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Thesis Abstract

Background: Genome-wide association studies (GWAS) have enhanced the understanding of
the genetics of bipolar disorder (BD), yet its profound clinical and genetic heterogeneity
remains a major obstacle to diagnosis and treatment. The wide range of clinical presentations,
partly driven by high rates of comorbidity and individual variability, can obscure genetic
discoveries and complicates the search for reliable biomarkers.

Aims: This thesis aims to deconstruct the clinical heterogeneity of BD by identifying novel
dimensional frameworks by dissecting the genetic architecture of specific clinical
subphenotypes. The central goal is to identify distinct genetic mechanisms and biological
pathways that can inform biomarker discovery, advance precision medicine, and identify
potentially new functional genomic targets.

Methods: This research employed a multi-stage approach, beginning with the development of
a dimensional model of BD psychopathology that integrated premorbid factors (Chapter 3).
Subsequent analyses utilized large-scale genetic data to assess transdiagnostic risk from
schizophrenia (Chapter 4), delineate the genetic architecture of 11 distinct clinical
subphenotypes using Multi-Trait Analysis of GWAS (MTAG) (Chapter 5), and evaluate the
impact of ascertainment and ancestry on polygenic prediction (Chapter 6).

Results: A novel ‘Adverse Chronic Trajectory’ (ACT) dimension was identified, potentially
linking premorbid neurodevelopmental deficits to chronic BD outcomes; this dimension was
genetically associated with polygenic risk for ADHD and anxiety, not core BD. Multi-trait
analyses of eleven subphenotypes revealed four underlying genetic dimensions, including a
‘Severe Illness’ dimension defined by a unique neuro-immune signature (a protective
association with the human Major Histocompatibility Complex (MHC) Human Leukocyte
Antigen, Class II, DM Alpha gene (HLA-DMA) and specific risk loci Sodium Voltage-Gated
Channel Alpha Subunit 2 (SCN24), and a ‘Comorbidity’ dimension linked to
neurodevelopmental genes such as Deleted in Colorectal Carcinoma (DCC). Further analyses
demonstrated that the predictive power of polygenic scores is substantially influenced by both
patient ascertainment strategies and genetic ancestry.

Conclusions: This thesis advances the understanding of BD’s genetic architecture by
providing a biological framework that helps explain its clinical diversity. The identification of
distinct genetic dimensions and subphenotype-specific pathways begins to address the “hidden
heritability” challenge by revealing previously obscured genetic mechanisms. These findings
offer novel, biologically grounded hypotheses for future research and lay the groundwork for
developing stratified, personalized treatment strategies in the pursuit of precision psychiatry.



Impact Statement

The profound clinical and genetic heterogeneity of bipolar disorder (BD) presents a formidable
challenge for research and treatment, a problem now being addressed by large-scale genomic
analyses that provide new biological insights. As a leading cause of disability worldwide,
individuals with BD experience a suicide risk many times higher than that of the general
population, and a reduction in life expectancy [7]. The disorder’s complex aetiology, involving
substantial genetic contributions (estimated at 85-89% of heritability) [1], and environmental
factors, presents challenges. The clinical course of the illness underscores these difficulties, as
many patients in long-term outpatient care experience high rates of relapse and struggle to
achieve full functional recovery. Treatment is also complicated by high rates of comorbidity;
most individuals reported one or more other psychiatric or medical conditions in a
comprehensive survey of BD. Lifetime, (and 12-month) prevalence estimates are 1.0% (.6%)
for bipolar disorder I (BD1), 1.1% (.8%) for bipolar disorder II (BD2), and 2.4% (1.4%) for
subthreshold symptoms [53]. Consequently, many patients do not achieve an adequate
response to first- or second-line medications. While research has identified numerous genetic
variants associated with BD, the disorder’s profound clinical heterogeneity makes pinpointing
causal genes and developing targeted treatments exceptionally difficult.

This thesis directly confronts this challenge by investigating the clinical diversity of BD and
its genetic underpinnings. By seeking to elucidate the aetiology of the disorder, the overarching
aim is to lay the scientific groundwork for future advancements in prevention strategies,
diagnostic precision, and treatment options, ultimately to enhance the quality of life (QoL) for
those affected.

The key contributions of this research are summarised below. Methodologically, this thesis
demonstrates that a subphenotypic approach can advance genomic discovery in BD. By
leveraging a multi-trait analysis and deconstructing the disorder’s heterogeneity, this work
yielded 53 novel risk loci and incrementally improved polygenic risk prediction, providing a
direct, evidence-based strategy for addressing the ‘missing heritability’ in BD.

This granular approach allowed for the identification of several distinct clinical-genetic
profiles. The results provide strong evidence for an ’Adverse Chronic Trajectory’ (ACT)
(Chapter 3), a dimension linking premorbid factors to a chronic course, which was uniquely
predicted by polygenic risk for attention-deficit/hyperactivity disorder (ADHD) and anxiety
rather than core BD. This suggests a distinct biological basis for this challenging trajectory.
Furthermore, this research advances risk stratification by showing that schizophrenia (SCZ)
polygenic risk scores can predict severe outcomes including psychosis and earlier onset in BD.
Individual-level pathway analysis of these findings implicates specific biological mechanisms,
such as mitochondrial dysfunction, as potential markers of severe illness (Chapter 4).



Ultimately, this thesis proposes a new framework for understanding BD, deconstructing it into
genetically-informed dimensions distinguished by unique biological signatures, such as a
neuro-immune profile for severe illness and specific neurodevelopmental pathways for
comorbid forms (Chapter 5). By moving beyond a monolithic view of the disorder (Chapter 6),
this work lays a crucial foundation for more comprehensive etiological models. The
implications for designing targeted, genetically-informed clinical trials and enhancing public
health awareness of BD’s complexity underscore the broad relevance of this research and
warrant its dissemination to the wider scientific community.

Note: For references see Section 8.1.

This thesis presents my own account of investigations, the entirety of which were undertaken
during the period of research supervision. This demonstrates my ability to design and
implement several independent research projects, outlined in Chapters 3 to 6.
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1 Introduction

Bipolar disorder (BD) presents a psychiatric challenge, primarily due to its profound clinical
and genetic heterogeneity. This complexity hinders accurate diagnosis, effective patient
management, and the elucidation of underlying etiological mechanisms, ultimately
complicating the development of individualised therapies.

This thesis presents a comprehensive investigation into the systematic dissection of this
heterogeneity. The thesis is structured to first critically review current understanding of BD’s
diverse presentations, complex genetics, and research limitations (Chapter 1). Subsequent
empirical chapters will develop dimensional models of BD psychopathology (Chapter 3);
examine the impact of transdiagnostic polygenic risks on clinical outcomes (Chapter 4);
delineate distinct and shared genetic architectures of numerous clinical subphenotypes (see
section 1.1 below) through large-scale multi-trait analyses (Chapter 5); and evaluate
methodological factors, including cohort ascertainment and ancestry, that influence polygenic
risk prediction (Chapter 6). Finally, these diverse findings will be synthesised and their broader
implications discussed (Chapter 7). Achieving a deeper, more nuanced understanding of these
intricate layers is paramount for advancing the field towards the promise of precision

psychiatry.

This first chapter, therefore, provides the crucial foundation for this structured inquiry by
reviewing current knowledge, identifying research gaps, and culminating in an outline of the
specific aims of this thesis, which endeavours to contribute novel and impactful insights into
these crucial issues.

1.1 Bipolar Disorder

Bipolar disorder (BD) arises from a combination of genetic factors and environmental
influences and exhibit high heritability. Twin studies have indicated heritability rates of 85%
to 89%. Specifically, the rate was 85% with a narrow concordance (95% confidence interval
[CI], .73-.93) and 89% with a broad concordance (95% CI, .61-1.0)). While research into the
genetic basis of BD has advanced, the search for reliable biomarkers for diagnosis and
treatment response continues. This endeavour is complicated by evidence that gene variants
genetically associated with BD are also implicated in other psychiatric and human diseases.
This challenge is notable given the high heritability estimates for BD [1], which have yet to
fully translate into readily identifiable biomarkers. The pathophysiology of BD remains largely
undetermined. Observed changes in cellular function and brain structure could suggest
neurodevelopmental processes and neuroprogression, which may be associated with epigenetic
alterations, mitochondrial dysfunction, neurotrophic factors, inflammation, and oxidative stress
mechanisms, according to a selective review [2]. Magnetic Resonance Imaging (MRI) studies
have corroborated these findings, showing reduced cortical thickness in widespread frontal and
parietal regions among BD patients relative to healthy controls. The same study also found that
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a longer duration of illness was specifically associated with reduced thickness in medial parietal
and occipital regions [3].

Moreover, BD is characterised as both polygenic and pleiotropic, resulting in substantial
bidirectional genetic influences with various other human diseases and traits, including
cardiovascular disease (CVD), SCZ and intelligence [4-5]. Comorbidity contributes to the
disorder’s heterogeneity, affecting its clinical presentation, course, and treatment outcomes.

This can confound research results and hamper diagnoses and response to therapeutics.
Although some medical comorbidities can be identified through testing, no specific laboratory
test currently exists for BD.

Unpacking Bipolar Disorder: The Concept of Subphenotypes

In the context of bipolar disorder, a subphenotype refers to a more specific and relatively
uniform subgroup of individuals who all share the broader diagnosis but are distinguished by
a particular set of clinical features, patterns of illness, or biological markers. This approach
acknowledges that bipolar disorder is not a monolithic entity but rather a heterogeneous
condition with diverse presentations and underlying causes.

The core idea behind identifying subphenotypes is to move beyond the general diagnostic
criteria of bipolar I or bipolar II disorder and delineate more homogeneous patient groups.
This refined classification has significant implications for both research and clinical practice,
with the ultimate goal of developing more personalized and effective treatments.

Key Characteristics Used to Define Bipolar Subphenotypes:

Researchers are exploring various characteristics to define these subgroups, often integrating
clinical observations with genetic and neurobiological data. Some of the key areas of
investigation for bipolar disorder subphenotypes include:

e Clinical Course and Features: This is one of the most common ways to categorize
subphenotypes. Examples include:

o Presence or Absence of Psychosis: Individuals with a history of psychotic
symptoms (delusions or hallucinations) during mood episodes may represent a
distinct subphenotype compared to those who have never experienced
psychosis.

o Age of Onset: Whether the disorder begins in adolescence or adulthood can
signify different underlying mechanisms and long-term outcomes.

o Rapid Cycling: Patients who experience four or more mood episodes within a
single year fall into this well-established subphenotype, which often presents
unique treatment challenges.

o Pattern of Inter-episode Remission: The degree to which an individual
returns to their baseline level of functioning between mood episodes can be a
defining characteristic.
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o Comorbidity: The presence of other co-occurring psychiatric conditions is another
critical factor. A common example is the subphenotype of bipolar disorder with a
comorbid anxiety disorder, which can influence both the presentation of the illness
and the response to treatment.

e Genetic and Familial Factors: With advancements in genetic research, scientists are
identifying specific genetic markers and polygenic risk scores (an individual’s overall
genetic predisposition) associated with certain clinical features of bipolar disorder.
For instance, some subphenotypes may have a stronger genetic link to schizophrenia,
while others may share more genetic overlap with major depressive disorder.

o Neurobiological Markers: While still largely in the research phase, efforts are
underway to identify biological markers, such as specific patterns of brain activity or
inflammation, that could help to objectively define different subphenotypes.

The Goal: From Subphenotype to “Endophenotype”

The identification of subphenotypes is a crucial step towards a deeper understanding of the
biological underpinnings of bipolar disorder. The ultimate aim for researchers is to define
endophenotypes. An endophenotype is a subphenotype that is linked to a specific,
measurable biological mechanism. By understanding the distinct pathophysiology of these
more uniform groups, clinicians can hope to develop targeted therapies that address the root
cause of an individual’s specific type of bipolar disorder, moving away from a one-size-fits-
all approach to treatment.

1.2 BD Comorbidities

A 2024 review of 114 studies, conducted between 1993 and 2022, detailed frequent comorbid
BD disorders such as anxiety, substance use disorders (SUD), Attention-Deficit/Hyperactivity
Disorder (ADHD), and impulse-control disorders [6], alongside medical conditions including
diabetes, metabolic syndrome, and cardiovascular diseases. For a recent review of BD
comorbidities, see Oliva et al. (2025) [7]. For BD subphenotype prevalences, see literature in
Chapter 2 Table 10 and Supplementary Table 58. Comorbidities are consequential as they may
influence risk or resilience, affecting how individuals navigate environmental stressors that can
provoke BD episodes, response to treatments and impact the disorder’s progression [8]. A study
on adolescent BD found that lower socioeconomic status (SES) was associated with a higher
likelihood of comorbid disruptive behaviour disorders, anxiety disorders, substance use
disorders, and a more severe clinical presentation of BD [9]. These factors, alongside comorbid
ADHD and obsessive compulsive disorder (OCD) have been associated with a poorer
prognosis, including rapid cycling, more severe illness and adverse functional outcomes [7].

While this thesis emphasises genetic risk factors, a variety of environmental influences likely
also interact with genetic susceptibilities. Investigating the interplay between BD, its
comorbidities, and the environment (Table 1) will be crucial for refining future diagnostic and
treatment approaches.
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Table 1 Putative Bipolar Disorder Risk Factors and Prodromal Symptoms

Category Risk Factors Relationship to Bipolar Disorder
Family history of bipolar disorder, Increase the individual's vulnerability or predisposition to
Biological Neurodevelopmental factors, Temperament, developing bipolar disorder. Research continues to identify

Specific Genes (e.g., AKAP11), Brain Structure  specific genes and brain differences that may play a role.
and Functioning Differences, Neurotransmitter Imbalances in neurotransmitters like serotonin, dopamine,

Imbalances and norepinephrine are implicated.
Adverse Childhood Experiences (ACEs) such as Research suggests a link between ACEs and increased risk.
Environmental childhood, trauma, poverty, stress, sexual, Can act as triggers for episodes or exacerbate the condition.

physical abuse, neglect, witnessing violence or Trauma and significant stress, especially in childhood, can
emotional abuse), Antidepressants, Major life  have long-lasting effects. Disruptions in sleep patterns are a

transitions, or Sleep Deprivation significant trigger. Substance misuse and disrupted sleep
can also be consequences of environmental factors.
Psychosis, Hypo(mania), Sleep problems, Often co-occur with bipolar disorder, can be part of the
Dimensional  Comorbidity (Anxiety and depressive symptoms, diagnostic presentation, or indicate a greater severity or
Mood lability, Early-onset Anxiety Disorders complexity. These conditions may also represent early

(panic disorder, separation anxiety, generalized clinical risk factors that precede the onset of full bipolar
anxiety), Conduct Problems/Disorder, ADHD, disorder.

Impulsivity

Physical Health Conditions Certain physical health conditions and substance use

(e.g., thyroid issues, cardiovascular disease, disorders have a high rate of comorbidity and may influence
Additional obesity), Substance Use Disorders risk. Seasonal changes can trigger episodes in some

(as a primary condition), Seasonal Changes, individuals. Emerging research is exploring the role of

Inflammation, Gut Microbiome inflammation and the gut microbiome in mental health

disorders, including bipolar disorder.

Adapted from Vieta et al. 2018, Early Intervention in Bipolar Disorder [10]. These categories of factors
often interact and influence each other in the development and course of the disorder. For example,
genetic predisposition might interact with environmental stressors to increase the risk of BD.

1.3 History And Classification Of BD

Early Differentiation from Schizophrenia and Depression

The classification of bipolar disorder (BD) relies on diagnostic criteria specified in the
International Classification of Diseases (ICD) from the World Health Organization (WHO)
[11] and the Diagnostic and Statistical Manual of Mental Disorders (DSM) from the American
Psychiatric Association (APA) [12]. The origins of BD criteria trace back to Aristaeus of
Cappadocia, a Ist-century Greek physician who described mania and melancholia as
manifestations of a single disease, a concept later noted by Falret (1851) and Baillarger (1854)
[13]. In 1899, psychiatrist Emil Kraepelin introduced the single concept of ‘manic-depressive
insanity’ to describe cyclical mood states, distinguishing it from the chronic , deteriorating
course of dementia praeccox (now schizophrenia) based on long-term outcomes and episodic
recovery patterns [14]. This pivotal contribution established a framework for distinguishing
major psychotic disorders by their trajectory and marked a substantial step in psychiatric
nosology by integrating various mood disorders into one unifying concept. This observation of
remission as a distinguishing feature of BD has evolved, with current evidence indicating many
individuals experience incomplete remission due to residual symptoms, often exacerbated by
comorbid disorders [15]. This historical overview highlights the evolving understanding of BD,
a crucial context for appreciating the heterogeneity this thesis aims to address.

24



Evolution of Subclassifications of Bipolar Disorders

The understanding of BD extends beyond a simple dichotomy with unipolar depression. Kleist
and Leonhard first proposed subclassifying BD in 1957 to better differentiate it.
Schizoaffective disorders were later categorized into schizoaffective bipolar type (SZA) and
schizoaffective depressive type in the DSM-III-R in 1987. Individuals with schizoaffective
bipolar type have a high risk for psychosis, characterized by symptoms such as hallucinations
and delusions, alongside manic and depressive mood episodes [16].

Kraepelin’s foundational work also informed our understanding of temperaments and mixed
states. Akiskal, in 1998, expanded on these ideas, identifying specific temperaments and their
associations with mood disorders, including cyclothymia [17]. Mendel first described
hypomania in 1881 [18]. Later, Dunner ef al. (1976) differentiated bipolar disorder type II
(BD2) from bipolar disorder type I (BD1), noting that BD2 is characterized by depressive and
hypomanic rather than manic episodes [19]. It remains uncertain if a labile-cyclothymic
temperament is clinically distinct from BD2.

Griesinger first articulated the concept of rapid switching in 1845 [20] that foreshadowed the
concept of rapid cycling. Dunner and Fieve established the formal definition of rapid cycling
in the 1970s, describing a BD course involving four or more affective episodes within a year,
which was typically unresponsive to lithium monotherapy [21]. In certain instances, rapid-
cycling BD may manifest as mood shifts occurring over hours, a phenomenon termed ultrarapid
cycling, associated with a more severe, treatment-resistant form of bipolar illness [22]. This
can be accompanied by irritability, impulsivity, and suicidal behaviour, presenting diagnostic
challenges, as ADHD and borderline personality disorder (BPD), as defined by the Diagnostic
and Statistical Manual of Mental Disorders (DSM) , also exhibit similar mood fluctuations [23-
24]. Interestingly, cases of prepubertal and early adolescent BD were distinguished from
ADHD by mania-specific criteria, though both often displayed ultra-rapid or ultradian cycling
[23]. In BD, mixed states refer to the simultaneous experience of manic and depressive
symptoms, while rapid cycling describes four or more distinct mood episodes (mania,
hypomania, or depression) within a year. However, mixed states may involve rapid-sequence
manic and depressive symptoms [7]. For a comprehensive history of bipolar disorder
subclassifications, refer to Angst and Marneros 2001 [13].

History of Diagnostic Criteria (ICD, DSM, RDoC)

BD clinical diagnosis relies on the presence, frequency, and severity of hypo(manic) and
depressive symptoms. Three primary diagnostic systems are used in psychiatry today: the ICD
from the World Health Organisation (WHO) [11], the DSM from the American Psychiatric
Association [12], and the Research Domain Criteria (RDoC) from the National Institute of
Mental Health (NIMH) [25]. The DSM originated in the United States in 1952, established by
the APA to gather psychiatric hospital statistics. Subsequent revisions led to the current edition,
DSM-5, published in 2013 [12], with the most recent update being the DSM-5-TR (Text
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Revision), published in 2022 [26]. In contrast, the International Classification of Diseases
(ICD) evolved as a global initiative for standardizing data across countries and timeframes. Its
origins trace back to the ‘Bertillon Classification of Causes of Death’ (1893), developed by
French statistician Jacques Bertillon. The WHO later adopted this classification, which evolved
into ICD-10, published in 1992 [27], and the latest version, ICD-11, was adopted in 2019 and
implemented in 2022 [28-29].

Differences exist between the ICD-10 and DSM-5. The DSM-5 targets mental disorders
specifically, while the ICD-10 encompasses a broader range of physiological conditions.
Additionally, they differ in classifying BD, particularly regarding manic episode frequency:
the DSM-5 requires at least one hypo(manic) episode, while the ICD-10 specifies two affective
disorder episodes, one of which must be hypo(manic). The DSM-5 acknowledges BD?2,
whereas the ICD-10 did not differentiate this subtype (though ICD-11 does).

Unlike the DSM and ICD initially, RDoC focuses on the required biological factors rather than
solely on symptomatology [25, 30] and aims to address heterogeneity and comorbidity within
current classifications. Although RDoC provides a valuable framework, it is not intended for
clinical diagnosis of BD but seeks to inform future diagnostic criteria. While RDoC has moved
research towards a dimensional approach of BD, it is complex and evolving and is yet to
meaningfully impact clinical practice.

1.4 BD Classification Criteria And Course Specifiers

Both the DSM-5 and ICD-11 acknowledge BD1 and BD2. The ICD-11 adopts a dimensional
symptom assessment approach, retaining the mixed episode diagnosis and subthreshold states
eliminated by the DSM-5 [29]. Both systems require at least one hypomanic and one depressive
episode for a BD2 diagnosis, defining hypo(manic) episodes by mood elevation or irritability
combined with increased activity or other criteria. The three key subtypes recognized in both
the ICD-11 and DSM-5-TR are BD1, BD2, and cyclothymic disorder. BD1 is characterized as
a manic-depressive disorder potentially including psychotic features, while BD2 is defined by
alternating depressive and less severe hypomanic episodes. Cyclothymic disorder features
shorter depression and hypomania episodes. Additionally, a Bipolar Disorder Not Otherwise
Specified (BD-NOS) category exists, identified by multiple depressive episodes. Diagnostic
distinctions between BD1 and BD2 depend on manic and hypomanic episode severity and
duration. BD1 is marked by full manic episodes; BD2 by hypomanic and major depressive
episodes. BD2 often presents with higher depressive episode frequency compared to BDI1,
which has higher hospitalisation rates and more extreme mood episodes [7]. Differentiating
schizoaffective disorder, bipolar type (SZA) from BDI1 is relevant due to worse outcomes in
SZA, including prolonged duration of untreated psychosis (DUP), greater illness severity, and
poorer Global Assessment of Functioning (GAF) scores [31].
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Bipolar Disorder I

Bipolar Disorder I (BD1) is diagnosed following at least one manic or mixed episode, without
requiring preceding hypomanic or depressive episodes. The DSM-5 defines a manic episode
as a distinct period of persistently elevated or irritable mood with increased activity for at least
one week or necessitating hospitalisation. Confirmation requires three or more of the following
symptoms (four if irritability is present): 1. inflated self-esteem, 2. reduced need for sleep, 3.
excessive talkativeness, 4. racing thoughts, 5. distractibility, 6. increased goal-directed activity
or psychomotor agitation, and 7. risky behaviours. These symptoms must disrupt functionality
and not be attributable to substance use disorders (SUD) or medications [26].

Bipolar Disorder 11

A Bipolar Disorder II (BD2) diagnosis requires at least one hypomanic and one depressive
episode, with no history of manic episodes. A hypomanic episode involves a sustained elevated
or irritable mood plus increased activity for at least four consecutive days. Similar to BD1, at
least three symptoms (four if irritability is involved) must match those for hypomania. This
distinct change in functioning should not cause substantial impairment or psychotic features,
nor be attributable to substances or medication [26].

Bipolar Disorder Specifiers

Clinical features serving as BD course specifiers were incorporated into the DSM-IV [32] and
DSM-5 [12], enhancing diagnostic utility for prognosis and treatment guidance beyond simple
categorical diagnoses. Current DSM-5 specifiers include longitudinal course, remission status,
severity, anxious distress, mixed features, catatonia, mood-incongruent psychotic features,
peripartum onset, seasonal patterns, and rapid cycling.

Other potential clinical variables are suggested but await formal DSM-5 acceptance [7]. For
instance, evidence indicates age of onset can influence clinical manifestation, with early-onset
cases leading to a more severe illness course, higher suicidality risk, and more comorbidities
[33]. Research on BD course specifiers, including the age of the onset BD, psychotic features,
comorbidities and rapid cycling (explored in Chapters 3 to 5 of this thesis), indicates potential
distinct genetic factors. However, specifiers are likely influenced by a complex interplay
between genetic predisposition and environmental factors, such as childhood trauma, which
can affect onset timing and illness severity [7].

Differential Diagnoses

Common differential diagnoses for BD include schizophrenia (SCZ), major depressive
disorder (MDD), anxiety disorders (ANX), substance use disorders (SUD) and borderline
personality disorder (BPD). In children exhibiting early ‘BD’ symptoms, ADHD and
oppositional defiant disorder are prevalent concerns [34-35]. Particular attention is needed for
children displaying subsyndromal manic symptoms, mood instability, irritability, anxiety, and
depression. However, even in this subset, symptom onset and severity remain heterogeneous,
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requiring individual risk assessment [10]. Initial physical BD evaluations may include tests
ruling out secondary causes, including urine and blood screenings, metabolic panels, and
thyroid function and folate level assessments [36].

Bipolar Disorder Diagnostic Challenges

Current classifications mask considerable genetic heterogeneity within BD, which
encompasses various psychiatric conditions [37]. Genetic studies highlight genetic overlap
with other disorders but do not consistently align with existing classification systems.
Approximately 60% of individuals with BD are initially misdiagnosed, often with unipolar
depression. In one national survey, more than one-third remain misdiagnosed for 10 years or
more [38]. Only 20% may receive a correct diagnosis within the first year of seeking treatment
[39]. This diagnostic difficulty is compounded by the genetic overlap BD shares with other
psychiatric conditions, potentially contributing to the challenges in identifying specific genetic
markers for BD. Diagnosis can be challenging as BD can initially present as depressive
episodes [40-41]. This could be further complicated when prior hypo(manic) episodes go
unnoticed or unreported [42]. Family studies indicate that polarity at onset may have heritable
components [43]. Identifying divergent genetic markers could therefore help clarify disorder
boundaries and trajectories, within a continuum of genetic risk for BD and other psychiatric
conditions.

Prognosis

BD prognosis is multifactorial, influenced by timely diagnosis, mood episode severity and
frequency, comorbid conditions, and individual treatment response. Early intervention,
particularly pharmacological and psychoeducational approaches, may enhance functional
outcomes [44]. Individuals with early onset, associated with worse outcomes, could be a target
group as they showed increased burden for a wider trait spectrum. Predominance of depressed
versus hypomanic episodes may also impact subtype distinctions and prognoses [45].
Furthermore, the clinical course is often complicated by persistent cognitive impairment, which
can affect memory, attention, and executive function even during periods of euthymia,
significantly impacting long-term functional recovery and quality of life [46].
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Course specifiers
Age of onset Comorbidities
Hypo(mania) Executive function
Psychosis Psychosocial factors

. . Obsessive compulsive disorder (OCD)
Predominant polarity Borderline personality disorder (BPD)
Rapid cycling Metabolic, thyroid and somatic diseases
Anxious distress

Figure 1 Inter- and Intra-Heterogeneity in Bipolar Disorder.
This illustrates distinct illness trajectories contributing to the clinical heterogeneity
characteristic of BD.

A predominantly depressive polarity is frequently associated with an increased risk for
depressive illness onset, Bipolar Disorder Type II (BD2), mixed episodes, and suicidality. In
contrast, a predominantly manic polarity is often linked to a younger age of onset, a manic or
psychotic illness onset, and a higher risk of substance abuse preceding the first mood episode,
underscoring the disorder’s diverse presentations [47]. A predominantly depressive polarity is
associated with increased risk of depressive illness onset, BD2, mixed episodes, and increased
suicidality risk. In contrast, a predominantly manic polarity is associated with younger age of
onset, manic/psychotic illness onset, and higher pre-first-episode substance abuse risk [47].

Chronicity and comorbid ADHD and ANX are associated with poorer outcomes [48].
Comorbid ADHD-BD subjects had younger BD onset, more depressive episodes, more ANX
and substance use/dependency disorders (SUDs), and greater BPD trait and cyclothymic
temperament risk [49]. Both mixed states and rapid cycling are associated with a more severe
BD form, higher comorbidity, and poor outcomes, potentially leading to inadequate treatment
response, higher disability, and greater suicide risk [29]. BD patient mortality risk is elevated,
particularly from cardiovascular diseases and suicide, with approximately 30-60%
experiencing suicidal ideation and 15-20% completing suicide [50].
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Treatments

Treatment typically combines medication and psychotherapy. Medications include mood
stabilizers (e.g., lithium, valproic acid, lamotrigine) for managing hypo(manic) and depressive
episodes. Antipsychotics (e.g., haloperidol, olanzapine, risperidone) also contribute to mood
stabilization. While antidepressants, particularly Selective Serotonin Reuptake Inhibitors
(SSRIs), may be used with mood stabilizers, they are contraindicated as standalone treatments
and during manic phases due to mania induction risk [51]. Psychotherapy is an important
adjunctive therapy to pharmacological BD treatments. While the evidence base has
complexities, several modalities such as Cognitive Behavioural Therapy (CBT), Family-
Focused Therapy (FFT), and psychoeducation have demonstrated benefits for outcomes such
as relapse prevention and medication adherence [52].

Prevalence

Bipolar disorder is a prevalent psychiatric condition, estimates range from 1 to 3% in the
general population [53]. According to the latest Global Burden of Disease (GBD) report (2019),
around 1 in 150 adults (roughly 40-50 million people globally) are diagnosed with bipolar
disorder [54]. Lifetime bipolar spectrum disorder prevalence was estimated at 4.4%, with a 12-
month prevalence of 2.8%. Specifically, BD1, BD2, and subthreshold BD prevalence were
1.0%, 1.1%, and 2.4% respectively, with 12-month prevalences of .6%, .8%, and 1.4%. Actual
prevalence may be as high as 4 to 6% in outpatient settings when considering subthreshold
bipolarity symptoms [53].

The GBD report highlights that BD, similar to SCZ, is highly heritable and shares genetic
overlap, maintaining relatively stable worldwide prevalence, although variations occur by
income level, birth cohort, and geographical regions. Acute psychotic episodes are associated
with the highest disability risk, while depressive and anxiety are among the leading disability
causes, elevating severe outcome risks including suicide [54]. The GBD report indicated no
sex variation in bipolar disorder burden, aligning with recent comprehensive genetic studies
[55-56]. Prior reports suggested greater BD2 prevalence in females; however, current evidence
indicates higher bipolar disorder incidence reporting across all forms in females [57]. Notably,
about three-quarters of individuals on the bipolar spectrum report a comorbid disorder, with
ANX, particularly panic attacks, being most prevalent.
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1.5 Clinical Features, Correlates And Functioning

Bipolar disorders are fundamentally characterised by chronic mood instability. The core
characteristic of “switching” represents fluctuations between euthymic states, mania, and
depression. Episodes can manifest as manic, hypomanic, depressive, or mixed, interspersed
with inter-episode periods, with or without subsyndromal symptomatology (Figures 1-4 are
referenced generally here, with specific figures detailed below). While BD broadly
encompasses symptoms associated with several psychiatric disorders (Figure 2), its
distinguishing feature is cycling (Figures 3-4). Therefore, identifying genetic mechanisms of
cycling could be key to understanding BD aetiology [58]. Functional impairment is a key
distinction between BDI1, BD2, and SZA subtypes. BDI’s hallmark manic episodes
(elevated/irritable mood for at least one week [14, 27] typically cause marked functional
impairment. In contrast, BD2’s less pronounced hypomanic episodes generally have a lesser
immediate functional impact than mania [12]. SZA, combining bipolar disorder and
schizophrenia features [59], often results in more severe, persistent functional deficits than
BD1 or BD2 due to its combined mood and psychotic symptoms.

Bipolar disorder is distinguished from MDD by hypo(mania) presence. BD1 is characterised
by at least one manic episode; BD2 has no manic episodes (Figure 3). Depressive episodes are
defined as persistent low moods lasting more than two weeks. Symptoms include loss of
interest in typically enjoyed activities, fatigue, insomnia or hypersomnia, hopelessness, suicidal
ideation, reduced self-esteem, and social withdrawal [27]. Difficulties differentiating BD1,
BD2, and unipolar depression may contribute to up to a 10 year diagnostic and treatment delay
[60]. Evidence supports potential unipolar depression misdiagnosis, as 20% of patients
developed hypo(mania) within five years in one longitudinal study [61].

Subsyndromal Bipolar Disorder Symptoms

BD can be associated with progressive cognitive deficits, residual symptoms, sleep
disturbances, and emotional dysregulation between mood episodes [62]. An estimated 20-50%
of patients experienced inter-episodic or chronic subsyndromal symptoms in one review of
periods of euthymia [62] (Figure 4).

Early Onset Bipolar Disorder

Early onset bipolar disorder (EOBD) has been proposed as a DSM-5 course specifier. EOBD
presence correlates with increased chronicity and comorbidity risk [63]. It is associated with
higher comorbid anxiety and SUD instances, more episodes, less euthymia, and greater suicide
attempt risk. Most reported EOBD comorbid conditions are ADHD, SUD, and anxiety. In a
983 BDI adult case study, early-onset BD was associated with more severe illness course,
increased suicidality and comorbid psychopathology risk, more episodes, and worse functional
outcomes compared to later onset [64]. Childhood onset represented only 5% of cases, 25%
adolescence, and 53% at peak ages 15-25 [65]. A recent genetic study (34,658 alcohol use
dependency [AUD] and 20,352 BD cases) suggested shared aetiology [66].
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The prognosis of BD is shaped by its typical natural history. The age of onset often follows a
trimodal distribution, with peaks in adolescence, the early twenties, and around age 40 [67].
EOBD cases between 12-18 years and even earlier are reported (age < 12), most qualifying as
early onset (occurring before 17 years of age). Two further onset peaks were reported: 26 and
42 years old [67]. Critically, for many individuals, the illness begins not with mania but with
one or more depressive episodes, often leading to initial misdiagnosis and significant treatment
delays [41]. Furthermore, a defining feature of the illness is its high rate of recurrence. Seminal
longitudinal work, such as Angst’s studies of the Zurich cohort, demonstrates that BD is a
highly recurrent condition, and full functional recovery between episodes is often incomplete
[13, 62]. This pattern of recurrence and residual impairment has direct relevance for the
investigation of a chronic illness trajectory in this thesis (Chapter 3).

Rapid Cycling Bipolar Disorder

Rapid cycling (RC-BD) was first noted before available pharmacologic treatments, some
potentially worsening switching, suggesting it is not solely a medication artifact. Consistent
lithium non-responsiveness evidence also exists [21]. Rapid cycling occurs in approximately
10-20% of BD cases, characterized by four or more episodes per year (RC; > 4 episodes/year).
A recent RC-BD systematic review/meta-analysis identified RC-BD in 9.36% of cases (3.74%
BD1, 15.2% BD2) [68]. However, another study found higher RC-BD prevalence: in a large
54,257 BD case cross-national community sample (lifetime and 12-month data), approximately
30% met rapid cycling criteria. Rapid cycling may be prognostic for onset, clinical course, and
outcomes, associated with increased chronicity and comorbidity risk. It is more often reported
early in diagnosis, suggesting the rapid cycling experience may prompt help-seeking
behaviour. It is associated with greater severity, chronicity, worse global functioning, and
higher suicidal risk [17]. Despite this, no clear treatment consensus exists [69]. One
longitudinal study reported rapid cycling often resolved within two years of onset in 4 to 5
cases [70]. While some individuals experience RC-BD temporarily; for others, it is recurring
or persistent.

Mixed features

Mixed features and rapid cycling share a similar poor BD trajectory. At least 30-70% of BD
patients present with mixed mania or depression [29]. Frequent mixed episodes are associated
with a severe, chronic course, comorbid disorders, cognitive impairments, rapid mood swings,
and treatment resistance [7].

Bipolar disorder with Psychosis

Similar to EOBD and RC-BD, other specifiers such as psychosis might be better described as
dimensional, existing on a severity spectrum (Figures 1-2). While BD and SCZ can involve
psychosis, the key difference is mood episode presence and psychotic symptom persistence: in
BD, psychosis typically occurs during manic/depressive episodes; in SCZ, psychosis is primary
and persistent. In BD, psychosis describes a state of being disconnected from reality, often
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involving hallucinations, delusions, and disorganized thoughts or speech, occurring during
manic or depressive episodes. Grandiose delusions and paranoia are mania features; however,
psychotic symptom presence represents severe BD. The prevalence of psychotic symptoms
varies across the different phases of the illness. A systematic review highlighted that such
symptoms are significantly more common during manic and mixed episodes compared to
depressive phases, underscoring the strong link between psychosis and elevated mood states in
BD (See Chapter 4 [39]).

Psychosis is classified as either mood congruent (symptoms align with current mood state) or
mood incongruent (symptoms do not correspond). The distinction between mood-congruent
and mood-incongruent psychosis has significant diagnostic implications, particularly at the
boundary between bipolar disorder and schizophrenia. The presence of mood-incongruent
psychotic symptoms, especially when persistent, raises the diagnostic possibility of
schizoaffective disorder, bipolar type (SZA). The work of researchers such as Andreasen et al.
(1987); Akiskal and Pinto (1999), has been central to debating these diagnostic boundaries,
highlighting the challenge of classifying patients who present with a mix of severe mood and
psychotic features [71-72]. This classification quandary is not merely academic; as
demonstrated in a machine learning analysis of the Northwick Park functional psychosis trial,
these symptom dimensions can help separate affective psychoses from schizophrenia [73-74].
This has direct relevance for the genetic analyses in this thesis, where polygenic risk for
schizophrenia is used to probe the biological basis of psychotic features within BD (Chapter
4).
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Figure 2 Shared Phenotypic and Genetic Correlations.

Adapted from Gordovez and McMahon (2020), The genetics of bipolar disorder [58]. The genetics of
bipolar disorder, which used estimated genetic correlation (#G) extracted from an atlas of genetic
correlations (see Chapter 2 [24]). This figure displays instead the genetic correlation (#G) generated in
this thesis, Chapter 5. This network reveals psychiatric trait (modules) genetic correlations. Each node
represents a specific psychiatric trait: BD1, BD2, autism spectrum disorder (ASD), SZA, BPD, ADHD,
MDD, and ANX. Node size is proportional to its degree (number of other traits with genetic
correlations), with larger nodes indicating a more widespread influence on the overall genetic
correlation structure. Node colour represents the trait’s module (cluster) determined by unsupervised
hierarchical clustering, where same-coloured traits exhibit stronger genetic interconnectedness patterns,
helping identify broader shared genetic underpinnings across different disorders. Edges (lines) connect
trait pairs with reported genetic correlation (rG value), with edge opacity and width reflecting the
strength (absolute value) of this relationship; thicker, darker edges indicate stronger genetic
associations.
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Figure 3 Mood Frequencies Across BD and Depression.

Adapted, from O’Connell and Coombes (2021), Genetic contributions of bipolar disorder: current
status and future direction [75]. The figure represents a comparison of polarity and mood switch
frequency across BD1, BD2, and unipolar mania (UM) and depression.

Subsyndromal Bipolar Disorder Symptoms

BD is associated with progressive cognitive deficits, residual symptoms, sleep disturbances,
and emotional dysregulation between mood episodes. An estimated 20-50% of patients
experience inter-episodic or chronic subsyndromal symptoms [62] (Figure 4).

prodromal symptoms residual symptoms

Figure 4 Subsyndromal Symptoms in Bipolar Spectrum Disorders.

Adapted from Grunze and Born (2020), The Impact of Subsyndromal Bipolar Symptoms on Patient’s
Functionality and Quality of Life [62]. Prodromal symptoms may occur before full condition onset,
influencing functionality, QoL, and increasing relapse risk. Residual symptoms may persist after an
episode (e.g., cyclothymia [low-level depression, mildly elevated mood/irritability], sleep disturbances,
and difficulty concentrating).
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1.6 Bipolar Disorder Aetiology

This section reviews known genetic, biomarker, and environmental BD contributors.
Heritability in BD aetiology is multifaceted; genetics is a pivotal risk factor. Children of BD
parents are eight to 10 times more likely to develop BD, though most do not [30]. These
offspring, however, have a heightened risk for other psychiatric disorder risk [76]. A
longitudinal study found preschool ADHD children with early-onset BD parents had higher
BD development risk than community controls [77].

A Neurodevelopmental Model of BD

Neurodevelopmental —disorders stem from early brain abnormalities due to
genetic/environmental neurodevelopmental influences. Evidence suggests BD may develop
early, leading to adverse adult conditions [78]. This premise is debatable, possibly applying
more to psychosis than BD phenotypes [79]. Kloiber et al. (2020) provides a comprehensive
review discussing neurodevelopmental abnormality evidence in early-onset BD-linked
psychotic symptoms [80]. Neurodevelopmental evidence may be too subtle for pre-onset BD
detection or distinguishing some early-stage psychiatric diseases [81]. Shared pathogenic
mechanism evidence with other neurodevelopmental disorders (intellectual disability, ASD
and ADHD) led some researchers to propose BD exists on a neurodevelopmental continuum
with these early-onset disorders [82]. This prompted increased focus on adolescent/young adult
longitudinal studies, as BD symptoms often emerge then. Typically, depression presents first,
often during or before puberty [83] while manic episodes usually manifest post-puberty [84].
Most commonly, BD onset is in young adulthood, when brain development slows and synaptic
pruning increases, enhancing efficiency by eliminating redundant neural connections [85]. In
contrast, during adolescence, BD individuals may experience grey matter and neuron loss
without typical white matter connection increase seen in unaffected adolescents [3, 86],
particularly in prefrontal cortex and insula (MRI studies). Imaging research revealed BD
patient hyper- and hypoactivation differences compared to healthy controls. Amygdala,
prefrontal cortex, and visual system hyperactivation may be critical in emotional dysfunction.
Anterior cingulate cortex (ACC) hypoactivation could contribute to cognitive deficits in BD
patients younger than 18 years [87].

When compared with the neurodevelopmental model for SCZ, the trajectory for BD appears
distinct. Landmark longitudinal studies, such as the Dunedin cohort, suggest that SCZ is often
preceded by subtle motor and cognitive deficits in early childhood [88]. In contrast, the major
functional and structural brain abnormalities in BD typically emerge later, during adolescence
and young adulthood, often coinciding with the onset of the first mood episode [80, 83]. Within
this framework, mania can be seen as the fulcrum that differentiates the BD subtypes. The
emergence of a full manic episode, often linked to more pronounced disruptions in prefrontal
cortical development, defines the transition to BD1. In contrast, the absence of mania in BD2
may suggest a different, possibly less severe, neurodevelopmental impact [89]. This distinction
is critical for understanding the different long-term outcomes and treatment needs associated
with the BD1 and BD2 diagnoses.
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Neural Substrates in Bipolar Disorder

Mechanisms underlying BD symptoms are complex. Specific brain region structural
abnormalities may correlate with emotional dysregulation and cognitive dysfunction. Cortical
thickness/surface area show high heritability, are associated with various genetic influences
[90-91] and may be affected by largely distinct gene sets [92-93]. BD structural changes are
documented across multiple brain regions (prefrontal/temporal cortices). Factors considered
include genetics, comorbid disorders, and accelerated aging [94]. Neuroimaging studies
identified neuroanatomical alterations (cortical thickness/surface area changes, and grey matter
volume changes) corresponding to BD-associated cognitive/behavioural functional
impairments [3]. Cross-sectional studies highlighted BD-specific structural abnormalities
primarily in prefrontal/temporal cortex, cingulate gyrus, subcortical regions, and insula.
Notably, amygdala, hippocampus, and thalamus subcortical alterations are documented in BD
patients [94].

Manic episodes consistently correlate with cortical volume or thickness reductions, especially
prefrontal [3]. Additional findings indicate psychotic history BD patients demonstrate thinner
frontal, temporal, and parietal cortical grey matter (both hemispheres), alongside reduced
cortical surface area [94]. The large-scale Enhancing Neuro Imaging Genetics through Meta
Analysis (ENIGMA) project further evidenced thinner frontal/temporal cortices in BD patients
[3, 95]. The ventrolateral prefrontal cortex (VLPFC), crucial for emotional regulation/reward
processing, shows greatest cortical thickness depletion [96]. Investigating regional cortical
thickness/surface area discrepancies may facilitate identifying meaningful biomarkers for
different BD subtypes and course specifiers. However, a critical challenge in current
neuroimaging biomarker identification efforts, is main BD phenotype heterogeneity [97],
potentially exacerbated in large-scale consortium studies by intra- and inter-cohort differences.

Progressive Deterioration in Brain Structures

Research indicates repeated manic episodes may contribute to structural changes (particularly
prefrontal cortex), with observed correlation between episode frequency and illness severity
[94]. Psychosis presence and type (mood-congruent/incongruent) in first-episode mania were
suggested to have different phenotypic markers [98]. This ‘neuro-progressive’ model, which
posits that mood episodes themselves may have a neurotoxic effect, is supported by some
longitudinal evidence. Large-scale collaborative studies from the ENIGMA Bipolar Disorder
Working Group have demonstrated correlations between a higher number of manic episodes
and accelerated cortical thinning over time, particularly in prefrontal regions [3]. Such findings
could bolster the rationale for early and sustained intervention to mitigate potential long-term
structural brain changes. While some interpret this correlation within a ‘neuro-progressive’
model where episodes may have a neurotoxic effect, it is important to note that much of the
evidence is cross-sectional. Such study designs cannot definitively distinguish between illness
progression and pre-existing vulnerabilities. Robust longitudinal studies are needed to confirm
a causal relationship and rule out other confounders such as medication effects or comorbid
conditions.
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Chapter 4 investigates the potential of using SCZ PRS to identify individuals with BD at higher
risk of psychosis, which aligns with the need for early detection highlighted by this neuro-
progressive model. Understanding neurobiological underpinnings is crucial for episode
prevention to mitigate further damage. However, exact brain volume reduction mechanisms
are not fully understood. Neuroinflammation, altered neurotransmitter activity, and disrupted
brain connectivity are associated with psychosis [99]. Full episode structural changes may be
caused by neuroinflammatory/oxidative stress [100-101], dysregulated hypothalamic-
pituitary-adrenal (HPA) system hormonal release, and neurotrophic factor secretion defects
[102]. These alterations can persist during euthymia. MRI scans show BD-associated focal
demyelination and axon/nerve fibre loss, observed in children and adolescents at rates similar
to unipolar depression and schizophrenia [103]. A notable lack of longitudinal studies tracks
neuroanatomical changes across the lifespan. Untreated patient research is scarce; many studies
focus on euthymic patients for methodological reasons, limiting understanding of manic
episode functional and structural changes. Nonetheless, one study controlling for confounders
still identified BD cognitive impairments [104]. Similarly, another found untreated bipolar
patients had smaller left anterior cingulate volumes than healthy controls [105]. Lithium-
treated bipolar patient comparisons suggested lithium might influence cingulate volumes,
possibly via neuroprotective effects [105]. These findings emphasize identifying BD genetic
factors and biological mechanisms, as this knowledge could help predict early signs and
facilitate targeted interventions potentially preventing full-blown bipolar disorder episodes.

Cognitive Deficits in Bipolar Disorder

Besides disentangling grey matter volume loss contributors, understanding how mania-related
changes translate to symptomatology, such as social and cognitive functioning, is crucial for
treatment. Cognitive impairment is a central BD feature, affecting memory, attention, and
executive function, impacting recovery, work ability, and quality of life (QoL). Frontal,
subcortical, and limbic structure functional abnormalities are broadly implicated in mood
disorder pathophysiology, where BD neuropathology involves mood, cognition, and behaviour
dysregulation.

Premorbid BD cognitive deficit studies report lower risk compared to SCZ [104,106].
Accordingly, psychotic history BD patients had greater impairment in several cognitive
domains. However, effect size differences between BD subjects with and without psychosis
were moderate, potentially representing a severity spectrum rather than a qualitative distinction
[107]. Orbitofrontal cortex (OFC) subregion activation neuroimaging studies reported
decreased activity during manic episodes and in depressed bipolar subjects [108]. While OFC
abnormalities are reported across psychiatric disorders, in BD the OFC mediates executive
function, including inappropriate response control, decision-making, and behavioural
flexibility [109].

These cognitive deficits are not limited to acute episodes but are also observed during euthymic

phases [46], where they may be complicated by medication effects. BD1 cognitive impairment
is reportedly more severe and widespread across cognitive measures than BD2 [110]. However,
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the neural correlates that could explain these cognitive changes over time are largely unknown.
One five-year BD neurocognitive trajectory longitudinal study found a positive association
between the number of hypo(manic) episodes and a greater decline in cognitive measures such
as working memory [111]. Comorbidity also complicates treatment; for instance, BD comorbid
with ADHD may exacerbate anxiety and mood dysregulation risk, suggesting a hierarchical
treatment plan is necessary [112].

The frequent co-occurrence of cognitive deficits and personality traits in bipolar disorder, along
with the need to understand their underlying genetic links, provides a key impetus for the
dimensional and cross-trait analyses explored in this thesis. This need for a deeper biological
understanding is critical, as currently no medications specifically improve BD cognitive
functional outcomes. Moreover, common bipolar disorder medication side effects (affecting
concentration, memory, processing speed difficulties, and impaired executive function) may
exacerbate symptoms.

Anterior Insula in BD Symptomatology

Converging evidence indicates early subcortical, caudal, and especially ventral prefrontal
cortex (VPFC) and insula dysfunction in BD, and between these brain region interconnections.
Altered functioning within these regions may be implicated in specific BD symptoms:
interoception (insular cortex), motor changes (precentral gyrus), and cognition (prefrontal
cortex). The insula is a hub for saliency, cognitive control (inhibitory control, behavioural
regulation), and interoceptive (internal bodily) awareness. The anterior insula (Al) together
with the anterior cingulate cortex (ACC) integrates external/internal bodily information to
guide goal-directed behaviour. The insula has substantial DLPFC connections, especially from
the Al influencing attention, working memory, and decision-making. Early childhood BD
manifestations include inattention, hyperactivity, and disruptive behaviours [113]. Al and
frontoparietal executive control/saliency network functional connectivity is reported as a
differential biomarker between BD and unipolar depression, a potential BD therapeutic target
[114] and an early indicator of the disorder [86]. A BD neurological model proposes emotion
circuitry area activity imbalance, disrupting emotion regulation. BD occurs when the ventral
system (regulates emotion perception in the amygdala, insula, ACC, and prefrontal cortex) is
overactivated. Conversely, the dorsal system (regulates emotion in hippocampus, dorsal ACC
[dACC], and prefrontal regions) is under activated [115].

Biological Pathways in Bipolar Disorder

In summary, BD is a complex trait influenced by multiple genetic variants across various
biological pathways. Key pathways include signalling mechanisms, epigenetic processes, and
neurotransmitter systems. Specific signalling pathways involved are Gamma-Aminobutyric
Acid (GABA), glutamate, and calcium signalling, alongside neurotransmitter systems
(serotonergic, noradrenergic, and dopaminergic). Additional affected biological functions
encompass neuroinflammation, oxidative stress, mitochondrial dysfunction, impaired
neuroplasticity, and circadian rhythm dysregulation. These factors contribute to cellular
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changes crucial to BD pathophysiology. Notably, BD dysregulation is associated with
intracellular calcium level disturbances, interneuron deficits, and glial cell abnormalities.
While cellular changes are evident across brain regions, prefrontal cortex and hippocampus
may be especially impacted.

Excitatory/Inhibitory Balance in BD

Research indicates excitatory and inhibitory (E/I) neuronal activity imbalance might be crucial
in BD. Post-mortem BD individual studies show neurotransmission changes involving
glutamate (excitatory) and GABA (inhibitory) signalling. The E/I balance concept
(excitation/inhibition ratio), initially an autism spectrum disorder (ASD) model [116], is now
associated with various neurodevelopmental and neuropsychiatric conditions, such as
intellectual disability [117-18] and schizophrenia [119]. Rebalancing E/I ratio is suggested as
part of lithium’s therapeutic effect by promoting inhibition [120]. Accumulating evidence
suggests glutamate is involved in BD aetiology. Post-mortem analyses uncovered prefrontal
cortex (PFC) excitotoxicity [121], ACC glutamatergic function and synaptic connection
abnormalities [122], and broader glutamatergic system disruptions. Glial cells are crucial in
glutamate metabolism management; astrocytes are vital in synaptic cleft glutamate uptake
[123]. Both post-mortem studies and in vivo Transcranial Magnetic Stimulation (TMS)
research revealed impaired BD cortical inhibition [124]. Elevated glutamate levels are
associated with executive dysfunction [125]. Excessive glutamate can activate ionotropic
receptors in extra-synaptic locations, leading to neurotoxicity via calcium influx and free
radical (e.g., nitric oxide) production. Persistent [123] or repeated mood episode glutamate
elevation may contribute to BD neuro-progressive pathogenesis.

Glutamate and GABA network disruptions could lead to BD-associated neurotransmission and
neuronal plasticity irregularities. Further research highlighted GABA neurotransmission’s role
in BD mood-regulating brain region interneuron synapses [126]. Various studies show GABA
level alterations in brain, cerebrospinal fluid, and blood [127]. Glutamic acid decarboxylase
(enzyme essential for GABA synthesis) decreased activity is associated with depressed
patients, potentially diminishing GABAergic activity [126]. GABAergic system changes could
also be associated with BD cognitive deficits [128]. GABAergic interneurons help integrate
information to synchronise neural networks. Post-mortem studies found reduced cortical
interneuron densities in BD1 parahippocampal tissue, resembling SCZ patterns compared to
healthy controls [129]. However, confounders such as comorbid panic disorders [130], anxiety
[131], and alcohol dependence [132] could complicate the assumed direct neurotransmission
and BD association. Recent proton magnetic resonance spectroscopy (1H-MRS) studies
indicated obsessive-compulsive disorder (OCD) individuals exhibit higher Anterior Cingulate
Cortex (ACC) glutamate and lower GABA levels than those without OCD [133]. Future
research must fully clarify glutamate/GABA effects in BD, distinguishing them from BD
comorbid disorder effects. (See Chapter 5, which demonstrates differential glutamate and
GABA gene set and cell type expression across BD subtypes, specifiers, and comorbid
disorders).
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Neurotransmission

Neurotransmitters (brain chemical messengers) play a key BD role. Substantial data support
BD neurotransmitter system dysfunction which is frequently investigated as potential
therapeutic targets. BD is associated with imbalances in serotonin, dopamine, norepinephrine,
and GABA. Glutamate and GABA abnormalities are consistently identified in BD literature;
these two amino acids are the most abundant in brain excitation/inhibition controlling
neurotransmitters [127]. Brain catecholamines (dopamine, norepinephrine, and epinephrine)
are relatively low compared to other neurotransmitters but are crucial in regulating brain
functions and are vital therapeutic targets.

The Dopamine Hypothesis in BD

Neurotransmitters such as dopamine, norepinephrine (noradrenaline), and serotonin are
abnormally regulated in BD. Limbic system dysfunction impacts sleep, alertness, and emotion
regulation [134]. The ‘cholinergic-adrenergic balance’ hypothesis initially explained different
BD affective states [135]. However, in a neuroimaging, neuropharmacological, and genetic
study review, it was suggested there is stronger evidence of the ‘catecholaminergic-cholinergic
balance’ hypothesis. Nevertheless, these neurotransmitter system interplays do not fully
account for mania/depression cycling [136]. Dopamine is singled out as a key player in BD
core symptoms, especially depression/mania transition [137]. Signalling primarily involves G
protein-coupled receptors (GPCRs), modulating fast synaptic transmission in
glutamatergic/GABAergic neurons. These receptors are crucial for various physiological and
cellular processes [138], making GPCRs pivotal therapeutic targets (many medications aim to
modify their activity). The BD dopamine hypothesis posits dopamine transport and receptor
availability dysregulation may explain the disorder’s depressive/manic phases [139]. Evidence
indicates heightened dopamine transmission (particularly in the mesolimbic region, associated
with reward and motivation) is linked to manic episodes, possibly with increased D2/3 receptor
availability and a hyper-responsive reward system. Conversely, reduced dopamine activity
(possibly due to elevated dopamine transporter [DAT] levels) is linked to depressive episodes.
Extensive support for dopamine’s BD role exists, with robust research accumulating since the
1970s (post-mortem, pharmacological, functional magnetic resonance, and molecular imaging)
(see Ashok et al. 2017 [139]). Post-mortem analyses noted DLPFC D2/3 receptor upregulation
in BD patients; however, studies do not specify illness phase [140-41]. This systematic review
of BD dopamine effects [139] highlights converging pharmacological and imaging study
results, indicating elevated D2/3 receptor availability and reward processing network
hyperactivity contribute to mania. DAT level imbalances are observed in bipolar depression,
however other dopaminergic functioning aspects yielded inconsistent results.

More recent multimodal imaging work continues to refine this model. For instance, a 2025
study by Jauhar and colleagues in JAMA Psychiatry provided further evidence linking striatal
dopamine function not just to psychosis, but to the interaction between psychosis and mood
severity in affective disorders [142]. Their findings suggest that the dopaminergic
dysregulation in bipolar psychosis may be distinct from that seen in SCZ, potentially being
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more closely tied to the affective state, which has significant implications for diagnosis and the
development of state-specific therapeutics. Across all patient groups, higher dopamine
synthesis in the associative region of the striatum was linked with greater severity of positive
psychotic symptoms (e.g., hallucinations, delusions), regardless of the specific mood disorder
diagnosis. The study also found however, that dopamine dysregulation was not uniform.
Patients with manic psychosis showed higher dopamine synthesis, particularly in the brain’s
limbic region, compared to those with psychosis and depression. The results suggest that the
biological basis of psychosis does not perfectly align with traditional diagnostic categories.
This implies that antipsychotic drugs, which modulate the dopamine system, could be
beneficial for treating psychotic symptoms across a wider range of mood disorders than is
current practice.

Noradrenaline

Noradrenaline levels were low in bipolar disorder and depression; however, greater
noradrenaline metabolite levels were detected during manic episodes [143], suggested to be
due to low inhibitory alpha2-adrenaline receptor sensitivity, and also observed in panic disorder
(PD) [144], a common BD comorbidity.

Serotonin

Serotonin studies have associated serotonin with other commonly BD-comorbid disorders
[145]. In contrast, small BD patient studies yielded inconclusive results [146]. Several research
efforts associated cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) (serotonin
metabolite) concentrations with impulsivity, aggression, and unipolar depression suicide risk
[147]. However, 5-HIAA CSF level differences were not clearly distinguishable between
manic depressive episode patients and unipolar depression patients [148-149].

Intracellular Signalling

BD pathophysiology research includes intracellular signalling cascade network studies,
searching for new mood disorder treatments. Complex signalling networks support cell
communication involving mood/wakefulness-related targets (glucocorticoids, thyroid/gonadal
hormones). Intracellular (IC) signal transduction system changes are a focal point [146].
Various intermediaries are associated with BD; post-mortem studies and pharmacological
evidence implicate lithium in the phosphatidylinositol (PI) pathway. Functional changes occur
as neurotransmitters and neuromodulators bind GPCRs. Cyclic adenosine monophosphate
(cAMP) and diacylglycerol (DAG) impact protein kinase A (PKA) and protein kinase C (PKC),
regulating metabolism and transcription factors [150]. Lithium’s bidirectional cAMP impact
suggests broad therapeutic effects across manic and depressive phases [151]. Lithium impacts
PI pathway by depleting myo-inositol levels, reducing intracellular transmission via targeted
key protein downregulation (Figures 5, 6) [152], including PKC phosphoprotein substrate
myristoylated alanine-rich C kinase substrate (MARCKS)[152]. Lithium inhibition is proposed
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to mitigate increased intracellular calcium levels which is expected to be hyperactive in BD
patients [153-155].

Neuroplasticity and Neurotrophic Signalling

Neuroplasticity and neuroprotection effects are associated with BD pathophysiology.
Neuroplasticity may explain decreased cellular plasticity and damage in BD, possibly
associated with functional deficits increasing mood episode severity. Neurotrophic factors are
involved in key processes: (proteins regulating neuronal cell survival/growth, synapse
formation, and neuroplasticity processes [synapse remodelling, long-term potentiation (LTP),
axonal growth, synaptogenesis and neurogenesis]) [156]. Neurotrophins modulate central
nervous system (CNS) via tyrosine kinase (Trk) receptors, activating mitogen-activated protein
kinase (MAPK) pathway, increasing neuroprotective proteins such as Bcl-2 [157] (see Figure
6). Brain-derived neurotrophic factor (BDNF) is frequently implicated in BD. BDNF and
neurotrophin-4 (NT-4) bind TrkB receptor. Several studies report decreased BDNF/TrkB
levels in blood/brain of medicated/unmedicated BD patients [158]. Antidepressant/mood
stabiliser action mechanisms are also associated with BDNF levels. Transcription factor cAMP
Response Element-Binding Protein (CREB) influences BDNF function; increased levels of
both are reported in antidepressant-treated patients [146]. Additionally, glycogen synthase
kinase 3 (GSK-3) enzyme, which promotes apoptosis, is inhibited by BDNF [159], lithium,
and valproate [160]. PKA’s role recently gained focus, AKAPI1 gene (deficiencies can inhibit
PKA-activation of GSK-3) which was identified in the largest BD Whole-Exome Sequencing
(WES) study to date [161] (see below).

Mitochondrial Dysfunction and Oxidative Stress

Accumulating evidence indicates mitochondrial dysfunction and reactive oxygen species
(ROS) production in BD pathogenesis. Brain mitochondria (organelles) are critical for cell
survival [162], producing energy (adenosine triphosphate [ATP]) for neuronal function;
dysfunction can contribute to neuronal degeneration. Mitochondrial function is essential for
synaptic plasticity (crucial for learning and memory)[163]. BD patient brain studies report
glycolytic shift, indicating mitochondrial dysfunction related to neuronal sodium
(Na+)/potassium (K+)-ATPase activity. This dysfunction may promote neurodegeneration via
glutamate excitotoxicity/neuronal apoptosis [164], potentially inducing hyperexcitable state
(mania) or inhibiting neurotransmitter release (depression)[165]. Other energy metabolism
mechanisms are implicated in BD, including nuclear messenger ribonucleic acid (mRNA)
product downregulation (Krebs cycle involvement). This suggests decreased nicotinamide
adenine dinucleotide + hydrogen (NADH) and flavin adenine dinucleotide (FADH?2) oxidation
in BD might increase ROS production, causing oxidative stress. Excessive ROS can impair
cognitive functions (learning, memory, and executive function)[166].

This link between mitochondrial function and BD is further substantiated by pharmacogenomic
research. For example, studies using Induced Pluripotent Stem Cells (iPSCs) derived from
patients with BD have shown that lithium responders exhibit a rescue of mitochondrial deficits
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that are not seen in non-responders. Specifically, lithium treatment in cells from responders has
been shown to normalize deficits in energy metabolism and reduce oxidative stress. Much of
this research has pointed towards dysfunction in mitochondrial complex I (MC1) as a key
pathological hub, with evidence showing altered MC1 activity and expression in patient-
derived cells, a deficit that may be directly modulated by lithium’s therapeutic action [167].

Immune-Inflammatory Imbalance and Kynurenine Pathway

Dysfunctional kynurenine metabolism can result from inflammatory response, reported in
mood disorders, potentially contributing to BD patient volume loss [168]. Pro-inflammatory
cytokines such as interleukin-6 (IL-6) are associated with BD, suggesting a potential direct
immune dysfunction role in BD pathogenesis. Several mechanisms are proposed: blood-brain
barrier integrity, genetic factors, gut-brain axis dysfunction, and kynurenine pathway
involvement. Kynurenine metabolites are associated with neurotoxicity/impaired
neurotransmission [145]. Unmedicated BD patient research found dendritic atrophy may
correlate with amygdala and hippocampus volume loss, potentially due to protective
kynurenine metabolite loss [169]. However, translating these associations into effective
treatments has proven challenging. While observational data suggest a role for immune
dysfunction, the clinical evidence for anti-inflammatory interventions remains equivocal.
Notably, a large-scale randomized controlled trial of the anti-inflammatory agent minocycline
as an adjunctive treatment for bipolar depression failed to find a significant benefit over
placebo, highlighting the complexity of targeting this pathway in BD [170].

Circadian Rhythm

Circadian rhythm disruptions may be associated with sleep disturbances (often reported in BD
during acute and inter-episode periods) and can influence body temperature and hormone
secretion (melatonin and cortisol levels typically follow a circadian pattern). Studies show BD
patient cortisol secretion is higher than controls (regardless of circadian phase), aligning with
increased hippocampal/amygdala glucocorticoid receptor (GR) mRNA levels in BD [171-72].
Sleep deprivation is known to trigger BD manic episodes [173]. Interestingly, some research
indicates short-term antidepressant effects in some bipolar depression individuals [174],
possibly due to rapid BDNF level increase, resembling antidepressant actions [175]. Genetic
studies revealing numerous associations with circadian rhythm regulating genes, bolster these
consistent findings [176]. Identifying exact BD pathophysiology mechanisms is challenging,
which relies largely on isolating individual functional mechanisms or postmortem brain tissue
use. Such studies may not accurately reflect active, holistic brain physiology and their results
are likely influenced by lifetime medication use. A recent living donor fresh brain tissue study
highlighted potential postmortem and live tissue discrepancies [177]. Also, cell metabolism
results from intricate genetic and environmental factor interactions. While genetic
predispositions are substantial, BD pathophysiology remains dynamic; accumulated
psychosocial stress and sleep deprivation can instigate mood episodes independently of genetic
factors. Genetic predisposition may interact with various environmental factors including
early-life adversities, leading to epigenetic, endocrine, and inflammatory alterations [7].
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Neuroendocrine System

Numerous studies report Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity even in
unmedicated depressed/bipolar depressed patients. The HPA axis includes the hypothalamus,
pituitary, and adrenal glands. Elevated HPA activity is associated less with manic episodes than
mixed episodes/bipolar depression. Bipolar disorder studies associate increased HPA activity
with mixed manic states/depression, and less consistently with classical manic episodes [178].
HPA dysregulation is also linked to bipolar disorder clinical course outcomes, increasing
cognitive deterioration and risk for relapse [179]. Robust evidence suggests manic episodes
may be preceded by heightened cortisol/adrenocorticotropic hormone (ACTH) levels [180].
HPA alterations are tied to familial risk; bipolar disorder patient first-degree relatives
reportedly exhibit elevated baseline cortisol [181]. A thyroid hormone/mood disorder
relationship in BD is well-supported. Thyroid hormones have neurotrophic effects;
thyroxine/triiodothyronine (T3) treatments for treatment-resistant depression (TRD) or bipolar
disorder increase intracellular CREB [182]. Gonadal hormone influence on mood disorders is
well-documented.  Oestrogen  modulates  serotonin’s  antidepressant  effects  via
neurotransmitters (noradrenaline, dopamine, GABA), and influences neuroplasticity via
intracellular PKC signalling [146]. Progesterone and testosterone, recognised primarily for
reproductive functions, also substantially affect mood and mental health; imbalances can
potentially lead to anxiety, depression, and mood swings.

Epigenetic Mechanisms

Epigenetic mechanisms (DNA methylation, histone modifications, chromatin remodelling)
influence BD physiology by modulating gene expression. These long-term gene function
modifications occur responding to environmental factors. DNA methylation may dysregulate
BD gene expression; abnormal DNA methylation is observed in known BD risk genes such as
BDNF, this suggested this was more affected in BD2 than BD1 [183]. Epigenetics is implicated
in the main BD phenotype, psychosis, and suicide risk. Twin studies report serotonin
transporter gene SLC6A44 hypermethylation and lower KCNQ3 gene methylation (associated
with BD via neuronal hyperactivity regulation role). Candidate Plasticity Gene 2 (CpG2)
(SYNE]I splice variant) methylation status predicts previous mood episode number and suicide
attempts. However, epigenetic mechanism associations with BD are relatively limited
compared to, for example borderline personality disorder (BPD) [184]. Epigenetic alterations
may influence BD development of risk and resilience (captured in BD parent offspring who
developed the disorder) [185-86]. Conversely, early-life trauma-induced alterations
destabilising epigenetic methylation, can increase later adult psychopathology risk [187-88].
DNA methylation related to gene expression repression, may become dysregulated from early
childhood adversities, continuing into adulthood via sustained adult prefrontal cortex BDNF
gene expression depletion. Recent hypotheses suggest 5-hydroxytryptamine 3A receptor (5-
HT3AR) methylation could mediate early adversity effects on adult psychopathology,
potentially modulating the risk for developing BD, BPD and ADHD. Additionally, RELN and
GADG67 gene downregulation (involved in GABA synthesis and secretion) was studied, this
revealed respective promoter CpG island (CGI) hypermethylation evidence in BD and SCZ
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patients. Post-translational histone modifications modulating transcription (CREB histone
acetylation, H3K4 trimethylation in synapsin genes) are also associated with BD, based on BD
patient post-mortem brain sample studies [184].

Environmental Risk

Several environmental factors are proposed to trigger BD in biologically vulnerable
individuals. The “Developmental Risk Factor” Model may clarify BD/SCZ similarities beyond
shared genetic liabilities [189-90]. The model posits psychosis genetic predisposition
combined with early-life experiences contributes to disorder development [191-92]. Identified
risk factors include obstetric complications, peripartum asphyxia, low birth weight, maternal
pregnancy stress, and perinatal infections. Maternal stress is also associated with SCZ,
depression, anxiety, and a range of ADHD symptoms [193]. Research indicates concordant
associations between obstetric complications, peripartum asphyxia and BD. Peripartum
asphyxia (newborn oxygen deprivation) can lead to potential brain damage, resulting from
complications [194] such as premature birth, prolonged labour, or cord suppression. Notably a
brain MRI study found perinatal asphyxia/severe obstetric setbacks correlated with smaller
amygdala and hippocampal volumes later [195]. A Finnish birth cohort study noted maternal
smoking also increased BD risk [196]. However, a recent epidemiological twin study
reinforced maternal stress poses a higher risk compared to smoking or alcohol consumption.
Maternal stress was associated with subclinical hypomania, elevated mood, irritability
symptoms in BD-risk youths and young adults [197]. Current research aims to identify
potential epigenetic mechanisms illustrating gene-environment interaction risk influence in
longitudinal studies. More understanding could be essential for effective prevention strategies.

Pharmacogenetics

Available BD medications include mood stabilisers, antipsychotics, antidepressants, and anti-
anxiety medications. While pathophysiology and drug action understanding has grown, the
exact BD medication combination depends on individual symptoms. Antidepressants are not
recommended alone without a mood stabiliser (especially in BD1), as evidence suggests
antidepressants may induce hypo(manic) episodes or increase mood switching.
Antidepressants are also not advised if mixed features are present (coinciding
depressive/hypomanic symptoms, are often indicated by irritability)[198]. Antidepressant BD
mania trigger mechanisms are also unknown; one study identified opposing lithium (mood
stabiliser) and fluoxetine (antidepressant), their therapeutic effects both converging in the PI
pathway [199]. Antidepressants also affect serotonin and norepinephrine systems (SSRIs), and
dopamine. Combined with a mood stabiliser (lithium, valproic acid [VPA], lamotrigine) to
regulate mood, antipsychotics (olanzapine, risperidone) can also address psychosis symptoms.
Medication responses vary widely; some patients cycle through medications before finding
effective treatment with minimal side effects. Pharmacogenomic studies aim to leverage
genetics to help predict treatment responses. A pivotal BD pharmacogenomics challenge is in
measuring treatment response, restricted by follow-up duration, medication adherence, and
multi-drug strategy confounders. The Alda lithium response scale [200], a systematic, high
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inter-rater reliability rating system was developed to quantify BD clinical improvement during
treatment, accounting for response confounders [201]. However, study design and sample
heterogeneity yielded limited replication. While not yet replicable or presenting inconsistent
results, promising BD pharmacogenomic findings were summarised in a recent review, see
Gordovez and McMahon (2020) [58]. One Swedish/UK patient genetic study implicated an
intronic SNP on chromosome 2q31.2 related to SESTDI (spectrin repeat containing nuclear
envelope protein 1), a phospholipid regulation gene; intriguing as phospholipids are strongly
associated with lithium targets [202]. Subsequently, a chromosome 21 locus was identified,
involving long non-coding RNA (IncRNA) genes AL157359.3/AL157359.4 , which are crucial
for CNS gene expression regulators [203]. An early identified genome-wide association (below
genome-wide significance) implicated the gene GRIA2 (glutamate ionotropic receptor AMPA
type subunit 2) [204]. A notable Han Chinese patient study implicated the GADLI (glutamate
decarboxylase-like protein 1) gene [205] that was not replicated in European [206] or Asian
[207-208] samples. A recent meta-analysis (6,300 BD cases previously analysed for lithium
responsiveness) replicated the ADCY1 (adenylate cyclase 1) protein-coding gene association
[202, 209-10]. ADCY1 plays essential roles in regulatory processes implicating neuroplasticity,
dopamine D4 receptors, sleep disturbances, and circadian rhythm dysfunction.

