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eLife Assessment
This paper presents valuable findings on the processing of sound mixtures in the auditory cortex of 
ferrets, a species widely used for studies of auditory processing. Using the convenient and relatively 
high-resolution method of functional ultrasound imaging, the authors provide convincing evidence 
that background noise invariance emerges across the auditory cortical processing hierarchy. They 
also draw informative comparisons with previously published fMRI data obtained in humans. This 
work will be of interest to researchers studying the auditory cortex and the neural mechanisms 
underlying auditory scene analysis and hearing in noise.

Abstract Extracting relevant auditory signals from complex natural scenes is a fundamental 
challenge for the auditory system. Sounds from multiple sources overlap in time and frequency. In 
particular, dynamic ‘foreground’ sounds are often masked by more stationary ‘background’ sounds. 
Human auditory cortex exhibits a hierarchical organization where background-invariant repre-
sentations are progressively enhanced along the processing stream, from primary to non-primary 
regions. However, we do not know whether this organizational principle is conserved across species 
and which neural mechanisms drive this invariance. To address these questions, we investigated 
background invariance in ferret auditory cortex using functional ultrasound imaging, which enables 
large-scale, high-resolution recordings of hemodynamic responses. We measured responses across 
primary, secondary, and tertiary auditory cortical regions as ferrets passively listened to mixtures of 
natural sounds and their components in isolation. We found a hierarchical gradient of background 
invariance, mirroring findings in humans: responses in primary auditory cortex reflected contributions 
from both foreground and background sounds, while background invariance increased in higher-
order auditory regions. Using a spectrotemporal filter-bank model, we found that in ferrets this 
hierarchical structure could be largely explained by tuning to low-order acoustic features. However, 
this model failed to fully account for background invariance in human non-primary auditory cortex, 
suggesting that additional, higher-order mechanisms are crucial for background segregation in 
humans.

Introduction
In the intricate auditory landscapes of our surroundings, the brain quickly extracts meaningful infor-
mation from a cacophony of overlapping sources. Humans are remarkably good at detecting speech 
in complex noise: two people in a bar can easily have a conversation despite the ambient chatter. This 
ability is thought to rely on the different properties of background and foreground sounds, which are 
mixed in a single waveform at the level of the cochlea. Dynamic ‘foreground’ sounds, such as speech 
or vocalizations, fluctuate over short timescales, and these fluctuations convey new information over 
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time (Singh and Theunissen, 2003). In contrast, stationary ‘background’ sounds, like ambient chatter 
or the rustle of wind, fluctuate over longer periods, and are thus more predictable and less vital for 
signaling sudden events. They can be synthesized realistically based solely on their time-averaged 
acoustic statistics (McWalter and McDermott, 2018; McDermott and Simoncelli, 2011; McWalter 
and Dau, 2017), which the brain uses to perceptually fill short acoustic gaps (McWalter and McDer-
mott, 2019). Despite these differences in the nature of foreground and background sounds, we still 
lack a general understanding of where background invariance occurs in the brain and what neural 
mechanisms underlie it.

In humans, multiple stages of processing build up background-invariant representations. In fMRI 
recordings of auditory cortex, non-primary areas are more background-invariant than primary areas 
(Kell and McDermott, 2019). In addition, intracranial cortical responses show rapid adaptation to 
new background noise, which improves representations of foreground speech (Khalighinejad et al., 
2019). This effect is stronger for neurons in non-primary auditory cortex. This progressive invariance is 
unlikely to be fully explained by the parallel hierarchical organization of speech and music processing 
in humans (Norman-Haignere et al., 2015; Norman-Haignere and McDermott, 2018) since it is still 
present when excluding speech and music from foreground sounds (Kell and McDermott, 2019). 
Moreover, background invariance appears to be independent of selective attention (Kell and McDer-
mott, 2019; Khalighinejad et al., 2019). Thus, the hierarchical organization of background invariance 
may not be specific to humans but rather a generic principle shared with other animals.

Background invariance can also be found in non-human animals. In fact, neurons that exhibit 
background-invariant responses are present throughout the auditory pathway in multiple species, 
increasingly from subcortical nuclei to the auditory cortex (Souffi et al., 2020; Rabinowitz et al., 
2013). Background-invariant representations in auditory cortex are necessary for behavioral discrim-
ination of natural sounds in noise (Town et al., 2023). Neurons with foreground-invariant responses 
are also found in the non-human auditory cortex (Bar-Yosef and Nelken, 2007; Ni et  al., 2017; 
Hamersky et al., 2025), but a critical transformation of representations within the cortical hierarchy 
could specifically enhance foreground representations (Schneider and Woolley, 2013; Saderi et al., 
2020; Carruthers et al., 2015). However, these studies differ by species, regions, state (awake vs. 
anesthetized), type of background noise (synthetic vs. natural), and signal-to-noise ratio. Thus, it 
remains unclear whether a cortical gradient in background invariance, as seen in humans, is present 
in other animals.

Mechanistically, background invariance could come from the simple tuning properties of 
neurons. Auditory cortical neurons are known to be tuned to frequency and spectrotemporal 
modulations (Miller et al., 2002; Shamma, 2009), which are acoustic features that differ between 
background and foreground sounds (Elie and Theunissen, 2015). In ferrets, this low-level spec-
trotemporal tuning can explain large-scale responses to natural sounds in both primary and non-
primary regions of auditory cortex (Landemard et  al., 2021). Thus, differences in background 
invariance across regions could result from regional differences in such low-order tuning (Moore 
et al., 2013; Ivanov et al., 2022). In humans, this tuning can explain responses in primary auditory 
cortex (Santoro et al., 2014), but not in non-primary fields (Norman-Haignere and McDermott, 
2018). Consequently, the sensitivity of human non-primary cortex to acoustic high-order acoustic 
features may underlie the hierarchical gradient in background invariance. However, it remains 
untested whether background invariance in the auditory cortex relies on neural mechanisms that 
are conserved across species.

