-t 8) for efficient processing. Quality
control checks were further enhanced using Qualimap (v2.2.2d) to assess alignment

metrics and sequencing depth.

2.5.3 Variant calling

Variant calling was conducted using a tumour-normal paired analysis approach to
identify somatic mutations. The samples were processed with a configuration file
specifying the use of three different variant callers: Mutect2 (GATK v4.2.6.1)
(Benjamin, Sato et al. 2019), Strelka2 (v2.9.10) (Kim, Scheffler et al. 2018), and
VardDict (v1.8.2) (Lai, Markovets et al. 2016). These tools were run in ensemble
mode, requiring at least two variant callers to support a given mutation for inclusion

in the final variant call set.

Variant calling was restricted to the exonic regions defined by the Twist Bioscience
Exome Capture (hg38) target regions (Twist_Exome_Target_hg38.bed) available
from (https://www.twistbioscience.com/resources/data-files/ngs-human-core-

exome-panel-bed-file).

2.5.4 Panel of Normals (PON) generation

To improve the accuracy of somatic variant calling and reduce false positives, a
Panel of Normals (PON) was generated using GATK Mutect2 (v4.2.5.0). Since the
samples were derived from formalin-fixed paraffin-embedded (FFPE) tissue, they are
prone to sequencing artefacts and technical noise. The PON helps to filter out
recurrent sequencing artefacts, FFPE-induced damage, and germline variants that

might otherwise be misclassified as somatic mutations in tumour samples.

1. Mutect2 Variant Calling:
e Each of the 54 normal samples was processed individually to generate

normal VCFs.
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e Variant calling used the hg38 reference genome and gnomAD (v2.1.1, af-

only-gnomad.hg38.vcf.gz).

2. GenomicsDBImport:
e Normal VCFs were combined into a GenomicsDB database using GATK
GenomicsDBImport (v4.2.5.0), with intervals defined by the Twist

Bioscience Exome Capture (hg38) target regions.

3. Final PON Creation:
e GATK CreateSomaticPanelOfNormals (v4.2.5.0) was used to generate a

single PON VCF file for downstream somatic mutation filtering.

2.5.5 Functional annotation

Post-variant calling annotation was performed using Variant Effect Predictor
(Ensembl-VEP, v104.3) (McLaren, Gil et al. 2016), which provides functional
consequences for each variant. Additional annotation was carried out against ClinVar
(2021-01-10) (Landrum, Lee et al. 2016) and dbSNP (v154-20210112) (Sherry, Ward
et al. 2001).

2.5.6 Quality control and filtering

To ensure the reliability and accuracy of mutation analysis in WES and WGS data,
stringent filtering criteria were applied to distinguish high-quality somatic mutations
from sequencing artefacts and low-confidence calls. Given that the samples were
derived from formalin-fixed paraffin-embedded (FFPE) tissue, filtering steps were

necessary to mitigate common FFPE-induced artefacts.

The first stage of filtering involved applying the PASS filters from each of the three
variant callers, ensuring that only high-confidence variants were retained. To further
eliminate  potential sequencing artefacts, the DKFZ Bias Filter
(https://github.com/DKFZ-ODCF/DKFZBiasFilter) was employed to exclude variants

affected by strand bias or sequencing damage. Additionally, variants with a
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frequency greater than 0.0004 in any gnomAD (v2.1.1) subpopulation were removed

to focus on somatic mutations and exclude common polymorphisms.

Post-filtering quality control was conducted using MultiQC (v1.13a) (Ewels,
Magnusson et al. 2016) to aggregate reports from all processing steps, ensuring
uniformity in sequencing depth, mapping quality, and variant calling accuracy. Three
biopsy-derived WES samples failed this QC step and were removed from

downstream analysis.

2.5.7 Consensus and manual review

For WES data, a consensus approach was implemented: a variant was retained if
identified by at least two out of the three variant callers. Single nucleotide variants
(SNVs) not included in the ensemble VCF underwent manual review using the
Integrative Genomics Viewer (IGV) (Robinson, Thorvaldsdottir et al. 2011), where
visually validated variants were "rescued" and included in the final dataset. The
column ensemble_or_rescue in the mutation data indicates whether a variant was

included in the ensemble VCF ('e') or manually rescued ('r').

Given the lower frequency and complexity of insertions and deletions (indels), all
indels identified by the mutation callers were manually reviewed using IGV to ensure

accuracy.

For WGS data, the same ensemble approach was used; however, due to the
significantly higher number of variants, manual review was not conducted. Instead,
only variants present in the ensemble VCF (i.e., identified by at least two of the three

variant callers) were retained in the final dataset.

2.5.8 Final filtering criteria

After compiling the final list of ensemble and rescued mutations, additional criteria

were applied to refine the dataset further:
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e Coverage: A minimum depth of 20x was required for SNVs in both tumour and
normal samples, while INDELs required a minimum depth of 30x.

e Variant Allele Frequency (VAF): SNVs were required to have a tumour VAF of
at least 5% and a normal VAF of no more than 1%. INDELSs required a tumour
VAF of at least 5% and a normal VAF of no more than 1%.

¢ Read Counts: SNVs were retained if they had at least 4 alternate reads in the
tumour sample and no more than 1 alternate read in the normal sample. INDELs
required at least 5 alternate reads in the tumour sample and no more than 1
alternate read in the normal sample.

e Homopolymer Regions: Mutations in homopolymer regions were filtered out
due to the increased likelihood of sequencing-induced artefacts in these
repetitive sequences.

e Mapping Quality: A minimum mapping quality (MAPQ) score of 60 (Phred-
scaled) was required for inclusion.

o Directional Presence: Mutations had to be detected in both forward and reverse

strands to rule out strand-specific artefacts.

By implementing these stringent filtering steps, a high-confidence dataset of somatic
mutations was generated, balancing sensitivity and specificity to ensure reliable and

reproducible results.

2.5.9 REVEL score annotation

The final list of high-quality mutations was annotated with REVEL (Rare Exome
Variant Ensemble Learner) scores, which predict the pathogenicity of missense
mutations. REVEL is an ensemble-based tool that integrates multiple pathogenicity
predictors, including SIFT, PolyPhen-2, MutationTaster, and CADD, to generate a

consensus score (loannidis, Rothstein et al. 2016).
Precomputed REVEL scores were downloaded from Zenodo

(https://zenodo.org/records/7072866). The REVEL annotation file

(revel_with_transcript_ids.txt, 6.5GB) was processed in R Studio in chunks to
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efficiently match variants based on chromosome, genomic position, reference allele,

and alternate allele.

2.6 COSMIC cancer genes

The COSMIC Cancer Gene Census (v100) was used to identify and annotate
cancer-related genes in this study. The gene list was obtained from the Catalogue of
Somatic Mutations in Cancer (COSMIC) database, accessible at:

https://cancer.sanger.ac.uk/cosmic/download/cosmic/v100/cancergenecensus

2.7 Copy number analysis

2.71 ASCAT

Copy number alterations were analysed using ASCAT (v3.1.0) (Van Loo, Nordgard
et al. 2010), a method designed to estimate tumour purity, ploidy, and allele-specific
copy number from sequencing data. Since formalin-fixed paraffin-embedded (FFPE)
samples can introduce technical biases, ASCAT was used to correct for such
artefacts and infer accurate copy number states. This was performed on the UCL
Myriad HPC cluster using R (v4.2.0).

Preprocessing steps

e Tumour and matched normal BAM files were processed using ASCAT’s
ascat.prepareHTS function.

e Allele-specific log R ratios (LogR) and B allele frequencies (BAF) were
extracted for each sample.

Reference files included:
e hg38 reference genome
e Twist Exome Capture target regions
e Battenberg allele and loci indices

e Problematic loci exclusion file
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ASCAT segmentation and Copy Number estimation

e LogR and BAF values were corrected for GC content and replication timing
biases.

e ASCAT segmentation (ascat.aspcf) was performed to identify breakpoints in
copy number alterations, applying a penalty of 70 to reduce over-segmentation.

e Final copy number profiles were generated using ascat.runAscat, estimating

tumour ploidy and purity.

2.7.2 Copy Number analysis methodology

ASCAT segmentation files were processed alongside sample metadata, with
analysis restricted to exonic regions based on Twist Bioscience Exome Capture
(hg38). Log2 copy number values from the segmentation files were used to quantify
deviations from the diploid state. The primary objectives were to quantify the fraction
of the genome altered (FGA), the number of breakpoints, and the total number of

copy number alterations (CNAS).

2.7.2.1 Fraction of Genome Altered (FGA) Calculation

To assess genomic instability, FGA was calculated using two complementary

methods:

Method 1: FGA Based on Log2 Copy number alteration (log2 CNV)
This method identifies genomic regions where the total copy number deviates

significantly from the diploid state. The log, CNV was calculated as:

MMajor + MMinor
log, 5

Segments were considered altered if log, CNV exceeded 0.2, indicating a
substantial deviation from the expected diploid copy number (2 copies per region).

FGA was then computed as:
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Total length of altered segments

FGA(Method 1) =
Ll Total targeted genomic length

This method primarily captures copy number gains and losses based on deviations

from the expected diploid state.

Method 2: FGA based on Copy Number deviations and allele-specific
imbalances
This method | developed extends Method 1 by incorporating allele-specific
imbalances, which can indicate loss of heterozygosity (LOH) and regions of allelic
imbalance. Segments were considered altered if either:

1. Total copy number # 2, indicating a gain or loss relative to the diploid state.

2. Major and minor allele counts differed, signifying allelic imbalance.

FGA (Method 2) was calculated using a similar formula to Method 1, but with broader
criteria for defining altered segments, incorporating both copy number changes and

allele-specific imbalances.

FGA(Method 2) = Total length of altered segments (based on copy number and allele-specific imbalances)

Total targeted genomic length

2.7.2.2 Additional Copy Number metrics — breakpoints and CNAs

Breakpoints: The number of transitions between adjacent copy number segments
within each sample. A breakpoint is defined as a change in copy number state within
a chromosome, representing genomic rearrangements or instability. The total
number of breakpoints was computed per sample by summing the transitions across

all chromosomes.

Total CNAs: The total number of distinct copy number alteration (CNA) events
identified in each sample. A CNA was considered unique based on the chromosome,

start position, and end position of each segment.
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2.7.2.3 Statistical analysis

Pairwise comparisons of pre- and post-radiotherapy samples were conducted using

two-tailed t-tests.

2.8 Nanoseq

To achieve higher sensitivity in detecting low-frequency mutations, | used NanoSeq,
a duplex sequencing approach designed to minimise sequencing errors and improve
the resolution of somatic mutation detection (Abascal, Harvey et al. 2021). Unlike
conventional whole-genome sequencing (WGS) or whole-exome sequencing (WES),
which are often limited by sequencing errors and low sensitivity for detecting rare
variants, NanoSeq employs duplex sequencing which is an error-correction
technique involving sequencing both strands of a DNA molecule independently. This
method significantly reduces background noise, achieving an error rate of fewer than
five errors per billion base pairs which is two orders of magnitude lower than typical
somatic mutation loads. This allows for accurate detection of low-frequency single
nucleotide variants (SNVs) and small insertions and deletions (indels), particularly in

samples with low tumour purity or minimal mutational burden.

DNA from fresh frozen tumour tissue samples from five separate patients, each with
paired pre- and post-radiotherapy specimens were sent to the Martincorena group
at the Wellcome Trust Sanger Institute, where they underwent sequencing following
the NanoSeq protocol. The resulting variant call format (VCF) files and somatic
mutation counts were returned for downstream analysis. | subsequently performed
mutational signature analysis on these data to characterise the mutation patterns

and assess genomic changes induced by radiotherapy.

2.9 Mutational signature analysis

Mutational signatures were identified using SigProfilerExtractor (v1.1.24), applying
non-negative matrix factorization (NMF) to decompose mutation profiles into their

underlying processes based on trinucleotide context. Analyses were performed
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using Python (v3.10.12), with SBS96 and ID83 mutational contexts extracted relative
to the GRCh38 reference genome (Alexandrov, Nik-Zainal et al. 2013).

210 Processing of RNAseq data

Raw RNAseq data were processed using bcbio-nextgen, aligning reads to hg38 with
STAR and quantifying transcript expression and generating counts with Salmon
(v1.9.0) (Patro, Duggal et al. 2017). Fusion transcripts were identified using

EricScript (Benelli, Pescucci et al. 2012).

2.11 Differential Gene Expression analysis

Differential gene expression analyses were performed using DESeq2 (v1.42.1)
(Love, Huber et al. 2014) in R (v3.2.1.). The analysis in the pre vs post-radiotherapy
comparison controlled for inter-patient variability by including Patient ID and
Histology as covariates in the model. Raw transcript counts were obtained from
Salmon (v1.9.0) quantification and processed using tximport (v1.30.0) to aggregate

transcript-level estimates to gene-level counts.

Data pre-processing steps included:

e Filtering out genes with fewer than 10 counts in at least three samples to
remove low-expression genes.

e Variance stabilising transformation (VST) for quality control.

e Principal Component Analysis (PCA) and Uniform Manifold Approximation
and Projection (UMAP) to assess sample clustering using the inbuilt plotPCA
function from DESeq2 and umap (v0.2.10.0) R packages respectively.

Differential expression analysis was conducted using a paired Wald test with a
design formula of ~ Histology + Patient ID + Sample type, comparing post-

radiotherapy to pre-radiotherapy samples.

Log, fold change shrinkage was applied using the apeglm method (Zhu, Ibrahim et

al. 2018) to reduce noise in low-expressed genes. Adjusted p-values were computed
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using the Benjamini-Hochberg correction, and significant genes were defined as
those with:
e adjusted p-value (padj) < 0.05

e Log; fold change > *1

212 Gene Set Enrichment Analysis

To identify biological pathways enriched in differentially expressed genes, GSEA was
performed using fgsea (v1.28.0) in R (Korotkevich, Sukhov et al. 2016). The ranked
gene list was generated based on signed -log10(p-value) weighted by log, fold
change, prioritising both significance and effect size. The analysis used Hallmark
gene sets from the Molecular Signatures Database (Liberzon, Birger et al. 2015).

Pathways were considered significantly enriched if:

e Adjusted p-value (padj) < 0.05.
e Normalised Enrichment Score (NES) > 0 (upregulated) or NES < 0

(downregulated).

2.13 Gene Ontology analysis

Gene Ontology (GO) enrichment analysis for Biological Processes (BP) was
performed in R (v4.3.1) using clusterProfiler (v4.10.1) (Yu, Wang et al. 2012),
identifying overrepresented pathways among differentially expressed genes. Genes
with adjusted p-value (padj) < 0.05 were analysed, with separate tests for

upregulated and downregulated genes. Benjamini-Hochberg correction was applied.

2.14 PROGENYy pathway activity analysis

To infer pathway activity from gene expression data, PROGENYy (v1.24.0) (Schubert,
Klinger et al. 2018) was used to estimate pathway scores based on a set of
predefined pathway-responsive genes. Transcript abundance was quantified using

Salmon (v1.9.0) to generate TPM values. These values were then transformed using
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variance stabilising transformation (VST) from DESeq2 (v1.42.1) to normalise

expression data.

PROGENYy scores were computed for 14 canonical signalling pathways. To account
for multi-region sampling, expression values from multiple regions of the same
tumour were averaged (mean) before pathway inference. Statistical comparisons
were performed between progressors and responders, using Wilcoxon rank-sum
tests to assess pathway activity differences with significance thresholds set at p <
0.05.

2.15 Immune cell inference with xCell

Immune cell proportions were estimated using xCell (v1.1.0) (Aran, Hu et al. 2017),
a gene signature-based deconvolution method. Transcript abundance was quantified
using Salmon (v1.9.0), and TPM values were normalised using variance stabilising
transformation (VST) from DESeq2 (v1.42.1). To account for multi-region sampling,
expression values from multiple tumour regions were averaged (mean) before

deconvolution.

Immune cell compositions were compared between paired pre- and post-
radiotherapy samples, as well as between progressors and responders. Wilcoxon
signed-rank tests were used to assess differences between conditions, with

statistical significance defined as adjusted p < 0.05 (Benjamini-Hochberg correction).

2.16 Gene expression-based modelling of disease

progression

To develop a gene expression-based model for predicting disease progression
following radiotherapy, transcript abundance was quantified using Salmon (v1.9.0),
and variance stabilising transformation (VST) from DESeq2 (v1.42.1) was applied.

Only post-radiotherapy samples that passed quality control were included.
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Feature selection was performed using LASSO (Least Absolute Shrinkage and
Selection Operator) regression (Tibshirani 2018), implemented via the glmnet
package (v4.1.8) in R (Hastie and Qian 2014). The optimal regularisation parameter
(lambda) was determined through 10-fold cross-validation, selecting genes most
predictive of progression. A Random Forest (RF) classifier was then trained on the
selected genes using caret (v6.0.94) (Kuhn, Wing et al. 2020) and randomForest
(v4.7.1.2) (Liaw and Wiener 2002), with stratified 10-fold cross-validation to evaluate

model performance.

2.17 Data management and storage

All data generated in this study is securely stored on UCL servers, with access
restricted to members of Dr Nischalan Pillay’s research group. Data management
and sharing were conducted in accordance with the UCL Research Data Policy,
ensuring compliance with institutional and ethical guidelines. The full policy can be
accessed at:
https://rdr.ucl.ac.uk/articles/presentation/UCL_Research_Data_Policy 2024/25579
800/17?file=45790287
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Chapter 3. Genomic responses to neoadjuvant

radiotherapy in soft tissue sarcomas.
3.1 Introduction

Radiotherapy (RT) is a key component of multimodal therapy for soft tissue
sarcomas (STS), improving local disease control and enabling limb-sparing surgery.
However, the molecular consequences of RT on tumour genomes remain poorly
defined. While previous research has described general mutational processes
associated with radiation exposure, there is limited understanding of how
neoadjuvant RT specifically impacts primary STS. This chapter aims to address this
knowledge gap by characterising genomic alterations in pre- and post-radiotherapy
STS samples, focusing on mutational burden, copy number changes, and mutational

signatures.

Cohort overview

This genomic study includes 56 patients treated at the London Sarcoma Service,
encompassing 12 different histological subtypes of STS. Tumour samples were
collected pre- and/or post-RT, providing a unique opportunity to assess direct
genomic changes induced by therapy. Whole exome sequencing (WES) and Whole
genome sequencing (WGS) was used to analyse broad genomic alterations, while
NanoSeq, a high-sensitivity sequencing approach, was applied to detect low-

frequency mutations, enhancing resolution beyond traditional WES.

Objectives of this chapter

This chapter specifically addresses the following questions:

e What is the mutational burden of pre- and post-radiotherapy STS samples?

e Are there specific mutational signatures enriched in post-radiotherapy samples,
indicative of RT-induced DNA damage?

e Does RT induce copy number alterations (CNAs), and do these changes vary by
histological subtype?

e How do sequencing approaches (WES vs. NanoSeq) compare in capturing these

RT-induced genomic changes?
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By integrating both bulk sequencing data and high-sensitivity targeted sequencing,
this chapter aims to distinguish therapy-driven mutations from pre-existing tumour-

intrinsic alterations.

Structure of this chapter

The chapter begins with an analysis of the baseline mutational landscape of pre-
treatment STS samples, contextualising them against prior large-scale sarcoma
genomic studies (e.g., TCGA, MSKCC cohorts). This is followed by comparative
analyses of somatic mutations in pre- and post-RT samples, including single
nucleotide variants (SNVs), small insertions/deletions (indels), and their ratios. Copy
number alterations (CNAs) are then assessed across the cohort, with a particular
focus on subtype-specific responses to RT. Finally, mutational signature analysis is
performed, leveraging both WES and NanoSeq data to identify potential RT-specific

mutagenic processes.
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3.2 The mutational landscape of the London Sarcoma Service

cohort.

In this section | characterise the single nucleotide variants (SNVs) and
insertion/deletion (indel) mutations within this London Sarcoma Service (LSS) cohort
of soft tissue sarcomas. | begin with quantifying the tumour mutational burden across
the cohort and then move on to describing both the frequency and distribution of
somatic mutations across the subtypes examined with particular attention paid to
known cancer genes and relating the findings in this study to what has previously

been shown in the current literature.

3.2.1 Tumour mutational burden varies across and within different

subtypes

A total of 70 samples, representing 56 unique patients, underwent somatic mutation
analysis. This comprised 65 WES and 5 WGS samples. Following the stringent
criteria outlined in the methods, a total of 21,510 mutations were identified across 70
samples. The median number of SNVs and INDELs called for the 65 WES samples
was 33 and 2, and for the 5 WGS samples was 3873 and 145 respectively.

The tumour mutational burden (TMB) was calculated for the samples by normalising
the number of mutations detected to the size of the genomic region sequenced. For
the WES samples, the TMB was determined by dividing the total number of
mutations by the total exome size. Specifically, this was the amount that was
sequenced and was calculated using the sum of the targeted regions listed in the
Twist Exome Target hg38 bed file, which is approximately 33 Mb. For WGS samples,
the TMB was calculated by dividing the total number of mutations by the entire
genome size, which is approximately 3200 Mb. The results from both WES and WGS
samples were then combined. The TMB ranged between 0.5 and 1.7 mutations/Mb
with a median TMB across the samples of 1.07 mutations/Mb (Figure 3.1). A TCGA
analysis of 206 soft tissue sarcomas representing 6 different subtypes found an
average TMB of 1.06 per Mb (2017), therefore my results are consistent with this
study.
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Figure 3.1. Distribution of Tumour Mutational Burden by sarcoma subtype.

This scatter plot shows the distribution of tumour mutational burden (TMB) across
various sarcoma subtypes, measured in mutations per megabase (Mut/Mb) and
displayed on a logarithmic scale. Each dot represents an individual sample, with
colours indicating different sarcoma subtypes. Red horizontal lines indicate the
median TMB for each subtype. TMB values were normalised to the sequenced
genomic region size, with whole-exome sequencing (WES) samples normalised to
the exome and whole-genome sequencing (WGS) samples to the entire genome.
Subtypes are ordered by decreasing median TMB, from left to right: MFS
(Myxofibrosarcoma, 1.7), pLMS (Pleomorphic Leiomyosarcoma, 1.4), pLPS
(Pleomorphic Liposarcoma, 1.3), ddLPS (Dedifferentiated Liposarcoma, 1.1), UPS
(Undifferentiated Pleomorphic Sarcoma, 1.0), CCS (Clear Cell Sarcoma, 0.9), SpCS
(Spindle Cell Sarcoma, 0.8), mLPS (Myxoid Liposarcoma, 0.6), MEC (Myoepithelial
Carcinoma, 0.6), ASPS (Alveolar Soft Part Sarcoma, 0.6), EMC (Extraskeletal
Myxoid Chondrosarcoma, 0.5), and SS (Synovial Sarcoma, 0.5).
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Most of the tumour samples exhibit TMB values that are closely clustered around the
median value, indicating a relatively consistent mutational burden within most
histological subtypes. However, there are notable exceptions where outliers
significantly deviate from the median. Specifically, myxofibrosarcoma (MFS) and
undifferentiated pleomorphic sarcoma (UPS) exhibit the most significant deviations
from the median TMB, with maximum values reaching 13.6 and 15.8 mutations per
megabase (Mut/Mb) respectively. These differences of 11.9 Mut/Mb from the median
for MFS and 14.8 Mut/Mb for UPS indicate substantial variability within these
subtypes, driven by outlier tumour samples with exceptionally high mutational
burdens. Spindle cell sarcoma (NOS) (which is not a specific subtype) also shows
notable variability, with a maximum TMB of 3.44 Mut/Mb, resulting in a difference of
2.59 Mut/Mb from the median, though this is less pronounced compared to the
variability observed in MFS and UPS. In contrast, other subtypes display minimal

deviations from the median, indicating a more uniform TMB across samples.
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3.2.2 Identification of somatic mutations within known cancer genes

| next aimed to investigate the specific mutations occurring in known cancer-related
genes within these sarcoma samples. Figure 3.2 shows an oncoplot, which

represents the mutation profiles across different samples and sarcoma subtypes.

The oncoplot was constructed by filtering the high-quality mutation dataset
comprising the identified 21,510 mutations from 56 patients to include only those
mutations found in genes known to be associated with cancer. Using the COSMIC
cancer gene list (version 100) (Sondka, Bamford et al. 2018) which comprises 581
genes known to be associated with cancer to filter this dataset, | identified 530
mutations across 45 samples. Variants with less impactful on protein function such
as silent mutations and mutations in non-coding regions (those occurring in regions
labelled as Intron, 3'UTR, 5'UTR, 3'Flank, and 5'Flank) were excluded to focus on
mutations that are more likely to have functional consequences. This resulted in a

final set of 130 mutations seen in 51 samples representing 41 unique patients.

94



Chapter 5. Results

15
1% I ITMB
‘ Subtype

D1 |

A T e sample type

Subtype

B AsPs
Wccs
EMC
B vEC
B MFs
M mLPs
pLMS
M oLPs
Spcs
Wss
W upPs

Sample type

M Pre RTx
Post RTx
Recurrence

B Metastasis

Mutations

B Missense Mutation
B Frame Shift Del
MNonsense Mutation
Splice Region
In Frame Ins
In Frame Del
Frame Shift Ins
Splice Site
None

Figure 3.2 Oncoplot of somatic mutations in known cancer genes.

This heatmap visualises the different types of somatic mutations identified within the
COSMIC cancer genes. Each column represents an individual sample, while each
row corresponds to a specific gene. The samples are annotated at the top with their
Tumour Mutational Burden (TMB), histological subtype, and sample type, as
indicated in the legend. The genes are ordered by in decreasing frequency of
mutations across all samples.
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3.2.2.1 Analysis of missense mutations

Most of the mutations were missense mutations, with 94 instances identified, making
it the most common type of mutation observed. Missense mutations involve a single
nucleotide change that result in the substitution of one amino acid for another in the
protein product, potentially altering the function of the protein. This predominance of
missense mutations is consistent with expectations, as these mutations are the most
common type of somatic mutations found in cancer (Vogelstein, Papadopoulos et al.
2013). The most common genes with missense mutations in this cohort were TP53,
PIK3CA, MTOR with 5, 4, and 3 instances identified respectively.

To evaluate the functional relevance of the missense mutations observed in this
cohort, the Rare Exome Variant Ensemble Learner (REVEL) (loannidis, Rothstein et
al. 2016) was employed. REVEL is a machine learning-based tool that integrates
scores from multiple pathogenicity prediction methods, including SIFT (Kumar,
Henikoff et al. 2009), PolyPhen-2 (Adzhubei, Schmidt et al. 2010), MutationAssessor
(Reva, Antipin et al. 2011), and others. It is specifically designed to predict the
pathogenicity of missense mutations based on their likelihood to affect protein
function. The REVEL score ranges from 0 to 1, with higher scores indicating a greater
likelihood of pathogenicity. Scores 20.75 were classified as “High,” 0.5-0.74 as
“‘Moderate,” and <0.5 as “Likely Benign,” according to thresholds previously
established in the literature (Garcia, de Andrade et al. 2022, Hopkins, Wakeling et al.
2023).

Using REVEL to analyse and categorise the missense mutations identified within the
COSMIC cancer genes in this cohort, 14 mutations were categorised as "High"
pathogenicity (Table 3.1) and 16 as "Moderate" pathogenicity (Table 3.2). The

remaining mutations were classified as "Likely Benign".

To determine whether these mutations had been previously reported in published
studies, | queried the cBioPortal for Cancer Genomics. cBioPortal (Cerami, Gao et
al. 2012) is a publicly accessible platform offering integrative visualization and
analysis tools for large-scale cancer genomics datasets. Using this platform, | cross-

referenced the mutated genes identified in this cohort against all sarcoma datasets,

96



Chapter 5. Results

including TCGA and MSKCC studies (Barretina, Taylor et al. 2010, 2017, Gounder,
Agaram et al. 2022, Nacev, Sanchez-Vega et al. 2022), to evaluate whether the
mutations were previously reported or represented novel findings within their

respective histological subtypes.
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Missense mutations classified as "High" pathogenicity by REVEL (scores =0.75). In
the Gene column, bold entries represent novel mutations. Numbers in parentheses
indicate the frequency of mutations in that gene within the corresponding tumour
type, based on the cBioPortal database. Sample types include Pre RT (pre-
radiotherapy), Post RT (post-radiotherapy), and Recurrence/Metastasis.

Patient ID Histology

32
6
12
44
54
55
53
25

58
40

Alveolar soft part sarcoma
Myxofibrosarcoma
Myxofibrosarcoma
Myxofibrosarcoma
Myxofibrosarcoma
Myxofibrosarcoma

Myxoid liposarcoma
Pleomorphic

leiomyosarcoma

Spindle cell sarcoma (NOS)

Undifferentiated

pleomorphic sarcoma

98

Sample type
Metastasis
Pre RT

Pre RT

Pre RT

Pre RT

Pre RT

Post RT

Pre RT

Recurrence
Pre RT

Gene

GNAQ, TP53 (4/66)
CBLB, PAX5 (1/194)
FGFR1

NOTCH1 (1/194)
TP53 (66/194)
CACNA1D (1/194)
TP53 (25/183)

TP53 (677/1228)

MSN
HOXC13, RAF1 (1/590),
TP53 (267/590)



Chapter 5. Results

Table 3.2. Moderate pathogenicity missense mutations

Missense mutations classified as "Moderate" pathogenicity by REVEL (scores 0.5—
0.74). In the Gene column, bold entries represent novel mutations. Numbers in
parentheses indicate the frequency of mutations in that gene within the
corresponding tumour type, based on the cBioPortal database. Sample types
include Pre RT (pre-radiotherapy), Post RT (post-radiotherapy), and
Recurrence/Metastasis.

Patient ID Histology Sample type Gene
- 32 Alveolar soft part sarcoma ~ Metastasis ~ ACVR2A
61 Clear cell sarcoma Metastasis ERBB3
8 Myxofibrosarcoma Post RT ZFHX3 (4/194)
16 Myxofibrosarcoma Pre RT AKT1
17 Myxofibrosarcoma Pre RT LMNA
48 Myxofibrosarcoma Post RT ATRX (22/194)
50 Myxofibrosarcoma Post RT KMT2C (4/194)
24 Pleomorphic leiomyosarcoma  Pre RT JAK3 (1/1228)
45 Pleomorphic leiomyosarcoma  Pre RT FOXP1 (4/1228),
SLC34A2
58 Spindle cell sarcoma Recurrence FGFR1 (2/590),
PIK3CA (17/590)
1 Synovial sarcoma Post RT CTNNB1 (10/353)
20 Synovial sarcoma Pre RT SMAD3
40 Undifferentiated pleomorphic Pre RT BCLIL (1/590),
sarcoma FBXW7
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High pathogenicity mutations, including those in CACNA1D, NOTCH1, PAX5, RAF1,
and TP53 were found to have been previously reported in their respective subtypes
in cBioPortal, reinforcing their clinical and biological relevance (Table 3.1). For
example, TP53 mutations were frequently observed across multiple subtypes,
consistent with its role as a key tumour suppressor gene. However, novel mutations
were also identified in this analysis, including GNAQ in alveolar soft part sarcoma,
CBLB and FGFR1 in myxofibrosarcoma, MSN in spindle cell sarcoma, and HOXC13
in undifferentiated pleomorphic sarcoma, highlighting potentially unexplored

pathogenic mechanisms in these tumours.

Moderate pathogenicity mutations similarly included both previously reported and
novel findings. Reported mutations included ATRX, BCL9L, CTNNB1, FGFR1,
FOXP1, JAK3, KMT2C, PIK3CA, and ZFHX3 which were detected in their respective
tumour subtypes (Table 3.2). Novel mutations identified in this category included
ACVRZ2A in alveolar soft part sarcoma, ERBB3 in clear cell sarcoma, AKT1 and
LMNA in myxofibrosarcoma, SLC34A2 in pleomorphic leiomyosarcoma, SMAD3 in

synovial sarcoma, and FBXW?7 in undifferentiated pleomorphic sarcoma.

