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Original research

Analysis of GFAP variants in UK Biobank suggests
underdiagnosis or incomplete penetrance of adult-

onset Alexander disease

Delia Gagliardi @ ,' Charles Wade

ABSTRACT

Background Alexander disease is an autosomal
dominant leukodystrophy caused by heterozygous
pathogenic variants in the glial fibrillar acidic protein
(GFAP) gene. Although increasingly recognised, there

is evidence that Alexander disease, particularly later-
onset disease, is significantly underdiagnosed and its
true prevalence is unknown (the only population-based
prevalence was estimated at one in 2.7 million). Using
the extensive UK Biobank dataset, we analysed the
frequency of pathogenic and likely pathogenic variants,
GFAP variants, within the UK population and identified
clinical and radiological phenotypes linked to these
variants.

Methods Pathogenic, likely pathogenic and GFAP
variants of uncertain significance were identified in the
UK Biobank whole-exome sequencing data (n=470000).
Demographic information, previous medical history—
including symptoms associated with Alexander disease—
collected from self-reported data and hospital records,
family history and various MRI metrics were compared
between variant carriers and controls.

Results We identified 36 unique pathogenic and

likely pathogenic GFAP variants in 106 carriers, yielding
a carrier frequency of approximately 1 in 4435.
Modelling based on the UK population estimated a
prevalence of 6.8 per 100000. Carriers of pathogenic
and likely pathogenic GFAP variants had higher odds

of bladder dysfunction (OR 3.17, p<0.0001), upper
airway dysfunction (OR 7.82, p=0.004) and psychiatric
conditions (OR 1.51, p=0.04). Additionally, carriers were
more likely to report a paternal history of dementia (OR
2.79, p<0.0001). MRI data revealed significant atrophy
in brainstem regions among variant carriers.
Conclusion Pathogenic and likely pathogenic GFAP
variants are more prevalent in the general population
than previously expected and are associated with clinical
and radiological characteristics of Alexander disease. This
study indicates that Alexander disease may be under-
reported, misdiagnosed, or exhibit reduced penetrance.

INTRODUCTION

Alexander disease is an autosomal dominant leuko-
dystrophy caused by heterozygous pathogenic vari-
ants in the glial fibrillar acidic protein (GFAP) gene.
Pathogenic variants in GFAP are thought to confer
cytotoxicity through gain-of-function mechanisms
resulting in the development of protein aggre-
gates (Rosenthal fibres) in astrocyte cytoplasm,
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= Later onset Alexander disease is
underdiagnosed due to mild and heterogeneous
disease presentations, and its true prevalence is
unknown. A study based on a large population
dataset is needed to explore the frequency of
this disease in the general population.

WHAT THIS STUDY ADDS

= This study shows that damaging glial fibrillar
acidic protein variants are more common than
expected and the estimated number of people
with Alexander disease in the UK population
is 6.8:100 000, which is much higher than
previous figures.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= These findings have important implications
for global health and suggest that a greater
number of patients can benefit from
forthcoming clinical trials.

producing a progressive astrogliopathy, which
induces secondary changes in neurons and other
types of glia.'

Traditionally, four subtypes of Alexander
disease (neonatal, infantile, juvenile and adult)
are recognised, depending on the age of onset,
though more recently, Prust et al proposed a two-
group revised system based on clinical and imaging
features.” > The more common type I Alexander
disease describes earlier onset cases—usually before
aged 4—and so encompasses neonatal and infan-
tile onset and is a predominantly frontal leukodys-
trophy presenting with seizures, macrocephaly and
developmental delay. Prognosis is invariably poor,
and death occurs within weeks to short years. Type
IT manifests later—usually after aged 4—thus gener-
ally referring to those with juvenile and adult onset,
and presents differently, with bulbar dysfunction
(dysphagia, dysarthria, dysphonia), eye movement
abnormalities and dysautonomia, often with no or
only mild neurocognitive deficits.> Other clinical
features can include pyramidal and gait abnormali-
ties, cerebellar ataxia, sleep/respiratory disturbances
(sleep apnoea), bladder dysfunction and fronto-
temporal psychiatric symptoms.*® Symptoms are
generally milder with older onset—in fact in some
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cases, the patient is asymptomatic and diagnosed following an
abnormal scan—and prognosis is generally better, with median
survival reported as 11-25 years after diagnosis.”” MRI findings
generally reflect the differences between the two phenotypes. In
type 1 cases, there is macrocephaly, and predominantly frontal
white matter abnormalities or involve the periventricular rim,
in type II disease, abnormalities can be restricted to the poste-
rior fossa, particularly with atrophy of the medulla and cervical
spinal cord.? 1