Most prior pharmacogenomic studies focused on lithium response. However, more recent
studies explored the genetic associations with anti-epileptic mood stabiliser response,
providing insights into two SNP-level associations (THSD7A4, SLC35F3), and two gene-level
associations (ABCC1, DISPI) [211]. Recent genetic findings illuminating probable drug targets
associated with bipolar disorder (BD) suggest a potential for repurposing existing
pharmacological agents. For instance, calcium channel blockers (CCBs), traditionally utilised
in the treatment of hypertension and cardiovascular conditions, have garnered renewed interest
as a therapeutic avenue for BD [212]. This resurgence is largely due to the widespread
implication of the CACNA1C gene (calcium voltage-gated channel subunit alphal C), a locus
consistently identified as one of the strongest genetic associations with BD [58]. Research
further indicates that CCBs may exert neuroprotective effects [213] and influence
neuroplasticity [214], although the potential for these agents to exacerbate certain symptoms,
particularly cognitive deficits in bipolar disorder, warrants careful consideration, see section
‘Cognitive Deficits in Bipolar Disorder’ above.

Lithium in the PI Pathway and Calcium Signalling

Lithium is believed to exert therapeutic effects by modulating E/I balance, assuming a
hyperactive excitatory system is key to BD pathogenesis (chronic animal model treatment
reduced mGIuR5-PKC signalling) [120]. Lithium is the first-line BD treatment reducing
episode frequency and may also reduce suicide risk [215]. The exact mode of lithium actions
is not well-understood; the pharmacological studies above suggest lithium targets multiple
signalling pathways and regulatory network mechanisms.
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Inositol depletion hypothesis

IMPase inhibition has the most support for lithium action mechanisms (shown to target many
enzymes, often via Mg2+ co-factor) [199]. Similar structure enzymes also targeted (GSK3, 3-
arrestin-2-Akt complex) [216]) (Figure 6). Lithium inhibits two key mechanisms: inositol
monophosphate (IMPase) and inositol polyphosphate-1-phosphatase (IPPase), depleting the
available inositol cycle which supports downstream IC calcium-signalling. G protein activation
by phospholipases via Trk receptors initiates phosphatidylinositol 4,5-bisphosphate hydrolysis,
subsequently initiating the PI signal transduction cascade. Lithium IMPase inhibition prevents
inositol availability for downstream targets (required in Inositol trisPhosphate (IP3), decreasing
intracellular calcium release, preventing DAG/PKC activity. This downregulation and
lithium’s transduction cascade mechanism effects are well-supported. Altered PI signalling is
reported in BD [215]. In vivo studies support lithium treatment reduces magnetic resonance
(MR) spectroscopy myo-inositol [217]. Although inositol depletion is yet to be refuted,
inconsistent findings exist, prompting researchers to explore alternative mechanisms.

Dopamine

Mood stabilising drugs lithium/sodium valproate also impact dopamine signalling. Valproate
reportedly increased DAT gene expression via Sp transcription factor family interaction [218].
L-dopa (dopamine precursor) treats Parkinson’s hallucinations. Certain antipsychotics for
example, Haloperidol reduce mania by decreasing dopaminergic transmission via D2 receptor
blockade. Observed therapeutic effects via dopamine transmission suggest D2/3 receptor
blockers could be beneficial in BD depression [139]. Mood stabilising drugs lithium and
sodium valproate also impact dopamine signalling. Valproate reportedly increased DAT gene
expression via Sp transcription factor family interaction [218]. This corresponds with in-vivo
neuroimaging findings; for example, a positron emission tomography (PET) study by Yatham
and colleagues demonstrated that treatment with valproate was associated with a reduction in
dopamine synthesis capacity in patients with mania, suggesting a direct modulatory effect on
the presynaptic dopamine system [219].

GABA

Long-term BD patient mood stabilizer treatment reportedly upregulated PFC/hippocampus
GABA receptors, simultaneously downregulating hypothalamus GABA receptors. In another
study, lithium and valproate administration reinforced GABA importance. Serum GABA
(reportedly to be low in depressed patients) increased with manic patient valproate treatment
[146]. Despite therapeutic advances, many patients remain nonresponsive [220] or
noncompliant (partly due to side-effect burden). In one lithium acute mania treatment meta-
analysis, only 47% of BD patients had a good response [221].
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Ketamine

Several N-methyl-D-aspartate (NMDA)-receptor antagonists recently gained attention for BD
depression antidepressant effects [222]. Ketamine (anaesthetic drug) acts on NMDA receptor
antagonist to target glutamate [223]. However, ketamine can have side effects including
dissociation, increased blood pressure, nausea, and short-term cognitive changes. However,
one review suggested there is still no clear treatment consensus. A recent case study suggested
intranasal ketamine efficacy, demonstrating affective symptom stabilization at an 18-month
follow-up. Future epigenetic therapeutics may include BD epigenetic effect study identified
targets to address neuroprogression (e.g., histone methyltransferase inhibitor use has been
suggested) [184]. This has precedence: lithium and antidepressants exert therapeutic effects via
neurotrophic effects, maintaining adult CNS neuroplasticity. Neuroplasticity modulates mood,
cognition, and behaviour sustaining mechanisms (including dendritic function, synaptic
remodelling, long-term potentiation (LTP), axonal/neurite growth, synaptogenesis, and
neurogenesis). Neuroprogression, potential BD patient brain volume loss with repeated mood
episodes, may also be associated with lower treatment responsiveness, especially lithium and
CBT [224-25]. This reiterates the importance of early therapeutic intervention to potentially
preserve mechanisms, especially in those with a genetic predisposition to a chronic BD
trajectory.
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Figure 5 Intracellular Mechanisms of Therapeutics.
Adapted from Lee et al. (2022) [146]. Neuromolecular Aetiology of Bipolar Disorder: Possible
Therapeutic Effects of Mood Stabilisers.
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1.7 Genetics Of Bipolar Disorder

Family, twin, and adoption studies established BD is highly heritable, suggesting a strong
genetic contribution. Instead of single dominant genes, research indicates multiple genes are
involved, similar to other complex disorders. Recent BD genetic studies have revealed a
complex inheritance pattern with multiple modest-effect genes contributing to risk, including
common and rare genetic variants, and substantial overlap with other psychiatric disorders.

Twin and Adoption Studies

BD familial aggregation does not solely reflect genetic contributions; environmental factors
also play a role. Adoption and twin studies help clarify genetics’ impact. BD shows the highest
psychiatric/behavioural disorder heritability [226] (estimates 59-87%). In Monozygotic (MZ)
twins, this is approximately 38.5 to 58% concordance; dizygotic (DZ) twins: eight to 20%
[227]. Adoption studies are inconclusive [228] but support largely genetic aetiology (BD risk
was elevated only in biological parents). Despite this strong genetic contribution, no Mendelian
inheritance pattern has been found, suggesting a complex inheritance which may also be
influenced by assortative mating and shared environments [229]. This reiterates BD
pathogenesis as multifactorial, involving genetics, social factors, trauma, as well as stress.

BD Familial Burden Studies

A large body of familial studies since 1960 indicates a strong BD genetic component
(particularly BD1). A Swedish family-based study estimated BD risk is 7.9, 3.3, and 1.6 times
higher for first-, second-, and third-degree BD patient relatives, respectively, compared to
unaffected families. BD heritability was estimated at 58%. First-degree relatives’ BD risk may
be approximately 9% (nearly ten times greater than the general population) [230-31]. Evidence
also suggests partial BD subtype genetic segregation (BD1 to BD2 rG is approximately .88
which is less than 1) (Figure 7). BD2 risk is higher among relatives of BD2 diagnosed
individuals than for those with BD1 [232-34]. BD2 is considered more heterogeneous,
positioned between BD1 and MDD [235]. In a large Swedish cohort, other psychiatric disorder
genetic risks were 9.7-22.9 for BD individuals, and 1.7-2.8 for full siblings [236]. Similarly, in
a Danish cohort study, a first-degree relative with mental illness increases SZA (bipolar type)
relative risk to 2.76. Risks varied for related conditions: 2.57 for SCZ, 3.23 for BD, and 1.92
for SZA [237].

Familial BD Psychiatric Burden Studies

Studying multimorbidity in multiplex families (which feature a high concentration of
individuals with BD) allows for delving further into BD genetic aetiology. In one bipolar
multiplex family study, they reported that familial BD cases and unaffected members both
exhibited higher genetic risk for BD, SCZ, and MDD [238] relative to unaffected families.
SCZ, Autism Spectrum Disorder (ASD), and depression show particularly strong familial BD
correlations [75]. MDD risk is greater than BD risk in BD families, with relatives of BD
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diagnosed individuals more likely to be affected by this more prevalent MDD [236]. Familial
BD risk also correlates with increased familial ADHD and personality disorders [30, 237, 239].
Studies consistently indicate BD relatives are more likely to have ADHD, suggesting shared
familial and genetic predisposition. A familial genetic study meta-analysis revealed higher
ADHD prevalence among BD relatives, with greater BD1 prevalence among ADHD relatives
[240]. Borderline personality disorder (BPD) and antisocial personality disorder (ASPD) are
also frequently observed in BD families. BPD may be more common in BD2 risk individuals.
Research also indicates a substantial percentage of BD individuals also meet BPD criteria,
leading some experts to propose BPD may reside on the BD spectrum. Although BPD and BD
are both distinct, and separately diagnosable, approximately 20% of BD2 individuals and 10%
with BD1 also qualify for a BPD diagnosis [241]. BD/BPD comorbidity is associated with
more severe outcomes (increased psychosocial deficits, impulsivity, aggression, anxiety
including OCD, post-traumatic stress disorder (PTSD), somatoform disorders, earlier mood
symptom onset, hospitalisation, and worse treatment response) [242]. ADHD individuals show
elevated BPD risk (nearly 20 times more likely than those without ADHD) [243].
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Figure 7 Genetic Correlation Between BD1 and BD2 Stratified by Ascertainment.

This figure is adapted from O’Connell, Koromina, van der Veen et al., 2025, Genomics Yields
Biological and Phenotypic Insights into Bipolar Disorder [55]. Each node (circle) represents a
specific BD phenotype (trait), indicated by its label and colour. Colours correspond to different
ascertainment traits (Clinical, Community, Self-report, BD1 and BD2), as per the legend.
Edges (lines) connecting nodes represent genetic correlations (#G) strength between traits.
Thicker, darker edges indicate stronger genetic correlations. Node spatial arrangement by
force-directed layout algorithm (Fruchterman-Reingold) positions nodes with stronger
associations closer, identifying correlated traits.
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1.8 Molecular Genetic Studies

Linkage Studies

Linkage studies indicated various BD-associated genomic locations by analysing family
genetic marker inheritance. Several chromosomal regions are implicated, helping identify
higher risk-associated candidate genes (e.g., a notable rare Copy Number Variant [CNV] on
chromosome 16p11.2). Some region findings have replicated, however BD linkage study
consistency remains elusive. To enhance statistical power, multi-study result meta-analyses
were conducted. In one instance, 7 studies, found a potential 13q/22q loci [244]. In another, 18
studies, identified no linkage candidates, though several regions (9p22.3-21.1, 10q11.21-22.1,
14924.1-32.12, and chromosome 18) showed evidence of linkage [245]. However, data in these
meta-analyses tend to be less robust than direct combined data analyses [246]. Family linkage
research has also focused on family subgroups (exploring greater genetic homogeneity,
particularly concerning psychosis). Various studies found psychotic subtype linkage support.
Noteworthy loci include: 1g42 near DISC! (scaffold protein) associated with SZA bipolar type
[247]; 9931/8p21 associations for BD with psychosis [248 Park]; and 5q26/18q12-q21 in a
combined BD/SCZ analysis [249]. Overall, while linkage studies implicated certain
chromosomal regions, results remained inconsistent. Methods have evolved with the growing
evidence of polygenicity in complex disorders including BD. This complexity contrasts sharply
with straightforward Mendelian disorder (e.g., cystic fibrosis) linkage analyses [250].
Researchers pivoted to GWAS to discover BD-associated genetic variants, adapting to
traditional linkage study limitations.

Candidate Gene Studies

Research transitioned from gene linkage to BD-related gene associations investigated via
candidate gene studies (examining specific “candidate gene”/BD development risk
relationships by analysing genetic variations in affected/unaffected individuals). The initial
focus established BD mechanisms involving neurotransmitter systems (dopamine, serotonin,
and norepinephrine). Notable genes findings included MAOA, COMT, serotonin transporter,
and circadian rhythm-associated clock genes (an extract of BD GWAS discoveries can be
found in Appendix 9.1). The SCZ-related DISCI gene was examined but showed no consistent
BD associations. In contrast, DAOA (D-amino acid oxidase activator)/G30 locus (chromosome
13q) variations are associated with BD susceptibility. Neuregulin 1 (VRG) was also associated
with BD (crucial in neurogenesis, synaptic transmission, and myelination roles). BDNF
research highlighted larger sample size requirements. BDNF (brain derived neurotrophic factor
superfamily member, chromosome 11p13) is vital for axonal development and neuronal
population survival [251]. Initial studies suggested a BDNF polymorphism/BD association;
later research yielded inconsistent findings [252]. Other genes (dopamine receptor D4 [DRD4],
solute carrier family 6, member 3 [SLC6A43]) provided modest study support. Many early
investigations faced type I error issues, further emphasising larger sample sizes’ importance
for identifying BD-associated genes.
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To tackle the challenge of small sample sizes, Genome-Wide Associations Studies (GWAS)
compared unrelated affected and unaffected individuals across many cohorts’ using meta-
analysis, eventually replicating the robust BDNF finding in BD [253]. Despite more than a
decade of GWAS findings however, common variants alone evidently do not account for most
twin study observed heritability, the (“missing heritability” problem). GWAS has been
essential in robustly identifying hundreds of common genetic variants associated with complex
traits including BD, thereby providing unprecedented insights into BD underlying biological
pathways and polygenic architecture.

Rare Variants

Combined common SNP-heritability (h?snp) is far lower than family/twin study estimates.
Twin studies suggest BD heritability of approximately 60-90% [228]. SNP-heritability (h?snp)
(GWAS-derived estimate) is approximately 17-23% (based on a liability scale, .5-2%
population prevalence) [55, 254-255]. Despite many common variants identified, none seem
to substantially increase disease risk; many are also associated with SCZ and MDD. This raises
the possibility that rare variants contribute to the heritability gap (structural variants [CNVs],
rare SNVs, short indels), with potential gene-gene/gene-environment interactions. High costs
meant BD whole-genome and exome sequencing (WGS/WES) studies typically focused on
large family lineages (as they expected higher rare variant prevalence). Due to reduce costs for
WES/WGS through innovation, studies began to provide evidence of increased rare deleterious
variant burden in BD. BD1 diagnosed individuals exhibit greater rare deleterious SNV/rare
CNV burden [256]. High disruptive variant burden is associated with BD age of onset [257].
In familial studies, up to 378 rare, non-synonymous, possibly functional variants were
identified, indicating rare BD variant genetic overlap with ASD/SCZ [258-260]. A large BD
exome sequencing study (Bipolar Exome [BipEx] consortium; including approximately 14,000
cases and 14,000 controls) by Palmer et al. (2022) [161] found excess ultra-rare protein-
truncating variants (PTVs) in evolutionarily constrained BD patient genes. These PTVs were
notably enriched within previously SCZ-implicated genes (Schizophrenia Exome Meta-
analysis [SCHEMA] consortium). Combining their results with SCHEMA [309] data, AKAP11
(A-kinase anchoring protein 11) was identified as a definitive shared BD and SCZ risk gene
(odds ratio [OR]=7.06). Functionally, AKAP11 interacts with GSK3f (a hypothesised lithium
target). These findings support BD’s polygenicity, re-establish rare coding variation role in BD
aetiology, and underscore shared BD and SCZ genetic risk.

Copy Number Variants

Copy Number Variants (CNVs) have been investigated in BD. CNVs are stretches of
deoxyribonucleic acid (DNA) that result in an individual having one (a deletion), three (a
duplication), or more copies of a particular chromosomal region, instead of the typical two
copies found in a diploid human genome. While large, rare CNVs have been associated with
an increased risk for SCZ, they appear to play a smaller role in BD compared to their frequency
and impact in SCZ or other neurodevelopmental disorders. Notably, a duplication on
chromosome 16p11.2, initially detected in SCZ [261], has demonstrated the most robust
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association with BD and has also been linked to an early age of onset for BD [262]. The
chromosomal regions 1q21.1 and 3929 have also been associated with BD, although these
findings were below genome-wide significance [263]. Both the 16p11.2 and 3q29 regions are
also implicated in SCZ, ASD, and intellectual disability [264]. One study has suggested that
the contribution of rare CNVs to BD may be limited to cases of schizoaffective bipolar type
disorder (SZA) [265].

Overall, the burden of CNVs has not been found to be substantially different between BD
patients and controls. However, when stratified by subtype, an increased risk from CNVs was
observed for SZA but not for other BD subtypes. This aligns with stronger evidence for CNV
associations in SCZ and SZA compared to other BD subtypes [266]. These findings highlight
a shared genetic architecture between BD and other psychiatric or neurodevelopmental
disorders that extends beyond common variants, while also suggesting potential differential
mechanisms underlying each condition. The comparatively reduced CNV burden in BD might
be related to cognitive function, as CN'Vs identified in SCZ have been associated with cognitive
dysfunction [265]. However, it is possible that smaller CNVs (less than approximately 30
kilobytes (kb) in size) are associated with BD but are more difficult to detect with current
technologies [58].

De Novo Variants

Evidence suggests a potential impact of rare genetic variants, particularly de novo mutations
(DNMs), on the genetic architecture of BD. Indeed, studies have identified de novo CNVs in
individuals with BD, highlighting the role of these mutations. For instance, the first trio-based
exome sequencing study in BD identified 71 de novo point mutations and one de novo copy-
number mutation, many of which were predicted to be loss-of-function or protein-altering
[267]. Certain BD subtypes, such as early-onset BD, exhibit a higher frequency of CNVs,
including de novo ones [263], emphasizing the importance of these genetic variations in
stratified risk assessment. Two studies specifically indicate that de novo CNVs contribute to
the likelihood of early-age BD development [268]. A total of 107 de novo variants affecting
protein-coding genes have been identified, showing enrichment in genes associated with the
post-synaptic density and in phosphoinositide-linked pathways, which may be relevant to
lithium’s therapeutic effects [269]. The occurrence of de novo point mutations has been found
to correlate with paternal age [270], and older fathers have an increased risk of having offspring
with BD [271-72]. This finding aligns with similar associations observed in SCZ and ASD,
reinforcing the relevance of paternal age to genetic risk for psychiatric disorders [273].

Single Nucleotide Variants
Rare Single Nucleotide Variants (SNVs) and small insertions/deletions (indels) are typically
not captured by Genome-Wide Association Study (GWAS) Single Nucleotide Polymorphism

(SNP) arrays. However, the advent of next-generation sequencing (NGS) technology has
enabled several studies to identify rare, transmitted risk variants in both living BD patients and
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post-mortem brain tissue [259, 274]. Large-scale WES efforts, such as the BipEx study which
identified AKAPI11 as a risk gene [161] (as detailed above), have markedly advanced the
understanding of rare coding variants in BD. A study by Ament et al. (2015) [274] involving
the sequencing of 201 individual genomes, found that risk variants were predominantly
noncoding with predicted regulatory effects. This research implicated rare variant associations
with several genes (including ANK3, CACNAIB, CACNAIC, CACNAID, CACNG2, CAMK?2A4,
and NGF) that have also been associated with BD in common variant studies. These variants
were found to be enriched in neuronal excitability pathways, such as those involving GABA
and voltage-gated calcium channels. Indeed, SNV risk in BD families and case-control cohorts
has been most strongly associated with risk variants in these ion channel receptor subunits.

RNA sequencing (RNA-seq) of post-mortem BD brain tissue has been used as a method to
identify relevant BD-specific gene expression changes compared to those in ASD or SCZ
[275]. Such brain transcriptome analyses using RNA-seq have detected potential dysfunctions
in neuroplasticity, circadian rhythms, and GTPase binding, all of which are processes
implicated in BD. However, sample sizes in next generation sequencing (NGS) studies remain
relatively low, and collaborative efforts are likely needed to uncover variants that current
studies lack the statistical power to detect [58]. Furthermore, recent evidence suggests a
fundamental limitation in the use of postmortem tissue, as a study on cell type-specific
transcriptional differences identified discrepancies between living and postmortem human
brain tissue. Specifically, cell type proportion estimation was found to be more accurate in
samples from living individuals compared to postmortem samples [276].

Genetic Interactions

Additional components of the still unaccounted for missing variance explained in BD may
reside in genetic effects arising from gene-environment interactions (GXE) or gene-gene
interactions (epistasis). For example, one study found that an interplay between a history of
childhood trauma and reduced BDNF mRNA levels was associated with psychosis risk,
potentially by impacting neurogenesis and leading to lower hippocampal volumes [277]. The
COMT (Vall58Met) polymorphism (rs4680) affects a catecholamine-degrading enzyme
(which metabolises neurotransmitters such as dopamine), particularly in the prefrontal cortex
(PFC). The Val allele leads to higher enzyme activity (faster dopamine breakdown) compared
to the Met allele. Stressful life events (SLEs) are known to impact these same catecholamine
systems. Therefore, it is plausible that an individual’s COMT genotype could moderate their
response to stress, thereby influencing BD susceptibility or its course [278]. A subsequent
investigation in a sample of patients with First Episode Psychosis (FEP) found that the COMT
(Vall58Val) genotype moderated the association between severe SLEs and depressive
symptoms, with Val/Val patients experiencing SLEs reporting the highest levels of depressive
symptoms. It is important to note that FEP cohorts can include individuals who later develop
BD; however, this study was not conducted in an exclusively BD-diagnosed cohort and
specifically examined depressive symptoms within the FEP context [279].
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1.9 Genome-Wide Association Studies

Genome-Wide Association Studies (GWAS) compares unrelated individual genomes with and
without disease, to identify phenotype-associated genetic markers. Variation discovery helps
identify potentially disease-contributing genes and pathways. Understanding these provides
insights into underlying disease biological processes. GWAS feasibility improved through
technological advancements, for example, the HapMap Project [280], and the 1000 Genomes
Project Consortium [281]. Cost-effective technologies also facilitated 500,000 to 2 million
SNP genotyping. Large-scale collaborations have emphasised combining cohort sample sizes
in GWAS meta-analyses to boost statistical power for detecting small common variant effect
sizes.

Early GWAS Insights

Early research in BD genetics centred on family and twin studies to identify genetic factors.
While linkage and candidate gene studies hinted at chromosomal regions and specific genes,
their outcomes were often not definitive, even with enlarged sample sizes. GWAS allow for
the examination of genetic variant associations in much larger groups of BD cases and healthy
controls, without requiring harder to recruit related individuals. In the past decade, many BD-
associated loci have been reported and subsequently confirmed in meta-analyses, thereby
consolidating our understanding of BD aetiology (for an overview of BD GWAS findings see
9.1).

In 2008, Baum et al. conducted the first BD GWAS (550,000 single nucleotide polymorphisms
[SNPs]), uncovering a SNP association in the diacylglycerol kinase eta (DGKH) gene (critical
for lithium-sensitive PI pathway) [282]. Although the BD risk effect was modest, suggesting
BD complex polygenic disorder, follow-ups confirmed DGKH association in Han-Chinese
[283] samples, and a nominal Japanese association [284]. To minimise type 1 errors, as millions
of SNPs are tested, stringent multiple testing thresholds are used (typically a Bonferroni
correction of P < 5.0x10-%).

Cichon et al. (2011) proposed the neurocan (NCAN) gene as a potential BD susceptibility
candidate [285]. NCAN is implicated in other mood disorders, suggesting overlapping genetic
risk with ADHD, depression [286], and dyslexia [287]. The gene crucial for cellular
adhesion/migration, is associated with brain volume and structure measures. The NCAN risk
allele is associated with BD, depression, and SCZ patient mania. Ncan-deficient mice display
hyperactive behaviour and impaired inhibition (a potential link to BD-reported cognitive
deficits) [288]. NCAN loss could lead to cognitive impairments, and reduced brain volumes.
BD brain imaging has indicated decreased cortical thickness, lower subcortical volume, and
disrupted white matter integrity (described above).

In a further meta-analysis, Ferreria et al. (2008) evaluated the WTCCC, STEP-UCL, and ED-
DUB-STEP2 cohorts. They identified strong associations with Ankyrin-G (4NK3) gene and L-
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type voltage-gated calcium channel o-1C subunit gene (CACNAIC), both involved in ion
channel functionality [252]. Ankyrin-G influences cell motility, activation, proliferation, and
modulates neuronal sodium channel activity, which suggests ion channel dysfunction
involvement in BD pathogenesis. These genes and ion channel dysfunction have subsequently
been shown as robust BD associations, e.g., most recently in O’Connell et al. (2025) [55]. Not
all associations replicated independently (e.g., suggested chromosome 16q12 locus, produced
mixed results across samples). In the WTCCC study, locus in gene-rich high disequilibrium
chromosome 16q12 region associated with BD [289]. This was not replicated in an independent
reference study; other studies have found 16p12 linkage signal evidence in BD [290] and in
psychosis [291]. Among the findings from the Wellcome Trust Case Control Consortium
(WTCCC) in 2009 was an association with the potassium voltage-gated channel subfamily C
member 2 (KCNC?2) gene, which encodes the Kv3.2 subunit, although this association was
below genome-wide significance [289]. This finding potentially implicated alterations in
neuronal excitability in the mood episodes characteristic of BD. Support also existed for the
previously identified involvement of the GABA and glutamate systems [292]. For example,
gamma-aminobutyric acid type A receptor subunit beta-1 (GABRBI), which encodes the
GABAAR 1 subunit, showed a high-ranking association in the WTCCC data, along with
SYN3 (synapsin III) [289]. These findings were strongly associated with SZA in a follow-up
study by Craddock et al. (2010), which also included additional associations with GABAAR o4,
a5, and B3 subunits [293]. The WTCCC study also identified a genetic association with BD in
the region of gene GRM7 (glutamate metabotropic receptor 7) [289]. The mGlu7 receptor,
encoded by GRM7, is a presynaptic G-protein coupled receptor (GPCR) that modulates
neurotransmission. Mutations or reduced expression of this gene have been associated with
neurodevelopmental disorders and were previously linked to BD [294] and BD-related
personality traits [295]. The potential role of this gene received additional support from
findings showing a BD association with a rare CNV at the GRM7 locus [296]. Following these
initial discoveries, numerous GWAS have confirmed early findings and highlighted novel loci
associated with BD.

Advances with Larger GWAS and Meta-Analyses

As GWAS sample sizes began to exceed 10,000 participants with BD, the number of genome-
wide discoveries for BD increased substantially. Similar to many common traits, a large
proportion of these variants are in non-coding regions of the genome and often have small
effect sizes, with odds ratios (ORs) typically ranging from 1.1 to 1.3. The highest standard for
validating these genetic associations is the replication of findings in independent cohorts.
Several genes have been consistently associated with BD across multiple studies, including
ANK3, NCAN, CACNAIC, fatty acid desaturase 2 (FADS?2), mitotic arrest deficient 1 like 1
(MADILI), and tetratricopeptide repeat and ankyrin repeat containing 1 (TRANKI). However,
limitations in sample size can still hinder the detection of variants with weaker effects.
Collaborative meta-analyses are essential for increasing statistical power in genetic association
studies. Nevertheless, they can introduce challenges, such as heterogeneity between study
cohorts, which may impact the overall power to detect associations. This is compounded by
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the inherent heterogeneity of the main BD phenotype itself. A more comprehensive list of key
genes implicated in bipolar disorder can be found in Table 68, Appendix 9.2.

Advances in GWAS and Insights from the Psychiatric Genomics Consortium (PGC)

Several large-scale Genome-Wide Association Studies (GWAS) for bipolar disorder (BD) have
been conducted by the Psychiatric Genomics Consortium (PGC) since 2011. The PGC’s
Bipolar Disorder Working Group (BDWG) has been instrumental in leading many of the
genetic discoveries in the field. An early PGC-led GWAS (Sklar et al. 2011), which included
11,974 BD cases and 51,792 controls, reaffirmed the previously observed association between
BD and the CACNA I C gene. Furthermore, a combined GWAS of BD and Schizophrenia (SCZ)
uncovered strong SNP associations in the CACNAIC as well as in NIMA related kinase 4
(NEK4)-inter-alpha-trypsin inhibitor heavy chain 1/3/4 (ITIH1/3/4) region [297]. A subsequent
BD GWAS conducted by Stahl ef al. (2019) analysed SNP data from 29,764 BD patients and
169,118 controls, identifying 30 genome-wide loci associations [8]. This study again
highlighted the roles of ion channels, neurotransmitter transporters, and synaptic components
in the aetiology of BD. The strong association with CACNAIC was replicated, as were
associations with NCAN and ANK3. Notably, fatty acid desaturase 1 (FADS!) and adenylate
cyclase 2 (ADCY2) were among the newly associated genes. FADSI is associated with
diacylglycerol lipase alpha (DAGLA), an enzyme crucial in the production of the
endocannabinoid 2-arachidonoylglycerol (2-AG), which is involved in lithium’s mechanism of
action, retrograde synaptic signalling, axonal growth, and adult neurogenesis. The ADCY2 gene
had also been previously implicated as a BD risk gene (Miihleisen ef al. 2014 [298]). However,
the strongest association at the TRANKI locus reported in some earlier studies was not
replicated in all follow-ups at that time.

A more recent GWAS (Mullins et al. 2021 [256]), encompassing 41,917 individuals with BD
and 371,549 controls from more than 50 clinical cohorts, identified 64 independent loci [41].
This study successfully replicated 28 out of the 30 loci reported by Stahl et al., including the
TRANK] association. The top association in the Mullins ef al. study was also at the TRANK]
locus on chromosome 3. Expression quantitative trait loci (eQTL) analyses suggested stronger,
correlated expression regulation of doublecortin like kinase 3 (DCLK3), located upstream of
TRANKI. BD was also associated with decreased expression of the furin paired basic amino
acid cleaving enzyme (FURIN) gene, which has been implicated in neurodevelopmental
disorders and in a 2019 SCZ GWAS [299]. The study further found that BD associations were
enriched in gene sets related to neuronal compartments and synaptic signalling. BD risk alleles
were particularly enriched in genes expressed in neurons and known to be targets for
antipsychotics, calcium channel blockers (CCBs), and antiepileptic medications [256].

Investigating Homogeneous Subgroups in BD Genetics

The analysis of BD more homogenous subgroups within GWAS can enhance statistical power,
especially for identifying genetic variants with smaller effects. This approach reduces
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heterogeneity that enables more precise genetic analyses [300]. The largest genetic study of
BD to date, conducted by O’Connell ef al. (2025), involved a multi-ancestry meta-analysis of
GWAS data from 79 cohorts, comprising 158,036 individuals with BD and 2,796,499 controls
[55]. In this study, cases were stratified by ascertainment type (clinical, community, or self-
report) and by ancestry (detailed in Chapter 6). This approach led to the discovery of 298
genome-wide loci, representing a fourfold increase in known associations, with 267 of these
loci being novel to BD. The analyses highlighted the importance of specific cell types, notably
GABAergic interneurons and medium spiny neurons, in the pathophysiology of BD. Common
variants associated with BD were found to be particularly enriched in synaptic regions, as well
as in prefrontal cortex and hippocampal interneurons, and hippocampal pyramidal neurons.
Gene and gene set analyses indicated enrichments for targets of anticonvulsant, antipsychotic,
and anxiolytic medications. The genetic architecture of BD was observed to vary among the
ascertainment-stratified subtypes. This suggests that creating more homogeneous subgroups
can help unravel the genetic basis of heterogeneous phenotypes, a crucial consideration for
future BD genetic studies (evidenced in Chapter 5).

BD Pathway, Tissue, and Cell-type Enrichment Analyses

Secondary post-GWAS analyses are crucial for assessing functional enrichment in specific
tissues or cell types, fine-mapping loci to identify credible causal variants, and potentially
applying findings to risk prediction through individualised Polygenic Risk Scores (PRS).
Genetic studies in BD have successfully identified specific biological pathways implicated in
the disorder, including the regulation of insulin secretion, retrograde endocannabinoid
signalling, glutamate receptor activity, and calcium channel activity.

Gene and Gene Set Pathway Analysis

Increasing sample sizes in BD GWAS have enabled robust pathway enrichment analyses,
leading to numerous findings that pinpoint biological pathways associated with vulnerability
to BD. Calcium signalling has been repeatedly implicated in BD (detailed above), and
intracellular calcium signalling has been hypothesised as a key mechanism of lithium’s
therapeutic action [301-302]. Calcium is a ubiquitous signalling molecule that modulates
critical neuronal processes such as neurotransmitter release, synaptic plasticity, and neurite
outgrowth [303].

Several studies have also implicated CACNAIC in other psychiatric disorders, including SCZ
and MDD. The PGC’s Sklar et al. pathway analysis, which aimed to detect Gene Ontology
(GO) term enrichment among the top 34 independent BD GWAS SNPs, identified an enriched
pathway involving calcium channel subunits. This included three L-type calcium channel
family members: calcium voltage-gated channel auxiliary subunits CACNAIC, CACNAID,
and CACNB3 [297]. Research suggests that L-type calcium channels influence neuronal firing
and regulate neuronal excitability, potentially contributing to the mood instability characteristic
of BD [304].
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Subsequently, Stahl ef al. (2019) tested for enrichment in curated biological pathways from
multiple sources, using competitive gene-set tests performed with MAGMA (Multi-marker
Analysis of GenoMic Annotation) on GWAS data [305]. These analyses controlled for biases
related to SNP and gene density, as well as gene size. Their findings reaffirmed the earlier
associations of CACNA I C and other voltage-gated calcium channel genes with BD. Moreover,
this work highlighted ion transport, neurotransmitter receptors, insulin secretion, and
endocannabinoid signalling as containing potential novel therapeutic targets. The
endocannabinoid system had previously been implicated in the pathophysiology of SCZ [306-
308]. The gene set enrichment analysis by O’Connell ez al. (2025) [55] identified six gene sets
related to synapse function and transcription factor activity that were associated with brain gene
expression and with early-to-mid-prenatal development. Consistent with a recent SCZ study
suggesting that common and rare variants can converge on the same genes and biological
pathways [309], O’Connell et al. (2025) found that 71 genes mapped to putatively causal SNPs
were enriched for ultra-rare (defined as five or fewer minor allele counts) damaging missense
or protein-truncating variants (PTVs) reported in the BipEx [310] or SCHEMA [309] datasets.

Fine-mapping Genes and Pathways

GWAS fine-mapping aims to identify the specific candidate genes within broader genomic
regions that are most likely to be causally associated with BD. Analysing these gene
associations seeks to enhance the understanding of genetic regulatory mechanisms implicated
in BD. O’Connell et al. utilised transcriptome-wide association studies (TWAS) [311-12].
which explore correlations between gene-expression data and their associations with GWAS
SNPs (using a Bonferroni-corrected P < .05). This approach, combined with six other fine-
mapping strategies, confirmed the roles of 36 pathobiology-implicated genes in BD. The SP4
(Sp4 transcription factor) gene was highlighted by six of these analyses. SP4 is known to have
regulatory influences on GABAAR subunit genes and astrocytes. Among the 36 studied genes,
eight were mapped to presynaptic or postsynaptic compartments, with CACNAIB being
identified solely in presynaptic compartments.

Single-cell Gene Expression Insights

Recent advancements in single-cell gene expression analysis have unveiled specific gene
expression patterns that suggest potential neuronal dysfunctions associated with BD. Mullins
et al. (2021) [256] analysed single-cell RNA-sequencing (scRNA-seq) data from adult human
and murine brain tissue. They discovered enrichment for genes associated with both excitatory
and inhibitory neurons, particularly within the cortex and specifically in the hippocampus.
These findings indicated crucial activities in hippocampal pyramidal neurons and interneurons,
as well as in the prefrontal cortex, with cell-type specificity being consistently observed across
their analyses. Similarly, O’Connell et al. (2025) [55] implicated specific cell types, especially
GABAergic interneurons and medium spiny neurons, in BD pathophysiology. Enrichment was
also noted in dopamine-associated and calcium-associated biological processes, which are
more often strongly associated with BD.
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Other smaller studies using single-cell RNA-sequencing (scRNA-seq) data have allowed for a
deeper examination of cell-specific transcriptional characteristics in key brain regions such as
the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC).
Disruptions in specific classes of excitatory and inhibitory neurons were found to correlate with
BD development. BD dysregulation was associated with two inhibitory cell clusters,
specifically involving vasoactive intestinal peptide (VIP) GABAergic interneurons. Gene
expression was dysregulated in two excitatory and inhibitory cell clusters, which included VIP
GABAergic inhibitory interneurons [313]. Earlier studies had already suggested that VIP cells,
which release GABA and inhibit other neurons, may play a role in BD [314].

RNA-seq analysis of postmortem DLPFC tissue has demonstrated differentially expressed
(DE) genes and transcripts across various psychiatric disorders. These findings have implicated
widespread dysregulation of biological processes, including neuroplasticity, circadian rhythms,
and GTPase binding, in psychiatric illnesses [315].

It is likely that both neurons and glial cells are affected in BD. Some studies have suggested a
potential decrease in cortical interneuron density in BD [316]. However, how these neurons
and glial cells are altered structurally and functionally remains largely unknown. Post-mortem
studies also suggest that a stoichiometric imbalance in gene expression, where the relative
expression levels of certain genes are imbalanced, might be a key feature in BD development
[317]. Stahl et al. (2019) [255] found that BD-associated genomic signals were enriched in
neurons and oligodendrocyte precursor cells (OPCs). Analysis of transcriptomes from post-
mortem BD brain samples of the sgACC and amygdala, when compared to neurotypical
controls, suggested transcriptional changes in genes associated with the immune response,
inflammation, and the post-synaptic membrane. These data converged on sodium voltage-gated
channel alpha subunit 2) (SCN24) and glutamate ionotropic receptor NMDA type subunit 2A
(GRIN24). Enrichment for neuroimmune and synaptic pathway genes, as well as microglia-
specific genes, was found to be downregulated in BD [318]. Microglia downregulation has also
been reported in PsychENCODE BD brain samples [319].

The exact role of glial-neuronal interactions in BD requires further investigation. Some studies
have proposed an association between neuroinflammation and BD pathophysiology, possibly
through processes that modulate brain structure and support cognitive and behavioural
functioning. These processes likely involve synaptic plasticity, neurotransmission,
neurogenesis, neuronal survival, and apoptosis [320].

The multiplicity of pathways implicated in BD pathophysiology may reflect the high genetic
heterogeneity among individuals with BD. BD subtypes and other homogeneous subgroups
have demonstrated some distinct familial patterns. Delineating BD cases into more refined
subsets could enhance the power of discovery and help identify differential functional
pathways that are currently masked by the heterogeneity of the main BD phenotype. Divergent
genetic architectures for different BD subtypes have been reported, suggesting that increased
genomic insights can be gained from stratifying cases by BD subtype or other homogeneous
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subgroups, such as those defined by DSM-5 course specifiers, which may reflect differences
in individual and familial trajectories.

1.10 BD Subtypes

Genetic Distinctions and Overlaps

GWAS specific to BD subtypes have been conducted, with secondary analyses often focusing
on three prominent subtypes: BD1, BD2 and SZA. While clinical divergence exists between
these BD subtypes, genetic analyses provide evidence of substantial overlap, particularly
between BD1 and BD2 (as illustrated in Figure 7). However, when stratified by subtype, unique
mechanisms and overlaps between the subtypes and other psychiatric disorders, previously
obscured by analyses of the collective BD phenotype, become clearer.

Stahl et al. (2019) [255] identified 14 loci specific to BD1. In contrast, smaller analyses for
BD2 and SZA in that study yielded no loci exceeding the threshold for genome-wide
significance (P < 5.0x10-8). SNP-based heritability (h’snp) (estimate of proportion of a trait’s
variance explained in a single sample by looking at a specific, common set of genetic markers
(SNPs) across the entire genome) was found to differ across subtypes: BD1 and SZA showed
similarly high heritability, while BD2 had a lower SNP-heritability (BD1 h?snp = .25, s.e.m. =
.014; BD2 h*snp = .11, s.e.m. = .028; SZA h?snp = .25, s.e.m. = .10). Linkage Disequilibrium
Score Regression (LDSC), used for estimating h?snp and genetic correlations between traits,
revealed divergent genetic correlations for the subtypes. A stronger genetic correlation was
evident between SCZ and BD1 (rG=.71, s.e.m. = .025) compared to SCZ and BD2 (rG=.51,
s.e.m. =.072). Conversely, a stronger genetic relationship was found between MDD and BD2
(rG=.69, s.e.m. = .093) versus MDD and BD1 (rG=.30, s.e.m. = .028).

Polygenic Risk Scores (PRS) have increasingly facilitated the genetic risk stratification of BD
subtypes. PRS are a statistical estimate of an individual’s genetic predisposition to develop a
complex disease by summing up the effects of thousands of common genetic variants across
their genome. Stahl ez al. (2019) used PRS analyses to differentiate BD subtypes and psychotic
cases based on their genetic burden for SCZ and MDD (as shown in Figure 8). PRS for SCZ
risk alleles were higher in BD1 cases than in BD2 cases, and higher in psychotic cases versus
non-psychotic cases. Conversely, PRS for MDD risk alleles were elevated in BD2 cases
compared to BD1 cases. This suggests that MDD risk alleles contribute more to case-control
differences in BD2, while SCZ risk alleles are more predictive of variance in BD1 and
psychosis.

Mullins et al. (2021) [256] also conducted stratified GWAS analyses for BD1 and BD2
separately, which increased the discovery of BD1-specific loci to 44, with 13 of these being
unique to BD1. The strongest signal among these 13 unique BD1 loci was in a region associated
with the HTR6 (5-hydroxytryptamine receptor 6) gene. This gene encodes a G-protein coupled
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receptor (GPCR) that is a target for various antidepressant and antipsychotic medications. For
BD2, a single association was identified with the slit guidance ligand 3 (SLI73) gene, which is
involved in axon guidance, cell migration, proliferation, and differentiation. Genetic
correlation analyses indicated that BD1 and BD2 are overlapping yet partially distinct
phenotypes, with a correlation between them ranging from .85 to .88 (s.e.=.05), as illustrated
in Figure 7.

O’Connell et al. (2025) [55] further explored the genetic architecture of BD subtypes. They
identified heterogeneity related to ascertainment type among 25,060 BD1 cases and 6,781 BD2
cases, and stratified their analyses by ascertainment source (clinical, community, or self-
report), as shown in Figure 9 (and detailed in Chapter 6). A substantial proportion of BD1 cases
were clinically or community-reported, whereas self-reported cases had a higher representation
of BD2. This observation was supported by genetic correlations with other psychiatric
disorders: Schizophrenia (SCZ) showed a stronger correlation with BD1, while self-reported
BD indicated higher genetic correlations with major depressive disorder (MDD), anxiety-
related obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder
(ADHD), and borderline personality disorder (BPD). Divergent patterns for BD1 and BD2 had
been previously characterized, with more genetic overlaps observed between BD2 and other
psychiatric conditions compared to BD1 [321]. Specifically, for BDI, the genetic correlations
were: MDD (.34, s.e.m. = .023), anxiety-related OCD (.29, s.e.m. = .067), and ADHD (.14,
s.e.m. = .032). This contrasts with the higher genetic correlations found for BD2 with these
conditions: MDD (.65, s.e.m. = .048), anxiety-related OCD (.50, s.e.m. = .113), and ADHD
(.42, s.e.m. = .049) [55]. Figure 9 illustrates this same pattern of association signals. This
discrepancy could indicate the overdiagnosis of BD in outpatient settings, particularly among
individuals with comorbidities [322-23], which may confound the observed differences in
subtype genetic architecture [324]. Despite these subtype differences, the inclusion of
additional multi-ancestry data risk alleles improved both the discovery of subtype-specific
associations and polygenic prediction for these subtypes [55] (as detailed in Chapter 6).
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Nagelkerke's R-squared for BD1vBD2 by Threshold and Group

pT_1

pT 0.5
pT 0.2

pT 0.1

Group

B vpp
B scz

pT_0.05
pT_0.01
pT_0.001

pT_0.0001

Source GWAS P-value Threshold

pT_0.000001

pT_0.00000005

%

>
o
. Q.Q
Nagelkerke's R-squared (NagR2)

o
‘0

%
%

Figure 8 PRS of MDD or SCZ in BD1 and BD2.

Adapted from Stahl et al. (2019), Genome-wide association study identifies 30 loci associated with
bipolar disorder [255]. Nagelkerke’s R-squared (NagR2) for BD1 versus BD2 case status association
with PRS, stratified by source GWAS P-value threshold (pT) across disorder (SCZ: schizophrenia,
MDD: Major Depressive Disorder). Bars represent NagR2 value (subtype variance [BD1 vs BD2]
explained by PRS at each threshold, within SCZ or MDD group). This illustrates PRS BD1 and BD2
subtype specific polygenic signals across varying PRS inclusion thresholds (stringency), separately for
individuals using SCZ or MDD GWAS (colour) as variant discovery (SNPs) set. Bar length indicates
association strength (NagR2).
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Genetic Correlation (rg) between BD phenotypes and related disorders
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Figure 9 Genetic Correlations of BD1 and BD2 by Ascertainment and Related Traits.

This is adapted from O’Connell, Koromina, van der Veen et al. (2025), Genomics Yields Biological and
Phenotypic Insights into Bipolar Disorder [55]. Genetic correlations (#G) and standard errors (s.e.)
between primary BD phenotype (Traitl, y-axis) and related disorders (Trait2, bar colour). Horizontal
bars: estimated positive »G. Black error bars: £1 SE around the G estimate. This illustrates shared and
differential genetic burdens in BD subtypes.



1.11 Polygenic Risk Scores

BD’s high pleiotropy and polygenicity contribute to substantial heterogeneity, which
complicates the identification of genetic causes through GWAS that focus on the primary BD
phenotype. Besides examining genetic correlations, Polygenic Risk Scores (PRS) are utilised
to evaluate an individual’s genetic burden associated with a specific trait and to assess overlaps
in genetic burden with other relevant traits. PRS can help reduce heterogeneity by classifying
individuals based on their genetic burden signatures relative to numerous psychiatric
conditions and human diseases. Although no single PRS method currently accounts for a
substantial portion of the variation in the main BD subtypes, PRS for BD and other related
traits are employed in research to gauge genetic burdens and explore their clinical implications,
such as in illness onset and progression (as detailed in Chapter 3 and 4). While PRS have
demonstrated reliable but modest predictive power across complex phenotypes, further
diversification of these methods is needed. This is required to address issues related to the
missing variance explained, including the biases introduced by the predominance of European
ancestry, sole focus on common variants (SNPs) and between-cohort heterogeneity in large
consortia genetic studies. However, it remains uncertain whether BD PRS will ever become
robust enough for future clinical classifications, such as enhancing diagnostic procedures or
potentially providing more personalised treatment approaches.
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The PRS for an individual j is typically calculated using the following equation:
PRS_j = Zi (Bi * dosageij)
where:

e PRS_j is the polygenic risk score for individual j.

e Zjrepresents the summation across all SNPs i that have passed the
clumping and the current P-value threshold.

e fiis the effect size estimate of the i~th SNP on the trait of interest, as
reported in the GWAS summary statistics (e.g., beta coefficient for
quantitative traits, log odds ratio for binary traits).

o dosagej is the number of risk alleles carried by individual j at the i-th
SNP (typically coded as 0, 1, or 2, representing the number of copies of
the risk allele).

For each SNP selected at a given P-value threshold after clumping, the weight
contributing to the individual's PRS is the effect size observed for that SNP in the
original GWAS. Individuals with more risk alleles for SNPs with larger effect sizes
will have a higher PRS. The equation used to calculate weights in PRSice, uses
the beta coefficients (or log odds ratios) from the input (discovery) GWAS
summary statistics for the SNPs that pass the clumping and P-value
thresholding.

Figure 10 P-value thresholds approach.

pT+clump approach in PRSice software adapted from Euesden et al. (2015), Polygenic Risk Score
Software [325]. PRS is estimated using a two-step redundancy minimizing process: 1. Clumping selects
independent SNPs, and 2. P-value filtering retains most significant SNPs for PRS calculation.
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The goal is to model the relationship between the phenotype (y) and a large number of SNPs (X):

y=Xg+¢
where:

y is the vector of phenotypes.

X is the genotype matrix.

B is the vector of SNP effect sizes (weights we want to estimate)
€ is the error term.

PRS-CS places a continuous shrinkage (CS) prior on the SNP effect sizes (), which induces
sparsity. This prior is crucial for inducing sparsity, which means it assumes most SNPs have small
or zero effects, with few larger effects. The degree of overall shrinkage is controlled by the global
shrinkage parameter (phi - ¢). PRS-CS-auto avoids the need for a validation set by using a
fully Bayesian approach to automatically learn the optimal value of ¢ directly from the
GWAS summary statistics, placing a standard half-Cauchy prior on ¢ to inform about the level
of sparsity:

¢ ~ Cauchy+(0, 1)

In contrast to PRSice, the weights in PRS-CS-auto, are dependent on the Bayesian model
and the Gibbs sampling algorithm used for posterior inference, rather than a single equation
for each weight. The final weight for each SNP is a data-driven estimate of its true effect size,
shrunk towards zero based on the overall genetic architecture and the LD patterns.

Figure 11 PRS-CS Continuous Shrinkage Method.

Adapted from Ge et al. (2019), Polygenic Prediction via Bayesian Regression and Continuous
Shrinkage Priors [326]. This method uses a Bayesian regression framework with continuous shrinkage
priors applied to SNP effect sizes, learned directly from the data, to improve risk prediction accuracy
by better handling LD structure.

Polygenic Risk Scoring Methods

PRS methods are essential for understanding the genetic underpinnings of complex traits such
as BD. GWAS have identified numerous variants associated with BD; however, these often
have small individual effects and collectively represent only a portion of the overall heritability.
Yang et al. (2010) illustrated that most of the heritability for traits such as height can be
explained by aggregating the effects of thousands of SNPs [327]. The classic PRS calculation
involves summing an individual’s risk alleles, with each allele (SNP) weighted by its effect
size on the phenotype as determined by a GWAS. Large-scale GWAS from consortia such as
the Psychiatric Genomics Consortium (PGC) offer robust discovery datasets due to their size,
leading to more accurate individual scores. Typically, common biallelic alleles, defined by a
minor allele frequency (MAF) greater than 1%, are considered in PRS construction, although
variants with lower MAF, which are rarer, have been incorporated in more recent PRS studies
[257, 263].
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Different PRS methods are employed to select and weight genetic variants from GWAS,
addressing the challenges inherent in robust polygenic score analysis. A common issue with
some PRS approaches is the potential for overfitting, particularly when variant selection is
based solely on P-value thresholds. Shrinkage methods, which can reduce genetic effect
estimates, are used to enhance model generalisability.

When comparing PRS methodologies, several have been analysed for their predictive utility.
These include traditional methods including P-value thresholding and clumping (pT+clump)
(Figure 10), as well as more modern approaches such as Polygenic Risk Score - Continuous
Shrinkage (PRS-CS)-auto [326] (Figure 11), which utilises continuous shrinkage (CS) priors.
A recent study suggested that methods such as PRS-CS-auto can outperform classic pT+clump
techniques in terms of predictive accuracy [328]. Chapter 4 of this thesis replicated this
improvement using PRS-CS-auto, which was subsequently utilised in the work for Chapters 3-
6. Unlike methods such as pT+clump (e.g., as implemented in PRSice [325], PRS-CS-auto
utilizes a Bayesian Regression Framework. This framework incorporates a continuous
shrinkage (CS) prior and facilitates automatic learning of the global shrinkage parameter (phi).
A key difference is that PRS-CS-auto does not rely on fixed P-value thresholds for SNP
selection. Instead, it estimates the posterior effect size for each SNP simultaneously, with most
of these effect sizes being shrunk towards zero. The framework’s use of a CS prior for SNPs
allows for improved handling of linkage disequilibrium (LD) and SNP effect sizes. This, in
turn, enhances local LD modelling and improves the prediction of genetic liability for complex
traits. To calculate a comprehensive PRS for a target cohort, PRS-CS-auto requires PLINK 2.0
[325] to weight SNPs by their respective effect sizes to estimate individual’s risk scores.

Polygenic Risk Burden in BD

A higher bipolar disorder (BD) Polygenic Risk Score (PRS) is associated with an increased
risk of BD in offspring (Hiser and Koenigs 2017 [329]). It has also been associated with risks
for other traits, including other psychiatric disorders, variations in brain structures, differences
in cognitive abilities, and various clinical outcomes. BD PRS reflects a genetic predisposition
that is crucial in the familial transmission of BD. These scores are typically higher in parents
with BD and their offspring compared to unaffected individuals, even beyond the consideration
of parental diagnosis [330]. Notably, in a recent PRS analysis of new-onset cases among high-
risk offspring, BD-PRS predicted person-level BD, particularly in the offspring of parents with
an earlier age of onset who also presented with anxiety (ANX) or depression symptoms [331].
An increased BD PRS has been associated with increased odds of developing psychotic
symptoms [332]. Furthermore, a higher BD PRS correlates with an increased likelihood of
developing both BD1 and BD2, with a particularly strong association for BD1 [55, 255-256]
and could be a function of symptom severity [324].

While BD2 was previously considered a milder version of BD1, suggested by evidence of
lower BD genetic burden, recent research has challenged this notion, based on the evidence of
potential increase cross-disorder burden. A comparison of clinical differences between BD1
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and BD2 in multiplex families revealed a continuum of severity, where BD1 was associated
with a higher BD PRS, which in turn predicts more severe manic and depressive symptoms
[324]. Conversely, BD2 was found to be correlated with an increased genetic risk for
comorbidities, potentially predisposing individuals to chronic illness. The burden of
depression, ADHD, and anxiety is reported to be greater in individuals with BD2 than in those
with BD1 [321].

PRS for BD and other traits have been utilised to help explain common comorbidities observed
in BD. A higher BD PRS also predicts suicidal ideation in BD multiplex families. While a PRS
for suicide has been associated with suicide itself [333], it is not always predictive of such
outcomes [334]. Suicidality is understood to be influenced by a combination of genetic,
environmental, and clinical factors. Suicide attempts in individuals with BD have been
associated with a higher genetic liability for depression [335] and trauma-related outcomes
[336]. PRS for ADHD [337], MDD, and ANX [334] have also been associated with suicidal
behaviour.

Research has also demonstrated an association between a higher BD polygenic burden and
potential endophenotypes. For example, an association was recorded between a thinner
ventromedial prefrontal cortex (vmPFC), a brain region critical for social and affective
functioning (including emotional regulation, decision-making, and social recognition) and a
BD diagnosis [329]. A higher BD PRS has also been associated with lower fractional
anisotropy (FA), indicative of reduced widespread white matter integrity. It has been suggested
that distinct bipolar subtypes may reflect varying degrees of disease expression, with an
observed increase in white matter microstructure disruption from BD2 to BD1 [338].
Associations with brain structure changes are likely age-dependent and may be influenced by
the number of mood episodes experienced and the neuro-progressive effects of medication.
Ongoing research seeks to clarify the exact mechanisms and extent of these relationships.
Notably, in a randomised trial examining brain structure changes in youth with BD, alterations
in pretreatment neuroanatomic features were found to predict treatment outcomes, with these
features later improving with treatment [339].

Comorbid Polygenic Burden in BD

Investigations of multiplex BD families have shown a higher genetic burden for common SCZ
and MDD variants in these families [239]. Patients with psychotic features experienced a
higher genetic risk profile, as indicated by SCZ and BD PRS, which explained 9% and 2% of
the variance in psychosis, respectively [340]. A genetic overlap is also apparent between BD
and ADHD, though this overlap is less pronounced with other childhood psychopathologies
[341]. Individuals with a childhood history of ADHD who later develop BD have shown
increased ADHD genetic liability, an earlier onset of BD, and higher chances of comorbid
ANX and SUD [336, 342-343]. An interplay between the genetic burdens for ADHD, SCZ,
and BD has been observed to increase the risk for alcohol and nicotine dependence [344-347].
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Some studies suggest that BD may have a neurodevelopmental basis [348], with early signs
likely preceding major mood episodes, a theory supported by twin studies [349]. Longitudinal
research has also associated BD PRS with childhood conduct and oppositional defiant
difficulties [113], while elevated ADHD and ANX PRS have been associated with a higher
risk for rapid cycling BD [332, 350]. Individuals with rapid cycling BD typically experience
an earlier onset of the disorder and have an increased suicide risk compared to those with non-
rapid cycling BD [68]. A transdiagnostic PRS approach has also shown promise in improving
predictions of lithium response in BD patients [351], as heightened genetic liability for
depression and SCZ correlates with poorer responses to lithium [352-353].

Clinical Dimensions

Personality traits are often represented dimensionally, existing on continuous distributions
rather than as distinct categories, which allows for a more nuanced understanding of individual
differences. Similarly, there is increasing recognition of the dimensionality of BD symptoms.
Twenty-four clinical variables related to BD have been stratified to demonstrate shared and
differential genetic burdens between BD and SCZ. Psychosis showed a high polygenic risk
from both BD and SCZ PRS, whereas mania was better predicted by BD PRS specifically
[190]. This aligns with recent research suggesting that mania, depression, and psychosis can
be considered distinct dimensions of bipolar disorder, each with potentially unique underlying
causes and outcome patterns [354]. This recent study of BD patients found that MDD PRS was
most strongly associated with the depression dimension, while BD PRS best predicted the
mania dimension. The psychosis dimension, in turn, was most strongly associated with SCZ
genetic burden (replicated in this thesis Chapter 3). Another transdiagnostic dimensional study
reported that BD PRS was negatively associated with the depression dimension [355]. Genetic
signatures for ADHD and ANX have also been implicated in BD pathophysiology, especially
in rapid cycling BD, suggesting that this three-factor model (mania, depression, psychosis)
should be extended to include these additional genetic burdens [351] (as evidenced in Chapter
3).

Beyond identifying individuals at higher risk for complex diseases, PRS offer the promise of
clinical risk stratification, advancing personalised medicine, facilitating early intervention, and
potentially informing therapeutic decisions. However this methodology has constraints. PRS
do not consider environmental confounders. Environmental factors can interact with genetic
predispositions, for example, by altering gene expression and impacting BD development,
which in turn can alter the utility and interpretation of polygenic prediction. Epigenetic factors
have been proposed to exert neurobiological consequences in BD, as well as in the context of
childhood trauma, psychotic disorders, rapid cycling BD, and particularly ADHD [329, 350,
356-358].
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Sex Differences

Sex differences in BD are primarily observed at the phenotypic level, affecting symptoms,
course, and outcomes, rather than at the genotypic level. These differences may stem from
environmental influences or subtle genetic interactions that current studies may not fully
capture. Sex differences exist in the presentation and progression of BD: females tend to
experience more depressive episodes, mixed features, rapid cycling, and report higher rates of
suicide attempts [359]. Males, on the other hand, often report mania more frequently and show
a higher prevalence of SUD. Comorbid conditions such as thyroid disease, migraines, obesity,
and ANX are more common in females.

Despite these observable differences in symptoms, there is limited evidence to indicate that sex
affects the response to mood stabiliser treatment [360]. The general response to lithium does
not appear to be sex-dependent but rather may be in part driven by individual differences in
transdiagnostic genetic burdens, although some studies suggest that females might experience
more adverse pharmaceutical side effects, including hypothyroidism [361]. Historically, BD
has been categorized with psychiatric conditions that show no gender difference in lifetime
prevalence within the general population, which contrasts with MDD’s consistent higher
prevalence in females [359]. The first large-scale sex-stratified GWAS of BD indicated a
largely overlapping genetic architecture between sexes, an overlap that was even more similar
when focusing solely on BD1. This suggests that observable sex differences in BD might be
predominantly associated with the risk architecture of BD2 and its overlap with MDD (Yang
et al. 2023 [56]).

A recent multivariate analysis of the genetic architecture of eight psychiatric disorders, which
identified three primary factors (psychotic, neurodevelopmental, and internalizing), found that
problematic alcohol use and PTSD loaded more on the internalising factor for females.
Additionally, four phenotypes (educational attainment, insomnia, smoking, and deprivation)
demonstrated some, albeit small, sex-differentiated associations with the psychotic factor
[362]. Future research in BD aimed at exploring sex differences and specific subgroups will
necessitate larger sample sizes to effectively investigate sex differences at the subphenotype
level. Moreover, this underscores the importance of thoroughly understanding the complex
interplay of genetic and environmental factors that potentially contribute to sex differences in
BD.

Predictive Utility of BD PRS

While PRS could enhance early detection and risk stratification for BD, their predictive power
is presently limited and insufficient for routine clinical application. Integrating clinical data
with PRS can boost predictive accuracy, especially in specific populations, such as the
offspring of patients with early-onset mood disorders (including anxiety and depression) [331],
or BD1 cases with psychosis (evidenced in this thesis Chapter 4).
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Challenges remain in estimating the broad-sense heritability of the BD phenotype due to the
complexity of genetic interactions. Most PRS models rely on narrow-sense heritability, which
is the proportion of variance attributable only to additive variant effects and are further limited
to variants that are high-quality genotyped or well-imputed, leading to only incremental gains
in predictive utility. The performance of PRS derived from large multi-ancestry GWAS has
explained only approximately 9% of the phenotypic variance in European cohorts. Individuals
in the top quintile (20%) for BD risk, as determined by these PRS, had an odds ratio (OR) of
7.06 (95% CI = 3.9-10.4) for a BD diagnosis (detailed in Chapter 6). Moreover, the ability of
BD PRS to explain phenotypic variance in European cohorts is still relatively low; however,
accuracy is expected to increase with the inclusion of larger samples from non-European
ancestries to address current disparities.

Chapter 5 PRS results were competitive with, and for several BD subphenotypes, exceed the
results reported in several, recent, larger-scale PGC studies [256, 55] for a broadly defined BD
phenotype. This suggests that the subphenotypic approach can enhance predictive power by
leveraging more specific genetic signals, even when individual cohort sample sizes for
subphenotypes might be smaller.

Ongoing research (as detailed in Chapters 1 to 7) indicates that BD shares both unique and
overlapping genetic mechanisms with multiple disorders. Transitioning towards diagnoses
based on biological pathology will likely require the use of multiple, cross-trait, broader genetic
architectures than only polygenic prediction measures. This approach may enhance patient
assessment and therapeutic interventions. This is particularly important given the critical
association between delayed treatment and adverse outcomes in BD. BD is often misdiagnosed,
leading to delays in treatment or the administration of inappropriate treatment, thereby
lengthening periods of distress, disability and potentially increasing morbidity and mortality;
it remains a leading cause of lost life years for individuals aged 15-44 [54].

PRS Methodological Advancements

Methodological advancements, such as focusing on genetically distinct subgroups and
incorporating rare variants, could improve the predictive power of PRS. The ongoing
development of frameworks that combine common and rare variants [363] is leading to better
predictive accuracy. Rare variants, typically those with a minor allele frequency (MAF) of less
than 1%, are often excluded from PRS calculations due to low statistical power. Williams et
al. [363] recently developed a new PRS framework that calculates separate PRS for common
and rare variants. Analysis of real data using this framework showed an improved predictive
accuracy by an average of 25.7% when compared to leading PRS methods that use only
common variants. Multiple polygenic risk score (MPS) approaches and machine learning
techniques show promise in improving diagnostic precision and predictions of treatment
response. Krapohl et al. [364] demonstrated a 10-fold increase in the variance explained for
developmental outcomes by using an MPS approach that incorporated data from 81 well-
powered GWAS. Craig ef al. [365] derived PRS based on a multi-trait analysis using GWAS
data for glaucoma and its endophenotypes. The multi-trait PRS demonstrated better prediction
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ability than PRS based on any single input trait. A novel strategy involving first stratifying
patients genetically by their BD and SCZ risk using PRS and then training machine-learning
models with clinical predictors, led to large improvements in predicting lithium response
(Cearns et al. 2022 [6]). Hansen et al. (2025) [366] showed that the detection of SCZ
progression is achievable by applying machine learning algorithms to clinical data from
electronic health records (EHR), potentially facilitating a reduction in diagnostic delay. PRS
combined with clinical data was most predictive of outcomes in BD1 in Chapter 4. Overall,
while PRS currently have limitations, future developments in study design and methodology
hold the potential for further the methodology to advance our understanding and treatment of
BD.

Summary

Investigating pleiotropy (one gene affecting multiple traits) and polygenicity (multiple genes
contributing to a trait) in bipolar disorder is vital for understanding its genetic basis, which can
enhance diagnosis, treatment, and prevention strategies, in addition to help elucidate BD
genetic architecture. Bipolar disorder is complex and heritable, but specific involved genes are
not fully known. GWAS have identified several BD-associated genetic variants, yet these
explain only a portion of its heritability (“missing heritability”’) while Subphenotyping may
help in identifying some of the “hidden heritability”. Examining pleiotropy and polygenicity
can help uncover more missing heritability by identifying non-European ancestry variants and
shared genetic influences. Pleiotropy and polygenicity findings thus far suggest substantial
genetic overlaps between bipolar disorder and other psychiatric and human disease traits.
Studying these overlaps can reveal biological mechanisms and potential treatment targets. The
primary objective of this thesis is precisely this: to explore these genetic overlaps to better
account for patient heterogeneity and understand the shared biological mechanisms in bipolar
disorder, to potentially identify functional genomics targets which could lead to the
development of new therapeutic targets.
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AIMS OF THESIS

Overarching Aim: The overarching aim of this thesis is to deconstruct the clinical and genetic

heterogeneity of bipolar disorder (BD) to provide a more biologically grounded understanding
of the illness. An enhanced understanding of the mechanisms underlying BD subgroups is
essential for predicting illness course, improving treatment response, and developing
personalized therapies.

To achieve this, a series of integrated specific aims were established:

1.

To critically synthesize the existing literature on BD’s nosology, risk factors, and the
limitations of current research paradigms, thereby establishing the foundation for this
investigation (Chapter 1).

To develop and validate a novel dimensional framework for BD that incorporates
premorbid factors, moving beyond traditional diagnostic categories to identify the
‘Adverse Chronic Trajectory’ (ACT) and other genetically informative

subgroups (Chapter 3).

To assess the transdiagnostic utility of schizophrenia polygenic risk for predicting
severe outcomes, such as psychosis and age of onset, in high-risk BD1 patients and to
identify associated biological pathways (Chapter 4).

To perform a large-scale, multi-trait analysis across 11 clinical subphenotypes to
delineate their shared and distinct genetic foundations and identify novel biologically-
based dimensions, such as ‘Severe Illness’ and ‘Comorbidity’ dimensions (Chapter 5).
To rigorously evaluate the methodological factors critical for genetic

discovery, specifically by examining the impact of patient ascertainment strategies
and genetic ancestry on the accuracy of polygenic prediction (Chapter 6).

To synthesize these empirical findings into a more nuanced model of BD’s genetic
architecture and to outline limitations and key future directions for research and
clinical practice (Chapter 7).
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2 General Methods

2.1 Study Population and Phenotypic Data

Cohort Ascertainment and Characteristics

The research presented in this thesis utilized data from multiple large-scale, international
collaborations, encompassing a wide range of participant cohorts with diverse ascertainment
strategies. Chapter 3 analyses included 2590 BD cases at the University College London (UCL)
recruited via the National Health Service (NHS), United Kingdom (UK). The analyses in
Chapter 4 utilized a combined European cohort of 1878 BD1 cases and 2751 controls from
Romania (RO) and the UK (UCL). All participants were of European ancestry and provided
written informed consent under ethically approved protocols. A detailed breakdown of the
clinical characteristics and the traits for these samples is provided in Tables 2-6 and 17-18
below.

e Romanian (RO) Cohort: Unrelated BD1 patients (N=574) were recruited from the
Obregia Psychiatric Hospital in Bucharest. Genealogical information was collected to
ensure a homogeneous genetic sample. Diagnosis was confirmed using the Diagnostic
Interview for Genetic Studies (DIGS) [1] based on DSM-IV [2] criteria, supplemented
by medical records and information from relatives. Population-based controls (N=534)
were screened with the DIGS to exclude major psychiatric history.

e United Kingdom (UK) Cohort: The UK sample included 1304 BD1 subjects who
fulfilled Research Diagnostic Criteria for BD1. Clinical data were collected using the
Schizophrenia and Affective Disorder Schedule-Lifetime (SADS-L) [3] and the
OPCRIT [4] checklist. The UK controls (N=2217) were primarily population-based and
screened with the SADS-L. Several of the UK controls consisted of random blood
donors who were not screened for psychiatric disorders.

e As the mean and median Age of Onset (AO) differed significantly between the
Romanian and UK samples, the AO data was normalized for the combined analysis
using a rank-based inverse-normal transformation.

The total dataset in Chapter 6 for the multi-ancestry meta-analysis included up to 158,036 cases
with bipolar disorder and 2,796,499 controls from 79 distinct cohorts. The effective sample
size (Neff) was 535,720, with participants primarily of European (EUR) ancestry (82.3%),
followed by Latino (LAT) (9.1%), African (AFR) (4.4%), and East Asian (EAS) (4.2%)
ancestry. A subset of these 79 cohorts (all EUR) with available subphenotype data were
included in Chapter 5 analyses.

The cohorts were broadly categorized into three ascertainment types:
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e Clinical Cohorts: Participants were assessed using semi-structured or structured
clinical interviews, such as the Diagnostic Interview for Genetic Studies (DIGS) or the
Schizophrenia and Affective Disorder Schedule-Lifetime (SADS-L).

e Community Cohorts: Participants were assessed using data from medical records,
national registries, and detailed questionnaires.

o Self-Reported Cohorts: Participants were classified as cases if they self-reported
having received a clinical diagnosis or treatment for bipolar disorder in response to
web-based surveys.

Specific analyses within this thesis drew upon different subsets of these larger cohorts. In
Chapter 6, individual-level genotype and phenotype data were available for 53 ‘internal’
cohorts, with the remaining 26 ‘external’ cohorts contributing summary statistics. The large-
scale multi-trait analysis of eleven clinical subphenotypes presented in Chapter 5 drew upon a
sample of up to 23,819 BD cases and 163,839 controls from 56 of the 79 distinct cohorts.

2.1.1 Specific Cohort Characteristics by Analysis

Sample for Dimensionality Analysis (Chapter 3)

The dimensional analysis detailed in Chapter 3 utilized a sample of 2590 individuals with a
DSM-IV bipolar disorder diagnosis and 2402 healthy controls. The characteristics of the cases,
stratified by subtype, are shown in Table 2.
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Table 2 Participant characteristics stratified by bipolar disorder subtypes

Characteristic Overall SZA BD1 BD2 BD-NOS P-Value
N=2590* N=332 N=1475 N=387 N=204
Psychosis 1.70x10-77
N 38% 14% 36% 79% 51%
© (983/2590) (47/332) (525/1475) (307/387) (104/204)
Y 66% 86% 64% 21% 49%
e (171152590) (285/332) (950/1475) (80/387) (100/204)
Rapid cycling 6.80x10-°
58% 76% 69% 59%
N/A
No (1506/2590) (252/332) (1024/1475) (230/387) [NA]
27% 24% 31% 41%
N/A
Yes (688/2590) (80/332) (451/1475) (157/387) [NA]
BD Age Onset 28 (11) 25(9) 28 (11) 28 (11) [N/A] 2.10x10-*
Sex 2.60x10-!
61.3% 59% 62% 58%
N/A
Female (1588/2590) | (197/332) | (913/1475) (223/387) ]
38.7% 41% 38% 42%
N/A
Male (1002/2590) (135/332) (562/1475) (164/387) ]
Age interviewed 46 (12) 49 (13) 46 (12) 51(14) [N/A] 3.10x10-’
Abbreviations: SZA, schizoaffective disorder; BD1, bipolar disorder [; BD2, bipolar disorder II; BD-NOS, bipolar
disorder not otherwise specified, N/A, data unavailable. Kruskal-Wallis rank sum test, Pearson’s Chi-squared test. *
Subtype information was missing for 192 participants. ® Occurrence of psychosis information was missing for 296
participants. N (%), Median (IQR).

