
Novel precision biomarker models
applied to Alzheimer’s disease

Isaac Llorente Saguer

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Med Phys and Biomedical Eng

University College London

10 September 2025



2

I, Isaac Llorente Saguer, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this

has been indicated in the work.



Abstract

Biomarkers are essential for diagnosing, monitoring, and developing treatments

for Alzheimer’s disease (AD). However, conventional biomarkers for tau pathology

(PET), brain atrophy (MRI), and amyloid-beta (Aβ) peptides often rely on simple,

pre-defined ratios that limit precision, stability, and statistical power, hindering clinical

trial efficiency and research progress.

This thesis addresses these challenges by introducing and validating BioDisCVR,

a novel, modality-agnostic framework for the data-driven discovery of optimised

biomarkers. The work first establishes the methodological fragility of the gold-

standard Standardised Uptake Value Ratio (SUVR) in tau PET, exposing the insta-

bility of commonly used reference regions and the detrimental effects of certain

processing techniques. It further reveals the suboptimal performance of traditional

volumetric measures for tracking longitudinal change.

One central innovation is the Composite Value Ratio (CVR), a data-driven

biomarker construct where both numerator and denominator are optimised to max-

imise statistical power. Applied to tau PET and structural MRI, CVR demonstrates

transformative improvements over established methods, with the potential to re-

duce clinical trial sample sizes by over 79%, and improve detection of pathological

changes. The framework is extended to proteomics with a weighted CVR (wCVR),

providing novel insights into the pathogenic contributions of different Aβ peptides.

This culminates in theta, a parameter-free multidimensional ratio that achieved

outstanding classification of familial AD mutations (AUC > 0.99), dramatically out-

performing all conventional peptide ratios.

Overall, this thesis delivers a new paradigm for biomarker discovery. It provides

a validated framework and a suite of statistically superior biomarkers to accelerate

clinical trials, enhance disease monitoring, and advance the fundamental under-
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standing of Alzheimer’s disease.



Impact Statement

The findings and contributions of this PhD thesis could have significant implications

across academia, industry, and clinical practice:

1. Academic Impact: This thesis provides the field with three distinct contribu-

tions. First, it exposes fundamental vulnerabilities in established neuroimaging

methods, demonstrating the instability of conventional SUVR reference regions

and the detrimental effects of certain partial-volume correction techniques in

tau PET. Second, it delivers the BioDisCVR framework, a novel, open-source

toolkit for the data-driven discovery of optimised biomarkers. Finally, it in-

troduces theta, a parameter-free multidimensional ratio that generalises the

ratio concept to high-dimensional data. Together, these contributions provide

researchers with not only superior biomarkers (CVR, wCVR, theta) but also

the foundational tools and critical insights needed to improve the rigour and

reproducibility of neurodegeneration research across modalities.

2. Biopharmaceutical and Medical Imaging Industry: These enhanced

biomarkers could be pivotal for biopharmaceutical companies and medical

imaging firms, especially in optimising clinical trials for neurodegenerative

diseases. By reducing the sample size estimates required (by over 79% as

demonstrated in tau PET trials), they can significantly lower costs and acceler-

ate timelines for drug development, enabling faster progression of promising

therapies to market. Alternatively, for studies where larger samples are neces-

sary, the increased sensitivity of these biomarkers enables more efficient effect

detection, benefiting the development and assessment of new treatments. Fur-

thermore, medical imaging companies could integrate these novel biomarker

methodologies into their software platforms, offering advanced analytical tools

for researchers and clinicians.
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3. Clinical Applications: While the tools developed are primarily for research,

they chart a clear path toward future clinical translation. The superior stability

and precision of CVR for tracking longitudinal change in both MRI and PET

offer the potential for more reliable monitoring of individual disease progression

than current clinical measures. For diagnostics, the theta biomarker’s ability

to perfectly distinguish pathogenic mutations from controls in iPSC models

represents a breakthrough in summarising complex molecular data, providing

a powerful new method for developing highly accurate fluid-based diagnostic

tests that go beyond two measures.
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Chapter 1

PhD Summary

1.1 Introduction

With a growing global population and improvements in addressing other health

challenges, Alzheimer’s Disease (AD) continues to affect an increasing number of

individuals each year [1, 2], with enormous physical, emotional, social and economic

impact. Without a known cure, understanding biological changes due to AD can be

key to advancing in various aspects such as a better diagnosis, a better disease

progression model, and eventually, more and better disease-modifying treatments

and a cure. To change the trajectory of the disease, we must first understand its

path. And for this, we need in vivo biomarkers [3, 4, 5].

Two main characteristics of AD are the accumulation of proteins amyloid-beta

peptides (plaques) and hyperphosphorylated tau (tangles). These pathological

proteins start to aggregate long before the onset of noticeable cognitive symptoms,

offering a potential window for early detection and intervention. Recently, new

guidelines for the diagnosis of AD were published, where imaging-based biomarkers

(targeting amyloid plaques and tau tangles) are used to detect and define the

disease, before cognitive symptoms manifest [4], highlighting the importance of such

biomarkers. Later in the neurodegenerative cascade of events, brain atrophy, another

key feature of AD, can be effectively quantified using structural magnetic resonance

imaging (MRI) techniques (e.g., the hippocampus shrinks, and the ventricles expand).

This non-invasive imaging modality provides valuable insights into the progressive

loss of brain volume, aiding in diagnosis confirmation and disease monitoring.
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1.2 Statement of problem

The development of robust and precise biomarkers for Alzheimer’s disease is cru-

cial for early diagnosis, effective disease monitoring, and the evaluation of novel

therapies. However, identifying biomarkers that accurately track neurodegenerative

progression in AD can be challenging due to various factors, such as population

heterogeneity, measurement noise, and biological changes unrelated to the disease.

These challenges are compounded by limitations in current methodologies, where,

for example, biologically relevant brain regions may exhibit low signal-to-noise ratios,

making them impractical for reliable disease monitoring and delaying progress in the

fight against AD. In contrast, less commonly studied but methodologically stable re-

gions (e.g., easier to segment, or with a lower within-subject test-retest coefficient of

variance) may offer untapped potential for improved disease progression modelling.

These obstacles listed above can impede timely diagnosis, treatment monitoring,

and therapeutic innovation, thereby complicating patient management and stalling

clinical advancements.

This thesis aims to overcome these barriers by first, identifying limitations of

current methods, and second, by proposing new methods and biomarkers to improve

disease progression modelling. The focus is specifically on the following hallmark

pathologies of AD: neurofibrillary tau tangles (using positron emission tomography),

atrophy (using magnetic resonance imaging), and amyloid-beta peptide signatures

(relative proportion of peptides, as measured from lab-grown cell cultures).

1.3 Thesis contributions

The general aim of this thesis is to leverage available data to obtain more precise

biomarkers of AD. Two fields are explored: imaging (tau PET and structural MRI),

and amyloid-beta peptide counts of lab-grown cell cultures.

These are the contributions:

1. Chapter 3 - part 1 I identified and quantified flaws in the current method for

PET signal transformation, the standardised uptake value ratio (SUVR): two

reference regions (used in multiple studies) are surprisingly not correlated.

Various approaches are proposed to improve it: the usage of multiple ref-

erence regions, and a call for a data-driven search of composite reference
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regions (executed in Chapter 4). This was presented at the New Horizons in

Alzheimer’s Disease conference in Leuven, Belgium, in October 2021.

2. Chapter 3 - part 2 Common reference regions used in tau PET were assessed,

highlighting the superiority of one of them (average of whole cerebellum,

brainstem, and eroded subcortical white matter). The worst-performing one,

the inferior cerebellum grey matter, is still widely used. Additionally, the metrics

highlighted the poor performance of partial-volume-corrected PET data. This

work was presented at the Alzheimer’s Association International Conference

in 2024.

3. Chapter 4 I hypothesised that a better biomarker could come from a data-

driven evaluation of brain regions, and then developed a method to explore

the space of ratios of composite brain regions and found a solution that

outperformed the current literature methods. I called the biomarker a composite

value ratio (CVR), and the framework for biomarker discovery BioDisCVR. This

work was presented at the Alzheimer’s Association International Conference

in 2022. Upon obtaining new data for validation, this was later improved and

accepted for publication in the journal Brain Communications.

4. Chapter 5 I applied the BioDisCVR framework with the same conceptual

biomarker (CVR) to regional volumes from MRI T1 scans, improving the longi-

tudinal precision, cognitive group separation (disease signal) and statistical

power compared to volumetric regions of interest commonly used. This work

was presented at the Alzheimer’s Association International Conference in 2023,

and an extension of this work is currently under revision at the journal Brain

Communications (27 February 2025).

5. Chapter 6 BioDisCVR was applied to the quantification of amyloid-beta pep-

tides from iPSC-derived neurons. Data were from controls (cognitively unim-

paired individuals without any family history of early-onset Alzheimer’s disease)

and individuals with PSEN1 mutations associated with early-onset Alzheimer’s

disease. Allowing the algorithm to optimise the weights of the different avail-

able peptides allowed a further analysis of peptide importance and roles.

Results improved on the current state-of-the-art in classification (controls ver-
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sus mutation-carriers) and regression with age-at-onset. This work is available

at bioRxiv.

6. Chapter 7 The initial analysis of reference regions in PET scans led to a math-

ematical model that allowed the multidimensional equivalent of the common,

simple, ratio-based biomarker. I further expanded this and applied it to amyloid-

beta peptides, obtaining a perfect classification of pathogenic mutations versus

controls. This work was presented at the Alzheimer’s Association International

Conference in 2024. A manuscript showcasing this novel biomarker is available

at medRxiv.



Chapter 2

Background

This chapter aims to provide a comprehensive overview of Alzheimer’s disease

(AD) and the indispensable role of biomarkers in understanding, diagnosing, and

ultimately treating this complex neurodegenerative disorder. Beginning with a broad

perspective on the global health crisis posed by AD and its historical understanding,

the chapter progressively narrows its focus to the biological hallmarks of the disease.

It then delves into the multifaceted utility of biomarkers, with particular emphasis on

their crucial role in powering the design and interpretation of clinical trials. Detailed

discussions on major biomarker modalities, including neuroimaging (PET, MRI)

and fluid-based assays (cerebrospinal fluid, blood, and neuronal cell cultures), are

presented, establishing the context for the novel contributions of this thesis.

2.1 The Alzheimer’s Disease “Pandemic”: A Growing

Health Crisis

Global impact. Alzheimer’s disease is a devastating neurodegenerative disease

well-known for its hallmark symptoms such as memory loss, eventually dementia,

and ultimately leading to profound disability and death due to body functions shutting

down. However, the impact of AD extends far beyond the individuals directly afflicted.

The disease casts a long shadow on countless families, friends and caregivers

who endure the agonising experience of witnessing a loved one slowly lose their

cognitive abilities and sense of self. This profound human toll is compounded by the

immense economic burden AD places on families and healthcare systems globally.

Since dementia is the most visible part of the disease, it is easier to find global

metrics on dementia. It is worth noting that although there are multiple causes
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of dementia (e.g., vascular, frontotemporal and Lewy body dementia), AD is the

most common one, accounting for 60-70% of cases [6, 2]. A 2024 report by the

Alzheimer’s Society [7] estimated that 982,000 people were living with dementia in

the UK, forecasting 1.4 million in 2040. Similar alarming figures were estimated by

the World Health Organization, where in 2023 they estimated that more than 55

million people had dementia worldwide [6]. These escalating figures threaten to

overwhelm healthcare and social infrastructures globally, underscoring the urgent

need for effective solutions.

Historical perspective. For much of history, only the terminal stage of dementia

was recognised, and even then poorly understood. It was often labelled senile

dementia, as if advanced age itself inevitably entailed profound cognitive decline.

References to cognitive impairment appear sporadically in early medical and cultural

records: the Yellow Emperor’s Inner Classic (Huangdi Neijing, estimated 475–221

BCE) describes a patient becoming forgetful and “losing their mind” [8]; Greek

and Roman sources (8th century BCE–3rd century CE) contain rare mentions

of mild cognitive impairment [9]; and an Ancient Egyptian papyrus from around

1500 BCE describes a “heavy heart” that “remembers not yesterday” [10]. Modern

research has since demonstrated that dementia is not an inevitable consequence of

ageing—although age remains the principal risk factor [11]—but rather the result of

underlying pathologies, the most common being Alzheimer’s disease [6]. The term

Alzheimer’s disease was introduced by psychiatrist Emil Kraepelin, based on Alois

Alzheimer’s 1907 report [12] describing Auguste Deter, a 51-year-old woman with

progressive cognitive decline.

AD is broadly classified into two main groups: Early-Onset Alzheimer’s Dis-

ease (EOAD, representing fewer than 10% of cases [13]), and sporadic Late-Onset

Alzheimer’s Disease (LOAD). The general rule of thumb is that LOAD occurs after

65 years [13]. A small subset of EOAD cases are known to be caused by muta-

tions in the APP, PSEN1, and PSEN2 genes, with the outcome being early onset

familial Alzheimer’s disease (EOFAD); this is reported to occur in fewer than 1.5%

of total cases of AD [13]. There is an ongoing study in Colombia that traced back

EOAD families (with a specific mutation related to AD) to the time of the Spanish

Conquistadores who began colonising Colombia during the early 16th century [14].
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2.2 Introduction to biomarkers for Alzheimer’s disease

Below the tip of the iceberg: biological measurable manifestations before

dementia onset. Fast forward to today (early 2025), with the advance of biomarkers

(informative measures or metrics on the current state of an individual), we can now

recognise AD years before cognitive decline is first perceived. This is thanks to

the understanding of key elements in AD: brain atrophy (loss of neuronal tissue),

and the pathological accumulation of amyloid-beta and tau proteins in the brain.

Initially, they were detected by performing a histopathological examination of the

brain, post-mortem. Nowadays, we have different ways to detect these, in vivo [3].

As a matter of fact, in 2024 the Alzheimer’s Association Workgroup proposed new

guidelines for an early diagnosis of AD [4], thanks to using biomarkers, years before

cognitive symptoms arise.

The Crucial Role of Biomarkers in Alzheimer’s Disease Research and Clin-

ical Practice. Biomarkers have become indispensable tools in the fight against

Alzheimer’s disease, serving as objective and quantifiable measures that reflect

underlying biological processes related to disease pathology [15, 4]. In the context

of AD, biomarkers play a multifaceted role, spanning from fundamental research to

clinical applications [15, 16, 4]. They are essential for:

• Early and Accurate Diagnosis: Distinguishing AD from other forms of dementia

and identifying individuals in the early, pre-symptomatic or prodromal stages,

where therapeutic interventions may be most effective.

• Monitoring Disease Progression: Tracking the trajectory of AD pathology over

time, providing crucial insights into disease dynamics and heterogeneity.

• Predicting Clinical Outcomes: Identifying individuals at higher risk of devel-

oping cognitive symptoms due to AD or progressing more rapidly, enabling

personalised risk assessment and management strategies.

• Evaluating Therapeutic Efficacy: Biomarkers can serve as surrogate endpoints

in clinical trials, enabling objective assessment of how novel therapies influence

underlying disease processes. On a personal note – paraphrasing Mercè

Boada’s reflections at EuroPAD 2025 – I believe this is valuable, but not
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sufficient; ultimately, we must demonstrate meaningful, tangible improvements

in patients’ quality of life.

• Advancing Pathophysiological Understanding: By revealing molecular and

cellular changes, biomarkers provide invaluable insights into the complex

mechanisms driving AD, guiding the development of targeted therapeutic

strategies.

• Clinical Trial Design: In clinical trials, biomarkers are essential for screening

and enrichment (selecting cohorts based on biomarker positivity), stratification

(e.g., by APOE4 status), and safety monitoring (e.g., detecting amyloid-related

imaging abnormalities, ARIA). Regulatory qualification of biomarkers can

depend on a precisely defined context of use.

Quoting Jack Jr. et al. [4], ”AD is defined by its unique neuropathologic findings;

therefore, detection of AD neuropathologic change by biomarkers is equivalent

to diagnosing the disease”. The pursuit of robust and reliable biomarkers is thus

central to accelerating progress across the entire spectrum of AD research, from

basic discovery science to the development and implementation of effective clinical

interventions.

Heterogeneity and Subtyping. AD is not a homogeneous disease among individu-

als; it exhibits considerable biological and clinical heterogeneity [17, 18, 19, 20, 21,

22]. Biomarkers reveal distinct subtypes (e.g., limbic-predominant, hippocampal-

sparing) with varying progression rates and clinical presentations. Data-driven

computational models, such as event-based models [23] (EBMs) and Subtype and

Stage Inference [17] (SuStaIn), are increasingly used to parse this subtype and

stage structure, integrating multimodal biomarker data to better characterise indi-

vidual disease trajectories. This heterogeneity underscores the need for precise

biomarkers that can accurately capture these diverse profiles.

Biomarkers for Alzheimer’s disease Alzheimer’s disease has multiple identified

characteristics, as we have stated: accumulation of amyloid-beta (plaques), tau

(tangles), atrophy (brain tissue loss)... and this is gradual. Imaging and fluid

biomarkers enable measurement of these as they accumulate over time. At the far

end of the biomarkers, cognitive tests allow for the assessment of different cognitive
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abilities in individuals, which become affected after years of the neurodegenerative

process. On the early side of the process, before amyloid plaques are detectable, we

can observe different amyloid-beta peptides (chains of amino acids) in various fluids

(CSF, blood, and cell-based cultures in vitro). All of these are windows that allow us

to examine and assess the state of an individual, and have a better understanding

of the mechanisms and chain of events going on as the disease advances.

2.3 Neuroimaging biomarkers: Visualising Brain Changes

There are various technologies that enable us to peek inside the brain without

needing to open it up. A characteristic property of neuroimaging is that it allows us

to have spatial information (e.g., assessing the volume of the hippocampus, or the

severity of tau accumulation in a specific region of interest). This has undoubtedly

revolutionised how we understand neuropathological disorders [24, 25, 4].

Note on Scope. While the current section outlines key neuroimaging techniques

relevant to Alzheimer’s disease, this thesis’s primary focus lies in the data science

methodologies applied to the resulting quantitative outputs. Accordingly, detailed

discussions of image acquisition protocols, scanner hardware specifications, and

preprocessing pipelines fall outside the scope of this work. Instead, the core chapters

focus on the interpretation, modelling, and integration of neuroimaging-derived

metrics within a broader analytical framework designed for downstream applications.

2.3.1 Computed Tomography (CT) scan.

A CT scan allows for the evaluation of vascular brain injuries [4]. Not as popular for

AD as the imaging modalities below, and not directly used in this thesis.

2.3.2 Magnetic Resonance Imaging (MRI).

Magnetic Resonance Imaging has become a fundamental tool in the search for

reliable neuroimaging biomarkers in Alzheimer’s disease research and clinical prac-

tice. The ability of MRI to non-invasively probe the brain’s structure, function, and

microenvironment with exceptional spatial and tissue contrast makes it useful for

diagnosis, prognosis, and therapeutic monitoring of AD. This subsection offers an

overview of the principles behind MRI, with a focused discussion on image formation

and tissue contrast, followed by a detailed examination of the MRI modalities most

relevant to Alzheimer’s disease, including their applications and limitations.
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2.3.2.1 Fundamentals of MRI Signal Generation

Principle of Nuclear Magnetic Resonance. At the core of MRI is the phenomenon

of nuclear magnetic resonance (NMR). NMR leverages the property of certain atomic

nuclei to behave like tiny bar magnets due to their intrinsic quantum mechanical

spin. The hydrogen nucleus is of particular interest in biological tissues because of

its abundance in water and fat, two major constituents of the human brain. When

an external static magnetic field (B0) is applied, hydrogen nuclei align either parallel

or anti-parallel to the field, with a slight excess in the lower-energy parallel state.

This creates a measurable but small net magnetisation in the direction of B0, known

as the equilibrium magnetisation. In the absence of a magnetic field, nuclear spins

are randomly oriented, resulting in zero net magnetisation. Under B0, the net

magnetisation vector also precesses around the field axis at a frequency determined

by the gyromagnetic ratio of the nucleus and the field strength, known as the Larmor

frequency. For hydrogen, this falls within the radiofrequency (RF) range.

Role of Static Magnetic Fields: Image Quality and Homogeneity. The strength

of the applied magnetic field (measured in Tesla, T) is a central determinant of MRI

image quality. Higher field strengths (e.g., 7T vs. 1.5T) produce a greater net mag-

netisation, thereby increasing the signal-to-noise ratio (SNR) and enabling higher

spatial resolution. However, susceptibility to artefacts, chemical shift differences,

and safety considerations such as tissue heating also increase with field strength

[26]. Magnetic field homogeneity is equally critical for accurate signal localisation

and artefact-free images. Inhomogeneities degrade SNR, introduce geometric dis-

tortions (especially near air–tissue interfaces such as the frontal sinuses and ear

canals) [27], and impair reliable tissue contrast. In practice, careful magnet design

and active shimming routines are employed to optimise homogeneity.

Radiofrequency Excitation and Signal Induction. Once the system reaches equi-

librium, an RF pulse at the Larmor frequency is applied orthogonally to B0. This

RF pulse tips the net magnetisation away from the longitudinal (z) axis into the

transverse (xy) plane by a specific flip angle (typically 90°). At this point, the excited

protons precess in phase, maximising their transverse magnetisation. When the RF

pulse is switched off, the protons relax back to equilibrium, releasing energy. During

this process, the transverse component of magnetisation, oscillating at the Larmor
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frequency, induces a small voltage in a surrounding receiver coil: the measurable

NMR signal. Two key timing parameters govern MRI signal acquisition [28]. The

repetition time (TR) is the interval between consecutive RF excitations of the same

slice, which determines the degree of longitudinal relaxation allowed before the next

excitation, strongly influencing image contrast. The echo time (TE) is the interval

between the RF pulse and the peak of the received signal, reflecting the amount of

transverse relaxation that has occurred. Together, TR and TE modulate the relax-

ation dynamics encoded in the signal, shaping both tissue contrast and diagnostic

sensitivity. A third parameter, the inversion time (TI), is used in inversion recovery

sequences (e.g., FLAIR) to selectively null specific tissues such as CSF.

Relaxation Mechanisms: T1 and T2. Relaxation describes how protons return

to equilibrium after excitation, governing both the duration and intensity of the MR

signal:

• T1 Relaxation (Spin-Lattice/Longitudinal): The process by which longitudi-

nal magnetisation realigns with B0 as protons transfer energy to their molecular

environment. T1 times are tissue-dependent and form the basis of T1-weighted

imaging.

• T2 Relaxation (Spin-Spin/Transverse): The progressive loss of phase co-

herence among precessing protons due to spin–spin interactions, causing

decay of transverse magnetisation. T2 times are tissue-specific and underpin

T2-weighted imaging.

A related parameter, T2* (T2-star), incorporates both intrinsic T2 decay and addi-

tional dephasing from magnetic field inhomogeneities. T2* is particularly relevant for

detecting microbleeds and mineralisation.

Tissue Contrast Generation and Signal Weighting. A powerful aspect of MRI is

its ability to generate tissue contrast by exploiting differences in relaxation times,

water content, and microenvironmental factors. Contrast is primarily manipulated

through adjustment of TR, TE, and, in some sequences, TI:

• T1-Weighted Imaging: Achieved with short TR and short TE. The short

TR prevents full longitudinal recovery, thereby accentuating differences in T1



2.3. Neuroimaging biomarkers: Visualising Brain Changes 35

relaxation. Fat appears bright, whereas water-rich tissues (CSF, oedema) are

dark. T1-weighting is the standard for anatomical imaging.

• T2-Weighted Imaging: Achieved with long TR and long TE. The long TE

allows transverse relaxation differences to dominate. Fluids thus appear bright,

making T2-weighted sequences sensitive to pathology such as oedema and

gliosis.

• Proton Density (PD) Imaging: Uses intermediate TR and short TE to min-

imise T1 and T2 weighting, yielding images proportional to proton concentra-

tion.

Contrast can be further refined with specialised sequences, suppression techniques

(e.g., Fluid-Attenuated Inversion Recovery (FLAIR) to null CSF, or fat suppression),

or gadolinium contrast agents. These principles form the foundation for the diverse

range of MRI modalities described below.

2.3.2.2 MRI Modalities and Their Applications in Alzheimer’s Disease

MRI encompasses a wide spectrum of pulse sequences, each providing unique

and sometimes complementary information about the living brain. In AD research,

several modalities serve as core biomarkers for diagnosis, differential diagnosis,

monitoring progression, and evaluating treatment effects.

Structural MRI (sMRI): Volumetric Imaging and Cortical Thickness. Structural

MRI, typically acquired with high-resolution T1-weighted sequences, has been

instrumental in neurodegenerative research. It enables sensitive quantification of

regional and global brain atrophy, cortical thinning, and other morphometric changes

that characterise AD pathology [29]. Key sMRI quantitative biomarkers include:

volumetric measures (e.g., whole brain [30], hippocampus [31], ventricles [32],

medial temporal lobe [31, 4]); cortical thickness (e.g., [33]); and atrophy proxies

such as the Boundary Shift Integral (BSI) [34] and its generalised version [35].

Automated volumetric analysis tools, along with standardisation initiatives such as

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), have harmonised imaging

protocols, reduced scanner-dependent variability, and enabled the creation of large-

scale datasets that have advanced our understanding of AD. Visual rating of medial

temporal lobe [36] or ventricular enlargement [37] also remains useful in clinical
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staging when atrophy is pronounced.

Functional MRI (fMRI): Neuronal Activation and Connectivity. Functional MRI

leverages the blood-oxygen-level-dependent (BOLD) signal to map regional changes

in neuronal activity during cognitive tasks and at rest (resting-state fMRI). In AD and

late mild cognitive impairment (MCI), fMRI demonstrates reduced hippocampal/me-

dial temporal activation [38] and altered Default Mode Network (DMN) connectivity

[38, 39]. Resting-state paradigms are particularly valuable in prodromal AD, where

patient compliance with tasks is limited. Although promising for diagnosis and

monitoring, fMRI is subject to signal variability and is not included in the revised

diagnostic criteria for AD from the Alzheimer’s Association Workgroup [4].

Diffusion MRI: White Matter Integrity and Connectivity. Diffusion MRI assesses

white matter microstructure by quantifying the directional diffusion of water molecules.

Diffusion Tensor Imaging (DTI) provides metrics such as fractional anisotropy (FA)

and mean diffusivity (MD), which reflect axonal integrity and myelination. In AD,

reduced FA and increased MD have been consistently reported in association tracts,

indicating early microstructural degeneration [40, 41]. Advanced models, such as

Neurite Orientation Dispersion and Density Imaging (NODDI), offer improved speci-

ficity by disentangling neurite density and orientation dispersion [42], while free-water

imaging has recently emerged as another sensitive marker of neuroinflammation and

neurodegeneration. Connectomics integrates diffusion metrics with graph theory to

map network-level disruptions, offering promising biomarkers for early diagnosis and

staging [43]. Nonetheless, diffusion abnormalities are not disease-specific and are

also observed in other neurodegenerative and psychiatric conditions.

Additional MRI Modalities. Beyond sMRI, fMRI, and diffusion MRI, several spe-

cialised modalities provide complementary insights: Susceptibility-Weighted Imag-

ing (SWI) enhances contrast based on magnetic susceptibility, enabling sensitive

detection of cerebral microhaemorrhages, iron deposition, and vascular abnor-

malities associated with cerebral amyloid angiopathy or mixed AD pathology [44].

Arterial Spin Labelling (ASL) quantifies cerebral blood flow non-invasively by using

magnetically labelled arterial blood water as an endogenous tracer, revealing hypop-

erfusion in AD-affected regions [45]. Magnetic Resonance Spectroscopy (MRS)

measures brain metabolites by suppressing the dominant water signal. Altered
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metabolite ratios in AD reflect neuronal loss, membrane turnover, and glial activation

[46], though MRS remains less commonly used.

While none of these modalities is specific to AD, they provide valuable physio-

logical and biochemical context that enhances the utility of structural and functional

MRI. When combined, multimodal MRI approaches can contribute to comprehensive

biomarker strategies alongside PET and fluid-based markers.

2.3.3 Positron-Emission Tomography (PET).

Positron Emission Tomography (PET) is a molecular imaging modality that enables

the in vivo visualisation and quantification of biological processes at the cellular

and molecular level. In Alzheimer’s disease research, PET has become indispens-

able for detecting hallmark pathological processes such as amyloid-β deposition

and tau neurofibrillary tangles, as well as for measuring cerebral metabolism and

neuroinflammation [47, 48, 49, 5]. PET is central both to basic pathophysiological re-

search and to clinical translation, where it informs diagnosis, prognosis, and patient

stratification in therapeutic trials.