These findings highlight the well-documented heterogeneity of soft tissue sarcomas,
as evidenced by the identification of both well-characterised mutations, such as
TP53, and novel mutations, including HOXC13 and GNAQ. By integrating REVEL
scores with publicly available cancer genomics datasets, such as those in cBioPortal,
this analysis provides a practical framework for prioritising mutations based on
predicted pathogenicity. High pathogenicity mutations, such as those in TP53 and
NOTCH1, are well-known to drive cancer progression and likely have direct
functional consequences. In contrast, moderate pathogenicity mutations, such as
those in ATRX and KMT2C, may play a contributory role, potentially interacting with
other genomic alterations to influence tumour behaviour. Experimental validation
would be required to elucidate the functional significance of these missense

mutations and better understand their roles in sarcoma pathogenesis.
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3.2.2.2 Analysis of frameshift and nonsense mutations

In addition to missense mutations, there were 13 instances each of frameshift
deletions and nonsense mutations. Frameshift deletions, which occur when
nucleotides are deleted from the DNA sequence in numbers that are not multiples of
three, result in a shift of the amino acid codon reading frame, often leading to a
truncated, non-functional protein. Nonsense mutations introduce a premature stop
codon into the DNA sequence, also resulting in a truncated protein. Both types of
mutations are typically associated with loss of function and are frequently observed
in tumour suppressor genes. As in this cohort, frameshift deletions were identified in
the well-known tumour suppressor genes ATRX, CDKN2A, RB1, and TP53.
Nonsense mutations were identified in the tumour suppressor genes APC, ATRX,
HNF1A, PTEN, SMARCA4, and TP53.

There were also smaller numbers of other mutation types: frameshift insertions (2
instances - FOX03, and TP53), in-frame deletions (1 instance - EP300), in-frame
insertions (1 instance - COL1A1), splice region mutations (3 instances — ARNT, and
ERBB4), and splice site mutations (3 instances - KMT2D, and PTCH1). Frameshift
insertions, like deletions, can cause significant disruption to the resulting protein,
while in-frame deletions and insertions result in the addition or removal of amino
acids without altering the overall reading frame, which may or may not affect protein
function depending on the location and context. Splice region and splice site
mutations affect the process by which introns are removed from pre-mRNA,
potentially leading to the inclusion of intronic sequences in the mRNA or the
exclusion of exonic sequences, which can have an adverse effect on the resulting

protein.
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3.2.2.3 Recurrently mutated genes in the LSS cohort

Analysis of the LSS cohort identified 17 genes that were recurrently mutated in more
than one patient. This includes missense mutations with any REVEL score. Table
3.3 provides a summary of these genes, including the specific sarcoma subtypes
affected and the number of patients in which each gene was mutated. The most
frequently mutated genes were TP53, ATRX, and PIK3CA, which were found to be

mutated in 9, 4, and 4 patients, respectively.

TP53 was found to be mutated across several sarcoma subtypes, including
pleomorphic liposarcoma, myxoid liposarcoma, pleomorphic leiomyosarcoma,
undifferentiated pleomorphic sarcoma, and myxofibrosarcoma. These findings are
consistent with those from a large study performed using the MSK IMPACT targeted
sequencing (Zehir, Benayed et al. 2017) panel on 2,138 sarcomas. They reported
TP53 mutations in 68% of pleomorphic liposarcoma cases, 3% of myxoid
liposarcoma cases, 45% of pleomorphic leiomyosarcoma cases, 43% of
undifferentiated pleomorphic sarcoma cases, and 26% of myxofibrosarcoma cases
(Nacev, Sanchez-Vega et al. 2022). In their cohort of 13 alveolar soft part sarcomas,
none had a TP53 mutation. This tumour is typically caused by a ASPSCR1::TFE3
fusion (Sicinska, Kola et al. 2024) . In the LSS cohort the TP53 mutation was

identified only in the metastasis sample but not in the primary tumour.

Similarly, ATRX mutations in the LSS cohort were identified in myxofibrosarcoma
and undifferentiated pleomorphic sarcoma, which is in line with the same study that
found ATRX mutations in 10% of myxofibrosarcoma cases and 18% of
undifferentiated pleomorphic sarcoma cases (Nacev, Sanchez-Vega et al. 2022).
Both TP53 and ATRX have also been found to be recurrently mutated in 27 and 38%
respectively of a cohort of 76 undifferentiated pleomorphic sarcomas (Steele,

Tarabichi et al. 2019) from the London Sarcoma Service.
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Table 3.3. COSMIC cancer genes mutated in multiple patients across cohort.

This table lists the COSMIC cancer-related genes that were found to be mutated in
more than one patient across the different sarcoma subtypes. Alveolar Soft Part
Sarcoma (ASPS), Clear Cell Sarcoma (CCS), Dedifferentiated Liposarcoma (ddLPS),
Extraskeletal Myxoid Chondrosarcoma (EMC), Myoepithelial Carcinoma (MEC),
Myxofibrosarcoma (MFS), Myxoid Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma (pLMS),
Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS),
Undifferentiated Pleomorphic Sarcoma (UPS).

TP53 pLPS, mLPS, pLMS, ASPS, UPS, 9
MFS

ATRX MFS, UPS 4
PIK3CA mLPS , SpCS, CCS 4
ACVR2A  ASPS, UPS 2
BCR MFS, mLPS 2
CACNA1 MFS 2
D

CREBBP MEC, mLPS 2
ERBB4 pLPS, MFS 2
FBXW7 EMC, UPS 2
FGFR1 MFS, SpCS 2
KMT2D UPS, SpCS 2
LRP1B UPS, MFS 2
NOTCH1 ASPS, MFS 2
NTRK3 pLPS, mLPS 2
PAXS MFS, pLMS 2
PREX2 MFS 2
ROS1 MFS, UPS 2
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PIK3CA mutations were observed in myxoid liposarcoma, spindle cell sarcoma, and
clear cell sarcoma. Likewise PIK3CA mutations were present in 27% of myxoid
liposarcoma cases and 5% of spindle cell sarcoma cases of the MSK IMPACT study
(Nacev, Sanchez-Vega et al. 2022). Unlike in this cohort, they did not report a

PIK3CA mutation in their cohort of 16 clear cell sarcomas.

3.2.2.4 Somatic mutations identified in each histological subtype

Table 3.4 summarises the COSMIC cancer-related genes mutated within each
histological subtype, along with the number of patients affected for each gene. The
data highlight both shared mutations within subtypes and unique mutations in
individual cases. It is evident that some tumour subtypes harbour a greater number
of somatic mutations within cancer genes compared to others, even after accounting

for differences in sample sizes across subtypes.

For instance, myxofibrosarcoma (MFS) exhibited a diverse range of mutations
across 43 different cancer-related genes, with ATRX, CACNA1D, PREX2, and TP53
being mutated in 3, 2, 2, and 2 patients, respectively. Similarly, undifferentiated
pleomorphic sarcoma (UPS) showed mutations in 21 different cancer genes, with
TP53 mutations found in 2 patients. These findings suggest that MFS and UPS may
have a more heterogeneous mutational landscape, potentially contributing to their

variable clinical behaviour and treatment responses.
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Table 3.4. COSMIC cancer genes mutated in each sarcoma subtype

This table presents a detailed overview of the cancer-related genes that were
mutated in each sarcoma subtype, along with the number of different patients in
which each gene was mutated shown in parenthesis. Genes highlighted in bold are
mutated in multiple patients.

Subtype No. of Genes (No. of Patients)

Patients
Myxofibrosarcom 18 ATRX (3), CACNA1D (2), PREX2 (2), TP53
a (2), AKT1 (1), APC (1), BCR (1), CALR (1),

CBLB (1), CDKN2A (1), CHD4 (1), EIF3E (1),
EP300 (1), ERBB4 (1), FCRL4 (1), FGFR1 (1),
HLF (1), HMGA2 (1), HNF1A (1), IKBKB (1),
KDR (1), LMNA (1), LRP1B (1), MED12 (1),
MUTYH (1), NOTCH1 (1), NUP214 (1), PALB2
(1), PAX5 (1), PDE4DIP (1), PTCH1 (1), PTEN
(1), QKI (1), RB1 (1), RNF213 (1), ROS1 (1),
RPL10 (1), RXRA (1), SND1 (1), STAG2 (1),
TRIP11 (1), WT1 (1), ZFHX3 (1)

Synovial sarcoma 4 CAMTA1 (1), COL1A1 (1), CTNNB1 (1),
NTRK1 (1), SMAD3 (1)

Myxoid 4 PIK3CA (2), TP53 (2), BCR (1), CREBBP (1),

Liposarcoma NTRKS3 (1), RBM10 (1),

Pleomorphic 3 AR (1), ARNT (1), ELK4 (1), ERG (1), FOX03

Leiomyosarcoma (1), FOXP1 (1), JAK3 (1), PAX5 (1), PTPN13

(1), SLC34A2 (1), SMARCA4 (1), TBL1XR1
(1), TP53 (1)

Pleomorphic 3 ERBB4 (1), FBX0O11 (1), IRS4 (1), MUC1 (1),
Liposarcoma NTRK3 (1), TP53 (1)

Extraskeletal 2 ETV6 (1), FBXWT7 (1)

Myxoid

Chondrosarcoma

Spindle cell 2 APOBEC3B (1), FGFR1 (1), KMT2D (1), MSN
sarcoma (1), PIK3CA (1), PRDM16 (1), PTK6 (1)
Undifferentiated 2 TP53 (2), ACVR2A (1), ATRX (1), AXIN2 (1),
Pleomorphic BCLOL (1), BRCA1 (1), DNMT3A (1), FBXW7
Sarcoma (1), HOXC13 (1), KDM5C (1), KLF6 (1),

KMT2D (1), LATS2 (1), LRP1B (1), NCOR2
(1), NF1 (1), PPFIBP1 (1), PTPRC (1), RAF1
(1), ROS1 (1), SRC (1)

Alveolar Soft Part 1 ACVR2A (1), NOTCH1 (1), TP53 (1)
Sarcoma

Clear Cell 1 ERBB3 (1), MTOR (1), PIK3CA (1), RNF43 (1)
Sarcoma

Myoepithelial 1 CREBBP (1)

Carcinoma
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In contrast, subtypes such as myoepithelial carcinoma (MEC), extraskeletal myxoid
chondrosarcoma (EMC), and alveolar soft part sarcoma (ASPS) had fewer mutated
cancer-related genes (1, 2, and 3 genes, respectively). This observation suggests a
more limited role for single nucleotide variants (SNVs) and small insertions or
deletions (Indels) as potential driver mutations in these tumour types. Notably,
subtypes such as synovial sarcoma, extraskeletal myxoid chondrosarcoma, myxoid
liposarcoma, myoepithelial carcinoma, alveolar soft part sarcoma, and clear cell
sarcoma are known to harbour specific gene fusions that drive tumourigenesis. In
contrast, subtypes like myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic
leiomyosarcoma, undifferentiated pleomorphic sarcoma, spindle cell sarcoma, and
dedifferentiated liposarcoma typically lack recurrent fusion genes, reflecting a

different molecular pathogenesis.

Integration of RNA sequencing data obtained for many of these patients (detailed in
Chapter 4) corroborated the presence of fusion mRNA transcripts in many cases.
For example:
o Patient 9 and Patient 29, both diagnosed with EMC, were found to have
canonical EWSR1::NR4A3 and TCF12::NR4A3 fusions, respectively.
o Patient 32, diagnosed with ASPS, exhibited the characteristic
ASPSCR1::TFE3 fusion.

These results underscore the complexity of sarcoma genomics, where some

subtypes are driven predominantly by gene fusions, while others display a broader

spectrum of somatic mutations.
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3.2.3 Summary

The findings presented in this section confirm that the mutation profiles observed
within this cohort are consistent with previously reported data for soft tissue
sarcomas, reinforcing the reliability of both the sequencing and somatic mutation
calling methods used. This alignment with existing literature provides a reliable
foundation for the comparative analyses of pre- and post-radiotherapy samples

presented in the following sections.
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3.3 Comparative analysis of somatic mutation burden in pre-

and post-radiotherapy sarcoma samples.

While radiotherapy is known to cause DNA damage, its direct effect on the mutation
burden of soft tissue sarcomas remains uncertain. Previous studies suggest that
radiotherapy does not significantly increase the overall tumour mutational burden
(TMB) in STS, which typically exhibits a low baseline mutation rate of approximately
1 mutation per megabase (Mb) (see Section 1.3). However, this does not exclude
the possibility of subtle mutational shifts following treatment, particularly in the
distribution of single nucleotide variants (SNVs) and insertion/deletion mutations
(indels). In other cancers, radiation exposure has been associated with an increase
in indel mutations, particularly deletions, due to the involvement of error-prone DNA
repair mechanisms such as non-homologous end joining (NHEJ) and
microhomology-mediated end joining (MMEJ) (see Section 1.4.3.1). Given that
radiotherapy induces double-strand breaks (DSBs), it is reasonable to hypothesise
that the Indel-to-SNV ratio in STS may be altered post-treatment, with a shift toward

a higher frequency of deletions relative to insertions.

The extent of these changes is likely to vary across different histological subtypes of
STS. Although no prior studies have systematically analysed pre- vs. post-
radiotherapy mutation burden in sarcomas, some subtypes may be more prone to
radiation-induced genomic changes based on their baseline levels of genomic
instability. For example, dedifferentiated liposarcoma (ddLPS) and
myxofibrosarcoma (MFS) are known to exhibit extensive chromosomal alterations
and ongoing genome evolution, making them potential candidates for higher
mutation burden post-radiotherapy. In contrast, synovial sarcoma (SS) and clear cell
sarcoma (SpCS) typically have comparatively more stable genomes with
characteristic fusion drivers, suggesting they may accumulate fewer additional
mutations following radiotherapy. If significant differences emerge between
histologies, this could indicate that intrinsic genomic stability influences the extent of
radiotherapy-induced mutagenesis, an important consideration for future research

into subtype-specific responses to treatment.
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To investigate these potential effects, this section systematically compares the
somatic mutation burden in pre- and post-radiotherapy sarcoma samples using
whole exome sequencing (WES). The analysis begins with an unpaired comparison
of all pre- and post-radiotherapy samples to determine whether radiotherapy leads
to a global increase in SNVs or indels across the cohort. This is followed by a
histology-specific analysis, where mutation counts are examined separately for
subtypes with sufficient sample numbers to detect statistical differences. Additionally,
a paired comparison of patients with available matched pre- and post-radiotherapy
samples is conducted to assess individual-level mutational changes, which helps
account for inter-patient variability. Lastly, the Indel-to-SNV ratio and Deletion-to-
Insertion ratio are examined to determine whether radiotherapy induces a
preferential shift toward indel formation, particularly deletions, which would be

consistent with known mechanisms of radiation-induced mutagenesis.

Although a significant increase in TMB is not expected, the findings from this analysis
will clarify whether radiotherapy results in more subtle but biologically relevant
mutational changes in STS. If an increase in the Indel-to-SNV ratio or a shift toward
deletions is observed, this would suggest that radiotherapy is driving specific
mutational processes in these tumours, likely through its impact on DNA repair
pathways. Furthermore, if distinct histology-specific differences emerge, this could
indicate that some STS subtypes are more prone to radiation-induced genomic
alterations than others, potentially due to their baseline genomic stability or inherent
DNA repair mechanisms. These results will provide the groundwork for later sections,
which will explore copy number alterations and mutational signatures to further

characterise the genomic consequences of radiotherapy in STS.
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3.3.1 Unpaired comparison of all pre- and post-radiotherapy samples.

The initial analysis aimed to determine if there was a difference in the number of
SNVs or indels following radiotherapy. There was no significant difference in the
number of SNVs (p = 0.88) or indels (p = 0.17) when comparing all pre- to all post-
radiotherapy whole exome sequencing (WES) samples (Figure 3.3). For SNVs, 46
pre-radiotherapy samples were compared to 15 post-radiotherapy samples, with
median SNV counts of 32.5 and 33, respectively. For indels, 37 pre-radiotherapy
samples were compared to 12 post-radiotherapy samples, with median indel

counts of 3 in the pre-radiotherapy group and 2 in the post-radiotherapy group.
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Figure 3.3. Comparison of the frequency of SNVs and indels in pre- and post-
radiotherapy sarcoma samples.

This figure shows the distribution of the number of SNVs (left panel) and Indels (right
panel) in tumour samples collected before (pre-RT) and after radiotherapy (post-RT).
Each point represents a tumour sample, coloured by its histological subtype. The p-
values for the comparisons between pre-RT and post-RT were calculated using the
Wilcoxon rank-sum test (unpaired) and are shown in the title of each panel. The
boxes display the interquartile range with the median indicated by the horizontal line,
and the whiskers extend to 1.5 times the interquartile range. The y-axis is broken to
better visualise samples with lower mutation counts, while still displaying the two
outliers. Alveolar Soft Part Sarcoma (ASPS), Dedifferentiated Liposarcoma (ddLPS),
Extraskeletal Myxoid Chondrosarcoma (EMC), Myoepithelial Carcinoma (MEC),
Myxofibrosarcoma (MFS), Myxoid Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma (pLMS),
Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS),
Undifferentiated Pleomorphic Sarcoma (UPS).
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3.3.2 Unpaired comparison of pre- and post-radiotherapy samples within

sarcoma subtypes

To assess whether radiotherapy impacted the number of SNVs and indels within
individual subtypes, | focused on subtypes with sufficient pre- and post-radiotherapy
samples for statistical analysis. Six subtypes met this criterion: dedifferentiated
liposarcoma, myxofibrosarcoma, myxoid liposarcoma, pleomorphic liposarcoma,
spindle cell sarcoma, and synovial sarcoma. No statistically significant differences
were observed in the number of SNVs or indels post-radiotherapy across any of

these subtypes (Figure 3.4).
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Figure 3.4. Comparison of the frequency of SNVs and indels pre- and post-
radiotherapy across different histological subtypes.

This figure illustrates the number of SNVs (left panel) and indels (right panel) in
tumour samples before and after radiotherapy separated by histological subtype. The
p-values for the comparisons between pre-RT and post-RT were calculated using
the Wilcoxon rank-sum test (unpaired) and are shown in the title of each panel. The
boxes display the interquartile range with the median indicated by the horizontal line,
and the whiskers extend to 1.5 times the interquartile range. Dedifferentiated

Liposarcoma (ddLPS), Myxofibrosarcoma (MFS), Myxoid Liposarcoma (mLPS), Pleomorphic
Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS).
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3.3.3 Paired analysis of patients with matching pre- and post-

radiotherapy samples

| conducted a paired analysis on patients for whom both pre- and post-radiotherapy
samples were available. There was no significant difference in the number of SNVs

(p = 0.49) or indels (p = 0.36) following radiotherapy (Figure 3.5).

In 6 out of the 7 patients, the number of indels remained stable post-radiotherapy.
Notably, in patient 50 (diagnosed with myxofibrosarcoma), there was a loss of one
indel after radiotherapy. Specifically, this was a TG frameshift deletion mutation in
the EPHA1 gene, detected in the pre-radiotherapy biopsy but absent in the post-
radiotherapy resection specimen. This absence in the post-treatment sample could
reflect a potential treatment effect, wherein the mutation bearing cells were
selectively killed by radiotherapy, or it may be attributed to sampling variation
between the biopsy and resection specimen. Specifically, the mutation may have
been present only in a subclone of the tumour that was sampled in the biopsy but
not in the resected specimen, leading to its absence in the post-radiotherapy sample.
This kind of variation is not uncommon, as tumour heterogeneity can result in certain
mutations being detected in one sample but not in another (Gerlinger, Rowan et al.
2012, Jamal-Hanjani, Wilson et al. 2017).
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Figure 3.5. Comparison of the frequency of SNVs and indels in paired pre- and

post-radiotherapy sarcoma samples.

The results of 7 patients with paired pre- and post-radiotherapy whole exome
sequencing SNV and Indel mutation data are presented here. No significant
difference is seen in the number of SNVs or Indels. Paired t-test. Myxofibrosarcoma
(MFS), Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma

(SS).
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3.3.4 Assessment of the Indel-to-SNV and the Deletion-to-Insertion ratio

In addition to comparing the frequency of SNVs and indels, | further investigated
specific metrics to assess the genomic impact of radiotherapy. The two key metrics
analysed were the Indel-to-SNV ratio and the Deletion-to-Insertion ratio across pre-

radiotherapy, post-radiotherapy, metastasis, and recurrence samples.

These ratios specifically quantify the balance between different types of mutations,
such as the ratio of indels relative to SNVs and the tendency for deletions over
insertions. An increased Indel-to-SNV ratio may indicate that radiotherapy has
heightened the frequency of double-strand breaks, leading to more error-prone repair
processes like non-homologous end joining (NHEJ), which can result in a higher
occurrence of insertions and deletions compared to point mutations. This would align
with previous studies, such as an analysis of radiation-associated gliomas, where an
increased burden of indels relative to the overall mutation profile was observed
following radiotherapy exposure (Kocakavuk, Anderson et al. 2021). Additionally,
findings from radiation-exposed populations, such as those studied in the aftermath
of the Chernobyl disaster, have also highlighted similar increases in DNA repair-
associated mutational patterns, emphasising the role of radiation in driving genomic
instability (Morton, Karyadi et al. 2021).

Meanwhile, a higher Deletion-to-Insertion ratio could suggest that radiotherapy-
driven DNA damage is more likely to be resolved through deletion events, potentially
due to specific vulnerabilities in the genome to radiation-induced breaks. This is
consistent with the findings from prior research that identified a propensity for

deletions in radiation-exposed tissues (Behjati, Gundem et al. 2016).

The deletion-to-insertion ratio was assessed across pre-radiotherapy, post-
radiotherapy, metastasis, and recurrence samples (Figure 3.6A). The median ratio
was 1.0 in both pre- and post-radiotherapy samples, indicating no significant change
following treatment. Metastasis samples exhibited a higher median ratio of 1.89,
while recurrence samples showed the highest median ratio of 4.0, suggesting a
greater prevalence of deletions compared to insertions in these groups. A statistically

significant difference was observed between pre-radiotherapy and recurrence
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samples (p = 2e-05), while differences between pre-radiotherapy and post-

radiotherapy or metastasis samples were not significant.

The indel-to-SNV ratio was also analysed (Figure 3.6B), revealing a median value of
0.067 in pre-radiotherapy samples, which slightly decreased to 0.048 in post-
radiotherapy samples. Metastasis samples showed a similar median ratio of 0.056,
whereas recurrence samples had a notably higher median of 0.221, indicating an
increased indel burden in cases of recurrent disease. However, the differences in the
indel-to-SNV ratio between pre-radiotherapy and the other sample types did not

reach statistical significance.
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Figure 3.6. Comparison of Deletion-to-Insertion and Indel-to-SNV Ratios

Boxplots of (A) Deletion-to-Insertion ratio and (B) Indel-to-SNV ratio across pre-
radiotherapy (pre_RT), post-radiotherapy (post RT), metastasis, and recurrence
samples. Each point represents an individual tumour sample, coloured by
histological subtype. The statistical comparisons between pre-radiotherapy and
other sample types (post-radiotherapy, metastasis, and recurrence) are shown
above each boxplot, with p-values obtained using t-tests. Asterisks indicate levels of
statistical significance (**** p < 0.0001), while 'ns' denotes non-significant
differences. The centre line of the box plot represents the median value, with the
edges of the box indicating the interquartile range, and the whiskers extending to 1.5
times the interquartile range.
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3.3.5 Case study of somatic mutation dynamics in patient 58: a
longitudinal analysis across pre-, post-radiotherapy, and recurrence

stages.

Longitudinal analyses of somatic mutations provide valuable insights into the
evolutionary dynamics of tumours in response to treatment and disease progression.
This case study examines the mutational landscape of patient 58, a 53-year-old male
diagnosed with spindle cell sarcoma of the triceps, by sequencing tumour specimens
collected at three key time points: pre-radiotherapy, post-radiotherapy, and at
recurrence. The analysis captures the relative stability of somatic mutations
immediately following radiotherapy and highlights the emergence of additional

mutations at recurrence, reflecting possible clonal evolution over time.

The patient commenced radiotherapy 25 days after diagnosis, receiving a total of 50
Gy in 25 fractions. The tumour was resected 32 days post-radiotherapy (89 days
after diagnosis), with final staging recorded as ypT2b Nx Mx (TNMS8). Recurrence
was detected 71 days after the initial resection and excised 154 days later (186 days
post-radiotherapy). Sadly, the patient succumbed to the disease 104 days after

recurrence resection, 347 days post-diagnosis (Figure 3.7).

Radiotherapy
(50 Gy in 25 fractions) Primary Recurrence Recurrence Patient died
Diagnosis  HHHHHHHE tumour resection Detected tumour excision
Day0 Day 25 Day 89 Day 160 Day 243 Day 347

Figure 3.7 Timeline of treatment and disease progression for patient 58

This timeline summarises the patient's treatment course, from diagnosis through
radiotherapy, surgical interventions, recurrence, and eventual disease progression.
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Sequencing analysis revealed comparable numbers of SNVs in the pre- and post-
radiotherapy samples, with 22 SNVs identified pre-radiotherapy and 28 post-
radiotherapy (Figure 3.8). Of these, 19 SNVs (86%) persisted across both time
points, indicating minimal genomic alterations immediately following treatment.
Three SNVs were unique to the pre-radiotherapy sample, while 26 additional SNVs
were identified in the recurrence specimen that were absent in earlier samples.
Additionally, 12 SNVs were shared in the recurrence specimen: 11 common to both
the pre- and post-radiotherapy samples, and one exclusive to the pre-radiotherapy

sample.

Analysis of indels showed no new mutations immediately post-radiotherapy. The
same indels in genes C4A, PLSCR4, and ZG16B were present in both the pre- and
post-radiotherapy samples. In contrast, the recurrence specimen displayed seven
additional indels in ARGLU1, C3AR1, CHD8, FAM171B, SLC5A2, SPATS2L, and
PRKCZ, which were absent from the earlier samples. This suggests ongoing clonal

evolution and selection in the intervening period post-radiotherapy.

The timing of sample collection provides additional context. The post-radiotherapy
sample was collected 32 days after treatment, while the recurrence specimen was
obtained 186 days later. The additional SNVs and indels in the recurrence sample
may reflect clonal expansion of mutations emerging after radiotherapy. Mutations
induced by radiotherapy might not have reached detectable levels within the initial
32-day window, particularly without sufficient clonal growth to exceed the variant
allele frequency (VAF) thresholds for this bulk WES analysis. Alternatively, some of
the mutations observed in the recurrence specimen could have been subclonal in

the post-radiotherapy sample but fell below detection limits.

To further investigate potential subclonal dynamics, | attempted to reconstruct the
clonal architecture using Conipher (Grigoriadis, Huebner et al. 2024), a tool for
subclonal phylogenetic analysis. Unfortunately, the low number of detectable
mutations in this case precluded the identification of definitive subclonal

relationships.
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Figure 3.8. Temporal evolution of somatic mutations in patient 58’s sarcoma
specimens across treatment stages.

Heatmaps show the presence or absence of SNVs and Indel mutations across three
stages Pre-, Post-radiotherapy, and recurrence for patient 58 who was diagnosed
with a spindle cell sarcoma.
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3.3.6 Summary

The analysis presented in this section indicates that radiotherapy does not induce
significant changes in the frequency of somatic SNVs or indels in soft tissue sarcoma
samples, as shown by both unpaired and paired comparisons across multiple
sarcoma subtypes. Across different subtypes and individual cases, mutational
profiles remained largely consistent before and after radiotherapy, suggesting that
any radiotherapy-related mutational shifts may be subtle or influenced by time-
dependent factors, rather than being immediately apparent. The case study of patient
58 suggests that time may be necessary for clonal outgrowth to reveal radiotherapy-
related mutations, as indicated by the emergence of unique mutations in the
recurrence sample. Alternatively, whole-exome sequencing may have limitations in
detecting subtle mutational differences in sarcomas with inherently low tumour
mutational burden (TMB), highlighting the need for more sensitive approaches in

future studies.
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3.4 Comparison of copy number alterations pre- and post-

radiotherapy.

Copy number alterations (CNAs) play a critical role in cancer progression, influencing
tumour growth, metastasis, and treatment response (Zack, Schumacher et al. 2013,
Steele, Abbasi et al. 2022). Several studies have demonstrated that CNAs can also
affect radiotherapy outcomes, though research has predominantly focused on other
cancer types. For instance, in prostate cancer, CNAs in PTEN (loss) and c-MYC
(gain) have been linked to an increased risk of biochemical relapse after radiotherapy,
suggesting that genomic instability can influence treatment failure (Zafarana,
Ishkanian et al. 2012). Similarly, in breast cancer, CNAs at chromosome 8p11-12
have been shown to predict poor survival and resistance to both chemotherapy and
radiotherapy, reinforcing the role of CNA-driven tumour evolution (Moelans, van
Maldegem et al. 2018). In lung cancer, somatic CNAs have been associated with
progression-free survival following radiotherapy, with high SCNA levels correlating
with poorer outcomes, particularly in lung adenocarcinoma (Kou, Wu et al. 2021).
Additionally, CNAs in genes involved in DNA repair (PRMT5 and APE1) have been
implicated in radiation resistance in oral squamous cell carcinoma, suggesting that
structural genomic alterations can impact sensitivity to treatment (Izumi, Rychahou
et al. 2023).

Despite these findings in other malignancies, the impact of radiotherapy on CNA
dynamics in soft tissue sarcomas remains poorly understood. Some evidence
suggests that radiation exposure can induce large deletions and increase genome-
wide instability, as observed in gliomas, where post-radiotherapy samples exhibited
an enrichment of large deletions spanning chromosome-arm lengths (Kocakavuk,
Anderson et al. 2021). However, studies specifically analysing pre- vs. post-
radiotherapy CNAs in sarcomas are limited, with most research focusing on
radiation-induced secondary sarcomas rather than the genomic consequences of

radiotherapy in primary tumours (Lesluyes, Baud et al. 2019).

In this section, | present a systematic comparison of CNAs detected in pre- and post-
radiotherapy soft tissue sarcoma samples, focusing on the extent of genome-wide

copy number changes. Given the well-documented CNA-driven effects in other
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cancers, understanding how radiotherapy shapes the genomic architecture of
sarcomas helps us better understand tumour evolution, treatment resistance, and

potential therapeutic vulnerabilities.

3.4.1 Assessing Copy Number Alterations: methods and metrics.

Copy number alterations were identified using the ASCAT (Allele-Specific Copy
number Analysis of Tumours) algorithm (Van Loo, Nordgard et al. 2010), which
accounts for tumour purity and ploidy, allowing accurate detection of both total copy
number changes and allele-specific imbalances. Using ASCAT | compared the
fraction of the genome altered, the total number of CNAs, and the total number of

breakpoints in pre- and post-radiotherapy samples.

The fraction of genome altered (FGA) was calculated as the total length of altered
genomic segments divided by the total length of the sequenced genomic regions. To
quantify the FGA, two distinct methods were employed to determine whether a

genomic segment was altered.

Method 1 focuses on regions where the total copy number deviates from the
expected diploid state, identifying significant gains or losses of chromosomal
material. This method uses the formula log2 CNV (copy number alteration) > £0.2 to
determine whether a genomic segment is altered. This approach has been widely
used in previous studies (Xi, Lee et al. 2016, Rizvi, Sanchez-Vega et al. 2018, Caso,
Sanchez-Vega et al. 2020, Pariyar, Johns et al. 2021), but it does not consider allele-

specific information.