Sample for SCZ-PRS Analysis in BD1 (Chapter 4)

The investigation into schizophrenia-derived polygenic risk in Chapter 4 focused on a well-
characterized European cohort of BD1 cases and controls from Romania (RO) and the United
Kingdom (UK). The clinical characteristics of the BD1 cases are compared across the two
recruitment sites in Table 3.

Table 3 Comparison of clinical traits in BD1 cases across samples

| Variable I Overall I RO I UK |
| I N=1878 | ~=5714 || N=1304 |
| Sex (Male) | 38% (718/1878) || 38% (216/574) || 38% (502/1304) |
| Age-at-interview (Mean (SD)) || 47 (13) | 4203 | 49 (13) |
| Age-of-onset BD1 (Mean (SD)) || 25 (10) | 27000 || 25 (10) |
| Psychosis (Yes) | 70% (1331/1878) || 84% (482/574) || 65% (849/1,304) |
| Rapid cycling (Yes) | 16% (309/1878) || 10% (55/574) || 19% (254/1304) |
| Irritable mania (Yes) || 19.5% (366/1878) || 59% (341/574) || 2% (25/1304) |
| Family history psychoses (Yes) || 27% (499/1878) || 60% (343/574) || 12% (156/1304) |
| Note: Missing data exists for some variables in the UK sample. |
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Sample for Multi-Trait Subphenotype Analysis (Chapter 5)

The large-scale multi-trait analysis of 11 clinical subphenotypes in Chapter 5 drew upon a
EUR-only sample from 56 international cohorts. Clinical characteristics are stratified by BD
subtype and by key homogeneous subphenotype groups in Tables 4-5.

Table 4 Clinical Characteristics Stratified by BD Subtype

Characteristic SZA BD2 NOS
N=1449 N=11553 N=2401 N=405
Psychosis 593 (96%) 6473 (68%) 476 (25%) 86 (56%)
Rapid Cycling 58 (39%) 1505 (29%) 586 (45%) 27 (31%)
Suicide attempt 139 (49%) 2852 (41%) 464 (39%) 20 (57%)
AlcSUD 122 (35%) 2339 (27%) 449 (26%) 38 (25%)
Age onset BD 21(17,27) 22 (16, 29) 22 (16, 31) 23 (18, 33)
N (%), Median (IQR). Sample sizes for specific characteristics may be smaller than the total cohort size
(23,819 BD cases) due to missing data.

Table 5 Clinical Characteristics Stratified by Homogenous Groups

Characteristic Psychosis (No) Psychosis (Yes) Rapid Cycling (No) Rapid Cycling (Yes)
N=5186 N=8476 N=5617 N=2373
Suicide attempt 1292 (25%) 2218 (26%) 1533 (27%) 703 (30%)
AleSUD 1105 (21%) 1892 (22%) 1139 (20%) 635 (27%)
Subtype BD1 2995 (58%) 6473 (76%) 3741 (67%) 1505 (63%)
Subtype BD2 1445 (28%) 476 (5.6%) 704 (13%) 586 (25%)
Age onset BD 23 (16, 31) 22 (17,29) 24 (19, 32) 20 (15,29)

N (%), Median (IQR). Sample sizes for specific characteristics may be smaller than the total cohort size (23, 819 BD cases)

due to missing data.

Sample for PRS Optimization Analysis (Chapter 6)

The study on optimizing PRS prediction in Chapter 6 involved the largest multi-ancestry meta-
analysis from the PGC, utilizing data from mostly EUR, however additionally also AFR, and
EAS ancestry cohorts. The characteristics of the target cohorts used for PRS testing are
summarized in Table 6.
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Table 6 Target Cohorts for PRS Optimization Analysis for Chapter 6

Ancestry Group Number of Cohorts Total Cases Total Controls
European (EUR) 55 40,992 80,215
African (AFR) 1 347 669
East Asian (EAS) 3 4473 65,923
Note: These numbers represent the target cohorts in which PRS performance was evaluated

2.2 Phenotypic Assessment and Diagnosis

Diagnosis and phenotypic characterization across the participating cohorts were established
using internationally recognized criteria and comprehensive assessment tools. Diagnoses
were made according to various versions of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-III, DSM-IV, DSM-IV-TR, DSM-5) [5-7] and the International
Classification of Diseases (ICD-9, ICD-10) [8-9]. In many cohorts, a consensus best-estimate
diagnostic procedure was employed, integrating all available clinical information to ensure
diagnostic accuracy.

To gather detailed clinical and symptomatic information, researchers utilized a range of semi-
structured and structured interviews. The most frequently used instruments across the cohorts
included the Schedule for Affective Disorders and Schizophrenia-Lifetime Version (SADS-L),
the Diagnostic Interview for Genetic Studies (DIGS), and the Structured Clinical Interview for
DSM (SCID) [10].

A key instrument for the detailed documentation of symptoms, premorbid functioning, and
longitudinal course was the 90-item Operational Criteria checklist for psychotic illness
(OPCRIT). The OPCRIT was used to systematically assess a wide array of psychopathological
features, providing the foundational data for the dimensional analyses presented in Chapter
3. Inter-rater reliability for the OPCRIT assessments was formally assessed and found to be
high (mean k Statistic = .85).

Detailed Cohort Descriptions

Detailed descriptions of the specific diagnostic criteria and assessment procedures for each of
the 79 cohorts contributing to the analyses in Chapters 3-6 are provided in the Appendix, 9.4.

Subphenotype Definitions

Across the various analyses in this thesis, the following clinical subtypes and subphenotypes
were defined and investigated to deconstruct the heterogeneity of bipolar disorder. These were
selected based on their clinical relevance and evidence for clustering within families,
suggesting more genetically homogeneous subgroups. The definitions are as follows:
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Bipolar Disorder I (BD1): Characterized by the occurrence of at least one lifetime
manic episode.

Bipolar Disorder II (BD2): Characterized by at least one hypomanic episode and one
major depressive episode, with no history of manic episodes.

Bipolar Disorder Not Otherwise Specified (BD-NOS): A category for individuals who
do not meet the full criteria for BD1 or BD2 but exhibit clear bipolar features, often
identified by multiple depressive episodes.

Schizoaffective Disorder, Bipolar Type (SZA): A diagnosis that includes symptoms of
both a major mood episode (manic or major depressive) and the active-phase symptoms
of schizophrenia, with at least a two-week period of delusions or hallucinations in the
absence of a major mood episode.

Psychotic Features: The presence of hallucinations or delusions during a manic or
major depressive episode.

Rapid Cycling (RC): The occurrence of four or more distinct mood episodes (manic,
hypomanic, or depressive) within a 12-month period.

Unipolar Mania (UM): Characterized by recurrent manic episodes without any history
of major depressive episodes.

Alcohol or Substance Use Disorder (AlcSUD): A comorbid diagnosis of an alcohol or
substance abuse or dependence disorder.

Obsessive-Compulsive Disorder (OCD): A comorbid diagnosis of OCD characterized
by obsessions and/or compulsions.

Panic Disorder (PD): A comorbid diagnosis of panic disorder characterized by
recurrent unexpected panic attacks.

Suicide Attempt (SA): A lifetime history of one or more suicide attempts.

Suicidal Ideation (SI): A lifetime history of thoughts of harming oneself.

Age at Onset (AOO): The age at which the individual first met criteria for any primary
mood episode (manic, mixed, or major depressive).

Age of onset of depression (AO_depr): The age at which the individual first met criteria
for a major depressive episode.

Age of onset of mania or mixed episodes (AO_Man/Mix): The age at which the
individual first met criteria for a manic or mixed episode.

Note: The main source of these descriptions is the DSM-IV (Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition) or its revision, the DSM-IV-TR.

2.3 Genotyping, Imputation, and Quality Control

Genetic data for the analyses in this thesis were processed through rigorous, state-of-the-art
pipelines to ensure high quality and accuracy. While the core principles of quality control (QC),
phasing, and imputation were consistent across all studies, specific parameters and reference
panels were tailored to the requirements of each analysis, from the focused European cohort

studies to the large-scale multi-ancestry meta-analyses of the Psychiatric Genomics
Consortium (PGC). This section outlines the general procedures, with specific details for each
major analysis presented in Table 9.
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Genotyping Platforms

A variety of high-density single nucleotide polymorphism (SNP) genotyping arrays were used
across the 79 contributing cohorts, reflecting the collaborative and multi-stage nature of the
research. The most common platforms included the Illumina Global Screening Array (GSA),
[llumina PsychArray, [llumina Omni Express, and the Affymetrix Gene Chip 500k Assay. The
specific platform breakdowns for the focused analyses in Chapters 3 and 4 are detailed below
(Tables 7-9).

For the SCZ-PRS study (Chapter 4), specific post-imputation filtering steps were applied to
handle correlated SNPs, with different approaches tailored to the analyses for each cohort. In
the Romanian sample, this was followed by Linkage Disequilibrium (LD)
clumping (parameters: 500 SNP window, 100 SNP overlap, r* threshold of .05). This procedure
creates a set of approximately independent genetic variants, which is a necessary prerequisite
for methods such as the traditional ‘clumping and thresholding’ polygenic scoring, as it
prevents the same genetic signal from being counted multiple times and inflating the score.

In the UK sample, a locus-definition approach was used, where the most significant SNPs were
retained within a physical distance of less than 250 kb and an r* greater than .1. This is the
standard method for identifying distinct, independent genetic loci from a GWAS. It ensures
that multiple correlated SNPs in the same genomic region, which are likely tagging the same
underlying causal variant, are correctly treated as a single genetic signal rather than multiple
independent discoveries.

For the dimensionality analysis (Chapter 3), the sample was genotyped across three primary
platforms, with the following distribution of participants and post-QC imputed SNPs:

Table 7 Genotyping Array Frequencies for Chapter 3

Affymetrix Gene [llumina Global [lumina
Sample . . . N
Chip 500k Screening Array PsychChip
Post-QC’d 491 cases, 416 cases, 533 1683 cases, 4992
Sample size 495 controls controls 1374 controls
Percent % 197 .190 .613
Post-QC"d 3,080,075 3,164,648 3,443,778 Mdn=3,164,648
Imputed SNPs

For the SCZ-PRS analysis (Chapter 4), the Romanian and UK cohorts were genotyped on a

different combination of platforms:
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Table 8 Genotyping Array Frequencies for Chapter 4

Sample Affymetrix [llumina Global || Illumina Omni [llumina N
Gene Chip 500k || Screening Array Express PsychChip
| Romanian(RO) || 0 I 309 I 799 I 0 | 1108 |
| UK [ 840 I 533 I 0 | 2148 || 3521 |
| Percent % | 115 | 18.19 | 1726 || 4640 | |
| Post-QC Imputed SNPs || | | | | |
| RO [ | 3930194 || 3917108 | I |
| UK | 3.080075 | 3164648 | | 3443778 | |

For the large-scale multi-trait and multi-ancestry meta-analyses presented in Chapters 5 and 6,
a wider array of genotyping platforms was used across the numerous contributing cohorts. A
detailed breakdown of the specific platforms used for each of the 56 cohorts in the
subphenotype analysis and the 79 cohorts in the PRS optimization analysis is provided in the
Appendix, 9.4.

GWAS Quality Control (QC)

All datasets underwent stringent QC procedures aligned with PGC standards to remove low-
quality variants and samples before imputation. This involved standardized thresholds for both
variant-level and sample-level metrics. See Table 9 below.

Variant-level QC typically excluded SNPs with low call rates, significant deviation from
Hardy-Weinberg Equilibrium (HWE), and low minor allele frequency (MAF). Sample-level
QC removed individuals with low call rates, excessive heterozygosity (FHET), sex
discrepancies, and cryptic relatedness to other individuals in the sample.

Genotype Imputation

To standardize genotypes across different array platforms and increase genomic coverage, all
datasets were imputed to a common reference panel. For most analyses, the Haplotype
Reference Consortium (HRC) [11] panel was used, which provides a high-quality reference for
individuals of European ancestry. The standard procedure involved a pre-phasing step
using EAGLE2 [12] followed by imputation using Minimac3 [13]. For the Romanian cohort
analysis in Chapter 4, the 1000 Genomes Project panel [14] was used to suit the specific sample
characteristics.

Post-Imputation Filtering

Following imputation, variants were filtered based on imputation quality scores (INFO or R2)
to ensure that only accurately imputed SNPs were included in the downstream association
analyses. A common threshold was an INFO score > .8, although more stringent filters were
applied in some analyses to maximize confidence in the results.
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Table 9 Genotyping and QC Parameters for Analyses

PGC4 PR
Dimensionality Study SCZ-PRS Study  ||Multi-Trait Subphenotype . QC . S
Parameter (Chapter 3) (Chapter 4) Study (Chapter 5) Optimization Study
pler P 4 P (Chapter 6)
t P local t P
QC Pipeline/Standard Standard PGC | Standard PGC & local\| ¢ 10 4 pGC Protocols | rndard PGC
Protocols protocols Protocols
‘ Sample-Level QC H H H H ‘
<2% (UK) / < 59
Subject Missingness <2% & (g{ O)) & <2% <2%

> 1 SD from mean

Heterozygosity (FHET) Outside +/- 0.20 (RO) / |Fhet| < .2 Outside +/- 0.20 Outside +/- 0.20
(UK)
‘ Relatedness (pi_hat) H >0.2 H >0.2 HNot specified in main textH >0.2 ‘

Sex mismatch

Mismatches between pedigree and genetically determined sex were removed based on the '
statistic of X chromosome homozygosity (female ' < 0.2 and male F > 0.8).

‘ Variant-Level QC H

‘ SNP Missingness H <5% H <5% H <5% H <5%%* ‘
. >0.1% (RO)
0, 0, 0,
Minor Allele Freq. (MAF) > 1% /> 1% (UK) > 1% > 1%
| HWE P-value (Controls) || <1x10° | <1x10° | <1x10° | <ix10¢ |
| HWE P-value (Cases) || <1x10° | <ix10° | <1x10" | <ixi0° |
| lmpuation | | | | |
. 1000 Genomes (RO)
Imputation Reference HRC Panel / HRC (UK) HRC panel (r1.1 2016) || HRC panel (v1.0)
Phasing / Imputation Eagle / Minimac3 Eagle / Minimac3 Eagle / Minimac3 Eagle / Minimac3
Software &
> 0. > 0. ilt NPs in <
Post-Imputation Filter INF(CS);;;);? d) 08 IRNSI? 0 355118%(/) INFO score > 0.8 F715 (;rii tsotal SI\}Z i
. 0
No. of SNPs in Primary 3.16 3.08-3.93 4.57-7.40 3.97-9.74

GWAS (Million)

Note: “Standard PGC Protocols” refers to the established quality control and analysis standards developed by the
Psychiatric Genomics Consortium, which are implemented in the pipeline RICOPILI. * < 0.05 (before sample removal)
and < 0.02 (after sample removal). Case-Control Missingness Difference: < 0.02.
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2.4 Statistical and Genetic Analysis

This section outlines the statistical and genetic methods used across the chapters. Primary
Genome-Wide Association Studies (GWAS) were conducted for the analyses in Chapters 5
and 6, while existing external GWAS summary statistics were utilized for polygenic scoring
in Chapters 3 and 4.

2.4.1 Sample Size and Prevalence Parameters
Population and Sample Prevalences

The transformation of SNP-based heritability (h?snp) and Polygenic Risk Score (PRS) variance
explained (R?) from the observed 0-1 scale to the unobserved continuous liability scale is a
critical step for interpreting results for binary traits. This transformation requires specifying an
estimate of the trait’s prevalence in the general population. The specific prevalences used
varied across the thesis analyses to match the context of each study:

e For the dimensional analysis which included all BD subtypes in Chapter 3, a
population prevalence of 2% was used.

e For the SCZ-PRS study in Chapter 4, a Bipolar Disorder I (BD1) population
prevalence of 1% was assumed.

e For the PGC-BD PRS optimization study in Chapter 6 (and in Chapter 5),
both 1% and 2% population prevalences were used for comparison.

For the additional multi-trait subphenotype analyses in Chapter 5, population prevalences were
estimated from major epidemiological studies. For course specifiers that do not have direct
population estimates, the prevalence was calculated by multiplying the general prevalence of
bipolar disorder by the proportion of individuals with BD who exhibit that feature. For
example, the prevalence for the psychosis subphenotype was estimated by multiplying the ~1%
lifetime prevalence of Bipolar Disorder (e.g., Merikangas et al., 2007)[15] by the ~50%
proportion of BD individuals who experience psychosis (e.g., Perdld et al., 2007)[16], resulting
in an estimated population prevalence of .5%. For comorbid disorders, the direct lifetime
prevalence was taken from the literature. The specific values and primary sources used are
detailed in Table 10.

For all analyses, population prevalence estimates were based on a review of the relevant
scientific literature. The choice of population prevalence was intentionally tailored to the
specific scientific goal of each analysis, following a ‘fit-for-purpose’ strategy. For broad
assessments of a general Bipolar Disorder PRS across diverse cohorts (Chapters 3, 4 and 6),
standard 1-2% prevalences were used to ensure the results were comparable with the wider
field and major genomic consortia. In contrast, for more granular genetic architecture analyses
of specific subphenotypes (Chapter 5), the most precise, subtype-specific epidemiological
estimates were used. This approach maximizes the accuracy of the heritability calculations for
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those specific traits by ensuring the assumptions of each analysis were best aligned with its
scientific question.

Table 10 Population Prevalences Literature Sources

Subphenotype | Population Prevalence Used (%) Primary Source(s)
Psychosis .005 Merikangas et al. (2007)[15]; Perila et al. (2007)[16]
Rapid Cycling .0025 Merikangas ef al. (2007); Tondo et al. (2003) [17]
BD1 .006 Merikangas et al. (2007)
BD2 .004 Merikangas et al. (2007)
SZA .003 Perili et al. (2007)
Panic Disorder .027 Kessler et al. (2005) [18]
OCD .023 Ruscio et al. (2010) [19]
AlcSUD 139 Grant et al. (2015) [20]
Suicide Attempt .042 Nock et al. (2008) [21]
Unipolar Mania .060 Angst & Marneros (2001) [22]

A key exception was for the LD Score Regression (LDSC) analyses; where the effective sample
size was provided as input, the sample prevalence was accordingly set to .5 as per standard
methodological practice.

Use of Total (N) vs. Effective (Neff) Sample Size

Both total sample size (N; the actual count of cases and controls) and effective sample size
(Neff; calculated to account for case-control imbalance) were utilized for distinct purposes
throughout the analyses.

e The effective sample size (Neff) was used when the statistical power of a case-control
sample was the most relevant metric. Its applications included:
o Quality control in the large-scale meta-analyses (Chapters 5 and 6), where SNPs
had to be present in a minimum percentage of the total Neff to be included.
o Weighting results in the meta-analyses of Polygenic Risk Score (PRS)
performance across cohorts (Chapters 3-6).
o As the sample size input for all major post-GWAS summary-statistic-based
analyses, including LDSC [23-24], MTAG [25], Multi-marker Analysis of
GenoMic Annotation (MAGMA) [26] (within Functional Mapping and
Annotation of GWAS [FUMA] [27]), Transcriptome-Wide Association
Studies (TWAS) [28], Local Analysis of [Co]variant Association (LAVA)
[29], and Summary-data-based BayesS (SBayesS) [30].
e The total sample size (N) was required for statistical models that explicitly use the
number of cases and controls as parameters. Its primary use was:
o As input for the liability scale conversion of PRS R2 (e.g., using the Lee ef al.,
2012 formula) [31], which mathematically requires the number of cases and
controls in the sample.
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2.5 Primary GWAS Association Analyses

The foundational step in identifying genetic variants associated with bipolar disorder and its
subphenotypes was to conduct a Genome-Wide Association Study (GWAS) on each cohort,
followed by a meta-analysis to increase statistical power by combining the results.

GWAS and Meta-Analysis: To form the basis of analyses in Chapters 5 and 6, GWAS
were run in each cohort using an additive logistic regression model in PLINK(v.190)
[32], with the first five principal components as covariates. For these primary meta-
analyses, a genome-wide significant locus was defined as the region around a lead SNP
(P <5.0x 107®) including all variants in Linkage Disequilibrium (LD) at r? > .1 within
a 3,000-kb window, based on the ancestry-matched HRC reference panel.
The DENTIST [33] tool was used for quality control to detect and filter problematic
variants. Cohort-level summary statistics were then combined using an inverse-
variance-weighted fixed-effect model in METAL [34]. To ensure robustness, all SNPs
present in less than 75% of the total effective sample size were removed from the meta-
analyses. For the subphenotype GWAS (Chapter 5), Linkage Disequilibrium Score
Regression (LDSC) confirmed that confounding from population stratification was
minimal, with a median intercept of 1.015. The attenuation ratio, an estimate of the
proportion of the GWAS signal due to confounding, had a median of .183, which is in
line with values reported for similar large-scale psychiatric analyses. (See Watanabe et
al. [53] and Chapter 5 [43] for comparison).

Multi-Trait Analysis of GWAS (MTAG): As detailed in Chapter 5, MTAG was used
to boost statistical power by integrating the primary subphenotype GWAS with large
external GWAS for Bipolar Disorder (BD) and Schizophrenia (SCZ). This was
performed only for a subgroup of subphenotypes showing a strong median initial
genetic correlation (rG> .70) with the external study. The reliability of these analyses

was confirmed by low median maximum False Discovery Rate (maxFDR) [25] values
(BD-only: <.00014; BD+SCZ: <.00013).

The MTAG method was chosen specifically to enhance statistical power for subphenotype
analyses. Its application was contingent on a strong initial genetic between the primary
subphenotype GWAS and the external study, ensuring a valid basis for integration. The
reliability of the MTAG results was confirmed by low median maximum False Discovery Rate

(maxFDR) values, suggesting a reliable synthesis of signals rather than distortion from the
larger external GWAS. Phenotypes that exhibited a higher maxFDR, including suicide ideation
and the age of onset variables, were excluded from downstream MTAG analyses to ensure the
robustness of the findings.
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2.6 Polygenic Risk Scoring (PRS)

To move beyond single-variant associations and capture the cumulative genetic risk for a
disorder, polygenic risk scores (PRS) were constructed. This approach aggregates the small
effects of thousands of genetic variants into a single, quantitative score representing an
individual’s genetic liability. For the PRS in Chapters 3, 4, 5, and 6, a leave-one-cohort-out
approach was used. This method ensures that the PRS for a given target cohort is not biased by
its inclusion in the discovery GWAS by creating a unique set of summary statistics for each
target cohort that excludes its own data.

2.6.1 PRS Construction, Performance and Evaluation

For analyses across Chapters 3, 4, 5, and 6, PRS were constructed from large, external GWAS
summary statistics using two primary methods:

e Clumping and Thresholding (pT+clump): Implemented in PRSice (v.2.3.3) [35], this
method only used in Chapter 4, selected approximately independent SNPs based on a
clumping threshold of R2< .1 within a 250 kb window, retaining SNPs that passed
specific P-value thresholds (pT). For the analysis in Chapter 4, this was implemented
in PRSice v2.3.3 using its default settings, and scores were generated for eight P-value
thresholds ranging from 5 x 107® to .05.

e PRS-CS-auto: For the analysis in Chapter 4 to 6, the auto-setting was used to learn the
global shrinkage parameter. The PRS-CS-auto [36] setting uses a fully Bayesian
approach to learn the optimal global shrinkage parameter directly from the discovery
GWAS data, avoiding the need for a separate validation set. Raw scores were generated
using the PLINK v2.0 score function from the posterior SNP effect means. Power
analysis for the PRS was conducted using the AVENGME package in R [37-38] and
G*Power 3 [39] was used for calculating the sample size and power for the statistical
tests (F, t, x2, Z). The following parameter were used for the power calculation; number
of independent SNPs produced by the PRS-CS package; sample size training sample
(sample size of the schizophrenia GWAS used); heritability and prevalence for bipolar
disorder were obtained from Table 1 in Wray et al., 2010 [40] and the proportion of
null markers were set as 90%.

o Chapter 5 evaluated the predictive performance of PRS for BD subphenotypes. The
core methodology involved developing subphenotype-specific PRS using MTAG.
These MTAG-derived effect sizes were then used for PRS construction in target cohorts
via PRS-CS-auto, employing a leave-one-cohort-out approach. Within each target
cohort, PRS were standardized and their association with phenotype status was assessed
using logistic regression, adjusted for the first five PCs. Nagelkerke’s R* was converted
to R2 on the liability scale (R2-liability) using the method by Lee ez al. (2012). A formal
random-effects (RE) meta-analysis of the per-cohort R2-liability values was
additionally conducted to model between-cohort heterogeneity.

e LD Reference Panels: The selection of the Linkage Disequilibrium (LD) reference
panel was tailored to the specific analysis and ancestry of the samples. For the PRS-
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CS analyses in the dimensionality study (Chapter 3) and the SCZ-PRS study (Chapter
4), the 1000 Genomes Project European LD reference panel was used. For the
primary GWAS meta-analysis and subsequent post-GWAS analyses

(including FUMA, SBayesS, and LAVA) in the multi-trait subphenotype study
(Chapter 5), the ancestry-matched Haplotype Reference Consortium (HRC) panel was
used. For the TWAS analysis in this chapter, the European 1000 Genomes Project LD
panel was used. For the main PRS-CS analyses in the PRS optimization study
(Chapter 6), the UK Biobank European LD reference panel, as provided by the PRS-
CS developers, was used.

PRS Performance Evaluation

Raw scores were standardized to z-scores (mean=0, SD=1) to make them comparable across
individuals. The predictive power of the PRS was assessed in linear and logistic regression
models using Nagelkerke’s R2 (converted to liability scale R2) and the Area Under the Curve
(AUC). To summarize performance across cohorts in Chapters 5 and 6, per-

cohort R2 estimates on the liability scale were pooled via a random-effects meta-analysis, and
heterogeneity was assessed with the 12 and Cochran’s Q statistics. The variance explained by
PRS was calculated as Nagelkerke’s pseudo-R? using the fmsb [41] package in R, while the
Area Under the Curve (AUC) was calculated using the pROC [42] package.

2.6.2 PRS Performance Evaluation and Metrics

The performance of the Polygenic Risk Scores (PRS) was assessed using a comprehensive suite
of metrics. The specific metrics reported were tailored to the primary aims of each analysis.

The PRS-CS-auto method was selected for most analyses because it demonstrated superior
predictive accuracy compared to the traditional pT + clump method in Chapter 4, explaining
nearly 2% more variance on the liability scale in comparative tests (Chapter 4, Table 26).

Metrics for the Multi-Trait Subphenotype Study (Chapter 5)

Individual-level Polygenic Risk Scores (PRS) were constructed for participants in European
target cohorts using effect sizes from discovery meta-analyses which combined subphenotype-
specific GWAS with data from bipolar disorder (BD) cases lacking subphenotype information
while systematically excluding each target cohort from its respective discovery dataset. These
PRS were adjusted for population stratification. As detailed in the external xIsx Supplementary
Table 58, the reported metrics included:

e Cohort: An identifier for the specific study or dataset.

e Sample.Size N: The total number of individuals (cases plus controls) in the analysed
sample for that cohort.

e N eff half: Half of the effective sample size, calculated as 2xNcasesxNcontrols
/(Ncases+Ncontrols), accounting for case-control imbalances.
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Proportion_Cases_P: The proportion of cases within the cohort’s analysed sample.
Cases NCA and Controls NCO: The number of cases and number of controls,
respectively.

NagelkerkeR2 obs: Nagelkerke’s pseudo R2 value, measuring variance explained by
the logistic regression model on the observed scale.

LiabilityR2 adj: The R? value on the liability scale, estimating the proportion of
variance in underlying disease liability explained by the PRS, adjusted for population
prevalence (K) and sample case proportion (P).

PerCohort Weighted LiabR2 pct: The cohort’s R2-Liability multiplied by its relative
effective sample size, expressed as a percentage, indicating its weighted contribution to
an overall average.

PRS PVal adj wCovars: The P-value for the overall statistical significance of the PRS
model including covariates.

Coef PRS: The regression coefficient (beta) for the standardized PRS from the logistic
regression, representing the log-odds change per standard deviation increase in PRS.
Coef SE PRS: The standard error of the PRS coefficient.

CoefL PRS and CoefH PRS: The lower and upper bounds of the 95% confidence
interval for the PRS coefficient.

Z value PRS: The Z-statistic for the PRS coefficient.

AUC (Area Under the ROC Curve): Measures the PRS model’s ability to discriminate
between cases and controls.

AUC _Low and AUC High: The 95% confidence interval for the AUC.

Absolute Risk:

Estimated absolute risks are given for the AbsRisk Quintile Top (top PRS quintile),
AbsRisk Quintile Bottom (bottom PRS quintile),

AbsRisk Toplpct (top 1% of PRS distribution), and

AbsRisk ToplOpct (top 10% of PRS distribution).

Metrics for the PRS Optimization Study (Chapter 6)

For the study focused on comparing different ascertainment strategies and ancestries, reporting
was focused on the primary metrics of predictive power. The key metrics included:

Variance Explained (Liability Scale R2): This was the main outcome measure used to
compare the performance of the different discovery GWASs.

Risk Stratification (Odds Ratio): To assess clinical potential, the odds ratio (OR) was
calculated for individuals in the top quintile (top 20%) of the PRS distribution
compared to those in the middle quintile.

Discriminative Ability (AUC): The AUC was reported to measure overall
discriminative accuracy. To isolate the predictive value added by the PRS itself,
the AUC gain was also calculated by subtracting the median AUC of a model
containing only covariates from the median AUC of the full model.
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In Chapter 5, a sensitivity analysis using the Slope-Hunter [43] method in R to adjust for
potential index event bias was also explored but was not used for the final results as it was
found to inflate the test statistics. As a sensitivity analysis, the Slope-Hunter method was
explored to assess the potential impact of index event bias on the effect sizes from the primary,
single-subphenotype GWAS analyses. However, this correction was not carried forward to the
final Polygenic Risk Score (PRS) analyses for two key reasons. First, initial tests on the single-
subphenotype GWAS indicated that, the Slope-Hunter adjustments were inflating the test
statistics, suggesting that the underlying model assumptions of the tool were not a good fit for
the data. Second, applying this correction to the downstream MTAG-derived summary
statistics would be methodologically invalid, as MTAG results represent a complex mixture of
effect sizes from cohorts with different ascertainment strategies. Therefore, a random-effects
meta-analysis was chosen as the more appropriate and robust method to account for
heterogeneity in the final PRS performance estimates.
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External GWAS Summary Statistics for PRS Analyses

The discovery GWASs used as a basis for PRS construction were selected as they were the
largest and most recent available at the time of analysis. They included:

Table 11 External GWAS Summary Statistics for Analyses

Disorder/Trait Study Sami)ll\?) Size C[lsziil(ls)
‘ Psychiatric Disorders H H H ‘
\ Bipolar disorder | O’Connell et al., 2025 [44] | 840300 | 3,456 |
\ Schizophrenia (SCZ) | Trubetskoy ef al., 2022 [45] | 130644 || 3,45 |
\ Major depressive disorder (MDD) | Howard et al., 2019 [46] | 500199 | 3,5 \
Attention deficit e(ticli) lggﬁ;ractivity disorder Demontis et al., 2023 [47] 225,534 3.5
\ Anxiety (ANX) | Purves e al., 2020 [48] | nao1 || 35 |
\ Autism spectrum disorder (ASD) | Grove et al., 2019 [49] | 46350 | 5 \
\ Mood swings (MOOD) | Neale Lab UKBB, 2018 [50] | 604063 | 5 \
| Post traumatic stress disorder (PTSD) || Nievergelt ef al., 2019 [51] | 174659 || 5 \
| Borderline personality disorder (BPD) || Witt et al., 2017 [52] | 243 | 5 \
\ Insomnia (INS) | Watanabe et al., 2022 [53] | 386888 | 5 \
‘ Cognitive Traits H H H ‘
\ Intelligence (INTEL) | Savage et al., 2019 [54] | 269867 | 5 \
\ Matrix | de la Fuente et al., 2020 [55] | 1356 | 5 \
\ Memory | de la Fuente et al., 2020 | 331679 | 5 \
\ Trail Making Test B (TMTB) | de la Fuente et al., 2020 | 78547 || 5 \
\ Tower | de la Fuente et al., 2020 | u2e3 | 5 \
\ Symbol and digit (SymDig) | de la Fuente ef al., 2020 | 87741 | 5 \
\ VNR | de la Fuente et al., 2020 | 171304 | 5 \
\ Reaction time (RT) | de la Fuente et al., 2020 | 330024 || 5 \

Note: To align phenotypes, only GWAS summary statistics without 23andMe self-report data were included. Matrix =
Matrix Pattern Completion task; Memory = Memory — Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol
Digit Substitution Task; Trails-B = Trail Making Test — B; Tower = Tower Rearranging Task; VNR = Verbal Numerical
Reasoning Test. Phenotype data was scaled before analyses and higher scores aligned to indicate better cognitive
performance. See Figure 26, a presentation of the global genetic correlations presented in Supplementary table 59. To
ensure comparability, only versions of the discovery sets which excluded 23andMe self-reported data were included for
analysis (Chapter 3-5). Chapter 6 modelled PRS for datasets with and without 23andMe data.
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2.7 Covariate and Bias Control

The handling of covariates and bias differs across chapters due to the distinct goals and
methodologies of each analysis. The choice of which covariates to control for and how to
control for them is driven by the specific research question being addressed and the potential
sources of bias inherent in that particular study design.

Covariate and Bias Control

e Population Stratification (Principal Component Analysis [PCA]): This method was
applied consistently across all analyses because the entire study population shares the
same fundamental potential confounder: genetic ancestry. PCA 1is a standard practice
in genetic studies to control for population structure, which can create spurious
associations between genetic markers and traits if not accounted for. By including the
first five to ten principal components as covariates, the regression models were adjusted
for this systematic bias, ensuring that any observed associations were not simply a result
of shared ancestry.

e Covariate Adjustment (Residualisation): This approach was specifically used for the
Polygenic Risk Score (PRS) analyses in Chapters 3 and 4. PRS is a score derived from
genetic data to predict an individual’s risk for a specific trait or disease. To ensure the
PRS itself was the primary variable of interest and that its predictive power wasn’t
inflated by other factors, the scores were “residualised.” This means that the effects of
non-genetic factors, including age, sex, and genotyping batch, were statistically
removed. The resulting residuals represent the portion of the PRS that is independent
of these covariates, allowing for a cleaner and more accurate assessment of the PRS’s
direct association with the outcome.

e Ascertainment Bias (IPW): This method was exclusively applied to the dimensional
analysis in Chapter 3 when modelling within-case severity. Ascertainment bias occurs
when the method of selecting a study sample systematically favours certain individuals,
potentially distorting the results. In this case, the analysis was performed on a case-
control sample, which is inherently biased because individuals were selected based on
their disease status. Inverse Probability Weighting (IPW) [56-57] was used to correct
for this. By weighting the cases and controls based on their probability of being
selected, the method effectively rebalances the sample to be more representative of the
source population, thereby mitigating the bias introduced by the case-control sampling
design.

2.7.1 Chapter 3: A Four-Dimensional Genetic Model of Bipolar Disorder

This chapter’s primary goal was to investigate the dimensional structure of Bipolar Disorder
(BD) using a Multiple Indicators and Multiple Causes (MIMIC) model [58]. The methods to
control for bias were comprehensive. To mitigate confounders and ascertainment bias,
including collider bias which can be an issue in case-only studies, this study adopted a case-
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control design. To further address potential selection bias, stabilised weights were
implemented for the Inverse Probability Weighting (IPW).

e Population Stratification: To control for confounding due to genetic ancestry, a
Principal Component Analysis (PCA) was conducted using the EIGENSTRAT (v6.1.4)
[59] software. The first ten ancestry-specific principal components were then included
as covariates in all statistical models to adjust for population structure.

e Ascertainment Bias: Because the analysis used a case-control sample, Inverse
Probability Weighting (IPW) using propensity scores was applied to mitigate potential
selection bias and adjust for imbalances between groups. This procedure was
implemented using the R statistical environment.

e Covariate Adjustment (Residualisation): For the PRS analyses, scores were fully
adjusted before being used in the final models. The effects of covariates
including age, sex, the first ten principal components, and genotyping batch/platform,
were regressed out of the PRS. The resulting standardized residuals were used as the
final PRS predictor, a method known as residualisation, which was performed in R.

The following table demonstrates the effect of the multi-step covariate correction applied to
the BD PRS in the dimensionality study (Chapter 3). The ‘pre-correction’ result reflects the
strong, unadjusted association between the PRS and case-control status. The ‘post-correction’
result illustrates a known statistical artifact that occurs when controlling for a variable that is a
proxy for the outcome itself. Such a complete elimination of the signal is the expected outcome
when adjusting for a factor like illness severity in both cases and controls, as this statistically
removes the core difference between the groups. In this analysis, a multi-stage correction was
applied where standard covariates (age, sex, PCs, array) were controlled for, followed by an
IPW adjustment for severity (hospitalization [see Table 18, OCPRIT 01 ‘Source of rating’]) in
the cases only.

Table 12 Correction for Covariates for Chapter 3

BD PRS Analysis of Variance (ANOVA)

F df P
Pre-correction 85.22 2,4989 | P<.001
Post-correction .092 2, 4989 912
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2.7.2 Chapter 4: Schizophrenia-Derived Polygenic Risk

This chapter’s analysis of a combined cohort from two different sites required specific
corrections for batch and site effects in addition to standard covariate control.

e Population Stratification: To control for genetic ancestry differences, PCA was
performed using the EIGENSTRAT (v6.1.4) software package for both the Romanian
and UK samples. The first ten ancestry-specific principal components were included as
covariates to control for population structure.

o Batch and Site Effects: A specific two-step correction was implemented to address non-
genetic variance in the PRS calculations. First, batch effects due to different genotyping
platforms within each cohort were regressed out. Second, site effects between the
Romanian (RO) and United Kingdom (UK) cohorts were corrected to mitigate potential
bias.

e Covariate Adjustment (Residualisation): The final PRS predictor was a standardized
residual. The effects of age, sex, and the first 10 principal components were regressed
out of the PRS scores prior to their use in regression and Random Forest (RF) models.
All analyses were conducted in R.

Correction for Batch and Site Effects: In the analyses for Chapter 4, the Romanian (RO) and
United Kingdom (UK) samples were genotyped on different platforms (Table 8). These
between-platform and between-cohort differences can introduce batch effects into the PRS
calculations. To address this, batch effects due to platform differences were first regressed out
of the PRS for each cohort separately in Chapter 4. Subsequent corrections were then made for
site effects between the two cohorts.

The following tables demonstrate the successful data harmonization process applied to the
SCZ-PRS in the study described in Chapter 4. The ‘pre-correction’ results show that
significant, systematic differences in the mean PRS existed due to technical factors, specifically
the genotyping platform (batch effects) and recruitment site (site effects). The ‘post-correction’
results show that the two-step correction method successfully removed this non-biological
variance, as indicated by the drop from highly significant to non-significant statistics. This
essential harmonization step created a clean PRS variable, ensuring that the main downstream
analyses were not biased by these technical confounders.
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Table 13 PRS Batch Effects (Genotype Array) Correction for Chapter 4

Romanian T-test
t df
Pre-correction| 13.578 1,1107
Post-correction|| 0.116 1,1107
UK ANOVA
F df
Pre-correction| 85.22 2,3518
Post-correction|| 0.092 2,3518

Table 14 PRS Sample (Site) Correction for Chapter 4

RO/UK T-test
t df

Pre-correction || 6.861 2,4627
Post-correction|| 0.180 2,4627

2.7.3 Chapter 5: Multi-Trait Analysis of Eleven Clinical BD Subphenotypes

This large-scale meta-analytic approach relied on including covariates directly within the
statistical models rather than using pre-adjusted residualised scores; the same approach was
adopted in Chapter 6.

Population Stratification: Standard Genome-Wide Association Study (GWAS)
procedures, which include PCA, were conducted using the RICOPILI [60] automated
pipeline. The first five to ten principal components of ancestry were included as
covariates in all primary GWAS and downstream regression models. The Linkage
Disequilibrium Score Regression (LDSC) intercept was also monitored to confirm that
confounding from uncorrected population stratification was minimal, i.e., close to 1.
Ascertainment Cohort Heterogeneity: The analysis addressed between-cohort
heterogeneity in a multi-step process. First, the DENTIST tool was used on the GWAS
summary statistics to identify and remove problematic SNPs that showed significant
heterogeneity across the different cohorts. In the subsequent Polygenic Risk Score
(PRS) analysis, random-effects models were employed to directly measure and model
the remaining heterogeneity in the prediction estimates. This provides a more robust
and generalizable estimate that properly reflects the variability observed in the
underlying data.
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e Covariate Adjustment: Unlike the analyses in the preceding chapters, residualisation
was not performed. Instead, PRS and other relevant covariates were included as
independent variables directly in the regression models to assess their associations with
the outcomes (as noted above).

2.7.4 Chapter 6: Optimising BD Polygenic Risk Prediction

This chapter’s primary goal was to investigate the impact of ascertainment and ancestry, using
stratification as the main analytical method.

e Population Stratification: PCA was conducted for each cohort
using EIGENSTRAT (v6.1.4). The first five principal components were included as
covariates in the logistic regression models.

e Covariate Adjustment: The GWAS for each cohort was conducted
using PLINK (v1.90), which directly included principal components as covariates in
the regression model. The final PRS performance was assessed using
the glm() function in R, which also included sex and principal components as
covariates alongside the standardized PRS. The PRS was not residualised beforehand.

e Ascertainment Bias: This was the central focus of the investigation rather than a
factor to be corrected statistically. The analysis addressed ascertainment by stratifying
cohorts based on their recruitment method (clinical, community, and self-report) and
comparing PRS performance across these distinct groups.

2.8 Post-GWAS Functional and Genetic Architecture Analyses

Individual-level pathway analysis was applied in Chapter 4 using PRSet to explore the genetic
architecture of specific clinical features. The analysis used PRSet in the PRSice package, which
provides an individual-level representation of genetic burden within a gene-set, in contrast to
population-level methods like Multi-marker Analysis of GenoMic Annotation (MAGMA).
The analysis was applied to 1878 cases and 2751 controls in the combined RO/UK
sample. After excluding 893 SNP regions not present in both the SCZ3-GWAS summary
statistics and the target genotypes, a total of 31,937 gene regions from the Molecular Signatures
Database (MsigDB) [61-62] database were included for a hypothesis-free analysis of psychosis
and individual-level subtype risk. PRSet was run with all SNPs included (P-value threshold <
1) and performed two types of gene-set analysis: a ‘self-contained’ analysis to test if a gene set
is associated with the phenotype, and a ‘competitive’ analysis to test if the gene set is more
associated than a random set of genes with similar properties. The method was restricted to
SNPs within a 10-kilobase window around each gene, and SNPs were clumped independently
for each pathway (R? threshold = 0.1, P-value threshold = 1, 2-megabase window). The
‘competitive’ enrichment P-value was derived from 10,000 permutations, with significance set
at P <.05.
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To translate genetic associations from the MTAG analyses in Chapter 5 into biological insights,
the following suite of post-GWAS methods was employed:

LD Score Regression (LDSC): To estimate SNP-based heritability (h’snp) and genetic
correlations from summary statistics while distinguishing true polygenicity from
confounding, Linkage Disequilibrium Score Regression (LDSC) was used. A low
median LDSC intercept of 1.015 confirmed minimal inflation from uncorrected
population stratification.
Functional Mapping and Annotation of GWAS (FUMA): FUMA (v1.8.0/v1.5.2)
was used to functionally map and annotate genetic associations using GWAS summary
statistics aligned to the GRCh37 (hg19) reference. The SNP2GENE and GENE2FUNC
functions were used to identify independent genomic loci and annotate putative causal
genes, with significance based on a Bonferroni correction across 19,139 genes
(P<2.61x10-%). For reference datasets see Table 15 below.
o Locus Definition: Standard clumping was applied in FUMA (1* = .1, 250 kb
window) using the 1000 Genomes Project European-ancestry reference panel.
o Genomic risk loci were defined by identifying independent significant SNPs
(P<5x10-8, r2< .6) which were then clumped at a stricter threshold (r2< .1) to
define lead SNPs. Loci were formed by merging LD blocks of independent
SNPs within a 250 kb distance. Loci were classified as “novel” if situated more
than 500 kb from loci previously reported in the GWAS Catalog for BD or SCZ.
o Gene Mapping: Three strategies were used to link SNPs to genes:
= Positional Mapping: SNPs within a 10 kb window of a gene’s
boundaries (based on ANNOVAR) were mapped to that gene.
= eQTL Mapping: SNPs were mapped to genes if they were significant
cis-eQTLs in any of the brain tissue types considering pairs up to 1Mb
apart.
= Chromatin Interaction Mapping: SNPs were mapped to genes via long-
range Hi-C data from tissue/cell types, including adult and foetal brain
samples (e.g., Giusti-Rodriguez et al., 2019; PsychENCODE)[63-64].
A mapping was established if a SNP’s region interacted with a gene’s
promoter (250 base pairs [bp] upstream to 500bp downstream of the
transcription start site).
o Functional Annotation: Combined Annotation Dependent Depletion
(CADD) scores were used to predict the deleteriousness of genetic variants. A
CADD score exceeding the widely accepted threshold of 12.37 is considered
indicative of a potentially deleterious genetic variant [65].
Gene-Set Analysis (MAGMA): MAGMA (v1.10) performed a competitive gene-set
analysis to identify enriched biological pathways. SNPs within a window of 35 kb
upstream and 10 kb downstream of a gene were assigned to it. The analysis tested
17,023 gene sets (including “Canonical pathways” and “GO terms”) from MsigDB
(v2023.1Hs), with significance at a Bonferroni-corrected threshold of P<2.94x10-°,
Cell-Type Specificity Analysis: To identify the specific brain cell types where the
genetic risk for a subphenotype is concentrated, a gene-property analysis was
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performed. A gene-property analysis using MAGMA tested for enrichment across 226
unique cell types from 31 public single-cell RNA sequencing datasets from the human
brain (including data from Wang et al., 2018; Hodge et al., 2019; Habib et al., 2017,
La Manno et al., 2016; and Hochgerner et al., 2017) [66-70], [Table 15].

The analysis used 16,830 genes and conditioned on covariates (e.g., gene size, density).
A 3-step workflow identified specific associations: (1) a per-dataset analysis, (2) a
within-dataset conditional analysis, and (3) a cross-dataset conditional analysis.
Significance was determined using the Benjamini-Hochberg (BH) [71] method, with a
final Bonferroni-corrected threshold of P<2.2x10-°,

Transcriptome-Wide Association Studies (TWAS): While FUMA annotates and
maps risk variants to genes, TWAS provides a formal statistical test to identify which
of those genes are likely causal by testing if their genetically predicted expression
level is directly associated with the trait. To help prioritize potentially causal genes at
GWAS loci by testing whether genetic risk is mediated through gene expression, a
Transcriptome-Wide Association Study (TWAS) was conducted. The analysis was
implemented using the FUSION [28] software (within the GenomicSEM T-SEM
module) [72] and utilized precomputed functional weights from large-scale eQTL
datasets. These included 15 brain tissues from the GTEx Consortium (v8) and
CommonMind Consortium (CMC), Table 15. To mitigate confounding from the
highly complex Major Histocompatibility Complex (MHC) region, all primary
analyses were conducted both with and without the MHC region, defined as
coordinates chr6:28,477,797-33,448,354 (GRCh37/hg19).

The analysis was restricted to genes with significant evidence of cis-heritable
expression (P < .01), and transcriptome-wide significance was set at a Bonferroni-
corrected threshold (P <5.54%1077). To distinguish true causal effects from associations
driven by linkage disequilibrium (LD) with other nearby genes, a conditional
analysis was also performed within the FUSION framework. This analysis tests
whether a gene’s association with a subphenotype remains significant after statistically
accounting for the effects of all other associated genes within the same locus. This step
is crucial for dissecting complex GWAS loci where multiple genes may show a TWAS
signal, helping to pinpoint which gene has the most direct, independent effect on the
trait.

While this conditional analysis helps to identify independent signals, it is distinct from
more advanced fine-mapping methods such as FOCUS [73]. FOCUS goes a step further
by using the information from all genes in a locus to calculate a posterior probability
that each specific gene is the true causal gene. The conditional analysis performed here
provides an essential intermediate step, giving stronger evidence for a gene’s
independent role and increasing confidence in its prioritization for further biological
investigation, but does not provide a formal probabilistic estimate of causality that
FOCUS does.
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Local Genetic Correlation (LAVA): Local Analysis of [Co]variant Association
(LAVA) was used to estimate local genetic correlations and identify specific genomic
regions with shared risk between subphenotypes.

Genetic Architecture Analysis (SBayesS): This summary-level Bayesian model was
used to estimate SNP-based heritability (h’snp), polygenicity, and negative selection
(S) for subphenotypes. Heritability was transformed to the liability scale using a shrunk
LD matrix from GCTA (available at https://yanglab.westlake.edu.cn/software/gcta).
Model convergence was confirmed by the Gelman and Rubin statistic (R"<1.2).
Credible Gene Set Prioritization: A “credible” gene was defined as one meeting two
criteria: (1) a significant association in the conditional TWAS analysis, and (2)
implication by at least one of three mapping strategies in FUMA. To prioritize a high-
confidence set of risk genes, a gene was defined as “credible” if it was significant in
the conditional TWAS analysis and was also implicated by at least one of the three
FUMA mapping strategies (positional, eQTL, or chromatin interaction). The statistical
validity of this credible gene set was then confirmed by testing for enrichment of
established rare-variant risk genes using a one-sided Fisher’s exact test.

Validation with Rare-Variant Data: The credible gene sets were tested for
enrichment of established rare-variant risk genes from the Schizophrenia Exome Meta-
analysis (SCHEMA) [74] and Bipolar Exome (BipEx) consortia [75]. The enrichment
was assessed using a one-sided Fisher’s exact test (P<.0125).
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Table 15 Reference Datasets and Publications for FUMA Analysis Modules and TWAS

FUMA .
Module Category Specific Dataset/Tool Reference
| Available at https://fuma.ctglab.nl/links |
| Cell Type || scRNA-seq || Adult Human Brain || Siletti et al. (2023). Science. 382(6667). |
| GSE168408 || Herring et al. (2022). Cell. 185, 4428-4447. |
Allen Brain Atlas Hodge et al. (2018). bioRxiv. doi:
(Human MTG) 10.1101/384826.
| DroNe |[Habib et al. (2017). Nat. Methods. 14, 955-958. |
| GSE76381 | LaManno et al. (2016). Cell. 167, 556-580. |
| GSE101601 || Hochgemer ez al. (2017). Sci. Rep. 7: 16327. |
| GSE104276 || Zhong et al. (2018). Nature. 555, 524-528. |
Darmanis et al. (2015). Proc. Natl. Acad. Sci.
GSE67835 USA. 112, 7285-90.
1000 Genomes Project||The 1000 Genomes Project Consortium. (2015).
SNP2GENE LD Reference Panel Phase 3 Nature. 526, 68-74.
UK Biobank Bycroft et al. (2018). Nature. 562(7726), 203—
209.
SNP2GENE || Gene Expression (MAGMA) BrainSpan | Kang et al. (2011). Nature. 478, 483-489. |
SNP2GENE eQTL Mapping Blood eQTL Browser Westra et al. (20131) .Zi\;at. Genet. 43, 1238-
BIOS QTL Browser Zhernakova et al. (2011475). Nat. Genet. 49, 139-
Ramasamy et al. (2014). Nat. Neurosci. 17,
BRAINEAC 1418-1428.
CommonMind Fromer et al. (2016). Nat. Neurosci. 16, 1442-
Consortium 1453.
MuTHER Grundberg et al. (2012). Nat. Genet. 44, 1084-
1089.
| xQTLServer  |[Ngeral. (2017). Nat. Neurosci. 20, 1418-1426.
Vosa et al. (2018). bioRxiv. doi:
¢QTLGen 10.1101/447367.
Schmiedel ef al. (2018). Cell. 175, 1701-
DICE 1715.el6.
van der Wijst et al. [|van der Wijst et al. (2018). Nat. Genet. 50, 493-
scRNA eQTLs 497.
Kerimov et al. (2021). Nucleic Acids Res.
cQTL Catalogue 49(D1), D997-D1003.
EyeGEx Ratnapriya et al. (2019). Nat. Genet. 51(4), 615-
624.
Vifiuela et al. (2020). Cell Reports. 31(10),
InsPIRE 107727.
Alonso et al. (2021). Cell Reports. 37(13),
TIGER 110167.
| SNP2GENE Chromatin Interaction || Hi-C (GSE87112) || Schmitt et al. (2016). Cell Rep. 17, 2042-2059. |
Hi-C (Giusti- Giusti-Rodriguez et al. (2019). bioRxiv. doi:
Rodriguez et al.) 10.1101/406330.
| FANTOMS || Andersson er al. (2014). Nature. 507, 455-461. |
| GENE2FUNC]| Gene Expression BrainSpan | Kang et al (2011). Nature. 478, 483-489. |
GENE2FUNC Gene Set Enrichment WikiPathways Kutmon et al. QO;%_Z%XZEM Acids Res. 44,
Wishart et al. (2008). Nucleic Acis Res. 36,
DrugBank D901-6.
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FUMA

Module Category Specific Dataset/Tool Reference
All Modules Core Tool PLINK Purcell et al. (2007). Am. J. Hum. Genet. 81,
559-575.
de Leeuw et al. (2015). PLoS Comput. Biol. 11,
MAGMA €1004219.
Annotation Tool | ANNOVAR | Wang et al. (2010). Nucleic Acids Res. 38:¢164.]
Annotation Score I CADD || Kircher et al. (2014). Nat. Genet. 46, 310-315. |
RegulomeDB Boyle et al. (2012). Genome Res. 22, 1790-7.
. 15-core chromatin Roadmap Epigenomics Consortium. (2015).
Annotation Data state (ChromHMM) Nature. 518, 317-330.
GTEx The GTEx Consortium. (2020). Science.
369(6509), 1318-1330.
|| PsychENCODE || Wang er al. 2018). Science. 362, caat8464. |
Gene Score | pLI(from EXAC) ||  Lek eral. (2016). Nature. 536,285-291. |
Petrovski et al. (2015). PLOS Genet. 11,
neRVIS ¢1005492.
Gene Set Enrichment MSigDB Liberzon et al. (2011). Bioinformatics. 27,
1739-40.
GWAS Catalog MacArthur et al.”(2016)A Nucleic Acids Res.
pii:gkw1133.
TWAS _ . .
Module Download at http://gusevlab.org/projects/fusion
TWAS :
Module ngxéiizg)g ;‘ﬁfg)e n CommonMind Brain (DLPFC) - RNA-seq, Brain (DLPFC) -
Consortium (CMC) RNA-seq splicing
Amygdala, Anterior cingulate cortex (BA24),
Caudate (basal ganglia), Cerebellar
Hemisphere, Cerebellum, Cortex, Frontal
GTEx v8 Cortex (BA9), Hippocampus, Hypothalamus,
Nucleus accumbens (basal ganglia), Putamen
(basal ganglia), Spinal cord (cervical c-1),
Substantia nigra
O’Brien, Heath E., et al. “Expression
Foetal quantitative trait loci in the developing human

brain and their enrichment in neuropsychiatric
disorders.” Genome biology 19.1 (2018): 194.
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2.9 Psychometric and Predictive Modelling

Dimensional Structure Analysis

To investigate the underlying structure of clinical symptoms in the bipolar disorder sample, a
multi-stage approach was employed in Chapter 3 using both Exploratory and Confirmatory
Factor Analysis (EFA/CFA). The initial data-driven exploration used EFA to uncover latent
dimensions of psychopathology from 77 clinical items from the Operational Criteria (OPCRIT)
checklist. Based on multiple criteria including parallel analysis, scree plots, and model fit
indices (Table 16, and Chapter 3 Table 19, Figures 12-13), a four-factor structure was identified
as the most robust and clinically relevant.

Table 16 Factor Model fit indices description for Chapter 3 & 5

Represents the difference between the observed and expected

covariance matrices. A non-significant p-value indicates a good

model fit, although this test can be sensitive to sample size.

Compares the fit of the specified model to a baseline (often a null

model). Values more than .90-.95 indicate a good fit.

i Root Mean Square Error | Measures the error of approximation in the population. Values that |

of Approximation are lower than .05 are considered a good fit, values below .08 are |

(RMSEA) considered acceptable.

Like CFl, the value accounts for model complexity. A TLI above

; .90 suggests the model has a good fit.

Data for 77 clinical symptoms from the OPCRIT with adequate sample sizes were included for
analysis. Items with zero- or near-zero variance were removed to enable model convergence.
The clinical sample was partitioned into balanced 60/40 splits for the exploratory (calibration)
and confirmatory (validation) phases using the createDataPartition function in the Caret [76]
package. The analysis was conducted on a calibration subsample of 1554 BD patients.
The "WLSMV’ estimator was used for the ordinal categorical items, and Geomin rotation was
applied to allow the latent factors to correlate. Items with very low frequencies were analysed
separately via regression. For items with a high pairwise correlation (.7 or above), the item
with the least missingness and most clinical relevance was retained to ensure a parsimonious
model.

To prepare the data for factor analysis, several steps were taken in R. Redundancy between
clinical items was assessed using the hetcor function in the polycor [77] package. Missing data,
which was low at 8%, was assessed using the var miss function in the Naniar [78] package,
and its pattern was confirmed to be Missing At Random (MAR) using
the missing_compare function in the finalfit [79] package. To avoid potential overfitting,
imputation was not performed. The clinical sample was partitioned into balanced 60/40 splits
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for exploration and confirmation using the createDataPartition function in the caret package.
To further confirm the data’s suitability for structure detection, the Kaiser-Meyer-Olkin (KMO)
[80] test was used to measure sampling adequacy, and Bartlett’s test of sphericity [81] was used
to test for significant interrelatedness between variables. For preliminary Principal Component
Analysis (PCA) on the clinical data, scales were normalized before computing components with
the *prcomp’ function in R.

The number of factors to retain was determined using multiple criteria, including parallel
analysis with the fa.parallel function in the psych [82] package and scree plots generated with
the fviz_eig function in the factoextra [83] package. Exploratory and Confirmatory Factor
Analyses were conducted using the efa and cfa functions, respectively, from the lavaan

[84] package. The final path diagrams were visualized using the lavaanPlot [85] package.

This structure was then formally tested and validated using CFA on an independent subsample.
A parsimonious model consisting of the 20 core OPCRIT symptoms that loaded most strongly
and consistently onto the four factors was developed. The items comprising this final four-
factor model are detailed in Table 17 below. A complete list of all 77 items included in the
initial exploratory analysis, along with their full factor loadings, can be found in Chapter 3,
Table 22. The selection of the 20 symptoms for the CFA was based on a median factor
loading above .6 to ensure a parsimonious and reliable model, which is a widely accepted
practice for retaining meaningful indicators. The initial threshold of .4 was used to interpret the
EFA factor loadings. This threshold was chosen to align with criteria used in previous factor
analyses of bipolar disorder symptoms (Allardyce et al., 2023) [86].

The fit of the final factor models was evaluated using multiple fit indices in Chapter 3 and 5,
though the Standardised Root Mean Squared Residual (SRMR) was not used due to evidence
of bias in binary data.

Further checks for multicollinearity (using eigenvalues) and the linearity assumption (using
bivariate scatterplots of predicted factor scores) were also performed.

To assess the genetic contributions to these latent factors, the CFA was extended into
a Multiple Indicator Multiple Cause (MIMIC) model, a special case of Structural Equation
Modeling (SEM). This was implemented with the ’sem’ function in lavaan, and ana
priori power analysis for the model was conducted using the semPower [87] package in R.
This integrated model was preferable to separate multiple regressions as it allows for the
simultaneous modelling of both the factor-level and item-level associations with genetic load.
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2.10 Validation and Sensitivity Analyses
Sensitivity analyses for dimensional modelling for Chapter 3

To test the robustness of the final CFA model and the independent contribution of each of the
20 core clinical items in Chapter 3, a multi-stage validation process was used. Two primary
sensitivity analyses were performed.

First, individual-level factor scores for each of the four dimensions were estimated using
a ”leave-one-out” approach, where each item was omitted from the CFA model in turn. The
resulting factor scores were then used in regression models to confirm that a dimension’s score
was the best predictor for its own constituent symptoms.

Second, to ensure the genetic associations identified at the global SEM level held for individual
items, regression analyses were conducted using the individual-level Polygenic Risk Scores
(PRS) for each of the five psychiatric disorders to predict the presence of each of the 20 core
symptoms. For both of these sensitivity analyses, participants were dichotomized into the top
10% of scores versus the remaining 90% to assess the increased risk (Odds Ratio) for reporting
a given symptom.

Finally, a third set of post-hoc regression analyses was performed for two primary reasons. The
first was to explore the association between the newly identified chronicity dimension and other
clinically important variables known to be associated with poorer outcomes in BD. The second,
more specific reason, was to investigate variables like rapid cycling, suicide thoughts, and
substance use. These variables were clinically expected to correlate with the chronicity
dimension but did not meet the strict statistical cutoff (factor loading > .6) for inclusion in the
final, parsimonious 20-item CFA model. This post-hoc approach allowed these crucial
relationships to be investigated without degrading the primary model.
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Table 17 OPCRIT Variables for Analyses in Chapters 3 & 4

Use in Thesis

PCRIT . .. . Analytical
OPC Variable Name Full OPCRIT Definition & Original Coding (Chapter & 2 y ea
Item No. . Coding

Analysis)
Part I: Core Items for Dimensional Analysis (Chapter 3)
2 Slowed activit Obvious slowing of movement, reaction time, and Chapter 3: Treated as
owec acivity speech. (0, 1, 2) EFA/CFA Ordinal
i i ilt, includi 1f-bl
0 Excessive self- Pat};ologwal fee}i%nﬁs_ of gul.lt; 11111tc }Ilimg 5¢ iatz ame Chapter 3: Treated as
reproach and remorse which is persistent, inappropriate or EFA/CFA Ordinal
out of proportion. (0, 1, 2)
19 Loss of pleasure A pervasive loss of interest or pleasure in all or Chapter 3: Treated as
(anhedonia) almost all of the patient’s usual activities. (0, 1, 2) EFA/CFA Ordinal
25 Loss of Subjective experience of tiredness, weariness or Chapter 3: Treated as
energy/tiredness loss of energy. (0, 1, 2) EFA/CFA Ordinal
. An unpleasant mood state with features of Chapter 3: Treated as
37 Dysphoria . . e .
depression, anxiety and/or irritability. (0, 1, 2) EFA/CFA Ordinal
. Thoughts that are so rapid the patient cannot ‘keep Chapter 3: Treated as
R thought .
31 acing FOugHis up with them’. (0, 1, 2) EFA/CFA Ordinal
i i f h
30 Pressured AIL ?nl(;r_ea;?f;n ﬂ;f fa m?}? n.tnelnd/?r spei:d i(;t Sfriect Chapter 3: Treated as
speech which is difficult for the interviewer to interrupt. EFA/CFA Ordinal
(05 1’ 2)
i ft I\
2 Reduced need P?;?Liﬁlss srlz setect:nd ;:u}i;)f:lz esrsgt}l;:n ers:l)y a Chapter 3: Treated as
for sleep P (&8 ‘ EFA/CFA Ordinal
(05 1’ 2)
19 Excess activi An increase in the level of activity, e.g. at work, Chapter 3: Treated as
vy socially or sexually. (0, 1, 2) EFA/CFA Ordinal
i Flevated ; Al s:stam? fﬁe_hng tof v;;ellb?mg, ?tllllefgfulniss,t?r Chapter 3: Treated as
evated moo elation, which is not in keeping with the patient’s EFA/CFA Ordinal
circumstances. (0, 1, 2)
i ’ li impulses, thought:
o | Do | e ot ones o bt are posedty | | CIOPr3 | Tresedas
influence : posec by EFA/CFA Ordinal
some external force. (0, 1)
Persecutory/jeal A delusion of being per_secuted. (c.g. being Chapter 3: Treated as
54 . followed, harassed, conspired against), or of the .
ous delusions . . R EFA/CFA Ordinal
infidelity of one’s spouse or partner. (0, 1)
67 Thought The experience of thoughts being removed from Chapter 3: Treated as
withdrawal one’s mind by an outside agency. (0, 1) EFA/CFA Ordinal
66 Thought The experience of thoughts, which are not one’s Chapter 3: Treated as
insertion own, being inserted into one’s mind. (0, 1) EFA/CFA Ordinal
i f one’s thoughts bei t
68 Thought The lezzrlefnczlo HOI,le ;,ngug t}ja]:elglg brozﬁc;:ar Chapter 3: Treated as
broadcast | O O pHg Homone s mind so that ofhers ¢ EFA/CFA Ordinal
them. (0, 1)
Patient found difficulty entering or maintaining
. . . . . Chapter 3:
Premorbid poor normal social relationships, showed persistent Treated as
. o . . - . EFA/CFA & .
10 social social isolation, withdrawal or maintained solitary Post-hoc Ordinal /
adjustment interests prior to onset of psychotic symptoms. . Binarised
Regressions
0,1
Evidence of
. . .. . . Chapter 3:
Premorbid inadequate/schizoid/schizotypal/paranoid/cyclothy Treated as
. . . . . o EFA/CFA & .
11 personality mic/psychopathic/sociopathic personality disorder Post-hoc Ordinal /
disorder present since adolescence and prior to the onset of . Binarised
. Regressions
psychotic symptoms. (0, 1)
Premorbid poor Refe.rs to work history before onset of 1lln§ss. Chapter 3: Treated as
9 work Scored if the patient was unable to keep any job for .
. . EFA/CFA Ordinal
adjustment more than 6 months, had a history of frequent
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changes of job or was only able to sustain a job
well below that expected. (0, 1)
. Deterioration from premorbid level of functioning:
Inter-episode . . . .
. Patient does not regain his premorbid social, Chapter 3: Treated as
88 remission . . .. .
occupational or emotional functioning after an EFA/CFA Ordinal
(subsyndromal) . .
acute episode of illness. (0, 1)
Course of disorder: 1 = Single episode with good
recovery, 2 = Multiple episodes with good recovery
Course of . . . .
90 disorder between, 3 = Multiple episodes with partial Chapter 3: Treated as
. recovery between, 4 = Continuous chronic illness, EFA/CFA Ordinal
(chronic) . .. . .
5 = Continuous chronic illness with deterioration.
(1,2,3,4,5)
Part II: Key Variables for Transdiagnostic & Predictive Analyses (Chapters 3 & 4)
hapter 4: ti
The age at which the proband first met criteria for a Chap .e i Con 1nu.0us
4 Age of Onset . . . . . Regression/RF (Age in
manic, mixed or major depressive episode.
Models years)
. . . Chapter 4: Binarised
. feel .
36 Irritable mood A mood state f)}flei‘:i:::il]zited ](Dg alpgvaswe eeling Regression/RF (0=No,
-5 Models 1=Yes)
Recurrent thoughts of death (not just fear of dying), Binarised
43 Suicidal recurrent suicidal ideation without a specific plan, | Chapter 3: Post- (0=No
thoughts or a suicide attempt or a specific plan for hoc Regressions 1:Yes;
committing suicide. (0, 1)
th t . . Binarised
20 0 e;ss:: /ance A lifetime diagnosis of abuse of or dependence on | Chapter 3: Post- (1(1)13\11506
dependence any other specified substance. (0, 1) hoc Regressions 1:Yes;
Impairment/ 0 = No impairment, 1 = Subjective impairment, 2 =
. . . . L . Treated as
87 incapacity Impairment in major life role, 3 = No function at all | Chapter 3: EFA Ordinal
during disorder in major life role.
A derived variable based on the OPCRIT Chapters 3 & 4: Binarised
N/A Rapid Cycling assessment: “Four or more mood disturbances in Regressions/RF (0=No,
one year?” Models 1=Yes)
Psvehosi A composite variable defined by the presence of Chapter 4: Binarised
N/A ((s)ycerZ;)S any OPCRIT item related to delusions or Regression/RF (0=No,
v hallucinations. Models 1=Yes)

Statistical Learning and Predictive Models for Chapter 4

To extend the predictive analyses beyond standard regression and account for non-linear
relationships and interactions between predictors, Random Forest (RF) models were employed,
implemented via the cforest function in the caret package in R. As detailed in Chapter 4, these
models were used to evaluate the predictive performance of the SCZ3-PRS alone and in
combination with other clinical variables for several BD1 subphenotypes. The key OPCRIT-
derived variables used in these analyses are defined in Table 17 above.

The RF models utilized a conditional inference framework (cforest) [88] to reduce the risk of
overfitting in data with correlated predictors. Model performance for binary outcomes (e.g.,
psychosis) was assessed using 10-fold cross-validation to calculate the Area Under the Curve
(AUC) of the Receiver Operating Characteristic (ROC). For continuous outcomes (e.g., age of
onset), performance was assessed with Root Mean Squared Error (RMSE) and R-squared (R2).
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The relative importance of each predictor in the models was determined using the Mean
Decrease Accuracy (MDA) score. For comparison, penalized regression models (elastic net)
were also used to assess variable importance using cv.glmnet [89] in R.

To formally compare the predictive performance of different models (e.g., a model with clinical
variables versus a model with both clinical and genetic variables), pairwise Bonferroni-
corrected one-sample t-tests were performed on the performance metrics (AUC or R2)
generated during cross-validation. For interpretation, a model was considered to have clinical
utility if the AUC and Positive Predictive Value (PPV) reached at least .8. An AUC value
between .71 and .79 was considered moderately discriminative, while an AUC > .79 was
considered strongly discriminative.

The statistical significance of each predictor’s importance score (Mean Decrease Accuracy,
MDA) was determined using a permuted, cross-validated P-value implemented in the Vita
[90] R package. To account for potential bias from correlated predictors, conditional
permutation importance (CPI)[ was calculated using the Permimp [91] R package to establish
the final variable importance rankings.

To ensure the reliability of the prediction of BDI traits and to handle correlated clinical
variables, this thesis used a non-parametric algorithm in addition to standard regressions. This
approach can detect non-linear relationships and was implemented using penalized ‘elastic net’
modelling and Conditional Random Forest (‘cforest’) functions within the ‘caret’ R package,
which uses a conditional inference framework to reduce the risk of overfitting.

Multivariate Regression Models: For the elastic net penalty regression models, individuals with
BD1 were randomly allocated to training, validation, or testing sets (70%:15%:15%). Ten-fold
cross-validations were implemented to further avoid overfitting, with classification statistics
calculated in the ‘cvAUC’ [92] package in R. These models served as a robustness check for
comparison with the Random Forest models’ variable importance rankings.

Non-parametric Random Forest Models: For the RF models, individuals with BD1 were also
randomly allocated to training, validation, and testing sets (70%:15%:15%). RF predictions
rely on bootstrapping 1000 decision trees, and tuning parameters (mtry = 2, 4, 7, 10) were used
to optimize the models. Predictive performance for binary outcomes was determined using ten-
fold cross-validated models to calculate the Receiver Operating Characteristic (ROC) curve,
Area-Under-the-Curve (AUC), sensitivity, specificity, and accuracy. For continuous outcomes,
accuracy was assessed with Mean Absolute Error (MAE) and the more stringent Root Mean
Squared Error (RMSE) along with R-squared (R2).

Ranking Variable Importance: The importance of variables in predicting psychosis and its
subtypes was compared between the penalized elastic net regression and the conditional
random forest models. For regressions, the effect size is reported as the log odds ratio
(LogOR). For random forest, variables are ranked based on their Mean Decrease Accuracy
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(MDA) score; higher scores represent more accuracy loss when the variable is excluded from
the model.

2.11 Derivation of Genetic-Clinical Dimensions from Subphenotypes

To provide an empirical framework for the clinical heterogeneity of bipolar disorder, a multi-
step analysis was performed in Chapter 5. The primary goal was to identify underlying latent
factors that could group the subphenotypes into broader, more genetically coherent dimensions.