This subsection reviews the fundamental principles of PET imaging, the devel-

opment and application of radiotracers relevant to AD, quantification approaches

with emphasis on the Standardised Uptake Value Ratio (SUVR), and methodologi-

cal considerations such as partial volume effects, reference region selection, and

harmonisation efforts. The section also highlights limitations of current methods and

emerging directions in PET biomarker research.

2.3.3.1 Principles of PET Imaging

Physics and Scanner Instrumentation. PET imaging is based on the detection

of coincident gamma photons following positron emission. Radiotracers labelled

with positron-emitting isotopes (e.g., 18F, 11C) are injected intravenously and taken

up by specific molecular targets. Upon decay, the emitted positron annihilates

with an electron, producing two 511 keV photons emitted nearly 180◦ apart. PET

scanners, typically configured as detector rings, detect these coincident photons and

reconstruct three-dimensional maps of tracer distribution [50]. Hybrid PET/CT and

PET/MRI systems provide anatomical co-registration, attenuation correction, and

multiparametric imaging capabilities, enhancing both sensitivity and interpretability

[51].
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Radiotracers and Labelling. PET relies on radiotracers labelled with short-lived

positron emitters. Fluorine-18 (t1/2 = 110 min) is the most widely used isotope

due to its relatively long half-life, allowing centralised production and distribution.

Carbon-11 (t1/2 = 20 min) offers chemical versatility but requires onsite cyclotrons.

Successful tracer design demands high affinity and selectivity for the molecular

target, favourable blood–brain barrier penetration, and low nonspecific binding.

2.3.3.2 PET Radiotracers in Alzheimer’s Disease

Glucose Metabolism: FDG-PET. 18F-fluorodeoxyglucose (FDG) PET measures

cerebral glucose metabolism, serving as a proxy for synaptic activity and neuronal

integrity. AD is characterised by a stereotyped pattern of hypometabolism in tem-

poroparietal association cortices and posterior cingulate/precuneus, with relative

sparing of primary sensory, motor and occipital cortices [52, 53]. FDG-PET has diag-

nostic and prognostic utility, often identifying dysfunction before atrophy is detectable

by MRI [52, 53].

Amyloid PET Tracers. Amyloid PET was the first molecular imaging biomarker to

achieve widespread clinical use in AD. The prototypical tracer [11C]PiB demonstrated

selective binding to fibrillar amyloid-β [54]. Subsequently developed 18F-labelled

tracers, including florbetapir, florbetaben, and flutemetamol, enabled broader clinical

adoption due to their longer half-lives [55, 56]. Amyloid PET detects pathology years

before symptom onset, is incorporated into diagnostic criteria, and is now used for

therapy eligibility in anti-amyloid trials [47, 57]. However, amyloid positivity is not

specific to AD, as deposits can be found in cognitively normal older adults and in

other dementias [58].

Tau PET Tracers. Tau PET provides a closer correlate of clinical severity, as the

regional distribution of tau tangles mirrors Braak staging and tracks cognitive decline

[59, 60]. First-generation tau tracers, such as [18F]flortaucipir (AV-1451), demon-

strated feasibility but were limited by off-target binding to monoamine oxidase, basal

ganglia, and choroid plexus [61, 62]. Second-generation tracers, including [18F]MK-

6240, [18F]RO948, and [18F]PI-2620, offer higher affinity, improved signal-to-noise,

and reduced off-target binding [63, 64]. These advances have positioned tau PET

as a leading biomarker for staging and monitoring therapeutic response in clinical

trials.
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Emerging Radiotracers. Beyond amyloid and tau, new PET tracers target comple-

mentary aspects of AD biology. Neuroinflammation can be assessed using TSPO

ligands, though specificity and sensitivity remain under debate [65]. Synaptic density

tracers such as [11C]UCB-J and [18F]SynVesT-1 bind to synaptic vesicle glycoprotein

2A (SV2A), providing sensitive markers of synaptic loss [66, 67]. Other targets under

development include mitochondrial function [68], cholinergic neurotransmission [69],

and myelin integrity [70], broadening the scope of PET as a multimodal biomarker

platform.

2.3.3.3 Quantification and Interpretation

Quantitative Approaches. PET allows both absolute and relative quantification of

tracer binding. Full kinetic modelling with arterial blood sampling and compartmental

analysis (1- or 2-tissue models) provides gold-standard parameters such as binding

potential (BPND) or distribution volume (VT ) [71]. However, these methods are

resource-intensive and impractical for large-scale or clinical use.

SUV and SUVR. In practice, static imaging protocols and semi-quantitative mea-

sures are widely used. The Standardised Uptake Value (SUV) normalises tracer

uptake to injected dose and body weight, while the Standardised Uptake Value

Ratio (SUVR) compares target regions to a reference region presumed to be free

of specific binding [72]. Cerebellar cortex, subcortical white matter, and pons are

commonly used references [73, 74]. SUVR is robust for group-level analyses and is

used extensively in multicentre studies and clinical trials [75, 57], but it remains a

relative measure sensitive to blood flow, reference region choice, and partial volume

effects [76].

Partial Volume Effects (PVE). The limited spatial resolution of PET leads to spillover

between regions, exacerbated by cortical thinning in AD. Partial volume correction

(PVC) methods, such as region-based voxel-wise correction or geometric transfer

matrix approaches, are meant to improve SNR, but add complexity and variability

[77, 78, 76]

2.3.3.4 Clinical and Research Applications

PET has transformed the AD research landscape. Amyloid and tau PET are now

embedded in diagnostic frameworks [47, 4, 5], provide enrichment strategies for

clinical trials, and serve as pharmacodynamic readouts in anti-amyloid and anti-tau
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therapies [79, 75]. FDG-PET remains valuable for differential diagnosis, distinguish-

ing AD from frontotemporal dementia or dementia with Lewy bodies [53]. Ongoing

harmonisation efforts, such as Centiloid scaling for amyloid PET [80] and analogous

initiatives for tau PET, such as CenTauRz [81], aim to improve cross-trial compa-

rability and accelerate regulatory and clinical acceptance. Nevertheless, PET is

resource-intensive, involves radiation exposure, and is not universally accessible,

highlighting the need for complementary, scalable biomarkers such as blood-based

assays.

2.4 Fluid biomarkers

Fluid biomarkers provide direct molecular evidence of Alzheimer’s disease pathol-

ogy, complementing the spatial resolution of imaging. They can be sampled from

cerebrospinal fluid (CSF), blood, or in vitro models such as patient-derived cell

cultures, each contributing distinct advantages for research and clinical applications.

2.4.1 Cerebrospinal Fluid (CSF)

For over two decades, CSF has been the reference standard for in vivo quantification

of molecular hallmarks of Alzheimer’s disease [82, 83, 84]. The most established

biomarkers include:

• Amyloid-β peptides: Multiple isoforms (Aβ37, Aβ38, Aβ40, Aβ42, Aβ43)

can be quantified. Aβ42 is selectively reduced in AD due to deposition in

plaques, and the Aβ42/Aβ40 ratio corrects for inter-individual variability in

peptide production [82].

• Phosphorylated tau (p-tau): Hyperphosphorylated tau is a marker of neu-

rofibrillary pathology. Sites such as threonine-181, -217 and -231 (p-tau181,

p-tau217, p-tau231) show strong specificity for AD and close correspondence

with tau PET imaging [85, 86].

• Total tau (t-tau): Reflects overall axonal damage, not specific to AD, but

informative for disease intensity [87].

Despite their sensitivity, the invasiveness of lumbar puncture limits CSF assays in

routine practice and large trials.
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2.4.2 Blood-Based Biomarkers (BBMs)

Technological advances in ultra-sensitive assays (e.g., Simoa, Elecsys, mass spec-

trometry) have made peripheral detection of AD biomarkers reliable [88]. Key plasma

biomarkers include:

• Aβ42/Aβ40 ratio: A low ratio indicates cerebral amyloidosis and correlates

with amyloid PET positivity .

• Plasma p-tau: Especially p-tau217 and p-tau181, which strongly predict

amyloid and tau PET status, discriminate AD from other dementias, and

change in response to anti-amyloid therapy.

• Neurofilament light chain (NfL): A non-specific marker of neuronal injury,

useful for tracking progression but elevated in many neurodegenerative condi-

tions.

• Glial fibrillary acidic protein (GFAP): Reflects astrocytic activation; elevated

early in the AD continuum and linked to amyloid burden.

The translational impact of BBMs is underscored by a landmark regulatory milestone:

in 2025 the U.S. Food and Drug Administration (FDA) approved the first blood-based

AD biomarker assay for clinical use: the ratio between pTau17 and beta-amyloid

1-42 [89]. This positions plasma biomarkers as not only research tools but emerging

components of diagnostic workflows and trial endpoints.

2.4.3 In Vitro Cell Models

Induced pluripotent stem cell (iPSC)-derived neurons and other cell-based systems

provide a complementary in vitro source of fluid biomarkers. Particularly in familial

AD, where APP, PSEN1, or PSEN2 mutations alter amyloid processing, iPSC-derived

neurons faithfully recapitulate individual-specific Aβ peptide profiles [90]. These

models enable the dissection of peptide heterogeneity and phosphorylation patterns

under controlled conditions, and they serve as translational platforms for therapeutic

screening and biomarker discovery.

2.4.4 Implications

Together, CSF, blood, and in vitro fluid biomarkers form a multi-layered molecular

window into AD pathology. Their integration into clinical trials can aid diagnos-
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tic precision for cheap and fast stratification, enable early detection, and provide

pharmacodynamic readouts. However, harmonisation of assays, context-specific cut-

points, and careful consideration of specificity remain essential for their widespread

adoption in both research and clinical settings.

2.5 Cognitive measures

Eventually, after pathological change has affected particular brain regions, cognition

becomes measurably altered, affecting the individual’s interaction with the world,

and subsequently, their quality of life. Cognitive assessment is therefore central to

the (late, symptomatic) diagnosis, staging, monitoring, and trial-based evaluation of

Alzheimer’s disease. Cognitive tests (1) quantify impairment across memory, lan-

guage, executive function and other domains, (2) support differential diagnosis, (3)

provide outcomes for clinical trials, and (4) serve as anchors for biomarker correla-

tions. In addition to traditional pen-and-paper instruments, the last decade has seen

a rapid development of digital cognitive biomarkers (active and passive), which aim

to increase sensitivity, scalability and temporal resolution of cognitive measurement.

This section summarises established instruments, composite endpoints used in AD

trials, and recent advances (and limits) in digital cognitive assessment.

Note on Cognitive Assessment Scope. This thesis is based on secondary analysis

of previously collected data. All cognitive assessments were conducted prior to the

present work, using standardised protocols defined by the original study design. As

such, no new cognitive testing was performed by the author. Nevertheless, given

the central role of cognitive profiling in Alzheimer’s disease research and diagnosis,

we provide a brief overview of commonly used assessment tools and their relevance

to biomarker interpretation and disease staging.

2.5.1 Conventional cognitive instruments

A number of well-established clinical instruments remain widely used in clinical

practice and trials:

• Mini-Mental State Examination (MMSE). Brief 30-point (more is better)

screening test covering orientation, recall, attention, language and construc-

tion; widely used as a global index of cognition. It is quick to administer but has

ceiling effects in early disease and is influenced by education and language
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[91].

• Clinical Dementia Rating (CDR) and CDR–Sum of Boxes (CDR-SB). Clin-

ician/informant interview yielding global staging (0, 0.5, 1, 2. . . ) and a sum-

of-boxes score used as an outcome in many trials and epidemiologic studies.

The CDR integrates functional information and is useful for staging across AD

severity [92, 93].

• ADAS-Cog (and variants). The Alzheimer’s Disease Assessment Scale

cognitive subscale (ADAS-Cog) is a multi-item instrument designed for clinical

trials of symptomatic drugs; several modified/extended versions (including

13-item variants) have been proposed to improve sensitivity in early stages

[94, 95, 96].

• Domain-specific neuropsychological tests. Episodic memory tests (e.g.,

Logical Memory, Rey Auditory Verbal Learning Test (RAVLT), Free and Cued

Selective Reminding Test (FCSRT)), processing-speed/executive tasks (Digit

Symbol/Substitution, Trail Making), and language/fluency measures are used

to characterise the cognitive profile and detect subtle changes.

While these instruments are well validated, their conventional administration

(clinic visit, single time point) limits temporal resolution and may miss early, subtle

longitudinal changes or produce practice effects when used repeatedly.

2.5.2 Composite endpoints: PACC and related composites

To increase sensitivity to early decline in preclinical and prodromal stages, tri-

als have adopted composite endpoints that combine multiple domain measures.

The Preclinical Alzheimer’s Cognitive Composite (PACC) was developed to detect

amyloid-related cognitive decline in clinically normal older adults by combining multi-

ple sensitive neuropsychological measures into a single endpoint [97]. The original

PACC combined episodic memory, global cognition and processing speed / executive

measures; later variants (e.g., PACC5) extended the composite with additional tests

(semantic fluency, other memory indices) to increase sensitivity and coverage of

early deficits [98]. Composites are attractive for prevention trials because they (i)

aggregate signal across domains, (ii) reduce multiplicity when properly pre-specified,

and (iii) can be calibrated for longitudinal change in enriched samples (e.g., amyloid
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positive). Nevertheless, composite selection must balance sensitivity, interpretability,

ceiling/floor effects, and clinical meaningfulness for regulators and clinicians.

2.5.3 Digital cognitive biomarkers: active and passive approaches

Definitions and taxonomy. Digital cognitive biomarkers are objective measures of

cognition derived from digital devices. Broadly:

• Active digital assessments require the participant to perform structured cog-

nitive tasks on a device (smartphone, tablet, web) – e.g., episodic memory

tasks, reaction-time tests, gamified tasks. Examples include Cogstate [99], the

Mezurio app [100], Altoida DNS [101], and numerous research batteries.

• Passive / behavioural digital biomarkers are derived from continuous or back-

ground data streams (speech during phone calls, keystroke and touchscreen

dynamics, GPS / mobility traces, sleep and gait metrics from wearables, pat-

terns of computer use). These do not require dedicated testing sessions and

can capture real-world behaviour and variability. [102, 103]

2.5.4 Psychometric and practical considerations

Reliability, validity and practice effects. Digital tests must demonstrate test–retest

reliability, construct and criterion validity (correlation with established neuropsycho-

logical measures and biomarkers), and sensitivity to clinically meaningful change.

Frequent repeated measurement increases power but raises the problem of prac-

tice effects; clever task design (alternate forms, adaptive difficulty) and statistical

modelling of practice trajectories are essential to mitigate bias.

Standardisation and cross-platform harmonisation. Device heterogeneity

(screen size, input modality), OS variability and network differences can induce

measurement noise. Harmonisation steps include device-agnostic task design,

device metadata logging, pre-deployment calibration, and analytic pipelines that

correct for platform effects.

Validation and regulatory expectations. Regulatory bodies now recognise the

potential of digital endpoints but expect rigorous evidentiary standards. The FDA’s

guidance on Digital Health Technologies for Remote Data Acquisition in Clinical

Investigations outlines expectations for selection, verification/validation, data man-

agement, usability, and risk assessment when DHTs are used to collect trial end-
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points; early engagement with regulators and pre-specified validation plans are

recommended [104].

2.5.5 Limitations, equity and ethical concerns

Digital approaches risk exacerbating health disparities unless plans explicitly ad-

dress device ownership, digital literacy, language and cultural adaptation, and

accessibility (sensory impairments). Privacy, data governance and informed con-

sent are paramount: passive sensing in particular can reveal sensitive behavioural

patterns and location/time data that require robust data minimisation, secure stor-

age, and transparent participant information. Many digital biomarkers show good

within-sample performance but lack widespread external validation and standardised

normative frameworks – a strong limitation for regulatory qualification and clinical

translation [105, 106].

In summary, established psychometric scales (MMSE, CDR, ADAS-Cog and domain

tests) remain essential. Composite endpoints such as the PACC increase sensitivity

in preclinical AD trials. Digital cognitive assessments – both active and passive –

offer powerful new avenues for scalable, high-frequency, and ecologically valid mea-

surement, but they require careful validation, harmonisation, and ethical/regulatory

planning before replacement of conventional primary endpoints in pivotal trials is

justified.

2.6 Clinical Trials in Alzheimer’s Disease

2.6.1 Introduction

As we mentioned earlier, Alzheimer’s disease remains one of the greatest chal-

lenges in clinical drug development, with a global burden that continues to rise in

parallel with population ageing. Despite decades of research, only a small number

of disease-modifying treatments have reached approval, and their clinical impact

remains modest. This has catalysed a transformation of the clinical trial land-

scape, characterised by diversification of therapeutic targets, the adoption of novel

biomarkers, innovative trial designs, and regulatory frameworks that increasingly

accommodate biomarker-driven decision making.

This section provides an overview of AD clinical trials in 2025, with emphasis

on therapeutic categories, the role of biomarkers (particularly imaging and fluid
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markers), regulatory considerations, methodological challenges, and emerging

trends. Particular attention is given to biomarker-driven trial designs, as these

underpin the methodological contributions of this thesis. The 2025 ”Alzheimer’s

disease drug development pipeline” [107] is a highly recommended read, and

contributes to a significant portion of this section.

2.6.2 The 2025 Trial Landscape

The AD clinical trial pipeline in 2025 is larger and more diverse than in previous

years. According to the most recent systematic review, there are 182 active clinical

trials evaluating 138 unique therapeutic agents, compared with 164 trials and 127

drugs in 2024 [107]. These span all stages of development:

• Phase 1: 48 trials (45 drugs)

• Phase 2: 86 trials (75 drugs)

• Phase 3: 48 trials (31 drugs)

Roughly one-third of these agents are repurposed drugs, highlighting the

strategic use of existing safety profiles to accelerate progress. Importantly, trial

populations now extend across the disease continuum, from cognitively unimpaired

at-risk individuals to patients with late-stage dementia, reflecting a paradigm shift

towards both prevention and treatment.

2.6.3 Therapeutic Targets and Landmark Trials

The historical dominance of amyloid as a therapeutic target has given way to a more

balanced portfolio encompassing tau, neuroinflammation, synaptic dysfunction, and

neuroprotection, alongside symptomatic and device-based interventions.

2.6.3.1 Amyloid

Monoclonal antibodies remain the most advanced amyloid-directed therapies.

Leqembi (lecanemab) received full FDA approval in 2023 and is being evaluated

in prevention-focused studies such as AHEAD 3-45, enrolling asymptomatic but

biomarker-positive individuals [79]. Donanemab (Eli Lilly) has completed phase

3 trials demonstrating modest slowing of cognitive decline [75]. Oral anti-amyloid

agents such as ALZ-801 (valiltramiprosate) have targeted high-risk APOE4/4 carri-

ers, though with mixed efficacy [108, 109]. Currently, amyloid is targeted by 11, 12
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and 7 agents in Phase 1, 2 and 3 clinical trials, respectively [107].

2.6.3.2 Tau

Tau has emerged as a key therapeutic focus, given its stronger correlation with

neurodegeneration and clinical symptoms. The antisense oligonucleotide BIIB080

(Biogen/Ionis) has shown promising dose-dependent reductions in CSF and PET

measures of tau and was granted FDA Fast Track status in 2025 [110]. Currently,

tau is targeted by 7, 7 and 1 agents in Phase 1, 2 and 3 clinical trials, respectively

[107].

2.6.3.3 Neuroinflammation and Metabolic Pathways

Inflammatory cascades are increasingly recognised as critical in AD progression

[49]. The glucagon-like peptide-1 (GLP-1) receptor agonist semaglutide, already

approved for diabetes and obesity, is under evaluation in two large phase 3 trials

(EVOKE/EVOKE+), designed with extensive biomarker substudies [111]. Novel

NLRP3 inflammasome inhibitors are also progressing through early development

[112].

2.6.3.4 Synaptic Function and Neuroprotection

Synaptic loss is the pathological feature most closely associated with cognitive

impairment in AD [113]. Several agents are in clinical testing, including SPG302

(Spinogenix) [114], a first-in-class synaptic regenerative drug now in phase 2, and

buntanetap (ANVS401) [115], a multi-target oral compound in phase 3. Sigma-1

receptor agonists such as blarcamesine (Anavex 2-73) [116] exemplify efforts to

combine neuroprotective and synaptogenic effects.

2.6.4 Imaging Biomarkers in Alzheimer’s Disease Clinical Trials

Neuroimaging plays a central role in modern Alzheimer’s disease clinical trials,

both for patient selection and as quantitative outcome measures. The two principal

modalities are volumetric magnetic resonance imaging (MRI), which captures neu-

rodegeneration, and positron emission tomography (PET), which visualises amyloid

and tau pathology. Their applications in trials can be broadly grouped into screen-

ing/enrichment, longitudinal monitoring, safety evaluation, and primary or secondary

endpoints.
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Screening and Enrichment. Amyloid PET is now a standard inclusion criterion in

most phase II–III trials [75, 79, 57] to ensure pathological confirmation and reduce

heterogeneity, while tau PET is increasingly used to stage disease severity [75].

Structural MRI is used as a tool to detect abnormalities, which can lead to exclusion

from studies [75].

Monitoring Disease Progression and Endpoints. In phase-3 randomised clinical

trials targeting Alzheimer’s disease progression, MRI-based volumetric measures of

the whole brain, the ventricles and the hippocampus have been used as primary [117]

and secondary outcome measures [118, 57, 75, 119]. Likewise, both amyloid and

tau PET SUVR measures have been used as secondary outcomes [75]. Compared

with clinical endpoints (e.g., CDR-SB, ADAS-Cog), imaging measures typically show

greater effect sizes and lower variability, thereby reducing required trial sample

sizes [3].

Safety Monitoring. With the advent of monoclonal antibody therapies, MRI has be-

come essential for detecting amyloid-related imaging abnormalities (ARIA), including

vasogenic oedema (ARIA-E) and microhemorrhages (ARIA-H). Thus, standardised

protocols are embedded in anti-amyloid trial designs [79, 120].

Outlook. The AD clinical trial ecosystem in 2025 is marked by robust growth, diver-

sification of therapeutic targets, and increasing reliance on biomarkers. In partic-

ular, imaging biomarkers are indispensable tools in AD clinical trials: they enrich

trial populations, monitor disease progression, ensure patient safety, and provide

regulatory-grade endpoints. Ultimately, though, having improved biomarkers is not

enough (paraphrasing Mercè Boada’s reflections at EuroPAD 2025), and we need

to see practical, tangible gains in the quality of life of the treated individuals; in fact,

they, and their close relatives and friends need to notice the improvement.

2.7 A Unifying Framework: The Evolving Biological

Definition of AD

The proliferation of imaging and fluid biomarkers has catalysed a paradigm shift in

Alzheimer’s disease research, moving from symptom-based diagnostic definitions

toward biology-based ones. The 2018 NIA-AA research framework was a major step,

introducing the A/T/(N) system to classify individuals based on biomarker evidence
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of Amyloid (A), Tau (T), and Neurodegeneration (N) [47]. While transformative for

standardising research, its categorical (positive/negative) nature limited its ability to

capture the vast heterogeneity and predict individual clinical trajectories.

To address this, Jack et al. proposed revised criteria in 2024 [4], designed to

provide greater prognostic granularity and better align with the continuous nature of

the disease. The key evolutions include:

• Integration of Blood-Based Biomarkers: Core diagnostic biomarkers (Core

1) now formally include validated blood-based assays, notably plasma p-tau217.

This acknowledges that certain plasma markers have achieved sufficient ac-

curacy for screening and diagnostic purposes, offering a scalable and less

invasive alternative to PET or CSF.

• Clarification of Co-Pathologies: The framework explicitly separates the core

AD definition from common co-pathologies. Biomarkers for Vascular brain

injury [V], Inflammatory mechanisms [I], and alpha-synucleinopathy [S] are

designated as important prognostic modifiers but are not part of the primary

AD definition.

• Emphasis on Quantitative Staging: A new focus is placed on staging (Core

2), driven primarily by the amount and spatial extent of tau pathology on PET

scans. This is a critical shift, as tau burden is a much stronger correlate

of neurodegeneration and cognitive symptoms than amyloid burden, thus

providing a more dynamic and clinically relevant measure of disease severity.

These revisions represent an important evolution: they preserve the basic

A/T/(N) idea, but shift toward incorporating quantitation, fluid biomarkers, and staging,

thereby helping to bridge research and eventual clinical translation.

2.8 Summary and motivation for this thesis

While the pathological hallmarks of AD are well-established, the disease itself

remains remarkably heterogeneous [17, 18, 19, 20, 21]. Variation in the amount,

distribution, and evolution of pathology leads to diverse clinical outcomes that cannot

be fully explained by current categorical frameworks, and current biomarkers often

fail to capture the full spectrum of pathological variation.
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This thesis is motivated by the need for more precise, quantitative biomarkers

that better reflect this heterogeneity. The following chapters present a series of

models and data-driven biomarkers designed to address this challenge.



Chapter 3

The effect of the reference region in

standardised uptake value ratios in tau

PET

The initial work that follows (section 3.2) led to the presentation of a poster at the

New Horizons in Alzheimer’s Disease conference (NHAD) in Leuven, Belgium, in

November 2021. A further analysis (section 3.3) was presented at the Alzheimer’s

Association International Conference in Philadelphia, July 2024.

3.1 Introduction

As stated in Chapter 2, positron emission tomography (PET) enables precise spatial

and temporal measurement of Alzheimer’s disease pathology in the brain. The

default quantification measure is the standardised uptake value ratio (SUVR) —

radiotracer uptake in a target region of interest normalised by uptake in a reference

region.

In this chapter, we examine how the choice of reference region influences SUVR

consistency and explore whether combining multiple reference regions can improve

signal stability. We first conduct exploratory analyses to identify inconsistencies

in SUVR calculations across commonly used reference regions (Section 3.2). We

then perform an updated quantification analysis using test–retest metrics to assess

reliability (Section 3.3). Finally, we propose a method for combining reference

regions to mitigate these inconsistencies and enhance stability (Section 3.4).
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3.2 SUVR inconsistencies

3.2.1 Introduction

The quantification of regional PET measures is commonly the standardised uptake

value ratio (SUVR), where a region of interest (ROI) standardised uptake value

(SUV) is divided by the SUV of a region of reference. The region of reference is

supposed to be free of pathology, and provides an intra-scan reference measure

that can cancel out factors affecting the measurements (e.g., radiodecay of the

tracer). The cerebellar grey matter is the most commonly used reference region for

tau PET[62, 121]. There is an alternate proposal of a reference region, which is a

subject-specific subset of voxels of the subcortical white matter (PERSI[122]), where

they fit a bimodal Gaussian distribution and discard the component with the highest

mean intensity. Later, subsets of the anatomical reference regions were proposed,

to avoid tracer binding contamination: an inferior part of the cerebellar grey matter

was proposed as a better ROI[62], recently proposed for cross-sectional studies,

while an eroded subcortical white matter was proposed for longitudinal studies[123],

similar to PERSI, but using erosion as a morphological operation.

Here, we examine basic assumptions regarding the two reference regions

proposed by the ADNI tau PET curators: the inferior cerebellar grey matter, and

an eroded white matter, as per 2021. Since the goal of a reference region is to

obtain a quantitative measure comparable within scans of the same radiotracer,

and reference regions are pathology-free, 1) all of the reference regions should be

correlated, and 2) Once a reference region is used, the other should not explain

measurement changes in paired longitudinal scans.

3.2.2 Materials

The data in this study consists of regional standardised uptake values (SUV)

from 1153 [18F]-AV-1451 tau PET scans from 770 different individuals from the

ADNI database (adni.loni.usc.edu), with the cognitive distribution depicted in Table

3.1. Labels are cognitively unimpaired (CU), mild cognitive impairment (MCI) and

Alzheimer’s disease dementia (AD dementia).

Averaged Standardised Uptake Values (SUV) from subcortical regions are taken

from the partial volume corrected tau-PET summary files. Clinical diagnosis is taken

from the diagnosis summary table. Off-target binding regions [62] are those in
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CU MCI AD dementia
CU 417 14 1

MCI 234 16
AD dementia 88

Table 3.1: Distribution of individuals and their respective clinical status in the different visits.
A total of 417 individuals were assessed as CU for all their visits, while 14 had
CU and MCI labels throughout the different visits. None of them was assigned
the three clinical diagnosis labels within the scope of all visits.

which the radiotracer accumulates in places other than the target tau tangles. They

(choroid plexus, caudate, putamen, pallidum, thalamus and hippocampus -due to

signal bleeding from the choroid plexus) are removed from this study, as is common

practice in all disease studies involving PET. We will consider two reference regions:

the inferior cerebellar grey matter (gm) and an eroded subcortical white matter

(wm)[123].