Diagnosis at a younger age, where a striking and rapidly deteri-
orating clinical and radiological picture results in genetic testing,
is more straightforward and commonplace than in adulthood,
where the subtle signs and symptoms and broad age of onset
generate a wider differential diagnosis and delayed or missed
diagnoses.

As a result, true incidence of Alexander disease is unknown—
with the only population-based prevalence estimate at one in
2.7 million."* 2 To further our understanding of the prevalence
of pathogenic and likely pathogenic variants (P/LP) GFAP vari-
ants in the UK population, we examined the whole-exome
sequences (WES) of 470000 UK Biobank participants. We used
phenotypic data and MRI data to determine whether these vari-
ants were associated with evidence of disease activity.

METHODS

The UK Biobank is a prospective study of 502493 volunteers
aged 40-69 years, recruited across the UK between 2006 and
2010." Participants attended longitudinal visits undergoing
extensive phenotyping, provide biological sample—including a
subset of 470000 who underwent WES—and a further subset
(45000 or ~10%) of participants underwent MRI.

Ascertainment of GFAP pathogenic variants

All missense variants in GFAP with a minor allele frequency of
<0.001 were extracted from WES data of 470000 individuals
in the UK Biobank dataset. Annotation was performed using
Intervar to assess variant type, frequency in genomic popula-
tion datasets and pathogenicity prediction using in silico tools
(MetaSVM, GERP++, dbscSNV).'* Synonymous and untrans-
lated region variants were excluded.” Variants were classified
as pathogenic, likely pathogenic and of uncertain significance
according to the American College of Medical Genetics (ACMG)
criteria.'® Two experts in clinical genetics (DG and DSL) reviewed
Intervar annotation and ACMG classification for variants already
described in literature or causing a different amino acid substi-
tution at a position previously reported as pathogenic for adult-
onset Alexander disease. For assignment of PP3 criteria, all in
silico tools must be in agreement; otherwise, PP3 is not assigned.
Likely pathogenic variants with either multiple submissions to
ClinVar as benign or uncertain pathogenicity according to the
Waisman centre were removed."”

Disease modelling
To estimate the prevalence of adult-onset Alexander disease, we
modelled the number of people affected by age on the UK popu-
lation using a previously described method.' In the model, we
accounted for the GFAP carrier frequency in the UK Biobank, the
UK population count by age (taken from the Office of National
Statistics), the distribution of the age at onset from patients with
adult-onset Alexander disease, and the median survival time for
the disease (25 years) to account for mortality,"? 2

The GFAP carrier frequency in the UK Biobank was calculated
as the number of exomes with a P/LP variant in GFAP over the

total number of sequences (470 000). A more narrowed GFAP
carrier frequency was calculated considering only P/LP variants
found in the UK Biobank and already reported in literature.
95% Confidence Interval (95% CI) was calculated as previously
described.*' #

The distribution of the age at onset for patients with adult-
onset Alexander disease was obtained through literature review.
Using PubMed, the following search terms were used ‘Alexander
disease’ AND ‘adult onset’.