Therefore, | developed Method 2, which expands on the rationale of Method 1 by
incorporating allele-specific imbalances. In Method 1, only total copy number
changes are considered, meaning that while it captures significant deviations in the
overall number of copies for a given region it does not differentiate between the major
and minor alleles within that region. This limitation can overlook more subtle forms

of genomic instability, such as loss of heterozygosity (LOH) or regions where the
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major and minor alleles are imbalanced, such as one allele being gained while the
other remains unchanged or is lost. Method 2 improves upon this by detecting both
total copy number changes and imbalances between the two alleles. By capturing
regions where the major and minor alleles differ, Method 2 provides a more nuanced
view of genomic instability, identifying additional forms of chromosomal alteration
that Method 1 might miss.

Additionally, two other metrics were analysed, the total number of CNAs, and the
total number of breakpoints. These metrics provide complementary insights into the
possible role of radiotherapy in affecting genomic instability. The total number of
CNAs represents distinct regions of the genome where there has been a gain or loss
of chromosomal material. Each CNA corresponds to an independent event, such as
a loss or gain, where the copy number has deviated from the normal diploid state.
To calculate the total number of CNAs, | counted the unique chromosomal regions
with altered copy numbers. This metric reflects the extent of genomic regions
affected by copy number alterations. By comparing the number of CNAs pre- and
post-radiotherapy, | aimed to assess whether radiotherapy increases overall

genomic instability by introducing new copy number changes.

Conversely, the total number of breakpoints represents transitions between different
copy number states within the genome. A single CNA can contain multiple
breakpoints if there are shifts between copy number states, for example, following
genomic episodes of chromothripsis (Stephens, Greenman et al. 2011). Breakpoints
provide a measure of the structural complexity of the genome, indicating the
frequency of genomic rearrangements. Even if the number of CNAs remains
constant, an increase in breakpoints suggests more intricate structural changes. To
calculate the total number of breakpoints, | counted the transitions between altered
segments identified by ASCAT. Comparing breakpoints pre- and post-radiotherapy
reveals whether radiotherapy induces additional rearrangements or increases

genomic complexity.

By analysing the fraction of the genome altered, along with both the number of CNAs
and breakpoints, it is possible to obtain a more comprehensive understanding of

whether radiotherapy influences copy number.
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3.4.2 Comparison of copy number alteration metrics across all pre- and

post-radiotherapy samples

The analysis demonstrated that radiotherapy induces chromosomal alterations
detectable at the genomic level. Using Method 1, which evaluates total copy number
changes, a significant increase in the fraction of genome altered (FGA) was observed
post-radiotherapy, with the median FGA increasing from 31% to 64% (p = 0.04)
(Figure 3.9). This finding highlights the impact of radiotherapy on large-scale
genomic stability. In contrast, incorporating allele-specific imbalances with Method 2
resulted in an increase in FGA from 38% to 81%; however, this change did not reach
statistical significance (p = 0.1). This suggests that the primary genomic changes
induced by radiotherapy may involve broader chromosomal alterations rather than

allele-specific imbalances.

The total number of breakpoints, which reflect the frequency of transitions between
different copy number states, did not significantly change between pre- and post-
radiotherapy samples, with median values of 34 and 38, respectively (p = 0.18). This
suggests that, although radiotherapy introduces chromosomal alterations, it does not
significantly increase the frequency of genomic rearrangements or structural
complexity. Similarly, the total number of CNAs showed no significant difference
between pre- and post-radiotherapy samples, with median values of 57 and 61,
respectively (p = 0.18), indicating that the overall number of copy number events

remains stable.
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Figure 3.9 Comparison of copy number alteration metrics in pre- and post-
radiotherapy samples

This figure compares the fraction of genome altered (FGA), total number of
breakpoints, and total number of copy number alterations (CNAs) between pre- and
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post-radiotherapy samples across multiple histological soft tissue sarcoma subtypes.
The fraction of genome altered (Method 1) panel shows regions where total copy
number deviates from the expected diploid state (log2 CNV > £0.2). The fraction of
genome altered (Method 2) panel includes both total copy number changes and
allele-specific imbalances (total copy number # 2 or allele-specific imbalances). The
total number of breakpoints panel represents transitions between distinct copy
number states. The total number of CNAs panel shows the total count of unique
CNAs per sample. Each data point is coloured based on histological subtype, and
the radiotherapy status (pre-RT or post-RT) is shown along the x-axis. P-values were
calculated using an unpaired t-test. The violin plot shows the distribution of the data,
with the width representing the density of values at different levels. The centre line
of the embedded box plot represents the median value, with the edges of the box
indicating the interquartile range, and the whiskers extending to 1.5 times the
interquartile range.
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3.4.3 Subtype specific analysis of Copy Number Alteration metrics in pre-

and post-radiotherapy samples.

To explore whether the changes in copy number might be specific to certain
subtypes, | stratified the analysis by histological subtypes with sufficient pre- and
post-radiotherapy samples. These subtypes included synovial sarcoma,
myxofibrosarcoma, pleomorphic liposarcoma, and spindle cell sarcoma. Of these
four subtypes, myxofibrosarcoma (Figure 3.10) was the only one to show a
significant difference between pre- and post-radiotherapy samples. In this subgroup,
there was a significant increase in the fraction of genome altered post-radiotherapy
using both Method 1 (49% to 68%, p = 0.004) and Method 2 (79% to 85%, p = 0.02),
suggesting a subtype specificity to radiotherapy-induced copy number changes in

this subtype.

Although there was a decrease in both the median total number of breakpoints (from
50 to 38) and CNAs (from 73 to 61) in the post-radiotherapy samples, these changes
were not statistically significant (both p = 0.3). The other subtypes, pleomorphic
liposarcoma, synovial sarcoma, and spindle cell sarcoma, showed no significant
differences across the metrics tested, indicating that the genomic response to

radiotherapy may vary among different sarcoma types.
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Figure 3.10. Comparison of copy number alteration metrics in pre- and post-
radiotherapy myxofibrosarcoma samples

This figure compares the fraction of genome altered (FGA), total number of
breakpoints, and total number of copy number alterations (CNAs) between pre- and
post-radiotherapy myxofibrosarcoma samples. The fraction of genome altered
(Method 1) panel shows regions where total copy number deviates from the
expected diploid state (log2 CNV > +0.2). The fraction of genome altered (Method
2) panel includes both total copy number changes and allele-specific imbalances
(total copy number # 2 or allele-specific imbalances). The total number of
breakpoints panel represents transitions between distinct copy number states. The
total number of CNAs panel shows the total count of unique CNAs per sample. P-
values were calculated using an unpaired t-test. The violin plot shows the distribution
of the data, with the width representing the density of values at different levels. The
centre line of the embedded box plot represents the median value, with the edges of
the box indicating the interquartile range, and the whiskers extending to 1.5 times
the interquartile range.
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3.4.4 Comparative analysis of Copy Number Alteration metrics in paired

pre- and post-radiotherapy samples.

| performed a paired analysis with the six patients for whom | had matching pre- and
post-radiotherapy samples (Figure 3.11). There was no significant difference in the
fraction of genome altered, total number of breakpoints, or total number of copy

number alterations.
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Figure 3.11. Comparison of copy number alteration metrics in paired pre- and post-
radiotherapy samples.

This figure compares the fraction of genome altered (FGA), total number of
breakpoints, and total number of copy number alterations (CNAs) between the 6
patients with paired pre- and post-radiotherapy samples. The fraction of genome
altered (Method 1) panel shows regions where total copy number deviates from the
expected diploid state (log2 CNV > +0.2). The fraction of genome altered (Method
2) panel includes both total copy number changes and allele-specific imbalances
(total copy number # 2 or allele-specific imbalances). The total number of
breakpoints panel represents transitions between distinct copy number states. The
total number of CNAs panel shows the total count of unique CNAs per sample. P-
values were calculated using a paired t-test. The violin plot shows the distribution of
the data, with the width representing the density of values at different levels. The
centre line of the embedded box plot represents the median value, with the edges of
the box indicating the interquartile range, and the whiskers extending to 1.5 times
the interquartile range.
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3.45 Summary

In this section, the comparison of copy number alterations (CNAs) between pre- and
post-radiotherapy samples highlighted both global and subtype-specific changes.
Post-radiotherapy samples demonstrated no significant increase in the overall
number of CNAs; however, an increased Fraction of Genome Altered (FGA) was
seen. This suggests an expansion of regions with chromosomal gains or losses
following radiotherapy. Specifically, myxofibrosarcoma showed notable differences
in the FGA post-treatment, highlighting potential heterogeneity in radiotherapy
response among different sarcoma types. Importantly, the lack of a marked increase
in CNA counts but an expansion in FGA may imply that radiotherapy could lead to
an enlargement of pre-existing altered regions rather than the formation of entirely
new CNAs.
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3.5 Mutational signature analysis

In this section, | aimed to assess whether there were differences in the mutational
signatures between pre- and post-radiotherapy tumour samples. Mutational
signatures are characteristic patterns of mutations that reflect the underlying
mechanisms of acquired DNA damage and repair (Alexandrov, Nik-Zainal et al. 2013,
Alexandrov, Kim et al. 2020). Analysing these signatures can give clues as to both
the mechanisms and aetiology of tumourigenesis as well as how radiotherapy can

influence the mutational landscape of tumours.

Previous studies have identified specific mutational signatures associated with
radiation-induced damage, such as SBS18, which is linked to oxidative stress
caused by radiotherapy, and indel signatures like ID8, which reflect error-prone DNA
repair mechanisms such as non-homologous end joining (NHEJ) (Kocakavuk,
Anderson et al. 2021).

| used SigProfiler (Alexandrov, Nik-Zainal et al. 2013) to decompose the single base
substitution (SBS) and Indel (ID) mutations identified in the whole exome (WES) and

whole genome (WGS) tumour samples into COSMIC mutational signatures.

3.5.1 Analysis of Single base substitution (SBS) signatures

Five SBS signatures were identified across both the WES and WGS datasets (Figure
3.12 and Figure 3.13 respectively). These include SBS1, SBS2, SBS3, SBS5, and
SBS13, which were detected in both WES and WGS tumour samples. Additionally,
a sixth signature, SBS15, was observed exclusively in the WES samples.
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Figure 3.12. Distribution of SBS mutational signatures across pre-radiotherapy,
post-radiotherapy, recurrence, and metastasis samples in WES data.

The bar plot illustrates the number of somatic single base substitution (SBS)
mutations attributed to various mutational signatures for each sample type. The
samples are grouped based on their treatment status, including pre-radiotherapy
(Pre RT), post-radiotherapy (Post RT), recurrence (R), and metastasis (M). Each bar
represents the contribution of specific SBS signatures within individual samples, with
different colours corresponding to each signature.
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Figure 3.13. Distribution of SBS mutational signatures across pre-radiotherapy,
post-radiotherapy, and metastasis samples in WGS data.

The bar plot illustrates the number of somatic single base substitution (SBS)
mutations attributed to various mutational signatures for two separate patients. Each
bar represents the contribution of specific SBS signatures within individual samples,
with different colours corresponding to each signature. Pre-radiotherapy (Pre RT)
and post-radiotherapy (Post RT). Clear cell sarcoma (CCS), pleomorphic
leiomyosarcoma (pLMS).

The SBS signatures identified in these samples reflect a range of biological
processes associated with cancer development. SBS1, often called “clock-like”, is
linked to aging and arises from the spontaneous or enzymatic deamination of
methylated cytosines, resulting in C>T mutations that accumulate over time; this
signature is common across various cancer types (Alexandrov, Nik-Zainal et al. 2013,
Alexandrov, Kim et al. 2020). Both SBS2 and SBS13 are associated with the activity
of APOBEC enzymes, which cause C>T and C>G mutations specifically at TpC
dinucleotides. The presence of these APOBEC-associated mutations indicates
increased genomic instability, which is a hallmark of many cancers, and these
signatures are seen in a wide range of cancer types including sarcomas (Alexandrov,
Nik-Zainal et al. 2013, Alexandrov, Kim et al. 2020). SBS3 while not specific is
suggestive of homologous recombination deficiency (HRD), and is commonly linked

to mutations in BRCA1 or BRCAZ2 genes and frequently observed in cancers such
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as breast and ovarian cancer, but has also been seen in sarcomas (Alexandrov, Nik-
Zainal et al. 2013, Alexandrov, Kim et al. 2020). SBS5, is another "clock-like"
signature with a currently undetermined cause. It is found across a wide range of
tissues and correlates with age, accumulating mutations in both normal and

cancerous cells.

Lastly, SBS15 is associated with defective DNA mismatch repair (MMR) and is often
found in tumours with microsatellite instability (MSI), making it particularly prevalent
in cancers like colorectal and endometrial cancer that exhibit MMR deficiency
(Alexandrov, Nik-Zainal et al. 2013, Alexandrov, Kim et al. 2020).

| have split the tumour samples in to show whether the samples are pre- or post-
radiotherapy, metastasis or recurrence samples. All 6 SBS signatures (SBS 1, 2, 3,
5, 13, and 15) were identified in the pre-radiotherapy samples (Figure 3.12). In the
post-radiotherapy samples the same signatures except for SBS2 were identified. In
the 2 recurrence samples SBS signatures 1, 3, 5, 15 were seen. Lastly in the 2
metastasis samples the SBS signatures 1, 5, 13, 15 were identified. In Figure 3.13,
the WGS samples showed SBS1, SBS3, and SBS5 in all samples. SBS2 was
identified in the pre-radiotherapy clear cell sarcoma sample but this was not present
in the post-radiotherapy or metastasis sample. SBS2 and SBS13 was identified in

post-radiotherapy and metastasis samples of pleomorphic leiomyosarcoma.

There are differences in the SBS signatures identified in the WES samples
depending on the histological subtype (Figure 3.14). The clock-like signatures SBS1
and SBS5 are seen in all subtypes sequenced.

SBS2 (APOBEC related) was seen in single case in each of pleomorphic
leiomyosarcoma (1 of 4 samples), pleomorphic liposarcoma (1 of 5), synovial
sarcoma (1 of 8) and myxofibrosarcoma (1 of 23). SBS13 (also APOBEC related)
was seen in myxoid liposarcoma (1 of 8 samples), pleomorphic leiomyosarcoma (2

of 4 samples), pleomorphic liposarcoma (1 of 5) and myxofibrosarcoma (3 of 23).

SBS3 (associated with homologous recombination deficiency) was seen in

dedifferentiated liposarcoma (1 of 3 samples), myxoid liposarcoma (1 of 8),
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pleomorphic leiomyosarcoma (1 of 4), pleomorphic liposarcoma (2 of 5), spindle cell

sarcoma (1 of 6), synovial sarcoma (2 of 8), and myxofibrosarcoma (13 of 23).

Lastly SBS15 (associated with MMR deficiency) was seen in alveolar soft part
sarcoma (1 of 2 samples), myxoid liposarcoma (1 of 8), pleomorphic leiomyosarcoma
(2 of 4), pleomorphic liposarcoma (1 of 5), synovial sarcoma (2 of 8),

myxofibrosarcoma (4 of 23), and undifferentiated pleomorphic sarcoma (3 of 3).
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Figure 3.14. Distribution of SBS mutational signatures across sarcoma subtypes.

The bar plot illustrates the number of somatic single base substitution (SBS)
mutations attributed to various mutational signatures for each sample broken up by
histological subtype. Alveolar Soft Part Sarcoma (ASPS), Dedifferentiated
Liposarcoma (ddLPS), Extraskeletal Myxoid Chondrosarcoma (EMC), Myoepithelial
Carcinoma (MEC), Myxoid Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma
(PLMS), Pleomorphic Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial
Sarcoma (SS), Myxofibrosarcoma (MFS), and Undifferentiated Pleomorphic
Sarcoma (UPS).
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3.5.2 Analysis of Indel (ID) signatures

There were different ID signatures identified in the WES and WGS data (Figure 3.15
and Figure 3.16 respectively). ID1, ID2, ID9, and ID23 were identified in both WES
and WGS tumour samples. Additionally, ID7, ID8, and ID10 signatures were seen in

WES tumour samples.

The ID (Indel) signatures identified in these samples reflect and are attributed to
various mutational processes. ID1 and ID2 are commonly associated with aging and
reflects the accumulation of small insertions (ID1) and deletions (ID2) over time, often
linked to cell division and DNA replication errors. This signature is observed across
numerous cancer types. ID1 and ID2 are also frequently associated with DNA
mismatch repair (MMR) deficiency, leading to replication slippage and indel
mutations, particularly in repetitive DNA regions (Alexandrov, Nik-Zainal et al. 2013,
Alexandrov, Kim et al. 2020).

ID7 is linked to MMR deficiency, similar to ID2, and is often observed in tumours with
MSI and has been identified previously in gastric adenocarcinoma(Alexandrov, Kim
et al. 2020). ID8 is associated double stranded break repair by non-homologous end
joining and has been seen in tissues post-radiotherapy(Alexandrov, Kim et al. 2020,
Kocakavuk, Anderson et al. 2021). ID23 is associated with aristolochic acid exposure

(Senkin, Moody et al. 2024). ID9 and ID10 have an unknown aetiology.

Different signatures were seen depending on where the samples are pre- or post-
radiotherapy, metastasis or recurrence samples (Figure 3.15). ID2 ID7, ID8, 1D9,
ID10, ID23 were identified in the pre-radiotherapy samples. ID7, ID8, ID10, and ID23
were the only signatures identified in the post-radiotherapy samples. ID1, ID8, ID23

were seen in the recurrence samples, and ID23 was seen in the metastasis sample.

There were no changes in the ID signatures called for the two patients with WGS
performed on the tumour samples in their pre- or post-radiotherapy samples (Figure
3.16). The patient with clear cell sarcoma was found to have signatures ID1, ID2,

and ID9 in the each of the pre-radiotherapy, post-radiotherapy, and metastasis
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samples. The patient with pleomorphic leiomyosarcoma likewise had ID1, ID2, 1D9,

and ID23 in both the post-radiotherapy and metastasis samples.

138



Chapter 5. Results

ID Mutational Signatures for WES Samples by Sample Type
Pre RTx Post RTx R M

56
&0

a5
30

MNurmber of Mutations in Each Signature

RTa8
RT24

Signature 53 ([-3 o7 [[85:3 iDa {1f[s] D23

Figure 3.15. Distribution of indel mutational signatures across pre-radiotherapy,
post-radiotherapy, recurrence, and metastasis samples in WES data.

The bar plot illustrates the number of Indel (ID) mutations attributed to various
mutational signatures for each sample type. The samples are grouped based on their
treatment status, including pre-radiotherapy (Pre RT), post-radiotherapy (Post RT),
recurrence (R), and metastasis (M). Each bar represents the contribution of specific
ID signatures within individual samples, with different colours corresponding to each
signature.
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Figure 3.16. Distribution of indel mutational signatures across pre-radiotherapy,
post-radiotherapy, and metastasis samples in WGS data.

The bar plot illustrates the number of Indel (ID) mutations attributed to various
mutational signatures for two separate patients. Each bar represents the contribution
of specific ID signatures within individual samples, with different colours
corresponding to each signature. Pre-radiotherapy (Pre RT) and post-radiotherapy
(Post RT). Clear cell sarcoma (CCS), pleomorphic leiomyosarcoma (pLMS).
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ID signatures by histological subtype

No ID signatures were seen in all subtypes examined (Figure 3.17).

ID1 was identified in undifferentiated pleomorphic sarcoma (1 of 2 samples).

ID2 was seen in spindle cell sarcoma (1 of 6), synovial sarcomas (1 of 3),

myxofibrosarcoma (1 of 20), and undifferentiated pleomorphic sarcoma (1 of 2).

ID7 was seen in myxofibrosarcoma (5 of 20 samples), and undifferentiated

pleomorphic sarcoma (1 of 2).

ID8 was seen in dedifferentiated liposarcoma (1 of 2 samples), myoepithelial
carcinoma (1 of 1), myxoid liposarcoma (1 of 6), pleomorphic leiomyosarcoma (1 of
4), pleomorphic liposarcoma (3 of 5), myxofibrosarcoma (9 of 20 samples), and

undifferentiated pleomorphic sarcoma (1 of 2).

ID9 was seen in myxoid liposarcoma (2 of 5 samples), and myxofibrosarcoma (1 of
20).

ID10 was seen in dedifferentiated liposarcoma (1 of 2 samples), Extraskeletal myxoid
chondrosarcoma (1 of 1), myxoid liposarcoma (3 of 6), pleomorphic liposarcoma (2

of 5), spindle cell sarcoma (1 of 6), and synovial sarcoma (2 of 3).

Lastly ID23 was seen in pleomorphic leiomyosarcoma (3 of 4 samples), spindle cell
sarcoma (4 of 6), and myxofibrosarcoma (6 of 20). Given that ID23 is associated with
aristolochic acid exposure, it is possible that this represents a spurious signature.
Alternatively, this finding could suggest a previously unrecognised role of Aristolochic

acid exposure as a risk factor in the development of these sarcomas.
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Figure 3.17. Distribution of Indel Mutational Signatures across sarcoma subtypes.

The bar plot illustrates the number of Indel (ID) mutations attributed to various
mutational signatures for each sample broken up by histological subtype. Alveolar
Soft Part Sarcoma (ASPS), Dedifferentiated Liposarcoma (ddLPS), Extraskeletal
Myxoid Chondrosarcoma (EMC), Myoepithelial Carcinoma (MEC), Myxoid
Liposarcoma (mLPS), Pleomorphic Leiomyosarcoma (pLMS), Pleomorphic
Liposarcoma (pLPS), Spindle Cell Sarcoma (SpCS), Synovial Sarcoma (SS),
Myxofibrosarcoma (MFS), and Undifferentiated Pleomorphic Sarcoma (UPS).
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3.5.3 Identification of mismatch repair deficiency

Interestingly, two patient samples - RT40 (undifferentiated pleomorphic sarcoma)
and RT45 (myxofibrosarcoma), both had a very high tumour mutational burden
relative to the other cases (previously discussed in section 3.2) have high numbers

and proportions of SBS15 and ID7 mutations which are associated with MMR.

Examining the mutations identified in the WES data, no mutations were identified in
the genes related to MMR (MLH1, MSH2, MSH6, and PMS2) (Pe¢ina-Slaus, Kafka
et al. 2020). Both samples did show mutations within TP53, a gene associated with
genomic instability, which could contribute to an overall increase in the tumour
mutation burden. To further explore potential MMR deficiencies, | examined the

associated bulk RNAseq data to review the expression levels of the MMR genes.

RNA expression analysis revealed relatively low expression of MLH1 in sample RT40
and MSH2 in sample RT45 compared to the other 115 sequenced samples (Figure
3.18). Low expression of MLH1 could potentially result from promoter
hypermethylation, a known mechanism for MLH17 silencing in cancers with
microsatellite instability (MSI) (Kane, Loda et al. 1997). Although MSH2 is not
typically silenced by promoter hypermethylation, alternative regulatory
mechanisms—such as loss of heterozygosity (LOH) or post-translational instability
due to reduced MSH6 levels—could explain the observed reduction in MSH2

expression in RT45.
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Figure 3.18. Expression of mismatch repair genes

Normalised RNA gene expression levels of mismatch repair (MMR) genes in 117
soft tissue sarcoma, highlighting MLH1, MSH2, MSH6, and PMS2. Each dot
represents the Normalised expression level of a specific MMR gene in an individual
tumour sample. Grey dots correspond to the expression levels across all other
samples, providing a reference distribution for each gene. The samples of interest,
RT40 (Undifferentiated Pleomorphic Sarcoma, UPS) and RT45 (Myxofibrosarcoma,
MFS), are highlighted in purple and orange, respectively.

To investigate further, | conducted a copy number analysis using the ASCAT output
and identified several regions with LOH involving MMR genes in both samples. In
RT40 (Undifferentiated Pleomorphic Sarcoma), a homozygous deletion of the MLH1
gene on chromosome 3 was detected. Given that MLH1 is an essential component
of the mismatch repair (MMR) pathway, its complete loss definitively establishes
MMR deficiency in this sample. This explains the high tumour mutational burden
observed in RT40, as well as the prominent SBS15 and ID7 mutational signatures,

both of which are hallmarks of MMR-deficient cancers.

In RT45 (Myxofibrosarcoma), LOH was observed for multiple MMR genes, including
MLH1, MSH2, MSH6, and PMS2, with one allele lost for each of these genes. While
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not a complete deletion, this partial loss may have impaired MMR function,
particularly given the functional dependence of MLH1-PMS2 and MSH2-MSH6
complexes. However, unlike RT40, where MMR deficiency is clearly explained by

complete MLH1 loss, the extent of MMR impairment in RT45 remains uncertain.

These findings confirm that the homozygous deletion of MLH1 in RT40 is the key
driver of its hypermutator phenotype, as MMR deficiency due to MLH1 loss is well-
established across multiple cancers. The LOH in RT45, while suggestive of MMR
involvement, does not provide the same level of certainty. This difference between
the two cases highlights the importance of complete gene loss in driving a fully MMR-

deficient state.

It is important to note that the data for these two patient tumour samples were
obtained from pre-radiotherapy biopsy specimens. The post-radiotherapy resection
specimens showed extensive therapy-related necrosis. Histological examination of
all tissue blocks revealed an insufficient number of viable tumour cells (indicative of
a strong pathological response) for DNA and RNA sequencing studies. Both patients
had similar staging of the resection specimen (ypT2b Nx Mx — TNMS8). Upon
reviewing the available clinical information, the patient with undifferentiated
pleomorphic sarcoma in the thigh, diagnosed at age 76, remains disease-free 8
years post-treatment. Unfortunately, despite both patients showing an excellent
pathological response to radiotherapy, the patient with myxofibrosarcoma in the
shoulder, diagnosed at age 67, developed lung metastases 224 days post-

radiotherapy and succumbed to the disease 522 days following treatment.

While not extensively investigated, there is growing evidence that mismatch repair-
deficient tumours may be more sensitive to radiotherapy (Shin, Tut et al. 2013,
Reijnen, Kusters-Vandevelde et al. 2019), as demonstrated here by the strong
pathological response and absence of local recurrence in both cases. However
overall disease-free survival can still be impacted by distant metastasis. In this
instance, despite an excellent local response to radiotherapy, it is possible that
metastasis in the patient with myxofibrosarcoma developed prior to treatment (albeit

clinically undetectable on original staging), ultimately affecting survival outcomes.
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3.5.4 Summary

In this section, | investigated the mutational signatures in pre- and post-radiotherapy
sarcoma samples to identify any distinct mutational effects attributable to
radiotherapy. Using SigProfiler, | identified 6 SBS signatures (SBS1, SBS2, SBS3,
SBS5, SBS13, and SBS15) and 7 ID signatures (ID1, ID2, 1D7, I1D8, ID9, ID10, and

ID23) across the samples.

SBS1 and SBS5, associated with endogenous aging processes, were consistently
present in all samples. Conversely, SBS2 and SBS13, linked to APOBEC activity,
and SBS3, associated with homologous recombination deficiency, were detected
only in specific subtypes, indicating underlying genomic instabilities in certain

sarcomas. Notably, SBS18, previously linked to radiotherapy, was absent.

For indel signatures, ID1 and ID2—related to aging and DNA mismatch repair
deficiency—were observed in multiple subtypes, while ID8, associated with double-

strand break repair, appeared in both pre- and post-radiotherapy samples.

These findings suggest that, within the sensitivity limits of whole-exome sequencing,
radiotherapy does not introduce a new mutational profile or significantly alter the
existing mutational landscape in soft tissue sarcomas. The stable prevalence of SBS
and ID signatures pre- and post-radiotherapy suggests that radiotherapy has a
limited impact on mutational signatures detectable by whole-exome sequencing.
This stability may indicate that radiotherapy-induced changes in sarcomas are either
minimal or require higher-resolution methods, such as whole-genome sequencing,
or high-resolution duplex sequencing techniques such as NanoSeq to detect more

subtle or subclonal alterations.
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3.6 Using NanoSeq to more accurately interrogate the

genomic response to radiotherapy.

In section 3.3, | presented the results of a comparison of the number of somatic
mutations in soft tissue sarcomas pre- and post-radiotherapy. These results were
generated using bulk Whole Exome Sequencing (WES) on formalin-fixed, paraffin-
embedded (FFPE) tumour tissue. Based on the literature, an increase in small
insertions and deletions (indels) was expected following radiotherapy due to its
known effect on inducing DNA damage. However, the WES data did not show any

significant changes in the number of SNVs or indels post-treatment.

The tumour mutational burden (TMB) in this cohort of WES samples was low (mean
TMB 1.07 mutations/Mb), with a median of 3 indels identified in pre-radiotherapy

samples and 2 indels post-radiotherapy.

| hypothesised that the limited resolution of bulk WES, especially when applied to
FFPE tissue, might have missed subtle genomic alterations, particularly those
present at low variant allele frequencies (VAFs) or in subclonal populations.
Moreover, cancer genome sequencing studies have demonstrated that indels in
coding regions of the genome are generally low because of a selection bias
constraint that attempts to preserve protein function (de la Chaux, Messer et al. 2007,
Martincorena, Raine et al. 2017). In bulk sequencing, signals from subclonal
mutations are often diluted by the predominant clonal population, making it
challenging to detect low-frequency variants such as indels. This limitation is further
exacerbated by the degraded quality of DNA in FFPE samples. Consequently, key
genomic changes induced by radiotherapy, particularly indels in minor subclonal

populations, might have gone undetected with WES.

To address this, | collaborated with the Martincorena group at the Welcome Trust
Sanger Institute who developed the recently described NanoSeq method (Abascal,
Harvey et al. 2021), a highly sensitive sequencing technology designed to detect
low-frequency mutations, including indels and single nucleotide variants (SNVs), at
a higher resolution. NanoSeq uses duplex sequencing, which reads both DNA

strands and filters out sequencing errors, allowing for the detection of rare variants
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even in low-purity tumour samples or those with a low mutational burden. The
sequencing error rate is estimated to be less than five errors per billion base pairs

which is reportedly two orders of magnitude lower than usual somatic mutation loads.

Using DNA extracted from fresh frozen tissue on 5 patients on both the pre- and
post-radiotherapy samples they performed the sequencing technique and returned
the aligned and processed VCF files along with counts of somatic mutations on which

| performed the downstream analyses shown below.

NanoSeq was conducted on 5 patients with different sarcoma subtypes. These were
patient 7 (pleomorphic liposarcoma), patient 19 (Myxofibrosarcoma), patient 27
(Dedifferentiated liposarcoma), patient 36 (Synovial sarcoma), and lastly patient 58
(Spindle cell sarcoma). The pre-radiotherapy biopsy for patient 19
(myxofibrosarcoma) showed evidence on contamination during quality control and

so has been removed from the subsequent analyses.
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3.6.1 Comparison of the frequency of somatic mutations pre- and post-

radiotherapy.

The paired comparison of the number of indels and SNVs per cell before and after
radiotherapy revealed distinct patterns (Figure 3.19). The indel and SNV mutation
counts were normalised to the estimated cellular content of each sample to enable

a more precise comparison of mutation rates.

The number of indels per cell demonstrated a significant increase following
radiotherapy (p = 0.01), particularly in dedifferentiated liposarcoma and spindle cell
sarcoma. The median number of indels per cell rose from 177 to 690 in these four
patients after treatment, suggesting a pronounced effect of radiotherapy on the

generation of small insertions and deletions.

In contrast, the number of SNVs per cell did not show a significant change post-
radiotherapy (p = 0.8). The median number of SNVs decreased from 3813 to 2814
following radiotherapy. However, patient-specific responses varied: dedifferentiated
liposarcoma, synovial sarcoma, and spindle cell sarcoma showed increases in SNVs
of 19%, 18%, and 16%, respectively. Conversely, pleomorphic liposarcoma
demonstrated a 52% reduction in SNVs. These findings demonstrate the
heterogeneity in genomic responses to radiotherapy across different sarcoma

subtypes.
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Figure 3.19. Indels and SNVs per Cell Pre- and Post-Radiotherapy.