Here, we asked (1) whether background invariance is hierarchically organized in the auditory 
cortex of a non-human mammal, the ferret, and (2) whether hierarchical background invariance 
could be explained by tuning to low-order acoustic properties that differentiate foreground-like and 
background-like natural sounds. We defined foreground and background sounds based on an acoustic 
criterion of stationarity. We measured large-scale hemodynamic responses in ferrets’ auditory cortex 
as they passively listened to isolated and combined foregrounds and backgrounds. Leveraging the 
spatial resolution and coverage of functional ultrasound imaging (fUSI), we showed that background 
invariance increased from primary to secondary and tertiary areas of auditory cortex. We could predict 
these effects using a model based on frequency and spectrotemporal modulations, suggesting that 
the organization of background invariance in the ferret brain can be derived from neural spectro-
temporal tuning. Finally, we showed that the same model could not explain as well the patterns 
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of background invariance found in human auditory cortex, suggesting that additional mechanisms 
underlie background invariance in humans.

Results
Using fUSI, we measured hemodynamic responses in the auditory cortex of ferrets passively listening 
to continuous streams of natural sounds. We used three types of stimuli: foregrounds, backgrounds, 
and combinations of those. We use those terms to refer to sounds differing in their stationarity, under 
the assumption that stationary sounds carry less information than non-stationary sounds, and are 
thus typically ignored. To classify natural sounds into these categories, we computed each sound’s 
stationarity, defined as the stability in time of a sound’s acoustic statistics (McWalter and McDer-
mott, 2018). Backgrounds were chosen as the most stationary and foregrounds as the least stationary 
sounds (Figure 1A, Figure 1—source data 1). Different sound segments were concatenated to form 
continuous streams (Figure 1B). In the isolated condition, a sound change occurred every 9.6 s. In the 
mixture condition, the same sequences overlapped with a lag of 4.8 s between the foreground and 
background streams, leading to a change in one or the other stream every 4.8 s.

Hemodynamic responses stably encoded sound identity after transient responses. We continuously 
measured hemodynamic activity in ferret auditory cortex (Figure 1C) throughout the sound sequences 
and normalized cerebral blood volume (CBV) relative to blocks of silent baseline. Sound changes 

Figure 1. Hemodynamic activity reflects encoding of foregrounds and backgrounds. (A) Stationarity for foregrounds (squares) and backgrounds 
(diamonds). (B) Sound presentation paradigm, with example cochleagrams. We created continuous streams by concatenating 9.6 s foreground (cold 
colors) and background segments (warm colors) following the illustrated design. Each foreground (resp. background) stream was presented in isolation 
and with two different background (resp. foreground) streams. (C) We measured cerebral blood volume (CBV) in coronal slices (blue plane) of the ferret 
auditory cortex (black outline) with functional ultrasound imaging. We imaged the whole auditory cortex through successive slices across several days. 
Baseline blood volume for an example slice is shown, where two sulci are visible, as well as penetrating arterioles. D: dorsal, V: ventral, M: medial, L: 
lateral. (D) Changes in CBV aligned to sound changes, averaged across all (including non-responsive) voxels and all ferrets, as well as across all sounds 
within each condition (normalized to silent baseline). Shaded area represents standard error of the mean across sound segments. (E) Test-retest cross-
correlation for each condition. Voxel responses for two repeats of sounds are correlated with different lags. Resulting matrices are then averaged across 
all responsive voxels (ΔCBV > 2.5%).

The online version of this article includes the following source data for figure 1:

Source data 1. List of sounds used in ferret experiments.

https://doi.org/10.7554/eLife.106628
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elicited transient increases in activity before reaching a sustained level (Figure 1D). Sustained activity 
was lower for backgrounds in isolation than for foregrounds and mixtures. We asked whether sound 
encoding was stable over time despite these changes in amplitude. We focused on the sound-specific 
activity of responsive voxels (ΔCBV > 2.5%) by subtracting their average timecourse across all sounds 
in each category. For each voxel, we cross-correlated vectors of responses to sounds of each category 
across two repetitions (Figure 1E). Voxels stably encoded sounds of each category throughout their 
duration despite the observed variation in response amplitude. Thus, we summarized voxels’ activity 
by their time-averaged activity over an interval spanning 2.4–4.8 s after sound change.

Figure 2. Invariance to background sounds is hierarchically organized in ferret auditory cortex. (A) Map of average response for an example hemisphere 
(ferret L). Responses are expressed in percent changes in cerebral blood volume (CBV) relative to baseline activity, measured in periods of silence. 
Values are averaged across depth to obtain this surface view of auditory cortex. (B) Map of test-retest reliability. In the following maps, only reliably 
responding voxels are displayed (test–retest > 0.3 for at least one category of sounds) and the transparency of surface bins in the maps is determined 
by the number of (reliable) voxels included in the average. (C) Map of considered regions of interest (ROIs), based on anatomical landmarks. The 
arrows indicate the example slices shown in (D) (orange: primary; green: non-primary example). (D) Responses to isolated and combined foregrounds. 
Bottom: responses to mixtures and foregrounds in isolation, for example, voxels (left: primary; right: non-primary). Each dot represents the voxel’s time-
averaged response to every foreground (x-axis) and mixture (y-axis), averaged across two repetitions. r indicates the value of the Pearson correlation. 
Top: maps show invariance, defined as noise-corrected correlation between mixtures and foregrounds in isolation, for the example voxel’s slice with 
values overlaid on anatomical images representing baseline CBV. Example voxels are shown with white squares. (E) Map of background invariance for 
the same hemisphere (see Figure 2—figure supplement 2 for other ferrets). (F) Quantification of background invariance for each ROI. Colored circles 
indicate median values across all voxels of each ROI, across animals. Gray dots represent median values across the voxels of each ROI for each animal. 
The size of each dot is proportional to the number of voxels across which the median is taken. The thicker line corresponds to the example ferret L. ***: 

‍p ≤ 0.001‍ for comparing the average background invariance across animals for pairs of ROIs, obtained by a permutation test of voxel ROI labels within 
each animal. (G–I) Same as (D–F) for foreground invariance (comparing mixtures to backgrounds in isolation). AEG, anterior ectosylvian gyrus; MEG, 
medial ectosylvian gyrus; dPEG, dorsal posterior ectosylvian gyrus; VP, ventral posterior auditory field.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Table of statistics for comparison across regions.

Figure supplement 1. Invariance dynamics.