Phenotypic data fields

Numerous demographic and phenotypic data were extracted
and analysed for both the variant subjects and a 20 000-
person cohort of random controls. We looked for evidence
of disease manifestation using both International Classifi-
cation of Diseases-10th Edition (ICD-10) codes and self-
reported diagnoses. Patients with one or more codes for each
medical condition or symptom were considered positive
for that condition. We deliberately examined for common
signs and symptoms of Alexander disease but looked exten-
sively for wider neurological and psychiatric manifestations.
Frequency of cognitive disease was also collected using the
UK Biobank’s algorithmically defined outcomes, which are
obtained through combinations of coded information from
UK Biobank’s baseline assessment data collection (which
included data from participants on their self-reported medical
conditions, operations and medications), along with linked
data from hospital admissions (diagnoses and procedures)
and death registries. The use of UK Biobank algorithmically
defined outcomes in dementia has been validated elsewhere.
Family history (including age of death of parents and history
of illness in parents and siblings) was also extracted. Logistic
regression was then used to calculate ORs, which represent
the probability of each condition occurring in the GFAP
variant group, relative to the control group.

MRI was only performed in a limited subgroup of partic-
ipants. As well as access to raw imaging data, processed UK
Biobank neuroimaging working group-derived, quantitative
MRI metrics including brain volume, regional brainstem volu-
metric data and white matter hyperintensity (WMH) volume
and were compared between a subset of variant subjects and
controls. Total brain volume (including grey and white matter,
normalised for head size) was calculated using the FMRIB
Software Library (FSL), which provides automated segmenta-
tion of brain structures and tissue types.”® Regional posterior
fossa volumes, including subsegmentation of brainstem struc-
tures, were derived from FreeSurfer, which performs detailed
cortical and subcortical parcellation based on T1-weighted
MRI images. The brainstem was an area of particular focus
given it is classically affected in late-onset Alexander disease.**
WMH volume was quantified on Fluid-attenuated inversion
recovery (FLAIR) images using the Brain Intensity Abnor-
mality Classification Algorithm within FSL, incorporating
both T2-FLAIR and T1-weighted data.”” This provided three
specific imaging-derived phenotypes: total WMH volume,
periventricular WMH volume (lesions within 10 mm of the
ventricular mask) and deep WMH volume (lesions more than
10 mm from the ventricular mask).?* No further delineation
(eg, cerebellar white matter or dentate nuclei involvement)
is possible. Qualitative review of available images was then
undertaken by a neuroradiologist with significant experience
in the imaging of leukodystrophy (FB).

2 Gagliardi D, et al. J Neurol Neurosurg Psychiatry 2024;0:1-8. doi:10.1136/jnnp-2024-335089



Neurogenetics

RESULTS

The prevalence of pathogenic and likely pathogenic variants
GFAP variants

We identified 36 P/LP GFAP variants (35 unique likely patho-
genic and one pathogenic GFAP) across 106 carriers (affecting
between 1 and 15 subjects each). These variants are listed in
online supplemental table 1. Ten of them (present across 22
individuals) have been previously reported as pathogenic for
Alexander disease, and 25 of the variants (present across 83
individuals) were in positions where different substitutions have
previously been reported as pathogenic. One variant (present in
one individual) has not previously been reported. Additionally,
across 3591 individuals, we identified 277 variants of uncer-
tain significance and three likely pathogenic variants, which we
determined unlikely to be pathogenic, due to multiple submis-
sions to ClinVar as benign and/or unpublished and of unknown
pathogenicity according to Waisman centre (online supplemental
table 2).

Given that adult-onset Alexander disease is under-recognised
and prevalence data are lacking, we set out to estimate the
number of affected people using genetic data. Considering only
pathogenic and likely pathogenic variants, we calculated a GFAP
variant frequency of 1/4 435 (95% CI 1/5 608 —1/3 666), while
the carrier frequency of already reported variants is 1/21 363
(95% CI 1/35 895-1/12 736).

Disease modelling was performed using age at onset data from
138 patients over 18 years of age and affected by Alexander
disease, derived from 67 different studies (online supplemental
table 3).°? 27" The number of people affected by later onset
Alexander disease was estimated to be around 6.85 in 100000
individuals, which is much higher than previously reported
figures.!! ' When considering only carriers of variants previ-
ously reported in association with the disease, we estimated a
prevalence of 1.42 in 100 000, which is over 38 times the litera-
ture prevalence (figure 1).