Paired comparisons of indels per cell and SNVs per cell for each patient (PT). Indels
per cell increased significantly post-radiotherapy (p = 0.01), while SNVs per cell did
not show a significant difference (p = 0.8). Dashed lines connect pre- and post-
radiotherapy values for individual patients across different histologies.

150



Chapter 5. Results

3.6.2 Assessment of the Indel-to-SNV and the Deletion-to-Insertion ratios.

The Indel-to-SNV and Deletion-to-Insertion ratios (see section 3.3.4), derived from
the NanoSeq data, provide insight into the genomic impact of radiotherapy. The
Indel-to-SNV ratio increased significantly from a median of 0.05 in pre-radiotherapy
samples to 0.2 in post-radiotherapy samples (p = 0.002; Figure 3.20A). This finding
suggests that radiotherapy elevates the frequency of double-strand breaks, leading
to more indels through error-prone repair mechanisms such as non-homologous end
joining (NHEJ).

To further deconstruct this increase, indels were separated into deletions and
insertions. The Insertion-to-SNV ratio (Figure 3.20B) showed a slight rise from a
median of 0.009 pre-radiotherapy to 0.01 post-radiotherapy (p = 0.04), indicating a
mild increase in insertion events. By contrast, the Deletion-to-SNV ratio (Figure
3.20C) exhibited a more pronounced change, increasing from a median of 0.04 to
0.2 post-radiotherapy (p = 0.005). These results highlight deletions as the primary
contributors to the elevated Indel-to-SNV ratio, consistent with observations from
previous studies on papillary thyroid cancer and gliomas (Kocakavuk, Anderson et
al. 2021, Morton, Karyadi et al. 2021), where deletions were prominent in radiation-

induced and post-radiotherapy tumours respectively.

The Deletion-to-Insertion ratio also increased (Figure 3.20D), rising from a median
of 3.6 before radiotherapy to 9.6 after treatment. However, this change did not reach
statistical significance (p = 0.08). While this trend suggests a preference for deletions
in resolving radiotherapy-induced DNA damage, there appears to be variability

among samples.
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Figure 3.20. Comparison of Indel-to-SNV and Deletion-to-Insertion ratios

Boxplots of (A) Indel-to-SNV ratio, (B) Insertion-to-SNV ratio, (C) Deletion-to-SNV
ratio, and (D) Deletion-to-Insertion ratio across pre-radiotherapy (Pre) and post-
radiotherapy (Post) samples. Each point represents an individual tumour sample,
coloured by histological subtype. Statistical comparisons between pre- and post-
radiotherapy samples are displayed above each boxplot, with p-values calculated
using paired t-tests. The centre line of the box plot represents the median value, with
the edges of the box indicating the interquartile range, and the whiskers extending

to 1.5 times the interquartile range.
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3.6.3 Radiotherapy-induced shift towards microhomology-mediated DNA

repair.

In light of the previous findings in this section, which demonstrated genomic changes
post-radiotherapy, | aimed to investigate potential shifts in DNA damage repair
pathways, specifically examining the reliance on microhomology-mediated end
joining (MMEJ) for repair. MMEJ is an error-prone DNA repair pathway typically
activated in response to DNA double-strand breaks, which are a known consequence
of radiotherapy. This pathway introduces specific indel mutations, termed
microhomology-mediated indels, that reflect reduced repair fidelity. Given the
increased mutation burden observed in post-radiotherapy samples, | hypothesised

that the MMEJ pathway might be more frequently utilised following radiotherapy.

Across all four patients, there was a significant increase in the proportion of
microhomology-mediated indels following radiotherapy (paired t-test, p = 0.002).
Specifically, the median proportion increased from 6% in pre-radiotherapy samples
to 27% post-radiotherapy, and the median number of microhomology-mediated
indels per cell rose from 9 to 151 (Figure 3.21). This marked increase suggests that

post-radiotherapy, tumours are utilising the MMEJ pathway more frequently.
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Figure 3.21. Proportion of microhomology Indels to total Indels pre- and post-
radiotherapy.

Stacked bar plot showing the proportion of microhomology-mediated indels relative
to other indels in four patients.
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3.6.4 Mutational signature analysis of NanoSeq cohort

In this section, | used SigProfiler to decompose the single base substitution (SBS)
and insertion/deletion (ID) mutations identified in VCF files from the NanoSeq cohort
into COSMIC mutational signatures. This analysis aimed to explore any mutational
signatures linked to radiotherapy in the cohort, as well as to understand the

underlying mutational processes within the sarcoma subtypes.

Single Base Substitution Signatures

Three distinct SBS signatures—SBS1, SBS5, and SBS40a—were detected across
all samples (Figure 3.22). The clock-like signatures SBS1 and SBS5 were detected
across multiple samples. SBS1 was present in all subtypes except dedifferentiated
liposarcoma. SBS5 was seen in all subtypes except the pre-radiotherapy biopsy of
dedifferentiated liposarcoma. SBS40a, which is a signature of unknown aetiology,
appeared in both pre- and post-radiotherapy samples of dedifferentiated liposarcoma

as well as in the post-radiotherapy sample of pleomorphic liposarcoma.

A Wilcoxon signed-rank test was used to assess whether the mutational burden of
these SBS signatures changed significantly following radiotherapy. No significant
differences were observed for SBS1 (p = 0.42), SBS5 (p = 0.88), or SBS40a (p = 1),

indicating that radiotherapy did not introduce substantial new SBS mutations.
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Figure 3.22. Single base substitution signatures pre- and post-radiotherapy
samples across the NanoSeq cohort.

Single base substitution (SBS) mutational signatures in pre- and post-radiotherapy
Stacked bar plots show the counts of COSMIC SBS signatures (SBS1, SBS5, and
SBS40a) across five patients, with each bar representing the prevalence of each
signature in pre- and post-radiotherapy samples. Dedifferentiated liposarcoma
(ddLPS), myxofibrosarcoma (MFS), pleomorphic liposarcoma (pLPS), spindle cell
sarcoma (SpCS), and synovial sarcoma (SS).
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Indel Signatures

Five distinct ID signatures—ID1, ID2, ID5, ID8, and ID9—were identified (Figure
3.23), showing some variability across samples. ID1 and ID2, commonly associated
with aging and DNA mismatch repair deficiencies, were consistently present. ID5 and

ID9 have an unknown aetiology.

The Wilcoxon signed-rank test for paired pre- and post-radiotherapy samples
showed no statistically significant differences for ID1 (p = 0.20), ID2 (p = 0.42), ID5
(p=0.25), and ID9 (p = 0.18). However, ID8, which has been linked to double-strand
break repair processes, was observed exclusively in all post-radiotherapy samples.
This finding suggests a possible association between ID8 and radiotherapy-induced
mutational processes, though statistical significance was not achieved (p = 0.13),
likely due to the small sample size and absence of ID8 mutations in pre-radiotherapy

samples, limiting the statistical power.

The lack of significant changes in SBS and most ID signatures indicates that
radiotherapy, as detectable by NanoSeq in this cohort, does not dramatically alter
the mutational signature profile. However, while not statistically significant the
presence of ID8 identified exclusively in post-radiotherapy samples hints at a
potential link to radiotherapy-induced mutagenic processes, warranting further

investigation with larger cohorts.
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Figure 3.23. Indel (ID) mutational signatures in pre- and post-radiotherapy samples
across the NanoSeq cohort.

Stacked bar plots illustrate the counts of COSMIC ID signatures (ID1, ID2, D5, IDS8,
and ID9) across five patients, showing the variability of these signatures before and
after radiotherapy. Dedifferentiated liposarcoma (ddLPS), myxofibrosarcoma (MFS),
pleomorphic liposarcoma (pLPS), spindle cell sarcoma (SpCS), and synovial
sarcoma (SS).
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3.6.5 Summary

In this section, NanoSeq was applied to detect low-frequency mutations and subtle
genomic changes in soft tissue sarcomas, overcoming the limitations of whole-
exome sequencing in capturing radiotherapy-induced mutations. The increased
sensitivity of NanoSeq allowed for a deeper examination of mutation types and DNA

repair mechanisms post-radiotherapy.

NanoSeq analysis showed a statistically significant rise in indels per cell after
radiotherapy, across all sarcoma subtypes examined. While SNVs per cell did not
significantly increase overall, there were subtype-specific increases in SNVs
suggested sarcoma-specific genomic responses. The Indel-to-SNV ratio also rose,
mainly due to an increase in deletions, indicating a potential elevation in double-
strand break repair events. Additionally, a notable increase in microhomology-
mediated indels post-radiotherapy suggested a shift towards the error-prone
microhomology-mediated end joining (MMEJ) repair pathway, potentially

contributing to genomic instability.

Mutational signature analysis revealed the consistent presence of the clock-like
SBS1 and SBS5 signatures across the cohort. These signatures were observed in
both pre- and post-radiotherapy samples. Additionally, SBS40a, a signature of
unknown aetiology, was detected in some samples pre- and post-radiotherapy,

further highlighting the background mutational processes within these sarcomas.

Six indel signatures were identified: ID1, ID2, ID5, ID8, and ID9. ID1 and ID2,
commonly associated with aging and DNA mismatch repair deficiencies, were
observed consistently across samples, while ID5 and ID9, which are of unknown
aetiology, showed some variability. Notably, ID8 - a signature associated with
double-strand break repair — was uniquely present in post-radiotherapy samples,
hinting at a potential radiotherapy-induced mutational effect. The emergence of ID8
post-treatment may reflect a radiotherapy-specific response, activating repair
pathways associated with DNA double-strand breaks and potentially contributing to

genomic instability.
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3.7 Discussion of chapter 3

The findings in this chapter improve our understanding of the genomic consequences
of radiotherapy in soft tissue sarcomas (STS), particularly in relation to tumour
mutational burden (TMB), copy number alterations (CNAs), and mutational
signatures. While radiotherapy is known to cause DNA damage, its effect on somatic
mutation burden in STS has remained unclear. This study demonstrated that
radiotherapy does not significantly increase overall TMB, aligning with previous
reports of low baseline mutation rates (~1 mutation per Mb) in STS. However, subtle
shifts in the Indel-to-SNV and Deletion-to-Insertion ratios suggest an increased

reliance on error-prone DNA repair pathways following radiation exposure.

Copy Number Alterations and chromosomal instability

CNA analysis revealed that the fraction of genome altered (FGA) increased post-
radiotherapy, suggesting a role for radiotherapy-induced chromosomal instability in
STS. While CNAs have been linked to radiotherapy response in cancers such as
lung adenocarcinoma and breast cancer, their role in sarcomas remains
underexplored. Additionally, pre-existing genomic alterations must be distinguished
from treatment-induced changes, as exemplified by a homozygous MLH17 deletion in
RT40, a pre-radiotherapy biopsy sample. These observations emphasise the need
to differentiate between baseline chromosomal instability and radiotherapy-driven

CNA evolution when evaluating post-treatment genomic changes.

Mutational signature and NanoSeq analysis

Mutational signature analysis was severely limited by the low number of mutations
detected by WES, making it difficult to confidently attribute signatures or compare
pre- and post-radiotherapy samples. The median number of SNVs and indels in the
WES data was only 33 and 2 per sample, respectively, while the WGS data (available
for only five samples) showed a median of 3873 SNVs and 145 indels per sample.
Given these limitations, mutational signature attribution from WES carries a high
degree of uncertainty, and comparisons between pre- and post-radiotherapy
samples must be interpreted with caution. Similarly | would hypothesise that
conventional WGS might also show a limited change in the detectable mutation rate

post-radiotherapy. Due to the relatively short duration of exposure, there would be
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insufficient time for significant clonal outgrowths that could be detectable by WGS

unless undertaken at ultra-high depth (>1000x).

To overcome this, NanoSeq was employed, enabling the detection of low-frequency
mutations with much higher sensitivity. This analysis revealed a significant increase
in the number of indels following radiotherapy, with the median number of indels per
cell rising from 177 pre-radiotherapy to 690 post-radiotherapy across four patients.
This represents a nearly fourfold increase in indels, making it the most striking post-
radiotherapy genomic change identified in this study. Additionally, the median
number of SNVs decreased from 3813 to 2814 post-radiotherapy, suggesting

potential shifts in mutational processes and repair pathway engagement.

NanoSeq provided a more reliable assessment of mutational processes than WES.
SBS1 and SBS5, associated with endogenous aging, were consistently detected,
while SBS40a (of unknown aetiology) appeared in some cases but was not linked to
radiotherapy. No radiation-associated SBS signatures (e.g., SBS18) were detected
post-radiotherapy, confirming that radiotherapy does not drive a distinct single base

substitution mutational signature in STS.

In contrast, indel (ID) signature analysis provided evidence of potential radiotherapy-
induced effects. Five ID signatures (ID1, ID2, ID5, ID8, and ID9) were detected, with
ID8 emerging exclusively in all post-radiotherapy samples. ID8 has previously been
linked to double-strand break repair via non-homologous end joining (NHEJ) (see
Section 1.7.4), suggesting that radiotherapy-induced DNA damage may drive
increased reliance on this error-prone repair pathway. The significant rise in overall
indels post-radiotherapy, coupled with the presence of ID8 in all post-treatment
samples, strongly suggests that radiotherapy promotes genomic instability through
mutagenic repair processes. While statistical significance was not reached due to

small sample size, these findings warrant further validation in larger cohorts.

Future Directions
While TMB remained stable post-radiotherapy, the significant rise in indels and copy
number alterations (CNAs) suggests that radiotherapy alters DNA repair dynamics

in STS, potentially influencing tumour evolution. Future studies should investigate
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whether radiotherapy-induced shifts toward error-prone repair pathways (e.g.,
MMEJ) contribute to treatment resistance or recurrence. Longitudinal multi-omics
profiling combined with functional validation (e.g., DNA repair assays, CRISPR-
based studies) will be essential to determine whether these changes create

targetable vulnerabilities for improving sarcoma treatment.
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Chapter 4. The transcriptomic response to

neoadjuvant radiotherapy.
4.1 Introduction

While Radiotherapy (RT) is known to cause DNA damage, its broader effects on
tumour biology - particularly at the transcriptomic level - remain poorly understood.
In Chapter 3, genomic analyses revealed no recurrent somatic variants or copy
number alterations consistently induced by RT across subtypes, aligning with the
known genomic heterogeneity of STS. However, NanoSeq analysis identified a
significant increase in indels post-RT, with the emergence of ID8, a signature
associated with double strand break repair via non-homologous end joining. These
findings indicate that while RT does not generate a distinct SNV-based mutational
signature, it likely induces genomic instability through increased reliance on error-

prone DNA repair mechanisms.

Given the absence of recurrent RT-induced driver mutations, this raises a key
question: do STS tumours instead exhibit shared transcriptional responses to RT?
Exploring the transcriptomic landscape could reveal adaptive cellular programs that,
despite underlying genomic heterogeneity, may be targetable for therapeutic
intervention. If RT induces predictable changes in gene expression or pathway
activity, these could represent potential vulnerabilities that could be leveraged for

combination therapies to enhance treatment efficacy.

Despite the molecular diversity of STS, prior studies suggest that certain
transcriptional programs, such as stress response and immune modulation, may be
conserved across tumour types (McKelvey, Hudson et al. 2018, Wang, Lynch et al.
2024). However, little is known about how RT reshapes the transcriptome in STS.
This chapter addresses this gap by identifying radiotherapy-induced gene
expression changes, altered signalling pathways, and transcriptional responses that

may contribute to tumour adaptation.
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Objectives of this chapter

This chapter specifically addresses the following questions:

e Do STS tumours exhibit shared transcriptional responses to RT despite their
genomic heterogeneity?

¢ Which genes and pathways are consistently altered following RT across sarcoma
subtypes?

e How do transcriptomic responses vary by histological subtype?

By integrating differential expression analysis, pathway enrichment, and tumour
phenotypic comparisons, this chapter aims to identify potentially targetable

transcriptional responses to RT in STS.

Structure of this chapter

The chapter begins with a clinical overview of the cohort, outlining histological
distribution and patient characteristics. Next, exploratory transcriptomic analyses,
including principal component analysis (PCA) and UMAP clustering, assess global

transcriptional shifts following RT.

Differential gene expression analysis is performed to identify genes that are
significantly upregulated or downregulated post-RT across STS subtypes. To gain
biological insight, gene set enrichment analysis (GSEA) and PROGENy pathway
analysis are used to determine RT-induced changes in cellular signalling pathways.
Additionally, Gene Ontology (GO) enrichment analysis characterises the functional
roles of differentially expressed genes, while xCell immune deconvolution assesses

changes in immune cell composition following radiotherapy.
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4.2 Outline of dataset

To investigate the impact of radiotherapy on the transcriptome of soft tissue
sarcomas, | identified 61 patients treated by the London Sarcoma Service who
underwent neoadjuvant radiotherapy. Of these 61, 58 patients had FFPE tissue (pre-
and postoperatively) and 1 had fresh frozen tissue available for RNA extraction and
sequencing. For 58 patient samples, RNA extraction yielded sufficient quantities
(minimum 265 ng, median 5.5 pg) and concentrations (minimum 5.3 ng/pl, median
111 ng/pl) for sequencing. The only exception was the pre-radiotherapy biopsy from

patient 57, which had insufficient concentration for sequencing.

A total of 119 samples from 58 patients were sent for sequencing. One sample was
repeated (patient 4 - post-radiotherapy sample) due to initial poor-quality sequencing.
The repeated sample successfully passed quality control. Two samples (patient 42
and patient 56 - pre-radiotherapy biopsies) did not pass quality control after

sequencing, and there was insufficient tissue to attempt a repeat extraction.

The median number of sequenced reads per sample was 118.3 million (range 90.3
—131.1 million).

Summary of Samples and Patients

e Total number of patients: 57

¢ Total number of sequenced samples that passed QC: 117

e Number of pre-radiotherapy biopsy samples: 54 (from 54 separate
patients)

e Number of post-radiotherapy resection samples: 55 (from 43 separate
patients)

e Number of paired pre- and post-radiotherapy patients: 40

e Number of recurrence samples: 3 (from 3 separate patients)

e Number of metastasis samples: 5 (from 5 separate patients)

40 patients had matched pre- and post-radiotherapy tumour samples sequenced.
Four patients (patients 4, 24, 32, and 61) had an additional metastasis sample

sequenced. Patient 58 also had a tumour recurrence sample sequenced.
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Additionally, 4 patients (patient 39, patient 46, patient 48, and patient 58) underwent

multi-region sampling from the post-radiotherapy resection specimen.

Clinical Breakdown of all 57 patients

The histological breakdown of cases is shown in Table 4.1.

e Age at diagnosis: ranged between 17 to 89 years old (median 56 years,
mean 53 years).
¢ Gender distribution: 38 males and 19 females, resulting in a male-to-female

ratio of 2:1.

Table 4.1 Clinical characteristics of all patient samples

This table breaks down the patients in the study according to histological diagnosis.

Diagnosis Symbol No. of Male:Female Age
patients range
Myxofibrosarcoma ~ MFS 21 147  46-89 |
Myxoid liposarcoma mLPS 7 6:1 37 —48
Synovial sarcoma SS 7 4:3 22 - 56
Pleomorphic liposarcoma PLS 4 3:1 31-57
Dedifferentiated liposarcoma ddLPS 3 2:1 71-72
Pleomorphic leiomyosarcoma pLMS 3 2:1 57 -78
Undifferentiated pleomorphic UPS 3 2:1 29-76
sarcoma
Extraskeletal myxoid EMC 2 2:0 56 - 63
chondrosarcoma
Malignant peripheral nerve MPNST 2 0:2 40 - 59
sheath tumour
Spindle cell sarcoma NOS SpCS 2 2:0 17 — 53
Alveolar soft part sarcoma ASPS 1 0:1 27
Clear cell sarcoma CCS 1 0:1 28
Malignant mixed tumour MMT 1 1:0 17
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Clinical Breakdown of the 40 paired patients
For some analyses data was restricted to matched patient samples. Below is the

breakdown of the clinical characteristics of these samples (see Table 4.2).

¢ Age at diagnosis: ranged between 17 to 89 years old (median 56yrs, mean
51yrs).

¢ Gender distribution: 26 males and 14 females giving a male to female ratio
of 1.9:1.

Table 4.2. Clinical characteristics of paired patient samples

Diagnosis No. of Male:Female Age
patients range
Myxofibrosarcoma MFS 13 8:5 46 — 89
Synovial sarcoma SS 7 4:3 22 - 56
Pleomorphic liposarcoma PLS 4 3:1 31-57
Dedifferentiated liposarcoma ddLPS 3 2:1 71-72
Myxoid liposarcoma MLS 2 2:0 38 -42
Pleomorphic leiomyosarcoma pLMS 2 1:A1 57 -78
Extraskeletal myxoid EMC 2 2:0 56 — 63
chondrosarcoma
Spindle cell sarcoma SpCS 2 2:0 17 — 53
Undifferentiated pleomorphic UPS 1 1:0 29
sarcoma
Malignant peripheral nerve MPNST 1 0:1 59
sheath tumour
Alveolar soft part sarcoma ASPS 1 0:1 27
Clear cell sarcoma CCS 1 0:1 28
Malignant mixed tumour MMT 1 1:0 17
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4.21 Summary of dataset

This bulk RNAseq dataset comprises 117 tumour samples from 57 different patients,
representing 13 distinct soft tissue sarcoma subtypes. This includes 54 pre-
radiotherapy biopsies from 54 patients, 55 post-radiotherapy resection samples from
43 patients, 3 recurrence samples from 3 patients, and 5 metastasis samples from 5

patients.

Matched pre- and post-radiotherapy samples are available for 40 patients.

To the best of my knowledge, this represents the largest and most comprehensive
soft tissue sarcoma bulk RNAseq dataset with matched human patient samples pre-
and post-neoadjuvant radiotherapy. This clinically annotated dataset provides a solid
foundation for examining transcriptomic changes induced by radiotherapy and for

identifying potential biomarkers of treatment response and disease progression.
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4.3 Exploratory analysis of transcriptomic data quality and

clustering trends.

To explore the RNAseq data, | initially performed principal component analysis
(PCA), a widely used dimensionality reduction technique for assessing variability
within high-dimensional data. The PCA plot in Figure 4.1 shows that tumours of
certain histological subtypes tend to cluster together. For example, synovial sarcoma
samples are grouped in the lower-left area of the plot, while myxofibrosarcoma
samples cluster to the right. This clustering indicates that the gene expression
profiles within these subtypes are relatively homogeneous. Similar clustering
patterns have been reported in previous studies on soft tissue sarcomas, which
observed some clustering alongside overlap between histological subtypes (TCGA
2017, Lesluyes, Baud et al. 2019). To further visualise this pattern, | used Uniform
Manifold Approximation and Projection (UMAP), as shown in Figure 4.2, which
supports the PCA findings.

The effect of radiotherapy on the transcriptome, however, appears to be less
pronounced than the differences attributable to histological subtype (Figure 4.3). The
samples do not cluster distinctly by radiotherapy status, suggesting that the
transcriptomic changes induced by radiotherapy are not as significant as the inherent

gene expression profiles associated with each histological subtype.

Interestingly, the samples do cluster well by patient ID, showing a high degree of
similarity between the pre-radiotherapy biopsy and the post-radiotherapy resection
specimen(s) from the same patient. This consistency highlights the reliability and
robustness of the FFPE RNA extraction and sequencing methodology, even in the

absence of technical replicates.
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Figure 4.1. PCA plot demonstrating histological subtypes.

Samples are coloured by histological subtype. The sample labels show the patient
ID number followed by whether the sample was pre- or post-radiotherapy. Where
patients have had multiple post-radiotherapy samples sequenced this is indicated
with a number at the end of the label.
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Figure 4.2 UMAP demonstrating clustering of samples according to histological
subtype.

Samples are coloured by histological subtype. The sample labels show the patient
ID number followed by whether the sample was pre- or post-radiotherapy. Where
patients have had multiple post-radiotherapy samples sequenced this is indicated
with a number at the end of the label.
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Figure 4.3. PCA plot demonstrating the radiotherapy status of the samples.

Samples are coloured by radiotherapy status. The sample labels show the patient ID
number followed by whether the sample was pre- or post-radiotherapy. Where
patients have had multiple post-radiotherapy samples sequenced this is indicated
with a number at the end of the label.
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4.3.1 Multiregional sampling

To ensure confidence in downstream analyses, | examined whether temporal and
spatial sampling differences between biopsy and resection specimens would impact
the results. To this end, | performed multiregional RNA sequencing on resection
specimens from four patients, with each resection sampled from four separate FFPE
blocks representing distinct tumour regions. PCA analysis of the RNAseq data
showed that samples clustered by their patient ID, without clear separation between

pre-radiotherapy biopsies and post-radiotherapy resection specimens (Figure 4.4).

The consistency observed in the transcriptomes of the five samples per patient,
across all four patients, suggests limited transcriptional spatial heterogeneity within
soft tissue sarcomas at the bulk RNAseq level. This finding supports the reliability of
using a single sample for analysis and reinforces the reproducibility of the

methodology used in this study.
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Figure 4.4. PCA plot demonstrating the effect of radiotherapy in patients with

multi-region sampling of resection specimens.

Samples are coloured by radiotherapy status. The sample labels show the patient ID
number followed by whether the sample was pre- or post-radiotherapy.
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The samples in this study were sequenced in 4 batches. Batch 1 was the initial pilot
study, batch 2 and 3 contained the rest of the FFPE samples. Batch 4 was the
sequencing of the clear cell sarcoma case (patient 61). This was the only sample
where the bulk RNA sequencing was performed on fresh frozen tissue. Principal

component analysis shows no clustering by sequencing batch (Figure 4.5).

PCA 4 - Samples coloured by sequencing batch
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Figure 4.5. PCA plot demonstrating the effect of sequencing batch.

The samples are coloured by the sequencing batch. The sample labels show the
patient ID number followed by whether the sample was pre- or post-radiotherapy.
Where patients have had multiple post-radiotherapy samples sequenced this is
indicated with a number at the end of the label.
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4.3.2 Summary of transcriptome clustering analyses

The transcriptome analyses using PCA and UMAP show that while soft tissue
sarcomas exhibit diverse gene expression profiles, samples tend to cluster primarily
by histological subtype rather than by radiotherapy status. Some overlap between

different histological diagnoses is observed.
The consistent clustering of multi-region samples from the same patient underscores

the reliability and reproducibility of both the RNA extraction and sequencing methods.

This is further supported by the lack of clustering according to sequencing batch.
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4.4 Differential gene expression analysis of pre- and post-

radiotherapy samples.

To investigate changes in gene expression following radiotherapy, | conducted
differential gene expression analysis on 40 patients with matched pre- and post-
radiotherapy samples. This analysis excluded 14 patients with only unpaired pre-
radiotherapy biopsies and 3 patients with only unpaired post-radiotherapy resections.
Using paired samples helps control for inter-patient variability, which enhances the
reliability of the results, even if this comes at the expense of a reduced sample size

and potentially lower statistical power.

Differential expression analysis was conducted in R using the DESeq2 package.
Results are displayed in the volcano plot (Figure 4.6). Applying a threshold of Log,
fold change > 1 and an adjusted p-value (padj) < 0.05, | identified 140 differentially
expressed genes. Among these, 107 genes were upregulated, and 33 genes were
downregulated following radiotherapy. The top differentially expressed genes

(though with Log, fold change > 1.5) are highlighted in Figure 4.7.
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Figure 4.6. Volcano plot of differential gene expression following radiotherapy.

The volcano plot shows changes in gene expression between pre- and post-
radiotherapy samples. The dashed vertical lines represent the significance
threshold at Log, fold change of £1, and the horizontal dashed line marks an
adjusted p-value (padj) of <0.05.
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Figure 4.7. Top differentially expressed genes following radiotherapy.

This bar plot displays the top 42 differentially expressed genes with a Log, fold
change > 1.5, show genes that exhibit the most substantial changes in expression

post-radiotherapy.
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4.5 Differential gene expression analysis of pre- and post-

radiotherapy samples by histological subtype

The results present above in section 4.4 reflect the combined differential gene
expression analysis across 13 different histological subtypes. To investigate
potential subtype-specific changes and identify genes shared between subtypes, |
next performed differential gene expression analyses on patients from subtypes with
sufficient paired samples. This analysis included 35 patients across the following
subtypes: myxofibrosarcoma (13), synovial sarcoma (7), pleomorphic liposarcoma
(4), dedifferentiated liposarcoma (3), myxoid liposarcoma (2), pleomorphic
leiomyosarcoma (2), extraskeletal myxoid chondrosarcoma (2), and spindle cell

sarcoma (2).

Across this cohort, a total of 1403 genes were differentially expressed following
radiotherapy. The majority of these genes (1216 genes, or 86.7%) were subtype
specific. Each subtype showed between 68 and 503 differentially expressed genes,

with 42% to 83% of these genes being unique to a specific subtype (Table 4.3).
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Table 4.3. Numbers of differentially expressed genes following radiotherapy

broken down by histological subtype.

Tumour type Number of Number of unique Unique genes
differentially differentially per subtype
expressed expressed genes (%)
genes

Myxofibrosarcoma 503 420 83

Synovial sarcoma 12 5 42

Pleomorphic 117 82 70

liposarcoma

Dedifferentiated 68 40 58

liposarcoma

Myxoid 445 346 78

liposarcoma

Pleomorphic 198 137 69

leiomyosarcoma

Extraskeletal 94 50 53

myxoid

chondrosarcoma

Spindle cell 184 136 74

sarcoma
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4.5.1 Shared differentially expressed genes between subtypes.

A total of 187 genes were differentially expressed in at least two subtypes. The most
commonly observed shared genes were HBA2 and HBB, which were differentially
expressed in six subtypes: myxofibrosarcoma (MFS), myxoid liposarcoma (MLS),
pleomorphic leiomyosarcoma (pLMS), dedifferentiated liposarcoma (ddLPS), spindle
cell sarcoma (SpCS), and extraskeletal myxoid chondrosarcoma (EMC). The next
most commonly shared gene was F13A1, differentially expressed in four subtypes
(MFS, MLS, pLMS, and ddLPS). Additionally, 21 genes were differentially expressed
in three subtypes, and 163 genes were differentially expressed in two subtypes. A
complete list of shared genes and their respective tumour types is provided in Table
4.4.

The number of unique and shared differentially expressed genes varies across
sarcoma subtypes, with relatively few genes overlapping between them. No two
subtypes share more than 19 unique genes (notably between MFS and MLS, as well
as MLS and pLMS). Most subtypes exhibit largely distinct transcriptional profiles,
though some genes are shared across multiple subtypes in small numbers. These
patterns are visualised in Figure 4.8, where an upset plot illustrates the extent of
gene overlap, emphasizing the predominantly unique transcriptional landscapes of

different sarcoma subtypes.
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Figure 4.8. Upset plot displaying unique and shared differentially expressed genes
following radiotherapy across histological subtypes.

Each subtype’s differentially expressed genes following radiotherapy are shown,
highlighting both the number of unique and shared genes across these histologies.
Myxofibrosarcoma (MFS), myxoid liposarcoma (MLS), pleomorphic
leiomyosarcoma (pLMS), spindle cell sarcoma (SpCS), pleomorphic liposarcoma
(PLS), extraskeletal myxoid chondrosarcoma (EMC), dedifferentiated liposarcoma
(ddLPS), and synovial sarcoma (SS).
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Table 4.4. Differentially expressed genes following radiotherapy that are shared

between multiple soft tissue sarcoma subtypes.