3.2.3 Methods

We assessed longitudinal SUVR stability (consistency) for each reference region

and examined whether incorporating a second reference region improved stability.

For each participant with at least two scans, we calculated the ratio of SUVR values

between the follow-up and baseline scans for regions with no expected pathology

change. Ratios close to unity (1) indicate high stability, with deviations attributed to

measurement noise.

To test whether the second reference region could explain residual variability,

we computed the Spearman rank correlation between the SUVR ratio from one

reference region and the SUV ratio from the other. Only cognitively unimpaired

individuals were included to minimise the influence of disease progression.

As an illustrative example, we used the brainstem, a region expected to remain

pathology-free, and plotted the follow-up/baseline SUVR (gm) against the follow-

up/baseline SUV (wm). We repeated this analysis for all regions, estimating 95%

confidence intervals for the correlations using the Fisher transformation.

Finally, we explored a simple correction method by fitting linear regression

models to the paired ratios for each region, using the slope as an indicator of the

relationship between the two reference region measures.
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3.2.4 Results

Figure 3.1 is a scatterplot of SUV values for the two reference regions considered.

The Spearman correlation is 0.072 (t = 2.48, df = 1182, p-value = 0.013), indicating

extremely low correlation. The R2 value is 0.005, so a negligible part of the variance

is explained by this relationship.

Figure 3.1: SUV of two commonly used reference regions: inferior cerebellar grey matter
and eroded subcortical white matter. Pearson correlation 0.072.

Figure 3.2 shows the brainstem SUVR (using the inferior cerebellum grey matter

as reference), part of a composite reference region in both amyloid PET [124] and

tau PET [78]); no change of AD pathology is expected. We observe a noticeable

correlation with respect to the subcortical white matter (Spearman: 0.70, p < 10-5).

A simple regression line is fitted as a visual aid. This suggests that a significant

portion of the inconsistency can be resolved by utilising the second reference region

(wm).

Figure 3.3 extends the analysis for the rest of the regions, and shows the

Spearman correlation (“future SUVRgm divided by past SUVRgm” against “future

wm SUV divided by past wm SUV”), along with their 95% CI (using the Fisher

transformation).

Linear regression slopes fitted to the paired ratios were significantly different

from zero for most regions, again consistent with the correlation results (Figure 3.4).

The magnitude and direction of slopes varied across regions, suggesting that a

single global correction factor would not be optimal.
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Figure 3.2: Future/baseline brainstem SUVR(gm) versus future/baseline eroded sub-
corical white matter SUV. Ideally, the pattern left after a signal correction, when
plotted against another variable should be zero rank-correlated. Otherwise, like
in this example, we know that there is a part of the signal variation that can still
be accounted for.
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Figure 3.3: Spearman correlation of all regions (“future SUVRgm divided by past SUVRgm”
against “future wm SUV divided by past wm SUV”), along with their 95% CI
(using the Fisher transformation). Regions to the right of (*) have a Spearman
correlation p-value smaller than 0.01. Regions to the right of (**) have a Spear-
man correlation p-value smaller than 0.001.

3.2.5 Discussion.

A shocking first finding is that the SUVs of two reference regions are not well-

correlated (Figure 3.3). This alone should encourage further examination of the

SUVR principle, as it suggests that at least one of the reference regions is not

fit for the purpose of transforming the SUV into a more stable SUVR measure.

The widely used method of normalising the [18F]-AV-1451 tau-PET signal with the

inferior cerebellum grey matter is shown to lack consistency in paired scans of

cognitively unimpaired that we do not attribute to random noise (Figures 3.2 ,3.3,

3.4), consistent with [123]. The same Figures showed how using both reference
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Figure 3.4: Slope of linear regression fit to plots as in Figure 3.2, along with their 95% CI.
Regions to the right of (*) have a p-value smaller than 0.01 on the hypothesis
that the slope is 0. Regions to the right of (**) have a p-value smaller than 0.001.

regions simultaneously can achieve better consistency between scans, as opposed

to using the inferior cerebellar grey matter. Additionally, due to the different behaviour

of regions in the brain, the new method could see some improvement by adjusting

to each region. Further analysis with more datasets could serve to validate the

findings. Furthermore, the different regional behaviour could be analysed to better

understand the physical and biological causes, especially with different radiotracers.

3.3 Reference Region effect on test-retest metrics

3.3.1 Introduction

Evaluations of new radiotracers commonly assess test-retest consistency in scans

with no pathological changes, but rarely question the SUVR paradigm. Notably, even

the Centiloid [80] and CenTauR [81] scales (PET normalisation methods to compare

measures among radiotracers) depend on SUVR, and thus, the choice of reference

region. This section aims to quantitatively assess the impact of different reference

regions on PET scans. Additionally, we will examine the impact of the partial volume

corrected (PVC) data provided by the ADNI study. PVC is used in imaging analysis

to address the partial volume effect, where individual image voxels contain a mixture

of signals from different tissues.

3.3.2 Methods

Data. Data used in the preparation of this study were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Additionally,

we used data from the A05 Study [125]. Both datasets used the 18F-AV-1451
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radiotracer for tau PET brain scans. Data from ADNI was examined with, and

without partial volume correction (using the Geometric Transfer Matrix approach

[126]).

Data study PVC CU MCI
Individuals Scans Individuals Scans

ADNI Yes 206 529 140 369
ADNI No 210 537 141 372
A05 No 18 36 17 34

Table 3.2: Number of available unique individuals and scans per study. PVC indicates
partial-volume-corrected data. CU = cognitively unimpaired. MCI = mild cognitive
impairment.

Evaluation. We analyse how stable the repeated measure of tau PET is, with vari-

ous target composite regions (Braak Stages 5 and 6 [127], the latest of the regions to

accumulate tau), in cognitively unimpaired (CU) and mild cognitive impairment (MCI)

individuals. In such a cohort, we expect minimal pathology in these regions, and

therefore, expect high test-retest consistency. We evaluate the whole cerebellum,

the inferior cerebellar grey matter[62], and a composite reference region (average of

whole cerebellum, eroded subcortical white matter and brainstem)[124].

Evaluation metrics follow test-retest literature [128]: percent test-retest (PTRT,

equation 3.1), intraclass correlation coefficient (ICC, equation 3.2), and within-subject

coefficient of variation (WSCV, equation 3.3). If repeated measures of regions that

should not see noticeable pathological changes are taken, then ideally we would

expect a PTRT of 0% (lowest possible value), an ICC of 1 (highest possible value),

and a WSCV of 0 (lowest possible value).

Formulas of each metric are listed below, reproduced from Baumgartner et al.

[128]:

PT RT =
1
2

n

∑
i=1

∣∣∣∣2yi2 − yi1

yi2 + yi1

∣∣∣∣ ·100% (3.1)

Where n is the number of subjects in the study and yi1 and yi2 are the estimated PET

outcome measures obtained for the i-th subject in a given region in the baseline and

future scan, respectively.

ICC =
σ2

S

σ2
S +σ2

e
(3.2)
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WSCV =
σe

µ
(3.3)

Where σS and σe are the between- and within-subject standard deviations,

respectively, and µ is the mean.

3.3.3 Results

Table 3.3 shows the test-retest metrics (WSCV, ICC and PTRT) for Braak stage 5

and 6 composite regions, calculated using various reference regions in the A05 and

ADNI datasets. The ADNI data was analyzed both with and without partial volume

correction (PVC).

Partial volume correction. The partial volume corrected data dramatically altered

the test-retest metrics, as we see that all metrics, for all reference regions, worsen

considerably: WSCV and PTRT worsen by a factor of about 2, and ICC drops

between 3% and 15%.

Within-subject coefficient of variation. The composite reference performs best,

being 7-8% better in Braak 5 and 4-10% better in Braak 6 compared to the whole

cerebellum. Compared to the inferior cerebellum gray matter, the composite refer-

ence is 13% and 12% better in Braak 5 and 6, respectively.

Intraclass correlation coefficient. The composite and the whole cerebellum

perform similarly, with the composite having an edge (6 and 9% higher ICC in Braak

5 and 6, respectively) in the biggest dataset (ADNI). The inferior cerebellum grey

matter had the worst performance, with over 16% lower ICC in ADNI and 12-20%

lower ICC in A05, compared to the composite reference region.

Percent test-retest. The inferior cerebellum gray matter performs worse then the

other two, with 7-13% higher PTRT. The composite reference region has the best

performance here, with the lowest metrics in all Braak stages and datasets, except

for Braak 5 in A05, where the whole cerebellum has a 3% lower PTRT.

3.3.4 Discussion

The findings of this study highlight the considerable influence of reference region

selection and image processing techniques, specifically partial volume correction

(PVC), on the test-retest reliability of 18F-AV1451 tau PET measurements.

The relatively good test-retest performance observed in the A05 study, using



3.3. Reference Region effect on test-retest metrics 59

18F-AV1451 tau PET (A05 study)
WSCV (x100) ICC PTRT (median)

Reference used Braak5 Braak6 Braak5 Braak6 Braak5 Braak6
composite.ref 2.61 2.19 0.96 0.92 2.75 2.37
whole.cerebellum 2.84 2.44 0.97 0.94 2.67 2.49

18F-AV1451 tau PET (ADNI study)
WSCV (x100) ICC PTRT (median)

Reference used Braak5 Braak6 Braak5 Braak6 Braak5 Braak6
composite.ref 3.78 3.02 0.86 0.83 2.88 2.68
inferior.cerebellum 4.35 3.41 0.87 0.86 3.22 2.85
whole.cerebellum 4.08 3.13 0.87 0.86 2.88 2.53

18F-AV1451 tau PET (partial volume corrected, ADNI study)
WSCV (x100) ICC PTRT (median)

Reference used Braak5 Braak6 Braak5 Braak6 Braak5 Braak6
composite.ref 7.45 7.50 0.82 0.72 5.88 6.67
inferior.cerebellum 7.50 7.01 0.84 0.77 5.23 5.71
whole.cerebellum 7.62 7.23 0.84 0.75 5.40 5.92

Table 3.3: Comparison of WSCV, ICC, and PTRT for different reference regions in 18F-
AV1451 tau PET studies. Individuals with dementia were excluded.

both the whole cerebellum and a composite reference region, aligns with previous

research suggesting the suitability of the cerebellum as a reference for tau PET

in populations without extensive tau pathology [129, 125]. The slightly better per-

formance of the composite region in the A05 data is likely due to the inclusion of

white matter, potentially reducing noise and variability. However, the sample size

of this cohort (after inclusion criteria) was rather small, with 35 total individuals, as

compared to the 351 in ADNI.

Within the non-PVC ADNI data, the composite reference region consistently

outperformed the other two, suggesting that averaging signal across multiple regions

might provide some robustness against noise, even in a larger and potentially more

heterogeneous dataset. The inferior cerebellum, while advocated for in the literature

[62] and data curators of the ADNI PET data, did not show superior performance

compared to the whole cerebellum in this specific dataset.

The most visible finding was the detrimental effect of PVC on test-retest reli-

ability. While PVC is intended to improve quantitative accuracy by correcting for

signal blurring between adjacent regions, our results suggest that it can introduce

significant variability in repeated measures, at least for 18F-AV1451 and the specific
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implementation used in the ADNI dataset. This finding contrasts with the intended

purpose of PVC and raises concerns about its application in test-retest studies of tau

PET SUVR, particularly when using this tracer. It’s possible that the PVC algorithm,

while correcting for partial volume effects, amplified noise or introduced artifacts that

disproportionately affected the test-retest metrics. This result underscores the need

for careful validation of image processing techniques in the context of longitudinal

studies. A previous study on longitudinal amyloid PET [130] found that this PVC

technique (GTM) had significantly worse relative precision compared to other meth-

ods, when measuring within-person change over time. Given this poor performance

of PVC data in ADNI for 18F-AV-1451 tau PET, I revisited the analysis from the

previous section (3.2), and found out that using non-PVC data, the coefficient of

determination between inferior cerebellum SUV and eroded subcortical white matter

was R2 = 0.12; while an improvement over the 0.005 of PVC data, it is still a low

percentage of explained variance.

Several limitations should be considered. First, the specific PVC method (Geo-

metric Transfer Matrix) may not represent all PVC approaches, potentially affecting

generalisation. Second, only a single radiotracer was evaluated (18F-AV-1451), so a

multitracer study would be needed to confirm a common, well-performing, reference

choice. Third, we didn’t have actual test-retest data; however, we did filter the

analysis to include only late Braak stage regions, and individuals with no- or mild

cognitive impairment.

Future research could focus on:

1. Investigating the impact of different PVC algorithms and parameters on tau

PET test-retest reliability.

2. Exploring and validating data-driven approaches for reference region selection

that are less susceptible to noise.

3. Conducting test-retest studies with larger and more diverse populations, in-

cluding individuals with varying degrees of tau pathology.

4. Extending this investigation to other tau PET radiotracers.

In conclusion, this study demonstrates that the choice of reference region and

the application of GTM PVC can considerably impact the test-retest reliability of
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18F-AV1451 tau PET measurements. The dramatic negative effect of PVC raises

significant concerns about its use in longitudinal tau PET studies. Surprisingly, the

widely used inferior cerebellum grey matter did not perform as well as the other

considered reference regions. The composite reference region (whole cerebellum,

eroded white subcortical matter and brainstem) had the best performance, motivating

a data-driven search for optimal region compositions.

3.4 Combination of multiple references for SUVR

quantification

3.4.1 Introduction

In Section 3.2 we demonstrated the potential of combining two reference regions to

enhance the robustness of PET measurements. This section extends the concept

of multi-region referencing to an arbitrary number of reference regions, providing a

generalised mathematical framework for SUVR calculation.

3.4.2 Methods

The traditional SUVR calculation can be viewed geometrically. The numerator (target

region SUV) and the denominator (reference region SUV) can be represented as

components of a two-dimensional vector. The SUVR is then equivalent to the tangent

of the angle (α) between this vector and the reference region axis (Figure 3.5-A).

This geometric interpretation is not limited to two dimensions. We can extend this

concept to a higher-dimensional space, incorporating multiple reference regions.

Figure 3.5-B illustrates this for three dimensions (one target and two reference

regions). In an n-dimensional space, we have one target region SUV and (n-1)

reference region SUVs. The general formula is derived below.

Cosα =

−→
j ·−→r∥∥∥−→j ∥∥∥∥−→r ∥

=
∑r2

i√
t2 +∑r2

i ·
√

∑r2
i

=

√
∑r2

i√
t2 +∑r2

i

=
A
B

(3.4)

Where t is the SUV of the target region of interest. The vector
−→
j is (t,r1, ...,rn),

and the vector −→r is (0,r1, ...,rn), where n is the total number of reference values,

each with its own SUV value of ri. The angle α is the angle between the vectors
−→
j and −→r . As depicted in Figure 3.5-C, we visualise this concept using a generic

right triangle with one of the acute angles being α, where the hypotenuse is B, the
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Figure 3.5: Geometric representation of SUVR and its generalisation. (A) Traditional SUVR
in 2-dimensions, where the ratio is equivalent to the tangent of the angle α . (B)
Extension to 3-dimensions with two reference regions. (C) generalised right
triangle representation, depicting the numerator as the opposite cathetus and
the denominator as the adjacent cathetus to α

adjacent cathetus is A, and the opposite cathetus is C.

Given A and B we can derive C using Pythagoras’ theorem:

C =
√

B2 −A2 (3.5)

Finally, we can define the general formula for the ratio biomarker:

biomarker = tanα =
C
A
=

√
B2 −A2

A
=

√
t2 +∑r2

i −∑r2
i√

∑r2
i

=
t√
∑r2

i

(3.6)

Finally, we introduce a scaling factor of
√

n. This normalisation ensures that if

we were to subdivide a single reference region (with SUV=1) into any number of

subregions, the resulting ratio would remain unchanged. As it is a factor, it does

not introduce noise or affect the signal information: a classifier performance would

remain unchanged. So the final, general formula is given below.

biomarker =
t ·
√

n√
∑r2

i

(3.7)

3.4.3 Discussion

A mathematical model was derived to accommodate the usage of multiple reference

regions. The usefulness of the model depends on how much information the
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reference regions have. Although we derived a universal ratio, we still have not

explored which regions are useful as references... or targets.

This section presents a mathematical framework for incorporating multiple

reference regions into PET quantification, extending the traditional SUVR approach.

The derivation ensures that the new model is mathematically consistent with SUVR

in the special case of a single reference region, and it maintains invariance when

a reference region is subdivided into subregions. The potential advantage lies

in its ability to leverage information from multiple reference regions, potentially

increasing the stability of the resulting biomarker. By combining information from

multiple regions, the new composite may be less susceptible to noise or artifacts

affecting individual reference regions. On the other hand, the practical utility of using

multiple regions as reference depends on each one contributing independent and

meaningful information. If a chosen region contains non-pathological binding of

the tracer, combining them may not improve, and could even worsen, the accuracy

and reliability of the quantification. Therefore, careful selection and validation

of reference regions remains an important task. Further analysis is needed to

empirically evaluate the performance of this new conceptual merging of reference

regions compared to traditional SUVR and other normalisation methods, and to

identify optimal combinations of reference regions.

3.5 Conclusions.

This chapter investigated the critical role of the reference region in tau PET quantifica-

tion using SUVR, challenging common assumptions and proposing a new approach

for combining multiple reference regions. The work presented across three sections

reveals inconsistencies in current practices, demonstrates the impact of reference

region choice and image processing on test-retest reliability metrics, and introduces

a generalised mathematical framework for multi-reference region normalisation.

Key Findings and Contributions:

1. Inconsistency of Standard Reference Regions (Section 3.2): The widely used

inferior cerebellar grey matter and eroded subcortical white matter, commonly

regarded and employed as reference regions for 18F-AV1451 tau PET, showed

surprisingly poor correlation in the ADNI dataset. This finding directly chal-
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lenges the assumption that these regions are interchangeable and highlights

a fundamental problem with the current approach for normalisation. Further-

more, it was shown how measurements taken using one reference region can

be improved using information from the other, proving that a single reference

region might not be optimal.

2. Impact of Reference Region Choice on Test-Retest Reliability (Section 3.3):

The choice of reference region vastly affected the test-retest metrics (WSCV,

ICC, PTRT) of 18F-AV1451 tau PET. While a composite reference region

(combining whole cerebellum, eroded subcortical white matter, and brainstem)

generally performed best in the non-PVC ADNI data, the commonly advocated

inferior cerebellar grey matter surprisingly did not consistently outperform the

whole cerebellum.

3. Detrimental effect of partial volume correction (Section 3.3): The application of

partial volume correction (PVC) using the Geometric Transfer Matrix method

in the ADNI data substantially worsened test-retest reliability across all tested

reference regions. This unexpected result raises serious concerns about

the routine use of PVC in longitudinal tau PET studies, particularly with 18F-

AV1451, and highlights the need for rigorous validation of image processing

techniques.

4. A multi-reference framework (Section 3.4): A mathematical framework was

derived to generalise the SUVR concept to an arbitrary number of reference

regions. This framework provides a consistent and scalable approach for

combining information from multiple reference regions, potentially improving

the robustness of PET quantification. The formula ensures invariance when a

reference region is subdivided.

In summary, this chapter provides compelling evidence for the need to move

beyond simplistic assumptions about reference regions in tau PET, and possibly

in PET in general. By highlighting inconsistencies, demonstrating the impact of

methodological choices, and proposing a new conceptual multi-reference frame-

work, this work contributes to a more rigorous approach to tau PET quantification,

ultimately advancing our ability to study and understand Alzheimer’s disease and
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related imaging-based analysis.



Chapter 4

Composite Value Ratio (CVR)

The work described in this chapter was first introduced at the Alzheimer’s

Association International Conference in 2022, and later expanded to a pa-

per, peer-reviewed and published in Brain Communications [December 2024,

doi.org/10.1093/braincomms/fcae438]. Supplementary files mentioned through-

out the chapter can be accessed online: code, and a spreadsheet with all results

(Results.xlsx). Appendix A includes supplementary tables and figures. Neil Oxtoby,

as my supervisor, contributed to the submitted work. An updated code (May 2025,

from a work in progress) is available on GitHub (https://github.com/isaac-6/biodiscvr),

with the possibility to have multiple cohorts for federated discovery, and with added

regularisation terms to avoid convergence to a Pareto frontier.

4.1 Introduction

Chapter 3 highlighted notable differences depending on the reference region used,

and showed that combining multiple regions (as with the composite reference region

proposed by Landau et al. [124]) could improve signal correction in tau PET studies

of neurodegenerative disease. For the purpose of understanding the progression

or existence of a neurodegenerative disease such as Alzheimer’s, a target region

of interest with measurable pathology needs to be chosen. That’s how the SUVR

is defined: the value of a target region with respect to the value of a reference

region (see Background Chapter 2). What would happen if we let an algorithm

freely choose which regions go in the numerator and which in the denominator?

Now that we know something is at fault, and we know how we can improve it, we

need a specific, quantitative measure, to evaluate the biomarkers. This choice will

be primarily the sample size estimate for a hypothetical clinical trial, since clinical
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trials are the primary use case for tau PET in Alzheimer’s disease. The better the

longitudinal trajectory of a biomarker is (similar trajectories for all individuals, with

low residual errors fitting a model, or variance), the lower the sample size estimate

needed to detect trajectory changes (e.g., in a clinical trial).

4.2 Materials and Methods

To avoid confusion with the current understanding of SUVR, we call the new concept

of biomarker a composite value ratio (CVR, pronounced “cover”), which is the ratio

of two regions of interest in the brain. The main difference is that traditional SUVR

relies on biological definitions of the numerator (commonly referred to as target)

and the denominator (commonly referred to as reference), while our concept of

CVR is a data-driven ratio designed for a specific purpose (e.g., for a particular

group and clinical trial), and is reference-agnostic (see 4.2.3). We call the framework

for biomarker discovery BioDisCVR (“bio-discover”), and we describe it in section

4.2.3. To test the usefulness of CVR as a biomarker for tau PET modelling over

time, we set up three experiments. The experiments described below are designed

to discover CVRs that minimise the sample size estimate in modern randomised

controlled clinical trials on Alzheimer’s disease. CVR biomarkers are compared

against relevant benchmarks from the literature, within and across multiple datasets.

4.2.1 Study design

Figure 4.1 conceptualises the BioDisCVR framework applied to reducing clinical

trial sample sizes by finding an appropriate CVR for the trial design. The algorithm

is described in BioDisCVR Framework and Benchmarks 4.2.3. Input features are

regional brain volumes and regional PET SUV values (described in Data 4.2.2). The

algorithm searches through the combinatorial space (numerator and denominator

simultaneously) to find a ratio of composite regions driven by an application-specific

fitness function. Here, we demonstrate BioDisCVR using two scenarios relevant to

modern clinical trials on Alzheimer’s disease:

• Experiment 1: 54-month secondary prevention trial in amyloid-positive, cog-

nitively unimpaired individuals at risk of Alzheimer’s disease (cf., the A4

Study [132]).

• Experiment 2: 18-month treatment trial in amyloid-positive, cognitively impaired
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Figure 4.1: Conceptual Representation of the BioDisCVR Framework. A search algorithm
is deployed to find a well-performing biomarker, defined as the ratio of signals
f(triangles)/f(circles) in two composite brain regions (f(triangles) and f(circles)).
A lower variance of trajectories (black arrows) and a higher gradient (red arrow)
of the biomarker over time will contribute to lowering the sample size estimate
for a hypothetical clinical trial. Figure reproduced from Llorente-Saguer and
Oxtoby [131].

individuals –cf., recent prominent trials of monoclonal antibodies:

– Aducanumab (ENGAGE/EMERGE [57]),

– Lecanemab (Clarity-AD [79]), and

– Donanemab (TRAILBLAZER-ALZ [75]).

• Experiment 3: The same as Experiment 2, but with a subset of regions

common to multiple datasets, to facilitate external validation. Here we use

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset for discovery

and two datasets from the Mayo Clinic for validation (ADRC and MCSA). The

datasets are described below in Data 4.2.2.

The fitness function drives the algorithm to simultaneously reduce the sample

size estimate (SSE) for a given clinical trial design, while maximising cognitive group

(biomarker) gradient separation (see Statistical Analysis 4.2.5). We report the SSE

for 20% effect size and 80% power. Sample size estimate is an inverse square

function of the effect size, so changing the effect size of the clinical trial design will

not change the performance ranking of the biomarkers. Extensive supplementary

experiments are performed with multiple random initialisations, alternative evaluation
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metrics, restricted search spaces (Appendix A Table A.1) and regional ablation

(Supplementary Figure A.1) to aid interpretability and comparability with the literature,

while also demonstrating robustness and flexibility of the BioDisCVR framework.

4.2.2 Data

This study uses a discovery dataset to find and evaluate biomarkers, and an addi-

tional two cohorts for validation.

Discovery dataset: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Data

analysed is regional brain tau PET signal and MRI volumes from the ADNI database

(downloaded on 12 August 2024 from adni.loni.usc.edu), using participants with

available processed [18F]-AV-1451 tau PET scans. Our inclusion criteria consist of

being amyloid-positive at any visit (composite amyloid-PET SUVR above or equal to

0.78 for Florbetapir F18 and 0.74 for Florbetaben F18)[133] and having at least two

visits with concurrent tau-PET and T1w MRI scans. Although the linear mixed model

we use needs three longitudinal measures per individual to return a measure of

the residuals, we can (and do) include data from individuals having only two scans,

as this data contributes to the intercept and gradient, forcing the model to fit to a

larger sample. Diagnosis is defined by the individual’s maximum level of cognitive

impairment across available visits. Of the 391 participants having two or more

eligible visits, 198 were amyloid-positive (48.7% females). Among these, 76 were

cognitively unimpaired (CU), 122 cognitively impaired (CI, which is the aggregation

of individuals with either mild cognitive impairment or dementia due to probable

Alzheimer’s disease), of which 71 were labelled to have dementia due to probable

Alzheimer’s disease. The PET scans were acquired across 48 different sites, with

voxel resolutions of 6mm and 8mm. The majority of participants (about 94%) identify

as belonging to a white ethnicity (see Discussion).

Validation datasets: Mayo Clinic Alzheimer’s Disease Research Center (ADRC) and

Mayo Clinic Study of Aging (MCSA). Individuals with dementia due to aetiologies

other than Alzheimer’s disease were discarded for this study (N=5). The same

criteria as with ADNI data were applied (three visits with [18F]-AV-1451 tau PET,

structural MRI scan and a measure of amyloid), with the exception of the amyloid

cutoff: since the composite reference region is not available in these datasets, we

used the available regions from the cortical summary region[133] (that is made
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up of frontal, anterior/posterior cingulate, lateral parietal, lateral temporal regions:

full list in Supplementary file Results.xlsx, tab “amyloid.target”) [131] and “inferior

cerebellum grey matter” as the reference. Then, we fit a 2-component Gaussian

mixture model [134] (see Supplementary Figure A.2) and derived the cutoff of

1.53 for the ¹¹C-Pittsburgh Compound B PET, to determine amyloid positivity. This

reduced the available individuals to 43 (1 CU, 13 MCI and 29 AD). Because of

the small sample size of the CU group, we only used the available 42 cognitively

impaired individuals (33.3% females).

Table 4.1: Proportion of individuals per interval time between visits. Most individuals
had visits separated by 0.7 to 1.5 years. Data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and from the Mayo Clinic Alzheimer’s Disease
Research Center (ADRC) and Mayo Clinic Study of Aging (MCSA), the last two
grouped in the Mayo column. Abbreviations: CU = cognitively unimpaired; CI =
cognitively impaired. Table reproduced from Llorente-Saguer and Oxtoby [131].

Discovery (ADNI) Validation (Mayo)
Time between visits (years) CU CI CI

t ≤ 1.5 61% 72% 76%
1.5 >t ≤ 2.5 22% 17% 18%
2.5 >t ≤ 3.5 6% 6% 6%

t >3.5 11% 5% 0%

Time between visits is shown for all experiments in Table 1. The majority

of intervals are from 0.7 to 1.5 years, but some span 3 years. We did not use

partial-volume-corrected SUVR data, as it has been shown to introduce longitudinal

errors [78, 76]. BioDisCVR input features, as with classical machine learning models,

can be the aggregation of any numerical variables. In our case, they consist of

regional PET SUV and volumes for brain regions. In the Discovery dataset (ADNI),

regions are defined by the Desikan-Killiany atlas [135], with the data provided on the

Image & Data Archive (IDA) run by the University of Southern California Laboratory

of Neuro Imaging (LONI) for download in CSV format. For details of the processing

pipelines, see ADNI’s manuscript [136]; this pipeline depends on a contempora-

neous native space MRI that is segmented and parcellated with Freesurfer v7.1.1

(surfer.nmr.mgh.harvard.edu) [137]. For the Validation datasets, volume measures

were obtained by the Mayo Clinic using the second version of the SUIT atlas [138].