To empirically deconstruct the clinical heterogeneity of bipolar disorder for the analysis in
Chapter 5, a multi-stage factor analysis was performed on 11 clinical subphenotypes in a
sample of 18,800 BD cases. The suitability of the data for this analysis was first confirmed
with the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and a significant
Bartlett’s test of sphericity. Initial exploratory techniques included Principal Component
Analysis (PCA) and Factor Analysis of Mixed Data (FAMD), which was implemented in
the FactoMineR [93] R package to visualize the main components. Additionally, hierarchical
clusters were investigated using the ’iclust’ algorithm from the psych package, where
subphenotypes were merged into composite scales based on an increase in coefficients alpha
and beta. A parallel analysis, conducted using the psych package in R, provided statistical
support for a four-factor model, which was then formally tested and validated using
Confirmatory Factor Analysis (CFA) in the lavaan package. The final four-factor clinical
model was selected after demonstrating a superior fit compared to more parsimonious models
with fewer factors. Finally, to validate the clinical structure with genetic data, a separate
Principal Component Analysis (PCA) was performed on the genome-wide significant MTAG
loci. This analysis was conducted using the FactoMineR package for computation and
the factoextra package for visualization. The statistical reliability of the resulting genetic-
clinical dimensions was then confirmed with a one-way ANOVA using independent results
from the LAV A analyses.

To assess for phenotypic heterogeneity before pooling data for the meta-analyses, generalized
linear mixed-effects models (GLMMs) were performed with geographic region included as a
random effect. The random effect was consistently non-significant across the models,
confirming a high degree of phenotypic homogeneity across recruitment sites and supporting
the validity of the combined analysis.
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Table 18 Additional OPCRIT Variables for Analyses in Chapters 3 & 4

Use in Thesis
PCRIT Variabl .. - . Analytical
OPC ariable Full OPCRIT Definition & Original Coding (Chapter & na y red
Item No. Name . Coding
Analysis)
The source of the patient data —
1 = Hospital case notes (charts).
2 = Structured interview with subject. Chapters 3 & 4:
| Source of | 3 = Prepared abstract. R ions/RF Nominal
rating 4 = Interview with informant. cgressions omina
5 = Combined sources including structured interview. Models
6 = Combined sources not including structured
interview
. o Chapter 4: Conti
Age of The age at which the proband first met criteria for a P .e ' on mu.ous
4 .. . . . Regression/RF (Age in
Onset manic, mixed or major depressive episode.
Models years)
. . . Chapter 4: Binarised
Irritable A mood state characterized by a pervasive feeling of P .e ' Hnarise
36 mood irritability. (0, 1, 2) Regression/RF (0=No,
ty- (0. 1. Models 1=Yes)
. . Chapters 3 & 4: Binarised
Rapid A derived variable based on the OPCRIT assessment: P er.s Hnarise
NA Cyclin “Four or more mood disturbances in one year?” Regressions/RF (0=No,
yelng year? Models 1=Yes)
. . . Chapter 4: Binarised
Psychosis A composite variable defined by the presence of any ap .e i mimse
N/A . . L. Regression/RF (0=No,
(Overall) OPCRIT item related to delusions or hallucinations.
Models 1=Yes)
Congruent/ A composite variable indicating psychotic symptoms Chapter 4: Binarised
N/A Incongruent consistent/inconsistent with the patient’s mood state. Regression/RF (0=No,
Psychosis (Available for RO cohort only). Models 1=Yes)

All statistical analyses were carried out in R version 4.4.2 [3] on data stored securely on
computer clusters supported by University College London (London, UK).

111




3 Bipolar Disorder Dimensionality

A preprint version of the research in this chapter is available on medRxiv at
doi: https://doi.org/10.1101/2025.05.17.25327825

3.1 Abstract

Background: Bipolar disorder (BD) factor models offer limited dimensional understanding
due to incomplete integration of chronic deficits, long-term outcomes, and transdiagnostic
genetics, thus restricting personalised interventions. This study aimed to provide a holistic
understanding of BD psychopathology, overcoming this limitation.

Aims: In this study I aimed to develop and validate a novel dimensional model of bipolar
disorder (BD) that integrates premorbid factors, and to investigate the transdiagnostic genetic
architecture of its dimensions using polygenic risk scores. The study hypothesized that a
distinct dimension of bipolar disorder exists that links premorbid factors to a poor long-term
illness course. Furthermore, it was predicted that this adverse trajectory would be genetically
associated with a higher risk for ADHD and anxiety.

Methods: Exploratory Factor Analysis of 77 OPCRIT items revealed four psychopathological
dimensions, and Confirmatory Factor Analysis validated a 20-item, four-factor BD model.
Polygenic Risk Scores for five relevant disorders were calculated, and Structural Equation
Modelling analysed the genetic contributions to this dimensional model. The study applied
Inverse Probability Weighting to address biases in a sample of 4992 participants.

Results: Confirmatory Factor Analysis revealed a novel Adverse Chronic Trajectory (ACT)
dimension, characterised by the co-occurrence of premorbid deficits, reduced inter-episode
remission and poorer long-term outcomes in individuals with BD. Structural Equation
Modelling further showed distinct patterns of genetic liability: BD PRS for
mania, Schizophrenia (SCZ) PRS for psychosis, and Major Depressive Disorder (MDD)
PRS for depression. Notably, the ACT dimension exhibited a positive association
with Attention-Deficit/Hyperactivity Disorder (ADHD) and anxiety PRSs, and an inverse
relationship with BD PRS.

Conclusions: This study offers a novel and clinically relevant dimensional model of BD by
identifying the ACT dimension, which uniquely integrates crucial premorbid factors and
outcomes. The identified direct genetic link between ADHD and anxiety with ACT (a
trajectory associated with poorer BD outcomes) provides important new insight into a
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challenging illness course. This potentially enables earlier identification and facilitates targeted
interventions to reduce risk for a chronic outcome and overall quality of life in BD.

3.2 Introduction
Limitations of Categorical Diagnosis

Bipolar disorder (BD) shows diverse outcomes influenced by genetics beyond current
subtyping (BD1, BD2). Traditional classifications often overlook the critical impact of
premorbid factors on long-term outcomes. While course specifiers aim to improve treatment
alignment [1-2], this study proposes a novel dimensional approach for a more nuanced
understanding of BDs inherent heterogeneity beyond categorical diagnoses.

Bipolar Disorder: A Symptom Continuum

Many BD patients experience continuous symptoms beyond discrete episodes: cognitive
deficits in remission are reported, with prevalence as high as 70% [3-5]; 20-50% experience
inter-episodic symptoms [6], highlighting limitations of episodic models. Even during
euthymia, executive dysfunction and anxiety persist, indicating vulnerability [7-8]. Personality
traits also influence BDs onset, progression, and course [9].

Dimensional Frameworks in Bipolar Disorder

Dimensional approaches dissect BDs heterogeneity, allowing researchers to identify
potentially more genetically similar subgroups based on specific symptom profiles.
Acknowledging this heterogeneity, research increasingly focuses on genetic differences within
more homogeneous subgroups [10] to understand genetic contributions to diverse
presentations. While specific BD course specifiers show familiality [11], and genetic liabilities
for subphenotypes are being identified, single regression models can complicate interpretation
[12-24]. A dimensional framework offers a powerful alternative by examining
psychopathology along continuous axes, enabling nuanced analysis of specifier interrelations
and combined genetic liabilities for a holistic understanding of BD heterogeneity.

Impact of Premorbid Factors on Bipolar Disorder

Cognitive and functional deficits, not fully recognised specifiers [1, 25], contribute to BD
variability and impair quality of life, even during mood stability [4, 26]. These deficits exist on
a spectrum, negatively impacting relationships and productivity, often leading to social
withdrawal [27] and affecting 30-60% of adults with BD [28]. Early onset of these deficits
links to worse outcomes including anxiety, substance use, and suicidality, with increased
childhood risk [29-30]. Recognising genetic predisposition could potentially reduce diagnostic
delays [31] and suicide rates in BD [32]. Examining these deficits within a broader
psychopathological spectrum may also clarify connections to other disorders. While research
on psychosis [12] explored premorbid risk factors, their specific impact on long-term BD
outcomes remains less understood.
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Genetic Contributions and Polygenic Risk Scores

Genetic factors substantially contribute to BD comorbidity [33], with approximately 35-65%
of individuals with BD meeting criteria for another psychiatric condition [34], indicating
complex psychopathology interplay. This high comorbidity suggests single-disorder analyses
might miss critical genetic factors contributing to this broader spectrum of co-occurring
conditions. Symptoms often begin early and persist, and may be worsened by environmental
factors [35-39].

Polygenic risk scores (PRSs) are valuable tools for investigating the genetic basis of BD
heterogeneity and comorbidities [40-41]. Analysing symptom clusters may reveal stronger
genetic associations than isolated disorder analyses. For example, higher SCZ PRS is linked to
mood-incongruent psychotic symptoms and earlier BD onset [16, 22]. Higher ADHD and
anxiety risk correlates with rapid cycling [19, 42]. ADHD increases multimorbidity risk,
worsening symptom severity and functional impairment [44-45]. Polygenic ADHD burden has
been linked to earlier BD onset and lithium resistance, while lithium response can be influenced
by family history and absence of anxiety or rapid cycling [18, 46-50]. Factor analysis can
simplify complex relationships between symptoms and disorders, revealing underlying factors
and their genetic contributions within a spectrum framework.

3.3 Aims
Introducing Adverse Chronic Trajectory (ACT)

This study aimed to develop a novel dimensional model of bipolar disorder by integrating
premorbid factors with other clinical symptoms. Building on prior BD modelling using
OPCRIT items, this study introduces a novel four-factor model. By combining OPCRIT items
and PRS, I identified an Adverse Chronic Trajectory (ACT) dimension, demonstrating
correlations between premorbid deficits and adverse BD outcomes, with shared genetic
burdens for ADHD and anxiety prominently associated with APT, thus emphasising its role
and genetic links for advancing BD understanding, classification, and intervention.

3.4 Methods

The underlying structure of 77 OPCRIT [4] items was investigated using Exploratory and
Confirmatory Factor Analysis. The genetic architecture of the resulting dimensions was then
explored by integrating five transdiagnostic Polygenic Risk Scores into a Structural Equation
Model (MIMIC) [72]. Central to this chapter’s investigation of long-term outcomes were two
key OPCRIT variables used to define the illness trajectory. The “Reduced inter-episode
remission” (item 88) was coded as a binary measure to capture whether a patient returned to
their premorbid baseline after an acute episode. To complement this, the “Course of disorder”

114



(item 90) was treated as an ordinal variable, allowing us to model the full spectrum of outcomes
from complete recovery to a chronic, deteriorating course (for a full description, see Table 23).

A complete description of the participant cohorts, the OPCRIT instrument, factor
analysis procedures, and PRS calculations is provided in Methods (Chapter 2).

3.5 Results
(1) Clinical Characteristics

77 clinical symptoms were examined and five psychiatric disorder PRS estimated in 2590
individuals with BD and 2402 healthy controls. The overall sample consisted of 61% females
and 39% males, with no sex distribution differences across BD subtypes. A difference in age
of onset within cases was found across BD subtypes, specifically between SZA and BD2
(Chapter 2, Table 2).

(ii) EFA

Initially 77 clinical symptoms were evaluated in a calibration sample of 1554 BD patients
(60%). Seventy-six symptoms loaded (P < .05) across four factors; Family history of
schizophrenia (OPCRIT 13) was the exception. Symptoms exceeding .4 were visualised
(Figure 14, Table 22). A four-factor EFA model fit best (> = 304, RMSEA = .033 [90%
Confidence Intervals [CI] .024—.037], CFI1 = .989, and TLI = .986). Four factors were retained
based on the lower RMSEA, parallel analysis, and scree plot (see Table 19, Figures 12-13
below).
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3.5.1.1 Exploratory factor analysis (EFA) models fit indices

Table 19 Exploratory factor analysis (EFA) models fit indices

Model Parameters Chi.square RMSEA
1-factor 77.00 877.00 .05
2-factor 153.00 678.00 .04
3-factor 318.00 552.00 .04
4-factor 304.00 462.00 .03

Note. The data was extracted from the 1-factor to 4-factor EFA models using BD clinical symptoms.
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Figure 12 Parallel Analyses for exploratory factor analysis.
This figure illustrates the results of the parallel analysis conducted to determine the number of factors

to retain in the exploratory factor analysis (EFA). The plot displays the eigenvalues obtained from the
actual data (blue line) compared to the eigenvalues from random, uncorrelated data (red line). The
intersection of the eigenvalues or the point where the real data eigenvalues drop below the random data
eigenvalues typically suggests the appropriate number of underlying factors. In this specific analysis,
the real data eigenvalues remain above the simulated data eigenvalues for four factors, suggesting that
a four-factor model is appropriate.
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Figure 13 Scree plot for exploratory factor analysis.

This figure illustrates the scree plot, which is a graph of the eigenvalues of the factors plotted against
the factor number. The shape of the plot helps to determine the number of factors to retain in EFA. The
“elbow” or point of inflection in the scree plot typically indicates where the amount of variance
explained by subsequent factors starts to diminish, suggesting an optimal number of factors before the
“scree” begins. In this scree plot, the elbow is observed at the fourth factor, suggesting the retention of
four factors is appropriate.

Table 19 presents the fit indices for Exploratory Factor Analysis (EFA) models with one to
four factors, tested on a calibration subsample of bipolar disorder participants (N=1554). The
fit indices included are Chi-Square, Root Mean Square Error of Approximation (RMSEA) with
its 90% Confidence Intervals (CI), Comparative Fit Index (CFI), and Tucker-Lewis Index
(TLI). These indices were used to evaluate the model fit for each number of factors to determine
the optimal factor structure for the OPCRIT data. Lower RMSEA values and higher CFI and
TLI values (typically above .90-.95) generally indicate a better model fit. A four-factor EFA
model fit best (y2=304, RMSEA = .033 [90% Confidence Intervals [CI] .024—.037], CFI =
.989, and TLI = .986).
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Loadings for the EFA 4-factor model
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Figure 14 Exploratory factor analysis of 77 OPCRIT for Chapter 3.

This figure visualises the standardised factor loadings (lambda values) and their 90% confidence
intervals (CIs) for 77 OPCRIT items derived from Exploratory Factor Analysis. Each item is
represented by a circle on the x-axis according to its factor loading. Circles are color-coded to indicate
loadings above (black, > .4) or below (grey, <.4) a threshold of .4. The plot reveals four distinct factors,
labelled as: Factor 1 - Depression, Factor 2 - Mania, Factor 3 - Adverse Chronic Trajectory (ACT), and
Factor 4 - Psychosis.

(iii) CFA

Items were identified with a median threshold of .6 for EFA factor loadings to each of four
dimensions, to ensure a parsimonious CFA model with literature-relevant items. Twenty core
symptoms formed a four-factor model validated by CFA. The 4-factor CFA model using 20
clinical symptoms indicated a good fit (¥* = 505.88, RMSEA = .03 [90% CI .03—-.04], CFI1 =
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.99, TLI = .99; Figure 15 below). Factors, defined by highest EFA loadings, showed robust
associations (P < .05) with all 20 symptoms. CFA generated a four-factor model with
interrelated mania, psychosis, depression, and ACT symptom dimensions. Lower covariances
between dimensions compared to dimension items indicated distinct structures with minimal
overlap.

Model Chi.sq RMSEA ClL.lower ClL.upper CFI TLI

4-factor 505.88 .03 0.03 0.04 .99 .99

Note. The data was extracted from the 4-factor CFA model using 20 clinical symptoms.

/V Racing thoughts
ggg; __——r Elevated mood
0.889 —» Excess activity
ggz?/ B— Reduced need for sleep
T Pressured speech
__— Thought withdrawal
8233 > Thought broadcast
0629 —» Thought insertion
% 0613 — Persecutory/jealous delusions
oo10 T Delusions of influence
/ Loss of pleasure
32?; » Loss of; energy/tiredness
Depression 0765 > IT‘ Excessive self-reproach
% 0758 ——mno0 Slowed activity
0714 T Dysphoria
-0.165
/V Premorbid personality disorder
gZé > Course of disorder (chronic)
0:747 _— Reduced inter-episode remission
% 0710 —0nuy Premorbid poor social adjustment
0.662 T Premorbid poor work adjustment

Figure 15 Confirmatory four-factor analysis (CFA) and fit indices.

This figure displays the path diagram for the four-factor Confirmatory Factor Analysis (CFA) model.
The circles represent the four latent symptom dimensions: Mania, Psychosis, Depression, and Adverse
Chronic Trajectory (ACT). Arrows on the the left hand side represent covariances between mania and
the other dimensions.
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The squares indicate the 20 core OPCRIT items that load onto these dimensions. The square boxes
illustrate the factor loadings of each item onto its respective dimension (circle), while arrows on the
right hand side also show the covariances between the latent dimensions. The model demonstrated good
fit to the data (}2=505.88, RMSEA = .03 [90% CI .03—.04], CFI = .99, TLI = .99).

3.5.1.2 Confirmatory factor analysis (CFA) loadings for 20 core OPCRIT items

Table 20 Confirmatory factor analysis (CFA) loadings for 20 core OPCRIT items

Predictor Target Item Number Cizﬁfgt/
‘ Mania H Racing thoughts H 27 H 0.941 ‘
| Mania | Elevatedmood || 68 [ 0.905 |
‘ Mania H Excess activity H 53 H 0.889 ‘
‘ Mania H Reduced need for sleep H 37 H 0.822 ‘
‘ Mania H Pressured speech H 32 H 0.807 ‘
| Psychosis | Thought withdrawal || 47 [ 0.692 |
‘ Psychosis H Thought broadcast H 72 H 0.677 ‘
| Psychosis | Thought insertion || 70 [ 0.629 |
Psychosis Perse;;t’ggi‘:ak’us 58 0.613
‘ Psychosis H Delusions of influence H 45 H 0.610 ‘
‘ Depression H Loss of pleasure H 36 H 0.867 ‘
‘ Depression H Loss of energy/tiredness H 38 H 0.812 ‘
‘ Depression H Excessive self-reproach H 19 H 0.765 ‘
‘ Depression H Slowed activity H 11 H 0.758 ‘
‘ Depression ‘ ‘ Dysphoria ‘ ‘ 60 H 0.714 ‘
Chronicity Prem"ré’iijofj:"nahty 2 0.771
Chronicity Cour(s:h‘r’iiij)"rder 51 0.756
Chronicity Reduced inter-cpisode 42 0.747
remission
Chronicity Premiﬂﬁ&’gi"dal 15 0.710
Chronicity Premz;?ié’;:;twork 24 0.662

This table presents the standardised factor loadings of the 20 core OPCRIT items on their respective
latent dimensions (Mania, Psychosis, Depression, and Adverse Chronic Trajectory) derived from the
confirmatory factor analysis. Significance levels for the adjusted Bonferroni P-values are also indicated
to show the strength of the relationship between each item and its assigned dimension. This table
supports the validity and internal consistency of the four-factor model. Factors, defined by highest EFA
loadings, all showed robust associations (P <.05) with their respective OPRCIT items
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(iv) SEM Multiple Indicator Multiple Cause (MIMIC) model

The final MIMIC model indicated distinct genetic liabilities across the four clinical dimensions
(see Figure 16, Table 21 below). The statistical significance of the 20 path coefficients from
the five PRS to the four latent dimensions was assessed against a Bonferroni-corrected alpha
threshold of P<0.0025 (0.05 / 20 tests) to account for multiple testing. The mania dimension,
strongest associated with BD PRS, associated positively with psychosis and depression, and
inversely with ACT symptoms which correlated with worse outcomes. The PRS correlated
strongest with their symptom dimensions; SCZ with psychosis, BD with mania, MDD with
depression, and ADHD and anxiety with ACT. The MIMIC model fit acceptably (x> = 348.45,
RMSEA = .04 [90% CI .04—.04], CFI =.92, TLI = 0.90) but with less reliability than the CFA,
likely due to the additional complexity.

o [ o
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Thought withdrawal
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Figure 16 Structural equation (MIMIC) models (SEM) fit indices.

This figure illustrates the results of the Structural Equation Model (SEM) using the Multiple Indicator
Multiple Cause (MIMIC) approach. Rectangles on the left represent the five Polygenic Risk Scores
(PRSs) used as predictors: Bipolar Disorder (BD), Schizophrenia (SCZ), Major Depressive Disorder
(MDD), ADHD, and Anxiety (ANX). The central circles represent the four latent symptom dimensions
derived from the factor analysis: Mania, Psychosis, Depression, and the Adverse Chronic Trajectory
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(ACT). Arrows originating from the PRSs indicate the path coefficients predicting each latent
dimension; the specific values for these paths are detailed in Table 21. Arrows pointing from the latent
dimensions to the boxes on the right represent the factor loadings on the 20 core OPCRIT items.

3.5.1.3 Estimates for SEM (MIMIC) of 20 OPCRIT items and five genetic covariates

Table 21 Estimates for SEM (MIMIC) of 20 OPCRIT items and five genetic covariates

Dimension PRS Estimate Odzl(s)}lz)a tio Std.Error|| Z-value |[PBonferroni||/PBonf.signif]
[Depression]| ANX || 0030 | 1030 | 0028 || 1071 | o041 | o+ |
Depression| BD || 0.014 || 1014 | 0030 | 0467 | 0043 | o+ |
[Depression|| ADHD || 0.028 | 1028 | 0029 | 0966 | 0333 | ns |
[Depression| MDD || 0.080 || 1083 | 0029 | 2759 | 0007 | = |
Depression]| scz || 0.027 | 1027 | 0028 || 0964 | 00189 | o+ |
| Mania | ANX || 0035 || 0966 | 0027 | -1296 | 0046 || o+ |
| Mania | BD || 0151 || 1163 | 0030 | 5033 | 544x107 || wexx |
| Mania | ADHD || -0.043 || 0958 | 0028 | -1.536 | o013 | x|
| Mania || MDD |[ -0050 || 0951 | 0028 || -1.786 | 0.0086 | =+ |
| Mania | scz || 0054 || 1055 | 0028 | 1929 | 00035 || e+ |
| Psychosis | ANX || 0023 || 0977 | 0030 | 0767 | 0431 || s |
|Psychosis | BD || 0.060 || 1062 | 0031 | 1935 | 0005 | = |
| Psychosis || ADHD || 0.053 | 1054 | 0030 || 1767 | 008 | ns |
| Psychosis | MDD || -0.031 || 0969 || 0030 | -1.033 | 0306 || ns |
| Psychosis | scz || 0097 || 1102 || 0029 | 3345 | 3.0x10° || werx |
|Chronicity| ANX || 0043 || 1044 | 0033 | 1303 | 0003 | = |
Chronicity| BD || -0.090 || 0914 | 0034 | 2647 | 8.0x10° || wexx |
|Chronicity]| ADHD || 0.071 || 1074 | 0033 || 2052 | 3.0x10 || e |
|Chronicity| MDD || 0.050 || 1051 | 0033 | 1515 | 0003 | e |
Chronicity] scz || 0036 | 1037 | 0032 || 1125 | o026 | o+ |

This table displays the results of the Structural Equation Model (SEM) using the Multiple Indicator
Multiple Cause (MIMIC) approach. It shows the path coefficients indicating the strength and direction
of the relationships between the five genetic covariates (PRSs for BD, SCZ, MDD, ADHD, and ANX)
and both the latent symptom dimensions and the individual 20 core OPCRIT items. Significance levels
for the adjusted Bonferroni P-values are also included. This table illustrates the distinct genetic
liabilities associated with each of the identified symptom dimensions. *(Significance levels of adjusted
Bonferroni P-value, <.0001 **** < 001 *** <01 ** <.05).

122



Chronicity
|
Premorbid poor social adjustment 4 —f—: —— —————
Premorbid personality disorder 4 = e
Premorbid poor work adjustment 4 ——i— —————
Reduced inter-episode remission 4 o— —_——
Course of disorder (chronic) 4 e P —
Depression
Loss of pleasure 4 N —_—
Loss of energy/tiredness - I —_—— Significant (p < 0.05)
Excessive self-reproach - _I.._ —— e TRUE
Slowed activity - ie —o— o FALSE
Dysphoria A .I_._ ——
e Predicting Dimension
Racing thoughts 4 = Psychosis
Elevated mood A _—;el_— Mania
Excess activity 1 ——a:':._ *  Depression
Reduced need for sleep A _—;ﬁ_— ®  Chronicity
Pressured speech 4 _—;g:r
Psychosis
Thought withdrawal 4 —
Thought insertion ————
Persecutory/jealous delusions A —7;_
Delusions of influence q —_g—=0—F
Thought broadcast - —— ——3
07 10 2.0 30 40
Odds Ratio (OR)

Figure 17 Core items associations using individuals’ leave-one-out factor scores.

This forest plot displays the odds ratios (ORs) and 95% confidence intervals from a “leave-one-out”
validation analysis. The y-axis lists the 20 core clinical symptoms. The x-axis represents the OR for
reporting a symptom, comparing individuals in the top 10% of a given factor score distribution to the
remaining 90%. Each point is the result of a separate logistic regression, where a symptom was
predicted by the factor scores derived from a model in which that symptom was excluded. The greyscale
colour of the points denotes the predicting factor dimension. A solid point indicates a statistically
significant association after Bonferroni correction, while a hollow point is not significant.
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Figure 18 Core predictions using five transdiagnostic individual-level PRS scores.

This forest plot displays the odds ratios (ORs) from separate logistic regression analyses testing the
direct association between transdiagnostic genetic risk and individual symptoms. The y-axis lists the 20
core clinical symptoms. The x-axis represents the OR for reporting a symptom, comparing individuals
in the top 10% of a specific PRS distribution to the remaining 90%. Each point represents a single model
where one symptom was predicted by one PRS (e.g., “Racing thoughts” predicted by BD PRS).
The greyscale colour of the points denotes the predicting PRS. A solid point indicates a statistically
significant association after Bonferroni correction, while a hollow point is not significant.
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(v) Sensitivity analyses

For the sensitivity analyses predicting the 20 core clinical symptoms from the five individual
PRS scores, a Bonferroni correction was also applied within each set of tests. Specifically, the
significance threshold was adjusted for the 20 symptoms tested against each PRS (alpha = 0.05
/20 =0.0025) to control for the family-wise error rate.

Individual-level factor (dimension) scores

To analyse each of the 20 core items independent contribution to the CFA model, regression
analyses was performed using individual-level factor scores. Factor scores were estimated
using leave-one-out CFA analyses. The median RMSEA remained relatively stable within the
full CFA models confidence intervals, indicating a robust model. The 20 items were each
predicted by one of the individual-level factor scores for each dimension. Participants in the
top 10% of scores were more likely to report the symptom compared to those in the lower 90%.
Their factor score for the symptom-related dimension was a better predictor than scores from
other dimensions. The odds ratio (OR) of reporting symptoms was increased for participants
in the top 10% of factor scores. The specificity of these factor scores is illustrated in Figure 17
and Table 24. For example, when predicting the symptom ‘Racing thoughts,” the Mania factor
score (shown as a dark grey point) had a significantly higher odds ratio (OR > 2.5) than the
scores for the Psychosis, Depression, or Chronicity dimensions (all with ORs near 1.0). This
pattern, consistent across the 20 core items, confirms that each factor score is the most potent
predictor of its own constituent symptoms.

Individuals PRS Scores

To ensure the five genetic contributions at the global SEM level held for each dimension item,
I performed regression analyses using each item and individual-level PRS scores in turn.
Participants with the top 10% compared to the lower 90% of scores for the respective
dimension, were associated with a higher risk (OR) for dimension-related symptoms.
Separation of global effects revealed a mixture of effect directions related to ANX and SCZ
PRS for the ACT dimensions (Figure 18 and Table 25).

(vi) Post hoc Regression Analyses

Rapid cycling (RC), considered a chronic form of BD [42-43], positively associated with the
ACT dimension in EFA and inversely with mania. RC also showed a positive association with
premorbid social adjustment (OPCRIT 10) (OR 1.185, P= 1.04 x 107'°) and personality
disorders (OR 1.391, P = 1.288 x 107'°). Premorbid personality disorder was associated with
substance abuse (OPCRIT 80) (OR 1.160, P =4.98 x 107'°) and suicidal ideation (OPCRIT 43)
(OR 1.140, P =1.28 x 107'°). Both personality disorder and RC were associated with a higher
ADHD PRS (1.325 and OR 1.209, respectively, both P <5 x 107°) and an earlier onset of BD
(F=-3.782,P=6.46 x 10° and FF=-3.026, P =4.821 x 107°, respectively).
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3.6 Discussion
A Novel Four-Factor Model and the Adverse Chronic Trajectory Dimension

The current research specifically addresses an under-examined association between premorbid
deficits and a chronic BD course in genetic studies. The fourth dimension, which was termed
the Adverse Chronic Trajectory’ (ACT), empirically captures a clinically crucial aspect of
bipolar disorder that goes beyond acute mood symptoms. The core items loading onto this
factor, poor premorbid work and social adjustment, personality disorder, and a chronic illness
course with reduced inter-episode remission, may represent the long-term, cumulative burden
of the illness. This dimension aligns with extensive research suggesting that a substantial
portion of the disability in BD may stem not just from acute episodes, but from a persistent
course characterized by enduring behavioural deficits [27].

Conceptually, the dimensions of Mania, Depression, and Psychosis are well-established
clinical constructs that form the core of bipolar disorder psychopathology and have been
identified in previous factor-analytic studies [21]. The current Chapter 3 model was designed
to first confirm their foundational three-factor structure within the current independent dataset.
Empirically, the decision to retain four factors was strongly supported by our statistical
analyses as well as their supplementary materials. Both the current parallel analysis and scree
plot tests clearly indicated that a four-factor solution provided the optimal fit for the data,
explaining significantly more variance than a three-factor model without overfitting. The fourth
dimension, termed the ‘Adverse Chronic Trajectory’ (ACT), emerged directly from the
exploratory factor analysis as a distinct and coherent construct, and was confirmed in the
confirmatory stage.

3.6.1 ACT Dimension and Long-Term Outcomes

One interpretation is that the ACT dimension represents a neurodevelopmental factor within
bipolar disorder. The items loading onto this factor, poor premorbid social and occupational
adjustment, personality difficulties, and a chronic course, are consistent with an illness
trajectory rooted in early developmental processes. This aligns with a neurodevelopmental
model where early-life abnormalities may contribute to long-term functional deficits (Chapter
1[82]). It could identify a subgroup of patients whose illness is defined not just by mood
episodes, but by a persistent trajectory of functional decline rooted in cognitive and behavioural
deficits. This distinction is critical, as it suggests that the genetic liabilities contributing to the
ACT factor may be linked to the mechanisms that govern long-term illness progression and
cognitive outcomes in bipolar disorder, rather than just the risk for acute mood states. However,
a key limitation of this interpretation is that the OPCRIT checklist, while detailed, was not
designed to capture the full spectrum of neurodevelopmental traits, such as those associated
with Autism Spectrum Disorder (ASD). Therefore, while the ACT factor points towards a
developmental trajectory, its characterization is constrained by the scope of the measurement
tool used. Similarly, the personality disorder item in ACT also lacks specificity.

126



ACT Links To Cognitive and Behavioural Deficits

The elements of the ACT factor are strongly linked in the literature to underlying cognitive and
behavioural impairments. Cognitive impairments, affecting memory, attention, and executive
function, is considered a central feature of bipolar disorder. A chronic course with
subsyndromal symptoms, a core feature of the ACT, is associated with these persistent
cognitive deficits, which are observed even during stable, euthymic phases of the illness
(Chapter 1[46]). Furthermore, a greater number of mood episodes has been longitudinally
associated with a greater decline in cognitive measures, including working memory (Chapter
I[111]). These cognitive deficits may manifest behaviourally as difficulty maintaining
employment, social withdrawal, and an overall failure to return to the previous level of
functioning, thereby negatively impacting relationships and productivity [27].

ACT Genetic Links To ADHD and Anxiety

This model uniquely links a genetically influenced ACT dimension, connecting premorbid
deficits and adverse long-term outcomes to genetic risk for ADHD and anxiety, highlighting a
distinct pathway to illness severity and their contribution to social functioning, work,
personality, and a less stable BD course [39]. Identifying this ACT dimension and its genetic
links offers a new understanding of challenges beyond BD mood episodes, suggesting a
biological basis emphasising transdiagnostic risks in BDs spectrum and variable outcomes.

The finding that a higher ADHD PRS is associated with a more adverse chronic trajectory
(ACT) in bipolar disorder aligns with evidence from Agnew-Blais et al. (2021) [73], who
demonstrated that higher ADHD genetic risk is associated with a more persistent course of
ADHD into young adulthood. Supporting this, Duffy (2012) [74] also suggests that childhood
ADHD may be linked to a subtype of BD with a more severe course and poorer treatment
response [48].

Parental BD elevates child ADHD risk [75] and early chronic challenges. These factors and
inherited genetic predisposition may heighten suicidality risk [76].

The ACT dimension and its genetic links provide a new framework for understanding diverse
BD clinical presentations. This highlights the need for integrated assessment and treatment,
particularly when addressing co-occurring ADHD and anxiety to improve long-term chronic
outcomes. For BD individuals with chronic/cognitive deficits, clinicians could tailor integrated
treatment plans for optimal outcomes [77].

Dimensional Assessment and Early Intervention Implications

These findings also support a dimensional assessment in BD. Evaluating an individuals chronic
trajectory and genetic risk for associated conditions could inform more comprehensive,
personalised treatment plans, suggesting earlier identification of individuals predisposed to a
more challenging BD course. This could enable preventative or early intervention strategies
focused on bolstering cognitive and functional deficits [28, 78]. The strong genetic associations
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with the ACT dimension, particularly with ADHD and anxiety [74], further underscore the
potential for early intervention, as these often present in childhood and adolescence.

Four versus a Three-Factor Model

Building on dimensional approaches, this study increased the number of OPCRIT measures
included than prior studies, yielding a fourth ACT dimension, validated in both this and one
other study (eResults 4) [21]. Here, three clinical dimensions (mania, depression, psychosis)
and their genetic associations replicated their findings. Importantly, in the current analysis, the
additional measures and PRSs loaded strongest to the novel ACT dimension, thus only a four-
factor model could account for the genetic signatures in BD course specifiers. Additionally,
the inclusion here of the propensity scores, likely provided more accurate assessment, adjusted
for potentially inflated effect sizes commonly reported when analysing Electronic Health
Records (EHR) data.

Predictive Utility of the PRS

Sensitivity analyses confirmed symptom strength independent of global dimensions. Factor
and PRS scores better predicted risk for the dimension symptoms within than across
dimensions in unseen data. PRS provided incremental predictive value to clinical data, with a
median positive predictive value (PPV) at a .8 clinical utility threshold [79].

Factor Loading Thresholds

A .6 factor loading threshold for OPCRIT items was used to maintain clinical relevance and
parsimony, though prior analyses have used lower thresholds [12, 21, 78, 70]. Here, EFA
robustness at .4 suggests future studies could use a lower threshold. While model fit and
sensitivity were adequate, more items do not guarantee better accuracy and risk overfitting,
reducing generalisability [70].

Genetics of the ACT Dimension

The novel ACT dimension showed distinct genetic signatures. Higher BD burden indicated
resilience against premorbid deficits and chronic illness progression, predicting higher
functioning in an independent BD dataset [23] and an inverse relationship with rapid cycling
[19]. Similarly, the mania dimension positively associated with BD PRS was inversely related
to the ACT dimension.

Genetics of the ACT Dimension Symptoms

Symptoms associated with BD and SCZ PRS linked to higher inter-episode remission, in
contrast to MDD, ANX, and especially ADHD, which positively associated with reduced inter-
episode remission. Higher BD PRS predicted inter-episode remission and reduced anxiety in
an independent BD dataset [23]. Depression, anxiety, and cognitive issues are often early BD
symptoms [5, 80]. Rapid cycling (RC) correlated with higher ANX or ADHD PRS but
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inversely with BD in a prior study [19]. Co-occurring ADHD and anxiety elevate the risk for
BD onset [18, 81-82], suggesting a less favourable trajectory.

Severe incapacity (OPCRIT 87) linked primarily to mania and psychotic features, less to ACT
symptoms, and least to depressive symptoms. BD PRS correlated with increased symptom
severity and lower depression polygenic burden in multiplex BD families [83]. Here, strongest
associations existed between premorbid occupational (OPCRIT 9) and social adjustment
(OCPRIT 10), and ADHD or SCZ PRS. The observed negative association between ACT
(including premorbid adjustment) and mania aligns with the inverse relationship found by
Allardyce et al. (2007) [12]. Novel in the current study however, is the inverse association
between genetic liability to BD PRS and ACT, capturing the association of illness chronicity
and personality within the ACT dimension.

Longitudinal data suggests enduring chronic and cognitive deficits in BD [5]. ACT
impairments affect (30-60)% of adults with BD [28], especially with comorbid anxiety and
ADHD [34]. Sensitivity analysis showed ADHD PRS consistently positive with the ACT
dimension symptoms, while ANX and SCZ PRS effects were more complex across indicators,
suggesting nuanced relationships needing further granular investigation.

The higher BD1 proportion of cases here, linked to lower anxiety, might have limited ANX
PRS and ACT dimension item-level associations. Prior factor analyses found the largest BD
subgroup to be characterised by affective stability with low anxiety and low risk for ADHD-
like behaviours, supporting this chapter’s genetic findings [15].

ADHD PRS uniquely correlated here with a higher risk for premorbid personality disorders
(OPCRIT 11) and other ACT dimension symptoms. ADHD and BD comorbidity increases the
risk for personality disorder and more frequent episodes, leading to poorer functioning.
Childhood ADHD is associated with higher borderline personality disorder (BPD) risk [84].

Future Studies

Future research should focus on validating the four-factor models reproducibility across
independent ancestral datasets, ideally utilising the same OPCRIT items to ensure
comparability. Furthermore, the collection and analysis of longitudinal data will be essential
for further understanding the temporal dynamics between genetic risk, the emergence of
premorbid factors, and the subsequent longitudinal course of bipolar disorder. By tracking
individuals over extended periods, future studies can help to establish the precise temporal
order of these events and to identify potential causal pathways. Longitudinal data incorporating
detailed symptom scales could also be invaluable in identifying specific temporal links and
triggers for mood episodes, especially targeting those individuals at elevated risk of suicidality.

While an individuals underlying genetic code remains relatively stable throughout their
lifespan, environmental factors can influence how these genes are expressed (through
epigenetic mechanisms) and interact with one another to either increase or decrease the
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likelihood of developing bipolar disorder. Investigating the specific mechanisms through
which ADHD and anxiety might trigger or exacerbate mood episodes in BD, especially in rapid
cycling, could be a logical next step, potentially involving neuroimaging or neurochemical
studies to explore underlying brain circuitry.

Clinical Practice

This study suggests early identification of chronic difficulties in individuals with higher genetic
burden for ADHD and anxiety offers a crucial opportunity for interventions to improve long-
term BD outcomes. The findings underscore the potential utility of incorporating
comprehensive assessments for premorbid functioning and any co-occurring symptoms of
ADHD and anxiety in individuals with or at risk for BD. This more holistic approach could
facilitate the earlier identification of those individuals who may be on a more adverse chronic
trajectory, allowing for the implementation of proactive and personalised interventions that
may ultimately improve the overall course of their illness and their quality of life.

3.7 Limitations

The sample, while large, primarily comprised individuals recruited through clinical settings,
potentially overrepresenting those with more severe or chronic forms of BD who are more
likely to seek and remain in treatment. While Inverse Probability Weighting (IPW) was applied
to mitigate ascertainment, bias related to hospitalisation and symptom severity, the
generalisability of the findings to community-based populations or individuals with milder
presentations of BD warrants further investigation. The decision to exclude OPCRIT items
with low frequency (less than 8% missingness) could potentially limit the generalisability of
these findings to individuals presenting with rarer symptoms. The cross-sectional nature of the
data limits the ability to infer the temporal relationships between genetic risk, premorbid
factors, and the longitudinal course of BD. It is important to note that current PRSs for complex
psychiatric disorders, including BD, explain a modest proportion of the overall variance in
these conditions, and the findings, while informative at a group level, reflect trends rather than
definitive individual-level predictions [40]. Further research efforts, including larger genome-
wide association studies and the inclusion of more diverse ancestral populations, are needed to
enhance the predictive power of PRSs for clinical applications.

3.8 Conclusions

M analysis indicates a broader transdiagnostic genetic signature, beyond traditional mood
disorders, contributes to a more adverse BD trajectory, potentially worsening long-term
outcomes due to chronic and cognitive deficits, notably linked to higher ADHD and anxiety
polygenic burden. The MIMIC model revealed a complex interplay between mania and the
novel ACT dimension. While ADHD PRS showed a consistent positive association with ACT,
ANX and SCZ PRS effects on ACT items were more nuanced, requiring further research.
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These findings underscore the importance of considering transdiagnostic genetic risks in
understanding BD heterogeneity, linked to predicting its trajectory.

3.9 Supplementary Materials

Exploratory Factor Analysis (EFA)

Table 22 Exploratory factor analysis (EFA) loadings of 77 OPCRIT items

Note: In Exploratory Factor Analysis, communalities represent the proportion of each symptom’s variance that
the shared factors can explain. Unique variance is the proportion that is not explained by the factors and is unique
to the symptom itself. These 77 items were selected for analysis due to adequate sample size and less than 8%
missingness.
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ItNe: Item Description D(eg)es Nég)ia Chr(ofgli)city Psy(cfl;; sis Unique.var || Communalities
|1 Rapid cycling | 0001 | -0335] 0395 | -0132 | 0817 | 0183 |
| 2 | Weight loss | 0391 ] 0213 | 0433 | 0314 | 0435 || 0565 |
| 3| Diminished libido | 0637 | 01 | o001 | -0032 | 0330 | 0470 |
| 4 | Diurnal variation | 0476 || 0204 || -0.048 | -0016 | 0647 | 0353 |
IER Mode of onset | 0008 ||-0286| 0143 | -0194 | oses | 0132 |
| 6 | Weight gain | 0676 | 0392 -0004 | 0260 | 0263 || 07137 |
| 7 | Early morning waking | 0369 || 0413 | 0065 | 0054 | 0351 || 0449 |
N Middle insomnia | 0294 | 0258 || 0013 | 0037 | 0775 || 0225 |
IEN Initial insomnia | 0332 [ 0239 || o012 || -0008 || 0742 | 0258 |
| 10 || Increased appetite | 0617 | 0436 | -0057 | 0235 | 0224 || 0776 |
| 1| Slowed activity | 0758 | 0069 | 002 | -0367 || 0300 | 0700 |
| 12 || Agitated activity | 0239 | 0442 || 0292 || 0075 | 0332 | 0468 |
| 13 || Stressor prior to onset | 009 0265 0043 | 0047 | 0893 | 0107 |
| 14 || Excessive sleep | 0495 || 00s8| o1 | 079 | 0752 || 0248 |
| 15 || Poor premorbid social adjustment || 0.151 || -0433] 071 || -0005 | 0616 | 0384 |
| 16 || Distractibility | 0213 | 0537 | 0285 | -0018 | 0452 | o548 |
| 17 || Poor appetite | 038 || 017 || 035 || -0426 | 0477 || 0523 |
|18 || Inappropriate affect | 0035 ] 0253 | 0093 | 03 | os2 || o178 |
| 19 || Excessive self reproach | 0765 || 0.045 || -007 || 008 | 0389 | o611 |
| 20 || Poor concentration | 0498 || 0302 | 0089 | -0249 | 0475 | 0525 |
| 21 || Irritable mood | o181 || 041 || o021 || 0036 | o068 | 0332 |
| 22 || Premorbid personality disorder || -0.011 || -0425] 0771 ][ 0159 | 0504 | 049 |
| 23 || Increased sociability | 0089 || 0.633 | 0044 | 0167 | 0512 || 0488 |
| 24 || Poor premorbid work adjustment || 0.009 || -0.351] 0662 || 0068 | 03590 | 0410 |
25 [Aleohol/drug abl;;eszithm oneyearofl o 027 |l 002 | 0376 0.061 0.857 0.143
| 26 || Family history of schizophrenia || 0.098 || 0.044 || 0103 || 0046 | 0969 | 0031 |
| 27 || Thoughts racing | 005 ] 0941 | o002 | 0021 || 0150 || o850 |
| 28 || Unemployed | 0278 || 0281 0368 | -0138 | 0635 | 0365 |
g9 || Familyhistory ofother psychiatric | )0l os5 | 0,124 0.074 0.904 0.096
disorder
| 30 || Restricted affect | 0449 | 0205 | 004 | 0138 | 0635 | 0365 |
| 31 || Blunted affect | 0326 || -0087] 0219 | 009 | o846 | 0154 |
| 32 | Pressured speech | 0067 || 0.807 || 0023 || 003 | 0208 | 0702 |
| 33 || Increased self esteem | 0082 | 0741 || 0005 | 0391 | 0298 || 0702 |
| 34 || Reckless activity | 0057 || 0485 | 0240 || -0056 | 0657 | 0343 |
35 || Relationship psychotic/atfective || 15> | 435 || 008 0.331 0.364 0.636
symptoms
| 36 || Loss of pleasure | 0867 [ 0.037 | o012 | -0392 | 0143 | 0857 |
| 37 || Reduced need for sleep | 0007 || 0822 | 0052 | 0026 | 0321 || 0679 |
| 38 || Loss of energy/tiredness | 0812 ][ -0003| 0036 | -0514 || 0169 | 0831 |
IEX Grandiose Delusions | 0015 | 0599 || 0105 | 0509 | 0351 || 0649 |
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Item Depres || Mania

Chronicity

Psychosis

No. Item Description (1) (2) (1) (f4) Unique.var || Communalities
| 40 || Negative formal thought disorder || 0529 || 0.114 || 0099 || 0214 | 0577 | 0423 |
| 41 || Positive formal thought disorder || -0.269 || 0435 || 0408 | 0306 | 0587 | 0413 |
| 42 || Reduced inter-episode remission || -0.108 || 0.029 || 0747 || 0003 | 0414 | 0586 |
| 43 || Widespread Delusions | 0183 | 0.043 || 0542 || o585 || 0373 || o627 |
| 44 | Well organised delusions | -0.108 || -0.025| 0533 | 0536 | 0440 | 0560 |
| 45 || Delusions of influence | 0256 | 0227 || 0038 | o610 | 0435 || 0565 |
46 Other (non affective) auditory |, 40 |1 g 0.24 0.458 0.732 0.268
hallucinations
47 Life ﬁmeaifi‘;gzseggcannabis 0.055 | -0217 || 0.624 -0.03 0.398 0.602
| 48 || Single (v married) | 0007 | 016 | 0314 | 0007 | oss4 || o116 |
| 49 || Persecutory Delusions | 0024 | 0249 | 0281 || 0582 | 0502 | 0498 |
so || Abusivelaceusatory/persecutory || o0 | o431 | 0409 0.428 0.631 0.369
voices
| 51 || Course of disorder (chronic) || -0.106 || -0.097] 0756 || -0043 || 0553 | 0447 |
5 Delusions & hallucinations last for 0.06 0.075 0.523 0.595 0378 0.622
one week
| 53 || Excessive activity | 0017 || 0889 || 0002 | -0064 | 0191 | 0809 |
| 54 || Primary delusional perception || 031 || 0202 ] -008 || 0524 | 0492 | 0508 |
55 Non'affe“”fﬂi?;ﬂf;“aﬁon many |\ oy o174 | 0126 0.373 0.767 0.233
56 Life time diagnosis of other 0.023 || -0258 || 0.647 -0.101 0397 0.603
abuse/depend
sg || Perseeutorylealous delusions & ) 500\ o5 | 0467 0.613 0.412 0.588
hallucinations
| 59 || Other primary delusions | 0249 || 0163 || -0.055 || 0406 | 0685 | 0315 |
| 60 || Dysphoria | 0714 | 0.095 | 0019 | -0211 | o408 | 0592 |
| 61 || Third person auditory hallucinations || -0.003 || -0.320] 0421 | 0551 | 0444 | 0556 |
| 62 | Bizarre Delusions | 0122 | 0018 | 0277 | o600 | 0572 | 0428 |
| 63 ||  Rumning commentary voices || -0.002 || -0.14 || 0358 || 0595 | o511 || 0489 |
| 64 | Delusions of guilt | 0414 | -0074]| 0139 | o288 | o078 | 0282 |
| 65 || Delusions of passivity | 0361 ][ -0012| 0087 | 0547 | 0520 || o04s0 |
| 66 | Nihilistic Delusions | 0474 | 0.096 | o0as1 || 0257 | 0643 | 0357 |
67 Life tim;f;:f/‘:igznojalwh(’l 0.165 || 0.082 || 0.193 0.038 0.909 0.091
| 68 | Elevated mood | 0033 || 0905 || -0.056 || -0081 | 0205 | 0795 |
| 69 | Delusions of poverty | 0480 || 0.023 || 0006 | 0209 | 0692 | 0308 |
| 70 || Thought insertion | 0224 0205 0227 || 06290 | 0476 | 0524 |
| 71 ||impairment/incapacity during disorder]| 026 || 041 || 0296 | 038 | o668 | 0332 |
| 72 || Thought broadcast | 0237 | o015 | 004 | 0677 | 0444 | 0556 |
| 73 || Thought echo | 0254 || -0051| 0427 | o400 | 0577 | 0423 |
| 74 || Thought withdrawal | 0262 || -0178 | 0122 | 0692 | 0409 | 0591 |
| 75 || Rapport difficult | 0295 | 005 || 0363 | o014 | 0779 | 0221 |
| 76 || Information not credible | 085 || 003 || 0247 || -0031 | 0902 | 0098 |
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Item Description

Depres || Mania || Chronicity || Psychosis

Unique.var || Communalities
(1) (2) (3) (4) 1

| 77 || Lack of insight

H 0418 H 0.143 H 0.283 H 0.063 H 0.786 H 0.214

3.8.1.1 Item Definitions

Table 23 OPCRIT Items for Adverse Chronic Trajectory Dimension

Item No. Description
Poor work adjustment: Refers to work history before onset of illness. It should
be scored if the patient was unable to keep any job for more than 6 months, had
9 a history of frequent changes of job or was only able to sustain a job well below
‘Chronicity (1)’ that expected by his educational level or training at time of first psychiatric
contact. Also, score positively for a persistently very poor standard of housework
(housewives) and badly failing to keep up with studies (students). (0, 1)
Poor premorbid social adjustment: Patient found difficulty entering or
10 maintaining normal social relationships, showed persistent social isolation,
‘Chronicity (2) withdrawal or maintained solitary interests prior to onset of psychotic symptoms.
©, 1)
1 Premorbid personality disorder: Evidence of inadequate/ schizoid/ schizotypal/
‘Chronicity (3)’ p?lranoid/ cyclothymic/ p§ychopathic/ sociopathic personahty disorder present
since adolescence and prior to the onset of psychotic symptoms.(0, 1)
Impairment/incapacity during disorder:
0 = No impairment
]7 1 = Subjective impairment at work, school, or in social functioning
2 = Impairment in major life role with definite reduction in productivity
‘BD outcome (4) . .
Symptom severity’ and/or criticism has l?een recel_ved o . .
3 = No function at all in major life role for more than 2 days or inpatient
treatment has been required or active psychotic symptoms such as delusions or
hallucinations have occurred
88 . . . . o
Deterioration from premorbid level of functioning: Patient does not regain his
‘BD outcome (5) Inter- . . . . . .
episode remission’ pre.morbld social, occupational or emotional functioning after an acute episode
of illness. (0, 1)
Course of disorder:
1 = Single episode with good recovery
90 2 = Multiple episodes with good recovery between
‘BD outcome (6) Illness 3 = Multiple episodes with partial recovery between
recovery to chronic 4 = Continuous chronic illness
course’ 5 = Continuous chronic illness with deterioration
(nb score this item in hierarchical fashion, e.g. if patient’s course in past rated
2’,but for the time-period now being considered it rates ‘4’, then the correct
rating is ‘4’.) (1,2, 3,4, 5,)
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Item No.

Description

Note:

19. OPCRIT (version 4) (Chapter 2 [4]) includes 90 items of psychopathology,
premorbid functioning, personal and family history information. Expansion of
OPCRIT necessitated an increase in the number of items comprising the
OPCRIT checklist beyond the original 74-item checklist. Lifetime occurrence
was assessed for each patient. Inter-rater reliability was formally assessed using
20 randomly selected cases (mean x Statistic = .85).

3.8.1.2 Confirmatory Factor Analysis (EFA)

Table 24 Coefficients of 20 core OPCRIT items with four individual factor scores

Dimension OPCRIT Item ;C }Zi Estimate Od((ig}l;a tio Std.Error||PBonferroni||PBonf.signif]
[Depression| Dysphoria | ADHD | 0035 ] 1036 | 0014 || o010 | x|
[Depression|| Dysphoria | AaNx |[ 0091 || 1095 ][ 0014 || <0.0001 || e |
[Depression| Dysphoria | BD | 0057] 1059 ][ 0063 || <0.0001 | exx |
[Depression| Dysphoria | MDD | 0106 || 112 ][ 0013 || <0.0001 | e |
[Depression| Dysphoria | scz | 0020] 1020 ][ 0012 || <0.0001 || e |
[Depression||  Loss of energy/tiredness || ADHD |[ 0.030 || 1.030 ][ 0013 || 0027 | wrex |
[Depression]|  Loss of energy/tiredness || ANX_ || 0083 || 1.087 || 0.013 || <0.0001 | x|
[Depression]|  Loss of energy/tiredness || BD | -0586 | 0557 || 0.062 || <0.0001 | x|
[Depression]|  Loss of energy/tiredness || MDD || 0.119 || 1126 || 0.013 || <0.0001 | #xxx |
[Depression||  Loss of energy/tiredness || scz || 0216 || 1241 ][ 0.012 || <0.0001 || wrer |
[Depression| Loss of pleasure | ADHD | 0024 || 1024 ][ 0013 || 0008 | x|
[Depression| Loss of pleasure | ANx | 0099 || 1104 ][ 0013 || <0.0001 | e |
[Depression| Loss of pleasure | BD | -059] 0554 ][ 0063 || <0.0001 | e |
[Depression|| Loss of pleasure | MpD |[ 026 || 1134 ][ 0.013 || <0.0001 || e |
[Depression| Loss of pleasure | scz | o212] 1236 ][ 0012 || <0.0001 | e |
[Depression| Self-reproach | aDHD | 0021 | 1021 [[ 0013 | 0128 || ms |
[Depression| Self-reproach | anx | 0075 ] 1078 ][ 0013 || <0.0001 | e |
[Depression|| Self-reproach | BD |[-0328] 0720 ][ 0062 || <0.0001 || e |
[Depression| Self-reproach | MDD | 0075 ] 1078 || 0012 || <0.0001 | e |
[Depression| Self-reproach | scz | o027 ] 1135 ][ 0012 || <0.0001 || e |
[Depression| Slowed activity | ADHD || 0017 ] 1017 |[ 0014 || 0208 | ms |
[Depression|| Slowed activity | ANX |[ 0047 ] 1048 | 0014 || 0001 || e |
[Depression| Slowed activity | BD | -0362] 0696 || 0063 || <0.0001 | e |
[Depression| Slowed activity | MDD | 0062 || 1064 || 0.013 || <0.0001 | e |
[Depression| Slowed activity | scz | o100 ] 1105 ][ 0012 || <0.0001 | e |
| Mania || Elevated mood | ADHD |[ 0.021 || 1021 ][ 0007 || 0007 || o+ |
| Mania || Elevated mood | ANX | -0061] 0941 ][ 0.007 || <0.0001 | e |
| Mania || Elevated mood | BD | 0374] 1454 ][ 0035 || <0.0001 | e |
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Dimension OPCRIT Item ;C }Zi Estimate Od((ig}li)a tio Std.Error||PBonferroni||PBonf.signif]
| Mania || Elevated mood | MDD | -0068] 0934 |l 0.007 || <0.0001 | exx |
| Mania || Elevated mood | scz J[oa24] 1132 ][ 0007 || <0.0001 || e |
| Mania || Excess activity | ADHD | 0028 || 1028 || 0.008 || <0.0001 | e |
| Mania || Excess activity | ANX | -0051] 0950 || 0.008 || <0.0001 | e |
| Mania || Excess activity | BD | 0354 1425 ][ 0036 || <0.0001 | e |
| Mania || Excess activity | MDD |[-0.062] 0940 ][ 0.007 || <0.0001 || eerx |
| Mania || Excess activity | scz Jour ] 1n7 ][ 0007 || <0.0001 | e |
| Mania || Pressured speech | ADHD | 0013 ] 1013 ][ 0008 || 0001 | #x |
| Mania || Pressured speech | ANX | -0050] 0951 ][ 0.008 || <0.0001 | eexx |
| Mania || Pressured speech | BD o276 ] 1318 ][ 0037 || <0.0001 || e |
| Mania || Pressured speech | MDD | -0057] 0945 |l 0.008 || <0.0001 | exx |
| Mania || Pressured speech | scz | 0099 ] 1104 ][ 0007 || <0.0001 | e |
| Mania || Racing thoughts | ADHD | 0014 | 1014 | 0008 || 0089 | ns |
| Mania || Racing thoughts | ANX |[-0.057] 0945 | 0.008 || <0.0001 || eerr |
| Mania || Racing thoughts | BD | 0293 ] 1340 ][ 0037 || <0.0001 | e |
| Mania || Racing thoughts | MDD | -0066] 0936 || 0.007 || <0.0001 | e |
| Mania || Racing thoughts | scz |ons ] 1122 ][ 0007 || <0.0001 | e |
| Mania || Reducedneedforsleep || ADHD |l 0.024 || 1024 ][ 0008 || 0003 | e ]
| Mania ||  Reducedneedforsleep || ANX |[-0053] 0948 || 0.008 || <0.0001 | eexx |
| Mania || Reducedneedforsleep || BD | 0345 ] 1412 ][ 0037 || <0.0001 | e |
| Mania ||  Reducedneedforsleep || MDD | -0.061] 0941 || 0007 || <0.0001 | eexx |
| Mania || Reducedneedforsleep || scz | oa21 || 1129 ][ 0007 || <0.0001 || e |
| Psychosis||  Delusions of influence || ADHD | 0.005 || 1.005 || 0007 || 0505 | ns |
| Psychosis||  Delusions of influence || ANX_|[-0.055] 0946 || 0.007 || <0.0001 | #xxx |
| Psychosis||  Delusions ofinfluence || BD || 0135 || 1145 || 0033 || <0.0001 | eexx |
| Psychosis || Delusions of influence || MDD || -0.080 || 0923 || 0.007 || <0.0001 | wrex |
| Psychosis||  Delusions of influence || scz || 0227 || 1255 || 0.006 || <0.0001 | e |
| Psychosis || Persecutory/jealous delusions || ADHD | -0.010 ] 0990  |[ 0007 || 0189 | ns |
| Psychosis || Persecutory/jealous delusions || ANX | -0.054 | 0947 || 0.007 || <0.0001 || eexx |
| Psychosis || Persecutory/jealous delusions || BD ][ 0399 || 1490 ][ 0033 || <0.0001 || e |
| Psychosis || Persecutory/jealous delusions || MDD |[-0.080 || 0923 || 0.007 || <0.0001 | #xxx |
| Psychosis || Persecutory/jealous delusions || SCZ || 0439 || 1551 || 0.006 || <0.0001 | x|
| Psychosis || Thought withdrawal | ADHD |[ 0.007] 0993 ][ 0007 || 0320 | ms |
| Psychosis | Thought withdrawal | ANX | -0057] 0945 ][ 0007 || <0.0001 | e |
| Psychosis | Thought withdrawal | BD Joms] 122 ][ 0033 || <0.0001 || e |
| Psychosis | Thought withdrawal | MDD | -0086] 0918 || 0.007 || <0.0001 | e |
| Psychosis || Thought withdrawal | scz ][ 0695 ] 2004 ][ 0.006 || <0.0001 || eerx |
| Psychosis | Thought broadcast | ADHD | -0005] 0995 | 0007 || 0530 | ns |
| Psychosis | Thought broadcast | ANX | -0062] 0940 ][ 0.007 || <0.0001 | eexx |
| Psychosis | Thought broadcast | BD | o141 ] n1st ][ 0033 || <0.0001 | e |
| Psychosis || Thought broadcast | MDD |[-0.089] 0915 | 0.007 || <0.0001 || eerx |
| Psychosis | Thought broadcast | scz | o448 ] 1565 || 0.006 || <0.0001 | e |
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Dimension OPCRIT Item ;C }Zi Estimate Od((iélli)a tio Std.Error||PBonferroni||PBonf.signif]
| Psychosis | Thought insertion | ADHD | -0006 ] 0994 | 0007 || 0429 | ms |
| Psychosis || Thought insertion | ANX |[-00s6] 0946 ][ 0.007 || <0.0001 || e |
Psychosis Thought insertion BD 0.142 1.153 0.033 <0.0001 okl

| [ [ [ [ [ [ [ |
\PsychosisH Thought insertion H MDD H -0.087 H 0.917 H 0.007 H <0.0001 H Hohkk \
| Psychosis | Thought insertion | scz | 02s3 | 1288 | 0006 || <0.0001 || wex |
| Chronicity|| Course of disorder (chronic) || ADHD |[ 0221 || 1247 ][ 0015 || 0005 | = |
| Chronicity]|  Course of disorder (chronic) || ANX ][ 0.104 || 1110 | 0014 || <0.0001 || x|
| Chronicity]| Course of disorder (chronic) || BD | -0072] 0931 || 0.067 || <0.0001 || eeer ]
| Chronicity]|  Course of disorder (chronic) || MDD | 0.165 || 1180 | 0014 || <0.0001 || e |
| Chronicity|| Course of disorder (chronic) || scz |l 0282 || 1326 || 0.013 || <0.0001 || wrex |
| Chronicity]| Reduced inter-episode remission|| ADHD || 0.343 || 1409 | 0006 || 0007 | = |
| Chronicity]| Reduced inter-episode remission|| ANX ][ 0.028 || 1028 | 0006 || <0.0001 || x|
| Chronicity|| Reduced inter-episode remission|| BD | -0202 ] 0817 || 0.028 || <0.0001 | #xxx |
| Chronicity|| Reduced inter-episode remission|| MDD || 0.042 || 1.043 || 0.006 || <0.0001 | wrex |
| Chronicity|| Reduced inter-episode remission||  SCZ | -0.076 || 0927 || 0.005 || <0.0001 | #x*x |
\ChronicityH Premorbid personality disorder H ADHD H 0.044 H 1.045 H 0.007 H 0.006 H Hk \
\ChronicityH Premorbid personality disorder H ANX H -0.059 H 0.943 H 0.007 H <0.0001 H Hokk \
| Chronicity|| Premorbid personality disorder || BD || 0418 || 0658 || 0033 || <0.0001 || wrex |
\ChronicityH Premorbid personality disorder H MDD H -0.085 H 0.919 H 0.007 H <0.0001 H Hohk \
\ChronicityH Premorbid personality disorder H SCz H -0.155 H 0.856 H 0.006 H <0.0001 H Hohk \
Chronicity Prem‘;gﬁg;’;:"dal ADHD || 0.064 1.066 0.007 || 0.004 *ox

Chronicity Prem(;gig;’;tsoml ANX || -0.055 0.946 0.007 || <0.0001 wonn

Chronicity Prem(;gig;’;tsocm BD | -0.411 0.663 0.033 || <0.0001 xokon

Chronicity Premorbid poor social MDD || -0.081 0.922 0.007 || <0.0001 ok

adjustment
Chronicity|| | remerbid poor social sCz || 0.142 1.153 0.006 | <0.0001 e
adjustment

Chronicity || Premorbid poor work adjustment|| ADHD 0.048 1.049 0.007 0.007 wox

| [ [ [ [ [ [ [ |
Chronicity || Premorbid poor work adjustment|| ANX -0.053 0.948 0.007 <0.0001 okl

| [ [ [ [ [ [ [ |
‘ChronicityHPremorbidpoorwork adjustmentH BD H -0.426 H 0.653 H 0.033 H <0.0001 H ok \
| Chronicity| | Premorbid poor work adjustment] MDD | -0.077 || 0926 || 0.007 || <0.0001 | xxxx |
| Chronicity] | Premorbid poor work adjustment|| SCZ ][ 0.140 || 1150 | 0006 || <0.0001 || wrer |

This table presents the coefficients and their significance levels from the regression analyses where
each of the 20 core OPCRIT items was predicted by the individual factor scores for the four latent
dimensions (Mania, Psychosis, Depression, and Adverse Chronic Trajectory) in a ‘leave-one-out’ cross-
validation approach. These results demonstrate the predictive ability of the factor scores for their
respective symptoms in each of the four dimensions. *(Significance levels of adjusted Bonferroni P-

value, <.0001 **** < 001 *** <01 ** <.05 ).
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Table 25 Coefficients of 20 core OPCRIT items with five individual PRS scores

PRS

Odds Ratio

Dimension OPCRIT Item S Estimate Std.Error||PBonferroni||PBonf.signif]
core (OR)
[Depression|| Dysphoria | ADHD |[ 0035 | 1036 | 0014 || o010 | o+ |
[Depression| Dysphoria | anx | 0091 || 1095 ][ 0.014 || <0.0001 | e |
[Depression| Dysphoria | BD | 0057] 1059 ][ 0063 || <0.0001 | eexx |
[Depression| Dysphoria | MDD | 0106 || 1112 ][ 0013 || <0.0001 | e |
[Depression|| Dysphoria | scz J[o020] 1020 | 0012 || <0.0001 | e |
[Depression]|  Loss of energy/tiredness || ADHD | 0030 || 1.030 || 0013 || 0027 | e |
[Depression]|  Loss of energy/tiredness || ANX_ || 0083 || 1.087 || 0.013 || <0.0001 | x|
[Depression]|  Loss of energy/tiredness || BD | -0586 | 0557 || 0.062 || <0.0001 | x|
[Depression||  Loss of energy/tiredness || MDD || 0.119 || 1126 || 0.013 || <0.0001 || wrer |
[Depression]|  Loss of energy/tiredness || Sz || 0216 || 1241 || 0.012 || <0.0001 | #exx |
[Depression| Loss of pleasure | ADHD | 0024 || 1024 ][ 0013 || 0008 | x|
[Depression| Loss of pleasure | ANx | 0099 || 1104 ][ 0013 || <0.0001 | e |
[Depression|| Loss of pleasure | BD |[-0590] 0554 ] 0063 || <0.0001 || eerx |
[Depression| Loss of pleasure | MDD | 0126 || 1134 ][ 0013 || <0.0001 | e |
[Depression| Loss of pleasure | scz | o212] 1236 ][ 0012 || <0.0001 | e |
[Depression] Self-reproach | ADHD | 0021 | 102t [[ 0013 ] o128 || ns |
[Depression|| Self-reproach | anx J[0075 ] 1078 ][ 0013 || <0.0001 || e |
[Depression| Self-reproach | BD | -0328] 0720 ][ 0.062 || <0.0001 | e |
[Depression| Self-reproach | MDD | 0075 ] 1078 || 0.012 || <0.0001 | e |
[Depression] Self-reproach | scz | o127 1135 ][ 0012 || <0.0001 || eexr |
[Depression|| Slowed activity | ADHD |[ 0017 ] 1017 ][ 0014 || 0208 | ms |
[Depression| Slowed activity | anx | 0047 ] 1048 | 0014 || o001 | #x |
[Depression| Slowed activity | BD | -0362] 0696 || 0063 | <0.0001 | e |
[Depression] Slowed activity | MDD | 0062 || 1064 || 0013 || <0.0001 | eexx |
[Depression|| Slowed activity | scz J[oo0] 110s ][ 0012 || <0001 || e |
| Mania || Elevated mood | aDHD | 0021 | 102t ][ 0007 || 0007 | x|
| Mania || Elevated mood | ANX | -0061] 0941 ][ 0.007 || <0.0001 | exx |
| Mania || Elevated mood | BD 0374 ] 1454 ][ 0035 || <0.0001 || e |
| Mania || Elevated mood | MDD | -0068] 0934 |l 0.007 || <0.0001 | e |
| Mania || Elevated mood | scz | oa24] 1132 ][ 0007 || <0.0001 | e |
| Mania || Excess activity | ADHD | 0028 || 1028 || 0.008 || <0.0001 | eexx |
| Mania || Excess activity | AaNx |[-00s1] 0950 ][ 0.008 || <0.0001 || eerr |
| Mania || Excess activity | BD | 0354] 1425 ][ 0036 || <0.0001 | e |
| Mania || Excess activity | MDD | -0062] 0940 || 0.007 || <0.0001 | xexx |
| Mania || Excess activity | scz Joun ] 1n7 ][ 0007 || <0.0001 | e |
| Mania || Pressured speech | ADHD |[ 0013 ] 1013 ][ 0008 || 0001 || e |
| Mania || Pressured speech | ANX | -0050] 0951 ][ 0.008 || <0.0001 | e |
| Mania || Pressured speech | BD | 0276 | 1318 ][ 0037 || <0.0001 | e |
| Mania || Pressured speech | MDD | -0057] 0945 || 0.008 || <0.0001 | exx |
| Mania || Pressured speech | scz ][ 0099 | 1104 ][ 0.007 || <0.0001 || e |
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Dimension OPCRIT Item ;C }Zi Estimate Od((ig}li)a tio Std.Error||PBonferroni||PBonf.signif]
| Mania || Racing thoughts | ADHD | 0014 | 1014 ][ 0008 || 0089 | ns |
| Mania || Racing thoughts | ANX |[-0.057] 0945 | 0.008 || <0.0001 || eerr |
| Mania || Racing thoughts | BD | 0293 ] 1340 ][ 0037 || <0.0001 | e |
| Mania || Racing thoughts | MDD | -0066 ] 0936 || 0.007 || <0.0001 | e |
| Mania || Racing thoughts | scz | ous | 122 ][ 0007 || <0.0001 | e |
| Mania || Reducedneedforsleep || ADHD |l 0.024 || 1024 ][ 0008 | 0003 | e ]
| Mania ||  Reducedneedforsleep || ANX | -0053] 0948 || 0.008 || <0.0001 | eexx |
| Mania || Reducedneedforsleep || BD | 0345 ] 1412 ][ 0037 || <0.0001 | e |
| Mania || Reducedneedforsleep || MDD | -0.061] 0941 || 0.007 || <0.0001 | exxx |
| Mania || Reducedneedforsleep || scz | oa21 || 1129 ][ 0007 || <0.0001 || e |
| Psychosis||  Delusions of influence || ADHD | 0.005 || 1.005 || 0007 || 0505 | ns |
| Psychosis||  Delusions of influence || ANX_|[-0055] 0946 || 0.007 || <0.0001 | #xxx |
| Psychosis||  Delusions of influence || BD || 0135 || 1145 || 0033 || <0.0001 | e |
| Psychosis || Delusions of influence || MDD || -0.080 || 0923 ][ 0.007 || <0.0001 | wrex |
| Psychosis||  Delusions of influence || scz || 0227 || 1255 || 0.006 || <0.0001 | exxx |
| Psychosis || Persecutory/jealous delusions || ADHD | -0.010 | 0990  |[ 0007 || 0189 | ns |
| Psychosis || Persecutory/jealous delusions || ANX | -0.054 | 0947 || 0.007 || <0.0001 | #xxx |
| Psychosis || Persecutory/jealous delusions || BD ][ 0399 || 1490 || 0033 || <0.0001 || wrex |
| Psychosis || Persecutory/jealous delusions || MDD | -0.080 || 0923 || 0.007 || <0.0001 | #xxx |
| Psychosis || Persecutory/jealous delusions || SCZ | 0439 || 1551 || 0.006 || <0.0001 | x|
| Psychosis | Thought withdrawal | ADHD | -0007] 0993 ][ 0007 || 0320 || ns |
| Psychosis || Thought withdrawal | ANX |[0.057] 0945 ][ 0.007 || <0.0001 || e |
| Psychosis | Thought withdrawal | BD Joms] 122 ][ 0033 || <0.0001 | e |
| Psychosis | Thought withdrawal | MDD | -0086] 0918 || 0.007 || <0.0001 | e |
| Psychosis | Thought withdrawal | scz | 0695 ] 2004 |l 0006 || <0.0001 | eexx |
| Psychosis || Thought broadcast | ADHD |[ 0.005] 0995 | 0007 || 0530 | ms |
| Psychosis | Thought broadcast | ANX | -0062] 0940 ][ 0.007 || <0.0001 | exx |
| Psychosis | Thought broadcast | BD | o141 ] r1st ][ 0033 || <0.0001 | e |
| Psychosis | Thought broadcast | MDD | -0089] 0915 || 0007 || <0.0001 | eexx |
| Psychosis || Thought broadcast | scz |[oa4s] 1565 ][ 0.006 || <0.0001 || e |
| Psychosis | Thought insertion | ADHD | -0006 ] 0994 ][ 0007 || 0429 | ms |
| Psychosis | Thought insertion | ANX | -0056] 0946 ][ 0.007 || <0.0001 | e |
| Psychosis || Thought insertion | BD J[oa42] 1153 ][ 0033 || <0.0001 || e |
| Psychosis | Thought insertion | MDD | -0087] 0917 ][ 0007 || <0.0001 | e |
| Psychosis | Thought insertion | scz | 0253] 1288 ][ 0.006 || <0.0001 | e |
| Chronicity]| Course of disorder (chronic) || ADHD | 0221 || 1247 | 0015 || 0005 | ** |
| Chronicity|| Course of disorder (chronic) || ANX |l 0.104 || 1110 ][ 0.014 || <0.0001 || wrex |
| Chronicity]| Course of disorder (chronic) || BD |[-0072] 0931 || 0.067 || <0.0001 | x|
| Chronicity]| Course of disorder (chronic) || MDD | 0.165 || 1180 || 0.014 || <0.0001 | #x*x |
| Chronicity]| Course of disorder (chronic) || scz | 0282 | 1326 || 0.013 || <0.0001 || #xxx |
| Chronicity|| Reduced inter-episode remission|| ADHD || 0343 || 1409 ][ 0006 || 0007 | = |
| Chronicity|| Reduced inter-episode remission|| ANX | 0.028 || 1.028 || 0.006 || <0.0001 | #xxx |
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Dimension OPCRIT Item ;C IZfe Estimate Od((iélli)a tio Std.Error||PBonferroni||PBonf.signif]
| Chronicity|| Reduced inter-episode remission|| BD | -0202 ] 0817 || 0.028 || <0.0001 | #xxx |
| Chronicity|| Reduced inter-episode remission|| MDD || 0.042 || 1.043 || 0.006 || <0.0001 | wrex |
| Chronicity|| Reduced inter-episode remission|| SCZ | -0.076 || 0927 || 0.005 || <0.0001 | #xxx |
| Chronicity|| Premorbid personality disorder || ADHD | 0.044 || 1.045 ][ 0007 || 0006 | ** |
| Chronicity|| Premorbid personality disorder || ANX [ -0.059 | 0943 || 0.007 || <0.0001 | #x*x |
| Chronicity|| Premorbid personality disorder || BD || 0418 || 0658 || 0033 || <0.0001 || wrex |
| Chronicity|| Premorbid personality disorder || MDD | -0.085 | 0919 || 0.007 || <0.0001 | #xxx |
| Chronicity|| Premorbid personality disorder || SCZ | -0.155 ] 0856 || 0.006 || <0.0001 | x|
Chronicity Prem‘;ﬁig}’;tsocml ADHD || 0.064 1.066 0.007 || 0.004 w

Chronicity Prem(;j}iig}’;tsocml ANX || -0.055 0.946 0.007 || <0.0001 wonn

Chronicity Premzzigl’;tsoml BD | -0.411 0.663 0.033 || <0.0001 xokon

Chronicity Prem(;j}iig}’;tsocml MDD || -0.081 0.922 0.007 || <0.0001 sonn

Chronicity Prengigl’;foml scz || 0.142 1.153 0.006 || <0.0001 —

| Chronicity | Premorbid poor work adjustment|| ADHD || 0.048 || 1.049 ][ 0007 || 0007 | = ]
| Chronicity| [ Premorbid poor work adjustment]| ANX | -0.053 ] 0948 || 0.007 || <0.0001 | x|
| Chronicity|[Premorbid poor work adjustment]  BD | -0426 || 0653 || 0.033 || <0.0001 | e |
| Chronicity| | Premorbid poor work adjustment] MDD | -0.077 || 0926 || 0.007 || <0.0001 | #xxx |
| Chronicity| | Premorbid poor work adjustment]]  SCZ | 0.140 || 1150 || 0.006 || <0.0001 || eexx |

This table shows the coefficients and their significance levels from the regression analyses where each
of the 20 core OPCRIT items was predicted by the five individual polygenic risk scores (BD, SCZ,
MDD, ADHD, and ANX). These results illustrate the relationship between the genetic burden for each
disorder and the individual clinical symptoms in each of the four dimensions. *(Significance levels of
adjusted Bonferroni P-value, <.0001 **** < 001 *** <01 ** <.05).