Gene Name Number of subtypes Subtypes Gene Name  Number of

(ABCBS 2 MFS, pLMS IFITM T 2 MLS, PLS
[ADAMTSTE 2 pLMS, PLS IGHV1-2 2 MLS, pLMS
[ADORAZ 2 MFS, ddLPS ITGBg 2 MLS, SpCs
(AFAPTLT 2 MLS, SpCS JPHT 3 MLS, SpCS, EMC
ALAS2 2 MFS, MLS JuNB 2 MFS, pLMS
ALPKZ 2 MLS, SpCS KCNHE 2 ddLPS, PLS
ANKS 2 MLS, SpCS KLF6 2 MLS, EMC

| ANKRD20A8! 2 MLS, pLMS LINCO0632 2 58, pLMS

ANOS 3 SpCS, EMC, PLS LOXHD1 3 MFS, MLS, pLMS
[ APLN 2 MFS, pLMS MARCO 2 MF5, PLS
[APOA2 2 55, MFS MBP 2 55, pLMs

| ARLGIPS 2 MLS, pLMS MCAM 2 pLMS, ddLPS
ASB2 2 MFS, EMC MDM2 2 SpCs, EMC
B3GATT 2 MFS, MLS MECOM 2 MF5, PLS

BGN 2 MLS, pLMS MEDAG 2 MLS, pLMS
BINLS 2 MFS, MLS MT14 2 MFS, SpCS
c1Qc 2 MFS, PLS MTIE 2 MLS, SpCs

c3 2 MFS, MLS MTIX 3 MF5, MLS, SpCS
[+ 2 MLS, pLMS Muci1z2 2 MLS, PLS

c7 2 MLS, pLMS MuC17 2 MFS, PLS

CA3 2 MLS, EMC MYH2 2 MF5, EMC
CACNATE 2 S5, MLS MYHZ 2 MLS, ddLPS
CACNAZ2DT 2 MLS, EMC MYo188 2 SpCSs, EMC
CASQT 3 MFS, MLS, EMC MYoM3 3 MLS, SpC5, EMC
ccpc1o2B 2 MFS, PLS NiD2 2 MFS5, MLS
ccDc141 2 MFS, pLMS NMNAT2 2 MLS, ddLPS
CCL13 2 MFS, PLS NOTCH4 3 MFS5, MLS, SpCS
CCL4 2 MFS, MLS NR4A2 2 MF5, EMC
CCNT 3 MLS, ddLPS, EMC OR4F8P 2 pLMS, PLS
CCNz2 2 MLS, ddLPS PADI2 2 SpCSs, EMC
cD163L1 2 58, MFS PAPPA 2 MLS, EMC
CD209 2 MFS, PLS PCDHAT 2 MFS5, MLS
cDd44 2 MLS, PLS PDE4DIP 2 MLS, SpCSs
CD53 2 MFS, MLS PDK4 3 MFS, ddLPS, EMC
CDHS 2 MFS, EMC PER1 2 MLS, EMC
CDKN1A 2 MLS, EMC PLA2G2A 2 MLS, pLMS
CES? 2 MLS, ddLPS PLA2G4B 2 SpCSs, EMC
CFHR1 2 ddLPS, 5pCS PLCH1 2 MFS, pLMS
CHI3L1 2 MFS, MLS PLTP 2 MLS, PLS
CHI3L2 2 MFS, MLS PRSS12 3 MF5, pLMS, EMC
CLEC3B 2 MFS, EMC PTGDS 2 MFS, EMC
CLECAG 2 MFS, PLS PYCR1 2 pLMS, ddLPS
CLECT7A 2 55, pLMS RARRES? 2 MFS, MLS
cucs 2 SpCS, EMC RELN 2 MLS, PLS
CNTNT 2 MLS, pLMS RGS1 3 MFS, MLS, ddLPS
coLmar 2 MLS, pLMS RIM52 2 ddLPS, PLS
COL4A3 2 MLS, EMC RN7SLT 2 MF5, PLS
COMMDE 2 MFS, SpCS RN7SL2 2 MFS, PLS

CP 2 MLS, pLMS RNASET 2 MF5, ddLPS
CR1 2 MFS, pLMS RYR1 2 MLS, SpCS
CRB1 2 MLS, ddLPS RYRZ 2 MLS, PLS

CRIPT 2 MLS, pLMS RYR3 2 SpCs, EMC
CRK 3 MFS, pLMS, EMC ST00A1 2 MF5, EMC
CXADR 2 MLS, SpCS SCARNAT 2 MFS, pLMS
DABZ 2 pLMS, 5pCS SCN4A 2 EMC, PLS

bcc 2 MLS, ddLPS SELENOP 2 MFS, pLMS
DEPPT 2 MLS, ddLPS SEMA3C 2 MLS, SpCS

DES 2 pLMS, EMC SEPT5-GP1BB 2 MFS, SpCS
DMD 3 SpCS, EMC, PLS SERPINAZ 2 MFS5, MLS

DsP 2 MLS, pLMS SERPINET 3 55, MLS, PLS
DusP1 2 MLS, EMC SH3BGR 2 MLS, SpCSs
DYSF 2 SpCSs, EMC SHOX2 2 MFS5, MLS
EFEMP1 2 MLS, pLMS SLAMF8 2 MF5, MLS
ESAM 2 MFS, MLS SLC2942 2 MLS, SpCS
F13A1 4 MFS, MLS, pLMS, ddLPS SLCOsAT 2 MFS, MLS
FADS2 2 MFS, ddLPS SMTINL2 2 MF5, ddLPS
FAM27E3 2 MFS, pLMS SNORA43 2 MLS, pLMS
FATZ 2 MFS, ddLPS SNRPD1 2 MF5, EMC
FCGR3A 2 MFS, PLS S0X18 3 MFS, SpC5, EMC
FGF7 3 MLS, pLMS, PLS SPAG17 2 MFS, pLMS
FGFR2 2 pLMS, 5pCS SPINKS 2 MFS, MLS
FiuPt 2 SpCS, EMC SPRY4 2 MFS, pLMS
FLNC 2 SpCSs, EMC STACS 2 SpCs, EMC
FLTT 2 MLS, EMC STEAPTB 2 5SpCs, PLS
FNDC1 2 MLS, pLMS STRAG 2 pLMS, SpCS
FOSB 2 MFS, pLMS SURF4 2 pLMS, EMC
FOSL2 2 MLS, PLS SYNPO2L 2 MLS, SpCs
FRAST 2 MFS, MLS TAGLN 3 MLS, pLMS, EMC
GiPR 2 MLS, SpCS THBS1 2 MLS, pLMS
GOLGAGLS 2 ddLPS, PLS mET 2 MFS, SpCS
GOLGAGLY 2 MLS, PLS TNC 2 MLS, pLMS
GPIHBP1 2 MFS, MLS TNFRSF118 2 MLS, PLS
GPR34 2 MFS, pLMS TNXB 2 MLS, PLS
GPR8SB 2 MFS, SpCS TRMTS 2 MFS, pLMS
H2ACT3 2 ddLPS, PLS TXNIP 2 pLMS, PLS
H2BC20P 2 MLS, ddLPS TYRP1 2 MLS,EMC
HBAT 3 MFS, MLS, pLMS UHRF1 2 MF5, ddLPS
HBA2 & MFS, MLS, pLMS, ddLPS, SpCS, EMC |UNCS5C 2 MFS, pLMS

HBB [ MFS, MLS, pLMS, ddLPS, SpCS, EMC | USH24 2 MFS, pLMS
HLA-DQAT 2 MLS, PLS WDR6&2 3 MFS, pLMS, SpCS
HSPA2 2 MLS, SpCS XIRPT 2 MFS, pLMS
HSPB8 2 MLS, SpCS | ZBTB16 3 MLS, ddLPS, SpCS
IFiT2 2 pLMS, 5pCS | ZNF728 2 MLS, pLMS
IFITS 3 MFS, pLMS, 5pCS
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Differential gene expression analysis identified 24 genes with shared transcriptional
changes across multiple sarcoma subtypes following radiotherapy. These genes
were selected based on their differential expression in at least three subtypes,
suggesting a common transcriptional response to treatment. The heatmap in Figure
4.9 illustrates these expression changes, highlighting patterns of radiotherapy-

induced gene regulation across sarcoma subtypes.

Several genes exhibit consistently increased expression post-radiotherapy, including
SERPINE1, RGS1, MT1X, FGF7, IFIT3, CRK, F13A1, CCN1, and PDK4. In contrast,
ANOS, LOXHD1, NOTCH4, DMD, SOX18, HBA1, HBAZ2, and HBB show consistent

decreases in expression across multiple subtypes.

Interestingly, some genes display varied expression changes depending on the
subtype, suggesting subtype-specific responses. These genes include CASQT,
PRSS12, JPH1, MYOMS3, TAGLN, and ZBTB16.

These findings suggest that while certain genes exhibit a common response to
radiotherapy across sarcoma subtypes, others demonstrate subtype-specific
expression patterns, highlighting the complexity of sarcoma transcriptomic

responses to treatment.
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Shared gene expression changes post radiotherapy
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Figure 4.9. Heatmap of differentially expressed genes observed in at least three

sarcoma subtypes following radiotherapy.

Genes with Log, fold changes of less than £1 are coloured white to indicate minimal
expression change. Red and blue denote upregulation and downregulation,
respectively, with intensity reflecting the magnitude of the fold change.
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4.5.2 Summary

This section examined gene expression changes following radiotherapy across
various sarcoma subtypes. By analysing paired pre- and post-radiotherapy samples,
| aimed to control for inter-patient variability and achieve more reliable results.
Differential gene expression analysis on 40 paired samples from 13 sarcoma
subtypes identified 140 significantly altered genes post-radiotherapy, with the

majority (107) showing upregulation.

Subtype-specific analyses revealed considerable variability, with most differentially
expressed genes being unique to individual subtypes. However, a subset of genes
was consistently altered across multiple subtypes. For instance, SERPINE1
displayed a consistent increase in expression, while the haemoglobin genes HBAT,
HBA2, and HBB consistently decreased across subtypes. Other genes, such as
CASQ1, exhibited subtype-specific responses, being upregulated in two subtypes
but downregulated in another. These findings highlight both shared and subtype-

specific mechanisms in response to radiotherapy.
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4.6 Gene Set Enrichment Analysis (GSEA) of pre- vs post-

radiotherapy Samples

To further investigate the biological processes influenced by radiotherapy, |
performed Gene Set Enrichment Analysis (GSEA) on the differential gene
expression (DGE) results from paired pre- and post-radiotherapy samples. This
analysis aimed to identify enriched cellular pathways involved in the response to

radiotherapy across various sarcoma subtypes.

| used the Hallmark gene sets which were developed by the Broad Institute (Liberzon,
Birger et al. 2015). They represent a curated collection of 50 gene sets that cover
essential biological processes and signalling pathways. These pathways are
associated with fundamental aspects of cellular function, disease mechanisms, and
developmental processes, providing a framework for interpreting large and complex
gene expression datasets. By consolidating related genes into distinct biological
pathways, the Hallmark gene sets reduce redundancy, making it easier to discern
broader biological trends rather than isolated gene-level changes. Key pathways
include those related to cell proliferation, inflammation, immune response,

metabolism, and DNA repair; all processes potentially impacted by radiotherapy.

The GSEA results revealed both significantly upregulated and downregulated
pathways following radiotherapy (Figure 4.10). Notably, several immune-related
pathways were significantly upregulated, including interferon gamma response,
TNFA signalling via NFKB, and inflammatory response, suggesting a strong immune
activation in response to radiotherapy. Other pathways such as allograft rejection
and interferon alpha response were also enriched, further supporting an immune-

modulatory effect of the treatment.

Conversely, several proliferation pathways were significantly downregulated. These
included MYC targets, G2M checkpoint, and E2F targets, indicating a potential
reduction in tumour cell proliferation activity post-radiotherapy. This pattern aligns
with the therapeutic goal of radiotherapy, which is to damage tumour cells and inhibit

their growth.
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These findings suggest that radiotherapy induces a complex response in soft tissue
sarcomas, characterised by upregulation of immune pathways and downregulation

of proliferative pathways.

Enriched Hallmark Pathways
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Figure 4.10. Heatmap of enriched Hallmark pathways in post-radiotherapy
Samples.

This heatmap displays the normalised enrichment scores (NES) of significantly
enriched Hallmark pathways following radiotherapy. The colour intensity reflects
the NES, with red indicating upregulation and blue indicating downregulation post-
radiotherapy.
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4.7 Gene Ontology analysis

To further characterise the biological processes affected by radiotherapy, |
performed a Gene Ontology (GO) enrichment analysis on the differentially expressed
genes identified between pre- and post-radiotherapy samples (section 4.4). Unlike
the Hallmark pathway-focused Gene Set Enrichment Analysis (GSEA), which
aggregates lists of genes into broad curated pathways, GO analysis categorises
genes based on specific biological processes, molecular functions, and cellular

components (Ashburner, Ball et al. 2000, The Gene Ontology Consortium 2018).

The GO enrichment analysis of upregulated genes highlighted a strong enrichment
of immune and inflammatory processes (Figure 4.11). Key biological processes
significantly upregulated included T cell activation, cytokine-mediated signalling, and
immune response-regulating signalling pathways. Additional processes, such as
leukocyte migration, lymphocyte proliferation, and response to external stimuli, were
also prominent among the top upregulated pathways. These results suggest that
radiotherapy activates various immune-related processes, potentially enhancing the

anti-tumour immune response within the tumour microenvironment.
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Figure 4.11. Top 30 Upregulated GO Biological Processes following radiotherapy.

This dot plot displays the top 30 upregulated Gene Ontology (GO) Biological
Processes identified in post-radiotherapy samples. The size of each dot represents
the number of genes involved in the process, while the colour intensity indicates
the adjusted p-value, with red representing the most statistically significant
processes. The x-axis represents the GeneRatio, defined as the ratio of genes
associated with each GO term relative to the total number of upregulated genes.
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Conversely, the GO enrichment analysis of downregulated genes revealed a distinct
set of biological processes, primarily related to cell cycle regulation and DNA
metabolism (Figure 4.12). Significantly downregulated processes included mRNA
processing, RNA splicing, chromosome segregation, and DNA conformation
changes. Additionally, pathways related to mitotic processes, such as spindle
organisation, sister chromatid segregation, and mitotic nuclear division, were among
the most significantly downregulated processes. These findings align with the
observed reduction in proliferative pathways following radiotherapy seen in the

GSEA analysis, suggesting a suppression of tumour cell growth and division.

Overall, these GO analysis results highlight the dual impact of radiotherapy on the
transcriptome, with upregulated immune processes suggesting an activated immune
response and downregulated cell cycle-related processes indicating decreased

tumour proliferation.
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Figure 4.12. Top 30 Downregulated GO Biological Processes following
radiotherapy.

This dot plot displays the top 30 downregulated Gene Ontology (GO) Biological
Processes identified in post-radiotherapy samples. The size of each dot represents
the number of genes involved in the process, while the colour intensity indicates
the adjusted p-value, with red representing the most statistically significant
processes. The x-axis represents the GeneRatio, defined as the ratio of genes
associated with each GO term relative to the total number of upregulated genes.
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4.8 PROGENy analysis

To investigate the impact of radiotherapy on the molecular pathways in soft tissue
sarcomas, | used the PROGENy (Pathway RespOnsive GENes) R package
(Schubert, Klinger et al. 2018). PROGENYy is designed to infer pathway activity from
bulk gene expression data. Unlike GSEA analysis (see section 4.5) which is
designed to determine whether a predefined set of genes show a statistically
significant differences between two biological states, PROGENYy is designed to
predict the activity of signalling pathways based on the expression of their
downstream target genes, reportedly offering a more direct measure of pathway

dynamics.

The development of PROGENYy involved compiling a comprehensive list of pathway-
responsive genes from experimental data, allowing the method to provide a more
accurate and functional interpretation of pathway dynamics based on observed gene
expression profiles. This data was curated from a variety of experimental platforms,
including 581 perturbation experiments where specific pathways were activated or
inhibited. The authors also used microarray gene expression and drug sensitivity
data from the Cancer Cell Line Encyclopedia (CCLE), Gene expression data from
The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO).

From these sources they derived pathway-specific signatures for 14 major signalling
pathways (Androgen, EGFR, Estrogen, MAPK, Hypoxia, JAK-STAT, NF-kB, p53,
PI3K, TGF-B, TNFa, TRAIL (apoptosis), VEGF, and Wnt.). These signatures are sets
of genes that consistently respond to pathway activation or inhibition. These
signatures are then used to score new gene expression data, providing an estimate
of pathway activity. The scores are continuous values that reflect the level of pathway
activity. Positive scores indicate higher pathway activity, while negative scores

suggest reduced activity.

A comparison of pre- and post-radiotherapy pathway activity scores is shown in
Figure 4.13. | performed paired t-tests to compare the pathway activity scores
between matched pre- and post-radiotherapy samples. Notably, the Androgen
(P<0.0001), JAK-STAT (P =0.0001), NF-kB (P = 0.005), p53 (P <0.0001), and TNFa
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(P = 0.0001) pathways showed significant increase following radiotherapy. There

was a statistically significant decrease in PI3K (P = 0.00169) pathway activity.
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Figure 4.13. PROGENYy pathway activity scores pre- and post-radiotherapy

PROGENYy pathway activity scores comparing all pre- and post-radiotherapy paired
samples (Paired t test).
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4.8.1 Subtype specific analysis

| wanted to see if the changes in these pathways were seen across sarcoma
subtypes or whether they were subtype specific. For samples where there were
enough paired pre- and post-radiotherapy patient samples for statistical testing
PROGENYy scores were calculated. There were enough patients for the following
subtypes: myxofibrosarcoma (n = 14 patients), synovial sarcoma (n = 7), and

pleomorphic liposarcoma (n = 4).

When analysed by histological subtype, distinct patterns emerged (Figure 4.14).
Statistically significant changes were observed in myxofibrosarcomas with increases
seen in the Androgen (P = 0.0002), JAK-STAT (P = 0.0284), p53 (P < 0.0001), NF-
kB (P = 0.0391), TNFa (P = 0.0222), and Wnt (P = 0.0342) pathways. There was a
decrease in the PI3K (P < 0.0001) pathways activity score. In the synovial sarcomas
only the p53 pathway showed a statistically significant increase following
radiotherapy (P = 0.0429). None of the other 14 pathways showed a statistically
significant difference in the myxofibrosarcomas, synovial sarcomas, or the

pleomorphic liposarcomas.

These findings suggest that radiotherapy causes distinct pathway activity changes
in different histological subtypes of soft tissue sarcomas. The significant pathways
identified may play important roles in the response to radiotherapy and could serve

as potential targets for therapeutic intervention.
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Figure 4.14. PROGENYy pathway scores pre- and post-radiotherapy

PROGENYy pathway scores for myxofibrosarcoma (MFS), synovial sarcoma (SS),

pleomorphic liposarcoma (pLPS) pre- and post-radiotherapy (Paired t test).

197




Chapter 5. Results

4.8.2 Comparison to TCGA sarcoma samples

The sarcoma samples sequenced by the TCGA (TCGA 2017) were treatment naive
(both chemotherapy and radiotherapy). | wanted to see if the PROGENy pathway
activity scores in the TCGA data resembled my pre-radiotherapy scores and to see

if there was a difference between the TCGA scores and the post-radiotherapy scores.

There were 17 myxofibrosarcoma cases within the TCGA dataset. These were
compared to the 14 patients paired pre- and post-radiotherapy dataset (Figure 4.15).
There was a statistically significant increase in the Androgen (P < 0.0001), TNFa (P
= 0.0362) pathways. There was a significant decrease in the PI3K (P = 0.00499)
activity score between the TCGA and the post-radiotherapy samples. There was no

statistically significant difference in the remainder of the other 14 pathways.
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Figure 4.15. Comparison of PROGENYy scores in myxofibrosarcomas between the
TCGA and the radiotherapy datasets

PROGENYy pathway activity scores for myxofibrosarcomas from the TCGA, pre- and
post-radiotherapy datasets (Unpaired two-tailed t test between TCGA and post-
radiotherapy samples). Only significant pathways
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4.8.3 Summary

This PROGENYy analysis revealed significant pathway activity changes in multiple
soft tissue sarcomas following radiotherapy, suggesting potential molecular
mechanisms underlying the response to treatment. Across all samples, radiotherapy
significantly increased activity in the Androgen, JAK-STAT, NF-kB, p53, and TNFa
pathways, while PI3K pathway activity decreased.

When examined by histological subtype, distinct patterns emerged.
Myxofibrosarcoma showed widespread pathway activation post-radiotherapy, while
synovial sarcoma exhibited a notable increase only in the activity of the p53 pathway

and pleomorphic liposarcoma showed no changes in any pathways.

Further comparison of my post-radiotherapy myxofibrosarcoma cases with
treatment-naive TCGA myxofibrosarcoma samples highlighted a similar increase in
the Androgen and TNFa pathways and a decrease in PI3K activity post-radiotherapy,

further underscoring these pathway-specific responses.

These findings overall indicate that radiotherapy elicits heterogeneous pathway
responses across different sarcoma subtypes. This emphasises the need for
subtype-specific therapeutic strategies. The observed increase in Androgen pathway
activity post-radiotherapy raises the possibility that certain sarcomas could become
more responsive to anti-androgen therapies as an adjuvant treatment. This suggests
a potential avenue for targeted intervention that, while speculative, could be valuable

to explore in future studies to enhance patient outcomes.
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4.9 Cellular composition analysis using xCell.

Given the prominent immune signalling signatures identified in the GSEA and GO
analyses, | conducted an xCell analysis (Aran, Hu et al. 2017) to further investigate
the cellular composition including those of immune cells within the tumour
microenvironment. Given that bulk RNAseq data captures gene expression
averaged across all cell types in a sample, the resulting gene expression patterns
may reflect not only changes intrinsic to tumour cells but also shifts in the cellular
composition of the sample. This can be particularly relevant in the context of immune-
related pathways, where an influx or reduction of specific immune cell populations

could potentially influence the overall transcriptomic profile.

The primary aim of this analysis was to determine if changes in immune cell
populations could be influencing the observed gene expression patterns, particularly
those related to inflammation and immune signalling. By analysing the immune
composition with xCell, | sought to clarify whether the immune-related pathways seen
in the GSEA and GO results were, in part, a reflection of shifts in immune cell

abundance rather than solely gene expression changes within tumour cells.
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Figure 4.16. Changes in cellular composition identified by xCell analysis
following radiotherapy.

This bar plot displays the significantly altered cell populations identified by xCell
analysis, estimating the relative abundance of cell types within bulk RNAseq data.
"Relative abundance" reflects the proportion of specific cell types within the overall
tumour sample. Red bars indicate cell types with increased abundance post-
radiotherapy, while blue bars show those with decreased abundance.
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The xCell analysis (Figure 4.16) showed significant changes in 20 out of 64 cell types
analysed following radiotherapy, highlighting a shift in the tumour's immune
landscape. Notably, there was an increase in the abundance of macrophages and T
cells, both of which play key roles in the immune response to tumours. The elevated
presence of macrophages could indicate an immune response to radiotherapy-
induced tumour cell damage. Depending on their polarisation state, these
macrophages could either promote an anti-tumour immune response (in the case of
pro-inflammatory M1 macrophages) or contribute to immune suppression and
tumour progression (in the case of anti-inflammatory M2 macrophages) (Beach,
MacLean et al. 2022). The increase in T cells, particularly cytotoxic T cells, suggests
a potential enhancement of the anti-tumour immune response, which could support

the therapeutic effects of radiotherapy (Sharabi, Lim et al. 2015).

The increase in activated dendritic cells (aDCs) following radiotherapy suggests that
there may be an enhancement of antigen presentation within the tumour
microenvironment. Dendritic cells are critical for capturing antigens, processing
them, and presenting them to T cells, thereby initiating and shaping the adaptive
immune response. The presence of more activated dendritic cells could mean that
radiotherapy is promoting a pro-immunogenic environment, where tumour antigens
released following radiotherapy are more readily presented to T cells, potentially

enhancing their activation and function (Sharabi, Lim et al. 2015).

The shifts in immune cell populations seen in Figure 4.16 likely contribute to the
upregulation of immune pathways observed in the GSEA and GO analyses,
suggesting that some of the immune-related gene expression changes are a
reflection of altered immune cell composition within the tumour microenvironment.
However, it is important to note that while immune cell composition explains part of
the observed transcriptomic shifts, it is unlikely to fully account for all the enriched
pathways. The observed gene expression patterns are likely a combination of
immune cell changes and intrinsic gene expression responses within tumour and

stromal cells following radiotherapy.

The results of this xCell analysis highlights the challenge and complexity of

interpreting bulk RNAseq data, where cellular composition changes can confound
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differential gene expression analyses. These findings suggest that future studies
might benefit from using spatial transcriptomic approaches, which would allow for
more precise localisation of immune cells within the tumour tissue. By providing the
spatial context, these techniques could enable the exclusion of immune cells from
differential gene expression, GSEA, and GO analyses, leading to a more accurate

characterisation of tumour-specific transcriptional responses to radiotherapy.
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410 Discussion of chapter 4

This chapter examined the transcriptional response of soft tissue sarcomas to
neoadjuvant radiotherapy, addressing whether shared transcriptional changes
contribute to tumour adaptation. Given the absence of recurrent RT-induced driver
mutations in Chapter 3, but evidence of genomic instability, this chapter explored
whether RT elicits conserved gene expression changes that may be therapeutically

relevant.

Transcriptional responses to radiotherapy

Clustering analyses using PCA and UMAP demonstrated that histological subtype
exerted a stronger influence on gene expression than RT status, indicating that
intrinsic tumour biology remains the dominant factor shaping transcriptomic profiles.
However, differential gene expression analysis identified 140 significantly altered
genes post-RT (107 upregulated, 33 downregulated), suggesting that despite
intertumoural heterogeneity, RT induces specific transcriptional changes. Many of
these genes were associated with cell stress, inflammation, and immune activation,
while genes linked to proliferation and cell cycle progression were downregulated.
This suggests that RT may suppress tumour growth while simultaneously triggering

an adaptive immune response to cellular damage.

Pathway modulation and adaptive responses

Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) analysis provided
functional insights, highlighting upregulation of inflammatory pathways such as
interferon signalling, TNFa response, and p53 activation, alongside downregulation
of MYC targets and G2M checkpoint genes, suggesting reduced proliferative
capacity. This dual effect of RT - enhancing immune-related processes while
inhibiting tumour growth pathways aligns with prior studies demonstrating RT-

induced stress responses and immune priming.

While individual transcriptional responses varied across histological subtypes, with
different sets of upregulated and downregulated genes, many of the affected
pathways were shared. This suggests that despite the molecular heterogeneity of

STS, RT elicits common biological responses at the pathway level. For example,
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inflammatory and immune-related pathways were consistently upregulated, while
cell cycle and proliferation-related pathways were downregulated across multiple
subtypes. However, histology-specific adaptations were also evident, with
dedifferentiated liposarcoma and synovial sarcoma exhibiting distinct transcriptional
profiles, reinforcing the importance of considering tumour context in evaluating

treatment responses.

To further explore RT-induced pathway modulation, PROGENYy analysis revealed
increased activity in the Androgen, P53, JAK-STAT, NF-kB, and TNFa pathways,
consistent with stress and inflammatory responses. A notable decrease in PI3K
activity was also detected, suggesting that RT may suppress this survival pathway
post-treatment. Future research could explore whether targeting these upregulated
pathways in high-risk patients in the form of adjuvant treatment could improve

outcomes by preventing tumour adaptation or immune escape.

Immune activation: Direct RT effect or secondary adaptation?

xCell immune deconvolution provided further evidence of an immunogenic shift
following RT, with significant increases in macrophages and T cells across multiple
subtypes. The increase in cytotoxic T cells, in particular, aligns with the immune
activation signatures detected in pathway enrichment analyses, suggesting that RT
enhances tumour immunogenicity. However, whether these changes reflect direct
RT-induced immune activation (e.g., cytokine release following DNA damage) or a
secondary tumour-driven adaptation (e.g., immune evasion mechanisms) remains
unclear. While RT has been shown to remodel the immune microenvironment in
other cancers, its effects in STS remain poorly characterised. Further research is
needed to determine whether these immune alterations promote sustained anti-

tumour activity or contribute to immune suppression and recurrence.

Conclusions

These findings demonstrate that RT-induced transcriptional changes, while subtle
compared to intertumoural differences, reflect key biological adaptations that could
influence tumour progression or response to therapy. This chapter highlights how

immune activation, stress adaptation, and altered pathway signalling may play a
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more significant role in post-RT tumour behaviour than discrete genomic mutations

alone.

However, the extent of these transcriptional changes varies between tumours,
raising the question of whether they correlate with clinical outcomes. Chapter 5
directly investigates this by stratifying post-radiotherapy samples based on patient
response, identifying gene expression patterns associated with RT resistance and
progression. By determining whether specific transcriptomic features predict
therapeutic response, the next chapter aims to uncover potential biomarkers or

intervention targets for optimising STS treatment.
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Chapter 5. Transcriptomic determinants of

radiotherapy response in soft tissue sarcomas
5.1 Introduction

Neoadjuvant radiotherapy (RT) is an integral component of soft tissue sarcoma
(STS) treatment, yet patient responses vary widely, with some achieving durable
remission while others develop recurrence or metastasis. Identifying transcriptomic
determinants of RT response is critical for refining treatment strategies, guiding post-

treatment surveillance, and informing personalised therapeutic approaches.

Several transcriptomic prognostic models have been developed for STS, including
CINSARC (Chibon, Lagarde et al. 2010), the Genomic Grade Index (GGl) (Bertucci,
Finetti et al. 2012), and hypoxia-associated signatures (Yang, Forker et al. 2017).
These signatures have demonstrated prognostic value by distinguishing tumours
based on chromosomal instability, histological grade, and hypoxia-related
transcriptional activity, all factors associated with metastatic potential and tumour
aggressiveness. However, they have primarily been derived from treatment-naive
tumours and do not account for the transcriptional changes induced by RT. Given
the significant differences between pre- and post-RT sarcomas observed in Chapter
4, this chapter aims to identify RT-specific transcriptomic determinants of treatment

response and progression risk.

By stratifying tumours based on patient outcomes, this analysis seeks to identify
gene expression signatures and pathways associated with RT resistance. While prior
studies have shown that transcriptomic signatures can predict tumour
aggressiveness, they have not specifically addressed whether RT-induced
transcriptional changes influence disease progression. Given that RT has been
shown to modulate the immune microenvironment in sarcomas, with increased CD8+
T-cell infiltration and altered expression of immune checkpoints (Sharma, Bode et al.
2013), the immune landscape may be a key determinant of progression post-RT.

Integrating immune deconvolution and pathway enrichment analyses allows for a
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deeper exploration of whether immune-related transcriptional programs distinguish

responders from progressors.

The ultimate goal of this work is to identify biomarkers that can help and improve
clinical decision making. A robust predictive signature could inform follow-up plans,
enabling intensified surveillance and adjuvant therapy in high-risk patients while also
guiding de-escalation strategies for those unlikely to benefit from or are responder
particularly well to RT, thereby reducing unnecessary toxicity. Additionally, this work
seeks to uncover potential therapeutic targets for post-RT interventions, with a focus
on whether transcriptional programs activated in progressors reveal actionable

vulnerabilities that could be leveraged for combination therapies.

Unlike previous signatures, which were largely developed in treatment-naive STS,
this work focuses specifically on post-RT tumour biology, addressing a critical gap in
the field. By integrating transcriptomic data with patient outcomes and machine
learning-based modelling, this chapter builds upon the findings of Chapters 3 and 4,

providing a clinically relevant framework for predicting STS progression post-RT.
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Objectives of this chapter

This chapter seeks to answer the following key questions:

e Are there specific gene expression changes associated with disease progression
after RT?

e Which biological pathways are enriched in progressors, and do they reflect
mechanisms of RT resistance?

e Does the tumour immune microenvironment differ between responders and
progressors?

e Can a predictive model be developed to stratify patients based on post-RT

transcriptomic profiles?