Figure supplement 2. Maps for all ferrets.

https://doi.org/10.7554/eLife.106628
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Invariance to background sounds is hierarchically organized in ferret 
auditory cortex
We investigated the spatial organization of sound responses throughout the whole ferret auditory 
cortex. We found that reliable sound-evoked responses were confined to the central part of the ventral 
gyrus of the auditory cortex (Figure 2A and B). Hereafter, we focus on reliable sound-responsive 
voxels (test–retest correlation > 0.3 for sounds in at least one condition). We assigned voxels to three 
regions of interest in ferret auditory cortex (Figure 2C): MEG (primary), dPEG (secondary), and VP 
(tertiary, see Elgueda et al., 2019; Landemard et al., 2021; Radtke-Schuller, 2018).

Invariance to background sounds was stronger in non-primary than in primary auditory cortex. 
To probe invariance to background sounds for each voxel, we compared responses to mixtures and 
isolated foregrounds across sound segments (Figure 2D). Responses to mixtures and isolated fore-
grounds tended to be more similar for voxels in non-primary regions. We quantified this effect by 
computing a noise-corrected version of the Pearson correlation between responses to mixtures and 
foregrounds for each voxel, which we call background invariance (Kell and McDermott, 2019). Back-
ground invariance emerged shortly after a sound change and was stable throughout the duration 
of each sound snippet (Figure 2—figure supplement 1). When going up the hierarchy, correlations 
between mixtures and foregrounds increased (tertiary (VP) > secondary (dPEG) > primary (MEG), 

‍p = 0.001‍ with a permutation test), indicating a stronger invariance to background sounds in higher-
order areas (Figure 2E and F, Figure 2—figure supplement 2). While background invariance was 
overall highest in VP, the differences within non-primary areas were more variable across animals (see 
Figure 2—source data 1).

To test whether foregrounds were processed differently than backgrounds, and at which stage, we 
also compared responses to mixtures and backgrounds in isolation. We defined a ‘foreground invari-
ance’, symmetric to the background invariance, by correlating responses to mixtures and isolated 
backgrounds across sound segments (Figure  2G). In primary auditory cortex (MEG), foreground 
invariance was slightly lower than background invariance, although this difference was not signifi-
cant (‍p = 0.063‍, obtained by randomly permuting the sounds’ background and foreground labels, 
1000 times). However, foreground invariance tended to decrease from primary to non-primary areas 
(Figure 2H and I, VP < dPEG: ‍p = 0.001‍, dPEG < MEG: ‍p = 0.136‍ with a permutation test). As a conse-
quence, foreground invariance became significantly lower than background invariance in both dPEG 
(‍p = 0.001‍) and VP (‍p = 0.001‍).

A model of auditory processing predicts hierarchical differences
By definition, foregrounds and backgrounds are separated in the acoustic domain. Low-level acoustic 
features computed from their waveforms can well discriminate both categories. To show this, we 
used a standard two-stage filter-bank model of auditory processing (Chi et al., 2005). This model (1) 
computes a sound’s cochleagram, (2) convolves the resulting cochleagram through a bank of spec-
trotemporal modulation filters, tuned to a range of frequencies and spectrotemporal modulations 
(Figure  3A). Foregrounds and backgrounds differed in their pattern of energy in the modulation 
space (Figure 3B and C). In particular, the axis of temporal modulation was highly discriminative: 
foregrounds tended to have higher energy in the low rates (< 8 Hz), and backgrounds in higher rates 
(> 8 Hz).

In ferret auditory cortex, large-scale cortical responses to natural sounds are well predicted by 
the spectrotemporal model, even when controlling for stimuli correlations (Landemard et al., 2021). 
To test whether differences in neural invariance could be explained by tuning to low-order acoustic 
features, we predicted the voxels’ responses using this model. We derived voxels weights for model 
features using cross-validated ridge regression of trial-averaged responses to all sounds (Figure 3D 
and E).

Tuning to frequency and spectrotemporal modulations showed large-scale spatial structure. 
Through the model weights, we first explored whether tuning to acoustic features was topographi-
cally organized. We extracted the voxels’ preferred frequency, spectral and temporal modulations by 
marginalizing over the other features. We retrieved the tonotopic organization of the auditory cortex, 
confirming our anatomical segmentation into functional areas (Elgueda et  al., 2019). The voxels’ 
preferred spectral and temporal modulations were also spatially organized (Figure 3F, Figure 3—
figure supplement 1 for all ferrets). To directly examine the differences of tuning between non-primary 

https://doi.org/10.7554/eLife.106628
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and primary areas, we computed the differences in weights between dPEG vs. MEG and VP vs. MEG, 
throughout the whole three-dimensional acoustic space (Figure 3G). The weights of voxels in non-
primary areas differed from those in primary areas in a complex manner, in contrast to the simple sepa-
ration of the acoustic space between foregrounds and backgrounds (Figure 3C). Compared to MEG, 
dPEG was preferentially tuned to high frequencies and higher spectral modulations (Figure 3G, top), 
while VP tuning was biased toward low frequencies and intermediate spectrotemporal modulations 
(Figure 3G, bottom).

We sought to assess whether these differences in tuning underlaid differences in background invari-
ance across regions. The model included a range of realistic temporal rates, and this axis was the most 
informative to discriminate foregrounds from backgrounds (Figure 3C). Thus, we first compared the 

Figure 3. Simple spectrotemporal tuning explains spatial organization of background invariance. (A) Presentation of the two-stage filter-bank, or 
spectrotemporal model. Cochleagrams (shown for an example foreground and background) are convolved through a bank of spectrotemporal 
modulation filters. (B) Energy of foregrounds and backgrounds in spectrotemporal modulation space, averaged across all frequency bins. (C) Average 
difference of energy between foregrounds and backgrounds in the full acoustic feature space (frequency * temporal modulation * spectral modulation). 
(D) We predicted time-averaged voxel responses using sound features derived from the spectrotemporal model presented in (A) with ridge regression. 
For each voxel, we thus obtain a set of weights for frequency and spectrotemporal modulation features, as well as cross-validated predicted responses 
to all sounds. (E) Average model weights for MEG. (F) Maps of preferred frequency, temporal and spectral modulation based on the fit model. To 
calculate the preferred value for each feature, we marginalized the weight matrix over the two other dimensions. (G) Average differences of weights 
between voxels of each non-primary (dPEG and VP) and primary (MEG) region. (H) Background invariance (left) and foreground invariance (right) for 
voxels tuned to low (< 8 Hz) or high (> 8 Hz) temporal modulation rates within each region of interest (ROI). Colored circles indicate median value across 
all voxels of each ROI, across animals. Gray dots represent median values across the voxels of each ROI for each animal. **: ‍p ≤ 0.01‍, ***: ‍p ≤ 0.001‍ for 
comparing the average background invariance across animals for voxels tuned to low vs. high rates, obtained by a permutation test of tuning within 
each animal.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Tuning to acoustic features for all ferrets.