Chapter 3 established a dimensional model of bipolar disorder, revealing distinct genetic
influences on dimensions such as mania, psychosis, depression, and a novel chronicity factor.
While this provides a broader understanding of BD’s structure, the significant genetic overlap
between BD and schizophrenia (SCZ), particularly concerning the severe psychotic features
often prominent in bipolar disorder I (BD1), warrants more focused investigation. Therefore,
building on the utility of Polygenic Risk Scores (PRS) in dissecting heterogeneity, Chapter 4
will focus on this critical area of transdiagnostic overlap to explore its clinical application. This
chapter aims to specifically evaluate the utility of the SCZ3-PRS in predicting key clinical
features of BD1, namely the presence and severity of psychosis and age of onset, while also
exploring the associated biological pathways to identify potential biomarkers.
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4 PRS-SCZ3 and BD1

A published version of the research in this chapter is available in the Journal of Affective
Disorders (2024) at DOI: 10.1016/j.jad.2024.04.066

4.1 Abstract

Background: Schizophrenia (SCZ) and bipolar disorder (BD) exhibit shared genetic
liability. This study aimed to investigate the predictive value of polygenic risk scores (PRS)
derived from the most recent schizophrenia genome-wide association study (GWAS) (SCZ3)
for phenotypic traits of bipolar disorder type 1 (BD1).

Aims: To determine the predictive power of SCZ3-PRS, alone and in combination with clinical
variables, for various BD1 subphenotypes, including age of onset (general, depression, mania),
psychosis (overall, congruent, incongruent), and rapid cycling, in a European BD1 case-control
cohort, with validation in an independent cohort. Additionally, the aim was to identify
biological pathways associated with psychosis in BD1 using individual-level gene set pathway
analysis.

Methods: SCZ3-PRS was computed using PRSice-v2.3.3 (clumping and thresholding) and
PRS-CS (Continuous Shrinkage) in 1878 BD1 cases and 2751 controls from Romania (RO)
and the United Kingdom (UK). Univariate linear and logistic regressions assessed the
predictive power of SCZ3-PRS for BD1 subphenotypes. Random forest (RF) models evaluated
the predictive performance of SCZ3-PRS alone and in combination with nine clinical
variables. Pathway analysis using PRSet explored gene sets associated with psychosis.

Results: SCZ3-PRS predicted psychosis (overall and incongruent), general age-of-onset of
BDI1, age-of-onset of depression and mania, and rapid cycling in univariate analyses. An
inverse relationship was observed between SCZ3-SNP loading and rapid cycling, potentially
suggesting different underlying genetic mechanisms. A negative correlation was observed
between the number of depressive episodes and psychosis (mainly incongruent). RF models
showed that combinations of SCZ3-PRS-CS and clinical variables provided the best
predictions for BD1 subphenotypes, closely followed by models using only clinical variables.
The most important clinical variables in predicting psychosis alongside SCZ3-PRS were family
history and irritable mania. Gene set pathway analysis identified 22 pathways underlying
psychosis in BD1.

Conclusions: These findings suggest that SCZ3-PRS has a modest clinical utility in predicting
phenotypic traits of BD1. Its predictive performance is enhanced when combined with clinical
variables. These results highlight the shared genetic underpinnings of SCZ and BD1 while also
emphasising the importance of considering clinical information for improved prediction of
BD1 subphenotypes.
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4.2 Introduction

Developmental psychopathology, family studies, and genetic investigations have consistently
indicated a shared vulnerability between schizophrenia (SCZ) and bipolar disorder (BD),
alongside specific features that distinguish these diagnoses. Genome-wide association studies
(GWAS) have corroborated this overlap, revealing a substantial genetic correlation (#G) of .70
between SCZ and BD based on common single nucleotide polymorphisms (SNPs) [1]. A
broader analysis across eleven major psychiatric disorders further identified a “psychotic
factor” encompassing shared genetic variants for both BD and SCZ [2]. Despite this shared
genetic architecture, subsets of SNPs exert differential effects in SCZ and BD [3], potentially
contributing to their distinct clinical presentations. Earlier research explored the association
between SCZ-derived SNP sets [4] and certain BD phenotypic traits, such as age of onset
(AO) [3, 5], and psychosis [6-8]. While some associations were reported, replication across
studies has been inconsistent [9]. Notably, studies have suggested a higher loading of SCZ
polygenic risk scores (PRS) in bipolar disorder I (BD1) compared to BD2 [8], and even higher
in BD1 with psychosis compared to those without [10]. Furthermore, SCZ-PRS have been
associated with treatment response within BD [11-12]. A recognised challenge in large-scale
psychiatric GWAS is the inherent phenotypic heterogeneity arising from diverse populations,
varying diagnostic criteria, recruitment settings, and the inclusion of different BD subtypes,
including schizoaffective disorder [8-9]. To address this issue, the current study focused on
investigating the predictive value of PRS derived from the most recent and largest
schizophrenia GWAS (SCZ3) for phenotypic traits of BD1 within two phenotypically more
homogeneous and well-characterised samples - a Romanian sample with detailed genealogical
data to ensure genetic homogeneity and a well-phenotyped UK sample with comprehensive
clinical assessments.

43 Aims

The aim was to investigate the predictive value of polygenic risk scores (PRS) derived from
the Psychiatric Genomics Consortium (PGC) Schizophrenia GWAS 2022 (SCZ3) [13] for
phenotypic traits of BD1 in two phenotypically homogeneous and well-characterised samples:
a RO sample and a UK sample. More specifically, the aims were to determine the predictive
power of SCZ3-PRS alone and in combination with clinical variables for several BDI1
subphenotypes, i.e., clinical features. These included: General age of onset (AO) of BDI, age
of onset of the first depressive episode, age of onset of the first manic/mixed episode, presence
of psychosis (overall, as well as congruent and incongruent types), and rapid cycling.
Additionally, the aim was to conduct pathway analysis using SCZ3-PRS to identify biological
pathways associated with psychosis in BD1.

4.4 Methods
The predictive utility of schizophrenia-derived polygenic risk scores (SCZ3-PRS) for key

clinical features of Bipolar Disorder I (BD1) was assessed in a European case-control cohort.
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PRS were computed using both clumping-and-thresholding and continuous shrinkage methods.
The performance of the SCZ3-PRS, alone and combined with clinical variables, was evaluated
using regularised regression analyses and Random Forest (RF) models. Individual-level gene
set pathway analysis was performed using PRSet to identify biological pathways associated
with psychosis.

Full details regarding the cohorts, genotyping, PRS computation, and all statistical
models are available in the General Methods (Chapter 2).

4.5 Results

The predictive power was analysed of SCZ3-PRS-CS (Table 27) and of eight P-thresholds (pT)
containing SNPs associated with SCZ (P = 5 x 10® to P = .05) (Tables 31-35) for several
phenotypic traits of BD1 (general AO, AO-first depression, psychosis and incongruent
psychosis) in the RO, the UK and the combined RO-UK samples.

Differentiation of cases and controls

First, the ability of the SCZ3-PRS-CS and of the eight SCZ3-PRS-pTs was tested to
differentiate the cases from controls in each national sample and in the combined RO-UK
sample. All versions of SCZ3-PRS distinguished the cases from controls with high certainty,
see corrected P-values (Table 27), demonstrating a clear separation based on PRS. The detailed
results for the separate Romanian and UK samples are provided in Table 38 and Table 39,
respectively. More variance was explained when using the superior PRS-CS-auto
methodology rather than the existing pT threshold method (Table 26).

Table 26 Comparison of two methods for calculating SCZ3 individual-level PRS

PRSice (pT) NgR2 (li.'i]))ility scale
| le-8 I 838 |
| le-7 I 933 |
| le-6 | 1.279 |
| le-5 I 1.943 |
| le-4 I 2.813 |
| .001 I 4.094 |
| 01 | 5.031 |
| 05 I 6.044 |
| CT (T Mdn) || 2.378 |
| PRS-CS | 4.261 |
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Table 27 PRS-SCZ3 BD1 and subphenotypes in RO-UK samples

e e e e e e e e e e e e e e e e e e e e e ————— o ———————— S Su— e E— 1
| ! | | !
| PRS-CS-auto SCZ3 score (predictor) | Es'l'm“t ! i"”'.:"“g AUC| P | FDRP |
| |
S I B | I — | I [ | I !
r (8 (. r (. r
:Samplev Outcome | Beta | SE | | e5%CI | ' { | 7
| Sample; Outcome | e Lo — L2280 | E— R E— | I :
| ' BD1vsCtr | ; | OR | | R2Ne | ! | :
==  E— -  Ereven -  Pr— - L P S S pr— 1
| RO-UK| BDI | 0533 | 0033 | 1705 | 1.71;1.82 | 4261 |0.643] 2.84E-64 | 4.83E-63 |
"""""""""" Fe———yym " ’-"""""-"""’f’-" T T T
| RO | BDI | 0638 | 0.068 | 1.893 | 189,217 | 5901 ;0669' 3.55E-23 | 121E-22:
pm—————— Fm————————— A ————— pm—————— pm—————— F————————— A ————— tmm e e
| UK | BDI | 0514 | 0038 | 1672 | 167;1.80 | 3.963 20639 1435-44- 1225-43:
....... drrrrrrrrrrrrrrre- M- e
| |
""" [ } | —— | e — ( JE e | J—— [ N 1
| | Psychosis | | | ! i | 1 i |
| p——— A N B N S  E— S N DS Se— B 1
| RO-UK | Psychosis | 0.463 | 0.035 | 1589 | 148,170 | 3.264 ;0624. 1535-42- 2.14E-41 |
| — [ S — - B | | — (e I B e
| RO | Psychosis | 0576 | 0.068 | 1778 | 156,203 | 4915 10654'2895-19. 1.35E-18 |
pm—————— e E e ———— fm——————— tm—————— e B ————— R At e ———
| UK | Psychosis | 0.443 | 0.042 | 1.557 | 143;169 | 2.981 20619 4.45E-27 312E-26:
_______ drrrrrrrrrrrrrrr e D e
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T T = [or | T rn | [T ':
| — f————————— ", ...... I — I — p————————] :‘, ....... I — p—————— ] ' ....... -
| RO—UK:Incongruent: 0464 | 0058 | 1591 | 142,179 | 3285 | 0626 53305-16' 1.16E-15 |
e e e F——— e e T ———— o ——— | e 1
| RO-UK | Congruent | 0381 | 0.057 | 1464 | 131,164 | 2243 |0.603| 1.03E-11) 2.88E-11 |
-——— T S St - -1 === e - 1
| RO-UK | RaPid 1 o451 | 0382 | 0637 | 061;069 | 2014 | 0583 2135-09- 2.43E-08 |
| | cycling | | | 1 = | ] |
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T |
— S  E— | e A Ey—— | E— N 1
| | ! | | t-test | ! Adj. R2 | H : |
oo e Poooee fooeeee - DT e P :
| RO-UK | AOgeneral | -0.944 | 0.256 | -368 | -145-044) 0728 | - |2.38E-04 3.33E-04 |
e | e —— | — . | oy
| RO 'AOgeneralE -1.88 | 0431 | -4.38 | -2.73; 104. 0935 | - :1445-05. 336E-05.
[ I S — r———— B T—— B —— e e B — e
| UK | AOgeneral | -0.535 | 0.315 | -1.69 | -1.150.08| 0472 | — | 0.0004 -904E-02§
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T |
pm—————— 25 i e ——— e ————— P e e e e e e ——— e e e 1
| : f : | ttest | | Adj.R2 | : { |
e — M e - b Basbinl S Do e :
| RO-UK | AOdepress| 12 | 0313 | -384 | -181,050] 098 | - |1.26E-04]196E-04|
| - S | J—— | e — . | [
| RO 'AO depress| -1.92 | 0.495 | -3.88 | -2.89; 095. 1197 | - | 1.17E-04] 1965—04,
R S — S A B P ! AN F B P , _______________
LUK ;Ao depress| -0.86 | 0.396 | -2.17 | -164;0.08| 0526 | - ;3015-02- 3.24E-02 |
P TRt | s Wittt S Bttt | i I Btutindiutnd St !
p—————— e e e e P ——— e e e e e e e —— e e 1
| : { | | ttest | | Adj.R2 | : f |
oo T bemeeee e - Ao e R T S :
| RO-UK | AOmania | -1.34 | 0.316 | -424 | -1.96,072| 0731 | - |241E-05] 482E-05'
b————— P e - —— o ———— f———— 7 e e e e e e o e e e e
| RO | AOmania { -1.83 | 0504 | -362 | -2.82; 0841 0815 | - .316E-04- 4025-04.
——————— f————————— e ————————— ————----&_——————-—-- ——————— e e —-—--—-— ———————
| UK | AOmania | -1.07 | 0403 | -265 | -1.86;,028| 0363 | - -830E-03' 9.68E-03 |

:—Abbrevlations AO general — BD1 age of onset; AO depres — Age of onset of depression;
. Incongruent — mood incongruent psychosis.2 Nagelkerke pseudo R-squared on the liability scale.

Phenotypic traits of bipolar disorder I (BD1)

Subsequently, several phenotypic traits of BD1 were analysed: the general age of onset (AO)
of BD1 irrespective of polarity at onset, AO of the first depressive episode, AO of the first
manic/mixed episode, presence of psychosis, presence of incongruent and congruent psychosis,
and rapid cycling.
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General age of onset of BD1

In the combined sample the general AO was predicted by SCZ3-PRS-CS (median P = 3.33 x
10-*) and by all eight pTs (pT+clump method) (FDR-corrected P-values) (Table 27). In the RO
sample the general AO was predicted by SCZ3-PRS-CS (P = 3.36 x 10), while in the UK
sample just a trend was visible (P = .090) (Table 27). In both national samples the regression
coefficients were negative indicating that a higher SCZ3-SNP loading was associated with a
younger AO in BD1 patients.

Age of onset of the first depressive episode

Both in the combined RO-UK sample (median P = 1.96 x 10*) and in the separate national
samples the age of onset of the first depressive episode was predicted by the SCZ3-PRS-CS (P
= 1.96 x 10* for RO; P = 3.24 x 102 for UK) (Table 27). Similarly, all eight SCZ3-pTs
computed through the pT+clump method predicted the AO of depression with significant P-
values and with negative regression coefficients in the RO-UK sample (Table 32) and in the
national samples (data not shown) indicating a negative effect of SCZ3-PRS on AO of
depression. The AO-depression was younger in psychotic patients than in non-psychotic
patients in the RO-UK sample (AO-depression in psychotic cases mean = 25.90, SD = 10.38,
AO-depression in non-psychotics =27.04, SD = 11.44; t = 2.89; P = .004), as well the general
AO of BD1 (AO in psychotic cases mean = 25.05; SD = 9.54; AO in non-psychotic cases mean
=26.35; SD =11.16 (t =2.49; P =.013).

Age of onset of the first manic episode

Age of onset of the first manic episode was predicted by the SCZ3-PRS-CS both in the
combined sample (P = 4.82 x 10°) and in the national samples (P = 4.02 x 10 for RO; P =
9.68 x 10 for UK) (Table 27). The pT+clump method did not predict the AO of the first manic
episode either in the national or in the combined samples (data not shown). In the samples there
was a significant difference in AO of depression between female and male cases (RO sample
mean AO-depression: males mean = 30.27 years (SD = 10.60); females mean = 27.11 years
(SD =9.77; t = 3.364, df = 1/497, P = .00082; UK sample: males mean = 26.45 (SD = 11.33;
females Mean = 24.26 (SD = 10.41; ¢ = 2.95, df = 1/884, P = .003); RO-UK sample AO-
depression; males mean = 27.76, SD = 11.23; females mean = 25.31, SD = 10.27, df = 1/1381,
t =4.15, P = 1.7 x 10?). Linear regressions for AO-mania were performed with sex as a
covariate in the combined sample (data not shown).

Presence of lifetime psychosis and incongruent psychosis

Similar to other BD samples [39] the prevalence of psychosis (congruent and incongruent)
reached 71% in the RO-UK BD1 sample. Both PRS computation methods (CS and pT+clump)
yielded highly significant P-values for the prediction of psychosis irrespective of type and for
the mood incongruent psychosis in the combined sample (Tables 27, 33-34) and the national
samples (data not shown). A novel finding indicated a negative correlation between the number
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of depressive episodes and psychosis. This finding was confirmed by a multivariate logistic
regression (B = -.407; SD = .143, Wald = 8.113; OR = .666, 95%CI = .503-.881, P = .004)
including six clinical variables, in regularised regressions (RF) (Table 30). The same negative
correlation was valid for the incongruent psychosis, but not for congruent psychosis. The mood
congruent psychosis was predicted only by the SCZ3-PRS-CS in the combined sample, but not
by the pT +clump method.

Rapid cycling

Both the SCZ3-PRS-CS method (Table 27) and the pT +clump SCZ3-PRS method with five
pTs (Table 35) predicted the rapid cycling trait. But the ORs were below 1 and the regression
coefficients were negative suggesting that rapid cycling and SCZ3-PRS loading have an
inverse relationship. This could suggest a different underlying genetic architecture for rapid
cycling compared to other psychosis-related features.

Family history for major psychoses

Major psychoses (schizophrenia, schizoaffective disorders, bipolar disorder, unipolar major
depression) was nominally predicted by three SCZ3-pTs (Table 30) indicating that only
specific SNPs and genes are involved in familial inheritance.

Table 28 PRS-SCZ3 prediction of BD-traits (10-fold cross-validated RF classification)

! T CPes L
Outcome ; Sample E Accuracy : “éf‘éggﬁ%’ \I/);f:e : F1 ; AUC CIA(E;?%)

: ¢ ' LRV L I B ]
| Psychosis | ROUK | 0765 | 0.737-0.79 | 0777 | 0852 | 0785 0.744-0.824 |
| Incongruent | RO/UK 0805 | 07690836 | 0819 | 0884 | 0787 | 0.746-0.829 |
| Congruent | ROUK | 0724 | 06850760 | 074 | 0803 | 0761 | 0.719-0.803 |
f 5 | RMSE | Resquied | MAE | RMSE-SD | R-squared SD | MAE-SD |

" AOBPI | ROUK | 5591 | 0733 | 3716 | 0647 | 0057 | 0357 |

AO I RomuK | 3884 | 0874 | 2105 062 | 0048 | 0265 |

| Depression | | b e e I o |
AOMania | ROUK | 5082 | 0774 | 281 | 0698 |  0.063 0314

_______________________________________________________________________________________

E Abbreviations: Adj.R2,adjusted R2; RMSE, Root Mean Squared Error; MAE, Mean Absolute Error; AUC, Area ;
| Under the Curve (AUCROC) !

E All models were constructed using conditional inference Random Forest (RF) to reduce risk of overfiitted models ;
| in data with correlated predictor variables !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Performance metrics from a 10-fold cross-validated Random Forest (RF) model, detailing
the accuracy of the SCZ3-PRS in predicting various continuous and binary BD traits.
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Table 29 Random forest 10-fold cross-validated predictions

———— e T T T e - 1
: i | Accuracy CI | 1 i . !
[ Model ! Accuracy | o |  AUC | AUC 95%CI | Adj.P-value* |
i | 95%) | ! .
t | | | ! : |
e | e o N o !
f Psychosis i E E i E !
It St e g s e S SR K S —
| Clinical + genetic | 0765 | 07370799 | 0785 | 0744084 | - |
: Clinical 0719 | 0704-0.794 | 0761 | 0722-0817 | 7.32E-03 |
""""" T ————
: Ge“e‘;,;gca' L0711 | 06850733 | 0625 | 0.593-0.657 | E
b | I i P N P Y B P !
i Incongruent | | ! | | !
| _psychosis | | | i | |
i Clinical + genetic | 0.805 | 0.769-0.836 | 0.787 |  0.746-0.829 | - !
t Clinical | 078 | 0752-0.779 | 0753 | 0.644-0.724 | 4.59E-04 |
———— e e e e e —————————— e ——— b ————— Fe———————————— - e —t———"
E Ge“e‘l‘,;g‘cm' | 0738 | 07140761 | 0606 | 0575-0.638 | i
RS | A S | F [}
| Congruent psychosis | N | T T |
{__Clinical + genetic | _ 0724 | 0.685-0.760 | 0.761 | 0.719-0.803 | - - J
! Clinical | 069 | 0650706 | 0.693 | 06430714 | 009 |
Fe—ay—-—= e AR B e 4
; Ge“e‘;,‘;{gc”' | 0685 | 06590710 | 0601 | 0568-0.634 | |
— ) Y | | | | 1
' T RMSE | AdjR-squared | I T |
. AOBPI . o o o o |
_____________________________________________________ S K S -
| Clinical + genetic | 5.591 | 0733 | - ! - | - 1
.................................................... | e R
| Clinical [ 6279 | 074 | - | - | <22E16 |
" “Genetic (SCZ3- | |, e IV T T |
L ey Mot 0o b b |
i AO depression " _E _E | j |
| Clinical + genetic |  3.884 |  ( 0874 | T R |
—————————————————————————————— e e ey =tub= =i
; Clinical 15037 ! 0.768 ! - T - | 8.00E-03 |
= et PN ol 7 T S B — e | ———————
| Ge"etl‘,;gcm‘ | 9874 | 0017 | f ! i
__________________ | S S R S |
i AO mania i T T i T ji
L AOmama L
| Clinical + genetic | 5082 | 0774 | - | - " - |
————————————————— ettt G E Gy E e S E =t
i Clinical | 6143 | 0.681 | - | - | 0.078 i
e e e e r————————te e e e —— -+ e 1
| Ge“etl‘,‘;‘SCB' w0766 | o015 | § E |
e e e —_— 4
] [}
e e e e 1}
E Abbreviations: Adj.R-squared, adjusted R-squared; RMSE = Root Mean Squared Error; MAE, Mean i
| Absolute Error; AUC, Area Under the Curve (AUCROC) H
| &
|}

This analysis compared the predictive performance of models using either clinical predictors only,
genetic predictors only (SCZ3-PRS-CS), and a combination of both in the RO/UK samples.
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Table 30 Comparison between variable importance

| Outcome ||  Predictor || LogORe || SE || CLow || CLhigh || P-value ][ Sig. || MDA¢ || SE || sig |
Psychosis F;?y?}i;ts?saj 1.769 || 0.138 || 148 || 2.076 || <0.001 || *** || 0.0216 || 0.011 || **
| Psychosis || SCz3PRS || 0194 [[0.051 ] o1 | 0293 ] <0.001 [ ***][ 0.003 ][ 0.009 | * ]
| Psychosis || Nrdepresepis || -0.132 || 0.066 || -0.244 || -0.011 || 0.028 ][ ** || 0.002 ][ 0.002 | * |
| Psychosis || Nrmaniaepis || 029 ][ 0.109 ] 0232 || 0.627 ] <0.001 || *=*][ 0.002 ][ 0031 ] * ]
| Psychosis || Ageonsetmania || -0.014 ][ 0.013 || -0.039 || 0.011 ] 0204 | ns. ][ 0.0002 ][ 0.017 | * ]
| Psychosis || Rapidcycling || -0.746 ][ 0325 || -1.293 || -0.02 ]| <0.001 | ***][ 0.002 ][ 0.027 || * ]
| Psychosis || Irritable mania || 2479 ][ 0225 || 2.053 || 2.954 ]| <0.001 | ***][ 0.002 ][0.052 | ]
| Psychosis || Nrepistotal || 0.108 [ 0.026 ]| 0.015 || 0.2 | o012 ][ ** | 0001 |[0.023 ] * |
| Psychosis || Age onset depress || -0.037 ][ 0.015 || -0.065 || -0.009 ] 0.016 || * ][ 0.0001 || 0.024 || * ]
| Psychosis || Ageonset BPI || -0.069 ][ 0.017 || -0.108 || -0.041 ]| <0.001 || *** ][ 0.0003 ]| 0.029 || * ]
| e || sczzprs || 0261 ][ 0047 | 0211 || 0404 ] <0.001 | ***][ 0.008 ][ 0012 * ]
MIP F;?y?}i;ts?saj 2325 || 0.142 || 2.158 || 2.744 || <0.001 || *=*=* || 0.006 || 0.009 | **
| mrP || Imitablemania || 1739 ][ 0226 || 1.295 || 2.165 | <0.001 ][ *** ] 0.001 ][ 0.003 || * |
| MIP || Ageonsetdepress | -0.041 ][ 0.017 || -0.067 || -0.002 ]| 0.02 | * ][ 0.0005 ][ 0.021 || * ]
| MIP || Ageonsetmania || -0.009 ][ 0.013 ] -0.032 ] 0.018 ] 0456 || ][ 0001 ][0021 | * ]
| MIP || Nrepismania || 0197 ][0039 ] 013 | 0268 ] 0.004 | ** | 0.001 ][ 0.028 ]| * ]
| MIP || AgeonsetBPI || -0.086 ][ 0.013 | -0.117 || -0.064 ]| <0.001 | ***][ 0.001 ][ 0.027 | * ]
| mrP || Nrepisdepres || 0067 o111 -0313] o004 | 04 ][ | 0003 ][0033] * |
| wMIP || Rapidcycling || -0.083 ][ 0.197 | -0412] 039 ] 0776 || ][ 0.0005 || 0.009 || ** ]
| MIP || Nrepistotal | 0109 ][ 0.019 ] 0077 || 0158 ] <0.001 | ***][ 0.0003 || 0.04 || * ]
| MIP || Famhistaffdis || 1.85 ][ 0119 1.575 || 2.033 ] <0.001 || ***][ 0.01 ][ 0.013 | ***]
| wmip || sczzprs || 0173 ][ 0.051 | 0068 || 0265 ] <0.001 | ***][ 0.005 ]| 0.009 || ** ]
| mrP || Nrepisdepres || 027 [ 0053 ] 0192 || 0367 | 0.004 ][ ** | 0.001 |[0.024 ] * |
| MIP || Nrepismania || 0384 ][ 0042 0307 || 0478 ] <0.001 | =] 0.001 ][ 0.024 | * ]
| MIP || Ageonsetmania || -0.075 ][ 0.014 || -0.12 || -0.056 ]| <0.001 | ***][ 0.001 ][ 0.026 | * ]
| MIP || Rapidcycling || -0.277 ][ 0305 || -0.427 || -0.122 ]| <0.001 || *** ][ 0.0002 || 0.004 || ** ]
| mrP || Imitablemania || 168 || 0.186 || 1.358 || 2.121 | <0.001 ][ *** ] 0.002 ][ 0.022 || * |
| wMIP || Nrepistotal || 02 ][0.022] 0158 || 0249 ] <0.001 | *** ][ 0.0004 || 0.034 || * ]
| wMIP || Ageonsetdepres || -0.11 ][ 0.019 || -0.178 || -0.106 ]| <0.001 | *** ][ 0.001 ][ 0.027 | * ]
| MIP || AgeonsetBPI || -0.118 ][ 0.016 || -0.171 || -0.108 ]| <0.001 | ***][ 0.001 ][ 0.043 | * ]
Notes: a. MIP — Mood-Incongruent Psychosis. A Penalised (Elastic Net) logistic regression used for measuring outcome
associations with constrained, correlated predictor variables. Bootstrapped Std.Error, CI, Confidence Intervals (95%) and
P-values. Significant at * P <0.05, ** P <0.01, *** P <0.001, **** P <0.0001 b. Random (conditional) forest modelling
for nonlinear approximation of relationships between outcome and the predictor variables. Variable importance measure
used Conditional Permutation Importance c¢. LogOR, absolute log odds ratio (OR) per standard deviation (SD) d. MDA,
Mean Decrease Accuracy expresses how much accuracy the model losses by excluding each variable.

This analysis compared the variable importance rankings derived from Random Forest and regularised
regression models for predicting psychosis and its subtypes.
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Predictive performance of SCZ3-PRS in combination with clinical traits of BD1

After investigating the predictive power of SCZ3-PRS-CS for phenotypic traits of BD1 in
univariate regressions (only the SCZ3-PRS-CS regressed against each outcome), the predictive
power of SCZ3-PRS-CS was investigated in combinations with clinical variables (family
history of major psychoses in first and second degree relatives, number of depressive and manic
episodes, AO-mania, rapid cycling, irritable mania, total number of episodes, AO-depression,
general AO) for certain BD1 traits in the RO-UK sample with the random forest method that
controls the collinearity between predictor variables (Table 28-30). BD1 cases were randomly
allocated to either training, validation or testing sets. To determine the predictive performance,
i.e., classification by the cross-validated RF model of the binary outcomes, the ROC (Receiver
Operating Characteristic) and its Area under the curve (AUC), sensitivity, specificity, and
accuracy were used. Additionally, the Positive Predictive Value (PPV) indicating the risk for
false positives is lower with a higher value, and the F1 score, a more accurate metric for
prediction accuracy with uneven class distribution, were both reported. Accuracy for the cross-
validated RF regression of the continuous outcomes was assessed with R2 and RMSE (Table
28), shows that both the accuracy and AUC-values for binary subphenotypes (psychosis and
its subtypes) and R2 and RMSE for continuous subphenotypes indicate a moderate predictive
performance of SCZ3-PRS-CS and clinical variables. The best predictions were for psychosis,
incongruent psychosis (AUC close to .8) and AO-depression, consistently across methods.

Prediction Models for BD1 Phenotypic Traits

Models using SCZ3-PRS alone do not achieve 100% accuracy in predicting BD1 phenotypic
traits [40]. Factors such as family history and age-of-onset may also play a role. To explore
this further, prediction models were developed for each BD1 trait, comparing the effectiveness
of clinical variables, SCZ3-PRS-CS, and a combination of both. Clinical variables included
family history of major psychoses, total number of episodes, number of manic episodes,
number of depressive episodes, irritable mania, rapid cycling, general age of onset (AO), AO-
depression, and AO-mania. Each variable was excluded when it served as the outcome (Table
29).

Comparison of Predictive Power

For all investigated BD1 traits, the most accurate predictions were obtained from models
combining SCZ3-PRS-CS and clinical variables, followed by models using only clinical
variables. Models relying solely on SCZ3-PRS-CS showed the weakest prediction indicators
(Table 29). Pairwise Bonferroni-corrected one-sample #-tests revealed significant differences
in metrics between the clinical and clinical plus SCZ3-PRS models, except for congruent
psychosis and AO-mania, where only trends were observed. Psychosis, incongruent psychosis,
and AO-depression showed the best prediction accuracy.

Variable Importance in Predicting Psychosis
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Given that psychosis was the best predicted BD1 subphenotype, the importance of the variables
in predicting psychosis and its subtypes was examined using two cross-validation methods:
regularized regression (elastic net in “cv.glmnet”) and conditional random forest (RF) (cforest)
in R (Table 30). In the RF model, higher Mean Depreciation Accuracy (MDA) scores indicate
greater importance of a variable for outcome classification. Table 30, illustrates that the
importance of variables varies with this method used. The elastic net model highlighted family
history, SCZ3-PRS-CS, number of mania episodes, rapid cycling, irritable mania, and general
AO as having the highest and equal importance for psychosis prediction. In contrast, the RF
model showed diminished importance for these variables, although they remained significant.
For mood-incongruent psychosis, family history of major psychoses and irritable mania were
the most important predictors in both models, while SCZ3-PRS-CS and general AO of BD1
remained significant but with higher P-values.

Table 31 General Age of Onset (AO) in the combined RO/UK sample

RO/UK General AO
SCZ3-PRS Beta/ SE 95%CI P FDR-P R2 ;?
pT-5x 108 -0.52 (0.24) -0.98 - -0.06 0.027 0.027 0.003 0.002
pT-1x 10-7 -0.54 (0.24) -1.00 - -0.08 0.021 0.025 0.003 0.002
pT-1x 10-6 -0.75 (0.23) -1.21--0.29 0.0013 0.0018 0.006 0.005
pT-1x10-5 -0.94 (0.23) -1.40--0.48 5.46 x 107 8.74x 10 0.009 0.008
pT-1x 10-4 -0.99 (0.23) -1.44 - -0.54 1.76 x 107 3.52x 10° 0.01 0.01

pT-0.001 -0.99 (0.23) -1.44 - -0.54 1.68 x 107 449x 107 0.01 0.01

pT-0.01 -1(0.23) -1.46 - -0.55 1.63 x 107 6.51x 107 0.01 0.01

pT-0.05 -1.51(0.27) -2.03--0.98 2.00x 108 2.00x 107 0.017 0.017

Results from linear regression models assessing the association between SCZ3-PRS (at various P-value

thresholds) and the general age of onset for bipolar disorder in the combined RO/UK sample.
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Table 32 Age of onset of depression in the combined RO/UK sample

RO/UK AO depression
SCZ3-PRS Beta SE 95% CI P FDR-P Adj.R2
pT-5E-08 -1.131 0.365 -0.41 --1.85 0.0020 0.00232 0.007

pT-1E-07 -1.144 0.366 -0.43 --1.86 0.0018 0.00232 0.007

pT-1E-06 -1.326 0.361 -0.62 --2.03 2.51x10* 6.70E-04 0.011

pT-1E-05 -1.472 0.359 -0.77 - -2.18 4.54x107 1.80E-04 0.014

pT-1E-04 -1.435 0.349 -0.75--2.12 4.36x107 1.80E-04 0.014

pT-0.001 -1.243 0.352 -0.55--1.93 4.29x10* 8.60E-04 0.010

pT-0.01 -1.155 0.355 -0.46 - -1.85 0.0012 0.0019 0.008

pT-0.05 -0.837 0.404 -0.04 - -1.63 0.039 0.039 0.003

Results from linear regression models assessing the association between SCZ3-PRS (at various P-value
thresholds) and the age of onset for depression in the combined RO/UK sample.

Table 33 Prediction of Psychosis irrespective of subtype in the RO/UK sample

RO/UK Psychosis
SCZ3-PRS OR SE 95% CI P FDR-P AdjR2
pT-5x107® 1.06 0.06 0.95-1.17 0.30 0.30 <0.00018
pT-1x107 1.06 0.06 0.96 - 1.18 0.23 0.27 0.001
pT-1x107° 1.18 0.06 1.07 - 1.31 0.0014 0.0019 0.008
pT-1x107° 1.31 0.07 1.18-1.45 4.83x107 9.65x1077 0.020
pT-1x10* 1.37 0.07 1.23-1.52 7.20x10°° 1.90x10°® 0.028
pT-0.001 1.45 0.08 1.30-1.62 1.00x10710 4.00x10°1° 0.036
pT-0.01 1.41 0.08 1.27-1.58 8.00x1071° 3.30x10° 0.032

pT-0.05 1.24 0.08 1.09 - 1.41 0.0010 0.0016 0.009

Results from logistic regression models assessing the ability of the SCZ3-PRS (at various P-value
thresholds) to predict the presence of psychosis in the combined RO/UK sample.

Table 34 Prediction of incongruent Psychosis in combined RO/UK sample

RO/UK Incongruent
SCZ3-PRS OR S.E. 95% CI P FDR-P R2 AdjR2
pT-5x108 1.1 0.05 1.00-1.22 0.047 0.047 0.003
pT-1x107 1.11 0.05 1.01-1.22 0.038 0.043 0.003
pT-1x10¢ 1.21 0.06 1.10-1.34 1.00x10* 1.00x104 0.011
pT-1x107 1.39 0.07 1.26-1.54 1.00x10-10 2.00x101° 0.032
pT-1x104 1.45 0.08 1.31-1.61 8.00x1013 2.00x1012 0.041
pT-0.001 1.51 0.08 1.36 - 1.68 2.00x104 1.00x1013 0.047
pT-0.01 1.51 0.08 1.36 - 1.68 2.00x10°4 1.00x1013 0.047
pT-0.05 1.65 0.11 1.44-1.89 4.00x10°13 1.20x1012 0.046

Results from logistic regression models assessing the ability of the SCZ3-PRS (at various P-value
thresholds) to predict the presence of mood-incongruent psychosis in the combined RO/UK sample
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Table 35 Prediction of BD1 rapid cycling by SCZ3-PRS (logistic regression)

RO/UK Rapid
Cycling

SCZ3-PRS OR SE Beta 95% CI AdjR2 P FDR-P
pT-5x10% 1.041 0.069 0.041 091-1.19 0.00 0.556 0.556
pT-1x107 1.044 0.069 0.043 091-1.19 0.001 0.534 0.610
pT-1x10¢ 0.93 0.067 -0.072 0,81-1.06 0.002 0.283 0.377
pT-1x107 0.856 0.068 -0.153 0.75-0.98 0.007 0.024 0.0384
pT-1x104 0.809 0.068 -0.212 0.71-0.92 0.013 0.002 5.33x1073
pT-0.001 0.723 0.071 -0.324 0.63-0.83 0.029 4.97x10° 1.99x107
pT-0.01 0699 | 0072 | -0357 0.61-0.80 0.034 | 7.354x107 | 5.88x10°

pT-0.05 0.830 0.080 -0.186 0.70-0.97 0.007 0.020 0.040

Results from logistic regression models assessing the association between SCZ3-PRS
(at various P-value thresholds) and rapid cycling in individuals with BD1.

Pathway analysis of psychosis in BD1

Twenty-two pathways (Table 36) had a competitive P-value of < .05, defined as showing
association. All enriched pathways contained at least one gene identified in previous or most
recent GWAS of SCZ [13] or BD [41], see Table 40. The highest associated pathways

were ZNF318 (R2 =.951, FDR-P = .003), Apoptosis (R2 =.958; FDR-P =.003), and
Mitochondrion (R2 =.754; FDR-P = .037). ZNF 318 (zinc finger protein 318) was identified
in the most recent BD GWAS [41]. Other pathways associated with psychosis in the samples
were pathways relevant to brain function, including synaptic transmission involving both ion
channels and dendrites (regulation _of dendritic_spine development;
regulation_of membrane repolarization; regulation_of dopamine receptor signaling), to the
autonomous nervous system (abnormality of the autonomic nervous_system), to the
immune system (regulation_of immune system process).
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Table 36 PRSet SCZ3 Individual level pathway analysis in RO-UK sample

i Pathway PRS for psychosis Association Pathway ;
E with enrichment |
! psychosis for f
| psychosis 2
| owo| FORP-| N [ P- |
| 9 ]
: 28(/")[ value® | SNPs Tvaluecg
'MITOCHONDRION [ 0.754 | 0.037 | 4899 | 0.010 |
‘ZNF31B 0951 | 0003 | 4333 | 0002
' REGULATION_OF_IMMUNE_SYSTEM_PROCESS 0339 [ 0038 | 1378 | 0.043 |
‘NCOAZ {0542 | 0027 | 1609 .'6'61' 1]
'MIR202.37 054 | 0043 | 1367 | 0009 |
'MIR3125 C 07 [ o014 [ 1432 fé’o’di':
'MIR68S9.SP ;"6.'6'3'&'}'"6.'61’5";’"1'1'56"' 6'666"
'MIR4782.5P 0665 | 0014 | 1041 | 6'662{'
'MRs706 | 0.665 | 0.014 | 1041 | 6’66&"
'MIR47633F ["0659 | 0.014 | 101 é"' b'bb's',
| ABNORMALITY_OF_THE_AUTONOMIC_NERVOUS_SYSTEM ["o068 | 001 i"f"{ééé"' 0. 66'4',
'MIR10395.3% 063 | 0015 | 535 | 0.005
| REGULATION_OF_DENDRITIC_SPINE_DEVELOPMENT 0607 | 0.019 | 458 | 0.005 |
‘MIR197 0658 | 0014 | 433 |o0. b'di,
| REGULATION_OF_MEMBRANE_REPOLARIZATION | 0548 | 0.026 | 336 ;"6.'66%';
'APOPTOSIS 10958 | 0.003 | 539 ;"6.’0’66'3
‘chrip2t " 0.649 ';'"6.6'11{":’"556" fé’o’di':
| REGULATION_OF_DOPAMINE_RECEPTOR_SIGNALING_PATHWAY | 0.317 | 0.014 | 1 36 001 é"
'MIR6253F :"b'.ié"f"éfdéé":'"ébb"" 6'666"
'MIR3e81sP [ 0636 | 0 '61'5":’"553"7 6’66&"
'MIR6849 5P ["0683 | 0.01 i"f"é'a'd"- 'o'bb's',
'MIR4BQ ["0.445 ,’"6f6§é"f"'§é'"; 'd.bb'g';

i SNP = single nucleotide polymorphism.2 Pathways presented are the weighted R?, i.e. R2 devided g
; by the number of SNPs in the pathway.? P-values for association after FDR muiltiple testing f
é correction, significance was set at p < 0.05.¢P-values indicating enrichment were corrected for g

10,000 permutations, significance was set at p < 0.05.
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4.6 Discussion

A strength of this study is the phenotypic homogeneity of strictly diagnosed BD1 cases and the
direct investigation of the controls with a psychiatric interview, which is not always the
situation in the large-scale GWAS samples, which allows for the highlighting of some new
associations. This investigation into the predictive capacity of the latest schizophrenia
polygenic risk score (SCZ3-PRS) for bipolar disorder type 1(BD1) phenotypes in a well-
characterized European cohort yields several noteworthy findings. It was demonstrated that
SCZ3-PRS, while primarily developed for schizophrenia, exhibits a significant, albeit modest,
ability to predict various BD1 subphenotypes, including age of onset (for both the disorder
generally and for depressive and manic episodes), and the presence of psychosis, particularly
the mood-incongruent subtype. This underscores the substantial shared genetic underpinnings
between these two major psychiatric disorders, aligning with prior reports of high genetic
correlation and a common “psychotic factor”. This study is among the first investigating the
predictive validity of the SCZ3-PRS for BD1 clinical traits, specifically age of onset and
psychosis, in phenotypically homogeneous clinical samples. There is only one published study
using SCZ3-PRS for prediction of the clinical course of the disease in psychotic patients
(mainly schizophrenia) [42] but not for predicting those clinical traits investigated here. I also
evidenced a negative correlation between the number of depressive episodes and psychosis.
The results confirm findings of previous studies that used the SCZ-SNP-set 2014 [3] and SCZ3-
SNP-set [13] on psychosis in BD1 [6, 43-44] and on AO in BD1 [3, 5, 45]. Moreover, a higher
burden of SCZ3-PRS was associated not only with younger general AO of BD1, but also with
decreased AO of first depressive episode and of the first manic episode. A relationship between
SCZ3-PRS and AO-depression was reported [46] for the AO of unipolar major depression in
the UK biobank.

To our knowledge the negative correlation between the number of depressive episodes and
psychosis found in the samples both in regularised regressions and RF is a novel finding
supported by a meta-analysis of 54 studies of psychotic symptoms in BD [39] showing that
psychosis is four times more frequent in manic/mixed episodes than in depressive episodes of
BD1. The negative correlation found between the number of depressive episodes and the
presence of psychosis, especially incongruent psychosis, warrants further exploration into the
complex interplay of mood episodes and psychotic features in BD1. In contrast to previous
work [44] who found no effect of SCZ3-PRS on mania in BD, a positive association of SCZ3-
PRS on the AO of mania was found here. The difference could originate from ascertainment,
the current study contained only BD1 samples, while their sample additionally contained
28.8% BD2 cases.

The predictive power of SCZ3-PRS-CS was further tested in combinations with other nine
clinical variables in Random Forest (RF) models that model non-linear relationships and
control for the collinearity between predictor variables. According to AUC and accuracy values
for dichotomous traits and R2 and RMSE for continuous traits the predictive power of SCZ3-
PRS was more modest than in simple linear/logistic regressions, but the best prediction was for
incongruent psychosis and AO-depression. Moreover, the RF models that compared the
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predictions based on only SCZ3-PRS, on SCZ3-PRS plus clinical variables, and on only
clinical variables showed that the worst prediction was provided by the SCZ3-PRS and that the
accuracy of the prediction based on only clinical variables was not far from that based on both
SCZ3-PRS and clinical variables. This finding is in line with an earlier observation [42] that
SCZ3-PRS had minimal value for outcome prediction relative to information from the clinical
diagnostic system. Two studies suggested that clinical variables such as psychiatric family
history and age of onset improve the predictions based on PRS for clinical purposes [47-48].
This was evident here in the ranking of clinical variables in the prediction of psychosis, as well
as in the comparison of the RF model based on only SCZ3-PRS with the model including
SCZ3-PRS plus clinical variables.

Therefore, the application of random forest models provided valuable insights into the relative
contributions of genetic and clinical factors in predicting BD1 traits. Consistently, the most
robust predictions were achieved when SCZ3-PRS was integrated with clinical variables,
outperforming models relying solely on clinical information or SCZ3-PRS alone. This
highlights the multifactorial nature of BD1 and the necessity of combining genetic
predisposition with clinical presentation for improved predictive accuracy. While SCZ3-PRS
contributes meaningfully to this predictive power, its clinical utility appears to be maximized
within a broader clinical context. Notably, psychosis, particularly its incongruent form, and the
age of onset of depression emerged as the most predictable phenotypes in the combined models.
A comparison of the variance explained (liability Nagelkerke R2) by the two PRS methods
indicated a marked increase in phenotypic variance explained by PRS-CS compared to the pT
+ clump method. For some investigated BD1 traits (AO-mania, mood-congruent psychosis)
the two PRS computation methods gave different results. On the other hand, the pT-+clump
method showed that pTs stringently associated SCZ3-SNPs (e.g. pT-5 x 10°8; pT-1 x 107) offer
significant predictions for incongruent psychosis and AO-depression supporting their clinical
validity. Intriguingly, I an inverse relationship between SCZ3-PRS loading and the rapid
cycling phenotype in BD1 was observed, suggesting a potentially distinct genetic architecture
influencing this specific course of illness. Both PRS methods significantly confirmed the trend
observed earlier [3] that there is an inverse relationship between SCZ-SNP loading and BD
rapid cycling.

The finding that SCZ-PRS most strongly predicts mood-incongruent psychosis has important
nosological implications. It suggests that individuals with BD1 who present with this feature
may carry a greater burden of the genetic risk typically associated with schizophrenia. This
supports a dimensional view where mood-incongruent psychosis in BD represents a point of
significant biological overlap on a continuum between affective and non-affective psychoses.
Clinically, these individuals may represent a distinct subgroup with a different prognosis or
treatment response profile, warranting further investigation into whether this specific genetic
signature could be used for patient stratification in the future.

The pathway enrichment analysis identified twenty-two biological pathways associated with

schizophrenia and psychosis in BD1, offering potential avenues for future research into the
specific molecular mechanisms underlying this critical aspect of the disorder. These findings
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may contribute to a more refined understanding of the pathophysiology shared and distinct
between schizophrenia and bipolar disorder with psychosis. The enriched pathways are
relevant to brain function, including synaptic transmission involving both ion channels and
dendrites, and brain development. The pathways that explained the highest variance of
psychosis were: ZNF318, Apoptosis, Mitochondrion. Neuroimaging studies showed
progressive loss of cortical grey matter in first-episode psychosis (FEP) [49], therefore a role
for apoptosis mechanisms producing cell or localised synaptic/dendritic loss in psychosis is
plausible. Defects in the structure of dendrites of pyramidal neurons may also have direct
effects leading to the loss of cortical volume (regulation of dendritic spine development)
[50]. Mitochondrial dysfunction (Mitochondrion) was linked to alterations in dopamine
signalling, glutamatergic dysfunction and oxidative stress in schizophrenia [51-52] and in BD
[53]. Both the “Mitochondrion” and “ZNF318” pathways contain the CREB3L4-
gene. CREB3L4 is a subtype of the CREBI-gene, expression of which is downregulated in
brain tissue of SCZ, BD, MDD patients compared with healthy controls [54]. The chrlp21-
pathway with the microRNA encoding gene MIR137HG that regulates signalling pathways for
neural development is implicated in schizophrenia risk [55] and its early onset
[56]. NCOA2 (R2 = .542, FDR-P = .027) was one of 9 genes differentially expressed in the
dorsolateral prefrontal cortex (DLPFC) in patients with BD [57]. Regulation of dopamine was
implicated in psychosis by the regulation of dopamine receptor signaling pathway.
Excessive dopaminergic modulation of striatal function has long been hypothesized to mediate
psychosis and antipsychotic drugs target dopaminergic innervation in the striatum [58].

There is also evidence to involve the immune system in the pathogenesis of psychosis
(regulation_of immune system process). Increased risk of adulthood psychosis has been
linked to high concentrations of proinflammatory cytokines in childhood [59]. In a GWAS of
response of BD patients to lithium treatment [11] genes related to the immune system (HLA
antigen complex and inflammatory cytokines) were associated with the treatment response and
the same genes in the HLA region were also associated with risk for BD [41] and SCZ [13]. In
the “negative regulation_of immune system process” and the “ZNF318” pathways appears
the MADILI-gene and in the NOA2-pathway appears the NT5C2-gene that were associated
with BD and SCZ in several GWAS; they were also associated earlier with the AO of BD1 in
the RO sample [60]. The immune system PRS pathway, further implicated the gene FURIN,
recently associated with BD [41] it was linked with decreased neurite outgrowth [61-62].
Altered function of the autonomic nervous system involving heart rate was previously
documented in SCZ and psychosis [63-64] and genes present in this pathway were associated
with cardiac B-adrenergic signalling and cardiac hypertrophy signalling in BD [57]. Several
genes (CACNAIC, GABBRI, GABBR2, SLC6A49; NT5C2) in pathways linked to psychosis in
the BD1 sample are also involved in the epigenomic differential methylation of DNA in SCZ
and psychosis [65-66]. DNA methylation was also linked to the AO of SCZ [67] and BD1 [68].
The limited variance explained by PRS alone in predicting BD1 phenotypes also highlights the
remaining challenge of “missing heritability” in psychiatric genetics.
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4.5 Limitations

There was heterogeneity in BD1 severity. The combined Romanian and UK sample had
varying degrees of BD1 severity. The Romanian sample, and partially the UK sample,
primarily included hospitalized BD1 cases. Hospitalization is generally an indicator of more
severe illness, which could have influenced the findings, especially for phenotypes related to
severity, such as the presence of psychotic symptoms [39]. Furthermore, there was incomplete
subphenotype information. Not all participants in the UK sample had complete information for
all the BD1 subphenotypes being studied. This missing data (Table 37) could have introduced
bias or reduced the statistical power for analyses involving those specific subphenotypes within
the UK cohort and the combined sample.

4.6 Conclusions

The study is among the first investigating the predictive value of the SCZ3-PRS and shows that
these biomarkers have a modest clinical value for predicting some phenotypic traits of BD1 in
machine learning models. The findings demonstrate a modest clinical value of SCZ3-PRS.
SCZ3-PRS has a limited, or modest, clinical value when used alone for predicting phenotypic
traits of bipolar disorder type 1 (BD1). The predictive performance of SCZ3-PRS for BD1
subphenotypes is improved when it is used in combination with clinical variables. The best
predictions were achieved by models that integrated both genetic and clinical data. The
prediction of certain BD1 traits by an SCZ-derived PRS further supports the idea of shared
genetic liability between schizophrenia and bipolar disorder. SCZ3-PRS showed predictive
ability for specific BD1 subphenotypes, including psychosis (especially mood-incongruent
psychosis), and the age of onset of the disorder and its mood episodes. An inverse relationship
was observed between SCZ3-PRS loading and the rapid cycling phenotype, suggesting a
potentially different genetic influence on this specific feature of BD1. The study identified
several biological pathways associated with psychosis in BD1, offering potential targets for
future research into the underlying mechanisms. The findings underscore the complex,
multifactorial nature of BD1 and highlight the importance of considering both genetic and
clinical information for better prediction and understanding of the disorder. SCZ3-PRS might
be used in the clinical counselling for BD1 treatment since previous studies using SCZ-PRS
derived from an older SCZ-GWAS [4] showed that a high burden of SCZ-PRS is associated
with poor response to antipsychotic and lithium treatment [12, 69-70].
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4.7 Supplementary Materials

Table 37 Comparison of clinical traits in BD1 cases across samples

5 "' """""""""""""""""""""""" 1
_ i | Sample !
| Variable i Overall, N = 1,878 T |
| : 'RO =574 |UK = 1304 |
O e B I 4
| 1 [ r |
! Sex | H | i
[ e A —— S — i
] [
| Male | 38% (718/1,878) | 38% (216/ 574) 1389% (502 /1,304 :
| | 1 i H
_____________________ e mmmm————————— '__'__'__'__'__'__'__"'_'__'__'__'__'__'__
| Female [ 62%(1,160/ 1,878) | 62% (358 / 574) 162% (802 /1,304) |
| I | B |
e S ; v i
| Age-at-interview IM=47y (sd=13) | M =42y (sd=13) | M =49y (sd=13) i
N L — S R S 4
| Age-of-onset BDI [ M =25y (sd=10) | M=27y (sd=10) M = 25y (sd=10) :
o e e A i
| Psychosis | ! f :
oo A pommmmmmemmmemeee TG —— :
| No | 28% (515/1,878) [ 16% (92 / 574) 134% (441/ 1,304) :
| H 1 | |
b oo e ——eee] — 4
| Yes [ 71% (1,321/1,878) | 84% (482 / 574) 166%(849 /1,304) E
1 | ! B I
S e —————————— ] 1
| Missing data 1 0.75% (14/1864) 0% | 1% (14/1290) |
S —— N — e O — 4
| Age-onset-mania [ M=29y (sd=11) | M=31y (sd=11) (M=28y (sd=11) i
| | H |
e e Fmmmm e~ J' --------------------- e 4
| 1 J |
E Age onset depression | M=25y (sd=12) E M=25y (sd=13) i M=25y (sd=11) i
1 |
b e e e e pm———————————— e -4
H 4 I
i Rapid cycling ! E { E
! | B B
Frmmmm—————————————— f """""""""""" ] 1
| No | 63% (1171/1,878) ' 90% (519/574) | 51% (652/1304) |
| I T, b e |
] [] 14 |
| Yes | 16%% (309 /1,878) | 10% (55 /574) [19% (254/1304) i
i H 1 | I
I e pommmmm e ———————————] — 4
| Missing data [ 21% (398/1878) 1 0% (0) [30% (398/1304) |
: ] 1 ! :
B T ‘; """""""""" 1
| Irritable mania | :' ! |
i — S S—— 4
| No 159% (1,110/ 1878) | 41% (233 / 574) [67% (877 1304) :
1 | ! 1 1
S B e 1
| Yes [ 19.5% (366/1878) ! 59% (341 / 574) 12% (25 / 1304) |
e B | ] |
I (] 14 I
| Unknown | 21% (402/ 1878) ‘o 131% (402/1304) i
S b B L "
1 Family history major psychoses E
) ]
5 .5 T T T T T |
| No | 29% (547/ 1878) | 40% (231/574) 124% (316 / 1304) |
1 |
S — i e —— 4
| Yes [ 26%(499/ 1878) | 60% (343 / 574) 1 12% (156 /1304) |
) | B |
- e ——————— ] 1
| Unknown | 45% (832/1878) "o | 64% (832/1304) i
S S — S ——— L —— 4

A summary of key clinical and demographic traits for Bipolar Disorder I (BD1) cases, stratified by the
Romanian (RO) and UK cohorts.
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Table 38 Differentiation between BD1 cases and controls in RO sample

RO
pT Beta (8) OR 95% CI R2 P FDR - P
pT-5x 10 SIZ ::"322 77 68-.87 022 .000020 2.00x 10°5
pT-1x 107 SIZ ::"322 76 .67-.96 024 .000010 1.14 x 10°5
pT-1x 10 SB;"()3612 74 .65-.83 .030 9.19x 107 | 1.23x10°
pT-1x 10 S E ::"%663 70 62-79 040 1.79x 10- 10 | 3.59 x 1010
pT-1x 10* siz '324 1.50 1.33-1.70 051 1.79x 10-10 | 2.87 x 1010
pT-0.001 si ::'32 s 1.57 1.38-1.79 062 246x10-12 | 6.55x 10712
pT-0.01 Sﬁe ::"325 61 0.54-0.70 071 6.48x 10-14 | 5.18x 1013
pT-0.05 B;’ii? 051 0.02-0.11 066 491x10-% | 1.96x 102

Results of logistic regression analyses at various P-value thresholds (pT), showing the predictive power
of the SCZ3-PRS in distinguishing BD1 cases from controls in the Romanian (RO) sample.

Table 39 Differentiation between BD1 cases and controls in UK sample

UK

'SCZ3-pT | OR | SE | 95%Cr | p R2 | Liab.Ng.R2 | FDR-P

pT-5E-08 | 1.770 | 0.036 | | 1.6- 190 | 279E-58 | 0.00003 | 0.000015 | 3.72E-58 |
| pT-1E-07 | 1.760 | 0.036 | 1.64- 1.88 | 9.10E-57 | 0.002 0001121 ' 9.10E-57 |
CpT-1E-06 ’127’60””'%'6.03'6’ 164189 | ’5’.6’7’E’-57""§'0.'001 ~10.000307126 | 6.48E-57 |
pT-1E-05 | 1.810 | 0.036 | 1.69 - 1.95 | 3.42E-61 | 0.037 | 0.01949031 | 5.47E-61 |
pT-1E-04 | 2470 | 0.046 | 2.26- 2.71 | 1.48E-85 | 0.149 | 0.08399165 | 1.18E-84 |
pT-0.001 | 2.800 | 0.056 | 2.52 -3.14 | 1.64E-75 | 0.163 | 0.09230233 | 4.37E-75
pT-0.01 | 2.800 | | 0.056 | 2.52 -3.14 | 1.04E-63 | 0.163 || 0.092302 | 2.08E-63 |
pT-0.05 | 3.100 | 0.052 | 2.74- 356 | 3.57E-79 | 0173 | 0.098845 | 1.43E-78 |

Results of logistic regression analyses at various P-value thresholds (pT), showing the predictive power
of the SCZ3-PRS in distinguishing BD1 cases from controls in the UK sample.

160



Prediction of family history for major psychoses in BD1 probands

RO

pT Beta S.E. Wald OR 95% CI P-value
pT-5x108 0.154 0.088 3.084 1.167 0.982; 1.386 0.079
pT-1x107 0.176 0.088 4.001 1.192 1.004; 1.416 0.045
pT-1x106 0.175 0.088 3.998 1.192 1.003; 1.415 0.046
pT-1x107 0.135 0.086 2471 1.145 0.967; 1.355 0.116
pT-1x104 0.052 0.083 0.393 1.053 0.895; 1.239 0.531
pT-0.001 0.708 0.281 6.377 2.031 1.17;3.51 0.012
pT-0.01 0.101 0.087 1.344 1.106 0.933; 1.311 0.246
pT-0.05 0.542 0.544 0.993 1.719 0.592; 4.988 0.319

Results from a pT + clump analysis assessing the association between SCZ3-PRS and a family history
of major psychoses in BD1 probands from the Romanian (RO) sample.
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Table 40 GWAS genes associated with psychosis included in the enriched pathways

Pathway

Associated GWAS Genes

1. MITOCHONDRION

BRDS, TRIM31, CKB, SFXN2, CLU, CLICI, GLYCTK, SLC9B2, LETM2,
CREB3L4, METTL15, MARK?2, ALAS1, FENI, FHIT, MLXIP, FOXO3,
HARS2, GABBR1, HSPA9, HSPD1, HSPEI, IRF3, YJEFN3, FADSI,
MAPT, MSRA, NDUFA2, NRGN, CISD2, PCCB, TMX2, MRPS33, PLEC,
POLG, MIEF1, NDFIP2, DARS2, NDUFAF7, AMBRAI, DNAJCI1,
MAPK3, STARD7, ELAC2, SDHAFI, NDRG4

2.ZNF318

CAMKK?2, PTK2B, CHRNA2, MATN4, SPECCI, SYNE1, TMTCI, DOCK2,
OASL, SLC3941, GPM64, TDRDY, CDC25C, NEGRI, TBLIXRI,
ZNF664, HARBII, NMB, CTNNDI1, TCTNI, MEF2C-ASI, MYO19,
MADILI, DNAJC11, PLEKHOI, SDCCAGS, SMG6, IGSF9B, WDR76,
FOXPI1, DARS2, ENOXI1, KDM3B, TBCIDS, UBE2D2, RC3HI1, SEC114,
RERE, CREB3L4, GATAD2B, DOC24, MSI2, SPPL3, ZEB2, ATG13,
GRIN24, DLGAP?2

3. REGULATION_OF IMMUNE _SYSTEM
PROCESS

PLK2, RC3H1, DRD2, PLCL2, SCRIB, HSPA9, MDK, FURIN, YTHDF?2,
MADILI, CUL44, DGKZ, CD47

4. NCOA2 TARGET GENES

ITIHI, NT5C2, PACSIN2, OGFOD2, HSPA9, IPO13, ALOX5AP,
DYNCILI2, RBMS3, ABCBY, RBKS, RELA, AGPATI, SNHG3, MEF2C,
MSANTD?2

5. MIR202 3P

MEF2C, PLEKHOI, PTPRD, BCL74, ZNF823, SHANK2, MOB4, MSI2,
SH3RF3, RD3L, HSPEI-MOB4, TSPAN2

6. MIR3125

|| ELAVL4, ZNF365, RC3HI1, CUL4A4, ANKRD45, ARL3, SUFU, TRIMS

7. MIR6859_5P

|| ELAVL4, RC3HI, NEBL, ARL3, SUFU, TRIMS

8. MIR4782 5P

ADD3, ALASI, RPS6KA2, TCTNI, CALN1, SUMO2, DNMT34,
DYNCILI2

9. MIR5706

ADD3, ALASI, RPS6KA2, TCTNI, CALN1, SUMO2, DNMT34,
DYNCILI2

10. MIR4763 3P

SLC6A9, DEFS, ETF1, NGEF, KIF21B, TAF12, SUFU, GATAD2B, KLF6,
STAGI, MLXIP, SMARCD1, MEF2C, MARK?2

11. ABNORMALITY OF THE AUTONOMIC
_NERVOUS_SYSTEM

MAPT, CACNAIC, ZEB2, CHRNA3, FGFRI, TUBB3, GIGYF2, ARL3,
TCTNI, SNCA, GABBR2, FANCI, FANCA, FANCL, CISD2, SUFU

12. MIR10395_3P

|| ADD3, ATXN7, CHRNAS, KLF6, MOB4, HSPEI-MOB4, CADM2, ACE

13. REGULATION_OF_DENDRITIC_SPINE

NGEF, MEF2C, SHANK3

_DEVELOPMENT
| 14. MIR197 || BCL7A4, CTNNDI, GATAD2B, SPPL3, ETFI |
15.REGULATION_OF MEMBRANE _
REPOLARIZATION YWHAE, AKAP6
| 16. APOPTOSIS || BNIP3L, CLU, RELA, DPYD, ETFI |
| 17. CHR1P21 || DPYD, NFUIP2, RPL7P9, RN7SKP270, PTBP2, MIR137HG |

18. REGULATION_OF_DOPAMINE_RECEPTOR
_SIGNALING_PATHWAY

DRD2

19. MIR625 3P

WDR?76, PTPRD, ALASI

20. MIR3681 5P

CSDEIL, FUTI0

21. MIR6849 5P

CSDE1

22. MIR4669

CLICI, GIGYF2
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Genes associated with psychosis were included in the 22 pathways of SCZ3-PRS identified in the RO/UK sample
that overlapped with genes found associated in the most recent GWAS of bipolar disorder [41] and schizophrenia
[13].

The focused analysis in Chapter 4 confirmed that while specific transdiagnostic genetic risks,
like the SCZ PRS, can predict severe features such as psychosis in BD, it also highlighted that
different clinical specifiers (e.g., psychosis versus rapid cycling) have divergent genetic
associations. This evidence necessitates a broader approach to systematically map the
multifaceted genetic landscape of bipolar disorder, as its considerable clinical heterogeneity
suggests various subphenotypes may possess distinct, as well as shared, genetic underpinnings.
Therefore, Chapter 5 undertakes a large-scale multi-trait analysis of Genome-Wide Association
Studies (MTAG) across eleven clinically defined BD subphenotypes. Leveraging data from
multiple cohorts, the objectives are to systematically replicate and assess the consistency of
Polygenic Risk Score (PRS) findings for these subphenotypes and to dissect this heterogeneity
by identifying specific genomic loci, genes, and biological pathways that contribute to
individual clinical presentations, as well as those shared across the broader BD spectrum and
with schizophrenia (SCZ) and other closely related cross-disorder traits.
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5 Bipolar Disorder Subphenotypes

A preprint version of the research in this chapter is available on medRxiv at
doi: https://doi.org/10.1101/2025.06.23.25330155

5.1 Abstract

Background: The clinical heterogeneity of bipolar disorder (BD) is a major obstacle to
improving diagnosis, predicting patient outcomes, and developing personalized treatments. A
genetic approach is needed to deconstruct the disorder and uncover its fundamental biology.
Previous genetic studies focusing on broad diagnostic categories have been limited in their
ability to parse this complexity.

Aims: The aim was to test the hypothesis that clinically distinct subphenotypes of BD are
associated with different underlying common variant genetic architectures.

Methods: This multicentred study included a primary genome-wide association study
(GWAS) of up to 23, 819 bipolar disorder (BD) cases and 163, 839 controls. These results were
integrated via multi-trait analysis of GWAS (MTAG) with external summary statistics for BD
(59, 287 cases; 781, 022 controls) and schizophrenia (SCZ; 53, 386 cases; 77, 258 controls).
Sample overlap was statistically accounted for.

Results: The primary outcomes were the genetic dimensions underlying BD heterogeneity,
differentiated by single nucleotide polymorphism (SNP)-heritability (h?snp), genetic
correlations, genomic loci (P<5x107%), and functional, cell-type, and gene-expression pathway
analyses. Four genetically-informed dimensions of BD were identified: Severe Illness, Core
Mania, Externalizing/Impulsive Comorbidity, and Internalizing/Affective Comorbidity. The
analyses yielded up to 181 subphenotype-associated loci, 53 of which are novel. The Severe
Illness Dimension was characterized by a unique neuro-immune signature (a protective
association with HLA-DMA, P=2.50x10727%) evident only when leveraging SCZ genetic data.
The Internalizing/Affective dimension was associated with neurodevelopmental genes
(e.g., DCC). Notably, the rapid-cycling subphenotype showed a unique signature of strong
negative selection, a finding not observed in other traits.

Conclusions: The clinical heterogeneity of bipolar disorder appears to be defined by a complex
and multi-layered genetic architecture. The presented findings provide a data-driven, biological
framework that may advance psychiatric nosology beyond its current diagnostic boundaries.
The delineation of these genetically-informed dimensions offers specific hypotheses functional
genomics studies for subsequent therapeutic discovery, laying the foundation for a transition
from a uniform treatment model to the paradigm of precision psychiatry. Establishing this
framework is an essential step toward refining diagnostic criteria, enabling patient
stratification, and developing more effective, and personalized treatments.
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5.2 Introduction

Bipolar disorder (BD) is a severe, chronic psychiatric illness affecting around 1% of the
population. The disorder has a high heritability of over 80%, and its clinical variability
complicates diagnosis, treatment, and research [ 1-4]. Previous work established distinct genetic
overlaps between BD subtypes and other major psychiatric disorders: bipolar disorder I (BD1)
shows a high genetic correlation with schizophrenia (SCZ) [3, 5-8], while bipolar disorder 11
(BD2) links more strongly to major depressive disorder (MDD) and attention-
deficit/hyperactivity disorder (ADHD) [2, 6, 9]. This overlap indicates that biological pathways
are not constrained by diagnostic manuals, necessitating a data-driven approach to nosology.
Given the genetic continuum between BD and SCZ, it was hypothesized deconstructing severe
BD requires comparing its genetic architecture with SCZ’s to isolate disorder-specific from
transdiagnostic risk signals. This heterogeneity impacts treatment, as features including
psychosis or comorbidities guide distinct pharmacological strategies, and the iterative process
of personalizing an effective regimen may contribute to the illness burden [10]. A summary of
these transdiagnostic profiles for key bipolar disorder subphenotypes is provided in Appendix
9.3.