Off-target binding regions were excluded to ensure accurate quantification of tau

pathology by minimising interference from non-specific binding [136]. The complete
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list of brain regions made available to our model is provided in the Supplementary

File Results.xlsx (“regions.available” tab) of the online version [131].

4.2.3 BioDisCVR Framework

BioDisCVR is a data-driven optimisation framework designed to discover novel,

ratio-based biomarkers that are tailored to a specific, user-defined objective (e.g.,

statistical power for a specific clinical trial scenario). It is built upon three core

components: (1) a flexible biomarker model, (2) a search and optimisation engine,

and (3) a customisable fitness function.

In this study, we define and use our framework BioDisCVR to discover biomark-

ers tailored for a given clinical trial design. Here we consider both preclinical and

clinical trials (in CU/CI individuals, respectively) of fixed duration (see Study Design

4.2.1).

The Biomarker Model: Composite Value Ratio (CVR). The framework’s output is

a Composite Value Ratio (CVR), which moves beyond the traditional, biologically pre-

defined ’target’ and ’reference’ regions of SUVR. A CVR is a ratio of two composite

regions, where each composite is a combination (e.g., simple or volume-weighted

average) of signals from any number of input features (e.g., brain regions’ measures).

This structure is inherently reference-agnostic and allows the data itself to determine

the optimal combination of regions for both the numerator and denominator. As

shown in Equation 4.1, this formulation ensures that if SUVR values are used as

input, the arbitrary reference region cancels out, making the final CVR dependent

only on the underlying SUV signals. Specifically,

CVR =
composite1SUVR
composite2SUVR

=
composite1SUV/reference SUV
composite2SUV/reference SUV

=
composite1SUV
composite2SUV

(4.1)

Where compositei is the signal from any number of regions, combined in any

way (e.g., volume-weighted, averaged).

The Search and Optimisation Engine. To discover the optimal CVR from an in-

tractably large combinatorial space (over 1040 permutations in this work), the frame-

work employs an objective-driven genetic algorithm [139]. Potential biomarkers are

encoded in a vector, where integer values map each input feature to the numerator,
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the denominator, or exclusion from the ratio. The algorithm then iteratively evolves a

population of these candidate biomarkers to find the one that best maximises the

fitness function.

The Fitness Function. The guiding principle of the discovery process is a user-

defined fitness function. For the application in this Chapter, the objective was to find

biomarkers with high statistical power for monitoring longitudinal trajectories, and

thus useful for a hypothetical clinical trial. Therefore, the fitness function was defined

as the ratio of disease signal (trajectory separation between cognitive groups) to

measurement noise (the square of the Sample Size Estimate, SSE). This design

forces the algorithm to find CVRs that are highly sensitive to disease-related change

while remaining longitudinally stable.

Practical Implementation in this Thesis. For the specific application to tau PET,

the search space is reduced (by choice) by using two biologically motivated priors:

1) no BraakI-III regions [127] in the denominator; 2) no commonly used SUVR

reference regions in the numerator. We report the best result found after 300

generations of the genetic algorithm for each of the constraints or scenarios. The top

5 biomarkers found, as well as the effect of different random initialisations, are shown

in Supplementary File Results.xlsx, “Random.seeds top.n” tab of the online version

[131]. Our aim is not to show convergence or a focus on the search algorithm; rather,

the evaluation of the biomarkers found by the algorithm. Thus, the choice of 300

generations is arbitrary, although in 20 random initialisation experiments with 500

generations each, 90% of the final performance was achieved within a mean of 140

generations (and below a standard deviation of 100), for both clinical and preclinical

cases. Furthermore, the generations alone are not an indicator of the total number

of combinations tested, as the genetic algorithm population size should also be

taken into account.

Pipelines. Our experiments include several pipelines to investigate laterality (right-

left hemisphere differences) and region size effects. Laterality is explored through

averaged bilateral regions (indicated by the suffix -B in the biomarker nomenclature)

vs left/right independent (indicated by the suffix -L in the biomarker nomenclature).

Region size effects are explored through volume-weighted SUV vs simple mean

SUV (mSUV). Supplementary Table A.1 contains additional experiments where
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either the numerator or denominator is defined a priori.

In essence, the BioDisCVR framework is defined by these core components:

a flexible biomarker model (the CVR), a powerful search engine to navigate the

combinatorial space, and a user-defined fitness function to guide the discovery

towards a specific, quantifiable objective.

4.2.4 Baselines

We compare the performance of CVR to SUVR biomarkers from the literature:

meta-temporal [140] (entorhinal cortex, parahippocampal gyrus, amygdala, inferior

temporal gyrus, fusiform gyrus, middle temporal gyrus) divided by a composite

reference region (eroded subcortical white matter, whole cerebellum, and brain-

stem) [124]; highest tau-PET-positive data-driven stage (DDS [141], an adaptive

individualised approach) divided by the inferior cerebellum grey matter. Additionally,

we consider all combinations of composite target and reference regions we found

in the literature: Braak stages [127], meta-temporal [140], mesial-temporal [142],

temporoparietal [142], “rest” [142] as target/numerator regions; and a set of popular

reference regions (whole cerebellum, inferior cerebellar grey matter, composite

reference region, eroded subcortical white matter, cerebellum cortex, brainstem,

eroded subcortical white matter + inferior cerebellar grey matter, eroded subcortical

white matter + whole cerebellum, whole cerebellum + brainstem, inferior cerebellar

grey matter + brainstem, eroded subcortical white matter + inferior cerebellar grey

matter + brainstem). Including composites calculated using both mean SUV and

volume-weighted SUV, we compared our results with a total of 220 literature-inspired

baseline biomarkers.

4.2.5 Statistical analysis

All analyses are performed in R [143] (version 4.3.2). Our analysis involves calculat-

ing SSE, longitudinal group separation, and longitudinal precision (defined below)

for clinical trials on Alzheimer’s disease in either cognitively unimpaired (CU) or

impaired (CI) participants. The SSE and group separation measures drive the ge-

netic algorithm. Longitudinal group separation (t-statistic) and longitudinal precision

(standard deviation of model residuals) of tau PET biomarkers are quantified using

a linear mixed effects model [144] fit to log(SUVR). Covariates sex, APOE4, and

education were not included because they did not significantly impact the intercept
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or the slope of the biomarker, replicating the analysis of Schwarz et al. [78]. Our

linear mixed effects model includes correlated random slopes and intercepts, since

this makes it invariant to time-shifts [144], and we use a relative time point (the

average of all visits per individual). Furthermore, in the discovery cohort data (ADNI),

a Chi-square test indicated that the correlated random effects model fits the data

better than the uncorrelated model, both for the cognitively unimpaired (χ2=13.38,

Df = 1, p < 0.001) and cognitively impaired (χ2=13.39, Df = 1, p < 0.001). This is

the formula used:

SUVRi j = β0 + timei j(β1 +β3 ·DXi j +b1 j)+β2 ·DXi j +b0 j + εi j (4.2)

Where:

• i indexes the observation,

• j indicates the individual,

• DX is a binary variable indicating whether the individual j belongs to the

cognitively impaired group (1) or not (0),

• β0−3 are fixed effects,

• b0 j b1 j are random effects (intercepts and slopes varying by individual),

• ε is the residual error.

Cognitive group separation (CU vs CI) is quantified by the t-statistic between

fixed effect gradients (β3 in equation 4.2). The measure of longitudinal repeatability

is quantified using the standard deviation of the model residuals (ε in equation

4.2), which is a measure of the relative error with respect to the biomarker values.

Finally, we use the longpower package [145] to calculate the sample size estimate

(SSE) [146] for each of two hypothetical clinical trials designed for 80% power to

reduce tau PET accumulation by 20% vs. placebo: CU individuals, 54 months

(Experiment 1, c.f. the A4 Study [132]); and CI individuals, 18 months (Experiment

2, c.f. ENGAGE/EMERGE [57], CLARITY-AD [79], TRAILBLAZER-ALZ [75]).

All metrics are provided with 95% confidence intervals, calculated using the

model-based (semi-)parametric bootstrap for mixed models function from the lme4

package [144], version 1.1.35.1.
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4.3 Results

Computation. Using a 12th Gen Intel® Core™ i7-12 700H, with 2.70 GHz and

20 cores, we ran the search algorithm for less than three minutes per experiment

(Supplementary File Results.xlsx, tab Random.seeds-top.n, of the online paper [131]

shows different random initialisations of BioDisCVR).

Experiment 1 (hypothetical 54-month preclinical AD trial).

Figure 4.2: Biomarker performance for Experiment 1. The plot shows sample size esti-
mate (SSE) against percentage error (longitudinal precision) for all biomarkers in
Experiment 1, truncated at SSE ≤ 2 000. Composite value ratio (CVR) biomark-
ers (red crosses) showed superior performance to baseline comparators (blue
dots), reducing both the SSE and the error. Error bars show 95% confidence
intervals from bootstrapping. The SSE shown is the minimum number of in-
dividuals that would be needed per branch for a hypothetical preclinical trial
(cognitively unimpaired individuals), designed for 80% power and 20% effect
size, for a duration of 4.5 years. Figure reproduced from Llorente-Saguer and
Oxtoby [131].

Figure 4.2 is a plot of sample size estimate (SSE) against percentage error

(longitudinal precision) for all biomarkers in Experiment 1, truncated at SSE ≤ 2 000.

CVR biomarkers (red crosses) showed superior performance to baseline compara-

tors (blue dots). Error bars show 95% confidence intervals from bootstrapping (see

Statistical analysis 4.2.5).

Table 4.2 highlights selected biomarkers for Experiment 1 (all results are in-

cluded in Supplementary Material File Results.xlsx as a spreadsheet). Namely,

specific literature biomarkers, plus the best-performing baseline (biomarker inspired

by the literature) and our composite value ratio (CVR) biomarkers found by the
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Table 4.2: Results of Experiment 1: Biomarker performance for a 54-month clinical
trial in an amyloid-positive, cognitively unimpaired cohort. Numbers in
parentheses correspond to the 95% confidence interval. Sample size estimate
(SSE) is assessed with 80% power to detect a 20% effect size with respect to
placebo, with two visits separated by 54 months. In bold, the best result per
metric. Composite = average PET SUV of whole cerebellum, brainstem and
eroded subcortical white matter. Inferior cerebellum gm = inferior cerebellum grey
matter. “ewm+cerebellum” indicates the average of the eroded subcortical white
matter and the whole cerebellum. Our biomarkers have the prefix “CVR”, short
for composite value ratio, with mSUV for mean SUV or SUV for volume-weighted
SUV, and a suffix L or B indicating a lateral or bilateral regional analysis. Table
reproduced from Llorente-Saguer and Oxtoby [131].

Biomarker SSE Separation Repeatability
meta-temp/composite 626 (353, 1401) 4.37 (2.46, 6.49) 1.06 (0.82, 1.31)
DDS/
inferior cerebellum gm 438 (259, 895) 3.48 (1.57, 5.7) 1.66 (1.32, 2.06)
(mSUV)
mesial temporal/
(ewm+cerebellum)

206 (143, 325) 0.17 (-1.84, 2.09) 1.03 (0.82, 1.3)

CVR-SUV-L 195 (131, 321) 4.2 (2.24, 6.25) 1.52 (1.19, 1.68)
CVR-mSUV-L 80 (61, 108) 4.32 (2.31, 6.37) 0.78 (0.67, 0.88)
CVR-SUV-B 205 (138, 338) 4.43 (2.61, 6.56) 1.17 (0.91, 1.47)
CVR-mSUV-B 115 (84, 168) 3.3 (1.33, 5.43) 0.86 (0.67, 0.96)

algorithm. Overall, Table 4.2 shows that one of the CVR biomarkers always out-

performs state-of-the-art biomarkers from the literature — for all metrics and, in

particular, our primary goal of smaller SSE. The best results for SSE were obtained

with CVR-mSUV-L which is a ratio of simple-mean SUV combinations and lateral-

ity (separate hemispheric regions). The numerator included grey-matter regions

from both hemispheres (superior frontal gyrus, amygdala), from the left hemisphere

(caudal middle frontal gyrus, isthmus of cingulate gyrus, lingual gyrus, paracentral

lobule, parahippocampal gyrus, postcentral gyrus, superior temporal gyrus), from the

right hemisphere (lateral orbitofrontal gyrus). The denominator included grey- and

white-matter regions from both hemispheres (precentral gyrus, brainstem, corpus

callosum anterior, corpus callosum central, corpus callosum posterior), from the left

hemisphere (insula, superior parietal lobule, ventral diencephalon), from the right

hemisphere (lingual gyrus, paracentral lobule, postcentral gyrus, rostral anterior

cingulate cortex).

The second-best SSE in Experiment 1 (about +45% SSE —worse) was obtained

by CVR-mSUV-B, which combines bilateral mean SUV. The numerator included
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grey-matter regions from both hemispheres (entorhinal cortex, amygdala, inferior

temporal gyrus, insula, medial orbitofrontal cortex, paracentral lobule, precuneus,

superior frontal gyrus, temporal pole, transverse temporal gyrus). The denominator

included grey- and white-matter regions from both hemispheres (brainstem, eroded

subcortical white matter, corpus callosum anterior, corpus callosum mid-anterior,

caudal anterior cingulate cortex, postcentral gyrus, rostral anterior cingulate cortex,

ventral diencephalon). To aid with visualisation, we show a representation of the

brain[147], with the regions in the numerator in blue, and the ones in the denominator

in red, in Supplementary Figure A.3.

Overall, performance of baselines in Experiment 1 went largely as expected for

this preclinical trial scenario. For example, SUVRs with target/numerator regions

involving later Braak stages performed poorly. The next worse targets were Braak2

(expected because of off-target binding) and temporoparietal, with mostly SSE

above 1 000. The best results of literature-inspired biomarkers in terms of SSE

were obtained with the mesial temporal as a target (simple average of its regions’

SUV), with an SSE of 206, when using a reference region consisting of the simple

average of the eroded subcortical white matter and the cerebellum regions. The

next best targets were Braak stages 1 and 3 (SSE of 253 and 256, respectively,

using the average SUV), when using a reference region consisting of the average of

the eroded subcortical white matter and inferior cerebellum grey matter.

Experiment 2 (hypothetical 18-month clinical AD trial).

Figure 4.3 is a plot of sample size estimate (SSE) against percentage error

(longitudinal precision) for all biomarkers in Experiment 2, truncated at SSE ≤ 4 000.

CVR biomarkers (red crosses) showed superior performance to baseline compara-

tors (blue dots). Error bars show 95% confidence intervals from bootstrapping (see

Statistical analysis).

Table 4.3 highlights selected biomarkers for Experiment 2 (all results are in-

cluded in Supplementary Material File Results.xlsx as a spreadsheet). Namely,

specific literature biomarkers, plus the best-performing baseline (biomarker inspired

by the literature) and our composite value ratio (CVR) biomarkers found by the

algorithm. Overall, Table 4.3 shows that, like with Experiment 1 above, one of the

CVR biomarkers always outperforms state-of-the-art biomarkers from the literature
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Figure 4.3: Biomarker performance for Experiment 2. The plot shows sample size esti-
mate (SSE) against percentage error (longitudinal precision) for all biomarkers
in Experiment 2, truncated at SSE ≤ 4 000. Composite value ratio (CVR)
biomarkers (red crosses) showed superior performance to baseline compara-
tors (blue dots), reducing both the SSE and the error. Error bars show 95%
confidence intervals from bootstrapping. The SSE shown is the minimum num-
ber of individuals that would be needed per branch for a hypothetical clinical
trial (cognitively impaired individuals), designed for 80% power and 20% effect
size, for a duration of 1.5 years. Figure reproduced from Llorente-Saguer and
Oxtoby [131].

—for all metrics and, in particular, our primary goal of smaller SSE. The best results

were obtained with CVR-mSUV-L, which —like the results of Experiment 1— is

a ratio of simple-mean SUV combinations with laterality. The numerator included

grey-matter regions from both hemispheres (inferior temporal gyrus, insula, medial

orbitofrontal cortex, superior frontal gyrus, temporal pole), from the left hemisphere

(lingual gyrus, pars opercularis, superior parietal lobule), from the right hemisphere

(fusiform, pars orbitalis, pars triangularis, pericalcarine cortex, precuneus, rostral

middle frontal gyrus, superior temporal gyrus). The denominator included white- and

grey-matter regions from both hemispheres (caudal anterior cingulate cortex, rostral

anterior cingulate cortex, brainstem, whole cerebellum), from the left hemisphere

(lateral orbitofrontal gyrus, pars orbitalis), from the right hemisphere (lateral occipital

sulcus, transverse temporal gyrus).

The second-best SSE in Experiment 2 (about 12% bigger SSE —worse) was

obtained by CVR-mSUV-B, as with Experiment 1, which involves bilateral mean SUV.

The numerator included the following grey-matter regions from both hemispheres

(inferior temporal gyrus, insula, medial orbitofrontal cortex, precentral gyrus, superior
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Table 4.3: Results of Experiment 2: Biomarker performance for an 18-month clini-
cal trial in an amyloid-positive, cognitively impaired cohort. Numbers in
parentheses correspond to the 95% confidence interval. Sample size estimate
(SSE) is assessed with 80% power to detect a 20% effect size with respect to
placebo, with two visits separated by 18 months. In bold, the best result per
metric. Composite = average PET SUV of whole cerebellum, brainstem and
eroded subcortical white matter. Inferior cerebellum gm = inferior cerebellum
grey matter. Our biomarkers have the prefix “CVR”, short for composite value
ratio, with mSUV for mean SUV or SUV for volume-weighted SUV, and a suffix
L or B indicating a lateral or bilateral regional analysis. Table reproduced from
Llorente-Saguer and Oxtoby [131].

Biomarker SSE Separation Repeatability
meta-temp/composite 1539 (1091, 2333) 4.37 (2.46, 6.49) 4.67 (3.97, 5.06)
DDS/inferior cerebellum gm 1031 (739, 1539) 3.48 (1.57, 5.7) 3.12 (2.63, 3.69)
SUV Braak5/(ewm+cerebellum) 852 (569, 1415) 4.14 (2.3, 6.35) 1.22 (1.02, 1.46)
CVR-SUV-L 348 (275, 454) 5.09 (3.17, 7.3) 1.02 (0.86, 1.19)
CVR-mSUV-L 212 (174, 265) 6.3 (4.38, 8.42) 0.66 (0.55, 0.76)
CVR-SUV-B 365 (288, 479) 5.15 (3.13, 7.32) 1.01 (0.85, 1.19)
CVR-mSUV-B 238 (195, 297) 5.6 (3.58, 7.6) 0.93 (0.79, 1.1)

frontal gyrus, temporal pole). The denominator included the following white- and

grey-matter regions from both hemispheres (brainstem, whole cerebellum, caudal

anterior cingulate cortex, lateral orbitofrontal gyrus, rostral anterior cingulate cortex).

To aid with visualisation, we show a representation of the brain[147], with the regions

in the numerator in blue, and the ones in the denominator in red, in Supplementary

Figure A.3.

In this experiment as well, performance of baselines went largely as expected

for this clinical trial scenario. The earlier Braak stages (1-3) and the subset of

their regions that compose the mesial temporal had the worst performance. The

best results of literature-inspired biomarkers in terms of SSE were obtained with

the Braak5 composite as a target (volume-weighted SUV), with an SSE of 852,

when using a reference region consisting of the average of the eroded subcortical

white matter and the cerebellum regions. Following this, the next best SSE was

862, achieved by the same Braak5 target regions (mean SUV) and the composite

reference region. The next best target was the temporoparietal, using the composite

reference region, with an SSE of 962.

Experiment 3 (hypothetical 18-month clinical AD trial): validation.

Table 4.4 shows the salient results from the discovery set, and their performance

in the validation dataset. As mentioned in 4.2.2, we had to use a subset of intersect-
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Table 4.4: Results of Experiment 3: Biomarker performance for an 18-month clini-
cal trial in an amyloid-positive, cognitively impaired cohort. Numbers in
parentheses correspond to the 95% confidence interval. Sample size estimate
(SSE) is assessed with 80% power to detect a 20% effect size with respect to
placebo, with two visits separated by 18 months. In bold, the best result per
metric. Composite = average PET SUV of whole cerebellum, brainstem and
eroded subcortical white matter. Inferior cerebellum gm = inferior cerebellum
grey matter. Our biomarkers have the prefix “CVR”, short for composite value
ratio, with mSUV for mean SUV or SUV for volume-weighted SUV, and a suffix
L or B indicating a lateral or bilateral regional analysis. Table reproduced from
Llorente-Saguer and Oxtoby [131].

A) Discovery dataset
Biomarker SSE Separation Repeatability
meta-temp/whole cerebellum 1722 (1190, 2710) 4.17 (2.28, 6.16) 4.68 (4.01, 5.07)
DDS/inferior cerebellum gm 1031 (739, 1539) 3.48 (1.57, 5.7) 3.12 (2.63, 3.69)
mSUV temporoparietal/cerebellum 1136 (719, 2056) 3.52 (1.71, 5.53) 1.84 (1.53, 2.17)
CVR-SUV-L 473 (362, 644) 6.09 (4.17, 8.34) 1.17 (0.98, 1.38)
CVR-mSUV-L 326 (257, 427) 6.38 (4.43, 8.48) 0.6 (0.51, 0.7)
CVR-SUV-B 513 (384, 723) 5.43 (3.57, 7.48) 1.31 (1.1, 1.54)
CVR-mSUV-B 362 (284, 478) 6.36 (4.47, 8.57) 0.85 (0.71, 1.01)

B) Validation dataset
Biomarker SSE Repeatability
meta-temp/whole cerebellum 690 (394, 1509) 2.16 (1.6, 2.84)
DDS/inferior cerebellum gm 417 (271, 723) 2.08 (1.52, 2.77)
mSUV temporoparietal/cerebellum 755 (419, 1748) 2.20 (1.68, 2.87)
CVR-SUV-L 601 (351, 1261) 0.97 (0.72, 1.26)
CVR-mSUV-L 513 (307, 1027) 0.63 (0.47, 0.82)
CVR-SUV-B 630 (361, 1369) 1.17 (0.88, 1.52)
CVR-mSUV-B 334 (217, 579) 0.7 (0.53, 0.91)

ing regions of all datasets, hence the differences with Experiment 2. The best result

in the validation set was obtained by the CVR-mSUV-B, which was the second-best

BioDisCVR configuration both in Experiment 1 and 2. The CVR-mSUV-B numera-

tor consisted of the following grey-matter regions from both hemispheres (inferior

temporal gyrus, insula, medial orbitofrontal cortex, precentral gyrus, superior frontal

gyrus, temporal pole), while the denominator consisted of the following white- and

grey-matter regions (brainstem, whole cerebellum, caudal anterior cingulate cortex,

lateral orbitofrontal gyrus, rostral anterior cingulate cortex). To aid with visualisation,

we show a representation of the brain[147], with the regions in the numerator in

blue, and the ones in the denominator in red, in Supplementary Figure A.3. The

second-best result in the validation set was obtained by the adaptive DDS biomarker,
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although it did not perform as well in the discovery dataset.

Additional experiments. Supplementary table A.1 shows BioDisCVR results

when fixing either the numerator (meta-temporal) or the denominator (inferior cere-

bellum grey matter). It can be observed that allowing BioDisCVR to find a data-driven

denominator has a considerable impact in improving both the SSE (by a factor of 3

and 4 for Experiment 1 and 2, respectively), while fixing the reference as the inferior

cerebellum grey matter achieves comparable results with literature biomarkers. Full

information on selected regions is given in Supplementary File Results.xlsx of the

online version [131]. Regional ablation analysis (shown in Supplementary Figure

A.1) shows remarkably consistent performance, suggesting that no single region

dominates the CVR biomarkers, with the exception of the biomarker tested in Exper-

iment 3 – validation set, where removing the inferior temporal gyrus worsens the

performance considerably (from 362 to 854 SSE).

Interestingly, the error and SSE of CVR mSUV-B designed for Experiment 1,

but applied to Experiment 2, are 0.90 and 652, respectively. The same configuration

(CVR mSUV-B), but trained for Experiment 2, has an error and SSE of 0.85 and 389,

respectively, in Experiment 1. Both are still outperforming the literature biomarkers.

4.4 Discussion

When applied to preclinical (secondary prevention) and clinical (treatment) trial

scenarios on Alzheimer’s disease, our data-driven framework BioDisCVR discovered

uniquely novel ratio-based tau PET biomarkers that are vastly superior to previous

work. As discussed below, this can result in remarkable benefits including time- and

cost-savings when running clinical trials on Alzheimer’s disease.

In a 54-month preclinical trial (Experiment 1), the best BioDisCVR output (mSUV-

L) reduced SSE by 82%, decreased repeatability error by 53% and increased group

separation by 24% compared to the best result from the literature: the adaptive DDS

biomarker[141]. Compared with the best combination of targets and references

inspired by literature, the improvement is still vast, at 62% reduced SSE, 25% less

error, and about 25 times higher group separation, as the benchmark performed

poorly in group separation.

We found similar results in Experiment 2 (18-month clinical trial), where our

best biomarker reduced SSE by 79%, decreased repeatability error by 79%, and
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improved group separation by 80%, with respect to the DDS[141]. As the SSE

is proportional to the inverse squared effect size, the CVR biomarkers will remain

superior no matter which effect size is chosen.

In Experiment 3 (18-month clinical trial), results showed that the variant of CVR

that had the best generalisation in the validation dataset was the mSUV-B (mean

SUV, bilateral analysis), with a 20% reduction of SSE and 65% reduction of error

with respect to the best biomarker from the literature (DDS[141]). A key difference

between DDS and CVR is that in our configuration, CVR is a ratio of fixed regions,

whereas DDS is adaptive, and different individuals will have different target regions.

Notably, this CVR vastly outperformed DDS in the discovery set (68% smaller SSE,

80% smaller error).

The mSUV-B CVR for Experiment 1 and 2 had similarities in the numerator

(entorhinal cortex, amygdala, precuneus, superior frontal gyrus, transverse temporal

gyrus) and the denominator (brainstem, eroded subcortical white matter, caudal

anterior cingulate, rostral anterior cingulate), but specialised in different regions to

adapt to the stage of the disease: cortical regions that were stable to use in the

denominator for earlier stages (e.g., cuneus) disappeared from the denominator

and appeared in the numerator in Experiment 2, as they show changes later in the

disease process[127]. We advise caution in drawing conclusions comparing the

few CVR biomarkers among each other, though, since multiple configurations show

similar performance (see ablation analysis in Supplementary Figure A.1).

Our framework demonstrates remarkable flexibility, which we exploited in multi-

ple ways. For example, in supplementary experiments, we incorporated priors and

constraints to enhance interpretability and bolster confidence in the main findings.

Allowing for hemispheric laterality generally yielded CVR biomarkers with slightly

improved SSE (5-30% smaller), which seems to concur with a previous finding of

laterality of tau pathology accumulation in Alzheimer’s disease[18]. In addition to the

volume-weighted composite SUV that is used in previous SUVR studies on statistical

ROIs[148, 124, 140, 125, 149], we considered a regional mean SUV, remarkably

finding that the regional mean produced CVR biomarkers with better repeatability

error (7-48% smaller) and SSE (35-60% smaller). The effect of composition was

not significant when performing a Wilcoxon rank-sum test in the literature-inspired
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biomarkers (W = 19944, p-value = 0.7079, filtering out biomarkers that had above

3 000 SSE). Braak stage SUVR biomarkers (using the composite reference region)

produced results comparable to the best biomarkers from the literature, but still

worse than CVR (see Supplementary File Results.xlsx, tab Exp1 and 2 of the online

version [131]). As could be expected, the earliest Braak Stage 1 was favoured

for Experiment 1 (preclinical trial), and the later Braak Stage 5 was favoured for

Experiment 2 (clinical trial). Fixing the numerator as the meta-temporal region

(and finding a data-driven denominator) improved results compared to using the

meta-temp/composite biomarker[78]. Likewise, fixing the denominator as the inferior

cerebellum grey matter yielded improved results compared to the literature biomark-

ers, providing further support for our approach of moving beyond the traditional

reference regions used in SUVR analyses. Exploring alternative optimisers as a

search algorithm (box-constrained BFGS or Nelder-Mead) did not achieve results

on par with the ones obtained by the genetic algorithm (results not shown), but other

optimisation approaches could be explored in the future. Different random initialisa-

tions generated similarly performing biomarkers, with a low coefficient of variation

(0.043) in fitness for Experiment 2 (clinical), but seemed to stop at a local minimum

for one of the random seeds in Experiment 1 (preclinical), resulting in a coefficient

of variation of 0.17. As observed in the regional ablation analysis (Supplementary

Figure A.1), where different biomarkers exhibited similar performances, at the final

computed generation of the genetic algorithm, the top 5 biomarkers exhibited com-

parable performance metrics, with a fitness coefficient of variation below 10% for

Experiment 1 (preclinical) and below 5% for Experiment 2 (clinical), (Supplementary

File Results.xlsx of the online version [131]). The framework’s adaptability extends

beyond the two experimental scenarios (54- and 18-month clinical trials) considered

in our experiments: it could have easily been employed to identify a biomarker that

performs well in both scenarios, thereby providing a unified solution.