Structure of this chapter

The chapter begins with an overview of the clinical characteristics of responders and
progressors, detailing differences in histological subtypes and disease progression
timelines. This is followed by a differential gene expression analysis to identify genes
associated with post-RT disease progression. Gene set enrichment and pathway
analysis further contextualise these findings, highlighting biological processes linked
to progression. Next, | assess differences in tumour immune composition using xCell,
examining how immune features may contribute to disease progression. Finally, |
present the development of a predictive model for disease progression based on
post-RT gene expression signatures, aiming to establish a clinically relevant

framework for patient stratification.
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5.2 Clinical characteristics of post-radiotherapy responders

VS progressors

The post-radiotherapy cohort consists of 43 patients with 52 available RNA
samples, distributed across 13 different histological subtypes. Among these, 26
patients showed no evidence of disease progression, with a median follow-up time
of 6.8 years (range: 3.8—10.3 years) from the end of intensity-modulated radiation
therapy (IMRT). The median time from the end of IMRT to surgical resection for this

group was 44 days (range 28 to 60 days).

In contrast, 17 patients experienced disease progression, defined as metastasis or
recurrence, with a median time to progression following IMRT of 236 days (range: -
31 days to 5.3 years). Of those who progressed, 14 patients ultimately died from
their disease, with a median time from IMRT to death of 2.2 years (range: 223 days
to 7.2 years). The median time from the end of IMRT to surgical resection for this

group was 48 days (range 13 to 84 days).

Age differences between responders and progressors

Responders were generally older than progressors, with a median age of 60 years
compared to 46 years. A two-sample t-test confirmed this difference was statistically
significant (p = 0.01). While the precise role of age in influencing radiotherapy
response was not explored in depth in this study, this difference should be taken into
consideration in subsequent analyses. Future studies incorporating multivariable
models may help determine whether age acts as a confounding factor in response

to radiotherapy.

A breakdown of the histological subtypes and their progression status is shown in
Table 5.1.
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Table 5.1. Summary of histological subtypes and disease progression status in
post-radiotherapy cohort.

This table presents the distribution of histological subtypes and disease progression
status among 43 patients with post-radiotherapy RNA samples. Progression status
is categorised into "Responders" (no evidence of disease progression) and
"Progressors" (progression defined as metastasis or recurrence). The number of
progressors who died of disease is shown in the final column. ASPS (Alveolar Soft
Part Sarcoma), CCS (Clear Cell Sarcoma), ddLPS (Dedifferentiated Liposarcoma),
EMC (Extraskeletal Myxoid Chondrosarcoma), MEC (Myoepithelial Carcinoma),
MFS (Myxofibrosarcoma), mLPS (Myxoid Liposarcoma), MPNST (Malignant
Peripheral Nerve Sheath Tumour), pLMS (Pleomorphic Leiomyosarcoma), pLPS
(Pleomorphic Liposarcoma), SpCS (Spindle Cell Sarcoma), SS (Synovial Sarcoma),
and UPS (Undifferentiated Pleomorphic Sarcoma).

Total Number Responders Progressors Died of disease

ASPS 1 0 1 0
ccs 1 0 1 1
ddLPS 3 2 1 0
EMC 2 2 0 0
MEC 1 0 1 1
MFS 15 13 2 2
mLPS 2 0 2 2
MPNST 1 1 0 0
pLMS 2 1 1 1
pLPS 4 0 4 3
SpCS 2 1 1 1
Ss 7 5 2 2
UPS 2 1 1 1
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5.3 Differential Gene Expression and Gene Set Enrichment

Analysis.

In order to investigate the transcriptomic changes associated with disease
progression in post-radiotherapy sarcomas, | performed a comprehensive differential
gene expression and gene set enrichment analysis. This analysis sought to highlight
both specific genes and pathways differentially regulated in patients with disease
progression, potentially revealing mechanisms that contribute to tumour radio-

resistance.

Differential expression analysis was conducted in R using the DESeq2 package.
Results are displayed in the volcano plot (Figure 5.1). Applying a threshold of Log.,
fold change > 1 and an adjusted p-value (padj) < 0.05, | identified 586 differentially
expressed genes. Among these, 315 genes were upregulated, and 271 genes were
downregulated in patients who went on to have subsequent disease progression.
The top differentially expressed genes are highlighted in Figure 5.2. An in-depth
discussion of the top differentially expressed genes is presented in the next chapter

in section 6.3.2.
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Figure 5.1. Volcano plot of differential gene expression between progressors and
responders following radiotherapy.

The volcano plot illustrates changes in gene expression between patients with
disease progression (progressors) and those without progression (responders)
following radiotherapy. The dashed vertical lines represent the significance
threshold at Log, fold change of £1, and the horizontal dashed line marks an
adjusted p-value (padj) of <0.05.
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Figure 5.2. Top differentially expressed genes in patients with subsequent disease

progression.

This bar plot displays the top differentially expressed genes between patients with
disease progression (progressors) compared to those without progression
(responders) following radiotherapy.
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Gene Set Enrichment Analysis

Subsequently | performed Gene Set Enrichment Analysis (GSEA) to identify
enriched biological pathways that distinguish progressors from responders. The
hallmark pathways analysis revealed significant enrichment in several pathways
(Figure 5.3). Upregulated pathways in progressors included E2F and MYC targets,
G2M Checkpoint, and Epithelial-Mesenchymal Transition (EMT), highlighting a trend
toward pathways associated with cell cycle progression, proliferation, and
metastasis. These pathways are consistent with aggressive tumour behaviours,
potentially correlating with the observed clinical progression in these patients
(Schulze, Oshi et al. 2020, Huang, Hong et al. 2022, Chida, Oshi et al. 2023).

Conversely, in the progressors, several pathways commonly associated with
immune response, inflammation, and cellular stress appear to be significantly
downregulated. Notably, pathways such as Interferon Gamma and Alpha signalling
and IL6-JAK-STAT3 signalling are reduced, potentially indicating a weakened
immune response. Interferons, crucial components of the innate immune system, are
typically involved in activating immune cells, promoting antigen presentation, and
enhancing cytotoxicity against tumour cells. The downregulation of interferon
pathways suggests a diminished capacity for immune cells to recognise and attack
tumour cells effectively, potentially allowing for immune evasion by the tumour
(Johnson, O'Keefe et al. 2018, Jorgovanovic, Song et al. 2020, Shi, Yao et al. 2022).

In addition, TNFa signalling via NFkB and the Inflammatory Response pathways are
also downregulated, which may indicate suppressed inflammation within the tumour
microenvironment. TNFa and NFkB play pivotal roles in orchestrating immune
responses and promoting inflammation, which can limit tumour growth by activating
immune cells. Reduced activity in these pathways may create a less hostile
environment for tumour cells, reducing immune surveillance and potentially thereby
facilitating tumour growth and progression without interference from inflammatory
defences (Karin 2006, Wu and Zhou 2010, Alim, Keane et al. 2024).

Moreover, the downregulation of Reactive Oxygen Species (ROS) and Apoptosis
pathways suggest that progressors may be less susceptible to cell death. The ROS

pathway typically generates oxidative stress within cells, a state that can lead to
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apoptosis when it becomes excessive. A reduction in ROS and apoptosis pathways
might imply that tumour cells in progressors are better equipped to resist the
damaging effects of oxidative stress, allowing them to survive longer under adverse

the conditions induced by radiotherapy (Kumari, Badana et al. 2018).

217



Chapter 5. Results

HALLMARK_E2F_TARGETS -
HALLMARK_MYC_TARGETS _V1-
HALLMARK_G2M_CHECKPOINT -
HALLMARK_MYC_TARGETS V2 -

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION -
Hypoxia_genes -

HALLMARK_GLYCOLYSIS -
HALLMARK_MITOTIC_SPINDLE -
HALLMARK_UV_RESPONSE_DN -
HALLMARK,_HYPOXIA -

HALLMARK _SPERMATOGENESIS -
HALLMARK_ADIPOGENESIS -
HALLMARK_XENOBIOTIC_METABOLISM -
HALLMARK_HEME_METABOLISM -
HALLMARK_COAGULATION -
HALLMARK_BILE_ACID_METABOLISM =
HALLMARK_APOPTOSIS -
HALLMARK_KRAS_SIGNALING_UP -

HALLMARK _IL2_STATS_SIGNALING -
HALLMARK_TMNFA_SIGNALING VIA_NFKB -
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY -
HALLMARK _INFLAMMATORY _RESPONSE -
HALLMARK_COMPLEMEMNT -
HALLMARK_INTERFERON_ALPHA_RESPONSE -
HALLMARK _ILG_JAK_STAT3_SIGNALING -
HALLMARK_ALLOGRAFT_REJECTION =
HALLMARK_INTERFERON_GAMMA_RESPONSE -

NES

Pathway

0 '
Downregulated Upregulated

Regulation

Figure 5.3. Enriched Hallmark pathways in progressors vs. responders following
radiotherapy.

This heatmap displays the enriched hallmark pathways identified through Gene Set
Enrichment Analysis (GSEA) comparing progressors (patients with disease
progression) to responders (patients without progression) following radiotherapy.
The colour scale represents the Normalised Enrichment Score (NES), with red
indicating upregulation and blue indicating downregulation.
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Summary

Overall, these findings suggest that tumours in progressors foster an environment
conducive to both aggressive growth and immune evasion. Upregulated pathways,
including E2F and MYC targets, G2M Checkpoint, Epithelial-Mesenchymal
Transition, and Hypoxia, indicate enhanced cell cycle progression, proliferation, and
metastatic potential. Concurrently, downregulated pathways related to Interferon
signalling, IL6-JAK-STAT3, TNFa-NFkB signalling, Inflammatory Response, ROS,
and Apoptosis suggest reduced immune activity, inflammation, and apoptosis.
Together, these transcriptomic changes suggest possible mechanisms that enable

the tumour to evade immune detection and resist radiotherapy.
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5.4 PROGENYy analysis

To explore differences in signalling pathway activity between patients with disease
progression (progressors) and those without progression (responders) following
radiotherapy, | performed pathway activity analysis using PROGENy (Schubert,
Klinger et al. 2018). This pathway-level analysis offers an additional layer of insight
beyond gene-level changes identified in the differential gene expression (DGE)
analysis and the broader enrichment patterns from gene set enrichment (GSEA)
analyses. While DGE focuses on individual gene expression changes and GSEA
identifies sets of genes linked to specific biological functions, PROGENy directly
infers pathway activity, enabling a functional interpretation of the molecular data. This
approach provides a targeted view of pathway dynamics following radiotherapy,
aiming to identify differences that could shed light on mechanisms underlying

radioresistance and disease progression.

The pathway activity scores for the 14 signalling pathways assessed by PROGENy

were compared between progressors and responders, as shown in Figure 5.4.

Hypoxia was the only pathway with a statistically significant difference between the
two groups (p-value 0.03). Progressors demonstrated higher hypoxia pathway
activity scores than responders, suggesting that hypoxia-related signalling might
support survival and progression in the post-radiotherapy microenvironment. All
other pathways, including NF-kB, p53, JAK-STAT, and PI3K, did not reach statistical

significance.
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PROGENy Pathway Activity Scores for Responders vs Progressors
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Figure 5.4. PROGENYy pathway activity scores for responders vs. progressors.

Box plots showing pathway activity scores for responders and progressors across
14 major signalling pathways, derived from PROGENYy analysis. Each box
represents the interquartile range (IQR) of pathway activity scores, with the central
line indicating the median value. Whiskers extend to 1.5 times the IQR.
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5.5 Cellular composition analysis

To conclude the analysis of differential gene expression and pathway activity in
progressors post-radiotherapy, an xCell analysis was performed to assess shifts in
cellular composition within the tumour microenvironment (Figure 5.5). This analysis
builds on findings from Chapter 4, where xCell was used to investigate cellular
composition in pre- versus post-radiotherapy samples. Here, the focus is on
identifying changes specific to progressors to understand how cellular dynamics

might contribute to disease progression following radiotherapy.

The xCell analysis revealed significant alterations in the relative abundance of
specific cell types. Notably, smooth muscle cells and class-switched memory B-cells
were more abundant in the progressors post-radiotherapy. This increased smooth
muscle cell presence might reflect tissue remodelling or fibrotic responses within the
tumour microenvironment, potentially contributing to a pro-tumourigenic environment.
Class-switched memory B-cells may indicate an adaptive immune response,
although their precise role in progression remains to be clarified. In contrast, there
was a decrease in CD4+ memory T-cells and microvascular endothelial cells (mv
Endothelial cells), which could signify an impaired immune response and reduced

vascular integrity, possibly facilitating immune evasion and tumour survival.

These changes in cellular composition, coupled with the upregulation of hypoxia-
related pathways observed in the PROGENy analysis, suggest that progressors
might experience a microenvironment shift towards hypoxic, fibrotic, and potentially
immunosuppressive conditions. This altered tumour microenvironment could
enhance survival and resilience against radiotherapy effects, emphasising the
importance of considering cellular composition in understanding tumour response to

treatment.
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Figure 5.5. Changes in cellular composition identified by xCell analysis in
progressors following radiotherapy.

This bar plot displays the significantly altered cell populations identified by xCell
analysis, estimating the relative abundance of cell types within bulk RNAseq data.
"Relative abundance" reflects the proportion of specific cell types within the overall
tumour sample. Red bars indicate cell types with increased abundance in
progressors post-radiotherapy, while blue bars show those with decreased
abundance.
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5.6 Modelling disease progression in soft tissue sarcomas

following radiotherapy.

Predicting disease progression in patients with soft tissue sarcomas after
radiotherapy could enable personalised follow-up strategies and guide adjuvant
treatment decisions to improve patient outcomes. While previous chapters have
characterised the genomic and transcriptomic effects of RT, it remains unclear
whether post-RT transcriptional profiles can distinguish patients who experience

disease progression from those who remain progression-free.

This section describes the development and evaluation of a predictive model for
disease progression using bulk RNA sequencing data from post-radiotherapy tumour
resection specimens. The goal is to determine whether specific gene expression
patterns are associated with disease progression and could be used to refine risk
stratification. Identifying transcriptional features linked to poor outcomes may also
help prioritise patients for intensified surveillance or future studies investigating post-

RT targeted interventions or adjuvant therapy.

Data preparation and normalisation
Normalised gene expression profiles were generated from Salmon quantification
using tximport and DESeqg2. Counts were normalised with DESeq2 size factors and

then mapped from Ensembl IDs to HGNC symbols.

Where multiple Ensembl IDs mapped to the same HGNC symbol, expression was
averaged (mean) per gene symbol. Values were log2(x+1) transformed to stabilise
variance.

For patients with multiple post-RT tumour samples, expression was averaged across
samples so that each patient contributed a single profile (one row per patient, one

column per gene).

Candidate gene discovery (training cohort only)
To avoid information leakage between the testing and training data, the list of
candidate genes for the model was defined using the training set only. Within the

training patients, a differential expression analysis using DESeq2 was performed
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comparing progressors vs non-progressors (the design included histology as a
model covariate). Genes meeting the significance threshold (padj < 0.05) were
carried forward as the starting feature set. Test set patients were not used for this

step.

Model development
To build a progression classifier, | used a two-stage pipeline:
1. select features with LASSO
2. train a Random Forest on those features.
All modelling decisions (feature selection and tuning) were made inside the training

set only. The testing set was used once at the end for unbiased evaluation.

Feature selection with LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) is a statistical technique
used to identify which features in the dataset are most associated with disease
progression following radiotherapy. This method helps in selecting a subset of
features (in this case genes) that are most predictive of an outcome (Tibshirani 2018).
It works by adding a penalty to a regression model that shrinks the coefficients of
less important features to zero, effectively removing them from the model. This
process helps in preventing overfitting - where the model fits the training data too
closely, including its noise and outliers. This can lead to poor performance on new
unseen data. By focusing on the most relevant features, LASSO enhances the

model's predictive power and ensures better generalisation in new data.

| fit a binomial LASSO model on the training patients and chose the penalty by
stratified 3-fold cross-validation optimising AUC (small k was used to keep ~10
samples per fold for stable AUC estimates). Using the lambda.min solution, LASSO

selected a 20-gene panel:
ADGRG6, ALDH1A2, APLN, CAP2P1, CCNEZ2, CLEC12B, CYP11A1, FAT2,

KRTAPS5-7, LINC03033, LRRC1, MAGED4, OR1L8, POLD4, RFXAP, TBC1D3F,
TIAM2, TP53TG1, UCN2, ZNF454.
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Cross-validation and selection of optimal Lambda

Cross-validation is a method used to evaluate how well a predictive model
generalises to an independent dataset. It is an important step because it helps
ensure the model's reliability. The process involves partitioning the data into subsets,
training the model on some subsets, and validating it on the remaining ones. This is
repeated multiple times to ensure that the model performs consistently across
different subsets of data. By doing this, cross-validation helps to avoid overfitting,
ensuring that the model's performance is not just a result of peculiarities in the

training data.

In the context of LASSO, the penalty term applied to the regression coefficients is
controlled by a parameter called lambda. The choice of lambda is critical because it
determines the strength of the penalty, which in turn influences the number of
features (genes) selected and thus model's complexity. Cross-validation is used to
find the best lambda value, which strikes the right balance between bias and variance.
This optimal lambda minimises prediction error by ensuring the model is neither too
simple (high bias) nor too complex (high variance), providing the best trade-off

between model accuracy and generalisability.

The selection of which lambda value to use is done after reviewing the cross-
validation plot (Figure 5.6). Choosing the minimum lambda (lambda.min) value

meant that the model was created using the 20 genes mentioned above.

Alternatively, there is a choice of using the lambda.1se value which represents the
largest lambda value that is within one standard error of the minimum cross-validated
error (lambda.min). This often results in a simpler model with fewer features (genes),
which can help to prevent overfitting and improve generalisation to new data. In this
case, using the lambda.1se value, generated a model using fewer genes (n = 16)

but this performed worse on the data, so | proceeded with lambda.min.
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Figure 5.6. LASSO Cross-validation plot.

The x-axis shows log(A), the regularisation strength. The y-axis shows mean cross-
validated AUC (higher is better). Vertical bars are +1 SE. The dashed lines mark
lambda.min (highest mean AUC) and lambda.1se (largest A within one SE of the
best). Numbers above the curve indicate the count of genes at each A.
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Data Splitting

The data was split into training and testing sets using a method called stratified
sampling. Stratified sampling maintains the same proportion of progressed and non-
progressed cases in both training and testing sets, making the evaluation more

reliable. The data was split into training (75%) and testing (25%) sets.

Summary of LASSO model training

The LASSO model was trained on the training set using cross-validation to determine
the best lambda value. Cross-validation involved repeatedly splitting the training data
into subsets, training the model on some subsets, and validating it on the remaining

ones to find the lambda that provided the best performance.

The data partitioning for stratified sampling, the cross-validation, the model training,

and the model evaluation was performed using the R package caret.

Generating a Random Forest model

To predict disease progression, a Random Forest model was built using the features
(genes) selected by the LASSO model. Random Forest (Breiman 2001) is a very
popular machine learning algorithm that is well-suited for high-dimensional data. It is
commonly used in classification tasks (e.g., predicting disease presence) and

regression tasks (e.g., predicting house prices).

The Random Forest algorithm works by building numerous decision trees and then

aggregating the results to arrive at a prediction (Rigatti 2017).

1. Building multiple trees: During training, Random Forest constructs
numerous decision trees using different subsets of the training data and
features. Each tree is trained on a bootstrap sample (random subset with
replacement) and uses a random subset of features for making splits,
ensuring each tree is unique.

2. Aggregating predictions: The final prediction combines all individual tree
predictions. For classification tasks, this involves majority voting; for
regression tasks, it involves averaging predictions. This aggregation

enhances model accuracy and reduces overfitting.
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| trained a Random Forest classifier on the LASSO-selected genes. Model
hyperparameters were tuned using stratified 10-fold cross-validation within the
training set, with AUC as the optimisation target and class balance preserved in each
fold. After tuning, | refit the model on the full training data and evaluated it once on
the held-out test set, converting predicted probabilities to class labels at a 0.5
threshold.

Model evaluation

The final model was applied once to the held-out test set (10 patients: 4 progressed,
6 non-progressed). The confusion matrix is shown in Figure 5.7, and summary
performance metrics are reported in Table 5.2 (Sensitivity, Specificity, PPV, NPV,
Accuracy, and AUC).

Discrimination was summarised by ROC AUC (Figure 5.8). The model outputs a
probability of progression for each patient (0—1). To turn this into a yes/no call for
progression, a threshold T is chosen: if p = T the patient is labelled “progressed”; if
p < T they are labelled “non-progressed”. | used the conventional T = 0.5 (i.e., call
“‘progressed” only when the estimated risk is = 50%). | also derived a data-driven
threshold from the training cross-validation using the Youden index (the point that
maximises sensitivity + specificity — 1 on the ROC curve), which gave T = 0.454.
Both thresholds produced the same classifications on the test set — none of the test
probabilities fell between 0.454 and 0.50 — so the results are not driven by a finely

tuned cut-point.
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Figure 5.7. Confusion matrix evaluating the model on the testing data

This matrix demonstrates the predictions of the model.

Summary of model performance

On the test set the model showed modest performance overall. Discrimination was
fair (AUC = 0.67). Ata 0.5 threshold it prioritised specificity over sensitivity —correctly
identifying 50% of progressors but 83% of non-progressors (PPV 67%, NPV 71%,
Accuracy 70%).

In practical terms, as calibrated here the model would miss about half of those who
later progressed, limiting immediate clinical utility. Given that the testing set was
small (n = 10) these estimates are imprecise, but taken together the results are best

viewed as proof-of-concept rather than a currently deployable risk tool.
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Table 5.2. Performance metrics of the Random Forest progression prediction

model
Test Definition Results
Sensitivity The ability of the model to correctly identify | 50%
patients who have progressed.
TP /(TP + FN)
Specificity The ability of the model to correctly identify | 83%

patients who have not progressed
TN/ (TN + FP)

Positive Predictive | The proportion of positive predictions that are | 67%

Value actually true positives
TP/ (TP +FP)

Negative Predictive | The proportion of negative predictions that are | 71%

Value actually true negatives.
TN/ (TN + FN)
Accuracy The proportion of correct predictions (both true | 70%

positives and true negatives)
(TP+TN)/(TP+TN + FP + FN)
AUC A measurement to quantify the overall ability of | 0.67

the model to discriminate between positive and

negative classes.
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Figure 5.8. ROC curve for the post-RT progression classifier on the held-out test
set.

Curve derived from random-forest probabilities on the independent test cohort (n
= 10; progressed = 4, non-progressed = 6). AUC = 0.67. The diagonal line shows
chance. Threshold 0.50 (Youden 0.454 gave identical calls).
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5.6.1 External validation of model in the TCGA Sarcoma cohort

The classifier was developed on post radiotherapy tumour resections. To understand
whether it captures general prognosis or is specifically related to radiotherapy, |
applied the model to an independent sarcoma cohort of 206 patients from the TCGA
(TCGA 2017) and asked two questions:
1. Is the score prognostic for overall survival across all patients in the cohort?
2. Does its association with outcome differ by receipt of adjuvant radiotherapy

(i.e. a predictive signal)?

Data preparation and normalisation

| used TCGA-SARC raw RNAseq counts (GRCh38) and the accompanying clinical
meta data. To mirror the training pipeline | retained primary tumour samples only
(sample-type code “01” in the TCGA barcode). When a patient had multiple RNAseq
aliquots (technical replicates), | combined them to a single patient-level profile
(summing counts per gene before normalisation). Counts were then normalised
using DESeq?2 size factors, Ensembl IDs were mapped to HGNC symbols (and as in
my model | averaged expression when multiple Ensembl IDs mapped to the same
symbol), and values were subsequently log2(x+1) transformed. This produced a final

matrix (arranged as patients x genes) to which | applied the model.

Applying the trained classifier to TCGA SARC dataset

The 20-gene random-forest model derived from the internal training set was carried
forward unchanged and applied to TCGA SARC dataset. After harmonising gene
symbols, 18/20 features (genes) were available. 2 Genes - CYP11A1 and TBC1D3F
were absent. To keep the model structure intact without adding information, these
two columns were inferred and filled with a neutral value (the median of the available
signature features across patients), which is a conservative choice that tends to

dilute rather than inflate signal.
For each TCGA patient the model outputs a probability of progression between 0

and 1 (hereafter called the “RF score”), where higher values indicate a higher

predicted risk of disease progression.
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Clinical information used for the model

From the available TCGA SARC clinical information | used information on overall
survival (“OS_event”) and days (“OS days”) to create the model. The OS survival
event was recorded as ‘alive’ or ‘dead’ and of the 206 patients there were 78

recorded deaths.

Radiotherapy exposure was taken from the “radiation treatment adjuvant” field and
coded as a two-level factor (RT or No RT). It is important to note that the TCGA
RNAseq data is all derived from treatment naive patients and that the history is of

adjuvant and not neoadjuvant radiotherapy.

Results of prognostic association

Using a Cox proportional hazards regression model where OS ~ RF score, found no
evidence that the score is prognostic for overall survival where the Hazard ratio =
0.89 per 1-unit increase in the 0 — 1 RF score (95% CI1 0.09 — 8.52, p = 0.92). Splitting
the patients at the median RF score into 2 group — RF score high and low — did. Not

show any statistically significant difference in outcome (Figure 5.9).
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Figure 5.9. Kaplan—Meier overall survival by RF score

Patients were split at the median RF progression probability (High vs Low). Curves
show overall survival (days). The number at risk and the log-rank p-value are
displayed.

Results of radiotherapy predictive association

To see whether the model scores are different depending on the clinical history of
radiotherapy, | tested the model using the interaction: OS ~ RF score x RT_any.
This model was restricted to the 197 patients for whom there was recorded
information in the “radiation treatment adjuvant” field. Of the 197 patients, 58 patients
received adjuvant radiotherapy. Of the 58 patients who received radiotherapy, there
were 20 recorded deaths. Of the 139 patients with no history of adjuvant radiotherapy

there were 57 deaths.
The results showed that there was no evidence of a differential association by RT

status: the interaction HR = 1.32 per 1-SD increase in the RF score (95% CI 0.75-

2.34; p = 0.33). So, while for each one—standard deviation higher score, the relative
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increase in hazard was 32% greater in the RT group than in the No RT group, this

difference was not statistically significant.

Looking within groups gave the same message — the No RT group (n=139; 57
deaths) results showed the HR = 0.53 per 1-SD (95% CI 0.04-7.04; p = 0.63) and in
the RT group (n=58; 20 deaths) the HR = 8.24 per 1-SD (95% CI 0.05-1315; p =
0.42). The very wide confidence intervals reflect the small RT subgroup and limited

number of events.

Summary of external validation results

In TCGA-SARC the score was neither prognostic nor predictive. That said, these null
findings should be read with caution. The radiotherapy subgroup was still small (58
patients; 20 deaths), which limits power for interaction testing. There is also an
endpoint mismatch: the model was trained to predict progression, whereas TCGA
provides overall survival data only. The data types differ (TCGA fresh-frozen RNA-
seq vs our FFPE-derived profiles), and 2 of the 20 genes in the signature (CYP11A1,
TBC1D3F) were absent and had to be imputed, which would tend to dilute signal

rather than create it.

Most importantly, the model was built on post-radiotherapy resection specimens,
while TCGA samples are treatment-naive. In light of the pre- versus post-RT
expression changes shown in Chapter 4, limited generalisability of this post-RT
model to untreated samples is biologically reasonable. Overall, the TCGA analysis
suggests the signature is not a general prognostic marker, and if it has value, it is
likely to only be specific to post-RT biology and should be tested in the future in a

matched, post-RT external cohort with progression endpoints.
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5.7 Discussion of chapter 5

This chapter investigated transcriptomic differences between soft tissue sarcomas
that responded to radiotherapy and those that progressed despite treatment. By
stratifying post-RT tumour samples based on patient outcomes, | aimed to identify
gene expression changes and pathway alterations associated with treatment
resistance. These findings | hope can provide potential biomarkers and therapeutic

targets that could inform risk stratification and post-RT management strategies.

Transcriptomic signatures of disease progression

Differential gene expression analysis revealed that progressors exhibited
upregulation of pathways associated with cell cycle progression (E2F targets, G2M
checkpoint) and epithelial-mesenchymal transition (EMT), suggesting an increased
proliferative and invasive phenotype. These findings are consistent with prior studies
in STS that have linked tumour aggressiveness to transcriptomic programs
associated with genomic instability and dedifferentiation (Chibon, Lagarde et al.
2010). In contrast, responders showed higher expression of immune-related
pathways, particularly interferon signalling and inflammatory response genes,
reinforcing the hypothesis that immune activation may contribute to durable disease

control post-RT.

The observation that immune pathways were downregulated in progressors is of
particular interest, given the emerging role of the immune microenvironment in RT
response. While RT can enhance tumour immunogenicity, leading to T-cell
recruitment and immune priming, some tumours may evade immune surveillance
post-treatment through mechanisms such as PD-L1 upregulation or recruitment of
immunosuppressive cells (McKelvey, Hudson et al. 2018, Wang, Lynch et al. 2024).
These findings suggest that further investigation into the role of immune modulation

in post-RT STS is warranted.

Pathway enrichment analysis reveals hypoxia-driven radioresistance
Pathway-level analysis using PROGENYy identified hypoxia as the only significantly
enriched pathway in progressors, supporting the well-established role of hypoxia in

radioresistance and tumour progression. Hypoxia-related gene expression
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signatures have been linked to aggressive tumour phenotypes, poor prognosis, and
treatment resistance in multiple cancers (Aggerholm-Pedersen, Sgrensen et al. 2016,
Yang, Forker et al. 2017). These signatures highlight the role of HIF1a-mediated
transcriptional programs, which drive tumour adaptation through metabolic
reprogramming, angiogenesis, immune evasion, and enhanced DNA damage repair.
Furthermore, CAIX (carbonic anhydrase IX), a well-characterised endogenous
marker of tumour hypoxia, has been validated as a prognostic immunohistochemical
biomarker in STS and could potentially serve as a screening tool to stratify patients
(Forker, Gaunt et al. 2018).

The enrichment of hypoxia in progressors within this study suggests that STS
tumours that fail RT may exhibit a transcriptomic profile consistent with previously
identified hypoxia signatures. This finding aligns with evidence that hypoxic tumours
are more likely to metastasise and resist treatment. Notably, hypoxia-driven gene
expression changes in STS have not been extensively explored in the post-

radiotherapy setting, reinforcing the novelty of these results.

Targeting hypoxia-mediated resistance mechanisms represents a promising
therapeutic strategy. HIF1a inhibitors, metabolic interventions, and hypoxia-
activated prodrugs have shown preclinical efficacy in reversing hypoxia-driven
resistance (Bui, Nguyen et al. 2022, Kao, Bai et al. 2023). However, their role in the
post-radiotherapy setting in STS remains unexplored. Given the increasing
availability of functional imaging techniques such as hypoxia PET scans (Gouel,
Decazes et al. 2023) and molecular biomarkers, future studies should investigate
whether integrating hypoxia-targeting therapies post-RT could improve patient

outcomes.

These findings underscore the importance of considering tumour oxygenation status
when evaluating response heterogeneity in STS. By identifying hypoxia-driven
transcriptional changes in progressors, this study highlights a potential biomarker for
treatment resistance and provides a rationale for incorporating hypoxia-targeted

interventions in post-RT therapeutic strategies.
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Cellular composition and the tumour microenvironment

Using xCell deconvolution, | identified changes in the tumour microenvironment
between responders and progressors. In particular, progressors exhibited increased
smooth muscle cell and memory B-cell signatures, which may reflect stromal
remodelling and immune adaptation. The presence of class-switched memory B-
cells in progressors raises questions regarding the role of B-cell responses in STS
immune evasion, as prior studies have suggested that B-cell infiltration can both
promote and suppress tumour progression depending on context. Conversely, the
relative decrease in CD4+ memory T-cells and microvascular endothelial cells in
progressors suggests that loss of adaptive immune function and reduced vascular

integrity that may contribute to poor outcomes.