This heterogeneity is evident across multiple clinical domains. Age of onset (AOO) is a critical
factor; an earlier AOO typically signifies a greater genetic liability and a more severe disease
trajectory [11-12]. An onset before 28 years of age increases the risk for psychotic features,
rapid cycling (RC), comorbid anxiety disorders, alcohol or substance use disorders (AlcSUD),
and suicide attempts (SA) [13]. RC (defined as >4 mood episodes/year) [14], is linked to a
family history of mood instability, high psychiatric comorbidity, and a lack of responsiveness
to lithium, making it a challenging clinical presentation [15-17]. The long-observed clinical
association with other traits, for example, thyroid dysfunction and mood instability in RC may
be a key aspect of this profile [18-19]. While preliminary studies suggest benefits from using
adjunctive thyroid hormone for RC, a definitive mechanistic link remains unproven [17, 20].

To deconstruct this heterogeneity, eleven subphenotypes were selected for this analysis. These
were chosen to represent key domains of the illness based on their established clinical relevance
and evidence for familial aggregation, suggesting more genetically homogeneous subgroups of
patients which may boost genetic discovery. They encompass core diagnostic subtypes (BD1,
BD2, SZA), key course specifiers with significant prognostic value (Psychosis, RC, UM,
AOO), and highly prevalent and impactful comorbidities that shape the illness course
(AlcSUD, PD, OCD, SA).

5.3 Aims

Genetic research into clinically distinct BD subphenotypes has been hampered by inadequate
statistical power. This study tested the hypothesis that the clinical heterogeneity of BD is linked
to underlying genetic heterogeneity defined by specific biological pathways. This study
employed a two-step MTAG approach, first meta-analysing single subphenotype GWAS with
additional BD cases and second by integrating large-scale SCZ GWAS data, to boost power to
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identify specific genetic mechanisms. This multivariate approach aimed to reveal genetic
factors that confer risk for specific psychopathologies, and those that underlie the observed
genetic overlaps with other major psychiatric traits. A robust genetic-clinical framework of
four dimensions was first established in the clinical data before GWAS, with subsequent
downstream interrogation of the unique and shared biological pathways, spanning neuro-
immune, neurodevelopmental, and synaptic systems, that likely define them.

5.4 Methods

To dissect the genetic architecture of bipolar disorder, primary genome-wide association
studies (GWAS) were conducted on eleven distinct clinical subphenotypes. To increase
statistical power, these results were then integrated with large-scale external summary statistics
for BD and schizophrenia using a two-stage Multi-Trait Analysis of GWAS (MTAG). The
resulting high-power summary statistics were subjected to extensive downstream analyses,
including heritability and genetic correlation estimation, functional genomics, pathway and
cell-type enrichment, and transcriptome-wide association studies.

A comprehensive account of the study cohorts, all GWAS and post-GWAS analysis
procedures is provided in the General Methods (Chapter 2).

5.5 Results
5.1 Foundational Analyses: Data Quality and Phenotypic Validation

This study included 52% females, with a median age at interview of 22 (interquartile range
[IQR], 17-30) years. Clinical characteristics are detailed in Chapter 2, Tables 4-5.

To ensure that phenotype definitions were consistent across international cohorts, an
assessment of phenotypic homogeneity was performed. Generalized linear mixed effects
(GLMER) models were constructed using pairwise analyses of BD subphenotypes to assess
phenotype heterogeneity across geographical sites, termed ‘Region,” which was used as the
random effect (N = 18,800 BD cases). ‘Region’ included symptom-level data from cohorts
across Australia, Europe, North America, or Nordic countries. Confidence intervals (95% CI)
of predicted probabilities (y-axis) overlapped, indicating homogeneous responses to target
phenotypes (x-axis) which met international consensus measures (DSM-IV, DSM-V, ICD-9,
or ICD-10).(See Table 41 and Figure 19 below).
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Figure 19 Mixed regression models of homogeneity in phenotype regions.

Generalized linear mixed effects (GLMER) models were constructed using pairwise analyses of BD
subphenotypes to assess phenotype heterogeneity across geographical sites, termed ‘Region,” which
was used as the random effect (N = 18,800 BD cases).
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Table 41 Assessment of Phenotypic Homogeneity Across Geographic Regions

BD BDI BD2 | SZA PSY RC UM SA | ALC PD 0CD
1.09 -1.95 | 2.58 -25 24
43(.10) | .04 -12 .02
PSY (.04) (06) | (.20) - (.05) (.04)
EEEY EEEY skkok ks B ('05) Kok (‘06) * ('08)
-57 51 74 -26 -1.92 60 42 1.19 1.09
RC (.06) (06) | (.17) (.05) - (29) (.06) | (.06) (.08) (12)
skksk skksk skksk sk skksk skksk skksk skksk skksk
UM (1 '1289) '(2468 -25 | .41(.10) _(lzgi (11(;; -17 -31 -47
. wer | (23) . wes | (10) | (14)** | (22)%
35 -1.07 49 36
-01 -11 58 (.06) 51(.07)
SA 12) | .03(.05 11 - 05 10
45 49 25
007 -12 23(.04) | 41(06) | -.18 50 (.06)
ALC (05) (06) (;LL) s s (10) (ﬁi) - s (.i)f)
22 15 72 -13 1.19 24 49 50 1.33
PD (.07) (08) | (.18) (.06) (.08) . | (07) | (06) - (.08)
OCD ~08 12 2L o) (.08) (1 .1028) (_;129) (?g) ('(2)2) (16383)
-.002 008 | -024 | -017 -.027 023 -030 | -.027 | -024 | -017
AOO | (.00 (.00) | (.01) (.00) (.00) (.00) (.00) | (.00) (.00) (.00)
sk skksk skksk sk skeksk skksk skksk skksk skksk skksk
.009 -.006 -013 -.045 -027 | -.023 -046 | -.027
AO- -.029 023
(.00) (.00) (.00) (.00) (.00) | (.00) (.00) (.01)
AO_ 021 -019 0ol -017 -.034 ooy | 014 | -021 -022 | -.022
man/ (.00) (00) | ~ (.00) (.00) ) (.00) | (.00) (.00) (.01)

Following these quality control steps, a Confirmatory Factor Analysis (CFA) of the 11 BD
subphenotypes empirically derived a robust four-factor clinical model, which indicated
acceptable fit indices (y2=588.91, P=2.188x107%7; SRMR .084; CFI .936) (Figure 20). Factor
analysis was performed using the psych package in R to produce a visualisation of the
homogeneous subgroups (subphenotypes) and their interrelatedness. The analysis included
clinical data from N = 18,800 BD cases. The factor analysis supported four primary clinical
factors for BD heterogeneity, providing an initial framework for understanding BD clinical
substructure. The model identified: (1) a Psychosis-Spectrum Factor (schizoaffective disorder,
bipolar type [SZA], Psychosis); (2) a Core Bipolar Subtype Factor (BDI1, BD2); (3) a
Comorbidity and Mood Instability Factor (RC, Panic Disorder [PD], Obsessive Compulsive
Disorder [OCD], Alcohol or Substance Use/Dependency [AlcSUD], Suicide Attempt [SA],
Unipolar mania [UM] [40-42]); and (4) an Age of Onset [AO/AOQ] Factor. This four-factor
structure determination was supported by parallel analysis (Figure 24). Support for two
dimensions which differentiated risk for Psychosis and Comorbidity was provided further by
Principal Component Analysis (PCA) (Figure 21).

168



Panic

RapidCyc

0CD

AleSUD

SuicAtt

UnipolMan

SZA

Psychosis

BD1

BD?2

AO_depr

AQO

AO_Man

Figure 20 Confirmatory Factor Analysis (CFA) model for BD heterogeneity.

Factor analysis was performed using the psych package in R to produce a visualisation of the
homogeneous subgroups (subphenotypes) and their interrelatedness. The analysis included N = 18,800
BD cases. The factor analysis supported four primary clinical factors for BD heterogeneity: (F1) SZA
and Psychosis; (F2) BD1 and BD2; (F3) a cluster of RC, PD, OCD, AlcSUD, SA, and UM; and (F4)
AOO, AO-depression, and AO-mania/mixed. A Confirmatory Factor Analysis (CFA) of the 11 BD
subphenotypes empirically derived this robust four-factor clinical model, which indicated acceptable fit
indices (¥2=588.91, P=2.188%10-87; SRMR .084; CFI .936).
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Figure 21 PCA visualization of 11 BD subphenotypes.

PCA visualization of 11 BD subphenotypes, showing clustering. This figure visualizes how components
account for variance in the dataset. See Supplementary Table 39 for per-cohort sample sizes for each
subphenotype analysis.
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5.2 Identification of Four Genetically-Informed Dimensions

Before dissecting the genetic architecture of bipolar disorder (BD), foundational analyses were
conducted to ensure the integrity of the data. The primary genome-wide association studies
(GWAS) of eleven clinical subphenotypes showed minimal confounding from uncorrected
population stratification or cryptic relatedness, as indicated by Quality Control (QC) and the
genomic inflation (GC) factors (AGC) shown in the QQ plots which were close to 1 (Figure
22).
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Unipolar mania (UM)
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Figure 22 QQ plots for each of the 11 core subphenotype-GWAS

Each plot shows the observed -log10(P-values) against the expected -log10(P-values) under the null
hypothesis of no association. Genomic inflation factors (AGC) are indicated within each plot. These
plots indicate minimal confounding from uncorrected population stratification or cryptic relatedness,
supporting the validity of the genetic associations. Additional Supplementary Table 53 presents the
results from 16 distinct genome-wide association studies (GWAS) conducted on 11 subphenotypes.

With the phenotypic framework established, a two-stage Multi-Trait Analysis of GWAS
(MTAG) was employed to boost statistical power and delineate the genetic architecture of the
subphenotypes. The initial stage involved integrating primary GWAS results with large-scale
external BD summary statistics, followed by a second stage incorporating schizophrenia (SCZ)
data, allowing for comparison. The increased statistical power and identified loci from the BD-
only MTAGs are visualized in the Manhattan plots (Figure 23). This determination was
supported by parallel analysis.
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Figure 23 Manhattan plots for each of the 10 subphenotype-BD MTAG analyses.
Each plot displays the -log10(P-values) of all SNPs across the genome. The red line indicates the
genome-wide significance threshold (P<5x10-%). These plots visually represent the increased statistical

power and identified loci from the BD-only MTAGs. Supplementary Table 48 presents the results from
the 10 subphenotype-BD-only and the 10 subphenotype-BD-SCZ MTAGs.
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Figure 24 Parallel analysis plot for factor determination.

Parallel analysis determined the number of lower dimensions in the dataset to be four. Eigenvalues for
principal components (PC) and factor analysis (FA) converged on four eigenvalues (factors), which are
above the PC (upper red line) and FA (lower red line) cutoff, determining four factors were the best fit
for the model.

An a priori (Figure 21) and subsequent Principal Component Analysis (PCA) (Figure 25) of
MTAG loci aligned with these clinical factors, underscoring a genetic basis for the observed
clinical distinctions. This genetic PCA explained 81.5% of the variance and revealed four
distinct dimensions, or clusters, that may represent points along a biological continuum rather
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than discrete entities. The statistical validity of this structure was confirmed by a one-way
ANOVA, which revealed a similar robust pattern of difference in LAVA local genetic
correlation Rho(p) between the clusters, (3, 1038) =203.2, P <2.00x107¢.
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Figure 25 PCA biplot of genomic loci in 10 subphenotype-BD-MTAGs.

Principal component analysis (PCA) biplot of genomic loci from 10 subphenotype-BD MTAG results.
The first two dimensions account for 81.5% of the variance. Subphenotypes with similar genetic
architectures are closer on the biplot. Lighter colours indicate higher contribution (factor loading) to
dimensional variance. A one-way ANOVA revealed a significant difference in LAVA local genetic
correlation (p) between the PCA.
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Table 42 shows direct tests of the incremental power gain from a single subphenotype GWAS
to a BD-only MTAG and then to the BD-SCZ MTAG counterpart. This out-of-sample analysis
also confirms that MTAG not only increased statistical power but also enhanced the biological
coherence of the dimensions, revealing a more valid and meaningful genetic architecture for
Bipolar Disorder. See Table 47 for an overview of the external summary statistics.

Table 42 Independent MTAG Validation

‘Severe Illness’ and ‘Core Mania’ Dimension (vs. Schizophrenia)

Subphenotype || Univariate rG with SCZ MTAG’?(?ZFG With | I TAG-SCZ-BD rG with SCZ
| Psychosis | 44 [ 53 I 75 |
| SZA [ 50 [ 57 I 79 |
| BD1 [ 32 [ 37 | 61 |

‘Internalizing’ Dimension (vs. Major Depression)

Subphenotype Univariate G with MDD MTAGI_\?]];]; G with MTAG-SCZ-BD rG with MDD
| BD2 [ 55 [ .60 | 65 |
| oCD [ 17 [ 20 I 26 |
| PD [ 41 [ 45 | 49 |

‘Externalizing’ Dimension (vs. ADHD)

Subphenotype || Univariate rG with ADHD MTACZEE};G with | I TAG-SCZ-BD G with ADHD
| AlesUD | 35 [ 38 [ 44
| SA [ 28 [ 32 [ 37

The statistical validity of this transdiagnostic approach was further confirmed by associations
of the primary credible gene set (Tables 48-52) with established rare-variant risk genes from
the SCHEMA (Chapter 2 [74]) and BipEx (Chapter 2 [75]) consortia using a one-sided Fisher’s
exact test. Statistical significance was defined as P < .0125 (Bonferroni correction for four
tests). Our analysis revealed a significant convergence between common- and rare-variant
evidence. The enrichment for our primary BD-SCZ credible sets with SCHEMA rare-variant
genes was significant (e.g., for BD-SCZ noMHC set, P = 4.1 x 107*), driven by overlapping
genes TCF4, PBRMI, and ZEB2. The secondary BD-Only sets showed only a nominal
enrichment that did not survive correction. While exploratory analyses of the BD-Only sets
yielded suggestive trends for PBRMI and TRANKI, the overall results allow us to begin
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genetically dissecting the core components of BD from the broader, transdiagnostic risk factors
it shares with SCZ for both common and rare variants. This pattern suggests the convergence
is most robust for transdiagnostic factors shared between BD and SCZ.

Based on their genetic and clinical composition, the four dimensions were interpreted as
representing:

e A Severe Illness Dimension (Psychosis, SZA)

e A Core Mania Dimension (BD1)

e An Externalizing/Impulsive Comorbidity Dimension (SA, AlcSUD)

e An Internalizing/Affective Comorbidity Dimension (BD2, PD, OCD, RC, UM)

5.3 Dimension 1: Severe Illness

This dimension is defined by profound genetic overlap with SCZ (see genetic correlations,
Figure 26, Supplementary Table 59.2), a link substantiated by this analyses and consistent with
large-scale genomic dissections of the two disorders [43-44].
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Figure 26 Global Genetic Correlation Heatmap of BD and Cross-Traits.

Bivariate genetic correlations (#G) calculated using summary statistics from large-scale GWAS across
three trait categories: 13 BD subphenotypes, ten psychiatric disorders, and seven cognitive measures.
P-values were Bonferroni-corrected (P<1.84x10-*) and correlations were standardized in
GenomicSEM. See Table 47 for an overview of the external summary statistics.

The inclusion of SCZ variants in the MTAG amplified shared signals; for instance, the number
of shared loci between Psychosis and SZA increased by 63% (from 16 to 26) in the BD-SCZ
analysis (Supplementary Table 45; Figures 27-28).
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Figure 27 UpSet plot of genomic loci overlap (BD-only MTAGsS).
Overlap of genomic loci in 10 subphenotype-BD MTAG analyses. The plot and corresponding table
visualize the number of shared and unique genomic risk loci across the 10 analyses.
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Figure 28 UpSet plot of genomic loci overlap (BD-SCZ MTAG:sS).
Overlap of genomic loci in 10 subphenotype-BD-SCZ MTAG analyses. The plot and corresponding
table visualize the number of shared and unique genomic risk loci across the 10 analyses.
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Biologically, this dimension is differentiated by a unique neuro-immune signature. The TWAS
analysis revealed that expression of HLA-DMA in the cerebellum showed a strong protective
association (P = 2.50 x 1072") only in the BD-SCZ MTAG context; this signal was not robust
in the BD-only analysis, indicating this specific immune pathway is a primary feature linking
severe BD to SCZ (Supplementary Table 50; Figure 29 below). This synaptic link is mirrored
at the cellular level, where the genetic association for GABAergic and cortical neurons became
more robust in the BD-SCZ context (P-adjusted for Psychosis-BD GABAergic neurons = 3.39
% 10.07 vs. 1.96 x 107" for Psychosis-BD-SCZ), underscoring a shared cellular vulnerability
(see Figure 30). Furthermore, this dimension is characterized by specific synaptic biology. The
novel, deleterious variant in the neuronal sodium channel gene SCN24 (Combined Annotation
Dependent Depletion [CADD] [45] =19.83) was associated specifically with the Psychosis and
BD1 subphenotypes, directly implicating fundamental neuronal excitability. This is mirrored
in the gene-set analysis, where the significance for pathways including
“GOCC_POSTSYNAPTIFIC SPECIALIZATION”, driven by genes involved in scaffolding
proteins and glutamatergic receptor subunits, became orders of magnitude stronger for this
cluster when SCZ data was added (e.g., for SZA, P(Bonferroni) = 1.35 x 107'?), confirming
that the shared biology is concentrated at the synapse (Supplementary Table 49; Figure 31,
Figure 34). However, the absence of association could also be interpreted as due to a lack of
power to detect an association.
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Figure 29 TWAS joint tissue associations in 10 subphenotype-BD-SCZ MTAG.

The plot shows the most robust, conditionally independent gene-tissue associations for each BD
subphenotype across 15 brain tissue datasets. The x-axis represents the significance of the association
(-logio P-value), corrected for all genes and tissues tested. The direction of effect is indicated by
triangles: red for a positive Z-score (increased expression associated with risk) and blue for a negative
Z-score (decreased expression associated with risk). See Figure 32 below for the BD-Only TWAS
analyses. Subphenotypes included were: Psychosis, Schizoaff, Schizoaffective disorder, BD1, bipolar
disorder I, SuicAtt, suicide attempt, AlcSUD, alcohol or substance use disorder, BD2, bipolar disorder
I, PanicDis, panic disorder, RapidCyc, rapid cycling, OCD, obsessive compulsive disorder,
UnipolarMan, unipolar mania. The Supplementary table 50 provides the full list of gene-tissue
associations from the TWAS analysis.

189



Psychosis  Schizoaff ~ BD1 SuicAtt  AleSUD BD2 PanicDis RapidCycl  OCD  UnipolMan

GABAergic_neurons
GW26_GABAergic_neurons
hybrid
neurons
GW16_Neurons
GW23_GABAergic_neurons
GW16_GABAergic_neurons
GW26_Neurons
GABAergic
Gaba
DA1
Ex1
Ex7
NbGaba
GW10_Neurons
Ex4
Ex5
Ex8
Ex2
In1
Ex3
GW26_OPC
Ex6
exPFC2
In4
L5.6_THEMIS
VIP
exPFC1
In5
GABA2
GW26_Astrocytes
LGN_Inh_TRPC4
exCA1
L5.6_THEMIS_CNR1
In2
In3
DA2
L5.6_THEMIS_NTNG2
DAO
L2_CUX2_LAMPS_dev
NbML5
In8 *
In6 ki
In7 *

GABA1
Sert o
fetal_quiescent
LGN_Inh_LAMP5
GW10_GABAergic_neurons *

Figure 30 Cell type enrichment analysis in 10 subphenotype-BD-SCZ-MTAGs.
The heatmap displays standardized beta coefficients from cell-type enrichment analysis across 10 BD
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subphenotypes. Colour intensity corresponds to the strength of the enrichment signal, with
subphenotypes ordered by effect size. Absence of colour indicates no association. Asterisks (*) denote
associations that remained robust after Bonferroni correction for the number of cell types tested (P <
.05). Corresponding results from the BD-Only analysis are shown in Figure 33 below. The
Supplementary Table 47 provides the full list of associations from the cell type specificity analysis. The
analyses included: Psychosis, Schizoaff, Schizoaffective disorder, BD1, bipolar disorder I, SuicAtt,
suicide attempt, AlcSUD, alcohol or substance use disorder, BD2, bipolar disorder II, PanicDis, panic
disorder, RapidCycl, rapid cycling, OCD, obsessive compulsive disorder, UnipolMan, unipolar mania.
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Figure 31 Gene set enrichment analysis in 10 subphenotype-BD-SCZ-MTAGs.

The heatmap displays standardized beta coefficients from MAGMA gene-set enrichment analysis
across 10 BD subphenotypes. Colour intensity corresponds to the strength of the enrichment signal,
with gene sets ordered by effect size. Absence of colour indicates no association. Asterisks (*) denote
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associations that remained robust after Bonferroni correction for the number of gene sets tested (P <
.05). Corresponding results from the BD-Only analysis are shown in Figure 34 below. The
Supplementary Table 49 provides the full list of gene-set associations. The analyses included:
Psychosis, Schizoaff, Schizoaffective disorder, BD1, bipolar disorder I, SuicAtt, suicide attempt,
AlcSUD, alcohol or substance use disorder, BD2, bipolar disorder II, PanicDis, panic disorder,
RapidCycl, rapid cycling, OCD, obsessive compulsive disorder, UnipolMan, unipolar mania.
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Figure 32 Heatmap of TWAS joint tissue associations (BD-only MTAGs).

Heatmap illustrating TWAS joint tissue associations in 10 subphenotype-BD MTAGs. Effect sizes,
categorized by tissue, represent findings across 15 adult and foetal brain tissues. Red (positive) and blue
(negative) triangles represent the direction of effect of the TWAS Z-statistic score.
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Figure 33 Heatmap illustrating differential cell type enrichment (BD-only MTAGsS).

The heatmap illustrates differential cell type enrichment across 10 subphenotype-BD MTAG analyses.
Colour intensity corresponds to the strength of the standardized beta. An asterisk (*) marks cell-type
associations that survive Bonferroni correction (P<.05).
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Figure 34 Heatmap illustrating differential gene set enrichment (BD-only MTAGsS).

The heatmap illustrates differential gene set enrichment across 10 subphenotype-BD MTAG analyses.
Colour intensity corresponds to the strength of the standardized beta. An asterisk (*) marks gene sets
that survive Bonferroni correction (P<.05).

5.4 Dimension 2: Core Mania

While genetically related to the Severe Illness Dimension, the BD1 dimension is distinguished
by specific loci related to neuronal function and development. The TWAS analysis identified
PACSI, involved in neuronal protein trafficking, as uniquely associated with BD1 via its
expression in the cortex (Supplementary Table 50). The association with PACS!] suggests
altered neurotrophic support may be a specific biological feature of the core manic phenotype.
Furthermore, BD1 was specifically associated with a variant in ADCY2 (rs78308718), a gene
previously linked to lithium response [46-49]. This suggests a distinct biological pathway
related to treatment response that is characteristic of this core manic phenotype. This was
complemented by findings for CACNAIC, a well-established risk gene for BD, which showed
its strongest association within the Core Mania dimension, reinforcing the importance of
calcium channel signalling in mania [3, 5]. This contrast is particularly evident when
comparing BD1 and RC; while BD1 shows genetic specificity, RC displays a highly pleiotropic
profile, with associated variants overlapping more extensively with other subphenotypes
(Figure 35).
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Figure 35 Overlap visualizations of lead SNPs across subphenotypes.
Visualization of shared and unique lead SNPs for bipolar disorder I (BD1) (A) and rapid cycling (RC)

(B) from the subphenotype-BD-only MTAG analyses, demonstrating the genetic specificity of BDI
versus the pleiotropic architecture of RC.
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5.5 Dimension 3: Externalizing/Impulsive

This dimension is defined by a strong shared liability for impulsive and externalizing
behaviours. This was evident in the high global genetic correlation between suicide attempt
(SA) and Alcohol/Substance use disorder/dependency (AlcSUD) (rG ~ .80, s.e.m.=.056) and
was validated by LAVA, which identified three shared local genetic loci between them (see
Supplementary Table 51 and 59.2). The three local genetic loci shared between SA and
AlcSUD included a region on chromosome 16 containing genes for synaptic vesicle transport,
suggesting shared mechanisms of presynaptic function. This dimension shares a common
architecture with ADHD; biologically, this dimension is distinguished by a strong enrichment
for midbrain dopaminergic neurons, directly implicating reward and motivation pathways in
the shared genetic risk for both SA and AlcSUD (Supplementary Table 47). The enrichment
for dopaminergic neurons was specific to cells from the ventral tegmental area (VTA), a key
hub in the mesolimbic reward circuit, providing a direct anatomical and cellular correlate for
the high rates of comorbid substance use in this cluster. The novel association of the gene
MADILI (Table 43, Supplementary Table 49) (critical for neurodevelopment), with the
AlcSUD subphenotype in the BD-SCZ MTAG, provides an additional specific biological link
for this dimension.
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Table 43 Key Genetic and Biological Findings Defining the Dimensions of Bipolar Disorder

‘ Pathway

H Key Finding

H Primary Evidence

‘ ‘ Analysis ‘

Severe Illness Dimension (Psychosis, SZA)

. TWAS (BD-SCZ
Neuro-Immune HLA-DMA Protective; P=2.50x10-273 w N?”IS A G)SC
‘ Synaptic Function H SCN24 H Deleterious; CADD = 19.83 H Variant Annotation ‘

‘ Synaptic Function

H Postsynaptic Specialization H P(Bonferroni) < 1.35x10-12 H Gene-Set Enrichment‘

‘ Cellular H VIP-expressing interneurons H Top enriched cell type HCell—Type Enrichment‘
Hi 1 Excitat Enrichment in BD-SCZ
Neurodevelopment {ppocampat Bxcliatory Hremen 1n. SC Cell-Type Enrichment
Neurons analysis

Core Mania Dimension (BD1)

‘ Synaptic Function

H PACSI

H P=2.00x10-1°

| TWAS (BD-only) |

Externalizing Dimension (SA, AleSUD)

Midbrain D i i
Cellular 1ebrain Hopaminergle Risk enrichment Cell-Type Enrichment
Neurons
GWAS (BD-SCZ
Neurodevelopment MADILI Novel Locus; P=1.15x10-8 MT( AG) 5C

‘ Internalizing Dimension ‘
| Neurodevelopment || DCC (RC, UM, PD, OCD) || Shared Locus; P<1.37x10-* | LAVA |

PD/RC Specific Locus; GWAS (BD-SCZ

Neuro-Immune SMAD3 (RC, PD) P=3 14x10° MTAG)

‘ Cellular (Gut-Brain) H GLP2R enrichment (PD) H Specific cell-type enrichment HCell—Type Enrichment‘

Glutamatergic vs.

Cellular GABAergic Weaker glutamatergic assoc. ||Cell-Type Enrichment
. . . Negati lecti
Evolutionary Rapid Cycling (RC) cgative Selection SBayesS
S)=-1.75
Shared / Foundational (Across Dimensions)
. h ti . & DNA . .
Foundational Chromatin Org & Top enriched pathway Gene-Set Enrichment
Repair
. Nicotine/Ch ffin Cell . . . .
Systemic (Stress) 1o mePatIZ;)vI:; e Enriched in BD-SCZ analysis || Gene-Set Enrichment

Synaptic (Metabolic)

SLC3948, FADS1

CADD=23.1; P=2.11x10-**

Variant Annotation,
TWAS

Synaptic
(Endocannabinoid)

CNRI1 enrichment

Shared vulnerability

Gene-Set Enrichment

‘ Synaptic (Metabolic)

| GLYCTK

H Protective; P=5.20x10-'1?

H TWAS (Amygdala) ‘

Abbreviations: AlcSUD, alcohol/substance use disorder; BD1, bipolar disorder [; BD2, bipolar disorder
II; CADD, Combined Annotation Dependent Depletion; GWAS, Genome-Wide Association Study;
LAVA, Local Analysis of [co]Variant Annotation; MTAG, Multi-Trait Analysis of GWAS; OCD,
obsessive-compulsive disorder; PD, panic disorder; RC, rapid cycling; SA, suicide attempt; SZA,
schizoaffective disorder, bipolar type; TWAS, Transcriptome-Wide Association Study; UM, unipolar

mania.
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5.6 Dimension 4: Internalising/Affective

This broad dimension is underpinned by a complex substructure of shared genetic factors
related to mood instability and anxiety. While sharing the core cellular vulnerabilities seen
across all dimensions (including GABAergic neurons, astrocytes), its distinction comes from
specific gene pathways. The most powerful evidence for this clustering comes from the LAVA
analysis, which uncovered a hidden relationship between OCD and PD. Despite a moderate
global correlation, these two subphenotypes shared 30 local genetic loci, explaining their
clustering and demonstrating a specific, shared genetic architecture for anxiety-compulsive
traits that is largely independent of the psychosis axis (Figure 36; Supplementary Table 51).
The 30 shared loci between OCD and PD were significantly enriched for genes involved in
postsynaptic density scaffolding and calcium signalling, suggesting a shared vulnerability
based on the molecular machinery of the synapse in corticostriatal circuits.
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Figure 36 Scatter plots of local genetic correlations.
The Rho(p) correlation (x-axis) and logl0-p values (y-axis) for each pairwise BD subphenotype
analysis per locus. Black dots represent the correlated loci after Bonferroni correction.

Biologically, this dimension is linked by specific neurodevelopmental and signalling pathways.
A novel association of the neurodevelopmental guidance gene DCC (encodes netrin 1 receptor)
was shared across the RC, UM, PD, and OCD sub-group, suggesting altered axonal guidance
as a shared vulnerability pathway. A more specific link between rapid cycling (RC) and PD
was the shared association with SMAD3, a gene that mediates C4-regulating TGF-f signalling,
a pathway known to interact with thyroid hormones [50], and genes such as SMAD [51] and
DGKH [52-53] have also been previously linked to panic disorder. This provides a potential
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biological mechanism for the long-observed, but mechanistically elusive, association between
thyroid dysfunction and mood instability in RC. However, this is just one potential pathway.

Finally, SBayesS analysis further differentiated this cluster by showing that BD2’s genetic
architecture overlaps most strongly with anxiety disorders, in contrast to BD1’s primary
overlap with SCZ (Figure 37, Table 44), providing a clear genetic basis for their separation.

The clinical presentation of this rapid cycling (RC) is further explored by examining the
relationship between AOO and the increased number of comorbidities (Figure 38).
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Figure 37 SBayesS plots showing genetic architecture parameters.
SBayesS is a summary-level method which uses a Bayesian mixed linear model method, to estimate

SNP-based heritability (h?snp) polygenicity (proportion of SNPs with nonzero effects) and a measure

of negative selection (S) from the relationship of allele frequency to SNP effects. Estimates for (a)

three Genetic Architecture (GA) parameters in BD subphenotypes, relative to other traits; (b)
selection (S) parameters and (c) polygenicity (r), & represents the proportion of (HapMap3) SNPs

estimated to be causal, and S describes the effect size-MAF relationship, S is a signature of negative

selection, (d) indicates SNP heritability (h?snp). All three parameters had good convergence

measured by Gelman and Rubin, “R <1.2. BD subphenotypes included were psychosis, BD1
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Clinically ascertained, BD1 Clinical/Community, rapid cycling, BD2 Clinical and BD2
Clinical/Community ascertained, which were compared to cross-traits (SCZ, MDD, ADHD and
anxiety disorders). Confidence intervals for both psychosis and BD1 overlapped with SCZ, and BD2
with anxiety. Rapid cycling (RC) was most negatively skewed indicating a pervasive negative
selection. See Table 44 for the genetic architecture parameters produced below.

Table 44 SBayesS Genetic Architecture Results

SNP-based Negative
Trait Heritability | SE | Polygenicity | SE | Selection | SE Group
(h’snp) &)
Schizophrenia 299 .006 .022 .001 -.530 .023 | Cross_trait
Psychosis 273 .026 .005 .001 -.524 228 | BD trait
BD1 Clinical .280 .013 .007 .001 -.497 .149 | BD_trait
BDI_Clinical/Community 262 .006 .012 .001 -.285 .076 | BD trait
Rapid Cycling .285 .056 .001 .000 -1.75 .173 | BD_trait
BD2_Clinical/Community 116 .015 .014 .003 -1.13 115 | BD trait
Major_depression .080 .001 .022 .002 -.265 .048 | Cross_trait
ADHD 204 .005 .015 .001 -.503 .060 | Cross_trait
Anxiety 102 .008 .031 .006 -1.020 | .072 | Cross_trait

| Var Coef Coefse Z SigP :
0.04 1 L BO-1.512 0.066 -22.949 ***
Bl 0.354 0.091  3.898 *x
(B2 1.286 0.116 11083 ***
| B3 1.824 0215 8451 *¥* .

0.03 T\ (M3814 1050 363 Sl 0

1
2

0.02 1 3
P

NA
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0.00 4
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Figure 38 Density plot of Age of onset of mania/mixed episode.

Density plot revealing higher risk for comorbidities with earlier age of onset of mania/mixed episodes.
The insert box shows coefficients for the association with rapid cycling, the risk of which increases as
the number of comorbidities accumulates.
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5.7 Overall Genetic Discovery and Prediction

The foundational single subphenotype GWAS for the analysed subphenotypes identified, 103
loci, mainly BD1 (Supplementary Table 53). MTAG enhanced discovery, identifying up to 181
subphenotype-associated loci in each subphenotype (Supplementary Table 54), including 53
novel loci (Supplementary Table 48) not previously linked to the subphenotype, BD, or SCZ.
Overlap of these loci is visualized in Figure 39-40, ordered by CADD. Replication of
previously identified loci was confirmed (Supplementary Table 55).
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Figure 39 MTAG SNP to gene annotations for 10 Subphenotype-BD results.

Plot of MTAG SNP to gene annotations (y-axis) for 10 Subphenotype-BD results ordered by the
highest CADD values (CADD > 12.37), i.e. most deleterious SNP (gene) first. A CADD score
exceeding the widely accepted threshold of 12.37 is considered indicative of a potentially deleterious
genetic variant. Standardised (significant P<5.0x10-%) beta coefficients (Bstd) and their standard errors
are plotted on the x-axis for comparison across the 10 subphenotypes. The direction of coefficients is
indicated in blue (positive) and red (negative). Supplementary Table 37 presents the results from the

gene-based tests.
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Figure 40 MTAG SNP to gene annotations for 10 Subphenotype-BD-SCZ results.
Plot of MTAG SNP to gene annotations (y-axis) for 10 Subphenotype-BD-SCZ results ordered by the

highest CADD values (CADD > 12.37), i.e. most deleterious SNP (gene) first. A CADD score
exceeding the widely accepted threshold of 12.37 is considered indicative of a potentially deleterious

genetic variant. Standardised (significant P<5.0x10-*) beta coefficients (Bstd) and their standard errors

are plotted on the x-axis for comparison across the 10 subphenotypes. The direction of coefficients is
indicated in blue (positive) and red (negative). Supplementary Table 37 presents the results from the

gene-based tests.

PRS demonstrated effective predictive power, with variance explained on the liability scale
(R2-liability) ranging from 5.47% for PD to 12.40% for unipolar mania; see Supplementary
Table 58 for sample prevalences. SNP-based heritability was highest for the psychosis
subphenotype at .278 (s.e.m.=.017). Additional random-effects PRS analyses modelled
between-cohort heterogeneity which was substantial (Figure 41; Table 45). The overall
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weighted average performance, including absolute risk for top and bottom PRS quintiles, is
summarized in Table 46.

Table 45 PRS Performance (Random-Effects Meta-Analysis)

Summary 95% CI for o
Phenotype Co(lgns R2-liability | R2-liability | 12(%) | 1/; (S/I)for 2 | Povalue (Q)
(RE) (%) (%) °
BDI 37 9.838 7.047-12.980 | 964 | 95.7-97.0 | .025 <.0001
BD2 2 7.280 5804-8.896 | 850 | 784-895 | 004 <0001
Psychosis 34 9.340 7.720-11.080 | 91.0 | 884-93.0 | .006 <.0001
Panic Disorder (PD) 15 5.469 3780-7.416 | 884 | 825-923 | .005 <0001
Rapid Cycling (RC) 20 9.039 7205-11.035 | 83.6 | 75.8-889 | .005 <0001
Schizoaffective-BD 10 8.363 5860-11218 | 90.1 | 84.0-93.9 | .006 <.0001
(SZA)
Unipolar Mania 7 12402 | 7.572-18.036 | 856 | 72.3-925 | 011 <.0001
(UM)
Sul“‘z‘;j:;tempt 30 8.435 6.897-1.098 | 882 | 843-912 | .005 <.0001
Alc. or Subst. Use
25 11.80 168-14.684 | 939 | 92.1-953 | .012 <.0001
(AlcSUD) 70
Table 46 Overall Weighted Average PRS Performance
Overall Wel.ght.efi Abs. Risk Top | Abs. Risk Top Abs.. Rlsk Top Abs. RlS.k .
Phenotype Average R2-liability 1% PRS (%) | 10% PRS (%) Quintile PRS | Bottom Quintile
(%) ° ’ ’ ° (%) PRS (%)
BDI 8.76 927 5.30 420 58
BD2 8.18 9.37 5.86 478 80
Psychosis 9.59 9.62 5.58 441 .53
Panic Disorder (PD) 438 6.24 4.15 3.52 89
Rapid Cycling (RC) 8.07 8.70 5.5 423 59
Schizoaffective-BD
5ZA) 9.07 9.47 538 425 53
Unipolar Mania (UM) 11.61 11.17 5.67 4.46 47
Suicide Attempt (SA) 8.58 9.06 539 429 57
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i Abs. Risk T Abs. Risk
Overall Weighted 1\ pick Top | Abs. Risk Top| 0% Risk Top bs. Risk
Phenotype Average R2-liability 1% PRS (%) | 10% PRS (%) Quintile PRS | Bottom Quintile
(%) ’ ’ ’ ’ (%) PRS (%)
Alc. or Subst. Use
9.67 9.61 5.61 4.40 .54
(AlcSUD)

5.6 Discussion

The investigation reveals that the clinical heterogeneity of BD is rooted in a multi-layered
interplay of shared and subphenotype-specific genetic factors. This confirmed a core
architecture affecting fundamental cellular processes, while identifying distinct genetic
signatures that align with specific clinical subphenotypes. This evidence supports a
dimensional approach to nosology, further challenging a purely categorical view [43-44].
While these dimensions may not reflect distinct aetiologies, they likely represent a continuum
of genetic liability where different clinical features emerge at varying thresholds of risk.
However, an alternative interpretation must be considered: that these dimensions do not reflect
truly distinct aetiologies, but rather a single continuum of genetic liability where different
clinical features, such as psychosis or comorbidity, emerge at varying thresholds of risk. This
dimensional framework represents a step toward precision psychiatry, offering a new lens
through which to view patients not as holders of a single diagnosis, but as individuals situated
along multiple, biologically-defined continua of risk. The fact that anxiety-related
subphenotypes share core synaptic enrichments with severe psychotic subphenotypes suggests
a unified biological basis that can manifest in diverse ways, supported by the local correlation
analyses.

Notable gene findings provide leads for wunderstanding pathophysiology. The
deleterious SCN24 variant as a strong BD1 marker suggests a role for ion channel dysfunction
[2-3, 5, 26, 55], potentially disrupting activity in brain regions critical for mood regulation and
plasticity, such as the hippocampus where adult neurogenesis occurs [56]. The
pleiotropic SLC39A48 variant, a known SCZ risk factor, was novel for seven subphenotypes and
points to shared mechanisms involving metal homeostasis and mitochondrial function [57-59].
The novel association of the neurodevelopmental guidance gene DCC with the RC, UM, PD,
and OCD cluster suggests a shared mechanism of altered axon guidance during brain formation
[49]. The finding that altered axonal guidance underpins a cluster of internalizing and mood
instability disorders is particularly compelling. Other notable findings include FOXO6 (FOX
genes implicated in personality disorders) [60-61] associated with most subphenotypes but not
BD1, and PBRM1 [2, 5, 62-63] (linked to mood-incongruent psychosis) replicated in BD1 [2].
The findings add to a complex genetic landscape for bipolar disorder that includes previously
established risk loci such as 3p21.1 [63], and pathways involving endocannabinoid signalling
[64-65] and genes including CHDH [66].

Biological annotations showed broadly similar enrichments in synapse biology. Notably, BD2
displayed weaker genetic association with glutamatergic pyramidal cells versus GABAergic

205



interneurons, consistent with depression [67] and contrasting with SCZ’s increased
glutamatergic signalling [68]. Such cellular pathway distinctions could underpin differential
treatment responses. For example, PACS! (unique to BDI1) links to excitatory/inhibitory
imbalance [2-3,5]. The amplification of the protective HLA-DMA signal when considering
SCZ variants supports an integrated neuro-immune hypothesis where foundational neuronal
vulnerabilities are compounded by aberrant immune responses. The specificity of this signal
suggests the immune component of risk is most relevant at the severe, psychotic end of the
mood disorder spectrum, potentially providing a biomarker to stratify patients for
immunomodulatory trials. This connects to other immune-related genes, such
as ZSCANY and C44, linked to brain structure and synaptic pruning [69-70]. While broad
analyses suggest C4 may not be central to BD overall [5, 55], there is emerging evidence for
its importance at the subphenotype level, particularly in psychosis [71].

Chapter 5 genetic analyses illuminate distinct biological underpinnings for clinical subtypes.
BDI1 demonstrates a strong genetic overlap with schizophrenia, characterized by the
deleterious SCN24 variant. In contrast, UM clustered within the ‘Comorbidity’ and ‘Mood
Instability’ Factor, suggesting that while UM manifests as mania, its genetic liability draws
more heavily from a general predisposition to comorbidity rather than from the core psychosis-
spectrum vulnerability. This implies the manic syndrome can be an endpoint for multiple
distinct biological pathways. The distinct genetic signature of UM validates its unique position
in psychiatric nosology and suggests it should be considered a separate entity in clinical trial
design.

A novel finding was that RC exhibited a unique genetic signature characterized by the most
pronounced negative selection signatures [72]. The clinical profile of RC, early-onset, highly
comorbid, and treatment-refractory, provides a rationale for this novel observation. This
evidence suggests the genetic architecture of RC may be disproportionately influenced by rarer,
more highly penetrant risk alleles that are actively purged from the population due to their
severe fitness consequences. While compelling, this signature could also be confounded by the
severe functional impairment and social instability of the phenotype, which independently
impact reproductive fitness. This aligns with the clinical severity and early onset of the
phenotype, providing a compelling rationale for dedicated studies of rare and de novo variation
in well-phenotyped RC cohorts. This sets RC apart from other BD presentations and indicates
that future research should expand beyond common variant GWAS to fully capture its
aetiology. The shared genetic link to SMAD3 in RC and PD offers a potential mechanistic
bridge for the long-observed clinical association between thyroid dysfunction and mood
instability in RC, via the gene’s role in thyroid-interacting TGF- signalling [18]; although,
this is only one possible route.

5.7 Limitations

This study’s primary reliance on cohorts of European ancestry limits generalizability,
underscoring the need for future multi-ancestry validation. While MTAG enhances power, its
focus on intersected variants may mask unique loci. Despite rigorous QC, cohort heterogeneity
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and diagnostic biases remain considerations. For instance, observed genetic distinctions could
be inflated by diagnostic practices (e.g., assigning comorbidities based on a primary diagnosis
of SZA vs BD with psychosis). Furthermore, two specific interpretations in the analysis warrant
caution. First, while this identified genetic associations with suicide attempts, it is a profoundly
complex outcome heavily influenced by psychosocial, environmental, and clinical factors that
are not captured in the genetic models. The identified loci should therefore be seen as
contributing to a distal risk, not as deterministic factors. Second, while the findings are
discussed in the context of a neurodevelopmental framework, the median age of onset for most
subphenotypes in our sample was in the early twenties. Although this period is a critical phase
of brain maturation, these findings speak more to the emergence of the clinical syndrome rather
than early childhood neurodevelopmental events. The genetic risks are present from birth, but
their manifestation as a full-blown disorder is likely the result of complex, lifelong interactions
with other factors.

Future research must translate these associations into precise mechanistic understandings via
functional genomics. Validation in larger, independent, multi-ancestry meta-analyses is
crucial. Conducting de novo GWAS on the four clinical factors identified here will provide
deeper insights, potentially enabling biologically informed diagnostic systems and novel,
personalized therapeutics.

5.8 Conclusions

Pervasive neurodevelopmental factors, coupled with a robust neuro-immune component and
core deficits in synaptic function, clarify BD’s aetiology. In doing so, this study offers a
comprehensive set of insights through a multi-layered understanding of BD’s genetic
heterogeneity. These findings move BD research towards a more biologically grounded
psychiatric nosology, which is a foundational step toward enabling better patient stratification
and paving the way for targeted therapeutic strategies that address specific vulnerabilities in
this complex illness.
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5.9 Supplementary Materials

Table 47 External GWAS Summary Statistics Used in Cross-Trait Analyses

Summary Statistics (abbrev.) Study N
Bipolar disorder O’Connell et al., 2025 840,309
Schizophrenia (SCZ) Trubetskoy et al., 2022 130,644
Major depressive disorder (MDD) Howard et al., 2019 500,199
Attention deficit and hyperactivity disorder (ADHD) Demontis et al., 2023 225,534
Anxiety (ANX) Purves et al., 2020 114,091
Autism spectrum disorder (ASD) Grove et al., 2019 46,350
Mood swings (MOOD) Neale Lab UKBB, 2018 604,063
Intelligence (INTEL) Savage et al., 2019 269,867
Insomnia (INS) Watanabe et al., 2022 386,888
Post traumatic stress disorder (PTSD) Nievergelt et al., 2019 174,659
Borderline personality disorder (BPD) Witt et al., 2017 2,543
Matrix de la Fuente et al., 2020 11,356
Memory de la Fuente et al., 2020 331,679
Trail Making Test B (TMTB) de la Fuente et al., 2020 78,547
Tower de la Fuente et al., 2020 11,263
Symbol and digit (SymDig) de la Fuente et al., 2020 87,741
VNR de la Fuente et al., 2020 171,304
Reaction time (RT) de la Fuente et al., 2020 330,024
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Psychosis

Weight Weight
Cohort LiabR2 LiabR2(s.e.) 95%-Cl (common) (random)
stpl 0.199 0.026 = 020  [0.15;0.24] 3.9% 3.3%
dubl 0.199 0.034 - 020  [0.13;0.26] 2.2% 3.1%
top8 0.206 0.053 —_— 020  [0.10; 0.30] 0.9% 2.5%
neucl 0.210 0.035 —_ 021  [014;0.27] 21% 3.1%
germl 0213 0.031 - 021  [0.15;0.27) 2.6% 3.2%
umed 0214 0.032 - 021  [0.15;0.27) 2.4% 3.1%
tgco2 0.221 0.029 — 022 [0.16;0.27] 3.0% 3.2%
bmrom 0242 0.056 et 024  [013;0.34] 0.8% 2.5%
fat2 0.265 0.029 o 026  [0.20; 0.31] 3.0% 3.2%
ukwal 0.269 0.018 = 0.26  [0.23;0.30] 7.6% 3.5%
mayl 0.280 0.030 s 027  [0.22;0.33] 2.9% 3.2%
itall 0.281 0.076 i 027  [0.13;0.40] 0.4% 1.9%
top? 0.283 0.045 — 028  [0.19;0.35] 13% 2.8%
graza 0.286 0.108 028  [0.07;0.46] 0.2% 1.3%
swa2 0.288 0.020 - 028  [0.24;0.32) 6.6% 3.4%
dutch 0.290 0.028 — 028  [0.23;0.33] 3.2% 3.2%
greek 0.295 0.075 —i— 029  [0.15; 0.41] 05% 2.0%
fran 0317 0.023 - 031  [027;0.35) 4.8% 3.4%
wtce 0.317 0.019 = 031  [0.27;0.34] 6.9% 3.4%
bonn 0.321 0.025 - 031  [027;0.35] 4.3% 3.3%
uclo 0322 0.035 -+ 031  [0.25;0.37] 21% 3.1%
romd 0.328 0.060 —— 032 [021;0.42] 0.7% 2.3%
norgs 0333 0.053 —— 032 [0.23;0.41) 0.9% 2.6%
bmau 0346 0.023 - 033 [029;0.37) 4.8% 3.4%
rom3 0.364 0.051 —— 035  [0.26;0.43] 1.0% 2.6%
st2c 0.370 0.027 . 035  [0.31;0.40] 35% 3.3%
mich 0.370 0.047 “+— 035  [0.27;0.43] 11% 2.7%
spsp3 0.381 0.020 - 036  [0.33;0.40] 6.2% 3.4%
edil 0.382 0.055 “— 036  [0.27;0.45] 0.8% 2.5%
bmpo 0.395 0.034 - 038 [032;043] 22% 3.1%
bmsp 0.410 0.043 e 039 [0.31;0.46] 14% 2.8%
hal2 0424 0.040 \—— 040  [0.33;0.46] 1.6% 2.9%
noroe 0525 0.015 ] 048  [0.46; 0.50] 11.4% 3.5%
gain 0541 0.032 | =~ 049  [0.45;0.54] 2.6% 3.2%
Random-effects model
R2Liability: 9.34% [7.72%; 11.08%] — : Oj
-04 -02 0 02 04
Heterogeneity: /2 = 91.0%, T* = 0.0066, X2, = 365.60 (p < 0.0001)
Schizoaffective-BD (SZA)
Weight  Weight
Cohort R2Liab  R2Liab(s.e.) 95%-Cl (common) (random)
tgco2 0.117 0.030 - E 0.12 [0.06; 0.17] 5.3% 9.7%
gain 0210 0.040 ——i! 0.21 [0.13; 0.28] 2.9% 8.8%
usc2 0.268 0.025 --.' 026  [0.22;0.31] 7.2% 10.0%
ukwal 0.284 0.015 028 [0.25; 0.30] 21.2% 10.7%
fat2 0.303 0.032 -+ 0.29 [0.24; 0.35] 4.5% 9.4%
umed 0322 0.027 -.-‘.- 031 [0.26; 0.36] 6.5% 9.9%
gpewl 0.324 0.021 - 031 [0.27;0.35] 10.4% 10.3%
usawd 0.342 0.018 :+ 0.33 [0.30; 0.36] 13.8% 10.5%
icuk 0.367 0.016 E 0.35 [0.32; 0.38] 19.4% 10.6%
wtce 0.414 0,023 i# 039 [0.35043] 8.9% 10.2%
Hi
H]
Random-effects model 6
R2Liability: 8.36% [5.86%; 11.22%] o
i T T 1
04 -02 0 02 04

Heterogeneity: I* = 90.1%, T* = 0.0060, y2 = 91.22 (p < 0.0001)
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Weight Weight

Cohort R2Liab R2Liab(s.e.) 95%-Cl (common) (random)
itall 0.136 0.059 — 0.14 [0.02; 0.25] 0.6% 2.5%
neucl 0.172 0.034 - 0.17 [0.10; 0.23] 1.9% 2.7%
bmrom 0.209 0.054 e 0.21 [0.10; 0.31] 0.8% 2.6%
gskl 0.218 0.026 - 0.21 [0.17; 0.26] 3.4% 2.8%
dubl 0.223 0.034 - 0.22 [0.15; 0.28] 1.9% 2.7%
fat2 0.223 0.029 - 0.22 [0.16; 0.27] 2.6% 2.8%
stpl 0.229 0.023 = 0.23 [0.18; 0.27] 43% 2.8%
ume4 0.231 0.038 —— 0.23 [0.16; 0.30] 1.6% 2.7%
tgco2 0.237 0.026 - 0.23 [0.18; 0.28] 3.3% 2.8%
ukwal 0.244 0.019 0.24 [0.20; 0.27] 6.2% 2.8%
gain 0.246 0.028 - 0.24 [0.19; 0.29] 2.8% 2.8%
mayl 0.248 0.027 - 0.24 [0.19; 0.29] 3.2% 2.8%
amql 0.251 0.037 — 0.25 [0.18; 0.31] 1.7% 2.7%
graza 0.255 0.098 —_— 0.25 [0.06; 0.42] 0.2% 21%
dutch 0.257 0.026 - 0.25 [0.20; 0.30] 3.2% 2.8%
bmau 0.268 0.022 b 0.26 [0.22; 0.30] 45% 2.8%
edil 0.271 0.043 — 0.26 [0.18; 0.34] 12% 2.7%
fran 0.276 0.023 - 0.27 [0.23; 0.31] 45% 2.8%
top8 0.282 0.054 — 0.27 [0.17; 0.37] 0.8% 2.6%
greek 0.282 0.071 —_ 0.27 [0.14; 0.40] 0.5% 24%
swa2 0.296 0.022 - 0.29 [0.25; 0.33] 4.7% 2.8%
uclo 0.302 0.033 - 0.29 [0.23; 0.35) 21% 2.7%
bmag3 0.303 0.029 - 0.29 [0.24; 0.34] 2.7% 2.8%
germl 0.309 0.030 — 0.30 [0.24; 0.35] 2.4% 2.8%
top7 0.315 0.044 — 0.30 [0.22; 0.38] 1.2% 2.7%
hal2 0.316 0.036 + 0.31 [0.24; 0.37] 1.8% 2.7%
wtcc 0.327 0.018 0.32 [0.28; 0.35) 7.0% 2.8%
bonn 0.336 0.023 + 0.32 [0.28; 0.36] 43% 2.8%
spsp3 0.343 0.021 -] 0.33 [0.29; 0.37] 5.3% 2.8%
rom3 0.360 0.048 = 0.35 [0.26; 0.43] 1.0% 2.6%
romd 0.381 0.058 —+— 0.36 [0.26; 0.46] 0.7% 2.5%
norgs 0.430 0.053 - 0.41 [0.32; 0.49] 0.8% 2.6%
noroe 0.437 0.015 | 0.41 [0.39; 0.43] 10.1% 2.8%
bmpo 0.459 0.036 ! - 0.43 [0.37; 0.49] 1.7% 2.7%
bmsp 0.586 0.058 1 — 0.53 [0.44; 0.60] 0.7% 2.5%
bmg2 0.704 0.039 T 0.61 [0.56; 0.65] 1.5% 2.7%
st2c 1.034 0.028 | 0.78 [0.75; 0.80] 2.9% 2.8%
Random-effects model “
R2Liability: 9.84% [7.05%; 12.98%] &
i T
-0.5 0 0.5
Heterogeneity: 12 = 96.4%, T* = 0.0251, X}, = 1009.31 (p < 0.0001)
.
Suicide attempt (SA)
Weight Weight
Cohort LiabR2 LiabR2(s.e.) 95%-Cl (common) (random)
neucl 0.135 0.036 — E 0.13 [0.06; 0.20] 2.4% 3.5%
ume4 0.191 0.040 ] 0.19 0.26] 2.0% 3.4%
graza 0.204 0.100 ' 0.20 ;0.38] 0.3% 15%
dutch 0.214 0.031 ——i 0.21 ;0.27] 3.2% 3.7%
ukwal 0.230 0.020 = 0.23 ; 0.26] 8.0% 4.0%
bmau 0.232 0.023 = 0.23 ;0.27] 5.8% 3.9%
tgco2 0.233 0.032 - 0.23 ;0.29] 3.0% 3.6%
fat2 0.235 0.030 - 0.23 ;0.29] 3.5% 3.7%
gain 0.242 0.033 =% 0.24 0.30] 2.8% 3.6%
mich 0.247 0.042 —it 0.24 0.32] 1.7% 33%
mayl 0.248 0.031 —h 0.24 0.30] 3.3% 3.7%
dubl 0.259 0.035 — 0.25 0.32] 2.5% 3.5%
top8 0.260 0.054 —i 0.25 0.35] 1.0% 2.8%
fran 0.272 0.023 - 0.27 ;0.31] 5.6% 3.9%
swa2 0.290 0.021 = 0.28 ;0.32] 71% 4.0%
uclo 0.293 0.038 — 0.28 ;0.35] 2.1% 3.4%
greek 0.312 0.078 — 0.30 ; 0.43] 0.5% 21%
norgs 0.322 0.054 —— 0.31 ;0.40] 1.1% 2.8%
germl 0.331 0.031 —— 0.32 ; 0.37] 3.2% 3.7%
bmrom 0.333 0.077 —i—  0.32 0.45] 0.5% 21%
wtcc 0.344 0.022 e 0.33 0.37] 6.4% 4.0%
top7 0.348 0.048 —— 0.33 0.41] 1.4% 31%
bmsp 0.352 0.054 —f— 0.34 ;0.43] 1.1% 2.8%
rom3 0.365 0.061 = 0.35 ; 0.45] 0.8% 2.6%
bonn 0.365 0.026 b 0.35 ; 0.39] 4.4% 3.8%
hal2 0.368 0.042 —— 0.35 ; 0.42] 1.7% 33%
bmpo 0.406 0.035 —— 0.38 ;0.44] 2.6% 3.6%
noroe 0.429 0.015 0.40 ;0.43] 13.7% 42%
rom4 0.455 0.066 —+—— 0.43 0.53] 0.7% 2.4%
spsp3 0.469 0.021 i ® 044 7.3% 4.0%
]
Random-effects model )
LiabilityR2: 8.44% [6.9%; 10.1%] o
e e e )

-0.4 -0.2 0 02 04
Heterogeneity: /I° = 88.2%, T° = 0.0055, X3, = 246.57 (p < 0.0001)
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Comorbid AlcSUD

Weight Weight
Cohort R2Liab R2Liab(s.e.) 95%-Cl (common) (random)
neucl 0.183 0.036 — 018  [0.11; 0.25] 2.7% 41%
graza 0.218 0.107 021  [0.01;0.40] 0.3% 2.3%
gain 0.219 0.034 —— 022  [0.15;0.28] 3.2% 4.2%
tgco2 0.234 0.033 — 023  [0.17:0.29] 3.3% 4.2%
ukwal 0.250 0.019 e 025  [0.21;0.28] 9.4% 4.4%
dutch 0.251 0.030 . 025  [0.19;0.30] 3.9% 4.3%
fat2 0.269 0.030 = 026  [0.21;0.32] 4.1% 4.3%
st2c 0.274 0.026 . 027 :0.31] 5.1% 4.3%
top7 0.286 0.049 — 028 0.36] 1.5% 3.8%
mayl 0.293 0.032 o 029 0.34] 3.4% 4.2%
wtcc 0.306 0.023 R 0.30 ; 0.34] 6.6% 4.4%
spsp3 0.340 0.020 L1 0.33 ; 0.36] 8.6% 4.4%
bmau 0.348 0.023 . 033 ; 0.37] 6.5% 4.4%
top8 0.356 0.056 —p— 034 ; 0.44] 1.1% 3.6%
bonn 0.360 0.028 - 0.35 ; 0.39] 4.5% 4.3%
fran 0.379 0.025 - 0.36 ; 0.40] 5.9% 4.4%
bmrom 0.380 0.079 —4— o036 ; 0.49] 0.6% 3.0%
bmsp 0.417 0.056 ——— 039 ; 0.48] 11% 3.6%
uclo 0.427 0.040 b 0.40 0.47] 2.2% 4.0%
germ1 0.473 0.031 - 044 0.49] 3.6% 4.2%
rom3 0.526 0.064 —— 048 : 0.57] 0.9% 3.4%
norgs 0.538 0.054 —— o049 :0.57] 12% 3.7%
bmpo 0.538 0.037 —— 049 : 0.54] 2.7% 41%
hal2 0.540 0.044 —— 049 : 0.56] 1.8% 3.9%
noroe 0.564 0.015 051 : 0.53] 15.7% 45%
Rand -effects model
ty: 11.81% [9.17%; 14.68%] —
-0.4 -0.2 0 0.2 0.4
Heterogeneity: 12 = 93.9%, T> = 0.0118, x3, = 393.85 (p < 0.0001)
BD2
Weight Weight
Cohort R2Liab R2Liab(s.e.) 95%-Cl (common) (random)
umed 0.122 0.038 —— i 0.12 [0.05; 0.19] 2.7% 4.6%
itall 0.186 0.059 — 0.18 [0.07; 0.29] 11% 3.3%
graza 0.188 0.098 : 0.19 [-0.00; 0.36] 0.4% 1.8%
hal2 0.190 0.042 —— 0.19 [0.11; 0.27] 2.2% 4.3%
wtcc 0.213 0.024 - 0.21 [0.16; 0.25] 6.9% 5.4%
mayl 0.218 0.031 — 0.21 [0.16; 0.27] 3.8% 4.9%
ukwal 0.232 0.019 =i 0.23 [0.19; 0.26] 10.1% 5.6%
gskl 0.243 0.026 = 0.24 [0.19; 0.29] 5.7% 5.3%
neucl 0.250 0.035 —mi 0.25 [0.18; 0.31] 3.2% 4.7%
st2c 0.265 0.024 — 0.26 [0.21; 0.30] 6.5% 5.4%
fran 0.269 0.024 - 0.26 [0.22; 0.31] 6.6% 5.4%
top8 0.274 0.054 — 0.27 [0.17; 0.36] 13% 3.6%
amql 0.274 0.042 —— 0.27 [0.19; 0.34] 22% 4.3%
bmau 0.280 0.023 E 2 0.27 [0.23; 0.31] 7.1% 5.4%
swa2 0.297 0.021 = 0.29 [0.25; 0.33] 8.8% 5.6%
top? 0.327 0.046 —“+— 032 [0.23;0.39] 1.8% 4.0%
bmg3 0.330 0.031 0.32 [0.26; 0.37] 4.0% 5.0%
germ1 0.358 0.031 0.34 [0.29; 0.40] 4.1% 5.0%
greek 0.367 0.081 0.35 [0.21; 0.48] 0.6% 2.4%
bmpo 0.378 0.036 0.36 [0.30; 0.42] 2.9% 4.6%
norgs 0.393 0.054 0.37 [0.28; 0.46] 1.3% 3.6%
noroe 0.406 0.015 0.39 [0.36; 0.41] 16.9% 5.8%
Random-effects m
R2Liability : 7. 28% [5 8% 8.9%] —T
-0.4 -0.2
Heterogeneity: /” = 85.0%, T° = 0.0041, x3, = 139.58 (p < 0.0001)
Comorbid Panic disorder (PD)
Weight Weight
Cohort LiabR2  LiabR2(s.e.) 95%-Cl (common) (random)
gain 0.123 0.028 - i 0.12 [0.07; 0.18] 7.0% 713%
st2c 0.133 0.024 5 | 013 [0.09; 0.18] 9.4% 1.5%
mayl 0.159 0.025 - i 0.16 [0.11; 0.20] 8.8% 7.5%
graza 0.183 0.078 —— 0.18 [0.03; 0.32] 0.9% 3.9%
fat2 0.192 0.028 — 0.19 [0.14; 0.24] 6.8% 73%
i
bonn 0.214 0.023 - 021 [0.17;0.25] 10.3% 7.6%
tgco2 0.218 0.036 —- 021 [0.15; 0.28] 4.2% 6.7%
stpl 0.219 0.029 —*1-: 0.22 [0.16; 0.27] 6.2% 12%
greek 0.241 0.096 — 024 [0.05; 0.40] 0.6% 3.0%
uclo 0.277 0.044 —:*— 0.27 [0.19; 0.35] 2.8% 6.1%
top7 0.287 0.052 —§-— 0.28 [0.18; 0.37] 2.0% 5.5%
fran 0.303 0.024 i 0.29 [0.25; 0.34] 9.0% 1.5%
swa2 0.308 0.021 i - 0.30 [0.26; 0.34] 12.4% 7.1%
wtcc 0.323 0.024 | 031 [0.27;0.35] 9.4% 75%
bmau 0.377 0.023 { & 036 [032040] 10.2% 7.6%
1
i
Random-effects mod 5
R2Liability: 5.47% [3. 79%, 7.42%) >
i T 1 i
04 02 0 02 04

Heterogeneity: I2 = 88.4%, T = 0.0053, ¥, = 120.27 (p < 0.0001)
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Rapid Cycling (RC)

Weight Weight
Cohort R2Liab R2Liab(s.e.) 95%-Cl (common) (random)
neucl 0.214 0.036 - 0.21 [0.14; 0.28] 3.3% 5.1%
ukwal 0.216 0.020 g 0.21 [0.18; 0.25] 10.9% 5.9%
stpl 0.221 0.028 -1 0.22 [0.16; 0.27] 5.4% 5.5%
fran 0.234 0.024 = 0.23 [0.18; 0.27] 71% 5.7%
dutch 0.247 0.031 = 0.24 [0.18; 0.30] 4.4% 5.4%
bmau 0.274 0.023 n 0.27 [0.23; 0.31] 8.2% 5.8%
rom3 0.275 0.067 — 0.27 [0.14; 0.39] 0.9% 3.4%
st2c 0.276 0.026 — 0.27 [0.22; 0.32] 6.0% 5.6%
mayl 0.280 0.029 - 0.27 [0.22; 0.32] 5.2% 5.5%
mich 0.293 0.046 — 0.29 [0.20; 0.37] 2.0% 4.5%
uclo 0.302 0.042 -4 0.29 [0.22; 0.37] 2.4% 4.7%
swa2 0.307 0.021 0.30 [0.26; 0.33] 10.1% 5.9%
graza 0.339 0.106 —f— 0.33 [0.13; 0.50] 0.4% 2.0%
hal2 0.342 0.043 e 0.33 [0.25; 0.40] 2.3% 4.7%
wtcc 0.343 0.023 = 0.33 [0.29; 0.37] 7.8% 5.8%
bonn 0.363 0.028 Fe 0.35 [0.30; 0.40] 5.4% 5.5%
spsp3 0.365 0.021 |- 0.35 [0.31; 0.38] 10.1% 5.9%
bmpo 0.432 0.037 = 0.41 [0.34; 0.47] 3.1% 5.0%
germ1 0.468 0.031 P 0.44 [0.39; 0.48] 43% 5.4%
bmrom 0.567 0.085 i —— o051 [0.38; 0.62] 0.6% 2.6%

H
Random-effects m &
R2Liability: 9.04% [7 21% 11.04%] | - T T <& —
-0.6-04-02 0 0.2 04 0.6

Heterogeneity: /% = 83.6%, T° = 0.0050, xj, = 115.89 (p < 0.0001)

Comorbid OCD

Weight Weight
Cohort LiabR2  LiabR2(s.e.) 95%-Cl (common) (random)
tgco2 0.167 0.040 - i 0.17  [0.09;0.24] 10.0% 16.1%
stpl 0.203 0.030 ! 020  [0.14;0.26] 17.0% 16.8%
gain 0.315 0.039 - 031 [023;037) 10.2% 16.1%
mayl 0.324 0.033 - 031  [0.250.37] 14.1% 16.6%
st2c 0.328 0.028 + 032 (027,037 19.9% 17.0%
bmau 0.505 0.023 i} % 047 [043;0.50] 28.7% 17.3%
Random-effects model ¢
LiabilityR2: 8.97% [4.39%; 14.77%] — |<>‘

04 -02 0 02 04
Heterogeneity: I = 94.5%, T = 0.0134, y = 90.09 (p < 0.0001)

Unipolar Mania (UM)

Weight Weight

Cohort LiabR2  LiabR2(s.e.) 95%-Cl (common) (random)
tgco2 0.209 0.040 = 021  [0.13;0.28] 12.7% 151%
mich 0322 0.048 —+ 031 [0.22;0.39] 8.9% 14.3%
gain 0336 0.038 —‘-‘- 032 [0.26;0.39] 14.2% 153%
bmrom 0.337 0.082 —*}— 032 [0.17;0.46) 3.1% 10.8%
wtee 0.339 0.024 L 033 [0.28;0.37] 36.1% 16.5%
dutch 0.492 0.032 i 046 [0.40;0.50] 20.4% 15.9%
rom3 0.563 0.068 E —— 051  [0.41;0.60] 4.5% 12.2%
Random-effects model 6

R2Liability: 12.4% [7.57%; 18.04%] >

) e

06-04-02 0 02 04 0.6
Heterogeneity: I’ = 85.6%, T = 0.0110, x? = 41.59 (p < 0.0001)

Figure 41 Random meta-analysis of Polygenic Risk Score (PRS).