Our experiments produced biomarker ratios that included known regions com-

monly associated with Alzheimer’s disease. The numerator often included regions

commonly used as targets in SUVR studies of Alzheimer’s disease progression, e.g.,

entorhinal cortex, fusiform gyrus, inferior temporal gyrus, middle temporal gyrus.

The denominator often included regions used as SUVR references, e.g., eroded
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subcortical white matter, whole cerebellum or cerebellum cortex, brainstem. The fact

that our CVR (mean SUV, bilateral) designed for a trial works on the other (better

than the specific two biomarkers from the literature) validates, in unseen data, that

they are targeting disease-specific regions. Furthermore, both the 95% confidence

intervals and the ablation study on influential regions (Supplementary Figure A.1)

suggest a robust fit in the available data, free of questionable influential regions.

Additional metrics or priors to guide the algorithm could be used to select a smaller

set of good-performing biomarkers. Results indicate that using a curated biomarker

per clinical trial target group can better characterise relevant disease progression,

in line with the recent Revised Criteria for Diagnosis and Staging of Alzheimer’s

Disease[4], reflecting that different regions are affected at different stages of the

disease.

The fast execution of the framework BioDisCVR, together with the usage of

readily processed scans (thus avoiding the need to re-run preprocessing methods)

makes this approach computationally cheap, positively addressing an increasingly

concerning environmental impact of machine learning[150].

We anticipate that data-driven methods such as BioDisCVR could revolutionise

the drug development pipeline. The dramatic reduction in SSE produced here has

multiple benefits. First, a smaller trial reduces the number of individuals exposed

to increased risk of side effects such as ARIA[151, 152, 120, 153]. Second, trials

can take considerably less time, e.g., the A4 Study screening time could have been

reduced from 44 months[154] to under 12 months, considering a linear relationship

between recruitment time and sample size[155]. Third, the cost savings could be

immense, e.g., for a cost per individual of $40k[156], the possible savings per trial

using CVR-mSUV-B (as opposed to the best published biomarker) could be (2 arms

x (1031 – 238) x 40 000) about $65 million for CI/18-months, or (2 arms x (438 –

115) x 40 000) about $25 million for CU/54-months. In the event that other factors

influence the minimum sample size needed and cannot be reduced, using CVR

would allow a more precise detection threshold of disease progression. The superior

longitudinal precision of our data-driven biomarkers makes them candidates for

secondary outcomes or endpoints.

We highlight opportunities for future work. First, it is important to explore
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further validation of tau PET ratio-based biomarkers across cohorts, ethnicities, etc.

(work in progress, with a collaboration with AIBL and BioFinder groups). Second,

our framework can be applied across other PET tracers and beyond PET, e.g., to

discover new and improved ratio-based blood biomarkers[157, 4]. Indeed, the small

run-time needed for computation facilitates extensive exploration in any data modality

and even across modalities, including fluid biomarkers and MRI (less expensive than

PET and non-invasive). Not only this, but data acquisition cost could be included

in the fitness function to discover a cost-effective ratio-based multimodal biomarker

—potentially benefiting low- and middle-income countries, in particular. Third, future

work could consider deriving a theoretical guarantee that a given search algorithm

will find the global optimum biomarker, but in practice, we found that multiple runs with

random seeds produced very similar results (see ablation analysis in Supplementary

Figure A.1 and top-n biomarkers in Supplementary File Results.xlsx of the online

version [131]).

4.5 Conclusions

Clinical trials of anti-amyloid and anti-tau therapies in Alzheimer’s disease need

a precise and accurate biomarker for assessing disease modification (pathology

clearance). We have introduced and deployed a data-driven framework for discover-

ing such biomarkers, with experimental results showing state-of-the-art longitudinal

precision, and drastically reduced sample size estimates required for modern clinical

trials in symptomatic and preclinical Alzheimer’s disease. Our results suggest that

considerable time, money, and participant suffering could be saved by incorporating

our biomarker framework into the design of future preclinical and clinical trials.



Chapter 5

CVR applied to MRI to track volumetric

changes

A preliminary version of the work presented in this chapter was presented in 2023

at the Alzheimer’s Association International Conference. Later, a manuscript was

prepared with a more thorough analysis, and it is currently under editorial review by

the Brain Communications journal (as of February 2025). Neil Oxtoby contributed to

the manuscript.

5.1 Introduction

As noted in Background Chapter 2, image-based biomarkers are used as secondary

endpoints in clinical trials, often to confirm biological mechanisms to support clinical

benefit. Measurement variance can diminish our ability to detect true changes.

In Chapter 4, we introduced a biomarker discovery algorithm, applied to tau PET

regional values, which produced a new biomarker: the composite value ratio (CVR)

[158, 131]. Here, we apply the CVR concept to more widely available and cheaper

MRI data, potentially enhancing the practicality and accessibility of longitudinal

monitoring. MRI is more relevant to routine healthcare than the specialised tau PET

scans, although their sensitivity at different stages of the disease is very different:

MRI changes are downstream of pathology accumulation.

Brain atrophy can result naturally from ageing [159, 31, 32, 160, 161] or be

accelerated by neurodegenerative diseases (e.g., Alzheimer’s disease [32, 162, 30,

163, 4], frontotemporal dementia [30]). Understanding volumetric changes can be

useful for diagnosis [163, 4], monitoring disease progression [164], and evaluating

the impact of therapeutic interventions [117, 118]. The following regions are reported
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to experience a change over time in healthy adults that can be measured with T1-

or T2-weighted magnetic resonance imaging (MRI): whole brain [159, 30, 161],

hippocampus [31, 165, 161, 163], entorhinal cortex [165], ventricles [159, 32, 160,

161], temporal lobe [31, 161]. In Alzheimer’s disease, these are the regions of

interest that have been reported to have an accelerated and detectable volume

change over time with respect to healthy controls: whole brain [30], hippocampus

[31], ventricles [32], medial temporal lobe [31, 4]. In phase-3 randomised clinical tri-

als aimed at intervening on Alzheimer’s disease progression, MRI-based volumetric

measures of the whole brain, the ventricles and the hippocampus have been used

as primary [117] and secondary outcome measures [118, 57, 75, 119]. Moreover,

visual ratings such as medial temporal lobe atrophy (MTA) or global cortical atrophy

(GCA) are used to subjectively assess atrophy severity. If we discover a CVR that

improves measurement sensitivity over traditional biomarkers, then it could provide

an objective, quantitative measure to help radiologists and clinicians.

5.2 Materials and Methods

We apply the BioDisCVR framework to find a composite value ratio (CVR) aimed at

improving the monitoring of brain volume changes due to Alzhemer’s disease. CVR

and traditional biomarkers are measured using three main metrics: (1) the sample

size needed to detect a 20% change in the gradient in a hypothetical clinical trial;

(2) a measure of longitudinal coherence (translated into a percentage error of the

biomarker measure); and (3) group separation of the biomarker trajectory (according

to amyloid positivity and cognitive status, as two separate analysis). The BioDisCVR

framework uses by default a genetic algorithm to search for combinations of features

(a ratio of aggregate brain regional volumes in this case), that improve a fitness

function (described below, in Model).

Data. We analysed longitudinal T1-weighted MRI regional volumes from 1381

participants in the ADNI dataset. The segmentation to obtain regional volumes was

performed with FreeSurfer 7.1.1 [137]. Table 5.1 shows the number of subjects and

visit counts by cognitive impairment (DX), amyloid positivity (AB), sex, and presence

of APOE4 (APOE). The median total follow-up time per individual (earliest visit

to latest visit) was 157.6 weeks, with an interquartile range (IQR) of 210.3 weeks

(range: 4 to 809.6 weeks, average: 214.5 weeks, total follow-up time (adding all
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Figure 5.1: Conceptual abstract. Atrophy happens distinctly in different parts of the
brain. Regional volumes are fed to an algorithm that searches for a composite
value ratio (CVR) that minimises the sample size estimate for a hypothetical
clinical trial, maximises group separation (amyloid-positive versus amyloid-
negative), and reduces longitudinal error (linear model residuals to fitting the
log-transformed biomarker). In the radar plot, the best biomarker per metric is
at the external edge.

individuals) over 5676 years). Additional validation is done with the recently available

A4 Study data [132].

Study design. We randomly split the data into two subsets, stratified by the

covariates in the model formula below (cognitive status, amyloid status, sex, APOE4

presence). The distributions of the two splits are shown in Table 1, and are balanced

for all covariate combinations. We report the out-of-sample evaluation metrics of

each of the two subsets. In the Statistical analysis section below, we introduce the

modelling formula and the evaluation metrics. We consider two cases, or target

groups: preclinical (cognitively unimpaired, amyloid-positive) and clinical (cognitively

impaired, amyloid-positive). We define amyloid-positive individuals as those being

amyloid-positive at any visit (composite amyloid-PET SUVR above or equal to 0.78

for Florbetapir and 0.74 for Florbetaben)[133].

Statistical analysis. We fit a linear mixed-effects model with correlated random
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Table 5.1: Data characteristics. Here we can see the available number of scans and
individuals per each combination of covariates. DX = diagnosis, where CU =
cognitively unimpaired, and CI = cognitively impaired. AB indicates amyloid
positivity (shown with the symbol +). APOE4 indicates whether the individuals
have no such gene mutations (–) or otherwise (+). The data is randomly split in
two subsets for cross-validation of discovered biomarkers.

Covariates Total Training set Test set
DX AB sex APOEbin scans #ID scans #ID scans #ID
CU - female none 537 106 258 53 279 53
CU - female >0 123 23 75 12 48 11
CU - male none 565 126 276 63 289 63
CU - male >0 147 37 73 19 74 18
CU + female none 161 28 84 14 77 14
CU + female >0 77 17 41 9 36 8
CU + male none 192 39 98 20 94 19
CU + male >0 201 52 88 26 113 26
CI - female none 941 166 506 83 435 83
CI - female >0 249 47 117 24 132 23
CI - male none 655 113 327 57 328 56
CI - male >0 121 23 68 12 53 11
CI + female none 564 108 298 54 266 54
CI + female >0 1183 231 596 116 587 115
CI + male none 494 95 248 48 246 47
CI + male >0 857 170 415 85 442 85

intercepts and slopes, similar to the framework work on tau PET biomarkers for

AD (Chapter 4, and [131]). Common covariates (age, sex, APOE4, education) are

analysed and included in the model where significant (iterative ANOVA tests), using

the ventricles divided by the total intracranial volume as a baseline biomarker. The

ventricles are used because they show the most stable longitudinal change (smaller

model residuals), compared to other biomarkers from the literature (entorhinal cortex,

hippocampus or whole brain), as shown in earlier work [160, 166]. Binary variables

for amyloid positivity and cognitive impairment are also included, as their fixed effects

will help us evaluate disease signal of biomarkers (positive individuals in either are

expected to have more pronounced brain changes than otherwise). The formula

used is the following:

log(biomarker) = β0 +b0 +Age.bl(β1 +β2 ·sex)

+ time(β3 +b1 +β4 ·DX+β5 ·AB+β6 ·APOE)+ ε (5.1)
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Where the age at baseline visit and sex (female = 1, male = -1) contribute to

the intercept, and the gradient (base β3) is modified by cognitive status (DX = 0 for

cognitively unimpaired, 1 otherwise), amyloid positivity (AB = 0 when negative, 1

otherwise) and having at least one APOE4 allele (APOE4 = 0 if none, 1 otherwise).

We include correlated random effects for the intercept (b0) and gradient (b1), since

this provides invariance to time-shifts [144], and we use a relative time point (the

average of visit dates, per individual). Education was not included, as it did not

have a significant impact on the fitting of the model (χ2 = 0.83, DF = 1, p = 0.36).

The low diversity in ethnicity precluded its inclusion in the model: out of the 1381

individuals in the study, only 6 were labelled as Hispanic, 1323 as not Hispanic, and

52 as unknown. When considering a specific target group for a clinical trial (only

amyloid-positive, and either cognitively unimpaired or impaired), we use the same

equation, but AB and DX are removed because these variables become fixed.

We calculate multiple evaluation metrics to compare biomarkers, namely sample

size estimate, measurement percentage error (as per our model fitting), and group

separation (by amyloid-positivity and cognition), described below.

Sample size estimate (SSE) is the sample size estimate per branch (placebo

and treatment) for a hypothetical clinical trial designed for 80% power, with 20%

treatment effect size, with measurements at the initial and final visit of the trial.

Length is 18 months for the clinical trial (cognitively impaired, amyloid-positive,

similar to the trials ENGAGE/EMERGE [57], CLARITY-AD [79], TRAILBLAZER-ALZ

2 [75]) and 54 months for the preclinical group (cognitively unimpaired, amyloid-

positive, similar to the A4 trial [132]). Given the same trial design conditions, a lower

SSE indicates that we can achieve the same detection of effect size with a smaller

number of participants. Even if a trial is not based solely on this, we can understand

this metric as a sensitivity metric, quantifying how good the biomarker is, accounting

for the gradient and variance of the model coefficients and residuals.

As an error measure to quantify the residual variability of the linear mixed-effects

model, we define error = 100%(esd(residuals)−1), where sd is the standard deviation,

and residuals are the model residuals. This transformation back to the original scale

allows for a more intuitive interpretation of variability in the context of the biomarkers’

actual values. Expressing residual variability as a percentage of the biomarker in
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its native space facilitates direct comparisons and meaningful insights into model

performance, where a lower error means a better fit.

We further provide two group-separation metrics, corresponding to the t-statistic

of the fixed effect of being amyloid-positive (AB = 1), and also the t-statistic of

the fixed effect of being cognitively impaired (DX = 1). This is key to ensuring

the biomarker is capturing changes related to the disease. A larger t-statistic

corresponds to better group separation. The above metrics are provided with 95%

confidence intervals, calculated using the model-based (semi-)parametric bootstrap

for mixed models function from the lme4 package [144], version 1.1.35.1.

Additionally, we perform the following tests to assess the fitting of the model:

variance inflation factors, as a multicollinearity check, since if strong multicollinearity

is present, it will affect the stability and interpretability of the regression coefficients,

potentially leading to inflated standard errors and unreliable estimates. Additionally,

we do a visual analysis of model residuals and quantile-quantile plots to ensure the

model’s assumptions about the residuals are not violated.

Further, we examine the usage of volumetric measures in past Phase 3

clinical trials (the A4 Study [132], EMERGE and ENGAGE [57], Clarity AD [79],

TRAILBLAZER-ALZ 2 [75]), and calculate the expected detectable effect size for the

same clinical trial configuration (number of participants, trial duration and inclusion

criteria), for the different biomarkers.

Finally, as an additional CVR validation and application, we obtained the publicly

available A4 trial MRI scans (recently available) and processed them using our

established pipeline. We compare the annualised percent change for each biomarker

for subjects with valid follow-up data. This was computed as [(endpoint value

- baseline value) / baseline value] / duration in years * 100%. To estimate the

treatment effect, we fitted an Analysis of Covariance (ANCOVA) model for each

biomarker. The annualised percent change was the response variable, with trial

group (Solanezumab vs. placebo) as the primary predictor. All models were adjusted

for key baseline covariates: age, ApoE ε4 carrier status (presence vs. absence),

years of education (dichotomised as ≥13 vs. <13 years), and the baseline value

of the respective biomarker to increase statistical power and control for regression

to the mean. From these models, we extracted the least-squares mean (LS-mean)
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difference between treatment arms, its 95

Model. We run the BioDisCVR framework (explained in Chapter 4, section

4.2.3) to obtain a composite value ratio (CVR): the ratio of two data-driven composite

regions. Each composite region is the average signal over a number of regions.

A genetic algorithm explores combinations of 34 bilateral regions defined by the

Desikan-Killiany atlas in FreeSurfer 7.1.1 [137]. Similar to the original framework

paper, our algorithm’s fitness function to be maximised includes group separation

(for disease signal) and a measure of variability (sample size estimate, described

below), and is defined as tAB/(SSE2), where:

tAB = Amyloid group separation: t-statistic of the fixed effect of being amyloid-

positive, fitting the model to all data. SSE = Sample size estimates per group for a

hypothetical clinical trial designed for 80% power, with 20% treatment effect size.

Measurements at the initial and final visit of the trial. Length is 18 months for the

clinical trial (cognitively impaired, amyloid-positive) and 54 months for the preclinical

group (cognitively unimpaired, amyloid-positive). For the analysis where we fit all

groups (regardless of cognitive or amyloid status), we consider a hypothetical clinical

trial length of 18 months; this is the experimental configuration used to report both

the amyloid and cognitive group separation.

Baselines. Results are compared to volumetric biomarkers that have been

used as outcome measures [117, 119, 57, 75] in phase-3 randomised clinical trials

aimed at intervening on Alzheimer’s disease progression: whole brain, hippocampus,

ventricles. We additionally include the entorhinal cortex, for its strong implication

with Alzheimer’s disease [165]. These volumes of interest are all divided by the

concurrent intracranial volume (ICV).

5.3 Results

Results are presented in the following structure: evaluation metrics, biomarker

regions, model fitting, and examination of past clinical trials.

Sample size estimate. Table 5.2 shows the sample size estimates for the

compared biomarkers, for different groups in each column: all the data (SSE all), only

for cognitively impaired amyloid-positive individuals (SSE CI), and only considering

cognitively unimpaired amyloid-positive individuals (SSE CU). In parentheses, 95%

confidence intervals by bootstrapping. We can observe that the CVR biomarkers
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outperform the conventional regions of interest by a considerable margin in all

metrics. In particular, CVR requires a 67-73% smaller sample for a clinical trial

(cognitively impaired), and a 20-34% smaller sample for a preclinical trial (cognitively

unimpaired), compared with the best literature biomarker (ventricles). We also notice

the poor performance of the whole brain, entorhinal and hippocampus. Considering

all data, CVR biomarkers also show a much lower SSE (in all CVR cases, 45-66%

lower) than the best literature biomarker (ventricles).

Table 5.2: Sample size estimate for a hypothetical clinical trial (80% power, 20% ef-
fect size). The sample size estimate (SSE) is found by fitting a linear mixed
effects model to the target group: all (for reference), cognitively impaired (CI) or
cognitively unimpaired (CU). Evaluation is done in each of two splits of the data
(Subset 1 and 2), using the other subset for disCVRy (finding CVR biomarkers).
CVR CI was found by minimising the sample size estimate for the cognitively
impaired (CI), while CVR CU was focused on the cognitively unimpaired group
(CU). In bold, the best result per subset. Hippocampus, Ventricles, Entorhinal
Cortex (EC), and Whole brain are each divided by Intracranial Volume (ICV).

A) Data Subset 1
Biomarker SSE all SSE CI SSE CU
CVR CI 776 (598, 1048) 342 (264, 462) 97 (70, 142)
CVR CU 678 (521, 918) 317 (241, 435) 65 (50, 89)
Whole brain 114441 (735869, 44390) 36365 (169796, 15389) 1340 (4011, 663)
Hippocampus 45834 (181106, 20455) 11598 (29443, 6158) 1666 (7696, 707)
EC 26430 (70219, 13749) 6428 (12865, 3844) 859 (1979, 478)
Ventricles 2012 (1497, 2845) 1290 (897, 2013) 99 (73, 143)
B) Data Subset 2
CVR CI 890 (662, 1260) 302 (227, 424) 80 (60, 112)
CVR CU 1154 (868, 1608) 395 (288, 577) 81 (60, 113)
Whole brain 86902 (416065, 36502) 66653 (347682, 27313) 1284 (2953, 714)
Hippocampus 50479 (221457, 21775) 12077 (29539, 6524) 1043 (3073, 520)
EC 20813 (58604, 10558) 5222 (11642, 2951) 1545 (7285, 652)
Ventricles 2088 (1586, 2872) 918 (682, 1304) 101 (74, 145)

Percentage error. Next, we examine the percentage error in Table 3. As

in Table 2, Table 3 shows results for different groups: all the data (all), only for

cognitively impaired amyloid-positive individuals (CI), and only considering cogni-

tively unimpaired amyloid-positive individuals (CU). In parentheses, 95% confidence

intervals by bootstrapping. These results show that the CVR biomarkers vastly

outperform the conventional regions of interest in all the analyses. In particular,

in the evaluation with unseen data, CVR has a 47-66% smaller error in a clinical

trial setting (cognitively impaired), and a 6-39% smaller error for a preclinical trial
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(cognitively unimpaired), compared with the best literature biomarker at each subset

(whole brain). We also notice the large variance of the entorhinal cortex. When

evaluating all data, CVR biomarkers also outperform traditional regions of interest

(23-67% smaller error).

Table 5.3: Percentage error. Evaluation of the percentage error for the different biomarkers,
in both splits of the data (Subset 1 and 2). Our biomarkers (CVR) were found
using the other split they are evaluated in. CVR CI was found by minimising
the sample size estimate for the cognitively impaired (CI), while CVR CU was
focused on the cognitively unimpaired group (CU). In bold, the best result per
subset. Hippocampus, Ventricles, Entorhinal Cortex (EC), and Whole brain are
each divided by Intracranial Volume (ICV).

A) Data Subset 1
Biomarker Error all Error CI Error CU
CVR CI 2.15 (2.09, 2.22) 2.36 (2.25, 2.47) 2.03 (1.83, 2.25)
CVR CU 2.52 (2.44, 2.60) 2.69 (2.57, 2.81) 2.37 (2.13, 2.63)
Whole brain 6.50 (6.31, 6.72) 7.98 (7.59, 8.37) 3.91 (3.50, 4.31)
Hippocampus 6.87 (6.65, 7.08) 8.45 (8.06, 8.86) 4.38 (3.90, 4.84)
Entorhinal cortex 9.42 (9.13, 9.73) 11.25 (10.73, 11.78) 7.33 (6.57, 8.16)
Ventricles 6.41 (6.21, 6.61) 7.72 (7.38, 8.06) 4.10 (3.67, 4.54)
B) Data Subset 2
CVR CI 2.56 (2.48, 2.64) 2.54 (2.43, 2.66) 2.04 (1.82, 2.29)
CVR CU 4.03 (3.90, 4.15) 3.56 (3.39, 3.73) 3.04 (2.71, 3.40)
Whole brain 5.26 (5.10, 5.41) 6.67 (6.36, 6.94) 3.24 (2.90, 3.52)
Hippocampus 5.70 (5.53, 5.87) 7.10 (6.78, 7.41) 3.96 (3.53, 4.41)
Entorhinal cortex 8.45 (8.17, 8.73) 9.65 (9.19, 10.09) 6.76 (6.05, 7.56)
Ventricles 6.59 (6.39, 6.80) 7.16 (6.82, 7.49) 4.01 (3.60, 4.45)

Group separation. Next, in Table 5.4 we show the group separation: amyloid-

positivity and cognitive status. As described in 5.2, we report the t-statistic of the fixed

effect of being amyloid-positive, and also the t-statistic of the fixed effect of being

cognitively impaired. In parenthesis, 95% confidence intervals by bootstrapping.

Here as well, we can observe that the CVR biomarkers outperform the conventional

regions of interest. Ventricles have the next best performance, followed by entorhinal

cortex and hippocampus, with the whole brain having the worst results. In particular,

in the evaluation with unseen data, CVR has a 38-66% higher separation regarding

amyloid positivity, and a 23-85% higher separation regarding cognitive impairment,

compared with the best literature biomarker at each subset (ventricles).

The detailed region list of the discovered biomarkers aimed at reducing the

sample size estimate for a preclinical trial involving cognitively unimpaired, amyloid-
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Table 5.4: Group separation, both in amyloid-positivity and cognitively. The separation
is given by the t-statistic of the fixed effect of being amyloid-positive or cognitively
impaired, fitting a linear mixed-effects model to a split of the data (Subset 1 and
2). Our biomarkers (CVR) were found using the other split they are evaluated
in. CVR CI was found by minimising the sample size estimate for the cognitively
impaired (CI), while CVR CU was focused on the cognitively unimpaired group
(CU). The negative separation indicates the direction of the difference between
groups. In bold, the best result per subset. Hippocampus, Ventricles, Entorhinal
Cortex (EC), and Whole brain are each divided by Intracranial Volume (ICV).

A) Data Subset 1
Biomarker Separation (amyloid positivity) Separation (cognition)
CVR CI 6.90 (4.97, 8.90) 3.16 (1.20, 5.21)
CVR CU 6.50 (4.54, 8.45) 3.57 (1.72, 5.49)
Whole brain -2.05 (-4.10, -0.04) -0.51 (-2.39, 1.51)
Hippocampus -2.44 (-4.41, -0.36) -1.31 (-3.30, 0.70)
Entorhinal cortex -3.03 (-5.08, -1.19) -1.88 (-3.97, 0.20)
Ventricles 4.15 (2.24, 6.17) 2.57 (0.40, 4.50)
B) Data Subset 2
CVR CI 7.53 (5.55, 9.39) 4.77 (2.61, 6.79)
CVR CU 7.35 (5.33, 9.46) 3.92 (2.09, 5.79)
Whole brain -1.96 (-4.10, 0.02) -0.76 (-2.63, 1.22)
Hippocampus -3.81 (-5.81, -1.69) -1.55 (-3.57, 0.37)
Entorhinal cortex -3.89 (-5.76, -1.92) -1.18 (-3.17, 0.83)
Ventricles 5.34 (3.30, 7.38) 2.58 (0.89, 4.67)

positive individuals is shown in Table 5.5. In the numerator, both biomarkers found in

the two splits of the data had the ventricles, frontal pole, isthmus of cingulate gyrus,

and the mid-posterior part of the corpus callosum. In the denominator, they shared

the nucleus accumbens, amygdala, choroid plexus and hippocampus.

The detailed region list of the discovered biomarkers aimed at reducing the

sample size estimate for a preclinical trial involving cognitively impaired, amyloid-

positive individuals is shown in Table 5.6. Both biomarkers found in the two splits

of the data included the ventricles, the central part of the corpus callosum and

the choroid plexus in the numerator. In the denominator, they shared the nucleus

accumbens, banks of the superior temporal sulcus and the anterior part of the

corpus callosum.

In both clinical trial scenarios above, the numerator included the ventricles, and

the denominator included the nucleus accumbens. The most notable differentiator

between the trial scenarios is that cortical regions featured more in CI clinical trial,

whereas subcortical regions were involved for CU preclinical trials.
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Table 5.5: Regions of the biomarkers discovered for the cognitively unimpaired group.
Subset 1/2 indicates the subset of data that was used for the discovery of the
biomarker. In black, regions that were selected in both subsets of the data.

Numerator Denominator
Subset 1 Subset 2 Subset 1 Subset 2
cc mid posterior cc mid posterior accumbens area accumbens area
frontalpole frontalpole amygdala amygdala
isthmuscingulate isthmuscingulate choroid plexus choroid plexus
lateral ventricle lateral ventricle hippocampus hippocampus
caudalanteriorcingulate paracentral cc anterior bankssts
cc central cc mid anterior entorhinal
lingual cc posterior inferiortemporal
pericalcarine parahippocampal thalamus
posteriorcingulate transversetemporal ventraldc

Table 5.6: Regions of the biomarkers discovered for the cognitively impaired group.
Subset 1/2 indicates the subset of data that was used for the discovery of the
biomarker. In black, regions that were selected in both subsets of the data.