Modelling disease progression

The final section of this chapter explored whether post-RT gene expression could
predict subsequent disease progression. | used LASSO to select features and
trained a Random Forest classifier. On the test data the model showed modest
discrimination (AUC = 0.67) with Accuracy 70%, Sensitivity 50%, Specificity 83%,
PPV 67%, and NPV 71%.

| then attempted external validation in TCGA-SARC. The model did not demonstrate
prognostic or predictive ability there. This is not entirely surprising: the TCGA
radiotherapy subset is small (58 patients; 20 events), the endpoint differs (my model
was trained for progression, whereas TCGA provides overall survival), the
tissue/platforms are not matched (FFPE RNA-seq vs fresh-frozen), two signature
genes — CYP11A1 and TBC1D3F — were absent from TCGA, and, crucially, my
model was derived from post-RT specimens whereas TCGA is largely treatment-
naive. Chapter 4 shows clear pre- vs post-RT transcriptional shifts, so limited transfer

from a post-RT model to a treatment-naive cohort is biologically plausible.

One key challenge in predictive modelling is distinguishing causative transcriptional
changes from those that may be passenger effects of tumour progression. Future
studies should validate this model in an independent post-RT cohort with disease
progression endpoints; integrate additional clinical variables (e.g., age, histological

subtype, grade, and resection margins) and assess whether combining
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transcriptomic signatures with genomic alterations (e.g., copy number variations or

mutational burden) improves predictive power.

Future directions and clinical implications

These results highlight potential avenues for post-RT risk stratification and

therapeutic targeting:

¢ Refining follow-up frequency: If validated, gene expression signatures
associated with progression could inform more personalised post-RT monitoring,
identifying patients who may benefit from intensified imaging surveillance or
earlier intervention.

e Targeting hypoxia-associated resistance: Given the enrichment of hypoxia-
related pathways in progressors, exploring whether hypoxia-targeted therapies
(e.g., HIF1a inhibitors, anti-angiogenic agents) could improve outcomes in high-
risk patients may be a worthwhile avenue for future studies.

¢ Immune-based interventions: The immune-related differences observed in
responders vs. progressors suggest that immune checkpoint inhibitors or
therapies aimed at restoring immune surveillance could be evaluated in post-RT
STS settings.

Conclusions

This chapter builds upon the findings of Chapters 3 and 4 by integrating clinical
outcomes with transcriptomic profiling to explore predictors of post-RT disease
progression in STS. While RT-induced transcriptional changes were previously
characterised in Chapter 4, this chapter demonstrates that progressors exhibit
distinct gene expression patterns compared to responders, particularly in pathways
related to cell cycle progression, hypoxia adaptation, and immune suppression. The
predictive modelling approach suggests that transcriptomic features may hold
promise for stratifying post-RT patients based on progression risk, though further

validation is needed.
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Chapter 6. Discussion

This thesis investigates the genomic and transcriptomic effects of neoadjuvant
radiotherapy in soft tissue sarcomas, aiming to identify molecular biomarkers
predictive of treatment response and disease progression. Through a multi-omics
approach integrating whole exome sequencing, RNA sequencing, pathway analysis,
and predictive modelling, this work provides a deeper understanding of RT-induced

alterations across multiple sarcoma subtypes.

Key findings from each chapter have been discussed in detail at the end of their
respective sections. Rather than reiterating all results, this chapter focuses on a few
select themes that hold relevance for understanding RT responses in STS.

Specifically, | will explore:

e The impact of radiotherapy on genomic instability and mutational burden
(Chapter 3)

e The transcriptional landscape of post-radiotherapy tumours (Chapter 4)

e The potential for transcriptomic biomarkers to predict disease progression
(Chapter 5)

These discussions will be framed within the broader context of sarcoma biology and
therapeutic response, evaluating how these findings contribute to existing knowledge
and identifying areas for future translational research. The chapter will also critically
assess the study’s limitations and implications for clinical application, particularly in

refining patient risk stratification and treatment personalisation.
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6.1 Genomic alterations and mutational signatures following

radiotherapy

This section discusses the key genomic findings detailed in Chapter 3, focusing on
the mutational landscape, somatic mutation burden, and mutational signatures within

the London Sarcoma Service (LSS) cohort.

6.1.1 The mutational landscape of the LSS cohort

6.1.1.1 Tumour mutational burden and hypermutated samples

My analysis using WES on the LSS cohort demonstrated a mean TMB of 1.07
mut/Mb. This aligns with data from a 2017 TCGA analysis of 206 soft tissue
sarcomas representing six different subtypes, which found an average TMB of 1.06
mutations/Mb (TCGA 2017). In the TCGA cohort, two hypermutated cases (defined
as a TMB =10 mutations/Mb) were identified, representing approximately 1% of the
dataset. These hypermutated tumours (histological subtypes not given) were
characterised by mismatch repair deficiency and associated with a COSMIC SBS 6
Signature, reflecting the mutational processes driven by defective DNA mismatch
repair. These tumours had a frameshift mutation in MSH6 and low expression of

MSH?2, highlighting known causes of DNA mismatch repair.

A more recent study from Memorial Sloan Kettering (MSK) analysed 2138 sarcomas
representing 45 different histological subtypes and reported a median TMB of 2.4
mutations/Mb (Gounder, Agaram et al. 2022). They found, 3.9% of samples in the
MSK cohort were hypermutated (TMB =10 mutations/Mb). Hypermutation was
predominantly observed in undifferentiated pleomorphic sarcoma (UPS) and
angiosarcoma. Notably, hypermutation in cutaneous angiosarcoma was attributed to
UV-induced mutational processes, reflecting the environmental exposure associated
with this subtype. Interestingly, this same UV signature was seen in several of the
hypermutated UPS samples while other UPS samples showing a predominance of

“aging” related signatures.
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In this LSS cohort, two hypermutated cases were identified: one myxofibrosarcoma
(MFS) and one UPS. These tumours exhibited TMB values exceeding 10
mutations/Mb, consistent with the proportion reported by MSK. Both hypermutated
tumours in the LSS cohort demonstrated mutational signatures associated with
mismatch repair deficiency (SBS15 and ID7), despite the absence of mutations in
key MMR genes (MLH1, MSH2, MSH6, PMS?2). Instead, reduced expression of MMR
genes (e.g., low MLH1 expression in UPS and low MSH2 expression in MFS) was
found. Examination of their copy number status revealed loss of heterozygosity or
homozygous deletions of MMR genes, likely contributed to the observed
hypermutation phenotype. This contrasts with the TCGA cohort, where

hypermutation was directly linked to mutations in the MMR genes.

It should be noted however that the method of TMB calculation differs between these
studies and this may account for some variability in the findings. The MSK study
employed the MSK-IMPACT targeted sequencing panel (Cheng, Mitchell et al. 2015),
which captures 341-468 cancer-associated genes, whereas the TCGA cohort and
the LSS cohort calculated TMB using whole exome and whole genome sequencing.
Targeted sequencing panels like MSK-IMPACT may underestimate TMB by
excluding non-coding and intergenic regions, yet they provide clinically validated
approximations for large-scale analyses. The broader scope of WES/WGS, while
more comprehensive, introduces variability due to differences in sequencing depth
between samples and studies as well as different analytical pipelines used in calling
mutations. Discrepancies in the proportion of hypermutated cases may also reflect
differences in cohort composition. The MSK cohort encompassed 45 subtypes, with
a larger representation of hypermutation-prone subtypes like UPS and
angiosarcoma. In contrast, the LSS cohort contains fewer subtypes, and the TCGA

fewer still.

The repeated observation of hypermutated tumours seen in this LSS cohort
underscores the genomic heterogeneity of sarcomas and raises questions about the
mechanisms underlying hypermutation beyond MMR deficiency. While
hypermutation is often associated with improved responses to immune checkpoint
inhibitors (Graham, Pritchard et al. 2021), clinical outcomes in the LSS cohort were

variable, with one hypermutated case demonstrating long-term disease-free survival
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and the other developing metastases (see section 3.5.3) post-radiotherapy. These
findings suggest that hypermutation alone may not predict therapeutic outcomes and
must be interpreted in the context of tumour subtype, immune microenvironment,

and clinical factors like grade, stage, and resection margin status.

6.1.1.2 Novel mutations identified in the LSS cohort

Novel somatic mutations were identified in the LSS cohort (Section 3.2.2), some of
which had high REVEL scores (loannidis, Rothstein et al. 2016), indicating a strong
likelihood of pathogenicity. These include GNAQ, CBLB, FGFR1, MSN, and
HOXC13 (see Table 3.1). These mutations are noteworthy not only because of their
rarity but also due to their potential functional significance, either as oncogenic
drivers or as contributors to key biological processes underlying the development of

disease progression.

Mutations in metastasis and recurrence samples

The GNAQ mutation, identified in a metastatic alveolar soft part sarcoma (ASPS)
sample, and the MSN mutation, found in a recurrence spindle cell sarcoma (NOS)
sample, were not detected in the corresponding pre-radiotherapy biopsies. This
strongly suggests that these mutations arose as a consequence of radiotherapy-
induced mutagenesis or it could represent sampling bias with subclones containing
the mutations not being represented in the sequenced tissue. Although these
mutations could represent passenger events, their emergence post-treatment raises
the possibility that they may contribute to tumour recurrence or metastasis,

potentially through clonal selection or by driving further tumour evolution.

The GNAQ gene encodes a G-protein subunit involved in cell signalling and has
been implicated in the development of uveal melanoma (Silva-Rodriguez,
Fernandez-Diaz et al. 2022) and vascular tumours (Jansen, Muller et al. 2021). Its
role in metastatic ASPS is less clear, but its activation could theoretically promote
signalling pathways associated with cell proliferation or migration. Similarly, MSN

encodes Moesin, a cytoskeletal linker protein involved in maintaining cell shape and
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motility which has previously been shown to be overexpressed in colorectal cancer

and associated with poor survival (Huang, Wei et al. 2023).

These novel mutation findings emphasise the dual impact of radiotherapy: its primary
purpose of eliminating tumour cells and its unintended potential to contribute to
genomic changes that drive recurrence or metastasis. Understanding the functional
consequences of such mutations could lead to development of strategies to mitigate

these effects.

Potential driver mutations in pre-radiotherapy samples

In contrast, the mutations identified in the pre-radiotherapy samples from
myxofibrosarcoma (CBLB and FGFR1) and undifferentiated pleomorphic sarcoma
(HOXC13) are more likely to represent primary oncogenic drivers. These mutations
were present before the onset of treatment, making it more plausible that they
contributed to tumour initiation or progression rather than arising because of

radiotherapy.

6.1.2 Somatic mutation burden pre- and post-radiotherapy

Comparative analyses of pre- and post-radiotherapy sarcoma samples using WES
revealed no significant differences in the number of SNVs (p = 0.88) or indels (p =
0.17) across the cohort (Figure 3.3). Similarly, paired analyses of seven patient
samples found no significant changes in SNVs (p = 0.49) or indels (p = 0.36) following
radiotherapy (Figure 3.5). These findings suggest that radiotherapy does not

immediately induce substantial mutational changes detectable by WES.

However, the higher-resolution NanoSeq WGS data provided additional insights into
mutational changes induced by radiotherapy at a subclonal level. NanoSeq revealed
a significant (p = 0.01), increase in the indel burden with the median number of indels
per cell rising from 177 in pre-radiotherapy samples to 690 in post-radiotherapy
samples (Figure 3.19). Furthermore, the indel-to-SNV ratio increased (Figure 3.20)
from 0.05 to 0.2 (p = 0.002). This increase was primarily driven by deletions, as

indicated by a higher deletion-to-insertion ratio observed in post-radiotherapy
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samples. These findings underscore the sensitivity of NanoSeq in detecting low-
frequency mutations that may not be captured by WES, suggesting that
radiotherapy-induced mutational effects could be more pronounced than initially
apparent from the bulk WES data and are induced in individual cells or small clones

of cells.

This pattern becomes even more pronounced in recurrence samples, where the
Del:Ins ratio rose significantly compared to pre-radiotherapy samples (median ratio:
4.0 vs. 1.0, p = 2e-05; Figure 3.6A). In contrast, post-radiotherapy samples had a
median ratio of 1.0, indicating no immediate increase in deletion prevalence following
treatment. Metastasis samples showed an intermediate median Del:Ins ratio of 1.89,
further supporting the hypothesis of time-dependent mutational dynamics. This
delayed emergence of deletions may reflect the time taken for clonal selection of
radiation-induced mutations or ongoing genomic instability in tumour cells surviving

treatment.

The longitudinal case study of patient 58 (see section 3.3.5) provides additional
support for this hypothesis. Tumour samples collected pre-radiotherapy, post-
radiotherapy (32 days after treatment), and at recurrence (186 days after treatment)
showed stable SNV numbers between pre- and post-radiotherapy samples (22 vs.
28), with 86% of mutations shared across both time points. However, the recurrence
sample contained 26 novel SNVs and 7 additional indels absent from earlier samples,
suggesting that radiotherapy-induced mutations may initially exist at low variant allele
frequencies (VAF) and become detectable only after clonal expansion. The 32-day
interval between radiotherapy and post-treatment sample collection may have been
insufficient to capture these mutational dynamics, while the 186-day interval allowed

sufficient time for clonal growth and enrichment of deleterious mutations.

Findings from other cancers, such as those linked to radiation exposure, provide
additional context. Studies of papillary thyroid carcinomas following the Chernobyl
disaster (Morton, Karyadi et al. 2021) revealed a dose-dependent enrichment of
small deletions and structural variants in radiation-exposed tumours, which the
number of mutation inversely correlating with distance from the Chernobyl disaster

site. Many of these deletions were clonal and reflected non-homologous end-joining
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(NHEJ) repair, a mechanism activated in response to double-strand breaks. These
mutations were detected in tumour samples taken several decades following

radiation exposure.

Similarly, analyses of radiation-associated second malignancies (Behjati, Gundem
et al. 2016) identified high proportions of deletions, particularly in breast and sarcoma
cases, further reinforcing the contribution of NHEJ to the genomic landscape of
radiation-induced tumours. These findings align with the elevated Del:Ins ratio

observed in both NanoSeq data and recurrence samples from this LSS cohort.

Radiotherapy-associated mutational signatures, such as COSMIC ID8, have also
been detected more prominently in recurrent tumours. A study comparing primary
and recurrent gliomas (Kocakavuk, Anderson et al. 2021) demonstrated an
enrichment of ID8 in recurrence samples, emphasising the delayed mutational

effects of radiotherapy through clonal evolution and tumour progression.

In the NanoSeq data from this study, COSMIC ID8 was uniquely detected in all five
post-radiotherapy samples (Figure 3.23), whereas it was absent in all pre-
radiotherapy samples. This finding highlights the impressive sensitivity of NanoSeq
in detecting subtle mutational changes induced by radiotherapy. ID8, associated with
non-homologous end joining (NHEJ) repair mechanisms, is characterised by
deletions =5 bp without microhomology, reflecting the error-prone nature of this
pathway. Its consistent presence across post-radiotherapy samples suggests that
radiotherapy activates specific DNA repair processes that leave a distinct genomic
signature. Importantly, the absence of ID8 in pre-radiotherapy samples supports its

association with radiotherapy rather than pre-existing tumour biology.

Integrating these WES and NanoSeq findings demonstrates the complementary
nature of these techniques. Bulk WES provides an overview of the mutational
landscape by capturing SNVs and indels across the coding genome. However, its
limited sensitivity for detecting low-frequency mutations or subtle subclonal changes,
such as small deletions with low VAFs, which underscores the need for higher-
resolution approaches. NanoSeq, a WGS “single molecule” technique by contrast,

revealed significant increases in indels, particularly deletions, that likely contribute to
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tumour evolution over time. These findings suggest that radiotherapy-induced
mutagenesis may not be fully apparent immediately after treatment but becomes

more evident during recurrence as subclonal mutations clonally expand.

Future studies could leverage the sensitivity of NanoSeq and similar high-resolution
techniques to monitor subclonal dynamics and pinpoint the precise timing of
radiotherapy-induced mutagenesis. For example, spatially mapped longitudinal
sampling of tumours at multiple time points post-radiotherapy, coupled with single-
cell sequencing, could provide a clearer understanding of how radiation-induced

mutations evolve and clonally expand throughout the tumours.

Additionally, integrating multi-omics approaches, such as transcriptomics to explore
changes in gene expression or epigenomics to identify shifts in chromatin
accessibility, could reveal pathways implicated in immune evasion or therapy
resistance. Targeting dysregulated pathways with DNA repair inhibitors, such as
PARRP inhibitors (Sun, Chu et al. 2023) or ATM inhibitors (Garcia, Kirsch et al. 2022),
may offer a strategy to mitigate the effects of radiotherapy-induced mutagenesis and

improve clinical outcomes in sarcomas.
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6.1.3 Critical appraisal of methods and limitations

This study represents a comprehensive effort to investigate the genomic effects of
neoadjuvant radiotherapy in soft tissue sarcomas. However, several methodological

limitations and areas for potential improvement in hindsight deserve discussion.

Tissue availability and sample size

A significant limitation of this study was the small number of paired pre- and post-
radiotherapy samples, with only seven patients included in the paired analysis. This
restricted sample size limited the statistical power of the comparisons and may have
hindered the detection of subtle genomic changes induced by radiotherapy. A larger
cohort of paired samples would have provided a more robust dataset to validate
these findings. However, the availability of frozen tissue, particularly for both pre- and
post-radiotherapy samples, was a major constraint. Most samples were formalin-
fixed paraffin-embedded (FFPE), which despite the optimisation of high-quality
nucleic acid extraction through use of the Covaris machine still poses challenges for

high-quality DNA extraction and downstream analyses.

Choice of sequencing approach

Whole-exome sequencing (WES) was selected for this study due to its cost-
effectiveness and focus on coding regions. However, in hindsight, whole-genome
sequencing (WGS) might have been a more suitable approach, especially given the
low tumour mutational burden (TMB) observed in this LSS cohort. WGS could have
captured a broader spectrum of genomic alterations, including non-coding mutations
and structural variants, providing additional insights into radiotherapy-induced
mutagenesis. The higher resolution of WGS would likely have increased the number
of mutations detected, allowing for more statistically significant comparisons and a
more nuanced understanding of the genomic response to radiotherapy. Whilst | had
the opportunity to investigate WGS of sarcoma through Genomics England, that

dataset was unsuitable due to a lack of paired pre-and post-radiotherapy samples.
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Sensitivity to low-frequency mutations

The low TMB observed in most samples presented challenges for detecting
radiotherapy-induced genomic changes by WES. While NanoSeq was employed for
increased sensitivity to low-frequency mutations, this technique was applied to only
a subset of samples. Expanding the use of high-sensitivity techniques like NanoSeq
across all samples might have enhanced the ability to identify subclonal mutations

and other subtle genomic alterations associated with radiotherapy.

Tumour heterogeneity

Another limitation was the inherent tumour heterogeneity within and between
samples. The genomic differences observed may partly reflect sampling variation
rather than true treatment-induced effects. This is particularly relevant as biopsies
were compared with resection specimens, as these may not entirely represent the
same tumour regions. An ideal experiment would use multi-regional sampling of both
pre- and post-radiotherapy specimens, combined with both radiological mapping of
samples and spatial transcriptomic approaches, to provide a more comprehensive

assessment of tumour heterogeneity and radiotherapy-induced changes.

Recommendations for future studies

Based on these limitations, future studies should prioritise:

1. Expanding paired cohorts
Efforts should be made to collect larger numbers of paired pre- and post-radiotherapy

samples, with a focus on preserving matched frozen tissue wherever feasible.

2. Using Whole-Genome Sequencing
Transitioning to WGS of pre and post-radiotherapy samples at high depth could allow
for a more comprehensive analysis of genomic alterations, including non-coding and

structural changes.
3. Implementing High-sensitivity sequencing techniques

Employing NanoSeq or other high-sensitivity methods more broadly across cohorts

could enhance detection of subclonal mutations.
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4. Addressing tumour heterogeneity
Integrating multi-regional sampling and spatially resolved techniques would better

account for intra-tumoural variability and improve the interpretability of results.

6.2 Transcriptomic responses to neoadjuvant radiotherapy

This section discusses the transcriptomic changes in soft tissue sarcomas following
neoadjuvant radiotherapy, as detailed in Chapter 4. Key findings discussed include
the global clustering trends in transcriptomic data, differential gene expression

analysis, pathway enrichment analyses, and immune composition changes.

6.2.1 Transcriptomic clustering trends

Principal Component Analysis (PCA) (Figure 4.1) and Uniform Manifold
Approximation and Projection (UMAP) (Figure 4.2) demonstrated that transcriptomic
data clustered more strongly by histological subtype than by radiotherapy status.
This stresses the dominant role of intrinsic tumour characteristics in shaping global
gene expression profiles, consistent with previous studies in sarcomas, including
findings from the TCGA (TCGA 2017) and a study comparing post-radiation versus
sporadic sarcomas (Lesluyes, Baud et al. 2019). In both datasets, sarcoma subtypes,
such as leiomyosarcoma (LMS) and synovial sarcoma (SS), formed distinct clusters,
emphasising the influence of intrinsic features specific to the histological subtype

over external factors like treatment.

Interestingly, in this study, patient-specific clustering highlighted the reproducibility
and robustness of sequencing data while suggesting that radiotherapy-induced
transcriptomic effects are subtle or overshadowed by inter-patient variability (Figure
4.3 and Figure 4.4). Similarly, the Lesluyes study (Lesluyes, Baud et al. 2019)
observed significant overlap between sporadic and post-radiation sarcomas,
reinforcing the notion that sarcoma biology, rather than treatment, drives

transcriptomic clustering patterns. However, some overlaps between histological
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subtypes were also observed in all studies, reflecting likely shared molecular features

or pathways between subtypes, particularly those with similar biological origins.

The TCGA study further demonstrated the value of integrating transcriptomic data
with other omics layers, such as methylation and copy-number variation, to refine
clustering and reveal molecular subsets within histological subtypes (TCGA 2017).
For instance, the separation of uterine and soft tissue leiomyosarcomas clusters
using integrated data highlights the potential for multi-omic approaches to uncover

finer stratifications not apparent in transcriptomics alone.

Given the limitations of transcriptomics in fully capturing radiotherapy-induced
changes, epigenetic profiling could offer a complementary approach for sarcoma
classification and understanding treatment responses. DNA methylation-based
classifiers, for example, have been effective in stratifying sarcomas into molecular
subtypes with strong prognostic correlations, even resolving cases previously
deemed unclassifiable (Koelsche, Schrimpf et al. 2021). Importantly, evidence from
other cancers highlights that radiotherapy can induce significant epigenetic
alterations, including changes in DNA methylation and histone modifications. These
alterations can influence gene expression, DNA repair, and tumour behaviour , as
demonstrated by studies showing radiotherapy-induced hypermethylation of tumour
suppressor genes like TP53 and changes in histone methylation that modulate

radiosensitivity (Wang, Han et al. 2022).

To build on the foundation of this work, future studies should prioritise multi-omic
integration to capture the interplay between intrinsic tumour characteristics and
treatment-induced changes. Combining transcriptomic and epigenomic data,
alongside advanced techniques like spatial transcriptomics and single-cell RNA
sequencing, could provide a more nuanced understanding of radiotherapy's effects
on the tumour microenvironment. These approaches hold the potential to reveal
spatial and cellular heterogeneity, uncover subtle radiotherapy-induced changes,
and better characterise tumour-stromal interactions far better than the bulk RNAseq
approach taken here. Furthermore, integrating multi-omic layers may refine
molecular stratification in sarcomas and identify novel biomarkers or therapeutic

targets to enhance radiosensitivity and overcome treatment resistance.
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6.2.2 Differential Gene Expression Analysis

6.2.2.1 Global transcriptomic changes post-radiotherapy

Global analysis of 40 paired pre- and post-radiotherapy samples across 13 sarcoma
subtypes revealed 140 significantly differentially expressed genes, with 107
upregulated and 33 downregulated post-radiotherapy (Figure 4.6). Key findings
include the significant downregulation of haemoglobin-related genes (HBA1, HBAZ,
HBB, ALAS2, and HEMGN) and notable upregulation of genes involved in immune

modulation as well as genes involved in tissue repair and remodelling (Figure 4.7).

6.2.2.2 Haemoglobin-related genes

The downregulation of haemoglobin-related genes observed in this study represents
an intriguing finding, given their well-established roles in oxygen transport via
erythrocytes and emerging evidence of non-canonical functions in cancer biology
(Lerebours, Vacher et al. 2021, Han, Zhang et al. 2022, Kim, Choi et al. 2023).

Pre-radiotherapy, haemoglobin genes such as HBA1, HBA2, and HBB—encoding
the alpha and beta globin chains—were highly expressed. Although their functional
role in sarcomas remains unclear, studies in other cancers suggest that haemoglobin

genes can play a role in tumour cell survival under stress conditions.

Haemoglobin gene expression was reported in 2009 in tumour cells, independent of
stromal contamination, using fluorescence-activated cell sorting (FACS) purification
of colorectal adenocarcinomas (Smith, Culhane et al. 2009). Subsequent studies
have highlighted the non-canonical roles of haemoglobin genes in cancer biology.
For example, HBB (haemoglobin beta) is overexpressed in inflammatory breast
cancer, where it mitigates oxidative stress and supports an aggressive phenotype
(Lerebours, Vacher et al. 2021). Similarly, in cervical carcinoma, HBB acts as an
antioxidant by scavenging free radicals, aiding cell survival in oxidative environments
(Li, Wu et al. 2013).
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In clear cell renal cell carcinoma (ccRCC), HBB expression is associated with poor
prognosis, shorter recurrence-free survival, and increased tumour aggressiveness.
Functional studies revealed that HBB suppresses reactive oxygen species (ROS)
levels, promoting cell proliferation and invasion under hypoxic conditions. Notably,
oxidative stress itself can upregulate HBB, indicating its role in the redox adaptation
of tumour cells (Kurota, Takeda et al. 2023). These findings suggest that HBB may
act as both a survival mechanism in hypoxic microenvironments and a driver of

malignancy.

Interestingly, haemoglobin genes have been implicated in hypoxic tumour
environments beyond ccRCC. In lung adenocarcinoma, elevated expression of
HBQ1, a related haemoglobin gene, reduces ROS levels and supports cell
proliferation, emphasising the antioxidant and homeostatic roles of haemoglobin in

cancer progression (Kim, Choi et al. 2023).

This twin role of haemoglobin-related genes in both oxidative stress management
and tumour aggressiveness highlights their importance in tumour biology and
potential as therapeutic targets. The functional implications of their expression in

sarcomas, particularly post-radiotherapy, remain to be elucidated.

In this study, post-radiotherapy downregulation of these genes may reflect changes
in the tumour microenvironment, such as reduced cellular or metabolic demands for
haemoglobin-like activity. Alternatively, the suppression could indicate broader shifts
in transcriptional regulation following treatment, consistent with radiotherapy-induced
disruption of tumour homeostasis. However, the precise implications of this
downregulation for vascular remodelling or oxygen delivery remain speculative in the

absence of direct experimental evidence in these sarcomas.

To further support this idea, additional haemoglobin-related genes, such as ALAS2
and HEMGN, were also significantly downregulated post-radiotherapy in this study.
These genes play critical roles in haem biosynthesis, oxidative stress management,
and erythroid lineage survival, highlighting potential disruptions in these tumour

microenvironment functions.
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6.2.2.3 ALAS2 and vascular remodelling

ALAS2, an enzyme critical for haem biosynthesis, is typically upregulated under
hypoxic conditions via TGF-f signalling in erythroid cells, facilitating terminal
differentiation and intracellular haem production essential for oxidative stress
management and iron homeostasis. Experimental studies in erythroid cell lines
have demonstrated that hypoxia-induced TGF-@3 signalling enhances ALAS2
expression, supporting adaptive metabolic functions during stress (Kaneko,
Furuyama et al. 2009). Its significant suppression post-radiotherapy, as observed
here, may reflect the tumour’s diminished ability to counteract oxidative stress,

further limiting metabolic flexibility and resilience in the hypoxic microenvironment.

This aligns with broader disruptions in vascular integrity following radiotherapy. xCell
analysis revealed a significant decrease in endothelial cell abundance in post-
radiotherapy samples (Figure 4.16), consistent with vascular remodelling driven by
radiation-induced endothelial cell damage. Supporting this, previous studies have
shown that doses exceeding 10 Gy can induce severe vascular damage in tumours,
leading to reduced perfusion and increased hypoxia (Park, Griffin et al. 2012).
Radiation-induced endothelial cell apoptosis has been directly linked to impaired
oxygen delivery and microenvironmental collapse, contributing to tumour cell death

indirectly by disrupting vascular supply.

Such vascular damage likely amplifies the metabolic stress experienced by tumours,
further diminishing their capacity for haem biosynthesis. Evidence from prior studies
suggests that the functional vascular volume in irradiated tumours declines rapidly,
with profound decreases even at moderate radiation doses (Park, Griffin et al. 2012).
This reduction in vascular support not only limits oxygen delivery but may also impair
iron metabolism, an essential factor for haem biosynthesis, compounding the
suppression of ALAS2 observed here. While the precise mechanisms remain unclear,
disrupted hypoxia-responsive pathways and reduced endothelial cell survival

represent plausible factors driving the observed transcriptional changes.

These vascular changes are accompanied by significant transcriptional shifts
revealed by PROGENYy (section 4.8) and GSEA (section 4.6) analyses. PROGENy
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identified a significant decrease in PI3K activity (P = 0.002), a pathway critical for
vascular integrity and angiogenesis, aligning with the observed vascular remodelling
and potential endothelial dysfunction (Kobialka and Graupera 2019). Conversely,
increased activity in TNFa (P = 0.0001) and NF-kB (P = 0.005) pathways suggests
heightened inflammatory responses, which may contribute to microenvironmental
stress and further impair vascular function (Balkwill 2009, Hoesel and Schmid 2013).
Similarly, GSEA identified enrichment of inflammatory pathways, including TNFa
signalling via NF-kB and IL6-JAK-STATS3, reinforcing the role of inflammation in

these radiotherapy-induced changes.

These disruptions likely exacerbate metabolic stress, further impairing the tumour's
capacity for haem biosynthesis. GSEA also highlighted enrichment of hallmark
pathways such as hypoxia and reactive oxygen species, reflecting increased
oxidative and hypoxic stress post-radiotherapy. Alongside the observed
downregulation of oxidative phosphorylation and related metabolic pathways, these
findings suggest a potential link between vascular damage, oxidative stress, and
disrupted hypoxia-responsive pathways that may contribute to the suppression of
ALAS2. While direct causation cannot be established, these pathways represent

plausible contributors to the observed transcriptional changes.

6.2.2.4 HEMGN and erythroid differentiation

Similarly, HEMGN (hemogen), a transcriptional regulator involved in hematopoietic
stem cell survival and erythroid differentiation, has been shown to modulate
responses to stress, including irradiation and hypoxia. It plays a protective role by
negatively regulating interferon-gamma (IFN-y) signalling, thereby limiting apoptosis
and promoting survival and regeneration of hematopoietic stem and progenitor cells
(HSPCs) during hematopoietic stress (Zhao, Liu et al. 2022). Studies in murine
models have demonstrated that HEMGN expression is significantly induced under
conditions of irradiation and transplantation stress (Jiang, Yu et al. 2010). This
induction is critical for maintaining HSPC engraftment and functionality, with
HEMGN-deficient cells exhibiting impaired engraftment, increased apoptosis, and

heightened oxidative stress following transplantation. Furthermore, HEMGN
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supports erythroid differentiation by facilitating chromatin modifications through

histone acetyltransferases, playing a key role in hematopoietic lineage fidelity.

In the context of this study, the observed decreased expression of HEMGN post-
radiotherapy raises important questions about the underlying mechanisms driving
this change. One possibility is that radiotherapy-induced vascular damage and
increased oxidative stress may disrupt erythroid-like lineage functions within the
tumour microenvironment, leading to reduced HEMGN expression. Alternatively, the
decreased expression may reflect changes in the cellular composition of the tumour,
with selective loss of tumour or stromal cell populations that predominantly express
HEMGN.