The clinical impact of pathogenic GFAP variants

The demographic profile of cases with P/LP GFAP variants
and a random control group (n=20000) are shown in online
supplemental table 1 (ancestry and location) and online supple-
mentaltable 4 (age, sex). The GFAP variant cohort mirrors the
demographic profile of the UK Biobank, and there were no
significant differences between groups with regard to age, sex
or ancestry. The GFAP variant cohort was more likely to have
hypertension (OR 1.52 (95% CI 1.15 to 2.06, p=0.004)), but
there was no difference otherwise in terms of other cardiovas-
cular risk factors including body mass index, hypercholestero-
laemia, HbA1C or smoking status (online supplemental table 5,
6).
Regarding ICD-10 diagnoses, logistic regression anal-
ysis revealed statistically significant associations for bladder
dysfunction codes with an OR of 3.17 (95% CI 1.87 to 5.35,
p<0.0001), upper airway dysfunction with an OR of 7.82 (95%
CI 1.95 to 31.30, p=0.004), and psychiatric codes with an OR
of 1.51 (95% CI 1.02 to 2.24, p=0.04) within the GFAP variant
cohort (online supplemental table 7, figure 2). These results
suggest a significantly increased likelihood of these conditions
among individuals carrying P/LP GFAP variants. There was no
significant difference between the two groups in terms of self-
reported diagnoses or algorithmically defined diagnoses (online
supplemental table 8, 9).

In terms of family history (online supplemental table 10),
figure 3), participants in the GFAP variant cohort were signifi-
cantly more likely to have a paternal history of Alzheimer’s
disease/dementia compared with the control group (OR 2.79
(95% CI: 1.54 to 5.04, p<0.0001)).

Six MRI brain scans were available for carriers of P/LP GFAP
variants (two with variants previously reported and four with
unpublished variants), while 1895 scans were available for the
control cohort. The P/LP GFAP variant cohort exhibited signifi-
cantly reduced total brainstem volume (p=0.038) and pontine

Number of people with later onset Alexander disease |

—_ N w SN [6)]
o o o o o
o o o o o

Number of people in the UK population

o

10 20 30 40
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Age group

Figure 1

Estimated number of people affected by later onset Alexander disease due to all GFAP pathogenic and likely pathogenic variants in the UK

Biobank (dark blue area) and to previously described variants (light blue area). Clinical prevalence from the literature is shown as a dashed line. Age bins are

5 years each. GFAP, glial fibrillar acidic protein.
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Figure 2

Forest plot showing the association of P/LP GFAP variants with various ICD10-coded diagnoses, when compared with a random control cohort

through logistic regression. Significance at p<0.05. GFAP, glial fibrillar acidic protein; P/LP, pathogenic and likely pathogenic variants.

volume (p=0.049) when compared with the control (online
supplemental table 11, figure 4). The two scans from partici-
pants that had variants previously been reported as pathogenic
show radiological changes associated with Alexander disease on
qualitative image review (figure 5). The remaining four scans
available were for participants with variants where different
substitutions in the same position have previously been published
as pathogenic are all normal appearing. There were no signifi-
cant differences found on MRI measures of white or grey matter

volume or white matter hyperintensities, midbrain or medullary
volumes between the P/LP GFAP variants cohort and the control

group.

DISCUSSION

In this study, leveraging WES data from nearly 500000 indi-
viduals, we demonstrate that P/LP variants in the GFAP gene
are more frequent than expected in the general population.