Numerator Denominator
Subset 1 Subset 2 Subset 1 Subset 2
cc central cc central accumbens area accumbens area
choroid plexus choroid plexus bankssts bankssts
lateral ventricle lateral ventricle cc anterior cc anterior
caudate pericalcarine amygdala entorhinal
transversetemporal brainstem parstriangularis

cc posterior
cerebellum white matter
hippocampus
lateralorbitofrontal
middletemporal
pericalcarine
rostralmiddlefrontal
ventraldc

Figure 5.2 summarises all metrics for both subsets of the data for the two cog-

nitive groups (unimpaired and impaired). The outer coordinates correspond to the

best biomarker metric, which is used as the reference scale. In all cases and for all

metrics, we observe a dominance of the CVR biomarkers. Of the traditional volumet-

ric biomarkers, ventricles outperformed hippocampus and whole brain (entorhinal

cortex not shown to avoid cluttering).

Figure 5.3 visualises biomarker variance as model-predicted versus observed

log(biomarker) values, using all data (both subsets). CVR shows a visually narrower

spread compared to other biomarkers (in line with the error —over two times lower
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Figure 5.2: Summary metrics report. The outer coordinates correspond to the best
biomarker metric, and the rest are scaled relative to that, with metrics that
are best when minimum transformed by best/metric and metrics that are best
when maximum by metric/best, to normalise all to a maximum of 1. SSE =
sample size estimate for a hypothetical clinical trial (80% power, 20% effect
size). Error = percentage error of the measurement, as defined by the standard
deviation of the residuals of the model, as data is log-transformed. The metric
t(AB) corresponds to the t-statistic of the fixed effect for the gradient of amyloid-
positive individuals. Finally, the metric t(DX) corresponds to the t-statistic of the
fixed effect for the gradient of cognitively impaired individuals.

standard deviation of model residuals-– reported in Table 3), suggesting that it

explains longitudinal data better. Of the traditional volumetric biomarkers, ventricles

again outperform hippocampus and whole brain. We observe the same results

in out-of-sample experiments on the two data subsets, shown in Supplementary

Figures 1 and 2.

We next report results of our post hoc checks. For all the biomarkers, none

of the variance inflation factors were above 2, suggesting we don’t have a strong

collinearity problem in our model [167]. For all biomarkers, the spread of the

residuals with respect to the fitted values is a single cluster aligned at zero, showing
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Figure 5.3: Predicted vs observed values. Values are log-transformed. CVR is the com-
posite value ratio of two data-driven regions of interest; the rest are divided by
the intracranial volume. The CVR naming coding is as follows: CI = conditioned
to minimise the sample size estimate of cognitively impaired individuals; CU
= conditioned to minimise the sample size estimate of cognitively unimpaired
individuals; suffix 1 or 2 indicate the subset of the data that was used for the
CVR discovery.

homogeneity of variance. In quantile-quantile plots, we observe that the central

part of the distribution aligns with the expected quantiles, but the tails do not, which

suggests the presence of extreme values.

Table 5.7 reports the detectable effect size using past clinical trials’ inclusion

criteria and configuration. We observe a considerable difference between biomark-

ers, and their performance from best to worst is: CVR, ventricles, entorhinal cortex,

hippocampus, whole brain. To aid readability, we summarise results for the trials
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targeting cognitively impaired individuals as CI (EMERGE and ENGAGE [57], Clarity

AD [79], TRAILBLAZER-ALZ 2 [75]), and the one trial targeting cognitively unim-

paired individuals as CU (A4 Study [132]). Here we summarise the evaluation of

the data subsets, to ensure that our reported biomarkers are blindly evaluated, but

the table also shows the evaluation using all data. CVR always performed the best,

with a detectable effect size below 12% in CI, and around 7% for CU. Ventricles

performed second best, with effect sizes between 16-34% in CI and 8% in CU, which

rivals CVR. The entorhinal cortex could detect effect sizes of 22-63% for CI, and

24-30% for CU. The hippocampus could detect effect sizes of 30-124% for CI and

26-34% for CU. Last, and worst, the whole brain could detect effect sizes of 60-291%

in CI, and 29% in CU.

Regarding the A4 trial MRI data [132], we compared the annualised percent

change between the Solanezumab (N = 401) and Placebo (N = 423) arms for each

biomarker using ANCOVA models (Supplementary Table B.1). Our CVRs consis-

tently demonstrated larger, more directionally favourable treatment effects than

standard volumetric measures, suggesting superior sensitivity to atrophy in a clini-

cal trial and validating our algorithm’s utility. Specifically, the CVR.CU.1 biomarker

(discovered in ADNI’s Subset 1) showed the largest numerical slowing of atrophy,

with the solanezumab group exhibiting a 0.28% smaller annualised decline than the

placebo group (LS-mean difference =−0.28%, 95% CI [−0.67, 0.12], p = 0.17). The

CVR.CU.2 measure (discovered in ADNI’s Subset 2) showed a similar trend (differ-

ence =−0.20%, 95% CI [−0.59, 0.19], p = 0.32). In contrast, the effect on traditional

volumetrics was negligible; for example, the adjusted difference for hippocampus/ICV

was nearly zero (0.01%, 95% CI [−0.17, 0.18], p = 0.95).

5.4 Discussion

This chapter introduces and validates a novel approach to monitoring brain atrophy

in the context of Alzheimer’s disease by employing composite value ratios (CVRs)

of regional brain volumes derived from MRI, thanks to the BioDisCVR framework

introduced in Chapter 4. The findings robustly demonstrate that these data-driven

CVR biomarkers significantly outperform traditional volumetric measures (including

whole brain, hippocampus, entorhinal cortex and ventricular volume) across multiple

key metrics relevant to clinical trial design and disease monitoring. Specifically,
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CVRs consistently exhibited lower sample size estimates, reduced measurement

error (as per the linear mixed-effects model fitting), and enhanced group separation

between amyloid-positive and amyloid-negative individuals, as well as between

cognitively unimpaired and impaired individuals. This performance advantage was

particularly pronounced in more advanced stages (cognitive and neurodegenerative)

of disease.

Considering Sample Size Estimates (SSE), the advantage of CVR biomarkers

is particularly notable. Our analysis revealed that CVRs require a substantially

smaller sample size to achieve the same statistical power in hypothetical clinical

trials compared to traditional volumetric measures. Specifically, in trials on cognitively

impaired individuals, such as in early Alzheimer’s disease (e.g., TRAILBLAZER-ALZ-

2), CVRs reduced the required sample size by 67-73% compared to ventricles, the

best-performing traditional biomarker in this context. The reduction was still notable

for preclinical trials in cognitively unimpaired individuals (such as the A4 Study),

ranging from 20-34%. This translates to potentially considerable cost- and time-

savings in clinical trials, underscoring the enhanced sensitivity of CVRs to detect

changes to disease-related biomarker trajectories with fewer participants. Worth

mentioning here that Alzheimer’s disease clinical trials are not typically powered by

volumetric biomarkers, as cognition or early pathologies are preferred. Nevertheless,

as new biomarkers emerge, they could complement cognitive and pathological

measures, or even challenge the old choices of trial endpoints, or provide insights

into disease progression. On another note, if trials are eventually moving to earlier

stages of the disease, then cognitive outcomes might not even be a useful measure,

within the scope of the trial.

In terms of longitudinal measurement of Error, CVR biomarkers again demon-

strated clear superiority. The percentage error, representing the residual variability

of the linear mixed-effects models, was consistently and considerably lower for

CVRs compared to traditional measures across all analyses. In cognitively impaired

individuals, CVRs exhibited a 47-66% reduction in percentage error compared to

whole brain volume, the best traditional biomarker in this metric for this group. Even

in preclinical populations, CVRs showed a 6-39% error reduction. This reduced

measurement error signifies a more precise and reliable assessment of longitudinal
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volume changes, which is crucial for accurately monitoring disease progression and

evaluating treatment effects. Furthermore, such improved accuracy in individual

trajectories could enhance prognostic value and inform clinical decision support in

routine healthcare settings for individuals at risk of or living with Alzheimer’s disease.

Regarding Group Separation, CVRs consistently provided enhanced differen-

tiation between groups relevant to AD pathology. CVRs showed a 38-66% higher

t-statistic for amyloid positivity and a 23-85% higher t-statistic for cognitive im-

pairment compared to ventricles (the best-performing traditional biomarker). This

improved group separation indicates that CVRs are more effective at capturing the

disease signal, distinguishing individuals based on key AD-related characteristics.

This enhanced ability to discriminate between groups is vital for biomarker validation,

for stratifying patients in clinical trials (as demonstrated in STX), and potentially for

use in diagnostic applications in memory clinics.

The detectable effect size differences are considerable, using configurations of

past clinical trials. It should be noted that our evaluated biomarkers were designed

for a wider population, whereas the clinical trials’ inclusion criteria had various

restrictions (MMSE, CDR, age). This makes the performance even more remarkable,

as it demonstrates that MRI CVRs can achieve robust and reliable results without

being tailored to highly selected cohorts, underscoring their potential applicability

across diverse groups, at different stages of the disease.

We hypothesise that the superior performance of CVRs might be due to their

inherent capacity to normalise for inter- and intra-subject variability and global

factors, thanks to their ratio-based construction. This normalisation may reduce

noise and amplify the signal specific to regional volume changes associated with

AD pathology. This enhanced signal-to-noise ratio and reduced measurement error

not only benefit group-level analyses in clinical trials but also hold significant value

at the individual level. Clinicians could leverage these biomarkers to detect subtle,

clinically meaningful changes earlier and more confidently, facilitating timely and

personalised interventions for better patient care. The identified CVRs consistently

featured ventricles in the numerator, suggesting that global changes reflected by

ventricular expansion are a crucial component of atrophy monitoring. An interesting

advantage of the ventricles is that they are likely summarising atrophy happening
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elsewhere, and their size and contrast to brain tissue likely make them an easy

target for accurate segmentation. The presence of the nucleus accumbens in the

denominator across different CVRs is more intriguing, but not unexpected: a study

by Nie et al. [168] found a correlation between the nucleus accumbens volume and

clinical rating scales (MMSE and MoCA).

Although the A4 trial did not meet its primary clinical endpoint, our re-analysis

of its imaging data (MRI) provides valuable insights into biomarker sensitivity. Al-

though our analysis did not identify a statistically significant treatment effect for any

biomarker (indeed, this difference may not exist), we noted a consistent pattern in

which our data-driven CVRs produced considerably larger effect sizes and lower

p-values than traditional volumetric measures like hippocampus/ICV. This finding is

important for two main reasons. First, it suggests that our CVRs may have greater

sensitivity to detect subtle, treatment-related signals of slowed atrophy, even in a trial

where the overall therapeutic effect was modest or non-existent. This enhanced sen-

sitivity could be critical for future trial design, potentially enabling the detection of a

biological effect with smaller sample sizes or shorter durations. Second, it highlights

the potential limitations of relying solely on traditional, single-region biomarkers in

preclinical or prevention trial settings where expected changes are minimal. The

results from this single trial are, of course, exploratory and require confirmation.

However, they strongly motivate the usage of these optimised CVRs in pooled analy-

ses across multiple prevention studies or in future trials to definitively establish their

added value as sensitive endpoints for measuring disease modification.

There are limitations to the application of volume-based biomarkers in

Alzheimer’s disease trials. Firstly, anti-amyloid immunotherapies have been re-

ported to show accelerated “pseudo” atrophy in the whole brain, hippocampus, and

ventricles [169]. This could confound any volumetric biomarker in such a trial, includ-

ing CVR, but would be easy to test on patient-level data from recent clinical trials.

An additional limitation is that the cohorts contributing data to this study currently

lack ethnic diversity, which may affect generalisability. Work is underway to rectify

this in ADNI [170] (and elsewhere), but it may be some time before the impact of

ethnicity on brain atrophy quantification is fully understood. Another limitation of the

study is that the BioDisCVR framework was applied to data obtained by a specific
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pipeline (from the image acquisition to the segmentation, even if from 61 different

sites), so potentially useful region candidates could have been discarded by the final

CVR biomarker due to high variance (e.g., segmentation errors inducing a lower

signal-to-noise ratio). So, while the reported biomarkers have proven useful in our

experiments, further work is possible to advance understanding of region-specific

biological contributions.

Beyond addressing limitations, there are other avenues for future work. Valida-

tion on patient-level data from completed clinical trials in Alzheimer’s disease is a

clear priority, where smaller effect sizes could be detected on secondary imaging

biomarker outcomes. The challenge here is the general reluctance for trial sponsors

to share patient-level data, e.g., Clarity-AD (see Supplementary Material from van

Dyck et al. [79]). Indeed, given the notable impact of the clinical trial configuration

(Supplementary Table ST1), BioDisCVR holds promise for clinical trial design. The

scope of this study was specific to Alzheimer’s disease, but perhaps CVR could

prove useful in application to other diseases, or even normative modelling.

5.5 Conclusions

In conclusion, this study demonstrates the superior performance of composite

value ratio (CVR) biomarkers for monitoring brain atrophy in Alzheimer’s disease.

By applying the BioDisCVR framework, originally developed for tau PET, to MRI-

based volumetric measures, we have successfully translated the benefits of ratio-

based biomarkers to a more widely accessible and cost-effective imaging modality.

The enhanced disease signal extraction achieved through CVRs (evidenced by

significantly reduced noise and increased group separation) translates directly into

tangible advantages for both research and clinical practice, over and above traditional

volumetric biomarkers, including ventricles, whole brain, and hippocampus.
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Table 5.7: Detectable effect size per example clinical trial. Given a past clinical trial
design (number of participants, trial duration and inclusion criteria), we show the
hypothetical detectable effect size per biomarker. The calculation is given by
first fitting a linear mixed-effects model to the log-transformed biomarker, with
covariates age, sex, and APOE4. All classical biomarkers (whole brain, ventricles,
hippocampus, entorhinal cortex) are divided by the intracranial volume to improve
robustness. Our biomarkers’ names (CVR) indicate the target cognitive group
and data subset they have been trained for: CU = cognitively unimpaired; CI =
cognitively impaired; suffix .1 and .2 indicate the subset that was used to obtain
the biomarker. In bold, for the subset analysis, the best measures per trial, not
including the biomarkers that used the same subset data. Asterisk (*) indicates
that the region was used for the trial as secondary outcome. Non-CVRs are
divided by Intracranial Volume (ICV). TB-ALZ 2 is thE TRAILBLAZER-ALZ 2
clinical trial.

Detectable effect size, considering all data (and inclusion criteria per trial)
Biomarker A4 Study EMERGE/ENGAGE Clarity AD TB-ALZ 2
CVR.CI.1 0.081 0.112 0.083 0.112
CVR.CI.2 0.068 0.106 0.105 0.112
CVR.CU.1 0.065 0.113 0.152 0.141
CVR.CU.2 0.065 0.12 0.124 0.125
whole brain 0.299* 1.554* 0.659* 2.347*
ventricles 0.080* 0.176* 0.263* 0.241*
hippocampus 0.301* 0.734* 0.312* 1.142*
entorhinal 0.282 0.532 0.268 0.491
Detectable effect size, considering Subset 1 (and inclusion criteria per trial)
Biomarker A4 Study EMERGE/ENGAGE Clarity AD TB-ALZ 2
CVR.CI.1 0.084 0.102 0.066 0.097
CVR.CI.2 0.073 0.106 0.114 0.119
CVR.CU.1 0.063 0.11 0.167 0.165
CVR.CU.2 0.074 0.121 0.132 0.139
whole brain 0.291* 1.636* 0.829* 2.911*
ventricles 0.083* 0.168* 0.338* 0.212*
hippocampus 0.262* 0.784* 0.302* 1.245*
entorhinal 0.307 0.633 0.224 0.554
Detectable effect size, considering Subset 2 (and inclusion criteria per trial)
Biomarker A4 Study EMERGE/ENGAGE Clarity AD TB-ALZ 2
CVR.CI.1 0.079 0.123 0.106 0.131
CVR.CI.2 0.063 0.106 0.089 0.107
CVR.CU.1 0.067 0.116 0.117 0.121
CVR.CU.2 0.057 0.118 0.108 0.116
whole brain 0.296* 1.396* 0.609* 1.569*
ventricles 0.077* 0.184* 0.342* 0.277*
hippocampus 0.345* 0.673* 0.333* 1.093*
entorhinal 0.243 0.455 0.267 0.42



Chapter 6

Weighted Composite Value Ratio, a case

with amyloid peptides

This chapter introduces a novel extension of CVR, introducing feature importance

through a weighted combination of inputs. This approach was specifically developed

in response to a clinically-driven need identified by our laboratory-based colleagues,

listed below, who sought to understand the relative importance of different amyloid-

beta peptides in Alzheimer’s disease pathogenesis. The work described in this

chapter is based on a paper sent to Alzheimer’s Research & Therapy for publication

[December 2024], where I devised the data analysis (methods, results, discussion).

Other coauthors were involved in the creation of new data (one out of the four

datasets used, the iPSC one), facilitated funding, gave feedback on the manuscript,

and put the work in the context of the literature (Rebecca Gabriele, Teisha Bradshaw,

Claire Leckey, Rohan de Silva, Nick C. Fox, Selina Wray, Neil Oxtoby and Charles

Arber).

6.1 Introduction

In Chapter 4 we introduced the concept of a composite value ratio (CVR), along with

a framework to discover specific such biomarkers. In that case-study, the explored

composition only included the mean of regional PET signal and a volume-weighted

mean, but the concept is flexible, and can accommodate other ways of combining the

different regions or inputs, like in Chapter 5, where CVR was applied to MRI-derived

volumes. Here, we use a linear combination of inputs (weighted composite value

ratio, or wCVR), as a means to explore feature importance, in particular, with another

characteristic feature of Alzheimer’s disease: amyloid-beta (Aβ) peptides.
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Changes to the relative abundance of Aβ peptides are characteristic of

Alzheimer’s disease. Induced pluripotent stem cells (iPSC) neuronal models offer a

physiological model of Aβ production. In the literature, different biomarkers, using

different Aβ peptides are proposed, with ratios being the norm. This chapter will

use the BioDisCVR framework, with a weighted-mean composition to investigate

combinations of Aβ peptides as AD biomarkers and the relative contribution of

peptides to AD pathogenesis.

6.2 Methods

6.2.1 Data

Data analysed in this work is the Aβ measures from iPSC and cell-based neuronal

models, collected from four independent sites. The iPSC is from University College

London colleagues (described in our manuscript currently submitted for publication,

with pre-print available at https://doi.org/10.1101/2024.11.23.624811). The cell data

consists of published Aβ profiles generated by overexpression of familial AD-linked

PSEN1 mutations in PSEN1/PSEN2 double knockout cell lines. This includes

mouse embryonic fibroblast cell lines by Petit and colleagues (2022) [171], and by

overexpression in HEK 293T cell lines by Liu and colleagues (2023) [172] and Schultz

and colleagues (2024) [173]. A key distinction is that the iPSC model provides a more

accurate representation of human neuronal physiology and pathology compared to

traditional cell-based models. The available data numbers from controls and PSEN1-

mutations are shown in Table 6.1. The publication from Schultz et al. [173] included

data from the study from Liu et al. [172]; we only considered the non-overlapping,

unique, data from Shultz et al.

Table 6.1: Data used in this study comes from four sites. The smaller variability in controls
peptide proportional counts allows to work with smaller sample sizes, compared
to the mutation-carriers. Only the unique data from Shultz et al. is included, as
the study used data from Liu et al.

Site Controls PSEN1 mutations
iPSC 3 10
Petit 2 21
Liu 3 120

Schultz 1 56
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6.2.2 Modelling and analysis

Data harmonisation. Samples with any peptide measure equal to zero were

removed (N = 14). Zeros could potentially be due to assay detection limits or errors,

and impede the usage of the peptide as a denominator, for these samples. Samples

were averaged across batches to reduce the influence of measurement error. Data

harmonisation across all datasets was performed in two steps. First, each sample’s

data was divided by the sum of the available peptides within that sample. This

operation adjusts for differences in total peptide amounts across samples, as we

are interested in their relative amounts. Second, each peptide measure was further

divided by the average of the control samples for the same dataset to correct for any

assay-specific systematic biases.

To evaluate biomarkers that include the addition of multiple peptides, each

peptide measurement was scaled back to the relative control proportions based

on data from Petit et al. [171]. Ratio biomarkers like the short/long [171] involve a

weighted sum where each peptide is weighted by its naturally occurring abundance

in controls. This scaling step is essential because the relative abundances of Aβ

peptides differ by orders of magnitude. Not scaling the data back would distort the

setup for which the biomarker was originally designed.

Statistical analysis We evaluate biomarkers in case-control classification and

age-at-onset regression scenarios. In classification experiments we analyse the area

under the receiver operator characteristic curve (ROC AUC), which plots sensitivity,

or true positive rate TP/(TP+FN) against false positive rate FP/(FP+TN), where T/F

indicates True/False and P/N indicates Positive/Negative. Since the data is strongly

unbalanced (very few control samples), we also look at the precision-recall curve

(PR AUC) of the smaller group, which plots control precision TN/(TN+FN) against

control recall TN/(TN+FP), since PR AUC is a preferred metric in this scenario.

To evaluate the correlation between the biomarker and the age at onset (AAO),

we employ the coefficient of determination (R2), using Pearson correlation, since

peptide biomarkers have shown good linear correlation [171].

Median and 95% confidence intervals are reported for all metrics using 2000

bootstrapping samples, stratified in the classification case (to accommodate the

heavy class imbalance).
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We bootstrap the weighted composite value ratio (wCVR, explained below),

running the search algorithm five times per bootstrap with random initialisations, to

investigate the effect of the weighting of the peptides. We also do a grid-search

analysis, where we fixed the Aβ42/40 ratio as baseline for R2 (state-of-the-art in

terms of correlation with age-at-onset [171]), and then calculated the metrics of

all combinations of the other peptide weights from 0 to 1 by 0.02 (either in the

numerator or denominator). We did the same with precision-recall of the controls,

but the baseline ratio was Aβ37/42 (state-of-the-art in terms of classification in AD

[172]).

Performance Evaluation and Additional Analyses. To assess model general-

isation and to test whether the superior performance of wCVR reflected overfitting,

we compared it with alternative biomarkers using full leave-one-out cross-validation

(LOOCV) across all datapoints (mutation carriers and controls). For regression,

each biomarker was fitted with a linear model to predict age at onset (AAO). For

classification, in each training fold, the decision threshold was set to the most ex-

treme control biomarker value (in the abnormal direction), prioritising specificity for

the control group (the smaller class).

Alongside wCVR, we evaluated: (i) literature biomarkers described in this chap-

ter, (ii) a linear model and random forest models trained separately for regression

and classification, and (iii) a novel weighted version of the theta model (global

peptide profile angle) [174], introduced in Chapter 7. For wCVR and wTheta, the

three binary digits in the model name indicate whether the BioDisCVR optimisation

considered, respectively, Pearson correlation with AAO, AUC, and precision–recall

(combined multiplicatively).

Performance was quantified from LOOCV predictions. For regression, we com-

puted the Mean Absolute Error (MAE); for classification, we calculated F1-Score.

Uncertainty in point estimates was assessed via non-parametric bootstrap (2000

replicates) to obtain 95% confidence intervals. Because all models were evalu-

ated on identical holdout sets, pairwise comparisons used a paired framework:

MAE differences were tested with the paired Wilcoxon signed-rank test, and clas-

sification metric differences were assessed via empirical two-sided p-values from

the bootstrap distribution (2000 replicates). Multiple testing was controlled using
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the Benjamini–Hochberg procedure (FDR 5%), with adjusted p < 0.05 considered

statistically significant.

Biomarkers Different ratio-based biomarkers have been proposed in the

field, namely Aβ42/40, Aβ37/42 [172] and the short/long ratio [171], which is

Aβ(37+38+40)/(42+43). We ran BioDisCVR [158] to find which peptides are se-

lected to go to the numerator, and which are selected to go to the denominator,

along with their linear combination weights, obtaining a weighted composite value

ratio (wCVR). The general formula is:

wCV R =
∑i∈X1 ki ·X1i

∑ j∈X2 k j ·X2 j
(6.1)

, where X1 and X2 are non-overlapping non-empty sets of the available peptides, and

k is a weighting factor for each peptide. To drive the algorithm, we consider different

configurations, which we indicate with the suffixes -R for R2, -P for PR AUC, and RP

for both (i.e., when the objective function is the product of both metrics), since the

BioDisCVR framework allows for a user-chosen search algorithm. We chose to run

a genetic algorithm, as described in the original work [158].

Additionally, we evaluated all possible combinations of ratios (180 possible com-

binations) where either the numerator or denominator is one peptide, or the addition

of multiple peptides, without repetition, and conserving the different proportions

of the peptides from Petit et al. [171]. In this case, the search algorithm was not

needed, as we could evaluate all possible combinations.

6.3 Results

Figure 6.1 shows, for the UCL-generated data, the literature biomarkers from the

peptides measured in conditioned media from 10 PSEN1 mutation-carrying patient-

derived iPSC-neuronal lines in triplicate, as well as 3 controls. As expected for

EOFAD data, there is visual separation between cases and controls, as well as

variation between PSEN1 patient-derived lines.

Figure 6.2 shows the peptide distribution of all EOFAD data, relative to the

controls. Most deviations of Aβ37, Aβ38 and Aβ40 occur below the mean of

controls (91.3%, 82.6% and 72.9%, respectively), while most deviations of Aβ42

and Aβ43 occurred above the mean of controls (97.1% and 84.5%, respectively).
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Figure 6.1: Literature biomarkers from the peptides measured in conditioned media
from 10 PSEN1 mutation-carrying patient-derived iPSC-neuronal lines in
triplicate, as well as 3 controls. This is for the newly-generated data from
UCL.

To allow comparison of Aβ data from published datasets and my colleagues’

newly generated data, harmonisation was required because of widely acknowledged

inter-assay variability (Figure 6.3, left panels). Harmonisation was achieved by

weighting peptides based on the average relative abundance of each peptide found

in control cell data within each dataset. Converting to a dimensionless, normative

scale (Figure 6.3, right panels) facilitates both data interpretation and combination or

comparison of multi-assay datasets (Aβ peptide ratios have been shown to be highly

replicable between control lines [90]). Figure C.1 shows the relative peptide amount

of control cell lines for each dataset before harmonisation. Although all datasets

share similar general relative abundance (e.g., Aβ40 being the most abundant,

and Aβ43 being the least), there are some important differences, especially for

our cohort (iPSC), where the relative abundance of Aβ37 is lower and the Aβ38 is

higher than the rest of the cohorts.

Table 6.2 shows the uncorrected correlation (Pearson’s r and Kendall’s τ) with

the age-at-onset for all peptides, per dataset (pre-transformation), and for all data
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Figure 6.2: Peptide distribution relative to the controls, of all merged and harmonised
datasets. We can observe that the deviations from the controls (value = 1)
are not symmetrical.

merged (post-transformation). The measures are all relative to the sum of the five

peptides. All the statistically significant comparisons (p ¡ 0.05, in bold, and thus

the subset of corrected p-values) share the same message: positive correlation for

Aβ37, Aβ38 and Aβ40, and negative correlation for Aβ42 and Aβ43.

Using all harmonised data, we assessed the association between the position

of the mutation in PSEN1 and age-at-onset. Kendall’s τ coefficient was calculated to

be 0.0104 (z = 0.228, p = 0.820). The Pearson correlation coefficient was 0.0118

(t = 0.175, df = 219, p-value = 0.861). The practically zero coefficients and high

p-values suggest that the observed correlation is not statistically significant. Figure

S4 shows a scatterplot of AAO versus location, and Aβ42/40 versus location.

A dataset-specific evaluation of biomarkers is shown as heatmaps in Figure 6.4.

We compare established ratios (Aβ42/40, Aβ40/42, Aβ37/42 and Aβshort/long)

with weighted combined value ratio (wCVR) analyses with different configurations

(see methods), where wCVR was optimised per cohort. For both correlation with

age-at-onset (coefficient of determination, Figure 6.4, left panel) and case-control

classification (precision-recall, Figure 6.4, right panel), the heatmaps show per-
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Figure 6.3: Example of the need for harmonisation, and the result of it. Top-left
(Aβ37/42) is the most striking example, where we can observe three
distinctive ratios (directions) for controls, rendering the data useless if
merged. This is solved in the top-right panel, where all controls are aligned,
and we can define a global threshold for classification. The bottom row
shows a similar case, but with other peptides (Aβ42/40), where the need
for harmonisation is not as evident.

formance heterogeneity between the cohorts. Data from iPSC, Petit or Schultz

classify well (perfect classification for all biomarkers except for Aβ42/40, Aβ37/42

and Aβ40/42), and data from Petit exhibits highest coefficient of determination,

followed by iPSC. As for the biomarkers, it shows that wCVR achieves the best

classification whenever it is directed at precision-recall of the controls (wCVR-P), and

wCVR-R shows the best correlation with age-at-onset when driven by the coefficient

of determination, together with the Aβshort/long ratio and the Aβ40/42, whenever it

incorporates this metric.