https://doi.org/10.7554/eLife.106628
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invariance properties of voxels tuned to low or high temporal modulation rates. Within each region, 
voxels tuned to lower modulation rates displayed higher background invariance and lower foreground 
invariance than those tuned to higher rates (Figure 3H, ‍p < 0.004‍ within each region of interest (ROI) 
by permuting voxels’ tuning, 1000 times). However, within each tuning group, differences were still 
present across regions (primary vs. non-primary, ‍p = 0.001‍ within voxels tuned to high rates and within 
voxels tuned to low rates, see Figure 2—source data 1 for more detailed comparisons between 
regions), confirming that tuning to temporal modulation was not the only mechanism at play.

To take into account tuning across all dimensions, we then directly looked at the invariance of 
responses predicted from the spectrotemporal model. The model was able to predict voxel responses 
accurately (Figure  4—figure supplement 1) and recapitulated invariance properties across single 
voxels (Figure 4A–C and E–G). To verify how well the model could explain the observed invariance, 
we directly compared measured and predicted invariance across voxels for each animal, regard-
less of ROI (Figure  4C and G). Predictions explained a large fraction of the reliable variability in 
background invariance (mean noise-corrected correlation between measured and predicted invari-
ance: ‍r = 0.65 ± 0.007‍ standard error of the mean across animals) and foreground invariance (mean 

Figure 4. A model of auditory processing predicts hierarchical differences in ferret auditory cortex. Same as in Figure 2 using cross-validated 
predictions from the spectrotemporal model. (A) Predicted responses to mixtures and foregrounds in isolation for example voxels (left: primary; right: 
non-primary). Each dot represents the voxel’s predicted response to foregrounds (x-axis) and mixtures (y-axis). r indicates the value of the Pearson 
correlation. Maps above show predicted invariance values for the example voxel’s slice overlaid on anatomical images representing baseline cerebral 
blood volume (CBV). Example voxels are shown with white squares. (B) Maps of predicted background invariance, defined as the correlation between 
predicted responses to mixtures and foregrounds in isolation. (C) Binned scatter plot representing predicted vs. measured background invariance across 
voxels. Each line corresponds to the median across voxels for one animal, using 0.1 bins of measured invariance. (D) Predicted background invariance 
for each region of interest (ROI). Colored circles indicate median value across all voxels of each ROI, across animals. Gray dots represent median values 
across the voxels of each ROI, for each animal. The size of each dot is proportional to the number of voxels across which the median is done. The 
thicker line corresponds to example ferret L. *: ‍p ≤ 0.05‍; ***: ‍p ≤ 0.001‍ for comparing the average predicted background invariance across animals for 
pairs of ROIs, obtained by a permutation test of voxel ROI labels within each animal. (E–H) Same as (A–D) for predicted foreground invariance, that is, 
comparing predicted responses to mixtures and backgrounds in isolation.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Assessment and effect of model prediction accuracy across species.

Figure supplement 2. Predicting from a model fitted on isolated sounds only.

https://doi.org/10.7554/eLife.106628
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‍r = 0.43 ± 0.04‍). Predicted responses recapitulated the gradient from primary to non-primary areas for 
background invariance (Figure 4D; MEG < dPEG, ‍p = 0.022‍ ; dPEG < VP, ‍p = 0.001‍, permutation test) 
and foreground invariance (Figure 4H; MEG > dPEG: ‍p = 0.014‍, dPEG > VP: ‍p = 0.001‍, permutation 
test). Results were similar if the model was fit solely on isolated sounds, excluding mixtures from the 
training set (Figure 4—figure supplement 2).

Thus, hierarchical differences in invariance were largely explained by differences in tuning to 
frequency and spectrotemporal modulation between regions.

Species difference in background invariance
In ferrets, background invariance is hierarchically organized, and this organization can largely be 
explained by simple spectrotemporal tuning. Is it also the case for the humans’ hierarchical organiza-
tion of invariance? To test this, we compared background invariance previously obtained in humans 
with what we found in ferrets. We used a comparable published dataset (Kell and McDermott, 2019), 
in which combinations of foregrounds and backgrounds were presented to human subjects, in isola-
tion and in mixtures. The BOLD signal from the auditory cortex was acquired with fMRI (Figure 5A). 

Figure 5. The spectrotemporal model is a poor predictor of human background invariance. (A) We replicated our analyses with a dataset of a similar 
experiment measuring fMRI responses in human auditory cortex (Kell and McDermott, 2019). We compared responses in primary and non-primary 
auditory cortex, as delineated in Kell and McDermott, 2019. (B) Responses to mixtures and foregrounds in isolation for example voxels (left: primary; 
right: non-primary). Each dot represents the voxel’s response to foregrounds (x-axis) and mixtures (y-axis), averaged across repetitions. r indicates the 
value of the Pearson correlation. (C) Quantification of background invariance measured for each region of interest (ROI). Colored circles indicate median 
value across all voxels of each ROI, across subjects. Gray dots represent median values for each ROI and subject. The size of each dot is proportional to 
the number of (reliable) voxels across which the median is done. *:‍p ≤ 0.05‍; ***:‍p ≤ 0.001‍ for comparing the average predicted background invariance 
across subjects for pairs of ROIs, obtained by a permutation test of voxel ROI labels within each subject. (D) Binned scatter plot representing predicted 
vs measured background invariance across voxels. Each line corresponds to the median across voxels for one subject, using 0.1 bins of measured 
invariance. (D) Same as (C) for responses predicted from the spectrotemporal model. (F–I) Same as (B–E) for foreground invariance, that is, comparing 
predicted responses to mixtures and backgrounds in isolation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Spectrotemporal tuning properties for humans.