Forest Plot of Odds Ratios of Family History of Neuropsychiatric Disease

Father Mother

Alzheimer's disease I | | |

Parkinson’s disease }—0—{

Figure 3

2 3 4
Odds Ratio

Sibling

aseasip s jawieuzlY

Significance
@ Not significant
@ significant

aseasip s uosuDURY

.

uoissaideq

Forest plot showing the association of P/LP GFAP variants with family history of disease, when compared with a random control cohort through

logistic regression. Significance at p<0.05. GFAP, glial fibrillar acidic protein; P/LP, pathogenic and likely pathogenic variants.
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Figure 4  Bar plot with error bars comparing posterior fossa volumes (in mm3) between a random control cohort and P/LP GFAP variant carriers across
different regions. Error bars represent the IQR. Significant differences (p<0.05) are marked with asterisks. GFAP, glial fibrillar acidic protein; P/LP, pathogenic

and likely pathogenic variants.

Moreover, they are associated with some of the typical and signs
and symptoms of Alexander disease as well as with an increased
family history for dementia.

At the time of writing, nearly 150 different GFAP vari-
ants have been reported to be associated with Alexander

disease—including missense, nonsense, splicing, regulatory
and small indels—though missense mutations make up the vast
majority.'” °! In a large latent class analysis of 30 new cases and
reviewed 185 previously reported cases of Alexander disease,
Prust et al report that more than half (50.7%) of the subjects

Figure 5 T2 Fluid-attenuated inversion recovery (FLAIR) brain MRI of two subjects with P/LP GFAP variants in UK Biobank. Sagittal (A) and axial (B,

() slices of a man in his 50s, carrying p.Asp128Asn variant previously reported as pathogenic. This subject self-reported as having a ‘demyelinating

disease (not multiple sclerosis)” as well as having ‘urological problems'. There is atrophy of the medulla and cervical cord (arrows in A), with associated
hyperintensity (arrow in B). There are also bilateral high signal intensities in both cerebellar dentate nuclei (arrows in C). The supratentorial white matter is
spared. Sagittal (D,E) and axial (F) slices of another man in his 50s, carrying a p.Arg376GIn variant previously described as likely pathogenic. There are multi-
focal supratentorial and pontine white matter abnormalities (arrows in D, (E), with a microvascular appearance as well as changes in signal intensity in the
medulla oblongata (arrow in F). There is less atrophy than seen in the first patient. GFAP, glial fibrillar acidic protein; P/LP, pathogenic and likely pathogenic

variants.
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had variants at one of four residues—R239 (20.3% of cases),
R79 (16.6%), R88 (7.9%) and R416 (5.6%).” Certain geno-
types appear to be associated with particular phenotypes, for
example, R239 and R79 variants are associated with early onset
and a severe phenotype in keeping with type 1 Alexander disease
(and may be responsible for up to 70% of this phenotype).’*
On the other hand, the phenotype—genotype correlation is less
clear with other variants—for example, with the R88 and R416
variants—and indeed patients with identical GFAP variants can
differ in the age of onset, type of disease, severity of clinical
presentation and progression rate.

This is the first study providing insights into the frequency
of pathogenic GFAP variants in a large population-scale dataset.
In total, 36 such variants were identified in 106 individuals.
Variants were spread across all nine exons of the GFAP gene.
Given the frequency of these variants in the Biobank dataset, we
predict 6.85 carriers of P/LP GFAP variants per 100000 individ-
uals, at least 1.42 per 100000 of which to be carrying variants
previously reported as disease-causing, substantially higher than
would be expected given literature published to date. This is in
fact likely to be an underestimate. The selection bias of the UK
Biobank, with enrolment only of those aged between 40 and 69
years old, means it will not have included those already severely
clinically affected by Alexander disease. For example, while in
our cohort, we identified 10 patients (9.4%) with R88 variants,
we could not find any patients with the common R239 or R79
variants, which are associated with younger disease onset and
more severe phenotype.

Though penetrance appears to be nearly 100% in individ-
uals with the infantile and juvenile forms, in adult-onset forms
penetrance of GFAP variants is less clear and harder to study
given the range in age of onset and phenotypic presentation. In
a review of 293 individuals, 10 (3%) of those with an identifi-
able GFAP pathogenic variant were reported to be asymptomatic
during the period of observation.!* 3! % 3% Qur study suggests
that the penetrance of GFAP variants is incomplete, that there
is under recognition or misdiagnosis of milder phenotypes of
late-onset Alexander disease, or both. In previous work using
UK Biobank data, we have shown that the carrier frequency of
disease causing mutations in CSFIR, which lead to adult-onset
leukoencephalopathy with axonal spheroids and pigmented glia
(ALSP), is also substantially higher than previous estimates.”
In that study, CSF1R variants were associated with significantly
increased rates of neuropsychiatric, cognitive and movement
disorders, which are common manifestations of ALSP.