Radiotherapy's impact on transcriptional regulation could also play a role, with
stress-induced signalling pathways, such as those involving interferon-gamma (IFN-
y) or inflammatory cytokines, potentially suppressing HEMGN transcription as part
of a broader shift in gene expression. Another explanation could be that the decrease
in HEMGN represents an adaptive response by the tumour to mitigate excessive

oxidative stress.

Future directions

These findings collectively highlight the intricate interplay between haemoglobin-
related gene expression, vascular integrity, inflammation, and oxidative stress in the
tumour microenvironment. While the precise mechanisms underlying these changes
remain speculative, the data suggest plausible contributors that warrant further
investigation. To deepen our understanding of the role of haemoglobin genes in
sarcomas and their potential impact on radiotherapy outcomes, several areas of

future research are proposed:

Spatial and cellular expression analysis

To delineate the spatial and cellular context of haemoglobin gene expression, future
studies could employ spatial transcriptomics and single-cell RNA sequencing. These
technologies would enable precise mapping of the localised expression of genes
such as HBA1, HBA2, and HBB within the tumour microenvironment. By identifying

the specific tumour or stromal cell populations expressing these genes and their
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spatial relationships to hypoxic regions and vasculature, we could start to understand

the functional significance of these genes within sarcomas.

In addition, immunohistochemistry could be used to validate protein-level expression
and confirm that the detected RNA transcripts are translated into functional proteins.
Such approaches would provide critical evidence linking haemoglobin gene
expression to the metabolic and structural adaptations of the tumour

microenvironment both pre- and post-radiotherapy.

Functional analysis

To assess the functional roles of haemoglobin genes in sarcoma biology, knockdown
studies targeting HBA1, HBA2, and HBB could be performed. These experiments
would help determine the impact of silencing these genes on tumour growth, reactive
oxygen species (ROS) levels, and radiotherapy sensitivity. Such studies could reveal
whether these genes play a direct role in modulating tumour progression and

treatment responses.

Furthermore, direct measurements of tissue oxygen levels in sarcomas with high
versus low haemoglobin gene expression could provide valuable insights into their
role in tumour oxygenation, metabolic activity, and radiotherapy efficacy. This line of
research would help clarify whether haemoglobin gene expression contributes to
radiotherapy resistance or sensitivity. This could be context dependent and so
coupling this information with spatial transcriptomic data would be key to address

this question.

Radiotherapy models

Developing preclinical radiotherapy models with altered haemoglobin gene
expression could offer direct evidence of the influence of these genes on treatment
outcomes. For instance, models engineered to overexpress or suppress HBAT,
HBA2, or HBB could be used to test the hypothesis that haemoglobin gene
expression enhances radiotherapy by sustaining oxygen levels or exacerbating
oxidative stress. These experiments could help establish causality and provide a
framework for understanding the relationship between haemoglobin gene expression

and radiotherapy efficacy.
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Mechanistic studies

Mechanistic investigations should focus on elucidating the pathways that link
haemoglobin gene expression with oxidative stress, hypoxia adaptation, and tumour
cell survival. For example, exploring interactions with hypoxia-inducible factors
(HIFs) or ROS-regulating proteins could provide insight into the adaptive responses

of tumour cells in hypoxic environments.

Additionally, it would be valuable to investigate whether haemoglobin gene
expression correlates with cancer-associated fibroblast (CAF) infiltration or vascular
remodelling. These factors are known to influence the tumour microenvironment and
may play a role in modulating treatment responses (Ansems and Span 2020). By
connecting haemoglobin gene expression with broader aspects of sarcoma biology,
these future studies could uncover novel therapeutic strategies for improving

response to radiotherapy.

6.2.3 Subtype-specific transcriptomic changes post-radiotherapy

Further analysis of transcriptomic responses to radiotherapy revealed both shared
and subtype-specific gene expression changes across soft tissue sarcomas,
emphasising the heterogeneity of their biological responses to treatment. A total of
187 genes were differentially expressed in at least two subtypes, with some genes,
such as the haemoglobin genes HBA2 and HBB, displaying consistent
downregulation across six subtypes: myxofibrosarcoma (MFS), myxoid liposarcoma
(MLS), pleomorphic leiomyosarcoma (pLMS), dedifferentiated liposarcoma (ddLPS),
spindle cell sarcoma (SpCS), and extraskeletal myxoid chondrosarcoma (EMC).
While the reasons for this downregulation remain unclear, it may reflect broader
changes in the tumour microenvironment following radiotherapy. One possibility is
that tumour cells expressing haemoglobin genes may have been more sensitive to
radiotherapy-induced oxidative stress, leading to their preferential elimination.
Alternatively, this suppression could result from radiotherapy-induced transcriptional
reprogramming, potentially driven by changes in vascular integrity, hypoxia, or shifts

in cellular composition within the tumour microenvironment.
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6.2.3.1 F13A1

F13A1, encoding coagulation factor Xlll subunit A, was the most commonly
upregulated gene post-radiotherapy, differentially expressed in four sarcoma
subtypes (MFS, MLS, pLMS, and ddLPS) (Figure 4.9). Beyond its well-known role in
blood clot stabilisation, F13A1 contributes to extracellular matrix (ECM) remodelling,
tissue repair, and angiogenesis - processes that may be activated in response to RT-
induced damage (Lehrer, Dembitzer et al. 2018, Peltier, Roperch et al. 2018, Ercan,
Mauracher et al. 2021). In glioblastoma, increased F13A7 copy number correlates
with improved survival, possibly by influencing tumour-associated coagulation
pathways. Similarly, in lung cancer, F13A1 processing was linked to
hypercoagulability and a pro-metastatic microenvironment, while in colorectal cancer,
decreased serum AP-F13A1 suggests sequestration within tumours, facilitating ECM
remodelling and tumour growth. The consistent upregulation of F73A17 in sarcomas
post-RT may reflect its involvement in tissue repair and adaptive responses, but its
role in coagulation raises the possibility of promoting tumour resilience and immune
evasion. Given its diverse tumour-associated functions, further investigation into
F13A1’s role in sarcoma biology and its potential as a therapeutic target is warranted,

particularly in the context of mitigating tumour regrowth and enhancing RT efficacy.

6.2.3.2 SERPINE1

SERPINE1 (plasminogen activator inhibitor-1, PAI-1) was upregulated in myxoid
liposarcoma, pleomorphic liposarcoma, and synovial sarcoma post-radiotherapy,
suggesting a role in tumour adaptation. A known regulator of fibrinolysis and cell
adhesion, SERPINE1 prevents plasmin-mediated ECM degradation, stabilising the
extracellular matrix (ECM) and contributing to post-RT tissue repair. In head and
neck squamous cell carcinoma, SERPINE1 is part of a radioresistance-associated
gene signature linked to poor prognosis, angiogenesis, and DNA damage repair, as
well as increased macrophage and CD4+ T cell infiltration (Zhang, Wang et al. 2022).
In triple-negative breast cancer, SERPINE1 facilitates DNA double-strand break
repair following RT, enhancing tumour survival, and its inhibition resensitised
tumours to RT in preclinical models (Su, Wu et al. 2023). In sarcomas, its post-RT

upregulation may reflect a similar adaptive response, supporting ECM remodelling
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and DNA repair to promote tumour survival. Targeting SERPINE 1-driven pathways
could enhance RT efficacy by disrupting both ECM dynamics and mechanisms of

radioresistance.

6.2.3.3 RGS1

RGS1 was upregulated following radiotherapy in myxoid liposarcoma,
dedifferentiated liposarcoma, and myxofibrosarcoma, suggesting a conserved role
in immune regulation and tumour adaptation. As a key regulator of G-protein-coupled
receptor (GPCR) signalling, RGS7 influences immune cell migration and
inflammatory responses. In melanoma, its overexpression is linked to increased
tumour thickness, mitotic rate, and lymph node metastasis, where it facilitates
immune evasion through calcium influx regulation and activation of ERK and AKT
signalling (Yang, Zhang et al. 2023). The impact of radiotherapy on RGS7 expression
appears cell-type dependent, with studies showing its downregulation in Jurkat cells
but upregulation in TK6 and HFL1 cells, indicating a variable response to radiation-
induced stress (Chaudhry 2008). The consistent upregulation of RGS7 in post-RT
sarcomas suggests a potential role in remodelling the tumour microenvironment,
modulating immune cell infiltration, and contributing to tissue repair. Whether this

confers a protective or pro-tumorigenic effect remains to be further investigated.
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6.2.4 Genes with variable expression patterns following radiotherapy

While the genes discussed above highlight shared transcriptional responses across
sarcoma subtypes, the results of this study (Figure 4.9) also revealed genes with
variable expression patterns depending on the subtype. CASQ7 and TAGLN for

example exhibited subtype specific expression patterns and are discussed below.

6.2.4.1 Calsequestrin 1 (CASQ1) and calcium signalling in radiotherapy

response

Calsequestrin 1 (CASQ1) is a calcium-binding protein primarily located in the
sarcoplasmic reticulum of skeletal muscles, where it plays a critical role in calcium
homeostasis by buffering calcium ions and modulating their release during muscle
contraction. CASQ1 interacts with proteins such as triadin, junctin, and ryanodine
receptors to regulate calcium release channels and maintain efficient excitation-
contraction coupling. It also directly influences store-operated calcium entry (SOCE)
by interacting with STIM1 to regulate calcium influx under conditions of sarcoplasmic
reticulum depletion (Rossi, Gamberucci et al. 2021). In this study, CASQ7 expression
was found to increase in myxoid liposarcoma (MLS) and myxofibrosarcoma (MFS)
but decrease in extraskeletal myxoid chondrosarcoma (EMC) following radiotherapy.
These changes in expression suggest that CASQ17 may play a role in the cellular
response to radiotherapy, potentially through its established function in regulating
intracellular calcium levels. Calcium signalling is critical for various cellular processes,
including proliferation, apoptosis, and stress responses (Patergnani, Danese et al.
2020), and the observed differential expression of CASQ7 may reflect subtype-
specific differences in how these sarcomas manage calcium homeostasis under the

stress of radiotherapy.

Additional differentially expressed genes in post-radiotherapy samples further
highlight the role of calcium signalling in these sarcoma subtypes. For example,
CACNA1E (Phan, Wang et al. 2017), a voltage-gated calcium channel subunit, and
CACNA2D1, a calcium channel auxiliary subunit, were differentially expressed in
MLS, EMC, and synovial sarcoma (SS) (Table 4.4). These genes are essential for

calcium entry into cells and are involved in numerous calcium-dependent processes,
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including signalling cascades that regulate cell survival and apoptosis. Similarly,
RYR1 and RYRZ2, which encode ryanodine receptors responsible for calcium release
from the sarcoplasmic reticulum (Wang, Yu et al. 2022), were differentially expressed
in sarcoma subtypes such as MLS, EMC, spindle cell sarcoma (SpCS), and
pleomorphic liposarcoma (pLPS) (Table 4.4). These receptors are key regulators of
intracellular calcium homeostasis, and their dysregulation has been linked to altered
calcium signalling, genomic instability, and impaired apoptotic pathways, which may
contribute to subtype-specific responses to radiotherapy-induced stress (Wang, Yu
et al. 2022).

Further evidence for the role of calcium signalling in radiotherapy responses comes
from a study on undifferentiated pleomorphic sarcomas (UPS) (Blomain, Soudi et al.
2025). Blomain et al. demonstrated that radiotherapy imposes significant selective
pressures on tumour subclones, leading to dynamic changes in their abundance.
Specifically, subclones that contracted—meaning their prevalence significantly
decreased—were enriched for mutations in calcium signalling pathways, suggesting
that disruptions in calcium homeostasis may render these subclones more
radiosensitive. These findings provide a compelling link between calcium signalling
and the cellular mechanisms that determine radiotherapy outcomes. Mutations in
genes involved in calcium transport, storage, and signalling likely impair the ability of
tumour cells to buffer radiotherapy-induced calcium stress, ultimately leading to their

elimination.

Blomain et al. also identified significant upregulation of calcium ATPase genes,
including ATP2A1, ATP2A3, ATP2B1, and ATP2B2, in post-radiotherapy samples.
Similarly, they also observed the increased expression of CACNA1 and RYR-related
genes that | have seen in the LSS cohort. These genes overall play critical roles in
exporting calcium ions from the cytoplasm and maintaining intracellular calcium
balance. Their upregulation likely reflects a mechanism to mitigate the increased
calcium flux and cellular stress caused by radiotherapy. Functional experiments
further demonstrated that inhibiting plasma membrane calcium ATPases using

Caloxin 2A1 sensitised sarcoma cell lines to radiotherapy.
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Taken together, these findings emphasise the role of calcium signalling, including
the function of CASQ7, in mediating cellular responses to radiotherapy. The
differential expression of CASQ1, CACNA1E, CACNA2D1, RYR1, and RYR?2,
combined with the enrichment of calcium signalling mutations in radiotherapy-
sensitive subclones, highlights how sarcoma subtypes adapt to the unique stress
conditions imposed by radiotherapy. These findings suggest that targeting calcium
signalling pathways, either through modulation of calcium transport or inhibition of
adaptive responses, could enhance radiosensitivity and improve therapeutic

outcomes.

6.2.4.2 Transgelin (TAGLN) and vascular remodelling

TAGLN (transgelin), also known as SM22aq, is a cytoskeletal protein predominantly
involved in actin filament stabilisation, with emerging roles in angiogenesis and
endothelial cell dynamics. In this study, TAGLN was found to be upregulated in
myxoid liposarcoma (MLS) but downregulated in extraskeletal myxoid
chondrosarcoma (EMC) and pleomorphic leiomyosarcoma (pLMS) following
radiotherapy. Such differential expression suggests that TAGLN may contribute to
the varying vascular responses across sarcoma subtypes under radiotherapy-

induced stress.

TAGLN plays a critical role in endothelial cell elongation, a key process in
angiogenesis. Under angiogenic stimuli such as VEGF, TAGLN expression supports
endothelial sprouting and vessel morphogenesis. Conversely, its disruption
enhances angiogenic behaviours like excessive cord-like structure formation,
indicating that TAGLN can act as a regulator of endothelial elongation depending on

the cellular context (Tsuji-Tamura, Morino-Koga et al. 2021).

Radiotherapy-induced vascular remodelling involves complex processes, including
changes in angiogenesis, immune infiltration, and extracellular matrix (ECM)
composition (Ahmed, Malachowska et al. 2025) (see section 6.2.2.3). The
downregulation of TAGLN in EMC and pLMS may reflect a shift towards greater

endothelial plasticity, facilitating angiogenic remodelling and vessel sprouting in
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response to vascular damage. In contrast, its upregulation in MLS could indicate an
effort to stabilise endothelial structures and counteract radiotherapy-induced stress.
The biology behind the unique “chicken-wire” vascular pattern commonly observed
in MLS may also influence its reliance on TAGLN to maintain vascular integrity post-

radiotherapy.

Radiotherapy has been shown to induce significant vascular damage, including
endothelial cell death, reduced perfusion, and increased tumour hypoxia. High-dose
radiation can lead to endothelial apoptosis, impairing vascular support and
contributing to tumour control (Park, Griffin et al. 2012). However, the extent of
vascular damage varies across tumour types, with some restoring perfusion through
angiogenesis while others experience vascular collapse. TAGLN's differential
expression may mirror these processes, with MLS favouring stabilisation
mechanisms through increased TAGLN, while EMC and pLMS adapt by employing

alternative angiogenic pathways that are less dependent on TAGLN.

These findings are consistent with evidence suggesting that radiotherapy-induced
tissue regeneration involves molecular pathways such as Wnt and p53 signalling,
which regulate cytoskeletal and vascular dynamics (Ahmed, Malachowska et al.
2025). TAGLN-mediated cytoskeletal remodelling may interact with these pathways,
influencing how tumour microenvironments respond to radiotherapy. The differential
expression of TAGLN across sarcoma subtypes stresses the role of tumour-specific

vascular remodelling in determining radiotherapy outcomes.

6.2.4.3 Summary

The limited overlap of differentially expressed genes across sarcoma subtypes, as
shown in the Upset plot (Figure 4.8) demonstrates the complexity and heterogeneity
of transcriptomic responses to radiotherapy. While certain subtypes, such as MFS
and MLS, exhibit the greatest gene overlap, their overall transcriptional responses

remain largely distinct, highlighting the necessity for therapeutic approaches tailored
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to each subtype's unique biology. This complexity is further illustrated by the
coexistence of shared vulnerabilities — such as the consistent suppression of
haemoglobin-related genes and the upregulation of tissue remodelling pathways like
F13A1 — and unique adaptations, including subtype-specific alterations in calcium

signalling and cytoskeletal dynamics.

Future research should prioritise functional studies to unravel the roles of these
genes in mediating radiotherapy outcomes. Investigating whether shared pathways,
such as F13A1-mediated ECM remodelling, can be targeted to enhance treatment
efficacy or whether subtype-specific adaptations, such as CASQ1-driven calcium
signalling, provide exploitable vulnerabilities will be key to advancing precision
medicine for sarcomas. Additionally, integrating spatial and single-cell transcriptomic
techniques will be critical for mapping the cellular origins of these changes and

understanding their interactions with the tumour microenvironment.

6.2.5 Pathway enrichment analysis highlights immune activation post-

radiotherapy

The findings from this study strongly suggest that radiotherapy stimulates immune
activation, a phenomenon well-documented in the literature (Deloch, Derer et al.
2016, Ruckert, Flohr et al. 2021). Radiotherapy not only induces direct DNA damage
to tumour cells but also initiates secondary effects that modify the tumour
microenvironment, thereby promoting immunogenic cell death (ICD). ICD is
characterised by the release of damage-associated molecular patterns (DAMPs)
such as calreticulin, HMGB1, and ATP, which enhance the recruitment and activation
of antigen-presenting cells (APCs) like dendritic cells. This process facilitates T-cell

priming and subsequent systemic anti-tumour immune responses.

One of the most intriguing immune-mediated effects of radiotherapy is the abscopal
effect, where irradiation of a local tumour site results in tumour regression at distant,
untreated sites. This phenomenon is believed to occur due to radiation-induced

immune activation, which enhances systemic anti-tumour immunity. Although the
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abscopal effect was historically considered a rare occurrence, increasing evidence
suggests that combining RT with immunotherapies, particularly immune checkpoint
inhibitors, can enhance its frequency and potency. Mechanistically, RT triggers the
release of tumour antigens, activates the cGAS-STING pathway, and promotes the
maturation of DCs, leading to a systemic T-cell response against cancer cells at both
irradiated and non-irradiated sites (Janopaul-Naylor, Shen et al. 2021).

Recent work has also emphasised that the immunological effects of radiotherapy are
complex and context-dependent, with both  immunostimulatory and
immunosuppressive components (Ruckert, Flohr et al. 2021). While radiotherapy
enhances antigen presentation, cytokine release, and immune cell infiltration, it can
also create an immunosuppressive tumour microenvironment. This occurs through
mechanisms such as the recruitment of regulatory T cells (Tregs), upregulation of
immunosuppressive cytokines (e.g., TGF-B, IL-10), and increased expression of
immune checkpoint molecules such as PD-L1. Thus, radiotherapy alone may not
always generate a strong systemic immune response, and combination strategies
with immunotherapies are increasingly being explored to overcome these barriers
(Deloch, Derer et al. 2016, Janopaul-Naylor, Shen et al. 2021, Ruckert, Flohr et al.
2021).

In this study, GSEA and Gene Ontology (GO) analyses revealed significant
enrichment of immune-related pathways, such as interferon signalling, TNFa
signalling, and inflammatory response pathways. These results align with the
documented role of radiotherapy in promoting immune-mediated effects through the
upregulation of pro-inflammatory cytokines (e.g., IL-6, IL-8, TNF-a) and the
enhancement of T-cell infiltration (Ahmed, Malachowska et al. 2025). The observed
activation of pathways such as JAK-STAT (Johnson, O'Keefe et al. 2018) and NF-
kKB (Hoesel and Schmid 2013) further supports this, as these are pivotal in

modulating immune responses.

Conversely, the downregulation of pathways associated with cell proliferation,
including MYC targets and the G2M checkpoint, highlights the twin therapeutic effect
of radiotherapy. By suppressing tumour growth and division while concurrently
activating the immune system, radiotherapy offers a multifaceted approach to cancer

treatment.
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6.2.6 PROGENYy analysis identifies androgen signalling as a potential

target for adjuvant therapy.

Analysis of the PROGENYy results, a pathway analysis method that infers pathway
activity from gene expression data, revealed distinct patterns of pathway activation
and suppression among different sarcoma subtypes following radiotherapy (see
section 4.8). These subtype-specific differences highlight the diverse biological
responses to treatment. In myxofibrosarcoma, radiotherapy was associated with a
significant increase in the activity of pathways involved in stress and immune
signalling, including the Androgen, JAK-STAT, p53, NF-kB, TNFa, and Wnt
pathways (Figure 4.14). At the same time, there was a pronounced decrease in
PI3K signalling, which may reflect diminished cell survival signalling. These
changes suggest following radiotherapy there is enhancement of immune and

stress-related responses while suppression of tumour-promoting pathways.

In contrast, synovial sarcoma exhibited a more focused response, with a significant
increase observed only in the p53 pathway. While this suggests a more limited
activation of stress response pathways, it is also possible that the reduced sample
size (n = 7) limited the power to detect other significant changes in pathway activity.
Similarly, pleomorphic liposarcoma, with only four paired samples available for
analysis, showed no statistically significant changes in the pathways analysed. This
lack of statistical findings may reflect the challenges of achieving sufficient power in
such a small cohort rather than an absence of biological response. Future studies
with larger cohorts are warranted to validate and further explore these

observations.

To further contextualise these findings, pathway activity scores from radiotherapy-
treated samples were compared with treatment-naive sarcoma samples from the
TCGA dataset. This comparison (Figure 4.15) showed that in myxofibrosarcoma, the
post-radiotherapy increases in Androgen and TNFa pathway activity and the
decrease in PI3K signalling were consistent with the differences observed between
TCGA samples and post-radiotherapy samples. These findings add evidence to
support the transformative role of radiotherapy in reshaping tumour biology, inducing

distinct transcriptomic changes that are not present in untreated sarcomas.
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The observed post-radiotherapy increase in the activation of the androgen pathway,
raises the possibilities for therapeutic intervention. Preclinical models of
desmoplastic small round cell tumours (DSRCTs), have shown that anti-androgen
therapies, including enzalutamide and AR-directed antisense oligonucleotides (AR-
ASOs), effectively reduce tumour growth by suppressing AR activity and its

transcriptional program (Lamhamedi-Cherradi, Maitituoheti et al. 2022).

Combining radiotherapy with anti-androgen therapies could provide a novel adjuvant
approach to suppress this pathway and limit tumour progression. Specifically,
targeting AR could disrupt both direct androgen-mediated tumourigenic signals and
the crosstalk between AR and other pathways, such as PI3K, that are modulated by

radiotherapy.

269



Reference List

6.3 Transcriptomic determinants of radiotherapy resistance

This section explores the findings presented in Chapter 5, which focuses on the
differences in gene expression, pathway activity, and tumour microenvironment
composition between responders and progressors following radiotherapy. By
identifying molecular and cellular mechanisms associated with disease progression,
this analysis provides evidence for new biomarkers and therapeutic targets to

improving outcomes for patients with soft tissue sarcomas.

6.3.1 Clinical characteristics of responders vs. progressors

Significant differences in disease trajectories were observed between responders
and progressors. Responders, who remained recurrence-free, had a median follow-
up of 6.8 years post-radiotherapy. In contrast, progressors had a median
progression-free interval of 236 days, with most succumbing to their disease within
787 days of completing RT. These findings demonstrate the urgency of identifying
predictive biomarkers to better stratify patients for intensified surveillance and

treatment to improve these outcomes.

The distribution of histological subtypes differed between responders and
progressors, reflecting known biological behaviour. Pleomorphic liposarcoma (pLPS)
and myxoid liposarcoma (mLPS), had a 100% progression rate (4/4 and 2/2 cases,
respectively), while clear cell sarcoma (CCS), myoepithelial carcinoma (MEC), and
alveolar soft part sarcoma (ASPS) were found exclusively in progressors, aligning
with their typically poor prognosis. In contrast, myxofibrosarcoma (MFS) and
dedifferentiated liposarcoma (ddLPS), which are often considered genomically
complex yet potentially radiosensitive, had higher responder rates (MFS: 13/15;
ddLPS: 2/3). Extraskeletal myxoid chondrosarcoma (EMC) and malignant peripheral
nerve sheath tumour (MPNST) only had responders, though their small sample size
limits interpretation.

This variability suggests that histology-specific factors may strongly influence RT
response, reinforcing the need for subtype-specific treatment considerations.
However, the unequal distribution of subtypes between responders and progressors

highlights a potential dataset imbalance, particularly the overrepresentation of pLPS
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and mLPS in progressors and the absence of EMC and MPNST from the progressor
group. Future studies incorporating larger cohorts or stratifying by histology are
needed to determine whether these trends reflect genuine biological differences or

sampling bias.

Age differences were also observed, with responders generally older than
progressors. The median age at diagnosis was 60 years for responders versus 46
years for progressors (p = 0.0109, t-test). While the impact of age on RT response
was not explored in depth, this difference should be considered in future analyses,

particularly in multivariable models assessing predictors of disease progression.

6.3.2 Differential gene expression analysis identifies potential biomarkers

of disease progression.

Differential gene expression (DGE) analysis revealed distinct transcriptional profiles
distinguishing responders from progressors. Among the most significant findings, PI3
and PTCHD1 were the two most upregulated genes, while TBC1D3 and SIRPB1
were the most downregulated (Figure 5.1). These genes and their potential roles will
be discussed in detail below. Their expression or lack thereof could serve as a

biomarker to predict disease progression.

PI3 (Elafin) was significantly upregulated in progressors post-radiotherapy (46-fold
increase), suggesting a role in modulating inflammation and protease activity to
enhance tumour resilience. Elevated PI3 expression has been associated with
aggressive tumour behaviour, therapy resistance, and immune evasion across
multiple cancer types (Saidi, Javerzat et al. 2008, Verbovsek, Motaln et al. 2014,
Tromp, Boerman et al. 2020).

PTCHD1, primarily studied in neurodevelopmental disorders, showed a 26-fold
increase in progressors. Though originally linked to Hedgehog signalling, recent
findings suggest PTCHD1 interacts with cholesterol rather than Sonic Hedgehog,
indicating a role in lipid metabolism. Its upregulation may reflect metabolic adaptation

to radiotherapy-induced stress, but conflicting evidence exists regarding its role in
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treatment response, with some studies linking higher PTCHD1 expression to better
chemotherapy outcomes (Hiltunen, Timmis et al. 2023, Pastore, Muhammad et al.
2023).

TBC1D3, an oncogene involved in EGFR and Ras signalling, was 46-fold
downregulated in progressors. Its overexpression has been linked to aggressive
tumour phenotypes in various cancers (Wainszelbaum, Charron et al. 2008, Wang,
Chen et al. 2021). However, its suppression post-radiotherapy suggests a context-
dependent role, potentially reflecting a shift in tumour survival strategies that

prioritise DNA repair over proliferation in response to radiation-induced stress.

SIRPB1, a regulator of immune responses, was downregulated 12-fold in
progressors. In other cancers, it has been associated with tumour-associated
macrophage activation and inflammatory cytokine release (Geng, Zhao et al. 2024).
Its reduced expression post-RT may contribute to immune evasion, weakening anti-
tumour immune responses and promoting tumour persistence (Cerchione,
Guadagnuolo et al. 2019, Song, Qin et al. 2020).

These findings highlight key transcriptional differences in progressors post-
radiotherapy, with upregulated genes potentially driving tumour adaptation and
survival, while downregulated genes may reflect loss of immune surveillance or
alterations in proliferative signalling. The consistent dysregulation of these genes
suggests they may play a role in tumour persistence and progression following RT.
Further investigation is needed to determine whether these genes could serve as
biomarkers for post-RT disease progression or as therapeutic targets to mitigate

treatment resistance.
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6.4 Summary and future directions

This study provides a comprehensive assessment of transcriptomic responses to
radiotherapy in soft tissue sarcomas, identifying key gene expression changes and
pathway alterations associated with disease progression. However, several
challenges remain, and further work is needed to validate these findings and explore

their clinical relevance.

Validation in independent cohorts

Larger, multi-institutional studies are required to confirm the molecular signatures
and pathway activities identified in this study. Currently, no publicly available
datasets exist that match the specific cohort characteristics and treatment context
analysed here. Collaborative efforts to generate and share transcriptomic datasets

from post-radiotherapy sarcomas would be essential for external validation.

Spatial transcriptomics and single-cell analysis

Bulk RNA sequencing provides valuable insights but does not resolve the spatial
heterogeneity of tumour and immune cell interactions. Spatial transcriptomics and
single-cell RNA sequencing could help distinguish whether transcriptomic shifts post-
radiotherapy arise from tumour-intrinsic changes or alterations in the tumour
microenvironment. These techniques would also enable a more detailed exploration

of immune cell infiltration and its role in treatment response.

Multi-Omics integration

Beyond transcriptomics, integrating proteomic and epigenomic data could uncover
additional mechanisms of disease progression and therapy resistance. Proteomics
may reveal post-transcriptional modifications affecting tumour behaviour, while
epigenomic profiling could identify regulatory elements driving differential gene
expression post-radiotherapy. Such multi-omics approaches could help refine

molecular classifications and identify novel therapeutic vulnerabilities.
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In summary, this thesis contributes to our understanding of radiotherapy’s molecular
impact in soft tissue sarcomas, identifying genomic instability, immune modulation,
and transcriptional predictors of disease progression as key factors shaping post-
radiotherapy tumour evolution. Integrating these findings into future clinical and
translational efforts could advance biomarker-driven risk stratification, optimise
patient selection for combination therapies, and maximise radiotherapy efficacy while
minimising unnecessary toxicity. ldentifying patients for increased surveillance or
therapy de-escalation is a goal in radiation oncology and one | hope that this thesis

will contribute to the effort of.
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Chapter 7. Appendix
7.1 Publications

The following publications have arisen from work carried out during my PhD:

Nottley, S. W. G. and N. Pillay (2024). "Clear cell sarcoma: a rare cause of a lump

in the foot." Diagnostic Histopathology 30(1): 81-85.
Haefliger, S., O. Chervova, C. Davies, S. Nottley, S. Hargreaves, V. P. Sumathi, . . .
S. Beck (2023). "Subclassification of epithelioid sarcoma with potential therapeutic

impact." The Journal of Pathology 260(4): 368-375.

Hames-Fathi, S., S. W. Nottley and N. Pillay (2022). "Unravelling undifferentiated

soft tissue sarcomas: insights from genomics." Histopathology 80(1): 109-121.
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7.2 Statement of contributions

Unless otherwise stated, all work in this thesis was carried out by me. | am grateful

to the following individuals for their contributions:

Dr Akanksha Farswan provided the variant call format (VCF) files for the patient with
Clear Cell Sarcoma (PT61), performing both alignment and variant calling for this

case.

Christopher Davies provided the salmon counts from the RNA sequencing data for
PT61. He also extracted DNA from the patients’ blood for sequencing of the normal

samples and from fresh frozen tissue for the samples sent for NanoSeq analysis.

The NanoSeq samples were sequenced at the Wellcome Trust Sanger Institute, who
generously conducted the sequencing. VCF files and mutation counts were returned
for downstream analysis. | had useful discussions with Dr Federico Abascal
regarding this work. | subsequently performed mutational signature analysis on the

identified mutations.

Dr Shadi Hames-Fathi provided the processed TCGA RNA sequencing counts data,

which | used for comparative analysis with my cohort in the PROGENYy analysis.
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