Figure supplement 2. Invariance metrics are not affected by differences in test–retest reliability across regions.

https://doi.org/10.7554/eLife.106628
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Applying our analyses to this dataset, we reproduced the results of Kell and McDermott, 2019 
and showed that background invariance was stronger in non-primary than in primary auditory 
cortex (Figure 5B and C, non-primary > primary, ‍p = 0.001‍, permutation test on the average across 
seven  subjects). In parallel, we found that foreground invariance decreased from primary to non-
primary areas (Figure 5F and G, non-primary < primary, ‍p = 0.001‍, permutation test). As in ferrets, 
foreground and background invariance values were similar in primary auditory cortex (‍p = 0.577‍, 
permutation test), but significantly differed in non-primary auditory cortex (‍p = 0.002‍, permutation 
test).

We next tested whether the spectrotemporal model could predict human voxel responses. The 
model performed similarly in humans and ferrets (Figure 5—figure supplement 1, Figure 4—figure 
supplement 1, ‍r = 0.42 ± 0.01‍ standard error of the mean across subjects, humans vs ferrets: ‍p = 0.0667‍, 
Wilcoxon rank-sum test). However, the model explained less of the measured background invariance 
in humans than in ferrets (Figure 5D, noise-corrected correlation between measured and predicted 
invariance: ‍r = 0.23 ± 0.04‍, ‍p = 0.0167‍ compared to ferrets, ‍p = 0.0156‍ compared to 0, Wilcoxon 
rank-sum test). While predicted background invariance differed significantly between primary and 
non-primary regions (Figure 5E, primary < non-primary, ‍p = 0.001‍, permutation test), the predicted 
difference was much smaller than observed. Furthermore, the model failed to predict the levels of 
foreground invariance in both primary and non-primary human auditory cortex (Figure  5H and I, 
noise-corrected correlation between measured and predicted invariance: ‍r = −0.17 ± 0.06‍, ‍p = 0.0167‍ 
compared to ferrets, ‍p = 0.0312‍ compared to 0, Wilcoxon rank-sum test). Thus, the spectrotemporal 
model performed worse in explaining the patterns of cortical invariance in humans than in ferrets. This 
suggests that additional higher-order mechanisms contribute to background segregation in humans.

Discussion
In this work, we investigated large-scale background and foreground invariance in auditory cortex 
using mixtures of natural sounds. In ferrets, we found a hierarchical gradient of invariance, where 
primary cortical areas encode both background and foreground sounds, while non-primary regions 
show increasing invariance to background sounds. A spectrotemporal filter-bank model could account 
for a large portion of the hierarchical changes in ferrets, suggesting that low-level tuning to frequency 
and modulation properties explain how stationary ‘background’ and more dynamic ‘foreground’ 
signals are segregated in hemodynamic signals. When we applied the same model to human data, we 
found that although humans also display a hierarchical increase in background invariance, the model 
failed to capture a substantial fraction of the observed effect in non-primary regions. This suggests 
that mechanisms beyond simple spectrotemporal tuning are at play in human auditory cortex.

Our interpretation of foreground and background neural representations relies on several meth-
odological choices that make the problem tractable but introduce specific limitations. First, this study 
defined foregrounds and backgrounds solely based on their acoustic stationarity, rather than percep-
tual judgments. This choice allowed us to isolate the contribution of acoustic factors in a simplified 
setting. Within this controlled framework, we show that acoustic features of foreground and back-
ground sounds drive their separation in the brain and the hierarchical extraction of foreground sound 
features. Second, we used blood volume as a proxy for local neuronal activity. Thus, our signal ignores 
any heterogeneity that might exist at the level of local neuronal populations. However, our main find-
ings are related to the large-scale organization of cortical responses and how they relate to those of 
humans. For this purpose, the functional spatial resolution of our signal, driven by the spatial resolu-
tion of neurovascular coupling, should be adapted. In addition, using hemodynamic signals provides 
a much better comparison with human fMRI data, where the same limitations are present.

Our results show that foregrounds and backgrounds are similarly represented in primary auditory 
cortex, both in ferrets and humans; at this stage, we found no significant bias toward foregrounds. This 
is in line with previous work in non-human animals, including birds, where neurons in various regions 
up to primary auditory cortex display a continuum of background-invariant and foreground-invariant 
responses (Ni et al., 2017; Bar-Yosef and Nelken, 2007; Schneider and Woolley, 2013). In ferrets, 
primary auditory cortex has been found to over-represent backgrounds in mixtures compared to fore-
grounds (Hamersky et al., 2025). In contrast, we found a slight, non-significant bias toward fore-
grounds in primary regions. This difference could be driven by a difference in timescales, as we looked 
at slower timescales in which adaptation might be more present, reducing the strength of background 
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encoding. In humans, we found a much smaller gap between background and foreground invariance 
in primary auditory cortex, which was not predicted by the spectrotemporal model. Additionally, more 
closely controlled experiments would be needed to confirm and understand this species difference.

The encoding of background in primary regions could play a functional role in background denoising 
at later stages of processing. Studies show complex synergetic interactions between target sounds 
and background noise in primary auditory cortex, even with simple stimuli. On the one hand, white 
noise can sharpen neurons’ tuning curves, enhancing tone discrimination (Christensen et al., 2019), 
and improve the representations of frequency sweeps (Malone et  al., 2017). On the other hand, 
background information can be more easily decoded from population responses when presented with 
a target sound than when in isolation (Malone et al., 2017). Computationally, background-related 
information could facilitate further extraction of foregrounds. For instance, in a convolutional neural 
network trained to visually recognize digits in different types of noise, when local feedback is imple-
mented, early layers encode noise properties, while later layers represent clean signals (Lindsay et al., 
2022). Similarly, primary auditory areas could be recruited to maintain background representations, 
enabling downstream cortical regions to use these representations to specifically suppress back-
ground information and enhance foreground representations (Hicks and McDermott, 2024).

We found that the main difference regarding background invariance between humans and ferrets 
was in how well invariance could be explained by a model based on low-level acoustic features. There 
could be multiple reasons for this difference.