Forest plot from the meta-analysis of PRS for Subphenotype-specific-BD MTAG, summarizing the per-
cohort R? values on the liability scale (assuming K=2%). The diamond depicts the pooled summary Z-
score from a random-effects meta-analysis.
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Table 48 Credible Gene Set from BD-SCZ MTAG Analysis (no MHC) (N=68)

Most
Significant . . Top TWA
Lenttican Associated Associated Subphenotypes op TWAS FUMA
Gene TWAS P- . Z-score .
Tissue (MTAG) L. Evidence
value (Direction)
(JOINT.P)
-22.3 Positional
GLYCTK 5.20x 1071 A 1 All 10 ’
x mygdala (Protective) eQTL
eQTL
Frontal i
—92 1 1
GNL3 1.40x 10 Cortex BA9 All 10 2.4 (Risk) Chromatin
Int.
SEMA3G 270x 107 | Cerebellum | 8 (All except AleSUD, BD2) 181 Positional,
’ (Protective) eQTL
Frontal 6 (Psychosis, SZA, BD1, PD, . ..
'DR73 3.60x 107 .
Wi X Cortex BA9 RC, OCD) 16.5 (Risk) Positional
ENSG00000259683 3.90x 107 Foetal Tissue All 10 _15'9. Positional
(Protective)
6 (Psychosis, SZA, BD1, -12.0 Positional,
FADSI 2.11 x 10732 11
X Cerebellum AleSUD, RC, UM) (Protective) eQTL
. . Positional
P. 5.14x 1072 Pituit All 10 1.6 (Risk ’
SP4 X ituitary (Risk) ¢QTL
Substantia -1.0 Positional
—23 9
CISE 20110 nigra AllO (Protective) eQTL
Cerebellar Positional
ADD3 6.12x 1072 All 10 9. i ’
x Hemisphere 7 Risk) eQTL
Nucleus Positional
DRD2 6.45x 107# 3 (Psychosis, SZA, BD1 8.7 (Risk ’
X accumbens (Psychosis, SZA, ) 7 (Risk) eQTL
5 (Psychosis, SZA, BD1, -8.6 Positional,
PTPRD 9.01 x 1071 Put:
X viamen 0CD, UM) (Protective) eQTL
-7.6 Positional
NT5 3.0 14 itui ’
C 1x10 Pituitary All 10 (Protective) eQTL
WIPF'3 8.89x 10" Cortex All 10 7.1 (Risk) Positional
MCHRI 1.12x 1072 Caudate 8 (All except BD2, PD) 7.1 (Risk) eQTL
Frontal 5 (Psychosis, SZA, BD1, . Positional,
TCF4 2.30x 10712 .0 (Risk
X Cortex BA9 0CD, UM) 70 (Risk) eQTL
Frontal 4 (Psychosis, SZA, BDI1, . .
'RIN2A 8.11x10™ .
G X Cortex BA9 0CD) 6.5 (Risk) Positional
ZSWIMG6 133x 10710 Cortex AlL 10 64 Positional,
' (Protective) eQTL
7 (Psychosis, SZA, BD1, SA, . Positional,
LC3948 345x 1071 t 6.3 (Risk
SLC X Caudate PD, RC, AlcSUD) (Risk) eQTL
-6.3 Positional
KANSLI 4.18x 1071 11 All 10 ’
X Cerebellum (Protective) eQTL
AC008124.1 8.79x 1071 Hippocampus All 10 6.1 (Risk) Positional
Frontal -6.1 Positional
NEK4 1.05x 107 All 10 ’
X Cortex BA9 (Protective) eQTL
Frontal Positional
PBRM1 1. e i . i ’
11x10 Cortex BA9 4 (Psychosis, SZA, BD1, SA) | 6.1 (Risk) ¢QTL
. . Positi
TRANKI 1.98x 10° | Hippocampus | 5(SZA, BDI, SA,RC,UM) | 6.0 (Risk) Oes(‘)fial’
-5.9
ZSCAN9 2.50x 107 Pituit All 10 TL
X tuitary (Protective) <Q
AC010894.2 3.12x 10 Cortex All 10 5.9 (Risk) Positional
GATAD2A4 3.33x 107 Cerebellum All 10 5.9 (Risk) Positional
Nucl
FAMI1442 401x10° ueteus ALl 10 58 (Risk) | Positional
accumbens
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Most

ignificant . . Top TWA
Significan Associated Associated Subphenotypes op TWAS FUMA
Gene TWAS P- . Z-score .
Tissue (MTAG) L. Evidence
value (Direction)
(JOINT.P)
6 (Psychosis, SZA, BD1, -5.8 Positional,
RCS3 425x 107 A 1 .
SORCS X mygdala OCD, PD, UM) (Protective) eQTL
Frontal 4 (Psychosis, SZA, BDI1, . Positional,
'RM3 4.88x 107 5.8 (Risk
G X Cortex BA9 OCD) (Risk) eQTL
AC005253.1 515x10° Cerebellar All 10 5.8 (Risk) | Positional
Hemisphere
8 (All except BD1, . Positional,
-9
STK4 6.62x 10 Putamen Psychosis) 5.7 (Risk) eQTL
MEDS 7.21x 107 Caudate All 10 5.7 (Risk) Positional
WDRS2 8.30x 107 Caudate All 10 _5'7. Positional
(Protective)
LINCO1103 9.01x 10 Nucleus ALl 10 57 (Risk) | Positional
accumbens
5 (Psychosis, SZA, BD1
ZEB2 9.98x10° | Cerebellum (Psyc oOcSIIJS: ; o | 36®isk | Positonal
7 (SZA, BD1, SA, RC, PD, . Positional,
NX19 1.01x10°® A 1 5.6 (Risk
S. X mygdala 0CD, UM) (Risk) eQTL
LINC01021 1.15x10°® Foetal Tissue All 10 5.6 (Risk) Positional
MSRA 1.33x10°® Caudate All 10 5.6 (Risk) Positional
6 (Psychosis, SZA, BD1, -5.5 Positional,
FADS2 1.52x10°® 11 .
S X Cerebellum AlcSUD, RC, UM) (Protective) eQTL
TMEM?258 1.88x10°® Caudate All 10 5.5 (Risk) Positional
Frontal
s . .
UBE2Q2L 2.01x10 Cortex BA9 All 10 5.4 (Risk) Positional
RP11-476D1.5 2.15x10°® Hippocampus All 10 5.4 (Risk) Positional
RP11-203G2.1 230x10°® Cortex All 10 5.4 (Risk) Positional
CTD-2234N22.2 2.51x10°® Caudate All 10 5.4 (Risk) Positional
NAPRT 2.78x10°® Cerebellum All 10 5.3 (Risk) Positional
Positional
- LI . )
GPRI139 299x 10 Pituitary All 10 5.3 (Risk) ¢QTL
Frontal
s . L
DARS 3.10x 10 Cortex BA9 All 10 5.3 (Risk) Positional
LINC01422 3.33x10° Cortex All 10 5.3 (Risk) Positional
LINC00478 3.55x10°® Cortex All 10 _5'2. Positional
(Protective)
CTD-307407.2 3.75x10°® Caudate All 10 _5'2. Positional
(Protective)
Clorfl32 401x 10 Cerebellum All 10 5.2 (Risk) Positional
LINCO01511 4.18x10°® Cortex All 10 _5'2. Positional
(Protective)
Frontal -5.1
s L
CLCN3 4.39x 10 Cortex BA9 All 10 (Protective) Positional
RP11-474E11.1 4.66x10°® Hippocampus All 10 5.1 (Risk) Positional
AC10482.2 488108 Nucleus All 10 1 Positional
accumbens (Protective)
INOSOE 6.01x10°® Cerebellum All 10 _5'1. Positional
(Protective)
MADD 6.15x 10°® Caudate All 10 _5'0. Positional
(Protective)
MLEC 6.30x 10°® Cortex All 10 _5'0. Positional
(Protective)
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Most
Significant Associated Associated Subphenotypes Top TWAS FUMA
Gene TWAS P- . Z-score .
Tissue (MTAG) L. Evidence
value (Direction)
(JOINT.P)
-5.0
RPI11-755F1.1 6.66x 10°® Hippocampus All 10 . Positional
(Protective)
Frontal -4.9
s "
CARNMTI 7.01x 10 Cortex BA9 All 10 (Protective) Positional
C200rf196 7.22x10°® Cerebellum All 10 4.9 (Risk) Positional
DPYI9LI 7.50x 10°® Caudate All 10 4.9 (Risk) Positional
Frontal -4.9
s "
RUNDC34 7.88x 10 Cortex BA9 All 10 (Protective) Positional
GLT8DI 8.11x 10 Cortex All 10 4.9 (Risk) Positional
-4.8
GLIS3 8.33x10°® Pituitary All 10 . Positional
(Protective)
Nucl
CHRNA3 8.55x 1078 veieus All 10 48 (Risk) | Positional
accumbens
-4.8
ATP6VIBI 8.79x10°® Cortex All 10 . Positional
(Protective)
Table 49 Credible Gene Set from BD-SCZ MTAG Analysis (with MHC) (N=17)
Most Significant Associated
. . Top TWAS Z- FUMA
Gene TWAS P-value | Associated Tissue Subphenotypes scoorz (Direction) Evidence
(JOINT.P) (MTAG)
HCG27 2.80x 1025 Hippocampus 9 (All except 36.1 (Risk) Positional
' ppocamp AlcSUD) '
ZNF184 3.00 x 10282 Hypothalamus All 10 -35.9 (Protective) Positional
eQTL,
HLA-DMA 2.50 x 10273 Cerebellum All 10 -35.3 (Protective) Chromatin
Int.
8 (All except . Positional
246 >
PRSS16 8.20x 10 Cerebellum AleSUD, BD2) 33.5 (Risk) eQTL
Positional
BTN342 1.10 x 10195 Hypothalamus AlL 10 22,0 (Risk) OZE}T :
. 6 (Psychosis, ..
HLA-C 333x 10! Ant;{gﬁ“late SZA, BDI, PD, 14.8 (Risk) P Osglé’ial’
OCD, UM)
5 (Psychosis, eQTL,
C44 2.15x 1076 ai\i“i?;s SZA, BDI, SA, 12.6 (Risk) Chromatin
Y AlcSUD) Int.
7 (SZA, BDI, SA,
CYP2141P 1.50x 10% Hippocampus RC, PD, OCD, -11.4 (Protective) Positional
UM)
VARS?2 9.80 x 10 Cerebellum All 10 -1.3 (Protective) Positional
APOM 6.70 x 10! Cerebellum All 10 9.4 (Risk) Positional
BAG6 420x 10" Caudate All 10 8.9 (Risk) Positional
CLICI 3.10x 107 FrontBazcgortex AlL 10 8.4 (Risk) Positional
HISTIH2BK 7.70 x 10713 Cortex AL 10 7.7 (Protective) | | Osglé’ial’
GPANK1 2.20x 101 Cerebellum All 10 6.7 (Risk) Positional
EGFLS 4.50x 1010 Caudate All 10 6.2 (Risk) Positional
FLOTI 1.80 x 10 Hippocampus All 10 6.0 (Risk) Positional
HCG4B 3.30x 107 Pituitary All 10 5.9 (Risk) Positional
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Table 50 Credible Gene Set from BD-Only MTAG Analysis (no MHC) (N=25)

M — :
ost Significant Associated Associated Top TWAS FUMA
Gene TWAS P-value Tissue Subphenotypes Z-score Evidence
(JOINT.P) (MTAG) (Direction)
CTSF 7.91x 102 | Substantia nigra AlL 10 -1.0 (Protective) Pozgl%rial’
eQTL,
GNL3 2.15x10% Pituitary All 10 9.7 (Risk) Chromatin
Int.
3 (BDI, Psychosi
PACSI 2.00 x 10719 Cortex ( S’ZZ};C OS5 9.0 (Protective) | Positional
Cerebellar 9 (All except . Positional
ADD3 1.18x 10718 . 8.8 (Risk ’
x Hemisphere AlcSUD) (Risk) eQTL
4 (BD1, AleSUD, RC . Positional
FADSI . -7 ’ T -8, ’
S 3.01x10 Cerebellum um) 8.4 (Protective) eQTL
Positional
P 1.45x 1016 Pituit: All 10 8.2 (Risk ’
SP4 X ituitary (Risk) ¢QTL
7 (All except BD1 . Positional
TK. 2.05x 1071 Put ’ IR ’
STK * vamen SZA, Psychosis) 79 Risky eQTL
NT5C 333x 10 Pituitary 9 (All except BD1) | -7.6 (Protective) Pozgl%rial’
WIPF3 7.21x 10713 Cortex 9 (All except BD1) 7.2 (Risk) Positional
ZSWIM6 222x 101 Cortex All 10 6.3 (Protective) | T ositional,
eQTL
. 4 (BDI1, SA . Positional
TRANK1 . -0 o . ’
5.15x 10 Hippocampus Psychosis, SZA) 5.8 (Risk) eQTL
4 (BD1, BD2, PD
ZSCANY 8.82x 107 Cerebellum ( O’ D) T -5.7 (Protective) eQTL
Frontal Cortex 3 (BD1, Psychosis . Positional
PBRM1 1.05x 108 ; ’ 5.7 (Risk ’
x BA9 SZA) 7 (Risk) eQTL
4 (BD1, A . iti
FADS?2 1.48 x 108 Cerebellum (BDI, UII\C/IS)UD’ RG, -5.6 (Protective) Posgaczzal,
TMEM?258 1.77 x 10°8 Caudate All 10 5.5 (Risk) Positional
6 (BD1, SA, PD, RC . Positional
SNX19 4.88x 108 A 1 T 5.1 (Risk ’
X mygdala 0CD, UM) (Risk) ¢QTL
Frontal t
CLCN3 5.01 x 108 ronBa AC9°r x AlL 10 -5.1 (Protective) | Positional
AC008124.1 533x10% Hippocampus All 10 5.1 (Risk) Positional
Nucl
LINCO1103 6.15x 10 ueteus AlL 10 5.0 (Risk) Positional
accumbens
GATAD24 7.30 x 108 Cerebellum All 10 5.0 (Risk) Positional
DPYI9LI 7.55x 108 Caudate All 10 4.9 (Risk) Positional
RP11-476D1.5 8.90x 10% Hippocampus All 10 4.9 (Risk) Positional
Nucl
CHRNA3 9.12x 10°% ueteus AlL 10 4.8 (Risk) Positional
accumbens
ATP6VIB1 9.88x 108 Cortex All 10 -4.8 (Protective) Positional
Clorfi132 1.01 x 107 Cerebellum All 10 4.8 (Risk) Positional
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Table 51 Credible Genes from the MHC Region (BD-Only MTAG) (N=2)

igni Associat
Most Significant |~ iated ssociated Top TWAS Z- FUMA
Gene TWAS P-value Tissue Subphenotypes score (Direction) Evidence
(JOINT.P) (MTAG)
Nucleus . . eQTL.
-8 >
C44 3.11x10 accumbens Psychosis, SZA, BD1 5.5 (Risk) Chromatin Int.
HLA-DPAI 4.50 x 107 Cerebellum SZA, Psychosis -5.0 (Protective) eQTL

Table 52 Credible Gene Sets with SCHEMA Rare-Variant Genes (N=33)

Credible Set N Genes | Overlapping Genes with P-value Significant after Correction
in Set SCHEMA (Fisher’s Exact) (P <.0125)
BD-SCZ noMHC 68 3 (TCF4, PBRM1, ZEB2) 41x10% Yes
BD-SCZ wMHC 85 3 (TCF4, PBRM1, ZEB?2) 1.1x 107 Yes
BD-
Only noMHC 25 1 (PBRM1I) .048 No
BD-Only wMHC 27 1 (PBRM1) .044 No

The full data for Supplementary Tables are available in the attached
file: Supplementary.tables.xlsx. This file also contains the supplementary data tables
referenced in Chapter 6.

The specific contents for Chapter 5 are as follows:

Table 53. Gene-based Tests Using Gene Annotations of MTAG Results.

Table 54. Characteristics of Participating Cohorts.

Table 55. Per-Cohort Sample Sizes for each Subphenotype Analysis.

Table 56. Summary Statistics for Subphenotype GWAS and Post-QC Variant Counts.
Table 57. Pairwise Overlap of Loci Among Subphenotype-BD-SCZ MTAGs.

Table 46. Joint conditional analyses of Brain Region-Specific Gene Associations with Bipolar
Disorder Subphenotypes

Table 58. Cell Type Enrichment Results (BD-SCZ MTAG).
Table 59. Novel Loci Identified in MTAG Analyses.
Table 60. Gene-Set Enrichment Results (BD-SCZ MTAG).

Table 61. Transcriptome-wide associations (BD-only and BD-SCZ MTAG, w/no MHC).
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Table 62. Local Genetic Correlation (LAVA) Results.

Table 63. GWAS Summary Statistics for 16 BD Subphenotypes.

Table 64. Loci Identified in MTAG Analyses of Bipolar Disorder Subphenotypes.
Table 65. Replication of Loci Identified in Subphenotype MTAG Analyses.

Table 66. Subphenotype-Specific Bipolar Disorder Polygenic Risk Scores.

Table 67. Genetic Architecture and Cross-trait correlations.

While Chapter 5 successfully delineated the distinct genetic architectures of multiple bipolar
disorder (BD) subphenotypes, the clinical utility of these findings depends on the accuracy and
interpretation of polygenic risk scores (PRS). Building on these insights, this chapter addresses
the critical question of how PRS performance for BD is influenced by key methodological
variables. It will directly test the “bigger is better” assumption in psychiatric genetics by
examining the trade-off between sample size and the quality of phenotyping. Specifically, this
analysis investigates the impact of different patient ascertainment strategies (clinical,
community biobanks, and self-report), the inclusion of multi-ancestry GWAS data, and
stratification by BD subtypes (BD1 and BD2), with the aim of refining the application of PRS
and establishing best practices for future genetic studies.
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6 Bipolar Disorder PRS Optimisation

A published version of the research in this chapter is available in Nature (2025) at
DOI: 10.1038/s41586-024-08468-9

6.1 Abstract

Background: The different methods used to find and select patients (ascertainment strategies)
create significant inconsistencies (heterogeneity) across the genetic datasets. The reliability of
polygenic risk scores for bipolar disorder is complicated by the varied patient recruitment
methods used in the underlying genetic studies. To create reliable polygenic risk scores for
bipolar disorder, we must first account for the significant inconsistencies introduced by
different patient selection strategies in the source GWAS data. While PRSs for bipolar disorder
are a powerful tool, their predictive accuracy may be skewed by differences in how patients
were recruited for the foundational GWAS, a factor that requires careful control via
stratification.

Aims: This study aimed to investigate the influence of including self-reported BD cases and
multi-ancestry GWAS on the performance of resulting PRSs across different ascertainment,
ancestry groups, and BD subtypes.

Methods: PRS analyses using PRS-CS-auto were performed in 55 European ancestry (EUR)
cohorts (40,992 cases, 80,215 controls), one African ancestry (AFR) cohort (347 cases, 669
controls), and three East Asian ancestry (EAS) cohorts (4,473 cases, 65,923 controls). GWAS
were conducted with and without the inclusion of self-reported BD data, and with and without
non-European ancestry data. The variance explained (R2) and odds ratios (OR) for individuals
in the top PRS quintile (20%) were calculated.

Results: In EUR ancestry cohorts, PRS derived from multi-ancestry GWAS excluding self-
reported data explained significantly more cohort-weighted variance (R2 = .090) than those
including self-reported data (R2 = .058) and those derived from EUR-only GWAS excluding
self-reported data (R2 = .084). The top 20% of individuals (quintile), compared to the middle
quintile based on the optimal PRS, had an OR of 7.06 for BD. Similar patterns were observed
for bipolar disorder I (BD1) and clinical cohorts. Conversely, including self-reported data
showed significant increases in variance explained for bipolar disorder II (BD2) and
community cohorts. PRS performance in EAS cohorts was generally better with GWAS
excluding self-reported data. In the AFR cohort, including self-reported data substantially
increased the explained variance. The study identified differences in the genetic architecture of
BD based on ascertainment and subtype.
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Conclusions: The inclusion of self-reported data in GWAS for BD PRS derivation can
negatively impact performance, particularly in EUR ancestry samples and for BD1 and clinical
cohorts, likely due to increased phenotypic heterogeneity. The study highlights the importance
of considering ascertainment bias in BD genetic studies and PRS development, suggesting that
stratification by subtype may be crucial for future genetic investigations. While the identified
PRS represents an improvement, its predictive power remains insufficient for diagnostic use in
the general population.

6.2 Introduction

Bipolar disorder (BD) is a persistent and often debilitating mood disorder that diminishes
quality of life and functional capacity, while also carrying a substantial risk of
suicidality [1]. Typically emerging in early adulthood [1], BD exhibits a consistent prevalence
and incidence globally [2]. While current treatment strategies, primarily involving mood
stabilizers, antipsychotics, and antidepressants, are often coupled with chronic interventions
[1,3], a considerable proportion of individuals, approximately one-third, experience relapse
within the initial year of treatment [4].

The clinical complexity of BD is underscored by the Diagnostic and Statistical Manual of
Mental Disorders, 5th Edition (DSM-5), which classifies ‘bipolar and related disorders’ into a
spectrum including bipolar disorder I (BD1), bipolar disorder II (BD2), and cyclothymic
disorder [5]. Similarly, the 11th revision of the International Classification of Diseases (ICD-
11) recognises BD1 and BD2 as distinct entities [6]. BD1 is defined by the occurrence of both
manic and depressive episodes, whereas BD2 is characterized by hypomanic and depressive
episodes.

Recent progress in genetics and neuroimaging is increasingly elucidating the underlying
biological mechanisms of BD. Notably, the Psychiatric Genomics Consortium (PGC) Bipolar
Disorder Working Group has been instrumental in advancing genetic discoveries in this
area [7-9, 21]. Their 2021 genome-wide association study (GWAS) involving 41,917
individuals with BD and 371,549 controls identified 64 associated genetic loci [7]. However, it
is important to note that most of this research to date has focused almost exclusively on
individuals of European (EUR) ancestry.

6.3 Aims

This chapter presents findings from the largest multi-ancestry GWAS meta-analysis of bipolar
disorder (BD) PRS analyses to date, encompassing 158,036 individuals with BD and 2,796,499
control individuals [21]. This analysis combines data from clinical, community biobanks, and
self-reported samples, with the aim to optimise PRS prediction via stratification of the main
BD phenotype into more homogenous subgroups. Given the hypothesis that variations in
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patient ascertainment source, BD subtype, and genetic ancestry could influence the underlying
genetic architecture, separate analyses of these groups were conducted. This comprehensive
investigation provides novel insights into the genetic architecture implicated in BD, with the
potential to guide the development of precision medicine strategies.

6.4 Methods

This study investigated the influence of ascertainment strategies, genetic ancestry, and subtype
stratification on the performance of polygenic risk scores (PRS) for bipolar disorder. PRS were
computed using PRS-CS-auto in multiple target cohorts of European, African, and East Asian
ancestry. The discovery GWAS datasets were systematically varied to include or exclude self-
reported cases and non-European ancestry data, allowing for a direct comparison of the
resulting PRS performance, which was primarily measured by variance explained
(Nagelkerke’s R2 on the liability scale).

The general methodology for cohort ascertainment, GWAS, and PRS analysis is detailed
in the General Methods (Chapter 2).

6.5 Results
Genetic architecture of BD subtypes

To investigate bipolar disorder (BD) subtypes, available GWAS summary statistics for BD1
(25,060 individuals) and BD2 (6,781 individuals) from a prior study [7] were utilized, which
originated from a subset of the clinical and community samples. In polygenic risk score (PRS)
analyses, conducted using PRS-CS-auto [17] across 55 European ancestry (EUR) cohorts
(40,992 cases and 80,215 controls), one African ancestry (AFR) cohort (347 cases and 669
controls), and three East Asian ancestry (EAS) cohorts (4,473 cases and 65,923 controls; see
Supplementary Tables 66-76 for cohort characteristics and distinct patterns of variance
explained.

Polygenic association with BD

Specifically, within the EUR ancestry cohorts, the PRS derived from the multi-ancestry GWAS
that excluded self-reported data demonstrated a significantly greater variance explained (R2 =
.083, SE = .006) compared to the PRS generated from the multi-ancestry GWAS including
self-reported data (R2 =.062, SE =.011, P =2.72 x 10*#) and the PRS from the EUR ancestry
GWAS excluding self-reported data (R2 = .078, SE = .007, P = 5.62 x 107; Figure
42). Notably, individuals in the top 20% of PRS based on the multi-ancestry GWAS without
self-reported data exhibited 7.06-fold increased odds (95% CI = 3.9 - 10.4) of being affected
with BD compared to those in the middle quintile. The median area under the receiver operating
characteristic curve (AUC) for this PRS was .70 (95% CI = .67 - .73). These findings suggest
that the proportion of BD liability explained by current PRSs remains insufficient for diagnostic
prediction in the general population.
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Polygenic association with BD subtypes

When examining specific BD subtypes and ascertainment sources within the EUR cohorts
(variance explained presented as median weighted liability R2 assuming a 2% population
prevalence), it was found that PRSs derived from GWAS excluding self-reported data
consistently explained significantly more variance in BD1 cases (36 cohorts; 12,419 cases and
33,148 controls; Neff = 14,607; Figure 43-44) and in clinical cohorts which represented more
BD1 cases (48 cohorts; 27,833 cases and 46,623 controls; Neff = 29,543) compared to PRSs
including self-reported data. Conversely, the inclusion of self-reported data resulted in higher
median R2 estimates for BD2 cases (21 cohorts; 2,549 cases and 23,385 controls; Neff=4,021)
and in community cohorts which were more representative of BD2 cases (7 cohorts; 13,159
cases and 36,592 controls; Neff = 17,178), although these increases were not statistically
significant. It is hypothesised that this pattern is likely attributable to increased phenotypic
heterogeneity introduced when self-reported data were included in the PRS discovery sample
(Figure 44). In the three clinically ascertained EAS cohorts, PRS analysis revealed that PRSs
derived from GWAS excluding self-reported data generally outperformed those including self-
reported data for both EUR ancestry PRS (EUR-PRS) and multi-ancestry PRS (multi-PRS)
(Taiwan: EUR-PRS R2 = .069, multi-PRS R2 = .075 vs. EUR-PRS R2 = .026, multi-PRS R2
=.036; Japan: EUR-PRS R2 =.027, multi-PRS R2 =.025 vs. EUR-PRS R2 =.015, multi-PRS
R2 =.015; Korea: EUR-PRS R2 = .016, multi-PRS R2 = .022 vs. EUR-PRS R2 = .014, multi-
PRS R2 = .017). Interestingly, in the single clinically ascertained AFR target cohort, it was
observed that the inclusion of self-reported data led to a substantial increase in explained
variance (R2) for both the multi-PRS (from .010 to .23) and the EUR-PRS (from .010 to .22).
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European wilth self-report  European nlo self-report  Multi-ancestry ‘with self-report Multi-ancestry' no self-report
PRS_Factor
PRS Group Median SE (Median) ClLower (95%) ClUpper (95%)
European with self-report 0.062 0.010 0.046 0.079
European no self-report 0.078 0.007 0.067 0.093
Multi-ancestry with self-report 0.062 0.011 0.040 0.076
Multi-ancestry no self-report 0.083 0.006 0.072 0.093

Figure 42 Liability R-squared by PRS across ancestry

The figure displays the distribution of R-squared values (liability weighted) across different PRS
(Polygenic Risk Score) groups, stratified by reported ancestry (European and Multi-ancestry). Violin
plots illustrate the density of R-squared within each PRS group, while individual data points are overlaid
to show the spread of the data. A horizontal black line within each violin represents the median R-
squared for that specific PRS group. The accompanying table provides a numerical summary of these
results, presenting the median R-squared, the standard error of the median (estimated via bootstrapping,
N=10,000 bootstraps), and the 95% bias-corrected and accelerated bootstrap confidence intervals for
the median for each PRS group. This representation of the visual comparison of the central tendency
and spread of R-squared values across the four different PRS and GWAS-ancestry (blue and grey)
categories, is presented in the statistical estimates and their uncertainty in the table.
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Distribution of Liability Weighted R-squared by PRSS Group
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PRSS Group
PRSS Group Median SE (Median) CIlLower (95%) ClUpper (95%)
BD1_EUR_no23andMe 0.156 0.016 0.128 0.189
BD1_EUR_w23andMe 0.075 0.017 0.062 0.116
BD2_EUR_no23andMe 0.119 0.034 0.079 0.195
BD2_EUR_w23andMe 0.139 0.021 0.072 0.177
BD1_MULTI_no23andMe 0.170 0.026 0.121 0.214
BD1_MULTI_w23andMe 0.075 0.015 0.063 0.116
BD2_MULTI_no23andMe 0.112 0.038 0.077 0.207
BD2_MULTI_w23andMe 0.138 0.022 0.086 0.170

Figure 43 Liability R-squared by PRS across subtypes.

The violin plot visualizes the distribution of liability-weighted R-squared values for each PRSS group
(subtype group), with the black lines indicating the bootstrapped median for each group. The table
complements this by providing a numerical summary of these distributions. For each PRSS group, the
table presents the bootstrapped median, its standard error (a measure of the variability of the median
estimate), and the 95% confidence interval. This confidence interval gives a range where the true
median value is likely to fall, based on the bootstrap resampling. By comparing these medians and their
confidence intervals across the PRSS groups, one can infer the magnitude and statistical significance of
differences in predictive power, as measured by R-squared on the liability scale, between the PRSS
groups by ascertainment (BD1 or BD2) and GWAS-ancestry (colour blue and grey).
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PRSA Group Median SE (Median) CIlLower (95%) ClUpper (95%)
Biobank_EUR_no23andMe 0.213 0.054 0.177 0.358
Biobank_EUR_w23andMe 0.237 0.066 0.116 0.371
Clinical_EUR_no23andMe 0.072 0.006 0.061 0.084
Clinical_EUR_w23andMe 0.053 0.008 0.040 0.070
Biobank_MULTI_no23andMe 0.227 0.062 0.180 0.395
Biobank_MULTI_w23andMe 0.253 0.067 0.111 0.378
Clinical_MULTI_no23andMe 0.077 0.006 0.064 0.088
Clinical_MULTI_w23andMe 0.048 0.009 0.038 0.069

Figure 44 Liability R-squared by PRS across ascertainment.

The violin plot visualises the distribution of liability-weighted R-squared values for each PRSA group
(ascertainment group), with the black lines indicating the bootstrapped median for each group. The table
complements this by providing a numerical summary of these distributions. For each PRSA group, the
table presents the bootstrapped median, its standard error (a measure of the variability of the median
estimate), and the 95% confidence interval. This confidence interval gives a range where the true
median value is likely to fall, based on the bootstrap resampling. By comparing these medians and their
confidence intervals across the PRSA groups, one can infer the magnitude and statistical significance
of differences in predictive power, as measured by R-squared on the liability scale, between the PRSA
groups by ascertainment (clinical or biobank/community) and GWAS-ancestry (colour blue and grey)
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6.6 Discussion

This study represents the largest PRS analyses of GWAS of BD to date, encompassing a diverse
range of ancestries (EUR, EAS, AFR, and LAT). The results corroborate the initial hypothesis
that variations in ascertainment and BD subtype are associated with differences in genetic
architecture. Subsequent post-GWAS analyses in O’Connell et al., provided novel insights into
the biological underpinnings and genetic architecture of BD, highlighting further distinctions
based on participant ascertainment and BD subtype. Furthermore, it was demonstrated that the
inclusion of multi-ancestry data enhanced the polygenic prediction accuracy.

The genetic correlation findings from the latest large-scale BD GWAS (O’Connell, Koromina
and van der Veen et al., 2025) coupled with these PRS analyses, underscore that the genetic
architecture of BD varies across ascertainment methods and subtypes, a phenomenon
seemingly driven by the relative representation of each subtype within the
sample. In O’Connell et al., an analysis of BD subtypes revealed a strong, albeit imperfect (rG
= .88, SE =.05), genetic correlation between BD1 and BD2 [21]. Notably, this study observed
high genetic correlations between both BD1 (»G = .85, SE =.03) and BD2 (G = .95, SE =.06)
with community-ascertained samples. In contrast, the genetic correlation between BD1 and
self-reported BD (G = .42, SE =.02) was significantly lower (P= 7.1 x 10-'®) than that between
BD2 and self-reported BD (G = .76, SE = .05). Furthermore, assuming a 1% population
prevalence [22], heritability estimates indicated a higher SNP-based heritability (h*snp) for
BD1 (h?*snp = .21, s.e. =.01) compared to BD2 (h*snp = .11, SE = .01). Considering the
differing proportions of BD1 and BD2 individuals in clinical and community cohorts, the study
also examined the genetic correlation between BD in these settings and self-reported BD,
conditioning on the genetic risk for BD1 and BD2. Following this adjustment, the genetic
correlation between self-reported BD and BD in community cohorts (G = .92, s.e. = .09) was
not significantly different (P = .10) from that observed in clinical cohorts (*G = .71, SE = .13).
As expected, schizophrenia was more strongly genetically correlated with the main BD
phenotype meta-analysis excluding self-reported data and with BD1 and BD in clinical
samples.

This highlights a critical trade-off in psychiatric genetics between sample characteristics and
PRS performance. Clinically ascertained, hospital-based samples are often enriched for more
severe illness (e.g., more BDI, higher rates of psychosis) and may have a higher underlying
genetic burden. While a GWAS of such a sample can yield larger effect sizes, the resulting
PRS may have limited generalizability to the wider community. Conversely, biobank and self-
report samples offer massive sample sizes but may capture a broader, more heterogeneous, and
potentially less severe spectrum of the disorder. Our finding that excluding self-report data
improved prediction for BD1 and clinical cohorts, while including it was neutral-to-positive
for BD2 and community cohorts, empirically demonstrates this ascertainment-specific genetic
architecture. Future PRS development must grapple with this trade-off, perhaps by developing
ascertainment-specific PRS or by using methods that can model and account for this
heterogeneity.
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The observed differences in the genetic architecture of BD subtypes appear to be related to the
method of ascertainment. Specifically, BD in clinical and community samples exhibited a
strong but imperfect genetic correlation, with varying degrees of correlation with self-reported
BD. The lower genetic correlation and limited genetic overlap between clinically ascertained
cases and self-reported cases are likely driven by a higher proportion of BD1 within the clinical
and community samples (O’Connell et al.). Consistent with this, the PRS derived from meta-
analyses excluding self-reported data performed better in clinical and BD1 target samples,
whereas the inclusion of self-reported data improved PRS performance in community and BD2
target samples. Moreover, the pattern of genetic correlations between BD and other psychiatric
disorders shifted with the inclusion of self-reported data, with schizophrenia showing the
strongest correlation in the absence of self-reported data, and major depressive disorder (MDD)
exhibiting the strongest correlation when self-reported data were included (O’Connell et al.

[21]).

These findings suggest that self-reported samples may be enriched for individuals with BD2,
aligning with recent reports of increasing depression and ADHD PRS and decreasing BD PRS
over time in BD2 diagnoses [23]. However, O’Connell et al. recognise the potential for
overdiagnosis of BD. This is especially a concern in outpatient settings, among individuals
with conditions such as, chronic depression or borderline personality disorder, characterised
by higher comorbidity rates [24-25] which warrants consideration.

The multi-ancestry PRS yielded the most substantial improvement over the EUR-PRS in two
of the three EAS ancestry target cohorts (Korea and Taiwan), with more modest gains observed
in EUR target cohorts. The limited improvement in the AFR target cohort may be attributable
to the genetic heterogeneity within this population [26]. These results underscore the value of
incorporating multi-ancestry representation in PRS training data, consistent with findings in
other complex diseases [27]. While the predictive power of the BD PRS developed in this study
represents a notable advancement compared to previous efforts [7], it still falls short of the
threshold for clinical utility [28].

6.7 Limitations

The study lacked in-sample linkage disequilibrium estimates for all cohorts and relied on a
EUR reference panel for multi-ancestry analyses. A EUR LD reference panel was used in the
PRS analyses. This approach may not fully capture the LD patterns and interindividual
heterogeneity present within the diverse ancestry groups included in the meta-analyses. Also,
it was noted that some out-of-sample PRS predictions exceeded the meta-analysed SNP-based
heritability statistic, a phenomenon that could potentially indicate inflated or spurious results
and warrants careful consideration. The inclusion of samples with minimal phenotyping, while
increasing sample size, may have introduced noise and reduced specificity, along with the
influence of the effects of between-cohort heterogeneity.
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6.7 Conclusions

In conclusion, this large-scale multi-ancestry GWAS of BD has identified differences in its
genetic architecture based on both ascertainment and subtype. This suggests that future genetic
studies of BD will benefit from stratification by subtype. However, it is crucial to consider the
potential impact of between-cohort heterogeneity in PRS analysis. For instance, this
heterogeneity can lead to PRS predictions that exceed the meta-analysed SNP-based
heritability statistic. Chapter 5 investigations offer a potential explanation for this observation,
based on existing research [29]. Analysis supported underlying genetic architecture differences
across cohorts, which could be mitigated by using MTAG. This approach acknowledges and
accounts for the heterogeneity that can confound standard meta-analysis results, and post-
GWAS PRS analyses, as does the random-effects PRS models used in Chapter 5 of this thesis.

6.9 Supplementary Materials

The full data for Supplementary Tables are available in the attached
file: Supplementary.tables.xlsx. This file also contains the supplementary data tables
referenced in Chapter 5.

The specific contents for Chapter 6 are as follows:

e Supplementary Table 66: Summary of 79 cohorts included in the PGC4 bipolar disorder
meta-analyses.

e Supplementary Table 67: Sample size (cases/controls), assessment/ascertainment type,
and discovery from ancestry-specific and multi-ancestry meta-analyses.

e Supplementary Table 68: Liability scale SNP-heritability estimates in EUR meta-
analyses using LD score regression.

e Supplementary Table 69: Genetic correlation of bipolar disorder with other psychiatric
disorders.

e Supplementary Table 70: Multi-Ancestry PRS excluding self-report data in European
target samples.

e Supplementary Table 71: Multi-Ancestry PRS excluding self-report data in European
BD1 target samples.

e Supplementary Table 72: Multi-Ancestry PRS excluding self-report data in European
BD2 target samples.

e Supplementary Table 73: Multi-Ancestry PRS excluding self-report data in European
Clinical target samples.

e Supplementary Table 4: Multi-Ancestry PRS excluding self-report data in European
Community target samples.

e Supplementary Table 75: Comparison of variance explained by different PRS in
European target samples.

e Supplementary Table 76: Multi-ancestry and European PRS in non-European target
samples.
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The preceding chapters have demonstrated that deconstructing the heterogeneity of bipolar
disorder (BD) requires both novel dimensional frameworks (Chapter 2) and large-scale genetic
dissection (Chapters 3 & 4), and that the utility of these findings is shaped by critical
methodological factors like ascertainment and ancestry (Chapter 5). The collective results
converge on a key point: a more robust and nuanced understanding of BD is achievable, but
requires moving beyond broad diagnostic categories. The final chapter will now synthesize
these findings, critically discuss their broader implications and limitations, and outline future
directions for research and clinical practice.
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7 General Discussion

Findings, Limitations, and Future Directions

The rigorous, multi-stage research strategy employed throughout this thesis has demonstrated
its fundamental importance in advancing our understanding of bipolar disorder (BD). By
progressively incorporating independent cohorts for wvalidation, thereby substantially
increasing sample sizes, and by consistently focusing on elucidating the genetic architectures
of more homogeneous BD subphenotypes, this body of work has made a tangible impact on
how we approach the study of this complex condition. Specifically, this thesis has enhanced the
reliability and generalisability of identified genetic associations, boosted the statistical power
crucial for detecting subtle etiological effects, and enabled a more precise dissection of the
pathways contributing to BD’s diverse clinical presentations. This methodological
commitment, central to the research presented, represents a consequential step beyond broad
categorisations towards a more granular, biologically informed understanding of the disorder.

Building upon these specific contributions and the insights they have generated, this concluding
chapter now aims not only to synthesise the findings of this thesis through a critical appraisal
but also to offer insights into how key challenges, particularly those illuminated by the
investigations herein, could guide and be addressed by future research.

7.1 Foundational Challenges In Psychiatric Genomics

Genome-wide association studies (GWAS) have limitations, primarily focusing on common
variants, which excludes rarer variants. GWAS only account for a portion of the heritability of
complex traits, leaving a substantial part unexplained. Additionally, the stringent multiple
testing burden associated with including many genetic variants necessitates larger sample sizes
to identify smaller effects.

If case and control groups or cohorts are not well-matched, Wang et al. (2023) suggest this can
lead to different sub-populations being represented and reduce statistical power for association
[1]. This recent study proposed that between-cohort heterogeneity could be addressed by using
Multi-Trait Analysis of GWAS (MTAG) analysis [2]. There was potential evidence to support
this in Chapter 5 which utilized MTAG to derive SNP effect size estimates. This choice was
motivated by a key limitation in standard fixed-effect meta-analysis: its assumption of
homogeneity across all contributing cohorts. When this assumption is violated, a common
occurrence in large-scale genetic studies, standard methods can produce biased SNP effect
sizes, which are often underestimated. The analyses in this thesis were particularly susceptible
to this issue, as demonstrated by the high heterogeneity statistics observed across all
subphenotypes (e.g., > = 96.4% for BD1).
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To address this, MTAG provides a more robust estimation by treating each cohort as a distinct
but genetically correlated trait. This model leverages the shared genetic signals across cohorts
to improve the precision of the SNP effect estimates, thereby correcting for the bias introduced
by heterogeneity. The practical benefit of this improved methodology is evident in the
enhanced predictive power of the resulting Polygenic Risk Scores (PRS). The PRS for BD1,
for example, achieved an R2-liability of 9.8%, and the score for the unipolar mania
subphenotype reached 12.4%. These results exceed the ~4.6% reported for BD by the large-
scale [3] study, which used a standard fixed-effects approach, and are highly competitive with
the 8.4%-9.0% R2-liability reported by [4], and even exceeding this estimate for certain
specific subphenotypes. This may demonstrate that MTAG’s superior handling of
heterogeneity, as argued by Wang et al. (2023) [1], leads to more powerful and predictive
genetic scores, alongside the increased power of a multi-trait phenotypic approach.

In contrast, the standard fixed-effects meta-analysis in Chapter 6 does not directly address
heterogeneity. MTAG meta-analysis could take clinical cohorts as the focal trait, and
community cohorts as genetically correlated traits, which may produce a different pattern of
PRS variance. MTAG-PRS could show a more balanced predictive power across the two
ascertainment groups. Under the standard model, PRS built solely on a clinical cohort (with
potentially inflated effect sizes due to enrichment) might over-predict risk in a community
sample. Conversely, a PRS built primarily on a community sample might under-predict risk in
a clinical sample where the genetic burden is likely higher. Using MTAG, integrating the
clinical cohorts as a focal trait and community data as a closely related trait, could potentially
moderate these extreme biases, leading to a more reliable PRS performance. Subsequently,
stratification was applied in the PRS-CS analyses in Chapter 6 to address this ascertainment
bias.

Chapter 6 sensitivity analyses highlighted the importance of modelling cohort-specific
characteristics and potential heterogeneity. The MTAG method was therefore employed in the
analysis of the BD subphenotypes in Chapter 5. Treating BD phenotypes as highly correlated
traits within an MTAG framework may offer several advantages, including increased power to
detect genetic associations, and more precise and potentially less biased SNP estimates which
led to better-performing PRS. Furthermore, a sensitivity analysis was also performed that
applied a random-effects model in out-of-sample PRS-CS subphenotype predictions, which
improved prediction.

Regardless, most BD subphenotype studies remain largely Eurocentric, that inherently limits
discovery, prediction and the generalisability of findings. This is particularly relevant given
recent evidence that depression risk can differ among people of different ancestry [5-6].
Studying ancestrally diverse populations in GWAS is therefore essential [7]. Tools have been
developed to improve disease risk prediction across diverse populations. For example, the PRS-
CS method used in this thesis, has more recently been extended to improve polygenic
prediction in ancestrally diverse populations (PRS-CSx) [8].
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Foundational Limitations of Genome-Wide Association Studies (GWAS)

GWAS have been instrumental in identifying genetic variants associated with bipolar disorder
(BD), however they have additional limitations to fully elucidating the disorder’s complex
genetic basis:

Missing Heritability: GWAS primarily focus on common genetic variants (Single Nucleotide
Polymorphisms or SNPs) with a minor allele frequency of at least 1-5% in the population. This
approach overlooks the potential contribution of rare variants, which, although individually
infrequent, could collectively account for a portion of the “missing heritability”, the gap
between the estimated heritability of BD from twin studies (60-85%) and the variance
explained by identified common variants (around 25%), see Chapter 1. Also, GWAS typically
assess the independent effect of each SNP, often overlooking complex interactions between
multiple genes (epistasis) or between genes and environmental factors (gene-environment
interactions), which are likely crucial in the development of BD.

Small Effect Sizes of Individual Variants: Most genetic variants identified by GWAS for BD
have small effect sizes, meaning each variant only contributes a small increase in the risk of
developing the disorder. This makes it challenging to translate these findings into clinically
useful predictions or diagnostic tools at the individual level. Translating GWAS findings into
new therapeutics for psychiatry is an ongoing effort. Detecting these small effects requires very
large sample sizes (tens of thousands of cases and controls) to achieve sufficient statistical
power. Misclassified cases/controls in GWAS, a problem for all disorders, is especially
impactful for BD due to its spectrum nature. For instance, studies by Zimmerman et al. 2008
[9] and Zimmerman et a/. 2010 [10] have explored whether bipolar disorder is over diagnosed
or if previous overdiagnoses impact psychiatric classifications. This misclassification, due to
diagnostic challenges, subtypes, and comorbidities, reduces statistical power, biases effect
sizes, and that hinders replication. Likewise, non-random mating (mating is influenced by
existing traits), could further bias heritability estimates. Non-random mating can violate the
core assumptions also of Mendelian Randomization (MR) introducing bias into the results.

Applying Mendelian Randomization to BD

Mendelian Randomization (MR) is a valuable epidemiological tool that employs genetic
variants as instrumental variables for exposures [11]. By leveraging the random assignment of
genetic variants at conception, MR aims to explore causal relationships with outcomes, such
as bipolar disorder (BD), while mitigating the confounding and reverse causation that often
affect traditional observational studies. However, applying MR to complex diseases such as
BD using GWAS data presents several challenges that can test MR’s core assumptions.

Large-scale GWAS often necessitate multi-cohort designs, which can introduce sample
heterogeneity. This lack of homogeneity may undermine key MR assumptions and prevent the
consistent definition of BD phenotypes across studies. The commonly used two-sample MR
approach, which utilises separate GWAS datasets for the exposure and outcome, assumes
relative homogeneity between these samples. This assumption is a particular concern in BD
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research, where outcome data frequently come from clinically ascertained participants, while
risk factor (exposure) data may originate from broader population-based cohorts. Whilst the
one-sample MR method, using a single cohort, can relax this homogeneity requirement, it
carries a higher risk of data overfitting and weak instrument bias [12-13].

MR is therefore also not immune to potential biases. Although the fixed nature of genotypes
helps protect against some reverse causality between the phenotypic exposure and outcome,
violations of MR assumptions, such as horizontal pleiotropy (where genetic variants affect the
outcome through pathways independent of the specific exposure being investigated), can still
lead to false associations. The replicability of MR findings in BD research has also been a
notable concern. For instance, initial MR associations reported between BD and cardiovascular
diseases (CVD) and their subtypes did not persist after meta-analysis [14]. Similarly, MR
studies examining the relationship between circulating metabolites and BD risk have shown
limited replicability, often due to discrepancies between discovery and replication datasets [15-
16].

Evidence of MR Limitations in the Thesis BD Research

The application of MR and sensitivity analyses to the initial GWAS results for eleven BD
subphenotype GWAS in the current thesis work (Chapter 5), revealed heterogeneity evidenced
by Cochran’s Q (QEgger) and horizontal pleiotropy, indicated by the MR-Egger Intercept [18].
While multivariable Mendelian Randomization (MVMR) could potentially address some
horizontal pleiotropy, it would not eliminate it entirely [19-20]. Causal inference for heritable
phenotypic risk factors using heterogeneous genetic instruments requires careful consideration
of these limitations. Horizontal pleiotropy, where the genetic instrument affects the outcome
through pathways independent of the exposure, poses a challenge in BD MR studies [21]. A
genetic variant might influence specific BD subphenotypes, such as the development or
severity of a rapid-cycling course, through mechanisms beyond its impact on the overt
circadian disruption. For example, an SNP in a clock gene could affect both an individual’s
intrinsic circadian rhythm (the intended exposure) and, independently, modulate critical
intracellular calcium signalling pathways or glutamatergic neurotransmission, both of which
are known to be involved in mood episode recurrence and the underlying pathophysiology of
BD. In such cases, the SNP’s effect on a rapid-cycling BD subphenotype would not be solely
mediated by the ‘propensity towards circadian disruption,” leading to a “horizontal” pathway
and potentially spurious causal associations.

Environmental factors, such as inconsistent daily routines, major psychosocial stressors, or
even seasonal changes in light exposure, also play a substantial role in the course of bipolar
disorder and could interact with these pleiotropic pathways, further complicating the
interpretation of MR results. Even if a genuine causal effect of circadian disruption on rapid
cycling in BD exists, this type of horizontal pleiotropy can bias the estimated magnitude of this
effect, either inflating or deflating it.
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Summary: In summary, MVMR might not be a complete solution for horizontal pleiotropy in
BD research due to the disorder’s complexity. BD has a multifaceted aetiology involving
numerous interacting genetic and environmental factors. Identifying and accurately measuring
all potential “other factors” influenced by a genetic variant associated with a risk factor is
incredibly difficult, if not impossible, as all relevant biological pathways are currently
unknown. MVMR can only mitigate some biases from weak instruments and horizontal
pleiotropy for known confounders. BD likely has many unknown confounders, therefore
MVMR may still be biased by residual confounding. Genetic variants identified for many BD
risk factors might be weakly associated with those risk factors (weak instruments), which can
amplify bias from even small amounts of horizontal pleiotropy, rendering MR results unreliable
[22]. Given these challenges, developing methods beyond MVMR is crucial for more reliable
causal inference in BD research using MR. Future research should focus on developing better
instrument selection strategies to minimize the use of variants with widespread pleiotropic
effects on pathways unrelated to BD. This ongoing effort to disentangle the complex web of
genetic influences and causal pathways involved in the development and manifestation of
bipolar disorder highlights the need for continued methodological advancements in the
application of MR to this challenging condition.

7.2 Addressing Confounding And Latent Dimensions In BD

The factor analysis-based Multiple Indicators and Multiple Causes (MIMIC) model (Chapter
3) is more advanced because it’s designed to study complex, underlying traits (e.g., anxiety,
social or cognitive deficits) that cannot be measure with a single number. It does this by
combining multiple factors at once and also accounts for the fact that our measurements are
never perfectly accurate, due to unobservable (latent) constructs. Single regression models
offer simplicity and ease of interpretation for examining direct relationships between observed
variables, but they lack the ability to model latent constructs and account for measurement error
in the same way as MIMIC models.

Inverse Probability Weighting (IPW) Limitations

Inverse Probability Weighting (IPW) (Chapter 3), while a powerful tool for addressing
potential bias, is inherently limited by unmeasured confounding and potential model mis-
specification. [PW using propensity scores is a statistical method employed to mitigate
confounding bias in observational studies, including case-control studies investigating BD.
This technique aims to create a pseudo-population where the distribution
of measured covariates is balanced between the exposure groups (e.g., cases and controls) by
weighting individuals based on the inverse of their probability of belonging to their observed
group, given their measured characteristics. The importance of considering confounding when
assessing bias in observational research cannot be overstated.

However, the effectiveness of IPW with propensity scores in fully adjusting for bias,

particularly in the complex landscape of BD research, is subject to crucial assumptions and
limitations. A core constraint is IPW’s complete dependence on observed covariates. Although
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the propensity scores constructed in Chapter 3 were based on factors that could be identified
and measured within the statistical models, the fundamental challenge persists: any
confounders that are unmeasured, poorly measured, or entirely unknown will not be accounted
for by this method. Because the full spectrum of factors that could potentially confound an
observed association is unknown (and may never be perfectly captured by measured variables
alone), IPW despite its utility in balancing observed covariates, cannot entirely eliminate the
risk of bias stemming from these unobserved influences. Therefore, a degree of caution must
always be applied when interpreting results adjusted using IPW, as the potential for residual
confounding from unknown or unmeasured factors remains.

7.3 PRS For BD: Strengths, Caveats And Heterogeneity

The SCZ3-PRS study in Chapter 4, among the first to investigate this specific Polygenic Risk
Score (PRS) for bipolar disorder I (BD1), highlighted several practical limitations and findings.
Heterogeneity in BD1 severity within the combined Romanian and UK study sample (e.g., due
to varying proportions of hospitalized, more severe cases) and incomplete phenotype
information for some participants potentially influenced the results and complicated the
interpretation of PRS effects. This is a known challenge, particularly when a PRS is derived
from a disorder such as schizophrenia (SCZ) which may have distinct severity profiles from
BD [22]. While the SCZ3-PRS demonstrated modest clinical value for some BD1 phenotypic
traits, providing an incremental predictive improvement when combined with clinical variables
in machine learning models, its utility as a standalone predictor was limited. This underscores
that while transdiagnostic PRS can be informative, their predictive power for specific
subphenotypes of another disorder may be constrained by partially distinct genetic
architectures. This point is relevant to findings of both shared and distinct genetic factors across
major psychiatric disorders (Chapter 5).

Generally, BD exhibits a strong polygenic component, and PRS serve to quantify an
individual’s aggregate genetic liability from numerous small-effect variants identified through
GWAS. PRS are valuable for research stratification (as employed in Chapter 3 to 6) by
integrating with traditional risk factors for a more comprehensive risk assessment. However, it
is crucial to recognise that PRS are correlational, do not imply causation, and are not absolute
predictors as they omit many other developmental and environmental influences. Nevertheless,
PRS can help mitigate some GWAS limitations by aggregating many small effect sizes,
including from variants that do not meet stringent GWAS significance thresholds, thereby
contributing to addressing some of the ‘missing heritability.” They also offer broader
applications in risk prediction, such as for offspring of affected individuals (though current
standalone predictive power for BD is modest), and in exploring potential cross-disorder
genetic contributions. However, caution is warranted when interpreting PRS derived from
GWAS with limited statistical power or those based on weak genetic instruments.

Utilizing PRS within a Mendelian Randomization (MR) framework for BD subgroups, for
instance, to assess features such as psychosis or age of onset in BDI, also presents distinct
challenges. PRS for subgroups often derive from smaller effective sample sizes and lower
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heritability estimates than PRS for the primary BD phenotype. As PRS typically explain only
a fraction of an exposure’s variance, their use as instruments can lead to weak instrument bias
in MR, potentially flawing causal effect assessments, especially given the existing ‘missing
heritability.” For example, a sensitivity analysis in Chapter 5 using the SlopeHunter method to
adjust for potential collider bias highlighted potential concerns for using MR, as results showed
evidence of over-correction. This was likely attributable to weak instruments, specifically a
limited number of ‘index-specific’ SNPs for the BD subphenotype, possibly reflecting high
genetic correlations between the main BD phenotype and its subphenotypes, alongside a lack
of clear temporal separation from the overarching BD phenotype.

Ultimately, the development of more powerful and reliable PRS for BD relies on large-scale
GWAS to obtain robust effect size estimates and capture a greater spectrum of genetic variants.
While pooling data from multiple cohorts can substantially boost statistical power in GWAS,
it also introduces the considerable challenge of between-cohort heterogeneity, which may arise
from differences in diagnostic criteria, sample ascertainment, and environmental factors. Such
heterogeneity can introduce noise, potentially obscuring true genetic associations and leading
to less generalizable PRS. Therefore, researchers face a balancing act: maximizing statistical
power through large sample sizes while meticulously addressing and mitigating the impact of
between-cohort heterogeneity. This thesis has attempted to address such heterogeneity in
Chapters 3 through 6 using methods including a subphenotypic approach, mixed regression
modelling, random-effects meta-analyses of MTAG PRS results, and stratification by BD
ascertainment and subtypes.

7.4 Subphenotyping BD: Limits Of Genetic Stratification

This section explores the advantages and disadvantages of focusing research on specific
subphenotypes of bipolar disorder (BD) compared to studying the broader BD phenotype.

Despite limitations, the thesis work benefited from a subphenotypic approach which identified
novel genetic insights beyond those found when analysing the main BD phenotype. This
revealed interrelated and subphenotype-specific mechanisms within BD clinical
characteristics, as well as shared genetic architecture with other psychiatric and somatic
disorders, evidenced by concordant pleiotropic effects. For instance, multivariate GWAS have
begun to reveal underlying dimensional genetic liabilities across psychiatric disorders [29].
Similar subphenotype-specific genetic signatures aligned in Chapter 5 with this in the pre-
defined four-factor model, potentially informing the future development of BD nosology and
treatments. BD is a highly heterogeneous condition. Studying more homogeneous subgroups
(subphenotypes) reduced noise. Focusing on more specific subgroups allowed for the detection
of risk factors with greater statistical power compared to analysing the entire heterogeneous
BD group.

Different subphenotypes exhibited distinct underlying biological mechanisms, allowing for a
more precise understanding of the BD’s aetiology. Identifying biomarkers associated with
specific subphenotypes could lead to more accurate predictions of illness course, treatment
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response, and comorbidity risk within those subgroups. Studying BD subphenotypes helped
illuminate some genetic and clinical overlap between BD and other psychiatric conditions. This
could help refine classification of bipolar disorders in the future.

The Chapter 5 analysis focused exclusively on individuals of European ancestry due to the lack
of phenotyping in non-European ancestries. This limits the applicability of these findings to
other populations. Heterogeneity between cohorts likely also limited discovery. While
multivariate analyses increased the effective sample size, they reduced the analysis to
intersected variants, potentially masking unique genetic loci associated with individual traits.
Furthermore, clinical misdiagnoses and cross-trait assortative mating could have introduced
biases requiring further investigation. Future research should incorporate formal fine-mapping
beyond the TWAS conditional analyses to pinpoint causal variants in larger multi-ancestry
analyses.

Limitations of a Subphenotypic Approach: There are also general limitations of studying
BD subphenotypes. There is a lack of a universally agreed-upon and biologically validated
system for defining BD subphenotypes remains a pivotal challenge. This initiative encourages
a more dimensional, mechanistic, and integrative approach to mental health research, with the
long-term goal of improving diagnosis and treatment. Dividing the overall BD sample into
smaller subphenotype groups reduces statistical power, potentially hindering the detection of
genetic associations, especially in genetic studies. An attempt was made to mitigate this by
increasing power to subphenotype-specific SNPs in the MTAG analyses. However, dividing
BD into too many subgroups based on superficial differences might not reflect underlying
biological distinctions and could lead to non-replicable findings. Individuals may exhibit
characteristics of multiple subphenotypes, making clear categorisation difficult. Therefore,
future efforts will require more detailed, accurate subphenotype classification which requires
comprehensive and standardised clinical assessments, which can be resource intensive.

In summary, studying bipolar disorder subphenotypes offers promise for dissecting the
disorder’s heterogeneity and advancing the understanding of its specific biological and clinical
features. However, as highlighted by the limitations encountered in in the current research
(European ancestry bias, cohort heterogeneity, focus on on intersected variants), and the
general challenges associated with subphenotype research (definition, sample size, statistical
power), careful consideration of both the benefits and limitations will be crucial for designing
and interpreting research in this complex area.

7.5 Advancements And Path Forward In BD Genomics

The polygenic risk score (PRS) for bipolar disorder (BD) developed in this study represents a
notable advancement compared to previous efforts [3], yet its predictive power still falls short
of the threshold required for clinical utility.
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Additional methodological short-comings are address below:

Multi-ancestry BD Polygenic Risk Score (PRS) prediction: A critical challenge in applying
BD PRS is achieving accurate and generalisable predictions across diverse ancestries. Current
PRS development is often hampered by the predominant reliance on European (EUR) linkage
disequilibrium (LD) reference panels. This approach may not adequately capture the distinct
LD patterns and interindividual genetic heterogeneity within various ancestral groups included
in large-scale meta-analyses, thereby limiting the portability and utility of PRS in non-EUR
populations. Recognising these disparities, initiatives including the PRIMED Consortium are
actively working to reduce them in polygenic risk assessment [30].

Increased GWAS Sample Sizes: While increasing the sample size of GWAS for BD is crucial
for improving the power to detect more associated genetic variants, it is unlikely that this factor
alone will be sufficient to bring PRS into routine clinical use. However, larger GWAS are
expected to identify more genetic variants associated with BD, including those with smaller
effect sizes. Incorporating these into PRS should lead to a modest but important increase in the
variance explained and thus, potentially better risk stratification at the population level. Larger
samples will likely yield more accurate estimates of the effect sizes of individual variants,
which are used as weights in PRS calculation. This could improve the reliability and predictive
power of the scores. With very large sample sizes, GWAS might be able to reliably identify
common variants with lower minor allele frequencies that still contribute to BD risk. Including
these could further enhance PRS accuracy.

Future Challenges: PRS based solely on common variants are unlikely to capture the portion
of heritability attributed to rare variants, copy number variations (CNVs), and complex gene-
gene and gene-environment interactions. These factors require different research approaches
(e.g., WES/WGS). Even with more variants identified, the individual variant effect sizes for
BD are likely to remain small. This inherent polygenic architecture of the disorder means that
even a PRS incorporating thousands or millions of variants might only explain a limited amount
of the overall risk. The improvement in predictive accuracy with increasing sample size may
eventually plateau.

The current predictive accuracy of BD PRS is far below the threshold generally considered
necessary for routine clinical decision-making (e.g., for diagnosis or guiding treatment in
individuals). While the largest to date BD GWAS (Chapter 6) will improve prediction, it
remains uncertain whether further increases in sample size will be sufficient to reach this
threshold. If a PRS for bipolar disorder were to achieve AUCs (Area Under the Curve) of .90-
.95 in well-powered, across independent validation studies, it could have clinical utility,
particularly in already identified high-risk populations [31].

PRS however will only account for genetic predisposition and do not incorporate the role of
environmental factors in BD development and course. Clinical risk prediction will likely
require integrating PRS with environmental and clinical risk factors for meaningful individual-
level assessment. This will need to be integrated further with familial risk, clinical features,
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and information from other types of genetic variation (rare variants, CNVs), focusing on
specific, well-defined subphenotypes of BD, for establishing clinical utility and actionable
strategies based on PRS results. Only through such a multifactorial approach coupled with
larger and more diverse WGS/WES/GWAS, advancements in methodology and translational
research, might there be the potential of genetic risk scores to be realised in the clinical
management of BD. Given that only a fraction of CNV carriers develop psychiatric disorders
[31], it will be vital to determine how CNVs and PRS jointly contribute to risk. While SCZ
studies indicate an additive effect for total risk [32], interactive effects between specific CNVs
and PRS require further research for combining these relative risk weights together for
prediction.

7.6 Research Challenges And Promising PRS Developments

Addressing and Leveraging Bipolar Disorder Heterogeneity

A crucial future direction, consistently highlighted throughout this thesis, lies in the continued
exploration of inter- and intra-individual heterogeneity in BD. Moving away from analysing
broad, heterogeneous patient groups towards dissecting more homogeneous subgroups is
essential for clarifying the complex genetic and clinical landscape of the disorder. The
approach taken in this thesis aimed to identify more specific subgroups, which in turn revealed
shared and differential underlying biological mechanisms potentially informative for treatment
response. This will require deepening phenotypic characterisation for subgroup refinement. To
power future dissections of this heterogeneity, even deeper phenotyping will be required. This
includes the comprehensive and detailed assessment of family history, longitudinal clinical
characteristics, treatment history, comorbidities, cognitive function, personality traits, and
environmental exposures, which could allow for the identification of patterns of co-occurring
features that define previously unrecognised BD subgroups.

Employing Data-Driven Strategies and Navigating Methodological Considerations

Alongside deeper phenotyping, advanced data-driven approaches will be vital. Statistical
techniques like cluster analysis, applied to rich phenotypic data, can help identify natural
groupings of individuals with similar clinical profiles, thereby defining more homogeneous
phenotypic subgroups. Simultaneously, methods that group individuals and genetic variants
based on shared patterns of association can identify genetically homogeneous subgroups
without relying on pre-defined phenotypic categories. While misdiagnosis can introduce noise
into case and control groups, the study’s approach of using genetic data to help define
subgroups, rather than relying solely on potentially heterogeneous phenotypic diagnoses, can
mitigate some of this impact. Furthermore, phenomena including assortative mating, where
individuals with similar traits preferentially partner, could indirectly affect the genetics of BD
by concentrating risk genes within families, potentially increasing the genetic heterogeneity
observed among BD patients.
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Recent methodological advancements offer promise for refining BD PRS. For instance, a novel
approach using genetic data to identify genetically homogeneous subgroups (biclusters) within
BD subphenotypes, without relying on pre-defined clinical categories, demonstrated improved
polygenic risk prediction for BD1 using only a small subset of bicluster-specific SNPs. This
suggests that focusing on such genetically defined subgroups might enhance the replication of
associated SNPs in future studies [33]. The gene-set enrichment analysis of this identified
genetic subgroup also revealed an over-representation of pathways related to neuronal
development and maintenance, aligning with the subtype and subphenotype differential gene-
set enrichment analyses conducted in this thesis (Chapter 5) and the individual-level pathway
(PRSet-PRS) discrimination of psychosis in BD1 (Chapter 4). These methods underscore a
shift towards prioritising SNPs more likely to have a functional impact, rather than treating all
SNPs equally.

Building on the importance of biological context, annotated genes and gene sets are crucial for
understanding the pathways and functions potentially disrupted in BD, which may manifest as
distinct endophenotypes. By studying these, researchers can pinpoint specific biological
pathways for investigation. Gene-set specific PRS could then be constructed to explore
associations with these particular endophenotypes. If a disease’s genetic architecture is
enriched within certain biological pathways, a targeted gene-set specific PRS might capture a
stronger, more relevant signal compared to a genome-wide PRS that includes many variants
unrelated to that specific pathway. For complex diseases with diverse genetic underpinnings
such as BD, different gene-set specific PRS could be particularly relevant for the distinct
subgroups of individuals identified in Chapter 5.

Computational and Genomic Advancements in PRS

Further enhancing PRS utility, methods leveraging predicted epigenomic features from whole-
genome sequencing data and advanced computational techniques including machine learning
and deep learning are emerging. As identified in Chapter 4, machine learning can capture
complex non-linear relationships, indicating potential for improved PRS prediction through
sophisticated feature selection and weighting by deep learning methods, such as Deep
Convolutional Neural Networks (DCNN) [34] and Deep Ensemble Encoder Networks (DEEN)
[35].

Beyond common variants, efforts are underway to incorporate a broader spectrum of genetic
variation into PRS. While increasing GWAS sample size is crucial for better-powered common
variant PRS, including rare SNVs and structural variations (including CNVs), often captured
by WGS rather than SNP arrays holds promise for increasing predictability. These variants,
though individually rare, can have larger effect sizes and contribute substantially to BD risk.
Consequently, developing methods to effectively weight and combine rare variants with
common variants in a PRS is an active research area. Models such as RICE [36], which
integrates common and rare variants using ensemble learning and burden scores, and EPRS
[37], focusing on prioritizing gene clusters with specific rare variants for risk stratification,
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exemplify this trend. Additionally, gene-based burden scores (GBS) can identify rare variant
associations for incorporation into PRS models [38].

7.7 Relating Subphenotypes And Endophenotypes

Bridging Subphenotypes with Endophenotypes through Genetic Insights and Advanced
Methodologies

From Clinical Subphenotypes to Biological Endophenotypes: The Rationale: A primary
goal of the Subphenotyping efforts in this thesis is to bridge clinically defined subgroups of
BD with more biologically grounded endophenotypes, thereby advancing clinical translation.
While the subphenotypes explored herein (e.g., characterized by predominant polarity, illness
course, specific symptom dimensions, or age of onset) refine the clinical picture,
endophenotypes represent heritable, measurable traits (including cognitive deficits, affective
temperaments, or neurobiological markers) considered closer to BD’s underlying genetic
vulnerabilities. Identifying such endophenotypes helps delineate more genetically
homogeneous groups sharing specific biological susceptibilities.

Polygenic Risk Scores: A Bridge to Endophenotype Discovery: PRS, particularly gene-set
specific PRS, offer a crucial link between genetic risk and these endophenotypes. For example,
genetic variants influencing early brain development, assessed via a gene-set PRS, have been
associated with neurophysiological endophenotypes such as reduced P300 amplitude in
psychosis [39]. The annotated genes, gene sets, and PRS analyses from this thesis (Chapters 4
and 5) provide a critical foundation for future work aimed at identifying and validating such
endophenotypes in BD, including specific biological components, such as HLA-DMA and the
complement component 4A [40].

Integrating Multi-Omics Data for Deeper Biological Insights: Recent methodological
developments further empower this transition from clinical subphenotypes to biologically
anchored endophenotypes. Multi-omics integration, using tools such as Weighted Gene Co-
expression Network Analysis (WGCNA;[41]) to find dysregulated gene networks from
transcriptomic data, and Multi-Omics Factor Analysis (MOFA; [42]) to uncover
comprehensive molecular signatures from diverse data types (e.g., genomics, transcriptomics,
epigenomics), could substantially aid in patient stratification and understanding BD’s
heterogeneity by identifying how different biological systems interact.

Tissue-Specific Approaches and “Biotypes”: Refining Biological Subgroups: Further
refining this quest for biologically meaningful subgroups, methods such as CASTom-iGEx
(Context-Aware Stratification based on Tissue-specific imputed Gene Expression; [43])
leverage tissue-specific gene expression data to define “biotypes.” These biotypes, representing
a convergence of genetic risk onto specific biological pathways, can form more homogeneous
groups at a molecular level than traditional PRS groupings and may correlate strongly with
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distinct clinical features and endophenotype profiles, as shown in other complex disorders [43].
Although the application of these sophisticated multi-omics and biotyping methods in BD is
currently limited by the need for well-characterized cohorts with comprehensive data and
advanced analytical expertise, they may offer powerful pathways forward.

Synthesizing Approaches for a Biologically-Informed Future in BD: By integrating the
refined Subphenotyping approaches developed in this thesis with PRS strategies focused on
biological pathways and these advanced multi-omics and biotyping techniques, future research
may more effectively connect observable clinical heterogeneity in BD to robust, underlying
endophenotypes. This convergence is essential for developing a biologically informed
classification system and ultimately, more targeted and effective treatments for bipolar
disorder.

7.8 Advances Towards Personalised Bipolar Disorders Treatment

The comprehensive investigations undertaken in this thesis, from delineating novel
dimensional models (Chapter 3) and subphenotype-specific genetic architectures (Chapter 5)
to refining polygenic risk prediction (Chapters 3 and 6), could lay critical groundwork for
advancing personalized approaches in BD. This section outlines how these specific
contributions may eventually be leveraged to improve clinical translation.

1. Leveraging Thesis-Defined Dimensions and Subphenotypes for Enhanced Clinical
Assessment: A core advance of this thesis is the identification of more homogeneous
patient subgroups based on distinct clinical and genetic profiles, such as the novel
‘chronic functioning’ dimension (Chapter 3) and the four genetically-informed
dimensions (Chapter 5).

Future work could focus on translating these refined classifications into clinically
applicable tools:

e Holistic Patient Profiling: The imperative, as highlighted by the thesis, is to move
beyond current diagnostic systems that do not fully capture individual heterogeneity.
The dimensional and subphenotype frameworks developed herein can inform more
comprehensive assessments that integrate mood polarity with cognitive function,
personality facets, and functional impairments. This holistic view is essential for
understanding the individual’s experience and predicting their illness course,
particularly given findings such as the association of the FOXO6 gene (Chapter 5)
with BD trajectory and its potential longitudinal role in hippocampal function and
memory [44].

o Early Identification within At-Risk Populations: The transdiagnostic genetic links
explored (Chapters 3 to 6), particularly the shared genetic liabilities between BD, SCZ,
MDD, and ADHD, can refine early identification strategies. For instance, research has
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elucidated genetic overlap between BD, MDD, and SCZ, even extending to borderline
personality disorder [45]. Broader efforts are charting the landscape of genetic overlap
across mental disorders and related traits such as MOOD [46], and identifying specific
loci that highlight shared risk with both mental and somatic disorders [47]. The thesis’s
insights into how ADHD or anxiety genetic risk contributes to specific BD
presentations (Chapter 3) could guide vigilance for youth exhibiting such early
comorbid symptoms, potentially signalling higher BD risk (especially for a chronic,
more complex BD trajectory).

2. Advancing Predictive Tools for Personalised Risk Stratification and Treatment
Planning: This thesis has explored both the utility and limitations of PRS (Chapters 3 to 6).
The path to personalized treatment involves building on these insights:

Refined PRS for Specific Subgroups: The finding that PRS performance is influenced
by ascertainment, ancestry, and subphenotype definition (Chapter 6) underscores the
need to develop and validate PRS tailored to more homogeneous patient groups, such
as those identified in Chapter 4. Future efforts should aim to integrate common and rare
variants with a subphenotypic approach, potentially using advanced methods such as
RICE [36] or EPRS [37]), to enhance predictive power for the four genetically-
informed specific thesis-derived dimensions (Chapter 5).

Integrating PRS with Clinical and Biological Data: As demonstrated by the
improved prediction when SCZ3-PRS was combined with clinical variables (Chapter
3), future predictive models should aim to integrate genetic markers such as the thesis-
derived ones, with deep phenotypic data (longitudinal course, comorbidities, cognitive
profiles, environmental exposures) and other biomarkers. This multi-modal approach,
potentially leveraging machine learning (Chapter 4), is key to moving PRS towards
clinical utility for predicting modifiable outcomes such as treatment response and
suicidality.

3. Targeting Novel Biological Pathways for Tailored Therapeutic Interventions: The gene and
gene set pathway analyses conducted (Chapters 4 and 5), which implicated specific biological
mechanisms, genes such as FOXOG6 in thesis-defined subphenotypes, offer avenues for novel
therapeutic development.

Subphenotype-Specific Drug Discovery: Identifying distinct biological pathways for
different subphenotypes (Chapter 4-5) could lead to interventions targeted at the
specific underlying biology of a patient subgroup, rather than a one-size-fits-all
approach. For example, disruptions in pathways involving FOXO6 (regulated via the
PI3K/PKB pathway; [44]) or other hub genes identified in specific BD subphenotypes
could become future novel targets for functional studies.

Biologically-Informed Repurposing: Shared gene set pathways between BD and
comorbid conditions (e.g., ADHD, anxiety) or related disorders (SCZ, MDD), as
explored throughout the thesis, might also allow for the informed repurposing of
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existing treatments for specific BD subgroups characterized by these shared genetic
signatures.

4. Overcoming Translational Hurdles: The Path Forward: Translating these research advances
into routine clinical practice requires continued effort:

e Developing Robust, Generalisable Models: This necessitates new, deeply
phenotyped, multi-ancestry cohorts to validate and extend the subphenotype and PRS
findings of this thesis. Advanced data-driven approaches, such as the multi-omics
integration techniques (WGCNA [41]), MOFA [42])) and biotyping methods
(CASTom-iGEx [43]) discussed previously, will be vital for identifying robust,
biologically-grounded patient segments.

e Bridging the Gap to Clinical Practice: The development of practice guidelines for
utilizing complex, multi-modal data (including genomics) in patient assessment and
management will be essential, alongside improved genetics training for clinicians.