Interestingly, recent data from multiple groups working across
different genetic disorders have found similar results. A recent
study found that the carrier frequency of pathogenic repeat
expansions in multiple genes, including c9orf72 and HTT, was
approximately 10-fold higher than expected in the general popu-
lation."® Similar work on disease prevalence of Fabry disease and
cardiac transthyretin amyloidosis in UK Biobank have also found
similar results.”® *” Taken together, these results all suggest that
the penetrance of late-onset autosomal dominant diseases may
be lower than previously thought, or that the phenotypic expres-
sion of these disorders may include very mild phenotypes that go
unrecognised.

Interestingly, we found that individuals carrying P/LP GFAP
variants are significantly more likely to have an ICD10 diag-
noses of bladder dysfunction, upper airway respiratory symp-
toms and psychiatric disease, which are common symptoms in
adult-onset Alexander disease. We also found they were signifi-
cantly more likely to have a family (specifically paternal) history
of dementia. As these symptoms (among others not seen here)

are very common in Alexander disease and given high rates of
misdiagnosis especially in early phases of the disease, this may
suggest that individuals in the GFAP variant cohort were in an
early symptomatic or prodromal stage of the disease. Phenotypic
representation of Alexander disease may also be underestimated
here. In a cohort study of 85 adult patients with Alexander
disease, symptom onset occurred after age 65 years in 11% of
cases—meaning they may have aged of UK Biobank inclusion
criteria prior to presentation.”

From a limited sample, we found evidence that P/LP GFAP
variants were associated with significant atrophy of the brain-
stem (total volume) and pons, with reduced (but not significantly
so) midbrain and medulla volume also. These may again repre-
sent phenotypic presentations of later-onset or type II Alexander
disease, which not only typically shows marked atrophy of the
infratentorial structures on brain MRI, most notably involving
the medulla, but also involving the remainder of the brain-
stem, cerebellum and cervical spinal cord.” We show the MRIs
of two subjects in particular in figure 5. These subjects have P/
LP GFAP variants and imaging appearances in keeping with
Alexander disease. We found no significant difference in medul-
lary volumes—the area typically affected most in Alexander
disease—Dbetween the two groups, nor any difference in Medulla:
Midbrain ratio or Medulla: Pons ratio, which have previously
been reported as sensitive for the disease.”® This may be due
to the use of FreeSurfer segmentation—which while accurate to
larger region atrophy (eg, the brainstem as a whole), has limita-
tions in accurately subsegmenting brainstem structures.”” !

The limitations of our study include the use of exome data
(which precludes detection of variants that are outside of GFAP
exons as well as potentially disease causing structural variants),
the extent of phenotypic data accessible in the UK Biobank and
the relatively small number of individuals with P/LP vairants.
Diagnostic data (including self-reported and ICD-10 coded) may
be too crude to detect subtle signs or symptoms of Alexander
disease, misclassified or under-represented. Moreover, MRI was
only available in a small subset of participants and presented
without longitudinal follow-up. Furthermore, most subjects are
of white British ancestry, which may restrict applicability of the
findings to other population groups.

In conclusion, our research shows that P/LP GFAP variants are
more common than expected in the general population, and that
these variants are associated with clinical and radiological signs
of Alexander disease. Although there are currently no approved
treatments for the disease, a phase 1-3 trial of Zilganersen
(ION373), an antisense oligonucleotide targeting GFAP mRNA,
is currently underway (ClinicalTrials.gov ID NCT04849741).
Early consideration and recognition of Alexander disease, with
referral to appropriate specialist support, is therefore increas-
ingly important.
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