First, methodological differences could contribute to the observed species difference. In our ferret 
experiment, sounds were presented continuously and in longer segments, an experimental design 
made possible by fUSI but impractical for fMRI due to scanner noise. However, this is unlikely to 
have a major impact, as our analyses focused on the sustained response component, similar to the 
fMRI experiment. Furthermore, while fUSI and fMRI both provide hemodynamic signals, they differ in 
their physiological basis (CBV vs. BOLD). Studies comparing CBV-weighted and BOLD fMRI indicate 
that CBV provides a more spatially and temporally precise signal than BOLD (Silva et  al., 2007), 
improving localization of neural activity. In addition, fMRI has a worse spatial resolution than fUSI 
(here, 2 vs. 0.1 mm voxels). However, this difference in resolution compensates for the difference 
in brain size between humans and ferrets. In our previous work, we showed that a large fraction of 
cortical responses to natural sounds could be predicted from one species to the other using these 
methods (Landemard et al., 2021). Last, to minimize potential biases, we applied the same criteria for 
voxel inclusion and noise-correction procedures across datasets. Thus, while minor differences in data 
quality and experimental protocols exist, they are unlikely to fully account for the species differences 
we observed.

Second, ferret and human paradigms differed by their control of attention. Ferrets were passively 
listening to the sounds while human participants had to perform a simple loudness-based task to ensure 
attention to the sounds. Even though specific auditory attention is not necessary for the gradient in 
invariance (Kell and McDermott, 2019), the task ensured that subjects remained engaged, while 
this was not the case for ferrets. General engagement might still affect auditory representations via 
top-down processes (Elhilali et al., 2009; Saderi et al., 2021; Schwartz and David, 2018). Thus, 
we cannot exclude that both species possess a similar feedforward acoustic analysis (well modeled 
by simple spectrotemporal filters) as well as more context-driven networks in non-primary auditory 
cortex, which were more strongly engaged in humans than in ferrets due to experimental procedures. 
In addition, most of the sounds included in our study likely have more relevance for humans compared 
to ferrets (see Figure 1—source data 1). Despite including ferret vocalizations and environmental 
sounds that are more ecologically relevant for ferrets, it is not clear whether ferrets would behaviorally 
categorize foregrounds and backgrounds as humans do. Examining how ferrets naturally orient or 
respond to foreground and background sounds under more ecologically valid conditions, potentially 
with free exploration or spontaneous listening paradigms, could help address this issue.

Third, human non-primary regions could host higher-order computations that cannot be predicted 
by simple acoustic features and are not present in ferrets. Human and non-human primates have 
a complex functional architecture in the auditory belt and parabelt regions (Hackett, 2010), likely 
supporting elaborate computations. These computations might be related to conspecific calls and 
required for advanced vocal communication. In particular, the unique importance of speech for 
humans has shaped auditory circuits throughout the brain. Neural circuits in human non-primary 
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auditory cortex encode higher-order acoustic features, such as phonemic patterns, which might help 
to segregate meaningful content from background noise (Norman-Haignere et al., 2015; Mesgarani 
et  al., 2014). Last, other processes might critically shape background-invariant representations in 
humans, such as dynamic adaptation to backgrounds that could be faster in humans than in ferrets 
(Khalighinejad et al., 2019).

The divergence in background invariance mechanisms between humans and ferrets may reflect 
differences in the depth and complexity of their auditory cortical hierarchies. Our previous work 
(Landemard et al., 2021) showed that large-scale representations of natural sounds are not clearly 
distinct between primary and non-primary auditory regions in the ferret cortex. However, Sabat et al., 
2025 found a hierarchical organization of temporal integration in ferrets, reminiscent of humans 
(Norman-Haignere et al., 2022). In the present study, we found a gradient of background invariance 
that was similarly structured as in humans, yet relying on different mechanisms. Altogether, this raises a 
fundamental question: Does the ferret auditory cortex correspond to the different early auditory fields 
in the human core regions, with deeper hierarchical stages simply being absent? Or do these differ-
ences reflect evolutionary divergence, with partly shared computational principles and homologous 
hierarchy, but additional cortical modules in humans, enabling for instance more sophisticated back-
ground segregation or dedicated speech and music processing (Norman-Haignere and McDermott, 
2018)? Addressing these questions will require a finer characterization of cross-species homologies, 
leveraging high-resolution functional imaging and electrophysiological recordings to uncover whether 
hierarchical transformations in auditory processing follow a conserved or species-specific trajectory.

Materials and methods
Animal preparation
Experiments were performed in three female ferrets (B, L, and R), across one or both hemispheres (left 
for all ferrets + right for R). Experiments were approved by the French Ministry of Agriculture (protocol 
authorization: 21022) and strictly comply with the European directives on the protection of animals 
used for scientific purposes (2010/63/EU). Animal preparation and fUS imaging were performed as 
in Bimbard et al., 2018. Briefly, a metal headpost was surgically implanted on the skull under anes-
thesia. After recovery from surgery, a craniotomy was performed over auditory cortex and then sealed 
with an ultrasound-transparent polymethylpentene (TPX) cover, embedded in an implant of dental 
cement. Animals could then recover for 1 week, with unrestricted access to food, water, and environ-
mental enrichment.

fUSI data were collected using an Iconeus One system (Iconeus, Paris, France) and a linear IcoPrime 
ultrasonic probe (15 MHz central frequency, 70% bandwidth, 0.110 mm pitch, 128 elements). Complex 
frames are acquired at 500 Hz. To remove tissue motion, a spatio-temporal clutter filter is applied using 
sets of 200 contiguous frames (Demené et al., 2015). The power Doppler signal is then obtained by 
taking the mean power over these 200 frames, thus getting an effective 2.5 Hz sampling rate. The 
power Doppler signal is approximately proportional to CBV (Macé et al., 2011).

In each recording day, we imaged activity in response to the entire sound set sequentially in two 
coronal slices. The probe was angled at  ~30–35° relative to the vertical axis in order for it to be 
roughly parallel to the surface of the brain. Through several recording sessions, we covered primary 
to tertiary regions of auditory cortex. Coronal slices were 14 mm wide and spaced 0.4 mm apart. The 
resolution of each voxel was 0.1 * 0.1 * ~0.4 mm (the latter dimension, called elevation, is dependent 
on the depth of the voxel).