Figure 6.5 shows the results of our ratio biomarker experiments. The map

of R2 (AAO) vs precision-recall AUC shows wCVR biomarkers towards the upper

right quadrant, demonstrating superior performance than most simple combinations

of peptides. The literature biomarkers also do well in one metric each, but not

both: Aβshort/long shows high R2, and Aβ37/42 outperforms most simple ratios in

precision-recall AUC.
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Figure 6.4: Heatmap of results per biomarker, per site. In both panels, 1 (black) rep-
resents the best possible metric. Panel A shows the coefficient of correlation
of the biomarker against age-at-onset. Panel B represents the precision-recall
area under the curve for the controls.

Figure 6.5: Visual plot of evaluation metrics for all biomarkers. Higher number = better,
in both dimensions.
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Table 6.2: Correlation of peptides and age-at-onset. In bold, uncorrected p-values below
or equal to 0.05.

Pearson Kendall
Peptide r p-value τ p-value

UCL

AB37 0.114 0.754 -0.068 0.787
AB38 -0.156 0.666 -0.068 0.787
AB40 0.462 0.179 0.296 0.241
AB42 -0.559 0.093 -0.341 0.176
AB43 0.358 0.310 0.159 0.528

Petit

AB37 -0.141 0.512 -0.167 0.268
AB38 -0.093 0.666 -0.022 0.902
AB40 0.781 0.000 0.534 0.000
AB42 -0.834 0.000 -0.710 0.000
AB43 -0.292 0.167 -0.241 0.101

Liu

AB37 0.253 0.004 0.172 0.004
AB38 0.194 0.026 0.190 0.001
AB40 0.486 0.000 0.342 0.000
AB42 -0.641 0.000 -0.521 0.000
AB43 -0.238 0.006 -0.144 0.016

Schultz

AB37 0.043 0.751 0.092 0.319
AB38 -0.007 0.958 0.187 0.043
AB40 0.467 0.000 0.334 0.000
AB42 -0.581 0.000 -0.430 0.000
AB43 0.001 0.995 0.063 0.497

All

AB37 0.031 0.644 0.074 0.104
AB38 0.066 0.330 0.103 0.024
AB40 0.493 0.000 0.343 0.000
AB42 -0.580 0.000 -0.447 0.000
AB43 -0.108 0.109 -0.095 0.038

Table 6.3 contains the quantification of the performance of the salient biomark-

ers, with 95% confidence intervals from bootstrapping (see Methods). It is noteworthy

that wCVR is able to improve on established ratios from the literature, however, differ-

ent wCVR biomarkers excel at precision-recall versus coefficient of determination.

Table 6.4 lists the peptide weights (denominator in red, with an asterisk ) for

the different wCVR configurations, along with their classification and regression

performance. There is a trade-off between the two evaluation metrics (classification

and regression), which is determined by the weight shifting and position in the ratio

of the peptides. In all cases, Aβ40 is in the numerator and Aβ42 and Aβ43 are in the

denominator. Aβ38 is actively (10-19%) in the numerator when the objective function

includes the coefficient of determination, and Aβ37 appears in the numerator when

classification (precision-recall) is considered. When considering both metrics of
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Table 6.3: Quantification of biomarker performance, with 95% confidence intervals.
Our biomarkers are the weighted composite value ratios (wCVR), with the suffix
-R indicating it was optimised for R2 (versus age-at-onset), the suffix -P indicating
it was optimised to maximise precision-recall of controls, or both metrics (-RP).
AUC is the classical area under the receiver-operating characteristic curve.

Biomarker AUC PR AUC controls R2

wCVR-R 0.977 (0.953, 0.994) 0.456 (0.287, 0.805) 0.412 (0.284, 0.526)
wCVR-RP 0.986 (0.966, 0.997) 0.593 (0.363, 0.934) 0.380 (0.255, 0.497)
wCVR-P 0.992 (0.977, 1.00) 0.700 (0.435, 1.00) 0.242 (0.145, 0.350)
Aβ42/40 0.961 (0.929, 0.983) 0.345 (0.217, 0.615) 0.259 (0.187, 0.343)
Aβ37/42 0.977 (0.953, 0.993) 0.454 (0.29, 0.785) 0.114 (0.048, 0.230)
short/long 0.974 (0.947, 0.991) 0.411 (0.265, 0.729) 0.403 (0.275, 0.517)

classification and regression, the composite value ratio becomes similar to the

short/long ratio, with notably more weighting of the Aβ42 in the denominator, and

Aβ40 in the numerator. Table 4B shows the wCVR for the individual datasets,

demonstrating the different contribution of each peptide to combined performance

(precision-recall plus coefficient of determination) for each dataset. Note that Aβ42

and Aβ43 are consistently in the denominator, while Aβ37, Aβ38 and Aβ40 are in

the numerator.

Table 6.4: Peptide relative weights, to the denominator (in red, with an asterisk ×
) and the numerator (black, no asterisk). Although the ranking and position
(numerator/denominator) of the relative peptide weights are the same, in pre-
harmonised data, there are differences in the proportions. We observe a trade-off
in performance from optimising for classification (precision-recall area under
the curve, for controls) or regression (versus age-at-onset). The prefix of the
weighted composite value ratio (wCVR) indicates the metric it was optimised for:
R for regression, P for precision-recall, and RP for both (multiplied).

A) Data-driven weighting and combination of peptides (wCVR)
Aβ37 Aβ38 Aβ40 Aβ42 Aβ43 biomarker PRAUC R2

*0.2% 19.0% 81.0% *97.8% *2.0% wCVR-R 0.456 0.412
21.0% 9.8% 69.2% *93.6% *6.4% wCVR-RP 0.593 0.382
88.9% *27.8% 11.1% *59.0% *13.2% wCVR-P 0.705 0.185
B) Short/long relative weights per cohort (pre-harmonisation)
Aβ37 Aβ38 Aβ40 Aβ42 Aβ43 Cohort
0.3% 25.7% 74.1% *99.7% *0.3% iPSC (UCL)
3.7% 13.0% 83.3% *99.4% *0.6% Petit
6.6% 6.7% 86.7% *98.6% *1.4% Liu
6.6% 6.6% 86.8% *98.6% *1.4% Schultz

Results from a permutation feature importance analysis are shown in Supple-

mentary Table C.1. For all metrics, and for both displayed biomarkers (Aβshort/long
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and wCVR-RP), Aβ42 is the peptide providing the biggest impact. The data-driven

wCVR-RP better employs information from Aβ43, as the importance values are

higher in all metrics.

When bootstrapping the aggregated data and running BioDisCVR three times

to get the best wCVR, different patterns were observed depending on the metric

used for optimisation. Figures C.2, C.3 and C.4 show the boxplots of the weights

for 200 bootstrapped samples, optimised for R2, precision-recall, and both metrics

multiplied. However, these weights were obtained by fitting different resampled data,

so to have a better understanding of their effect, Figure C.5 shows the evaluation

metrics against peptide weights. We can observe a clear convex space of data

points in all cases, with a slight truncation for the precision-recall plots. A similar

pattern of an optimal weight combination can be observed in Figure 6.6, where the

grid-search analysis of weighted combinations shows a single peak of performance

(only the top 10% of points are shown, amounting to 0.9% of the total explored

combinations), which corresponds to the reported wCVR weights. This figure was

created by calculating the two evaluation metrics for each combination of peptide

weights, ranging from -5 to 5 in 0.1 increments, where negative weight meant the

peptide was in the denominator, and the baseline ratio was Aβ42/40 for R2 and

Aβ37/42 for PR AUC, upon which we introduced the rest of the peptides. For

example, if the weights assessed for Aβ37, 38 and 43 are -0.25, 0.10 and 2.0,

respectively, then the biomarker assessed for R2 would be Aβ42·1+Aβ38·0.1+Aβ43·2.0
Aβ40·1+Aβ37·0.25 .

These plots all show that employing multiple peptides improves performance in each

case.

Leave-One-Out Cross-Validation Analysis We evaluated biomarker models

for classification (mutation carriers vs controls) and regression (predicting age at on-

set, AAO) using leave-one-out cross-validation (LOOCV). Full results are in Table 6.5;

pairwise statistical comparisons are in Supplementary File wCVR.results.xlsx.

For classification, several models achieved near-perfect performance. The

unweighted theta ratio (global peptide profile angle) achieved the highest F1-Score

at 0.993 (95% CI: 0.984–1.000), driven by high recall (0.996) and precision (0.991).

Custom-optimised weighted theta models also performed strongly (F1 = 0.986),

and, consistent with our specificity-prioritising threshold, most models had precision
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(a) R2 (b) PR AUC

Figure 6.6: Heatmap of evaluation metrics. The goal of this figure was to visualise how
the metrics shifted when the proportions of peptides shifted, and to see if there
were multiple or a single ”hot spot” (local/global maxima). We only found a
single hotspot. Left panel (a) is the R2 versus age-at-onset, and left panel (b)
is the precision-recall area-under-the-curve of controls. Given a base ratio of
Aβ42/40 for R2, we explore how the metric changes when incorporating other
peptides, in a grid-search (0 to 5 in 0.1 increments, both for numerator and
denominator). Panel b) shows the same, but for the precision-recall of controls,
and the base ratio is, in this case, Aβ37/42. Only the top-performing 10% of
points are shown, which amounts to 0.9% of the total explored combinations.

> 0.99 except the RandomForest Classifier (0.974). Recall was the main differ-

entiator: shortlong (short/long peptide ratio) and RandomForest Regressor had

markedly lower recall (0.753 and 0.852, respectively), resulting in significantly lower

F1-Scores (adjusted p < 0.05).

For regression, the ranking shifted slightly. The optimised weighted theta

models achieved the lowest MAEs, with wtheta.111 at 6.045 years (95% CI:

5.450–6.670), significantly outperforming literature biomarkers. wCVR variants and

the LinearModel Regressor also performed well (MAE 6.1–6.3 years). In contrast,

shortlong and RandomForest Regressor had higher errors (> 7.0 years), indicating

reduced accuracy for AAO prediction.

6.4 Discussion

In this chapter we used Aβ measurements of five Aβ peptides to investigate Aβ ratios

in an unbiased, data-driven manner. We explored the relative contribution of each

peptide to disease classification and onset prediction by extending the CVR concept

to include weights, interpretable as “importance” for the given predictive/diagnostic

task of interest. The results show a differential contribution of longer peptides (Aβ42

and Aβ43) and shorter peptides (Aβ40, Aβ38 and Aβ37) to disease. Aβ40 and
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Table 6.5: Cross-validated performance of biomarker models for classification and regres-
sion tasks. Classification accuracy is reported as the F1-Score (harmonic mean
of precision and recall; higher is better) for distinguishing mutation carriers from
controls. Regression accuracy is reported as the Mean Absolute Error (MAE,
in years; lower is better) for predicting age at onset (AAO). All values are point
estimates with 95% confidence intervals in parentheses, obtained via leave-one-
out cross-validation and 2000 bootstrap samples. The three binary digits after
the models wCVR and wTheta correspond to whether the model considered the
following metrics during optimisation through the BioDisCVR framework: Pear-
son correlation (against age-at-onset), AUC and precision-recall, respectively
(multiplying them). In bold, the best-performing model for each metric.

biomarker name F1 Score MAE
Abeta42/40 0.963 (0.944-0.980) 6.850 (6.167-7.594)
Abeta37/42 0.982 (0.968-0.993) 6.892 (6.234-7.546)
RandomForest Classifier 0.982 (0.968-0.993) 7.870 (7.042-8.740)
RandomForest Regressor 0.918 (0.889-0.943) 6.370 (5.722-6.999)
LinearModel Classifier 0.968 (0.949-0.984) 7.009 (6.351-7.642)
LinearModel Regressor 0.984 (0.970-0.996) 6.351 (5.704-7.008)
wCVR.100 0.984 (0.972-0.995) 6.206 (5.597-6.824)
wCVR.101 0.984 (0.972-0.995) 6.205 (5.601-6.823)
wCVR.001 0.982 (0.968-0.993) 7.730 (6.898-8.606)
shortlong 0.857 (0.817-0.893) 7.706 (6.972-8.446)
theta 0.993 (0.984-1.000) 7.049 (6.400-7.703)
wtheta.100 0.986 (0.975-0.996) 6.051 (5.461-6.672)
wtheta.101 0.986 (0.975-0.996) 6.053 (5.461-6.678)
wtheta.111 0.986 (0.975-0.996) 6.045 (5.450-6.670)

Aβ42 represent the major contributing factors; however, the inclusion of additional

peptides further improves the model. Notably, the weightings were distinct when

optimising for classification versus onset prediction, suggesting differential relevance

of Aβ peptides. Finally, we observed that data from iPSC models show greater

weighting for Aβ38 and less for Aβ40 compared with data from PSEN1/2 double

knockout cell lines [173, 172, 171], though the sample size for the iPSC data was

small (3 controls. 10 PSEN1-mutations).

Arber [175] comments that employing a patient-derived iPSC-neuronal model,

this study complements previous studies in PSEN1/PSEN2 double-knockout cell

lines due to the presence of one healthy PSEN1 allele and two healthy PSEN2 alleles,

analogous to the patient setting. This model therefore represents a physiological

model of Aβ production in human neurons, which Arber et al. have previously shown

to faithfully correlate with clinical plasma data from the same donor [90, 176]. As

such, this model of Aβ production is relevant for current efforts in developing blood
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plasma biomarkers.

Previously reported ratios performed well: Aβ37:42 [172] distinguished patient

and control lines better than other unweighted ratios and Aβshort/long [171] per-

formed best in terms of explaining age-at-onset variance (higher R2). However,

weighted composite value ratios (wCVR) were able to outperform linear ratios in

both metrics, suggesting that increasing the number of Aβ peptides and assigning

weight to each is able to further improve biomarker performance. The optimal ratio

for all data, centred around both disease classification and explaining age-at-onset

variance was:

wCV R = (21 ·Aβ37+10 ·Aβ38+69 ·Aβ40)/(94 ·Aβ42+6 ·Aβ43). The numerator and

denominator are precisely the same peptides of Petit et al. [171], with varying

weights on the peptides.

To test whether the superior performance of wCVR reflected overfitting rather

than genuine predictive value, we compared it under cross-validation with a range

of alternative biomarkers. This revealed a task-dependent hierarchy: simple

magnitude-based metrics such as unweighted theta excelled at distinguishing muta-

tion carriers from controls, whereas predicting age at onset required more complex,

weighted models. In the latter case, wCVR and weighted theta outperformed both

simple ratios and standard machine-learning regressors, indicating that their gains

stem from embedding biologically informed weighting rather than fitting noise. These

results support the robustness of wCVR and reinforce that biomarker choice should

be matched to the clinical question—-simple interpretable metrics for diagnostic

screening, and domain-optimised weighted approaches for prognostic modelling.

A diversity of Aβ peptides exists, and PSEN1-mutations alter their relative

abundance differently. We analysed wCVR to infer the relative contribution of each

peptide to classifying disease and for predicting age at onset. The fact that weights

differ between the two biomarker analyses indicates that pathogenicity and severity

are somewhat distinct; for example, changes to Aβ38 can aid in predicting onset but

are negatively associated with classification. Additionally, we observed differences

in the wCVR in iPSC-models compared to cell models, such that Aβ38 has a

higher weighting at the expense of Aβ40. Arber [175] comments that this may

inform on the presence of a healthy PSEN1 allele in iPSC models, speaking to the
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overrepresentation of Aβ40 compared with other peptides.

There is variance in the onset of familial AD, even within families with the same

mutation. Our analyses found no association between the location of the mutation

across the PSEN1 protein and age-at-onset, similar to previous recent observations

(2024) [173]. Arber [175] comments that these data suggest that the severity of each

mutation depends upon the biochemical effect of each amino acid substitution on

the tertiary/quaternary protein structure.

This study comes with some limitations to consider. One limitation is the low

sample sizes. More donors and data replicates will further improve the confidence

in these findings, for which replication studies are required. Arber [175] comments

that another limitation is that the panel of iPSC samples tested comprise an over-

representation of mutations that produce relatively high levels of Aβ43 (R278I [90],

E280G [177] and P436S [178]), potentially skewing the relative contribution of Aβ43.

However, our analysis of other datasets which do not have the same issue mitigates

this limitation. Finally, age at onset is known to be variable, and so the regression

analyses should be considered with this caveat in mind. Future analyses could

consider using errors-in-variables models.

In conclusion, this study presents new data from collaborators, a new fluid

biomarker harmonisation method, and a new ratio-based biomarker. Our experimen-

tal results demonstrate superior performance compared to the previous state-of-the-

art ratio biomarkers, and also offer insights into disease biology/mechanisms. Now

that plasma biomarkers have entered clinical use [89], our findings are more rele-

vant than ever. The proposed framework for data harmonisation and multi-peptide

biomarker construction enhances diagnostic precision, particularly in complex cases

such as early-onset familial Alzheimer’s disease. This work provides a critical refine-

ment to support the translation of first-generation tools into robust, next-generation

clinical diagnostics.



Chapter 7

Theta, a multidimensional-input,

one-dimensional output ratio-based

biomarker

The work described in this chapter was presented at the 2024 AAIC conference, with

a poster. An updated preprint is available at medRxiv [174], and R and Python code

are available on GitHub (github.com/isaac-6/theta). In this Chapter, we consolidate

the idea of a multidimensional ratio as a biomarker.

7.1 Introduction

As we saw in Chapter 6, different ratio biomarkers have been proposed in the

literature, using different amyloid peptides, for AD classification. In the particular

case of familial Alzheimer’s disease classification versus controls, the current ratios

proposed are the canonical Aβ42/40[179] and the recent Aβ37/42[172]. If they are

different, and useful, then perhaps we can use a combination of them. Inspired

by the combined reference formulation derived in Chapter 3 (Section 3.4), we plan

to unify all available peptides into a single ratio-based biomarker, and evaluate its

performance against the other biomarkers from the literature.

7.2 Material and Methods

Data. Data used for the analysis in this chapter is the same as in Chapter 6, and

consists of measurements of Aβ peptides from iPSC and cell cultures. Data harmon-

isation was justified and solved in Chapter 6, so we base the subsequent analysis on

that. Here, we correct the pathogenic classification for two mutations: E318G (benign
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[180, 181]), E69D (benign [180, 182]). Note that this was done retrospectively, after

finding that their theta value was very close to the controls, and inquiring about them

(see Supplementary Figure D.1). The following analysis considers them controls.

This finding suggests that theta may have potential applicability in determining the

pathogenicity of novel mutations.

In Chapter 3, Section 3.4, we showed how a two-dimensional ratio can be

expressed as a function of the angle α between two vectors corresponding to two

measures, and how this can work in multiple dimensions. Here, we move forward

towards the application of the biomarker. The ratio-based biomarkers here are used

for classification, comparing their values of PSEN1-mutation carriers against the

controls.

Theta Each data sample includes five peptide measures, which can be repre-

sented as a point in a five-dimensional space. Simple ratio biomarkers, such as

Aβ42/40 and Aβ37/42, work in the projection of the multidimensional space onto a

plane defined by the two selected peptides (see Figure 7.1). The peptide ratio is

the tangent of the angle α formed between the vector from the origin to the data

point (b) and the direction of the denominator peptide dimension (see Figure 7.1).

Since peptide measures cannot be negative, all possible data points lie within the

positive orthant, and therefore, this angle α is a monotonic function of the ratio, and

likewise for its complementary angle. After all peptide measures are divided by the

average of the controls in each dataset, all controls are centred around the direction

defined by the vector-of-ones
−→
j . We can then take this direction as a reference, and

calculate the angle θ with respect to any other origin-datapoint vector
−→
b (Figure

7.1). The angle θ is given by the following equation: θ = arccos(
−→
j ·
−→
b∥∥∥−→j ∥∥∥∥∥∥−→b ∥∥∥), where

the numerator is the dot product of vectors
−→
j and

−→
b , and the denominator is the

multiplication of the magnitudes (norms) of vectors j and b, respectively. Note that

due to the data harmonisation, this method does not require any fitting of parameters,

and can be used in any independent dataset.

Benchmarks. We compare the performance of theta to Aβ42/40[179, 183],

Aβ37/42[172], and “short/long” = (Aβ37+38+40)/(Aβ42+43) [171].

Evaluation metrics. As argued in Chapter 6, due to the heavy class imbalance

of the data (relatively few controls), we employ the precision-recall curve (PR AUC)
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Figure 7.1: Distribution of the three merged cell datasets in three dimensions, corre-
sponding to Aβ 37, 40 and 42. Red dots represent controls. The simple ratio
peptides like Aβ 42/40 and Aβ 37/42 are equal to the tangent of the angle α on
the plane they project the data to. Theta (θ ) is the angle between the direction
defined by the vector-of-ones (red) and any origin-datapoint vector.
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of the smaller group, which plots control precision TN/(TN+FN) against control recall

TN/(TN+FP), where T/F indicates True/False and P/N indicates Positive/Negative.

95% confidence intervals are provided using 2000 bootstrapped samples stratified

by class (controls or mutation-carriers).

7.3 Results

We evaluated the classification performance of our new approach (theta) and bench-

marks on multiple datasets independently, as well as merged datasets (all cell-based

and all data). Table 7.1 shows the results in terms of 1) the area under the receiver

operating characteristic curve (AUC) and 2) area under the precision–recall curve

(PRAUC) of the controls, with 95% confidence intervals (CI). Across all datasets,

theta consistently yielded excellent discrimination, with AUC and PR AUC values

of 1.0 (perfect classification), even the lowest bound of the confidence interval. As

expected by the class imbalance, all benchmark biomarkers scored high in AUC

(above 90%), but the performance plummeted when evaluating PR AUC in some

of the datasets, and when merging all data (less than 0.48 when looking at all cell

data).

Figure 7.2 shows the controls precision-recall curves, using all datasets merged,

for the classical Aβ42/40, the best biomarker for classification from the literature

(Aβ37/42), and theta. It’s easy to see that theta has a perfect classification, as it fills

up the entire plot.

7.4 Discussion

In summary, we devised an elegant and efficient mathematical model as a mul-

tidimensional ratio to investigate combinations of Aβ37, Aβ38, Aβ40, Aβ42 and

Aβ43 peptides and their use as biomarkers in early-onset familial Alzheimer’s Dis-

ease. The efficiency stems from its parameter-free nature and ability to synthesise

information from multiple inputs into a single, interpretable metric.

In all datasets independently, and also after merging all data, theta outperforms

other ratios, both for the AUC (true positive rate versus false positive rate) and the

PR AUC (precision versus recall), with perfect classification. Although biomarkers

from the literature all achieve high classification scores in the receiver operating

characteristic curve (AUC), they use different biological information (as in, they are
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Table 7.1: Classification metrics per dataset, independently and merged. In parenthe-
ses, 95% confidence intervals by bootstrapping. AUC = area under the receiver
operating characteristic curve. PR AUC = area under the precision–recall curve
of the controls.

Data Biomarker AUC PR AUC
UCL 42/40 1 (1, 1) 1 (1, 1)
UCL 37/42 1 (1, 1) 1 (1, 1)
UCL (37+38+40)/(42+43) 1 (1, 1) 1 (1, 1)
UCL theta 1 (1, 1) 1 (1, 1)
Liu 42/40 0.956 (0.912, 0.986) 0.311 (0.177, 0.676)
Liu 37/42 0.986 (0.958, 1) 0.588 (0.317, 1)
Liu (37+38+40)/(42+43) 0.969 (0.932, 0.993) 0.377 (0.221, 0.865)
Liu theta 1 (1, 1) 1 (1, 1)
Petit 42/40 1 (1, 1) 1 (1, 1)
Petit 37/42 0.905 (0.762, 1) 0.307 (0.159, 1)
Petit (37+38+40)/(42+43) 1 (1, 1) 1 (1, 1)
Petit theta 1 (1, 1) 1 (1, 1)
Schultz 42/40 0.964 (0.911, 1) 0.189 (0.088, 1)
Schultz 37/42 1 (1, 1) 1 (1, 1)
Schultz (37+38+40)/(42+43) 1 (1, 1) 1 (1, 1)
Schultz theta 1 (1, 1) 1 (1, 1)
Cell data 42/40 0.968 (0.939, 0.988) 0.372 (0.233, 0.741)
Cell data 37/42 0.981 (0.958, 0.996) 0.478 (0.3, 0.911)
Cell data (37+38+40)/(42+43) 0.981 (0.959, 0.997) 0.475 (0.303, 0.925)
Cell data theta 1 (1, 1) 1 (1, 1)
All data 42/40 0.969 (0.943, 0.988) 0.437 (0.295, 0.713)
All data 37/42 0.982 (0.961, 0.996) 0.544 (0.368, 0.924)
All data (37+38+40)/(42+43) 0.982 (0.961, 0.996) 0.541 (0.371, 0.912)
All data theta 1 (1, 1) 1 (1, 1)

different peptides). By expanding the ratio concept to a multidimensional space,

our biomarker theta can make use of deviations of multiple peptides. Evaluating

the precision-recall curve for the minority class (controls), the performance of the

biomarkers from the literature plummeted, whereas theta achieved a perfect PR AUC

score of 1, after merging all data. This is especially important, since the prevalence

of EOFAD in the world population is so low that a low performance detecting non-

mutation carriers would render the biomarker impractical for clinical usage, as it

would translate into mostly false positives.

This study comes with some limitations to consider, and shares the limitations

reported in Chapter 6 regarding the data. A limitation with the new ratio-based

biomarker theta is that it is equally sensitive to deviations in any peptide. While our



7.5. Conclusions 126

Figure 7.2: Precision-recall (of controls) curves for biomarkers Aβ42/40 (solid blue line),
Aβ37/42 (dashed black line), and theta (dotted red line). The performance of
each biomarker is evaluated through the precision-recall area under the curve
(AUC) metric, with values of 0.429, 0.533, and 1.00, respectively.

experimental results suggest that theta is a far superior biomarker for classification,

future work could take a data-driven approach to exploring the contribution of the

different peptides, and thus propose a weighted-theta, or theta using a subset of

peptides. On that end, theta is adaptable, as it can work with any number of peptides

or inputs, provided they are first normalised. Update from August 2025: weighted

theta has been implemented (by adapting the BioDisCVR framework) and tested in a

leave-one-out cross-validation setup (see previous Chapter’s Table 6.5 of out-of-fold

performance), and theta leads the classification performance at 0.993 (95%: 0.984-

1.000) F1-score, while weighted theta follows closely in classification, and leads

the regression perfomance with a mean average error of 6.045 (95%: 5.450-6.670)

years.

7.5 Conclusions

In conclusion, this study presents a new ratio-based biomarker, called theta. Our

experimental results demonstrate superior performance to the previous state-of-
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the-art ratio biomarkers. Specifically, theta achieves perfect classification of familial

Alzheimer’s disease mutations versus controls across multiple independent datasets

and in merged data, a level of performance unmatched by existing biomarkers, partic-

ularly when considering precision-recall metrics crucial for rare disease applications.

This exceptional performance highlights the power of a multidimensional, data-driven

approach to biomarker design, effectively leveraging the combined information from

multiple amyloid-beta peptides. The parameter-free nature of theta also offers ad-

vantages in terms of robustness and generalisability, simplifying its potential clinical

translation. Theta’s ability to virtually eliminate false positives in our evaluation

suggests it could be a transformative tool for accurate identification of familial AD

risk and for research focused on early detection and targeted interventions in this

devastating disease.



Chapter 8

Discussion

This chapter critically evaluates the findings presented in this thesis. It starts with

an in-depth interpretation of their significance, examines their broader implications

for Alzheimer’s disease biomarker research and clinical practice, and explicitly

addresses the methodological limitations identified. The chapter concludes with a

concise summary of the thesis’s main contributions and their implications.

8.1 Chapter 3: Reference regions in SUVR

The investigation into the foundational SUVR methodology in tau PET imaging, as

detailed in Chapter 3, unveiled a key and concerning discovery: a lack of correlation

between conventionally accepted reference regions, specifically the inferior cere-

bellar grey matter and eroded subcortical white matter. This finding fundamentally

challenges the assumption of their interchangeability in tau PET quantification and

demands a deeper inquiry into the underlying biological mechanisms that might

influence tracer kinetics or signal-to-noise ratios in these regions. The inconsistency

highlights a critical vulnerability in standard SUVR calculations, potentially leading to

unreliable biomarker measures.