Sound presentation
Ferrets were awake, head-fixed, and passively listening to different streams of natural sounds: fore-
grounds in isolation, backgrounds in isolation, or mixtures of both.

Sound stimuli
To choose foreground vs. background sounds, we used a previously established method based on 
sounds’ stationarity (Kell and McDermott, 2019; McWalter and McDermott, 2019). We reproduce 
here a description of this algorithm from McWalter and McDermott, 2019.

https://doi.org/10.7554/eLife.106628
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To quantify the stationarity of real-world sound recordings, we computed the standard deviation of 
the texture statistics measured across successive segments of a signal for a variety of segment lengths 
(0.125, 0.25, 0.5, 1, and 2 s). For each segment length, we performed the following steps. First, we 
divided a signal into adjacent segments of the specified duration and measured the statistics in each 
segment. Second, we computed the standard deviation across the segments. Third, we averaged the 
standard deviation across statistics within each statistic class (envelope mean, envelope coefficient of 
variation, envelope skewness, envelope correlations, modulation power, and modulation correlations). 
Fourth, we normalized the average standard deviation for a class by its median value across sounds (to 
put the statistic classes on comparable scales, and to compensate for any differences between statis-
tics in intrinsic variability). Fifth, we averaged the normalized values across statistics classes. Sixth, we 
averaged the resulting measure for the five segment lengths to yield a single measure of variability 
for each real-world sound recording. Finally, we took the negative logarithm of this quantity, yielding 
the stationarity measure.

We then defined arbitrary thresholds to define foregrounds and backgrounds, so that both groups 
were well separated in the stationarity axis (Figure 1A). Sounds were taken from Kell and McDer-
mott, 2019 and Norman-Haignere et al., 2015 or downloaded from online resources (see Figure 
1—source data 1 for the full list of sounds).

Sound design and presentation
Foreground and background streams were composed of sequences of six different sound snippets 
of 9.6 s duration, repeated twice, so that the same snippet would occur at two distinct times of the 
stream (Figure 1B). For each condition, six such streams were created by drawing randomly from a 
pool of 36 individual snippets. Foreground and background streams were presented in isolation and 
in mixtures. In mixtures, both streams were overlaid with a delay of 4.8 s so that a change, either of 
foreground or background, occurred every 4.8 s. Each foreground stream was presented with two 
different background streams, and vice versa. In this design, each foreground snippet was presented 
with four different backgrounds, and in two history contexts.

Recording sessions were composed of three ‘runs’ in which two foreground streams and two back-
ground streams were presented in all possible combinations, each preceded by 20 s of silence to 
establish baseline activity. These runs were presented twice. The order of sounds within each run was 
fixed, but the relative order of runs was randomized for each recording session. A list of sounds used 
is available in Figure 1—source data 1.

Sounds were presented at 65 dB SPL. In mixtures, foregrounds and backgrounds were presented 
with a similar gain (0 dB SNR). Each snippet was normalized by its root mean square prior to integra-
tion in the sequence.

Data analysis
Denoising and normalization
To correct for large movements of the brain or deformations throughout the session, we used NoRM-
corre, a non-rigid motion correction algorithm developed for two-photon imaging (Pnevmatikakis 
and Giovannucci, 2017).

Data were then denoised with canonical correlation analysis (CCA) to remove components shared 
between regions inside and outside of the brain, as described in Landemard et al., 2021 with the 
difference that data was not recentered beforehand.

We normalized the signal in each voxel by subtracting and then dividing by average baseline 
activity. Baseline activity was estimated during 20  s segments of silence occurring every ~20 min, 
before each run. The obtained value was called ‍∆CBV ‍ and expressed in percent changes in CBV.

Combining different recordings
The whole dataset consisted of multiple slices, each recorded in a different recording session. Slices to 
image on a given day were chosen at random to avoid any systematic bias. Responses were consistent 
across neighboring slices recorded on different sessions, as shown by the maps of average responses 
(Figure 2A, Figure 2—figure supplement 2) where any spatial continuity across different slices must 
reflect a true underlying signal in the absence of common noise.

https://doi.org/10.7554/eLife.106628
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Cross-correlation matrices
For each voxel, we computed the Pearson correlation between the vectors of responses to sounds of 
a given category (either foregrounds, backgrounds, or mixtures) for two repeats, and with different 
lags. We then averaged these matrices across all voxels to obtain the cross-correlation matrices shown 
in Figure  1E. In the rest of the analyses, we use time-averaged responses (2.4–4.8  s after sound 
change). This range was chosen as the biggest window we could use (to improve SNR) while mini-
mizing contamination from the previous or next sound (indeed, blood volume typically lags neuronal 
activity by 1.5–2 s). In Figure 2—figure supplement 1, we show similar cross-correlation matrices 
between responses to mixtures and either foregrounds or backgrounds, to confirm that background 
and foreground invariance are also stable in time.

We computed the voxelwise test–retest correlation by correlating the vector of time-averaged 
responses to sounds across two repeats, for each category (Figure 2B). We then focused on voxels 
with a test–retest correlation above 0.3 in at least one category (foregrounds, backgrounds, or 
mixtures) and above 0 in all categories (which ensures that the noise correction can be applied).

Voxel-wise correlations
For each voxel, we defined background invariance (resp. foreground invariance) as the noise-corrected 
correlation between mixtures and corresponding foregrounds (resp. backgrounds), across sounds. We 
excluded the first and last sound snippet of each block, in which either foreground or background was 
missing in half of the snippet (see design in Figure 1B).

We used a noise-corrected version of Pearson correlation to take into account differences in test-
retest reliability across voxels. Specifically, the noise-corrected correlation should provide an estimate 
of the correlation we would measure in the limit of infinite data (Kell and McDermott, 2019). The 
noise-corrected correlation values were obtained using the following equation:

	﻿‍
rnoise−corrected(x, y) = 0.5 ∗ (corr(x1, y1) + corr(x2, y2))√

corr(x1, x2) ∗ corr(y1, y2) ‍
 
�

(1)

where ‍x1‍, ‍x2‍ (resp. ‍y1‍, ‍y2‍) are two repetitions of ‍x‍ (resp. ‍y‍).
After this correction, the differences we observed between brain regions were present regardless 

of voxels’ test–retest reliability, or noise level (Figure 5—figure supplement 1). Thus, potential differ-
ences in vasculature across regions are unlikely to affect our results.

ROI analyses
We manually defined ROIs by combining anatomical markers and sound responsiveness. We found 
CBV responses to be organized in distinct patches in auditory cortex (Figure 2A). Using anatomical 
landmarks (Radtke-Schuller, 2018), we defined boundaries between the different functional regions 
from primary (MEG, medial ectosylvian gyrus) to secondary (dPEG, dorsal ectosylvian gyrus) and 
tertiary (VP, ventral posterior auditory field).

Map display
For surface views, we averaged values over the depth of the slice. The transparency (alpha value) 
of each surface bin was determined by the number of voxels included in the average. Thus, white 
sections in maps correspond to regions in which no reliable voxels were recorded. All maps in the 
main figures show the left auditory cortex of ferret L. Maps for other ferrets are shown in Figure 2—
figure supplement 2.

Cochlear and spectrotemporal modulation energy estimation
Spectrotemporal modulation energy was calculated by measuring the strength of modulations in 
filtered cochleagrams (which highlight modulations at a particular temporal rate and/or spectral scale) 
(Chi et al., 2005). Specifically, modulation strength was computed as the standard deviation across 
time of each frequency channel of the filtered cochleagram, using the same 400 ms windows as for 
fUSI data. The bank of spectrotemporal filters used was the same as in Landemard et  al., 2021 
(scales: 0, 0.25, 0.5, 1, 2, 4, 8 cyc/oct; rates: 0.5, 1, 2, 4, 8, 16, 32, 64 Hz). Modulation energy was then 
averaged in 10 frequency bins (centers: 27, 50, 91, 167, 307, 1032, 3470 Hz).

https://doi.org/10.7554/eLife.106628
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We then averaged modulation energy using the same temporal window as for fUSI sound-evoked 
data (2.4–4.8 s after sound change), after shifting it by -0.8 s to account for hemodynamic delays. 
We thus obtained a feature matrix (frequency * temporal modulation * spectral modulation) for each 
sound segment.

We fit a linear model using ridge regression to predict voxel responses from sound features. The 
feature matrix was z-scored as part of the regression. We used sixfold cross-validation: we split the 
sound set in six folds (keeping blocks of temporally adjacent sounds in the same fold). One fold 
was left out and the others were used to fit the weights. The lambda hyperparameter was defined 
using an inner cross-validation loop. The fitted weights were used to predict responses to left-out 
sounds. We thus built a matrix of cross-validated predicted responses and applied the same analyses 
as were applied to the true data (Figure 4). Prediction accuracy was defined as the Pearson correlation 
between measured and cross-validated predicted responses (Figure 4—figure supplement 1).

To examine the fitted weights, we averaged the weights obtained in all cross-validation folds and 
multiplied them by the standard deviation of the feature matrix. To extract voxels’ preferred value 
over one feature axis (e.g. frequency), we first averaged the weight matrix along the other feature 
axes (e.g. spectral and temporal modulation) and used the value of the feature for which the maximum 
was reached. For plotting the tuning maps and the analysis of voxels tuned to low or high rates, we 
only considered voxels with average prediction accuracy in left-out folds higher than 0.3.

Human analyses
To directly compare our results with those obtained in humans, we used the dataset from Kell and 
McDermott, 2019. Specifically, we used data from Experiment 1 which provided the closest match 
to our experimental conditions, and only considered the last seven  subjects that heard both the 
foregrounds and the backgrounds in isolation, in addition to the mixtures. In brief, subjects were 
presented with 30 natural foregrounds, 30 natural backgrounds, and mixtures of both. Foregrounds 
and backgrounds were determined based on a criterion of stationarity, similar to our study. For each 
subject, backgrounds and foregrounds were matched at random (so that the mixtures were different 
for each subject). Each sound was presented four times. The SNR (ratio of power of foreground vs. 
background sound) was -6 dB (vs. 0 dB in our case). To encourage attention to each stimulus, partic-
ipants performed a sound intensity discrimination task on the stimuli. We used a similar criterion for 
voxel inclusion and conducted the same analyses as for ferrets. Ridge regression was performed 
using 10-fold cross-validation. For each subject, (foreground, background, mixture) triplets were kept 
together in the same fold.

Statistical testing
To test the difference between background and foreground invariance for each ROI, we ran a permu-
tation test. We built the null distribution by randomly permuting foreground and background labels 
for each sound and computing invariance for each voxel, 1000 times. We then compared the median 
difference between background and foreground invariance across voxels, to the values obtained in 
this null distribution and used the proportion of null values higher than the observed difference to 
obtain our p-value.

To compute statistical significance between ROIs, we performed a permutation test. We repeated 
the following procedure for each pair of ROI (MEG vs. dPEG, dPEG vs. VP). We built a null distribution 
by shuffling ROI labels for voxels belonging to the pair of ROIs within each animal, 1000 times. We 
then compared the observed average across animals of the difference of median correlations between 
ROIs across animals to this null distribution and used the proportion of null values more extreme than 
the observed difference to obtain our p-value. We also computed a p-value for each ferret separately 
(see Figure 2—source data 1). Finally. we ran this test by first focusing on voxels tuned to high or low 
rates within each ROI.

To test for differences in invariance between voxels tuned to low (< 8 Hz) or high (> 8 Hz) temporal 
modulation rates within each ROI, we used a similar permutation test in which we compared the 
difference of invariance between voxels tuned to low vs. high rates to a null distribution in which we 
shuffled the tuning values across voxels within each animal and ROI.

To compare results between ferrets and humans, we performed Wilcoxon rank-sum tests between 
ferrets and human subjects for different metrics: median prediction accuracy across voxels, median 

https://doi.org/10.7554/eLife.106628


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Landemard et al. eLife 2025;14:RP106628. DOI: https://​doi.​org/​10.​7554/​eLife.​106628 � 15 of 18

noise-corrected correlation between measured and predicted invariance. For the latter, we also tested 
the difference to zero using a sign-rank test.
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The following dataset was generated:
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