In response to these identified inconsistencies, the chapter proceeded by rig-

orously examining whether a composition of regions could improve the expected

longitudinal stability of tau PET measurements (Section 3.2). This analysis, detailed

in Section 3.3, evaluated a published composite reference region against commonly

used single reference regions. The results corroborated other studies [78] in high-

lighting the superior performance of a composite reference region (encompassing

the whole cerebellum, eroded subcortical white matter, and brainstem), a concept

initially proposed for amyloid PET [124]. A crucial distinction of our work from
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Schwarz et al. [78] lies in our specific assessment: we focused on longitudinal

consistency within individuals and regions expected to be pathology-free, rather than

evaluating longitudinal increase of tau signal. This approach provided a more direct

measure of reference region stability. Furthermore, this work reinforced the counsel

of Young et al. [123] (published later, in November 2021), who also advised against

the inferior cerebellar grey matter for longitudinal 18F-AV1451 PET studies in favour

of eroded subcortical white matter. The ongoing relevance of these findings is evi-

dent in numerous recent studies that continue to employ the inferior cerebellar grey

matter, despite the accumulating evidence for the quantified superiority of composite

reference regions. To further expand the knowledge on this area, actual test-retest

data is invaluable to help advance the understanding of radiotracer measurement in

non-pathological regions, and likely, across all stages of the disease.

The finding of the clear disparity in regional longitudinal behaviour (measured

SUVR vs SUV of another reference region) is another key point that would require

further investigation. Other previous papers note the regional differences in the

measured signal[184]. However, we noted a difference beyond a shift of SUVR

values, since the gradients were distinctively different as well. While the correlation

of SUVR factors of paired-scans with an unused reference region SUV suggests that

combining them can correct for that longitudinal disparity, it still does not address the

diverse regional needs. Again, test-retest data would provide a better ground-truth

to base an analysis on.

Having concluded that the inclusion of multiple reference regions can benefit

the stability of the measurements, we conceive a mathematical formulation to

expand the simple ratio (division of two factors) to include multiple references as

directions in a high-dimensional space. This is later applied in Chapter 7, with

excellent classification results. This formulation maintains the simplicity and concept

of the simple ratio, allowing multiple references to influence how they transform the

numerator. At this point, this is purely theoretical, and its utility depends on the

regions selected. A question about optimal reference region selection arises, which

leads to Chapter 4.

We examine the effects of the PVC method proposed by ADNI (using the

Geometric Transfer Matrix approach), and find out that it severely worsens all
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test-retest metrics (of 18F-AV-1451 tau PET measurements), for all considered

biomarkers. A limitation of the study is the experimental design, where we look at

the composite regions that make up the Braak stages 5 and 6, for individuals with

no or mild cognition impairment. A finer study that sieves through specific regions

for specific individuals that makes sure there is no tau accumulation could further

validate the findings. In December 2021, Groot et al. [121] commented that “no

consensus has yet been reached on whether to use partial-volume correction of

tau PET data.”, while a more recent paper[185] (2024) using the same data as we

did (from ADNI) comments on the utility of PVC for tau PET, stating “PVC showed

very limited benefits in increasing statistical power in group-level-style analysis

of longitudinal tau PET metrics”. A limitation of their analysis, however, is that

they evaluated group differences, which I think can dilute biomarker performance

comparison: all individuals that are away from the cut-point will likely be easily

separable by most biomarkers/pipelines, so the notable difference is when studying

individuals close to the classification threshold. It should be noted that a limitation

of not using PVC for 18F-AV-1451 tau PET data is that the hippocampus becomes

unusable due to off-target signal bleeding from the choroid plexus. In this case, a

specific subregion of the hippocampus could be used.

8.2 Chapter 4: Composite Value Ratio

The previous chapter focused on the reference regions of SUVR. Here, we ap-

proached the biomarker evaluation in terms of statistical power; that is, we want

to find useful (tau-PET) signal, and evaluate the biomarkers with multiple metrics.

A further notable leap with respect to the previous chapter, is that the data-driven

search for an optimal composition of regions of interest is that it is applied to both the

numerator and denominator of the ratio. A key difference with other related literature

work is that in SUVR, or PERSI (an individualised subset of white matter voxels) is

that the proposed composite value ratio (CVR) can adapt to different stages of the

disease to maximise its performance, making use of regions that, while prohibitive in

the traditional way, can be used as part of a reference because they contribute to a

better biomarker (smaller model residuals, better group separation, smaller sample

size needed to detect gradient changes). The results show a clear superiority of

the new data-driven biomarkers, which can help anyone who uses tau PET data,
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be it for research, clinical monitoring, or clinical trials. On that end, CVR can have

impactful implications for clinical trials, potentially leading to substantial reductions

in sample size (over 79% reduction in our experiments), faster trial completion, and

reduced costs, ultimately accelerating the development of effective AD therapies.

The ablation study shows an interesting picture: the biomarker composition is flexible,

with little consequences to its performance metrics. My thoughts on this is that as

tau appears, multiple regions are eventually affected, and so there is collinearity be-

tween different regions. This poses no problem, although future work could consider

this, perhaps with the mathematical model proposed in Section 3.4. I am currently

involved in a similar study, but involving multiple tracers, the intersection of which is

more likely to give us biological insights on tau deposition. Future work on tau PET

could incorporate amyloid as well, as it has been shown to exist a synergy between

both pathologies [186].

8.3 Chapter 5: CVR applied to MRI

This chapter extended the application of CVR to MRI volumetric data, achieving

similarly outstanding improvements in biomarker performance for tracking volumetric

changes associated with AD. The success of CVR across both PET and MRI

modalities highlights the versatility and robustness of the BioDisCVR framework in

leveraging multi-regional information to create more powerful biomarkers. While the

anti-amyloid clinical trials have shown signs of pseudo-atrophy (reduction in brain

volume not attributed to a decline in neuronal count), 1) they still need biomarkers

to detect changes, and 2) not all clinical trials for AD are anti-amyloid. Future work

could include a collaboration with a neurologist, where BioDisCVR could be limited

to certain regions as targets, providing a better proxy of the regional volume. A

key advantage of CVR is that it takes into account the noise or variability. That is,

while other approaches might be focused on just the target, all measurements are

susceptible to errors or variability (e.g., some regions might be more challenging to

segment), which prevents them from achieving optimal sensitivity or statistical power.

BioDisCVR, by design, mitigates this by incorporating information from multiple

regions in both the numerator and denominator and evaluating the biomarker as a

whole.

Apart from discovering new biomarkers that are well-suited for monitoring
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brain changes due to AD, this chapter highlights the bad performance of traditional

biomarkers like the whole brain, or the hippocampus. While whole brain and hip-

pocampal volumes remain clinically relevant measures, our findings underscore their

limitations in terms of statistical power and precision for detecting subtle longitudinal

changes, especially compared to the data-driven CVR-MRI biomarkers.

A limitation of the study is that results are inevitably tied to the data used, as

is with all data-driven discoveries. In this case, even though the data came from

over 60 different sites, they all used a similar processing pipeline for acquisition, and

the regional values were extracted with a specific software (FreeSurfer 7.1.1). This

means that if a specific region produced higher variance measurements, it would be

discarded by BioDisCVR. While this is useful in practice (it discards noisy regions), it

can limit the biological interpretation: perhaps a discarded region is very relevant to

AD, but the high variance of its measurements prevents it from being useful (or as

useful). Future work across datasets and processing pipelines could explore this,

similar to Schwarz et al. [78].

8.4 Chapter 6: Weighted CVR

In this chapter, we shift the focus to amyloid-beta peptides (Aβ), another hallmark

of AD pathology. BioDisCVR is used here with an added bonus: we allow each

composite (numerator and denominator) to be a linear combination of features,

obtaining a weighted-CVR (wCVR). This allowed to reveal differential contributions

of various Aβ peptides to AD pathogenesis and demonstrated the best classifi-

cation (best wCVR achieved 0.700 precision-recall AUC, compared to 0.454 from

Aβ37/42) and explained variance with age-at-onset (0.412 R2, with a close 0.403

from Aβ(37+38+40)/(42+43)) compared to both traditional and published ratios, and

compared to all possible non-weighted peptide combinations.

There are multiple takeaways from this chapter. First, data harmonisation is

imperative in order to mix data from different sites/assays, and we propose a simple,

but effective method that does not require external data or training of a model; as

controls are expected to be homogeneous [90], we just use them as reference.

Second, different peptides contribute different information, so there’s a performance

benefit from incorporating multiple peptides (as with Petit et al. short/long peptide

ratio biomarker [171]), and from allowing their contributions to be weighted. From
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the analysed data, we see that most of the mutations diminish the proportion of

Aβ37,38,40 with respect to the controls, while augmenting the proportion of Aβ42

and Aβ43, which coincides with the proposed biomarker from Petit et al. [171].

Supplementary Figure C.5 and Figure 6.6 support the robustness of the findings

(within the used data), showing the peptide weights optimised for each metric are

a global, not local, optimal point. This convergence with the findings of Petit et al.

[171] strengthens the biological plausibility of our wCVR biomarker and highlights

the importance of considering the full spectrum of Aβ peptides in AD biomarker

development, possibly gaining mechanistic insights.

A limitation, in practice, might be the added cost of extra analysis. Indeed,

future research could explore simplified versions of wCVR or strategies to reduce

assay costs, by incorporating the cost in the fitness function of BioDisCVR. Another

limitation that complicates the understanding of mutations is their heterogeneity: we

are not comparing controls to a single group, but to multiple specific groups (at least

one per mutation). Future work, with additional data, could look into mutation-specific

patterns, instead of considering them all a single group.

8.5 Chapter 7: Theta, a multidimensional ratio

While the previous chapter (wCVR for Aβ peptides, Chapter 6) argued that multiple

peptides offer complementary information, here we formalised and tested the theo-

retical multidimensional ratio theorised in Chapter 3 for classification. The results

are outstanding: theta has a precision-recall area-under-the-curve of 1.00 (95% CI

1.00, 1.00), which is a perfect classification. The next best biomarker is Aβ37/42,

with 0.544 (0.368, 0.924). At the beginning of the study, we identified four mutations

that were very close to the controls, in their theta values. Further investigation

revealed two to be benign, while the remaining two had unknown pathogenicity. One

advantage of theta, as presented in this work, is that it is not a model with trainable

parameters; theta is just a representation of multidimensional data, summarised in

one angle. This parameter-free nature of theta makes it inherently robust and less

susceptible to overfitting, enhancing its potential for generalisability across different

datasets and cohorts. Nevertheless, future work could explore a parametric theta

(as briefly introduced in an additional analysis in Chapter 6), where the implication

of each feature (peptides in our case) is weighted for mechanistic insight. This
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could also bridge the gap between the non-parametric theta and the weighted CVR

approach, combining the strengths of both.

8.6 Synthesis of thesis Contributions and their

Implications

Having interpreted the specific findings of each chapter in the context of the ex-

isting literature and addressed their respective limitations, this section provides a

lightweight, summarised overview of the principal contributions of this thesis. Each

contribution is presented alongside its direct implications for the field of Alzheimer’s

disease research, clinical trials, and biomarker development, thereby summarising

the core arguments of this discussion.

• On the Foundations of Tau PET Quantification (Chapter 3):

– Contribution: Exposed the critical inconsistency of conventional SUVR

reference regions and the detrimental impact of the GTM partial-volume

correction method on measurement stability. A novel mathematical frame-

work for a multi-reference ratio was theorised.

– Implication: This work provides quantitative evidence that calls for a fun-

damental reconsideration of standard tau PET quantification pipelines. It

urges the field to move towards more robust, composite reference regions

and exercise caution with PVC (GTM in AV-1451), directly impacting the

validity of data from ongoing and future clinical trials.

• On Data-Driven Biomarker Discovery for Neuroimaging (Chapters 4 & 5):

– Contribution: Developed the BioDisCVR framework and validated the

novel Composite Value Ratio (CVR) biomarker across both tau PET and

structural MRI data.

– Implication: CVR is established as a modality-agnostic biomarker that

offers transformative gains in statistical power, precision, and sensitivity

over traditional methods. Its adoption can lead to smaller, faster, and more

cost-effective clinical trials, accelerating the development of effective AD

therapies, and they can also improve monitoring of pathological changes.
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• On the Analysis of Amyloid-Beta Peptides (Chapter 6):

– Contribution: Introduced the weighted CVR (wCVR) to reveal the differ-

ential diagnostic and prognostic contributions of the full spectrum of Aβ

peptides. A simple, robust method for harmonising multi-assay data was

also proposed.

– Implication: This demonstrates that moving beyond the traditional

Aβ42/40 ratio to a weighted, multi-peptide signature can yield supe-

rior biomarkers. This data-driven approach can uncover novel biological

insights into peptide processing in familial AD. Furthermore, by incorporat-

ing a weighted composition in CVR, the algorithm can adapt to different

feature importances.

• On a New Paradigm for Ratio-Based Biomarkers (Chapter 7):

– Contribution: Formalised and validated theta, a parameter-free, multi-

dimensional ratio capable of integrating multiple features into a single,

highly sensitive biomarker.

– Implication: Theta achieved state-of-the-art classification of pathogenic

mutations, proving its potential as a powerful tool for summarising com-

plex, multi-feature data. As a generalisation of the widely accepted ratio

concept, theta offers a readily interpretable yet powerful new approach

for fluid biomarker development in AD and beyond.

Taken together, the findings presented in this thesis support a shift toward a

data-driven and quantitatively rigorous approach to biomarker development. Beyond

introducing novel biomarkers, this work lays the groundwork for a scalable framework

that can guide future discovery efforts. These insights set the stage for the concluding

chapter, which reflects on the broader implications of this research and outlines

directions for clinical translation and future investigation.



Chapter 9

Conclusions

In conclusion, this PhD thesis has demonstrated that the current understanding

and utilisation of (PET and MRI) brain scans in Alzheimer’s disease can be vastly

enhanced through the application of data-driven methodologies. By exposing the

limitations of traditional SUVR and introducing the data-driven BioDisCVR framework

and its associated CVR biomarker, as well as theta, this work offers a powerful new

toolkit for the field. The composite value ratio, validated across multiple modalities,

provides a more robust and longitudinally consistent measure of pathology, with

enhanced statistical power. Theta, on the other hand, is able to incorporate multiple

features (iPSC and cell-based amyloid-beta peptides, in our case study) and is

sensitive to deviations in any of them, achieving a perfect classification (controls

versus PSEN1 mutations) in all datasets evaluated. I believe that theta should be

readily acceptable by the field, since it is essentially a generalisation of the ratio

biomarker concept: a concept that is widely accepted in the field, but has not been

leveraged in such a way to include more than two features.

These new conceptual biomarkers of CVR and theta pave the way for the

development of biomarkers that are not only statistically superior but also offer

the potential to advance our fundamental understanding of Alzheimer’s disease,

ultimately contributing to more effective diagnosis, faster/cheaper clinical trials,

treatment, and hopefully prevention of this devastating pandemic-like disease in

the era of precision medicine and technological advances. As mentioned in the

introduction, to change the trajectory of the disease, we must first understand its

path, and these models and biomarkers are bridges between the chaos of data and

the clarity of understanding.



Appendix A

BioDisCVR Supplementary Material

Figure A.1: Repeatability (error) and SSE performance of selected biomarkers, remov-
ing one region at a time, for cognitively unimpaired (A) and cognitively impaired
(B). Panels C and D show the performance of the discovery and validation
sets, respectively, using the brain regions that were available in both datasets.
The crosses represent the performance of the full, original biomarker. The
vast worsening of SSE meta-temp/composite is due to removing the eroded
subcortical white matter region from the denominator, which is also present in
both CVR biomarkers. A similar observation is seen when the inferior temporal
gyrus is removed from the numerator in (C) CVR mSUV-B, highlighting its
importance in the biomarker. Abbreviations: CVR = composite value ratio, as
in “the ratio of two composite regions”. SUV = standardised uptake value, the
signal measured in a positron emission tomography scan over a volume. The
prefix “m” in SUV indicates that it is the mean SUV over a number of regions;
otherwise, it is the volume-weighted SUV. The suffix -B after SUV indicates that
the analysis was bilateral, as in “considering regions in both hemispheres”, as
opposed to -L, which would indicate laterality. Figure reproduced from [131].



138

Figure A.2: Amyloid distribution of the validation set. The cutoff for amyloid positivity
was defined as the intersection of the two Gaussians that lies between their
means. SUVR is the standardised uptake value ratio. The reference was the
inferior cerebellum grey matter, and the target was the cortical summary region
from Lee J, Murphy A, Ward T, Harrison T, Landau S, Jagust W.: Amyloid PET
Processing Methods, published online 2023 in the ADNI database. Figure
reproduced from [131].
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Figure A.3: Visualization of numerator (blue) and denominator (red) regions for our
biomarker CVR-mSUV-B, for Experiments 1, 2 and 3. CVR stands for
”composite value ratio”. In this case, the composition is the mean of the regions.
The suffix -B indicates that the design considered bilateral regions (joint left-
and right-hemisphere). Figure reproduced from [131].
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Code for BioDisCVR. Given the regional values and volumes, diagnosis and

amyloid positivity, the code finds suitable composite value ratio (CVR) biomarkers,

for preclinical and clinical trials.

1 # Script *example* for BioDisCVR , discovery of biomarkers.

2 # Author: Isaac Llorente Saguer , University College London

3 # For the paper in Brain Communications , by Llorente -Saguer and

Oxtoby , 2024

4

5 ### load libraries

6 # Package manager

7 install.packages("pacman") # Install pacman package

8 library("pacman") # Load pacman package

9

10 # Install/Load other packages

11 p_load(lme4 , longpower , GA, dplyr , parallel)

12

13 ### Data preparation / load

14

15 ## load or create dataframe "data"

16 # It should have these columns:

17 # - SUVR: biomarker value

18 # - AB: Amyloid positivity (T/F)

19 # - time: time difference with respect to the average visit

date , per individual

20 # - RID: unique individual ID

21 # - DX: Diagnostic. 0 = cognitively unimpaired. 1 = cognitively

impaired (MCI or AD)

22 # data <- ...

23

24 ## load or create dataframe "data.suv" with the SUV or SUVR

25 # It should have a column per region , and the same matching

visits (rows) as "data"

26

27 ## load or create dataframe "data.vol"

28 # Similar to data.suv , but with regional volumes

29
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30 ## load or create dataframe "data.uv"

31 data.uv <- data.suv * data.uv

32

33 ## get list of possible regions

34 keep_regs <- names(data.suv)

35

36

37 ### functions

38

39 get_suvr <- function (chromosome) {

40 t = keep_regs[chromosome < 1]

41 r = keep_regs[chromosome > 2]

42

43 t <- t[!is.na(t)]

44 r <- r[!is.na(r)]

45

46 len_t <- length(t)

47 len_r <- length(r)

48

49 if ((len_t & len_r) == 0) {return ( -99999)}

50

51 if (len_t == 1) {

52 tt = data.suv[,t]

53 } else {

54 if (var_composition == 0) {

55 # average weighted by another variable (e.g., volume)

56 tt = rowSums(data.uv[,t])/rowSums(data.vol[,t])

57 } else if (var_composition == 1) {

58 # simple average

59 tt = rowMeans(data.suv[,t])

60 }

61

62 }

63

64 if (len_r == 1) {

65 rr = data.suv[,r]
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66 } else {

67

68 if (var_composition == 0) {

69 # average weighted by another variable (e.g., volume)

70 rr = rowSums(data.uv[,r])/rowSums(data.vol[,r])

71 } else if (var_composition == 1) {

72 # simple average

73 rr = rowMeans(data.suv[,r])

74 }

75 }

76

77 return(log(tt/rr))

78 }

79

80

81 # fit = t/(sse^2)

82 # correlated intercept and slopes

83 fitness_tss <- function(aux) {

84

85 # Get metrics from cohort 0 (ADNI in the example)

86 data <- data0

87 data$SUVR <- get_suvr(aux , 0)

88

89 # if SUVR failed for whatever reason , return a very bad

fitness

90 if (all(data$SUVR == -99999)) {return ( -99999)}

91

92 if (var_SSEgroup == "CI") {

93 # evaluating CI A+

94 aux.data <- data[data$DX == 1,];

95 aux.data <- aux.data[aux.data$AB == T,];

96 aux.data <- aux.data[!is.na(aux.data$AB) ,];

97 aux.time <- 1.5

98

99 } else if (var_SSEgroup == "CU") {

100 # evaluating only CU A+
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101 aux.data <- data[data$DX == 0,];

102 aux.data <- aux.data[aux.data$AB == T,];

103 aux.data <- aux.data[!is.na(aux.data$AB) ,];

104 aux.time <- 4.5

105 }

106

107 aux.model <- try(lmer(eq_group , data = aux.data , REML=T,

108 control = lmerControl(optimizer = "

nloptwrap", calc.derivs = FALSE ,

109 check.conv.

singular = "

ignore",

110 optCtrl = list(

method = "

nlminb",

starttests =

FALSE , kkt =

FALSE))));

111

112 aux = lmmpower(aux.model , pct.change = 0.20, t = seq(0,aux.

time ,aux.time), power = 0.80);

113 eSiz = aux$n[1]

114

115

116 # Separation

117 aux.data <- data[(data$AB == T) & !is.na(data$AB) ,]; # only

amyloid positives

118 aux.model <- lmer(eq_all , data = aux.data , REML=T,

119 control = lmerControl(optimizer = "

nloptwrap", calc.derivs = FALSE ,

120 check.conv.singular =

"ignore",

121 optCtrl = list(method

= "nlminb",

starttests = FALSE

, kkt = FALSE)))
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122

123 eSep <- fSep(aux.model)

124

125 return(eSep/(eSiz ^2))

126

127 }

128

129 ### discovery

130

131 ## Define variables

132 var_SSEgroup <- "CU" # "CU" for cognitively unimpaired , or "CI"

for cognitively impaired

133 var_composition <- 1 # 0 is volume -weighted SUV , 1 is mean SUV

134

135 ## Run an exploration/optimization algorithm , such as this one

136 GA <- ga(type = "real -valued",

137 fitness = fitness_tss ,

138 lower = c(rep(0,length(keep_regs))), upper = c(rep

(2.5, length(keep_regs))),

139 lower = low_val , upper = high_val ,

140 selection = "gareal_tourSelection",

141 crossover="gareal_blxCrossover",

142 mutation = "gareal_raMutation",

143 elitism = 2, # keep top 2 biomarkers of the previous

generation

144 pmutation = 0.5, # mutation rate prob

145 popSize = 32, # the number of individuals (biomarkers

per generation)

146 maxiter = 300, # total runs or generations

147 monitor = F, # F = nothing printed. T = print each

generation ’s metrics.

148 parallel = T, # allow parallel processing

149 seed =42 # for reproducibility purposes

150 )

151

152 ## results
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153

154 chrom <- GA@solution [1,]

155 t = keep_regs[chrom < 1]

156 r = keep_regs[chrom > 2]

157 cat(c("Numerator regions: \n",t))

158 cat(c("Denominator regions: \n",r))

159 cat(c("Biomarker fitness: ", fitness_tss(chrom)))

Listing A.1: Code for BioDisCVR



Appendix B

CVR in MRI for atrophy monitoring

Supplentary Material

Table B.1: Solanezumab treatment effect on the change of atrophy in the A4 trial
cohort. Least-squares mean difference in the annualised percent change of
volumetric biomarkers between the Solanezumab (N = 401) and Placebo (N =
423) treatment arms. A negative difference indicates less atrophy (treatment
benefit) in the solanezumab group compared to placebo. All estimates are
derived from Analysis of Covariance (ANCOVA) models adjusted for baseline
age, sex (female vs. male), education (≥ 13 vs. < 13 years), ApoE ε4 carrier
status, and the baseline value of the biomarker. Values in parentheses represent
the 95% confidence interval for the difference. CVR.CU.x = Composite Value
Ratio trained on the Cognitively Impaired Subset data (50%) from ADNI; ICV =
Intracranial Volume.

Biomarker Difference in % change p-value
CVR.CU.1 -0.277 (-0.672, 0.118) 0.169
CVR.CU.2 -0.198 (-0.587, 0.191) 0.318
Ventricles/ICV -0.132 (-0.504, 0.240) 0.486
WholeBrain/ICV 0.0311 (-0.058, 0.120) 0.494
Hippocampus/Ventricles -0.0643 (-0.461, 0.332) 0.751
Hippocampus/ICV 0.0059 (-0.170, 0.182) 0.948
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Figure B.1: Predicted vs observed values, for subset 1. Values are log-transformed.
CVR is the composite value ratio of two data-driven regions of interest; the
rest are divided by the intracranial volume. The CVR naming coding is as
follows: CI = conditioned to minimise the sample size estimate of cognitively
impaired individuals; CU = conditioned to minimise the sample size estimate of
cognitively unimpaired individuals; suffix 1 or 2 indicate the subset of the data
that was used for the CVR discovery.
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Figure B.2: Predicted vs observed values, for subset 2. Values are log-transformed.
CVR is the composite value ratio of two data-driven regions of interest; the
rest are divided by the intracranial volume. The CVR naming coding is as
follows: CI = conditioned to minimise the sample size estimate of cognitively
impaired individuals; CU = conditioned to minimise the sample size estimate of
cognitively unimpaired individuals; suffix 1 or 2 indicate the subset of the data
that was used for the CVR discovery.



Appendix C

Weighted CVR Supplementary Material

Figure C.1: Relative abundance of controls, by dataset. We see similar trends, but
distinct enough to warrant a harmonisation pre-process if data is to be merged
or a general, universal threshold be proposed.
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Figure C.2: Distribution of peptide relative weights of 200 bootstrapped samples, optimized
for R2 vs age-at-onset. The weights are relative to all peptides in the numerator
(positive) or denominator (negative).

Figure C.3: Distribution of peptide relative weights of 200 bootstrapped samples, optimized
for precision-recall of controls. The weights are relative to all peptides in the
numerator (positive) or denominator (negative).
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Table C.1: Permutation feature importance. For all metrics, and for both displayed
biomarkers (Aβshort/long and wCVR-RP), Aβ42 is the peptide providing the
biggest impact. The data-driven wCVR-RP better employs information from
Aβ43, as the importance values are higher in all metrics.

1 - Precision-recall AUC 1 - (R2 vs AAO)
short/long wCVR-RP short/long wCVR-RP

Aβ37 0.99 (0.98, 1.04) 1.13 (1.02, 1.19) 1.00 (0.99, 1.00) 0.99 (0.97, 1.02)
Aβ38 1.10 (1.01, 1.17) 1.09 (1.06, 1.19) 1.05 (1.02, 1.09) 1.03 (1.00, 1.05)
Aβ40 1.06 (0.92, 1.14) 1.18 (1.00, 1.24) 1.06 (1.05, 1.09) 1.06 (1.05, 1.08)
Aβ42 1.58 (1.56, 1.61) 1.99 (1.82, 2.09) 1.61 (1.54, 1.66) 1.52 (1.45, 1.57)
Aβ43 1.02 (1.01, 1.19) 1.55 (1.18, 1.57) 1.03 (1.00, 1.05) 1.19 (1.10, 1.22)

Figure C.4: Distribution of peptide relative weights of 200 bootstrapped samples, optimized
for R2 vs age-at-onset, multiplying the precision-recall area-under-the-
curve of controls. The weights are relative to all peptides in the numerator
(positive) or denominator (negative).
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(a) R2 (b) PR AUC

Figure C.5: Evaluation metrics versus peptide weights, from 200 bootstraped samples
Left panel (a) is the R2 versus age-at-onset, and left panel (b) is the precision-
recall area-under-the-curve of controls. Weights above 0 mean the peptide is
included in the numerator, and negative weights imply the peptide is included in
the denominator.



Appendix D

Theta Supplementary Material

Figure D.1: Strip plot of theta values per site. Two of the four mutations in Liu are actually
benign, and the other two are of unknown pathogenicity. The benign ones were
re-labeled for the analysis of Chapter 7.
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[85] Nicolas R Barthélemy et al. “CSF tau phosphorylation occupancies at T217

and T205 represent improved biomarkers of amyloid and tau pathology in

Alzheimer’s disease”. In: Nature aging 3.4 (2023), pp. 391–401.

[86] Kanta Horie et al. “CSF MTBR-tau243 is a specific biomarker of tau tangle

pathology in Alzheimer’s disease”. In: Nature Medicine 29.8 (2023), pp. 1954–

1963.
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