By building upon the specific dimensional and Subphenotyping frameworks established in this
thesis and by rigorously addressing methodological challenges, future research could pave the
way for more precise diagnostics, targeted interventions, and ultimately, more personalized and
effective care for individuals with bipolar disorder.
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THESIS CONCLUSION

Genomics Insights into Bipolar Disorder Architectures - Pleiotropic Genes and Polygenic
Burdens: A Step Towards Personalized Treatment

In conclusion, this thesis has systematically dissected the intricate genetic landscape of bipolar
disorder, making an impactful contribution by demonstrating how a detailed understanding of
pleiotropic genes and polygenic burdens can reframe our approach to this complex
condition. By moving beyond traditional diagnostic categories to explore its dimensional
nature (Chapter 3) and, critically, by dissecting its heterogeneity across clinically defined
subphenotypes (Chapter 5), this work has not only underscored the limitations of a monolithic
view of bipolar disorder but has also yielded tangible resources for the wider research
community. Notably, based on the subphenotype-specific genetic architectures elucidated in
Chapter 5, summary statistics for each of the subphenotypes will be released (including those
incorporating SCZ3-SNPs effects), offering a novel and valuable foundation for future
investigations into these more homogeneous BD groups. The examination of transdiagnostic
polygenic risk scores (Chapter 4) further emphasized the pervasive pleiotropy influencing BD
by highlighting shared genetic underpinnings with other psychiatric conditions. Moreover, the
comprehensive multi-ancestry analysis of Polygenic Risk Score (PRS) performance (Chapter
6) has illuminated how methodological rigor in accounting for population structure and
ascertainment is crucial when navigating the complexities of polygenic traits.

Collectively, these in-depth explorations into polygenicity and pleiotropy have provided a
more nuanced understanding of BD’s aetiology, directly enhancing our capacity to appreciate
distinct genetic contributions to its varied clinical presentations. The identification of specific
genetic loci and pathways associated with different subphenotypes (Chapter 5), informed by
their unique polygenic and pleiotropic profiles, offers clearer and more promising avenues for
the development of targeted biomarkers and interventions. Furthermore, the insights gained
into the impact of ascertainment bias and ancestral diversity on PRS accuracy (Chapter
6) reinforce the impact of this thesis in advocating for robust, personalized approaches to risk
assessment that respect the complex interplay of an individual’s genetic background and
clinical manifestation.

While the journey towards personalized treatment for bipolar disorder is ongoing, this thesis
represents a pivotal step forward, driven by its detailed characterization of how pleiotropy and
polygenicity manifest across diverse BD presentations and methodological contexts. By
elucidating these complex genetic interplays, providing actionable data through resources such
as the forthcoming summary statistics, and addressing key methodological challenges, this
work lays a more robust foundation for future research aimed at translating genomic insights
into clinically meaningful tools. Ultimately, the deeper, more stratified understanding of
bipolar disorder’s genetic architecture achieved and promoted in this thesis holds substantial
promise for enabling more precise diagnostic strategies and fostering the development of
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personalized treatment approaches that may genuinely improve outcomes for individuals living
with this challenging condition.
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9 Appendix

9.1 Molecular mechanisms associated with bipolar disorders
etiology

Table 68. Molecular mechanisms associated with bipolar disorders etiology

The table is an extract of SNP results publicly available at the NHGRI-EBI GWAS Catalog downloaded
at https://www.ebi.ac.uk/gwas/. See 8.1.1.

SNP PMID REGION Date Mapped SNP Replication
gene(s)
Pisanu(DGKG);Cross-
rs1012053 17486107 13q14.11 08/05/2007 DGKH Disorder(DGKI)
Smoller(23453885),
rs1006737 20351715 12p13.33 30/03/2010 CACNAIC Ruderfer(24280982)
Ikeda(28115744),
rs12576775 21926972 11ql4.1 18/09/2011 TENM4 Smoller(23453885)
rs4765913 21926972 12p13.33 18/09/2011 CACNAIC Charney(28072414)
IFI44_
rs4650608 22182935 1p31.1 20/12/2011 ADGRILA4 Ruderfer(24280982)
CrossDisorder(31835028),
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
Gong(36753304),
rs9834970 22182935 3p22.2 20/12/2011 Zifg)éﬁg} Wang(34159505),
Ikeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Hou(27329760),
Wu(32606422)
12535629 23453885 3p21.1 27/02/2013 ITIH3 Amare(30626913)
Ikeda(28115744),
rs12576775 23453885 11ql4.1 27/02/2013 TENM4 Sklar(21926972)
Liu(20351715),
rs1006737 23453885 12p13.33 27/02/2013 CACNAIC Ruderfer(24280982)
Wang(34159505),
rs2710323 24166486 3p21.1 29/10/2013 ITIHI Wu(32606422)
GPR89P Ruderfer(24280982),
rs17693963 24166486 6p22.1 29/10/2013 RSL24DIPI Wang(38154582)
CrossDisorder
(31835028),
Stahl(31043756),
rs9834970 24280982 3p22.2 26/11/2013 Zf\fg)];g} Mullins(34002096),
Peyrot(33686288),
Gong(36753304),
Wang(34159505),
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https://www.ebi.ac.uk/gwas/

SNP

PMID

REGION

Date

Mapped
gene(s)

SNP Replication

Ikeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)

rs1006737

24280982

12p13.33

26/11/2013

CACNAIC

Smoller(23453885),
Liu(20351715)

rs17693963

24280982

6p22.1

26/11/2013

GPR89P_
RSL24DIPI

Sleiman(24166486),
Wang(38154582)

154650608

24280982

1p31.1

26/11/2013

IFI44_
ADGRL4

Chen(22182935)

rs10994415

24618891

10g21.2

11/03/2014

ANK3

Mullins(34002096)

1s12202969

24618891

6q16.1

11/03/2014

MIR2113_
EIF4EBP2P3

Mullins(34002096)

rs9834970

27329760

3p22.2

21/06/2016

HSPDIP6_
LINC02033

CrossDisorder(31835028),
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
Gong(36753304),
Wang(34159505),
Ikeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Wu(32606422)

rs9834970

28072414

3p22.2

10/01/2017

HSPDIP6_
LINC02033

CrossDisorder
(31835028),
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
Gong(36753304),
Wang(34159505),
Ikeda(28115744),
Yao(33479212),
Li(33263727),
Chen(22182935),
Hou(27329760),
Wu(32606422)

152302417

28072414

3p21.1

10/01/2017

ITIHI

Li(33263727),
Stahl(31043756)

rs4765913

28072414

12p13.33

10/01/2017

CACNAIC

Sklar(21926972)

1s12576775

28115744

11q14.1

24/01/2017

TENM4

Sklar(21926972),
Smoller(23453885)

rs9834970

28115744

3p22.2

24/01/2017

HSPDIP6_
LINC02033

CrossDisorder(31835028),
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
Gong(36753304),
Wang(34159505),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
157405404 29121268 16p13.12 09/11/2017 TMFIPI_ Cross-Disorder(31835028)
ERCC4
1s2535629 30626913 3p21.1 09/01/2019 ITIH3 Smoller(23453885)
Peyrot(33686288),
1s3804640 31043756 3ql3.12 01/05/2019 CD47 Li(33263727)
rs35958438 31043756 15q14 01/05/2019 LINC02694 Mullins(34002096)
rs489337 31043756 11q13.1 01/05/2019 PACSI Mullins(34002096)
Peyrot(33686288),
Li(33263727),
MIR2113_ Yu(38858783),
1s2388334 31043756 6ql6.1 01/05/2019 EIF4EBP2P3 Gong(36753304),
Cross-Disorder
(31835028)
Wu(32606422),
rs11624408 31043756 14q32.2 01/05/2019 BCLIIB Wang(34159505)
Yao(33479212),
ZSCAN2-AS1, Wang(34159505),
rs71395455 31043756 15q25.2 01/05/2019 ZSCAN? Cross-Disorder
(31835028)
rs113779084 31043756 7p21.3 01/05/2019 THSD7A4 Mullins(34002096)
rs10896090 31043756 11q13.2 01/05/2019 PACSI Li(33263727)
Mullins(34002096),
154447398 31043756 15q15.2 01/05/2019 STARDY Peyrot(33636288)
BABAM?2,
1s2305929 31043756 2p23.2 01/05/2019 MRPL33 Wang(38154582)
rs10994318 31043756 10q21.2 01/05/2019 ANK3 Li(33263727)
CrossDisorder
(31835028),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
Gong(36753304),
HSPDIPG6_ Wang(34159505),
159834970 31043756 3p22.2 01/05/2019 LINC02033 Tkeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
rs11557713 31043756 18q21.33 01/05/2019 ZCCHC2 Li(33263727)
WFDCS5_ .
16130764 31043756 20q13.12 01/05/2019 WEDCI2 Li(33263727)
Li(33263727),
1s2302417 31043756 3p21.1 01/05/2019 ITIHI Charney(28072414)
rs17183814 31043756 2q24.3 01/05/2019 SCN24 Li(33263727),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Peyrot(33686288),
Mullins(34002096)
Wu(32606422),
rs11647445 | 31043756 16p13.2 01/05/2019 GRIN24 Li(33263727)
CACNAIC- Wu(32606422),
1510744560 | 31043756 12p13.33 | 01/05/2019 IT3, Li(33263727),
CACNAIC Peyrot(33686288)
1510035291 31043756 5q14.1 01/05/2019 SSBP2 Li(33263727)
157122539 31043756 11q13.2 01/05/2019 PC Mullins(34002096)
rs112114764 | 31043756 17q2131 | 01/05/2019 HDACS Li(33263727)
1510455979 | 31043756 6427 01/05/2019 RPS6KA2 Mullins(34002096)
Li(33263727),
Peyrot(33686288),
rs111444407 | 31043756 19p13.11 | 01/05/2019 NCAN Wana(38154552),
Wu(32606422)
1512575685 | 31043756 11q13.4 01/05/2019 SHANK? Mullins(34002096)
511724116 | 31043756 4q32.2 01/05/2019 RPSI4P7_ Peyrot(33686288)
FSTLS
1361867293 | 31926635 10925.1 01/11/2019 SORCS3 Cross-Disorder
4= (31835028)
1512552 31926635 13q14.3 01/11/2019 OLFM4 Cross-Disorder
4 (31835028)
157531118 31926635 1p31.1 01/112019 | LINC02796 Cross-Disorder
P2t (31835028)
Cross-
DRD2 Disorder(31835028),
152514218 31926635 11232 01/11/2019 IMPRSSS Wa(32606422),
Yao(33479212)
Cross-Disorder
1534215985 | 31926635 4p13 01/11/2019 SLC3049 (31835025)
Yao(33479212),
511682175 | 31926635 2p16.1 01/11/2019 igiéi%; Wang(34159505),
Wu(32606422)
15102275 31926635 11q12.2 01/11/2019 TMEM258 Gong(36753304)
1512958048 | 31926635 18q21.2 01/11/2019 TCF4 Cross-Disorder(31835028)
15116755193 | 31926635 5232 01/11/2019 | LINC02240 | Cross-Disorder(31835028)
154526442 31926635 9pl13.2 01/11/2019 ZCCHC7 | Cross-Disorder(31835028)
15915057 31926635 14q23.2 01/11/2019 | SYNE2, ESR2 | Cross-Disorder(31835028)
1510149470 | 31926635 143233 | ouninor | BV %Zé‘;op — | Cross-Disorder(31835028)
151002656 31926635 1p34.3 01/11/2019 FILPIS | ss-Disorder(31835028)
GRIK3
151226412 31926635 2q24.1 01/11/2019 | LINC01876 | Cross-Disorder(31835028)
GSDME_ .
1579879286 | 31926635 7p15.3 01/11/2019 OSBPLI Cross-Disorder(31835028)
151518367 31926635 2q33.1 01/11/2019 PLCLI Cross-Disorder(31835028)
151806153 31926635 11pl3 01/11/2019 PAUPAR | Cross-Disorder(31835028)
1558235352 | 31926635 12q2431 | 01/11/2019 Agg? Cross-Disorder(31835028)
See Baum(DGKH);Cross-
151516725 31754094 3272 21/112019 | ETVS, DGKG Disorder(DGKI)
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
rs34215985 31835028 4p13 01/12/2019 SLC3049 Coleman(31926635)
Mullins(34002096),Wu
rs10043984 31835028 5q31.2 01/12/2019 KDM3B (32606422)
rs1226412 31835028 2q24.1 01/12/2019 LINCO01876 Coleman(31926635)
1s2522831 31835028 7q21.11 01/12/2019 PCLO Yao(33479212)
GSDME
rs79879286 31835028 7pl5.3 01/12/2019 OSBPL3 Coleman(31926635)
156125656 31835028 20q13.13 01/12/2019 KCNBI Wu(32606422)
rs111294930 31835028 5q33.1 01/12/2019 LINCO01470 Yao(33479212)
Wang(38154582),
rs174592 31835028 11q12.2 01/12/2019 FADS?2 Mullins(34002096)
1s2693698 31835028 14q32.2 01/12/2019 BCLI1IB Mullins(34002096)
PCGEMI _
rs59979824 31835028 2q32.3 01/12/2019 SLCA4443P1 Wu(32606422)
rs1518367 31835028 2q33.1 01/12/2019 PLCLI Coleman(31926635)
rs7531118 31835028 1p31.1 01/12/2019 LINC02796 Coleman(31926635)
LINCO03116,
rs11887562 31835028 2p24.1 01/12/2019 LINC01830 Yao(33479212)
rs2910032 31835028 5q33.1 01/12/2019 LINCO01470 Wu(32606422)
GRM3, Wu(32606422),
rs12704290 31835028 7q21.12 01/12/2019 GRM3-ASI Yao(33479212)
Stahl(31043756),
rs71395455 31835028 15q25.2 01/12/2019 ngggjj_éﬂ’ Yao(33479212),
Wang(34159505)
Yao(33479212),
rs28681284 31835028 15925.1 01/12/2019 CHRNA3 Wu(32606422)
rs12958048 31835028 18q21.2 01/12/2019 TCF4 Coleman(31926635)
rs4481150 31835028 3p21.1 01/12/2019 ITIH3 Yao(33479212)
LINCO01756_
1s6694545 31835028 1p35.2 01/12/2019 LINCO1648 Wang(34159505)
rs1806153 31835028 11p13 01/12/2019 PAUPAR Coleman(31926635)
Wu(32606422),
rs35346733 31835028 3p26.3 01/12/2019 CNTN4 Yao(33479212)
rs915057 31835028 14q23.2 01/12/2019 SYNE2, ESR2 Coleman(31926635)
Wang(38154582),
rs12668848 31835028 7p22.3 01/12/2019 MADILI Mullins(34002096)
rs10149470 31835028 14932.33 01/12/2019 RN%ZQ;OP* Coleman(31926635)
rs12898460 31835028 15q14 01/12/2019 LINC02694 Peyrot(33686288)
RBKS Wu(32606422),
rs12474906 31835028 2p23.2 01/12/2019 MRPL3:’3 Wang(34159505),
Yao(33479212)
Mullins(34002096),
rs4702 31835028 15q26.1 01/12/2019 FURIN Yao(33479212),
Wu(32606422)
Peyrot(33686288),
Li(33263727),
rs2388334 31835028 6ql6.1 01/12/2019 Ej\]/{“ﬂl]gb{;;}3 Stahl(31043756),
Yu(38858783),
Gong(36753304)
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
SNX19
rs35774874 31835028 11925 01/12/2019 RN7SLIGTP Yao(33479212)
Wang(34159505),Yao
rs4298967 31835028 12p13.33 01/12/2019 cfégﬁc]in (33479212),Wu
(32606422)
rs116755193 31835028 5g23.2 01/12/2019 LINC02240 Coleman(31926635)
Yao(33479212),Wu
rs4380187 31835028 2q32.1 01/12/2019 ngig;ﬁ* (32606422),
Wang(34159505)
rs12552 31835028 13q14.3 01/12/2019 OLFM4 Coleman(31926635)
rs778353 31835028 2q37.1 01/12/2019 NGEF Wu(32606422)
rs4526442 31835028 9pl13.2 01/12/2019 ZCCHC7 Coleman(31926635)
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982,
Gong(36753304),
Wang(34159505),
rs9834970 31835028 3p22.2 01/12/2019 Zf\f(?()];% Ikeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
TMFIPI _
rs7405404 31835028 16p13.12 01/12/2019 ERCCA Amare(29121268)
DRD2 Coleman(31926635),
rs2514218 31835028 11q23.2 01/12/2019 TMPRSSS Wu(32606422),
Yao(33479212)
FTLPIS
rs1002656 31835028 1p34.3 01/12/2019 GRIK3 Coleman(31926635)
TFAP2B Wang(34159505),
rs55648125 31835028 6pl2.3 01/12/2019 RPSI7PS Yao(33479212)
ACTGIP22 Wu(32606422),
rs80256351 31835028 2pl6.1 01/12/2019 VRK? Yao(33479212)
rs61867293 31835028 10g25.1 01/12/2019 SORCS3 Coleman(31926635)
Mullins(34002096),
LMAN2L Yao(33479212),
rs4619651 31835028 2ql1.2 01/12/2019 CNNM4 Wu(32606422),
Peyrot(33686288)
rs760648 31835028 22q13.2 01/12/2019 TCF20 Wu(32606422)
rs58235352 31835028 12q24.31 01/12/2019 A;}iﬁi* Coleman(31926635)
SeeBaum(DGKH);
rs7785663 31835028 7933 01/12/2019 DGKI Pisanu(DGKG)
Mullins(34002096),
Yao(33479212),
rs4619651 32606422 2ql1.2 30/06/2020 Lgéi,vjéi* CrossDisorder
(31835028),
Peyrot(33686288)
Li(33263727),
rs111444407 32606422 19p13.11 30/06/2020 NCAN Peyrot(33686288),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Stahl(31043756),
Wang(38154582)
rs11167136 32606422 8q24.3 30/06/2020 TSNARE1 Yao(33479212)
CrossDisorder
rs80256351 32606422 2pl6.1 30/06/2020 ACIT/%ZZ* (31835028),
Yao(33479212)
Mullins(34002096),
rs4702 32606422 15926.1 30/06/2020 FURIN Yao(33479212),
Cross-Disorder
(31835028)
Sleiman(24166486),
152710323 32606422 3p21.1 30/06/2020 ITIHI Wang(34159505)
Li(33263727),
rs11647445 32606422 16p13.2 30/06/2020 GRIN2A4 Stahl(31043756)
Mullins(34002096),
rs10043984 32606422 5q31.2 30/06/2020 KDM3B Cross-Disorder
(31835028)
13236223 32606422 7q34 30/06/2020 BRAF_ Yao(33479212
s 4 CCT4PI ao( )
rs58120505 32606422 7p22.3 30/06/2020 MADILI Wang(34159505)
PCGEM1I _ Cross-Disorder
1s59979824 32606422 2q32.3 30/06/2020 SLCA4443P1 (31835028)
CrossDisorder
CACNAIC, (31835028),
154298967 32606422 12p13.33 30/06/2020 CACNAIC-IT3 Wang(34159505).
Yao(33479212)
1s760648 32606422 22q13.2 30/06/2020 TCF20 Cross-Disorder(31835028)
Coleman(31926635),
DRD2 Cross-Disorder
152514218 32606422 11q23.2 30/06/2020 TMPRSSS (31835028),
Yao(33479212)
rs13135092 32606422 4q24 30/06/2020 SLC3948 Yao(33479212)
152910032 32606422 5q33.1 30/06/2020 LINC01470 Cross-Disorder(31835028)
CrossDisorder
1s35346733 32606422 3p26.3 30/06/2020 CNTN4 (31835028),
Yao(33479212)
rs12805133 32606422 11q13.2 30/06/2020 SPTBN2 Yao(33479212)
Coleman(31926635),
rs11682175 32606422 2pl6.1 30/06/2020 iICFTzéiigg Yao(33479212),
Wang(34159505)
rs169738 32606422 6p21.31 30/06/2020 Me’“;(jlngP Wang(34159505)
156434928 32606422 2q33.1 30/06/2020 EFS’BJ* Yao(33479212)
s 422 RNUG-1029P ©
LINCO03116,
152339519 32606422 2p24.1 30/06/2020 LINC01830 Yao(33479212)
Wang(34159505),
RBKS, Yao(33479212),
rs12474906 32606422 2p23.2 30/06/2020 MRPL33 Cross-Disorder
(31835028)
GRMS, CrossDisorder
rs12704290 32606422 7q21.12 30/06/2020 GRM3-AS] (31835028),
) Yao(33479212)
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Wang(34159505),
rs11624408 32606422 14q32.2 30/06/2020 BCLIIB Stahl(31043756)
Cross-Disorder
rs28681284 32606422 15925.1 30/06/2020 CHRNA3 (31835028),
Yao(33479212)
1s740417 32606422 12p13.33 30/06/2020 CACNAIC Yao(33479212)
MIRS548AE1 _
rs10497655 32606422 2q32.1 30/06/2020 INF8044 Wang(34159505)
156125656 32606422 20q13.13 30/06/2020 KCNBI Cross-Disorder(31835028)
Yao(33479212),
ZNF804A4_ Wang(34159505),
154380187 32606422 2q32.1 30/06/2020 ELFIP4 Cross-Disorder
(31835028)
CACNAIC- Li(33263727),
rs10744560 32606422 12p13.33 30/06/2020 IT3, Peyrot(33686288),
CACNAIC Stahl(31043756)
VNIRIOP_
156922815 32606422 6p22.1 30/06/2020 INF204P Wang(34159505)
RPL6P22
1s75836205 32606422 8pl2 30/06/2020 RPLIOAPS Wang(34159505)
15778353 32606422 2q37.1 30/06/2020 NGEF Cross-Disorder
47 (31835028)
CrossDisorder
(31835028),
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
HSPDI1P6_ Gong(36753304),
159834970 32606422 3p22.2 30/06/2020 LINC02033 Wang(34159505),
Tkeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760)
1s62533709 33169155 9pl13.2 10/11/2020 PAX5 Yu(38858783)
rs994280 33169155 2q33.1 10/11/2020 SPATS2L Wang(38154582)
17969091 33263727 12q13.12 02/12/2020 RHDEII;[I;L Peyrot(33686288)
Peyrot(33686288),
Stahl(31043756),
MIR2113_ Yu(38858783),
152388334 33263727 6ql6.1 02/12/2020 EIF4EBPIP3 Gong(36753304),
Cross-Disorder
(31835028)
Stahl(31043756),
153804640 33263727 3ql13.12 02/12/2020 CD47 Peyrot(33686288)
CrossDisorder
(31835028),
HSPDI1P6_ Stahl(31043756),
rs9834970 33263727 3p22.2 02/12/2020 LINC02033 Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Gong(36753304),
Wang(34159505),
Ikeda(28115744),
Yao(33479212),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
rs12672003 33263727 7pl5.3 02/12/2020 PALS2 Mullins(34002096)
rs2302417 33263727 3p21.1 02/12/2020 ITIHI Ci?rl:s(lzo ; 03 77 25461) ;‘)
Peyrot(33686288),
rs17183814 33263727 2q24.3 02/12/2020 SCN24 Stahl(31043756),
Mullins(34002096)
rs10896090 33263727 11q13.2 02/12/2020 PACSI Stahl(31043756)
rs10035291 33263727 5ql4.1 02/12/2020 SSBP2 Stahl(31043756)
rs10994318 33263727 10q21.2 02/12/2020 ANK3 Stahl(31043756)
rs11557713 33263727 18q21.33 02/12/2020 ZCCHC? Stahl(31043756)
rs11647445 33263727 16p13.2 02/12/2020 GRIN2A4 ;2;11(121682;2%
CACNAIC- Wu(32606422),
rs10744560 33263727 12p13.33 02/12/2020 IT3, Peyrot(33686288),
CACNAIC Stahl(31043756)
rs6130764 33263727 20q13.12 02/12/2020 Z]I::ggk Stahl(31043756)
Peyrot(33686288),
rs111444407 33263727 19p13.11 02/12/2020 NCAN 3;:11;;( (31)51801134755862))’,
Wu(32606422)
rs112114764 33263727 17q21.31 02/12/2020 HDACS Stahl(31043756)
Wu
GRM3, (32606422),
rs12704290 33479212 7921.12 21/01/2021 GRM3-ASI Cross-Disorder
(31835028)
rs35774874 33479212 11q25 21/01/2021 SNXT9_ Cross-Disorder(31835028)
RN7SL167P
Wu(32606422),
ZNF8044 Wang(34159505),
rs4380187 33479212 2q32.1 21/01/2021 ELF2P4 Cross-Disorder
(31835028)
Cross-
rs28681284 33479212 15¢q25.1 21/01/2021 CHRNA3 Disorder(31835028),
Wu(32606422)
rs484201 33479212 11q13.1 21/01/2021 MACRODI Wang(38154582)
Stahl(31043756),
ZSCAN2-AS1, Wang(34159505),
rs71395455 33479212 15q25.2 21/01/2021 ZSCAN? Cross-Disorder
(31835028)
CrossDisorder
(31835028),
rs9834970 33479212 3p22.2 21/01/2021 Zifg)éﬁgg Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Ruderfer(24280982),
Gong(36753304),
Wang(34159505),
Ikeda(28115744),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
Wang(34159505),
rs55648125 33479212 6pl12.3 21/01/2021 g;;fiﬁg Cross-Disorder
(31835028)
Mullins(34002096),
Wu(32606422),
154619651 33479212 2ql1.2 21/01/2021 Lg;;l]]\y]é]; Cross-Disorder
(31835028),Peyrot
(33686288)
Wu(32606422),
rs80256351 33479212 2pl6.1 21/01/2021 ACIT;;};ZZ* Cross-Disorder
(31835028)
13236223 33479212 7q34 21/01/2021 BRAF_ Wu(32606422)
s q CCT4PI u
rs11167136 33479212 8q24.3 21/01/2021 TSNARE1 Wu(32606422)
Mullins(34002096),
Cross-Disorder
rs4702 33479212 15q26.1 21/01/2021 FURIN (31835028),
Wu(32606422)
Cross-
CACNAIC, Disorder(31835028),
154298967 33479212 12p13.33 21/01/2021 CACNAIC-IT3 Wang(34159505),
Wu(32606422)
LETM?2,
rs7001340 33479212 8p11.23 21/01/2021 FGFRI Wang(34159505)
rs13135092 33479212 4q24 21/01/2021 SLC3948 Wu(32606422)
ALG14_ Peyrot(33686288),
rs12563424 33479212 1p21.3 21/01/2021 TLCD4 Wang(34159505)
Huang(35912095),
rs12154473 33479212 7p22.3 21/01/2021 MADILI Mullins(34002096),
Wang(38154582)
Cross-Disorder
rs111294930 33479212 5q33.1 21/01/2021 LINCO01470 (31835028)
LINCO03116, Cross-Disorder
rs11887562 33479212 2p24.1 21/01/2021 LINC01830 (31835028)
Coleman(31926635),
DRD2 Cross-Disorder
1s2514218 33479212 11q23.2 21/01/2021 TMPRSSS (31835028),
Wu(32606422)
rs4481150 33479212 3p21.1 21/01/2021 ITIH3 Cross-Disorder(31835028)
rs740417 33479212 12p13.33 21/01/2021 CACNAIC Wu(32606422)
1s2522831 33479212 7921.11 21/01/2021 PCLO Cross-Disorder(31835028)
rs12805133 33479212 11q13.2 21/01/2021 SPTBN2 Wu(32606422)
Wu(32606422),
rs35346733 33479212 3p26.3 21/01/2021 CNTN4 Cross-Disorder
(31835028)
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Coleman(31926635),
rs11682175 33479212 2pl6.1 21/01/2021 fICFTzéiigg Wang(34159505),
Wu(32606422)
Wu(32606422),
RBKS, Wang(34159505),
rs12474906 33479212 2p23.2 21/01/2021 MRPL33 Cross-Disorder
(31835028)
ZSCANI6-
rs68188794 33479212 6p22.1 21/01/2021 ASI. ZSCANI6 Wang(34159505)
6434928 33479212 2q33.1 21/01/2021 SESBI_ Wu(32606422
s 422 RNUG6-1029P u( )
OTUD7B_
1s72692857 33479212 1q21.2 21/01/2021 RPL6P3I Wang(34159505)
LINC03116,
rs2339519 33479212 2p24.1 21/01/2021 LINC01830 Wu(32606422)
CACNAIC- Wu(32606422),
rs10744560 33686288 12p13.33 08/03/2021 IT3, Li(33263727),
CACNAIC Stahl(31043756)
rs11724116 33686288 4q32.2 08/03/2021 RPSI4P7_ Stahl(31043756)
FSTLS
Stahl(31043756)
rs3804640 33686288 3ql3.12 08/03/2021 CD47 Li(33263727)
Li(33263727),
Stahl(31043756),
rs111444407 33686288 19p13.11 08/03/2021 NCAN Wang(38154582),
Wu(32606422)
1s7969091 33686288 12q13.12 08/03/2021 RHDEII;[I;L Li(33263727)
rs28565152 33686288 5p15.31 08/03/2021 ADCY2 Mullins(34002096)
Li(33263727)
,Stahl(31043756),
MIR2113_ Yu(38858783),
rs2388334 33686288 6ql6.1 08/03/2021 EIF4EBPIP3 Gong(36753304),
Cross-Disorder
(31835028)
Stahl(31043756),
rs4447398 33686288 15q15.2 08/03/2021 STARD9 Mullins(34002096)
Mullins(34002096),
Yao(33479212),
154619651 33686288 2ql1.2 08/03/2021 LMANZL_ Wu(32606422),
CNNM4 .
Cross-Disorder
(31835028)
rs2011503 33686288 19p13.11 08/03/2021 MAU2 Wang(34159505)
CrossDisorder(31835028),
Stahl(31043756),
Mullins(34002096),
Ruderfer(24280982),
HSPDIP6_ Gong(36753304),
rs9834970 33686288 3p22.2 08/03/2021 LINC02033 Wang(34159505),
Ikeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Chen(22182935),
Hou(27329760),
Wu(32606422)
1512898460 | 33686288 15q14 08/03/2021 | LINC02694 | Cross-Disorder(31835028)
Li(33263727),
1517183814 | 33686288 2q24.3 08/03/2021 SCN24 Stahl(31043756),
Mullins(34002096)
1512563424 | 33686288 1p21.3 08/03/2021 /;%1;2 Vizzggﬂzéggl_)
1512202969 | 34002096 6q16.1 17/05/2021 E%ég;3 Muhleisen(24618891)
154676412 34002096 24373 17/05/2021 gﬁ;f’o Wang(38154582)
15113779084 | 34002096 7p21.3 17/05/2021 THSD7A Stahl(31043756)
rs12668848 | 34002096 7p22.3 17/05/2021 MADILI W;’fgj;iﬁggggs
157122539 34002096 11q13.2 17/05/2021 PC Stahl(31043756)
1535958438 | 34002096 15q14 17/052021 | LINC02694 Stahl(31043756)
1512575685 | 34002096 11q13.4 17/05/2021 SHANK?2 Stahl(31043756)
CrossDisorder
(31835028),
Stahl(31043756),
Peyrot(33686288),
Ruderfer(24280982),
Gong(36753304),
159834970 34002096 3p22.2 17/05/2021 Z‘j\f CD()%ZE }Z:gfggll fg;gj)):
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
15112481526 | 34002096 4q27 17/05/2021 BLTPI Wang(38154582)
1528455634 | 34002096 16p13.2 17/05/2021 fﬁﬁ?’iﬂ; Wang(38154582)
Yao(33479212),
154619651 34002096 2q11.2 17/05/2021 Lg‘v%ﬁ* Vglf rzdi?f; 12823) SCOIZO;)S
Peyrot(33686288)
152693698 34002096 14¢32.2 17/05/2021 BCLIIB ng:?;;‘;;er
1512672003 | 34002096 7p15.3 17/05/2021 PALS? Li(33263727)
Cross-
15174592 34002096 11q12.2 17/05/2021 FADS?2 Disorder(31835028),
Wang(38154582)
Cross-
1510043984 | 34002096 5q31.2 17/05/2021 KDM3B Disorder(31835028),
Wu(32606422)
Li(33263727),
1517183814 | 34002096 2q24.3 17/05/2021 SCN24 Peyrot(33686288),
Stahl(31043756)
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Huang(35912095),
1s12154473 | 34002096 7p22.3 17/05/2021 MADILI Wang(38154582),
Yao(33479212)
15489337 34002096 11q13.1 17/05/2021 PACSI Stahl(31043756)
1528565152 | 34002096 5p15.31 17/05/2021 ADCY?2 Peyrot(33686288)
rs112219496 | 34002096 | 19pl13.11 17/05/2021 NCAN Wang(38154582)
1510994415 | 34002096 10q21.2 17/05/2021 ANK3 Muhleisen(24618891)
1510455979 | 34002096 6627 17/05/2021 RPS6KA2 Stahl(31043756)
Stahl(31043756),
154447398 34002096 15q15.2 17/05/2021 STARDY Peyron(33686258)
rs13195402 | 34002096 6p22.2 17/05/2021 BTN241 Wang(38154582)
Yao(33479212),
Cross-Disorder
1s4702 34002096 15q26.1 17/05/2021 FURIN (31835025)
Wu(32606422)
LINC01756 Cross-Disorder
136694545 34159505 1p35.2 1600612021 | * oo (31835028)
Coleman(31926635),
rs11682175 | 34159505 2p16.1 16/06/2021 fgﬁéﬁ; Yao(33479212),
Wu(32606422)
ZSCANI6-
1568188794 | 34159505 6p22.1 160062021 | <Pl s Yao(33479212)
OTUD7B_
1572692857 | 34159505 1q21.2 16/06/2021 RPLOP3] Yao(33479212)
Wu(32606422),
RBKS, Yao(33479212),
1512474906 | 34159505 2p23.2 16/06/2021 VRPLS CroseDisorder
(31835028)
rs169738 34159505 6p21.31 16/06/2021 Me’“;(jlngP Wu(32606422)
MIRSASAET_
1510497655 | 34159505 2q32.1 16/06/2021 INFSOLL Wu(32606422)
Yao(33479212),
ZNFS044_ Wu(32606422),
154380187 34159505 2q32.1 16/06/2021 sy oo Diconder
(31835028)
VNIRIOP_
156922815 34159505 6p22.1 16/06/2021 INE204P Wu(32606422)
Wu(32606422),
rs11624408 | 34159505 14q32.2 16/06/2021 BCLI1B StahI31043756)
Stahl(31043756),
ZSCAN2-ASI, Yao(33479212),
1571395455 | 34159505 15q25.2 16/06/2021 ZSCAND P
31835028)
CrossDisorder
(31835028),
Stahl(31043756),
Mullins(34002096),
HSPDIP6_ Peyrot(33686288),
159834970 34159505 3p22.2 16/06/2021 |y Ruderfer(24280952),
Gong(36753304),
Ikeda(28115744),
Yao(33479212),
Li(33263727),
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
Cross-
1s55648125 34159505 6pl2.3 16/06/2021 g;;fiﬁg Disorder(31835028),
Yao(33479212)
Sleiman(24166486),
rs2710323 34159505 3p21.1 16/06/2021 ITIHI Wu(32606422)
ALGI14_ Peyrot(33686288),
rs12563424 34159505 1p21.3 16/06/2021 TLCD4 Yao(33479212)
rs58120505 34159505 7p22.3 16/06/2021 MADILI Wu(32606422)
LETM?2,
rs7001340 34159505 8pl1.23 16/06/2021 FGFRI Yao(33479212)
rs2011503 34159505 19p13.11 16/06/2021 MAU2 Peyrot(33686288)
CrossDisorder
CACNAIC, (31835028),
rs4298967 34159505 12p13.33 16/06/2021 CACNAIC-IT3 Yao(33479212),
Wu(32606422)
RPL6P22
rs75836205 34159505 8pl2 16/06/2021 RPLIOAPS Wu(32606422)
Mullins(34002096),
rs12154473 35912095 7p22.3 15/07/2022 MADILI Wang(38154582),
Yao(33479212)
Peyrot(33686288),
Li(33263727),
MIR2113_ Stahl(31043756),
rs2388334 36753304 6ql6.1 08/02/2023 EIF4EBPIP3 Yu(38858783).
Cross-Disorder
(31835028)
CrossDisorder
(31835028),
Stahl(31043756),
Mullins(34002096),
Peyrot(33686288),
Ruderfer(24280982),
HSPDI1P6_ Wang(34159505),
rs9834970 36753304 3p22.2 08/02/2023 LINC02033 Tkeda(28115744),
Yao(33479212),
Li(33263727),
Charney(28072414),
Chen(22182935),
Hou(27329760),
Wu(32606422)
rs102275 36753304 11q12.2 08/02/2023 TMEM?258 Coleman(31926635)
Mullins(34002096),Cross-
rs12668848 38154582 7p22.3 26/12/2023 MADILI Disorder(31835028)
HAPSTRI .
1s28455634 38154582 16p13.2 26/12/2023 RPL21IPII9 Mullins(34002096)
rs112481526 38154582 4q27 26/12/2023 BLTPI Mullins(34002096)
BABAM?,
rs2305929 38154582 2p23.2 26/12/2023 MRPL33 Stahl(31043756)
15174592 38154582 11q12.2 26/12/2023 FADS2 Cross-Disorder(31835028)

,Mullins(34002096)
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Mapped

SNP PMID REGION Date SNP Replication
gene(s)
rs112219496 38154582 19p13.11 26/12/2023 NCAN Mullins(34002096)
rs484201 38154582 11q13.1 26/12/2023 MACRODI Yao(33479212)
rs994280 38154582 2q33.1 26/12/2023 SPATS2L Bigdeli(33169155)
Huang(35912095),
rs12154473 38154582 7p22.3 26/12/2023 MADILI Mullins(34002096),
Yao(33479212)
GPR8Y9P_ Sleiman(24166486),
rs17693963 38154582 6p22.1 26/12/2023 RSL24DIPI Ruderfer(24280982)
rs13195402 38154582 6p22.2 26/12/2023 BTN2A1 Mullins(34002096)
Li(33263727),
Peyrot(33686288),
rs111444407 38154582 19p13.11 26/12/2023 NCAN Stahl(31043756),
Wu(32606422)
154676412 38154582 2q37.3 26/12/2023 GPR35, Mullins(34002096)
; = CAPNI0 ullins
rs62533709 38858783 9pl13.2 11/06/2024 PAXS Bigdeli(33169155)
Peyrot(33686288),
Li(33263727),
MIR2113_ Stahl(31043756),
1s2388334 38858783 6ql6.1 11/06/2024 EIF4EBPIP3 Gong(36753304),
Cross-Disorder
(31835028)
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9.2 Key Gene Associations

ADCY2 (Adenylate Cyclase 2) (Thesis Chapters 1, 5) Associated with BD1 (from SCN24 locus,
Subphenotype-BD-MTAG) and lithium response.

AGER (Advanced Glycosylation End-product Specific Receptor) (Chapter 5) A top-ranked gene from
the BD-SCZ MTAG gene-based analysis, indicating a role in shared severe psychiatric illness.

AKAPI11 (A-kinase Anchoring Protein 11) (Chapter 1) Identified as a shared risk gene for BD and
Schizophrenia from exome sequencing (WES) studies.

ANK3 (Ankyrin-G) (Chapters: 1, 5) A robust and consistently replicated risk gene for BD, implicated
in neuronal excitability pathways.

ANKRD44 (Ankyrin Repeat Domain 44) (Thesis Chapters: 5) Associated with BD2 (highest CADD
score) and shared across multiple BD subphenotypes.

BTNI1A1 (Butyrophilin Subfamily 1 Member A1) (Chapter 5) A core gene consistently ranking at the
top for almost every BD-only subphenotype in gene-based analysis.

C4A (Complement C4A) (Chapters 5) Associated with several BD subphenotypes, with expression
noted in the amygdala and hypothalamus. Implicated in psychosis and shared immune-related pathways.

CACNAIC (Calcium Voltage-Gated Channel Subunit Alphal C) (Chapters 1, 4, 5) One of the strongest
and most consistently replicated risk genes for BD. Implicated in pathways for psychosis in BD1 and
associated with nearly all subphenotypes in MTAG analyses.

CHDH (Choline Dehydrogenase) (Chapter 5) Mentioned as an established risk locus for BD.

CNR1 (Cannabinoid Receptor 1) (Chapter 5) Showed its highest association with the Suicide Attempt
(SA) subphenotype.

CREB3L4 (CREB3 Like Transcription Factor 4) (Chapters: 4) Implicated in psychosis in BD1 through
pathway analysis (“Mitochondrion” and “ZNF318” pathways).
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DAOA (D-Amino Acid Oxidase Activator) (Chapter 1) Associated with BD susceptibility in early
candidate gene studies.

DCC (DCC Netrin 1 Receptor) (Chapter 5) A novel association shared across the RC, UM, PD, and
OCD sub-group, suggesting a role for altered axonal guidance.

DGKH (Diacylglycerol Kinase Eta) (Chapters 1, 5) Implicated in the lithium-sensitive PI pathway and
associated with BD. The broader gene DGKI was associated with all 11 subphenotypes in the BD-SCZ
MTAG.

DISCI (Disrupted in Schizophrenia 1) (Chapter 1) Associated with Schizoaffective disorder, bipolar
type.

DRD2 (Dopamine Receptor D2) (Chapter 5) Credibly associated almost exclusively with the psychosis-
spectrum subphenotypes in TWAS analysis.

FADS1 / FADS?2 (Fatty Acid Desaturase 1/2) (Chapters 1, 5) Consistently linked to BD,
with F4DS1 showing negative cerebellar expression across subphenotypes in TWAS analysis. A top
shared gene in BD-only MTAGs.

FENI (Flap Endonuclease 1) (Chapter 5) A core gene consistently ranking at the top for almost every
BD-only subphenotype, implicated in DNA repair.

FOXO06 (Forkhead Box 06) (Chapter 5) Associated with most BD subphenotypes except BD1,
suggesting a role in non-psychotic presentations.

FURIN (Furin Paired Basic Amino Acid Cleaving Enzyme) (Chapters 4, 5) Associated with BD and
implicated in psychosis in BD1 through immune system pathways.

GABBRI1 / GABBR?2 (Gamma-Aminobutyric Acid Type B Receptor Subunit 1/2) (Chapters 4, 5)
Implicated in pathways for psychosis in BD1 and SZA. GABBRI associated with AlecSUD with BD.

GLYCTK (Glycine C-Acetyltransferase) (Chapter 4) Showed extremely strong protective associations
in the amygdala across numerous BD-SCZ subphenotypes in TWAS analysis, pointing to glycine
metabolism as a key pathway.

GNL3 (Guanine Nucleotide-binding Protein-like 3) (Chapter 5) Showed pervasive and extremely
strong positive associations across almost all subphenotypes and brain regions in TWAS analysis.

GRIN2A (Glutamate Ionotropic Receptor NMDA Type Subunit 2A) (Chapter 5) Associated with
multiple subphenotypes in the BD-SCZ MTAG, particularly the comorbidity dimension (OCD, UM,
PD, etc.).

GRM?7 (Glutamate Metabotropic Receptor 7) (Chapter 1) Associated with BD and related personality
traits in early GWAS.

HISTIH gene family (e.g., HISTIH2BK) (Chapter 5) Consistently a top hit within the chr6p22
positional gene set, highlighting the critical importance of histone structure and chromatin organization.

307



HLA-DMA (Major Histocompatibility Complex, Class I1I, DM Alpha) (Chapter 5) Showed a strong,
protective association in the BD-SCZ MTAG context, providing a specific neuro-immune link between
BD and SCZ.

ITIH1 /ITIH3 / ITIH4 (Inter-Alpha-Trypsin Inhibitor Heavy Chain family) (Chapters 1, 4, 5) A locus
robustly associated with BD and SCZ. Implicated in RC and PD subphenotypes, and a top shared gene
in BD-only MTAGs.

MADILI (Mitotic Arrest Deficient 1 Like 1) (Chapters 1, 4, 5) A consistently linked gene for BD and
SCZ, associated with psychosis in BD1 and emerging as a top pleiotropic gene in BD-SCZ MTAG
analyses.

NCAN (Neurocan) (Chapters 1, 5) A well-established risk gene for BD, associated with mania.
NEK4 (NIMA Related Kinase 4) (Chapter 1) Associated with BD in a large PGC-led GWAS.
NRGI (Neuregulin 1) (Chapter 1) Associated with BD in early candidate gene studies.

NT5C2 (5’-Nucleotidase, Cytosolic 2) (Chapters 4, 5) Associated with psychosis in BD1 and the BD2
subphenotype.

PACS1 (Phosphofurin Acidic Cluster Sorting Protein 1) (Chapter 5) Uniquely associated with BD1 in
TWAS analysis, suggesting a role in neuronal protein trafficking.

PBRM1 (Polybromo 1) (Chapter 5) Associated with BD1 and mood-incongruent psychosis; also noted
as a key gene in SCHEMA rare-variant enrichment.

SCN2A (Sodium Voltage-Gated Channel Alpha Subunit 2) (Chapter 5) A novel, deleterious variant was
identified as a strong marker for BD1 and Psychosis subphenotypes.

SLC39A48 (Solute Carrier Family 39 Member 8) (Chapter 5) A highly pleiotropic and deleterious variant
was identified as a novel locus for seven subphenotypes, suggesting a core biological mechanism
involving metal ion transport.

SMAD3 (SMAD Family Member 3) (Chapter 5) A novel association specific to Panic Disorder and
Rapid Cycling, providing a potential link to thyroid-interacting pathways.

SP4 (Sp4 Transcription Factor) (Chapter 5) Implicated in BD pathobiology via TWAS analysis across
multiple subphenotypes.

TCF4 (Transcription Factor 4) (Chapter 5) A key gene driving the significant enrichment of BD-SCZ
credible gene sets with established rare-variant risk genes from the SCHEMA consortium.

TMEM258 (Transmembrane Protein 258) (Chapter 5) A core gene consistently ranking at the top for
almost every BD-only subphenotype in gene-based analysis.
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TRANK]I (Tetratricopeptide Repeat and Ankyrin Repeat Containing 1) (Chapter 1, 5) A well-
established and highly pleiotropic risk locus for BD, associated with almost all subphenotypes in
MTAG analyses.

ZEB? (Zinc Finger E-Box Binding Homeobox 2) (Chapter 5) A key gene driving the significant
enrichment of BD-SCZ credible gene sets with established rare-variant risk genes from the SCHEMA
consortium.

9.3 Transdiagnostic Profiles of BD Subphenotypes

This overview synthesises the primary transdiagnostic genetic associations for the key bipolar disorder
(BD) subphenotypes as investigated and discussed within this thesis.

1. Bipolar Disorder I (BD1) Presents as a severe, psychosis-spectrum illness.

e Primary Genetic Overlap: Shows a very strong genetic correlation with Schizophrenia
(SCZ) (rG ~.71) and is genetically almost indistinguishable from the Psychosis subphenotype
(rG ~.94) (Chapter 5). The SCZ Polygenic Risk Score (PRS) was a strong predictor of BD1
status and its features (Chapter 4).

e Secondary Overlaps: Has a weaker genetic correlation with Major Depressive Disorder
(MDD) (rG ~.30).

¢ Key Genetic Features: SBayesS analysis confirms its genetic architecture overlaps most with
SCZ. 1t is specifically associated with deleterious variants in genes related to neuronal
excitability, such as SCN24 (Chapter 5).

2. Bipolar Disorder II (BD2) Presents with a genetic profile aligned more with internalizing and
affective/attentional disorders.

e Primary Genetic Overlap: Shows its strongest genetic correlation with MDD (#G ~.65) and a
strong correlation with ADHD (G ~.42).

e Key Genetic Features: SBayesS analysis showed BD2’s genetic architecture overlaps most
strongly with Anxiety disorders. It genomically clusters with the “Comorbidity” group (PD,
OCD, RC, UM) (Chapter 5).

3. Schizoaffective Disorder, Bipolar Type (SZA) Acts as a genetic bridge between BD and SCZ.

e Primary Genetic Overlap: Shares substantial genetic risk with both SCZ and BD1, clustering
with them in genomic analyses (Chapter 5).

¢ Key Genetic Features: Shows one of a very high SNP-based heritability, similar to BD1. The
inclusion of SCZ genetics in MTAG analyses massively amplified the number of shared loci
with the Psychosis subphenotype, confirming its intermediate genetic position.

4. Psychosis (as a feature within BD) This feature is a key marker of the shared biology between
severe BD and SCZ.
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e Primary Genetic Overlap: Very high correlation with BD1 and strongly predicted by SCZ
PRS (Chapter 4).

e Key Genetic Features: Associated with a unique, deleterious variant in the neuronal sodium
channel gene SCN24 (Chapter 5). The genetic signal for the neuro-immune gene HLA-
DMA was only robustly significant when SCZ data was included (Chapter 5), highlighting a
specific shared pathway.

5. Rapid Cycling (RC) Presents a unique genetic profile suggestive of severe, multi-faceted
dysregulation.

e Primary Genetic Overlap: Clusters with the “Comorbidity and Mood Instability” group (PD,
OCD, SA, UM). Has a specific shared novel genetic locus (SMAD3) with Panic Disorder.

¢ Contrasting Overlap: Shows an inverse relationship with SCZ PRS (Chapter 4), suggesting its
genetic drivers are distinct from the core psychosis spectrum.

¢ Key Genetic Features: Correlates positively with ADHD and Anxiety PRS (Chapter 3). It
exhibited the most pronounced signature of negative selection, suggesting its architecture may
be influenced by rarer, more highly penetrant variants (Chapter 5).

6. Suicide Attempt (SA) Shares genetic architecture with both mood and externalizing/impulsive
disorders.

¢ Primary Genetic Overlap: Strongest external correlations are with MDD, Anxiety, and PTSD.
Within the BD subphenotypes, it has a strong genetic correlation with AlcSUD (G ~.80)
(Chapter 5).

¢ Key Genetic Features: The CNRI (cannabinoid receptor) gene showed its highest association
with the SA subphenotype (Chapter 5).

7. Alcohol/Substance Use Disorder (AlcSUD) Presents with a profile linked to impulsivity and
executive dysfunction.

¢ Primary Genetic Overlap: Its strongest external correlation is with ADHD. It also clusters with
the other “Comorbidity” subphenotypes like SA and RC.

¢ Key Genetic Features: A novel association with the neurodevelopmental gene MADIL1 was
identified for the AlcSUD subphenotype in the BD-SCZ MTAG (Chapter 5).

8. Panic Disorder (PD) & Obsessive-Compulsive Disorder (OCD) These anxiety-related
subphenotypes show a remarkably strong and specific shared genetic link.

e Primary Genetic Overlap: While showing only moderate global correlation, LAVA analysis
revealed that OCD and PD share 30 significant local genetic loci, the strongest local link found
between any pair in the comorbidity cluster (Chapter 5).

e Key Genetic Features: A shared novel association with the neurodevelopmental guidance
gene DCC (along with RC and UM) points to a common vulnerability in brain development for
this internalizing/anxious dimension.

9. Unipolar Mania (UM) Presents with a distinct genetic profile that validates its unique position in
psychiatric nosology.
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e Primary Genetic Overlap: Genomically clusters with the “Comorbidity” group (RC, PD, OCD).

e Key Genetic Features: PRS analysis showed it had the highest predictive power of all
subphenotypes (R*-Liability = 12.4%), suggesting a “purer” genetic signal for mania that is less
confounded by the genetic liabilities for depression and psychosis found in BD1 (Chapter 5). It
also has unique loci not shared with other subphenotypes, such as one near YWHAE.

9.4 Detailed Cohort Descriptions

This section provides detailed information on each cohort contributing to the study, including
ascertainment procedures, diagnostic methods, and inclusion/exclusion criteria. For details on the
references included below see O’Connell et al., (2025)[Chapter 1, 55].

======—=PGC1 Samples =====—===

Rietschel, M; Nothen, MM, Cichon, S | 21926972 [PGC1] | BOMA-Germany I | bip_bonn_eur
Cases for the BOMA-Bipolar Study were ascertained from consecutive admissions to the inpatient units
of the Department of Psychiatry and Psychotherapy at the University of Bonn and at the Central Institute
for Mental Health in Mannheim, University of Heidelberg, Germany. DSM-IV lifetime diagnoses of
bipolar I disorder were assigned using a consensus best-estimate procedure, based on all available
information, including a structured interview with the SCID and SADS-L, medical records, and the
family history method. In addition, the OPCRIT® checklist was used for the detailed polydiagnostic
documentation of symptoms. Controls were ascertained from three population-based studies in
Germany (PopGen, KORA, and Heinz-Nixdorf-Recall Study). The control subjects were not screened
for mental illness. Study protocols were reviewed and approved in advance by Institutional Review
Boards of the participating institutions. All subjects provided written informed consent.

Corvin, A | 18711365 [PGC1] | Ireland | bip_dub1_eur

Samples were collected as part of a larger study of the genetics of psychotic disorders in the Republic
of Ireland, under protocols approved by the relevant IRBs and with written informed consent that
permitted repository use. Cases were recruited from Hospitals and Community psychiatric facilities in
Ireland by a psychiatrist or psychiatric nurse trained to use the SCID. Diagnosis was based on the
structured interview supplemented by case note review and collateral history where available. All
diagnoses were reviewed by an independent reviewer. Controls were ascertained with informed consent
from the Irish GeneBank and represented blood donors who met the same ethnicity criteria as cases.
Controls were not specifically screened for psychiatric illness.

Blackwood, D | 18711365 [PGC1] | Edinburgh, UK | bip_edil_eur

This sample comprised Caucasian individuals contacted through the inpatient and outpatient services
of hospitals in South East Scotland. A BD-I diagnosis was based on an interview with the patient using
the SADS-L supplemented by case note review and frequently by information from medical staff,
relatives and caregivers. Final diagnoses, based on DSM-IV criteria, were reached by consensus
between two trained psychiatrists. Ethnically matched controls from the same region were recruited
through the South of Scotland Blood Transfusion Service. Controls were not directly screened to
exclude those with a personal or family history of psychiatric illness. The study was approved by the
Multi-Centre Research Ethics Committee for Scotland and patients gave written informed consent for
the collection of DNA samples for use in genetic studies.
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https://paperpile.com/c/3FDJz2/kzYmB

Kelsoe, J | 21926972 [PGC1] | USA (GAIN) | bip_gain_eur

Genetic Association Information Network (GAIN)/ The Bipolar Genome Study (BiGS) The BD sample
was collected under the auspices of the NIMH Genetics Initiative for BD (http://zork.wustl.edu/nimh/),
genotyped as part of GAIN and analyzed as part of a larger GWAS conducted by the BiGS consortium.
Approximately half of the GAIN sample was collected as multiplex families or sib pair families (waves

1-4), the remainder were collected as individual cases (wave 5). Subjects were ascertained at 12 sites:
Indiana University, John Hopkins University, the NIMH Intramural Research Program, Washington
University at St. Louis, University of Pennsylvania, University of Chicago, Rush Medical School,
University of lowa, University of California, San Diego, University of California, San Francisco,
Howard University, and University of Michigan. All investigations were carried out after the review of
protocols by the IRB at each participating institution. At all sites, potential cases were identified from
screening admissions to local treatment facilities and through publicity programs or advocacy groups.
Potential cases were evaluated using the DIGS?, FIGS®, and information from relatives and medical
records. All information was reviewed through a best estimate diagnostic procedure by two independent
and non-interviewing clinicians and a consensus best-estimate diagnosis was reached. In the event of a
disagreement, a third review was done to break the tie. Controls were from the NIMH Genetic
Repository sample obtained by Dr. P. Gejman through a contract to Knowledge Networks, Inc. Only
individuals with complete or near-complete psychiatric questionnaire data who did not fulfill diagnostic
criteria for major depression and denied a history of psychosis or BD were included as controls for
BiGS analyses. Controls were matched for gender and ethnicity to the cases.

Scott, L; Myer, RM; Boehnke, M | 19416921 [PGC1] | Michigan, USA (Pritzker and NIMH) |
bip_mich_eur

The Pritzker Neuropsychiatric Disorders Research Consortium (NIMH/Pritzker) case and control
samples were from the NIMH Genetics Initiative Genetics Initiative Repository. Cases were diagnosed
according to DMS-III or DSM-IV criteria using diagnostic interviews and/or medical record review.
Cases with low confidence diagnoses were excluded. From each wave 1-5 available non-Ashkenazi
European-origin family, two BDI siblings were included when possible and the proband was
preferentially included if available (=946 individuals in 473 sibling pairs); otherwise, a single BD1
case was included (n=184). The bipolar sibling pairs were retained within the NIMH/Pritzker sample
when individuals in more than one study were uniquely assigned to a study set. Controls had non-
Ashkenazi European origin, were aged 20-70 years and reported no diagnosis with or treatment for BD
or schizophrenia, and that they had not heard voices that others could not hear. Individuals with
suspected major depression were excluded based on answers to questions related to depressive mood.
NIMH controls were further selected as the best match(es) to NIMH cases based on self-reported
ancestry.

Sklar, P; Smoller, J | 18317468 [PGC1] | USA (STEP1) | bip_stpl_eur

The Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) was a seven-site,
national U.S., longitudinal cohort study designed to examine the effectiveness of treatments and their
impact on the course of BD that enrolled 4,361 participants who met DSM-1V criteria for BD1, BD2,
bipolar not otherwise specified (NOS), schizoaffective manic or bipolar type, or cyclothymic disorder
based on diagnostic interviews. From the parent study, 2,089 individuals who were over 18 years of age
with BD1 and BD2 diagnoses consented to the collection of blood samples for DNA. BD samples with
a consensus diagnosis of BD1 were selected for inclusion in STEP1. Two groups of controls samples
from the NIMH repository were used. One comprised DNA samples derived from US Caucasian
anonymous cord blood donors. The second were controls who completed the online self-administered
psychiatric screen and were ascertained as described above, by Knowledge Networks Inc. For the
second sample of controls only those without a history of schizophrenia, psychosis, BD or major
depression with functional impairment were used.
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Sklar, P; Smoller, J | 18711365 [PGC1] | USA (STEP2) | bip_stp2_eur

The STEP2 sample included BD-1 and BD-2 samples from the STEP-BD study described above along
with BD-2 subjects from UCL study also described above. The controls samples for this study were
from the NIMH repository as described above for the STEP1 study.

Andreassen, OA | PMID:21926972 [PGC1], PMID:20451256 | Norway (TOP) | bip_top7_eur

In the TOP study (Tematisk omrade psykoser), cases of European ancestry, born in Norway, were
recruited from psychiatric hospitals in the Oslo region. Patients were diagnosed according to the ICD9
and further ascertainment details have been reported. Healthy control subjects were randomly selected
from statistical records of persons from the same catchment area as the patient groups. The control
subjects were screened by interview and with the Primary Care Evaluation of Mental Disorders
(PRIME-MD). None of the control subjects had a history of moderate/severe head injury, neurological
disorder, mental retardation or an age outside the age range of 18-60 years. Healthy subjects were
excluded if they or any of their close relatives had a lifetime history of a severe psychiatric disorder.
All participants provided written informed consent and the human subjects protocol was approved by
the Norwegian Scientific-Ethical Committee and the Norwegian Data Protection Agency.

McQuillin, A; Gurling, H | 18317468 [PGC1] | UCL (University College London), London, UK |
bip_uclo_eur

The UCL sample comprised Caucasian individuals who were ascertained and received clinical
diagnoses of bipolar 1 disorder according to UK National Health Service (NHS) psychiatrists at
interview using the categories of the International Classification of Disease version 1. In addition,
bipolar subjects were included only if both parents were of English, Irish, Welsh or Scottish descent
and if three out of four grandparents were of the same descent. All volunteers read an information sheet
approved by the Metropolitan Medical Research Ethics Committee who also approved the project for
all NHS hospitals. Written informed consent was obtained from each volunteer. The UCL control
subjects were recruited from London branches of the National Blood Service, from local NHS family
doctor clinics and from university student volunteers. All control subjects were interviewed with the
SADS-L to exclude all psychiatric disorders.

Craddock, N, Jones, I, Jones, L | 17554300 | WTCCC | bip_wtce_eur_sr-qc

Cases were all over the age of 17 yr, living in the UK and of European descent. Recruitment was
undertaken throughout the UK and included individuals who had been in contact with mental health
services and had a lifetime history of high mood. After providing written informed consent, participants
were interviewed by a trained psychologist or psychiatrist using a semi-structured lifetime diagnostic
psychiatric interview (Schedules for Clinical Assessment in Neuropsychiatry) and available psychiatric
medical records were reviewed. Using all available data, best-estimate life-time diagnoses were made
according to the RDC'?. In the current study I included cases with a lifetime diagnosis of RDC bipolar
1 disorder, bipolar 2 disorder or schizo-affective disorder, bipolar type.

Controls were recruited from two sources: the 1958 Birth Cohort study and the UK Blood Service
(blood donors) and were not screened for history of mental illness.

All cases and controls were recruited under protocols approved by the appropriate IRBs. All subjects
gave written informed consent.

======== PGC2 Samples ========

Adolfsson, R | Not published | Umea, Sweden | bip_ume4_eur

Clinical characterization of the patients included the Mini-International Neuropsychiatric Interview
(MINIY), the Diagnostic Interview for Genetic Studies (DIGS?), the Family Interview for Genetic
Studies (FIGS®) and the Schedules for Clinical Assessment in Neuropsychiatry (SCAN)*2. The final
diagnoses were made according to the DSM-IV-TR and determined by consensus of 2 research
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psychiatrists. The unrelated Swedish control individuals, consisting of a large population-based sample
representative of the general population of the region, were randomly selected from the ‘Betula study’.
Alda, M; Smoller, J | Not published | Nova Scotia, Canada; 12B2 controls | bip_hal2 eur

The case samples were recruited from patients longitudinally followed at specialty mood disorders
clinics in Halifax and Ottawa (Canada). Cases were interviewed in a blind fashion with the Schedule of
Affective Disorders and Schizophrenia-Lifetime version (SADS-L)!2 and consensus diagnoses were
made according to DSM-IV* and Research Diagnostic Criteria (RDC)*3. Protocols and procedures were
approved by the local Ethics Committees and written informed consent was obtained from all patients
before participation in the study. Control subjects were drawn from the 12B2 (Informatics for
Integrating Biology and the Bedside) project'é. The study consists of de-identified healthy individuals
recruited from a healthcare system in the Boston, MA, US area. The de-identification process meant
that the Massachusetts General Hospital Institutional Review Board elected to waive the requirement
of seeking informed consent as detailed by US Code of Federal Regulations, Title 45, Part 46, Section
116 (46.116).

Andreassen, OA | Not published | Norway (TOP) | bip_top8_eur

The TOPS8 bipolar disorder cases and controls were ascertained in the same way as the bip_top7 eur
(TOP7) samples described above and recruited from hospitals across Norway.

Biernacka, JM; Frye, MA | 27769005 | Mayo Clinic, USA | bip_mayl_eur

Bipolar cases were drawn from the Mayo Clinic Bipolar Biobank!’. Enrolment sites included Mayo
Clinic, Rochester, Minnesota; Lindner Center of HOPE/University of Cincinnati College of Medicine,
Cincinnati, Ohio; and the University of Minnesota, Minneapolis, Minnesota. Enrolment at each site was
approved by the local Institutional Review Board, and all participants consented to use of their data for
future genetic studies. Participants were identified through routine clinical appointments, from in-
patients admitted in mood disorder units, and recruitment advertising. Participants were required to be
between 18 and 80 years old and be able to speak English, provide informed consent, and have DSM-
IV-TR diagnostic confirmation of type 1 or 2 bipolar disorder or schizoaffective bipolar disorder as
determined using the SCID. Controls were selected from the Mayo Clinic Biobank'®. Potential controls
with ICD9 codes for bipolar disorder, schizophrenia or related diagnoses in their electronic medical
record were excluded.

Rietschel, M; Nothen, MM; Schulze, TG; Reif, A; Forstner, AJ | 24618891 | BOMA-Germany I
| bip_bmg2_eur

Cases were recruited from consecutive admissions to psychiatric in-patient units at the University
Hospital Wiirzburg. All cases received a lifetime diagnosis of BD according to the DSM-IV criteria
using a consensus best-estimate procedure based on all available information, including semi-structured
diagnostic interviews using the Association for Methodology and Documentation in Psychiatry®,
medical records and the family history method. In addition, the OPCRIT system was used for the
detailed poly diagnostic documentation of symptoms.

Control subjects were ascertained from the population-based Heinz Nixdorf Recall (HNR) Study?*. The
controls were not screened for a history of mental illness. Study protocols were reviewed and approved
in advance by Institutional Review Boards of the participating institutions. All subjects provided written
informed consent.

Rietschel, M; Nothen, MM; Schulze, TG; Bauer, M; Forstner, AJ; Miiller-Myhsok, B | 24618891
| BOMA-Germany III | bip_bmg3 eur®

Cases were recruited at the Central Institute of Mental Health in Mannheim, University of Heidelberg,
and other collaborating psychiatric hospitals in Germany. All cases received a lifetime diagnosis of BD
according to the DSM-IV criteria using a consensus best-estimate procedure based on all available
information including structured diagnostic interviews using the AMDP, Composite International
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Diagnostic Screener (CID-S)?, SADS-L and/or SCID, medical records, and the family history method.
In addition, the OPCRIT system was used for the detailed poly diagnostic documentation of symptoms.
Controls were selected randomly from a Munich-based community sample and recruited at the Max-
Planck Institute of Psychiatry. They were screened for the presence of anxiety and mood disorders using
the CID-S. Only individuals without mood and anxiety disorders were collected as controls. Study
protocols were reviewed and approved in advance by Institutional Review Boards of the participating
institutions. All subjects provided written informed consent.

Hauser, J; Lissowska, J; Forstner, AJ | 24618891 | BOMA-Poland | bip_bmpo_eur

Cases were recruited at the Department of Psychiatry, Poznan University of Medical Sciences, Poznan,
Poland. All cases received a lifetime diagnosis of BD according to the DSM-IV criteria on the basis of
a consensus best-estimate procedure and structured diagnostic interviews using the SCID. Controls
were drawn from a population-based case-control sample recruited by the Cancer-Center and Institute
of Oncology, Warsaw, Poland and a hospital-based case-control sample recruited by the Nofer Institute
of Occupational Medicine, Lodz, Poland. The Polish controls were produced by the International
Agency for Research on Cancer (IARC) and the Centre National de Génotypage (CNG) GWAS
Initiative for a study of upper aerodigestive tract cancers. The controls were not screened for a history
of mental illness. Study protocols were reviewed and approved in advance by Institutional Review
Boards of the participating institutions. All subjects provided written informed consent.

Rietschel, M; Nothen, MM; Rivas, F; Mayoral, F; Kogevinas, M; others | 24618891 | BOMA-
Spain | bip_bmsp_eur

Cases were recruited at the mental health departments of the following five centers in Andalusia, Spain:
University Hospital Reina Sofia of Coérdoba, Provincial Hospital of Jaen; Hospital of Jerez de la
Frontera (Cadiz); Hospital of Puerto Real (Cadiz); Hospital Punta Europa of Algeciras (Cadiz); and
Hospital Universitario San Cecilio (Granada). Diagnostic assessment was performed using the SADS-
L; the OPCRIT; a review of medical records; and interviews with first and/or second degree family
members using the Family Informant Schedule and Criteria (FISC)*Z. Consensus best estimate BD
diagnoses were assigned by two or more independent senior psychiatrists and/or psychologists, and
according to the RDC, and the DSM-IV. Controls were Spanish subjects drawn from a cohort of
individuals recruited in the framework of the European Community Respiratory Health Survey
(ECRHS, http://www.ecrhs.org/). The controls were not screened for a history of mental illness. Study
protocols were reviewed and approved in advance by Institutional Review Boards of the participating
institutions. All subjects provided written informed consent.

Fullerton, J.M.; Mitchell, P.B.; Schofield, P.R.; Martin N.G.; Cichon, S. | 24618891 | BOMA-
Australia | bip_bmau_eur

Cases were recruited at the Mood Disorder Unit, Prince of Wales Hospital in Sydney. All cases received
a lifetime diagnosis of BD according to the DSM-IV criteria on the basis of a consensus best-estimate
procedure'® and structured diagnostic interviews using the DIGS, FIGS, and the SCID. Controls were
parents of unselected adolescent twins from the Brisbane Longitudinal Twin Study. The controls were
not screened for a history of mental illness. Study protocols were reviewed and approved in advance by
Institutional Review Boards of the participating institutions. All subjects provided written informed
consent.

Grigoroiu-Serbanescu, M; Nothen, MM | 21353194 | BOMA-Romania | bip_rom3_eur

Cases were recruited from consecutive admissions to the Obregia Clinical Psychiatric Hospital,
Bucharest, Romania. Patients were administered the DIGS?® and FIGS? interviews. Information was
also obtained from medical records and close relatives. The diagnosis of BP-I was assigned according
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to DSM-IV criteria using the best estimate procedure. All patients had at least two hospitalized illness
episodes. Population-based controls were evaluated using the DIGS to exclude a lifetime history of
major affective disorders, schizophrenia, schizoaffective disorders, and other psychoses, obsessive-
compulsive disorder, eating disorders, and alcohol or drug addiction.

Kelsoe, J; Sklar, P; Smoller, J | [PGC1 Replication] | USA (FAT2; FaST, BiGS, TGEN) |
bip_fat2_eur

Cases were collected from individuals at the 11 U.S. sites described for the GAIN sample. Eligible
participants were age 18 or older meeting DSM-IV criteria for BD-I or BD-II by consensus diagnosis
based on interviews with the Affective Disorders Evaluation (ADE) and MINI. All participants
provided written informed consent and the study protocol was approved by IRBs at each site. Collection
of phenotypic data and DNA samples were supported by NIMH grants MH063445 (JW Smoller);
MHO067288 (PI: P Sklar), MH63420 (PI: V Nimgaonkar) and MH078151, MH92758 (PI: J. Kelsoe).
The control samples were NIMH controls that were using the methods described in that section. The
case and control samples were independent of those included in the GAIN sample.

Kirov, G | 25055870 | Bulgarian trios | bip_butr_eur

All cases were recruited in Bulgaria from psychiatric inpatient and outpatient services. Each proband
had a history of hospitalisation and was interviewed with an abbreviated version of the SCAN.
Consensus best-estimate diagnoses were made according to DSM-IV criteria by two researchers. All
participants gave written informed consent and the study was approved by local ethics committees at
the participating centers.

Kirov, G | 25055870 | UK trios | bip_uktr_eur

The BD subjects were recruited from lithium clinics and interviewed in person by a senior psychiatrist,
using the abbreviated version of the SCAN. Consensus best-estimate diagnoses were made based on
the interview and hospital notes. Ethics committee approval for the study was obtained from the relevant
research ethics committees and all individuals provided written informed consent for participation.
Landén, M; Sklar, P | [ICCBD] | Sweden (ICCBD) | bip_swa2_eur

The BD subjects were identified using the Swedish National Quality Register for Bipolar Disorders
(BipolidR) and the Swedish National Patient Register (using a validated algorithm?®® requiring at least
two hospitalizations with a BD diagnosis). A confirmatory telephone interview with a diagnostic review
was conducted. Additional subjects were recruited from the St. Goran Bipolar Project (Affective Center
at Northern Stockholm Psychiatry Clinic, Sweden), enrolling new and ongoing patients diagnosed with
BD using structured clinical interviews. Diagnoses were made according to the DSM-IV criteria
(BipoldR and St. Goran Bipolar Project) and ICD-10 (National Patient Register). The control subjects
used were the same as for the SCZ analyses described above. All ascertainment procedures were
approved by the Regional Ethical Committees in Sweden.

Landén, M; Sklar, P | [ICCBD] | Sweden (ICCBD) | bip_swei_eur

The cases and controls in the bip swei eur sample were recruited using the same ascertainment
methods described for the bip_swa2_eur sample.

Leboyer, M [*°; [PGC1 replication] | France | bip_fran_eur

Cases with BD1 or BD2 and control samples were recruited as part of a large study of genetics of BD
in France (Paris-Creteil, Bordeaux, Nancy) with a protocol approved by relevant IRBs and with written
informed consent. Cases of French descent for more than 3 generations were assessed by a trained
psychiatrist or psychologist using structured interviews supplemented by medical case notes, mood
scales and self-rating questionnaire assessing dimensions.

Li, Q| 24166486; 27769005 | USA (Janssen), SAGE controls | bip_jstS_eur

The study included unrelated patients with bipolar 1 disorder from 6 clinical trials (IDs: NCT00253162,
NCT00257075, NCT00076115, NCT00299715, NCT00309699, and NCT00309686). Participant
recruitment was conducted by Janssen Research & Development, LLC (formerly known as Johnson &
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Johnson Pharmaceutical Research & Development, LLC) to assess the efficacy and safety of
risperidone. Bipolar cases were diagnosed according to DSM-IV-TR criteria. The diagnosis of bipolar
disorder was confirmed by the Schedule for Affective Disorders and Schizophrenia for School-Age
Children-Present and Lifetime Version (K-SADS-PL) in NCT00076115, by the SCID in NCT00257075
and NCT00253162, or by the MINI in NCT00299715 and NCT00309699, and NCT00309686,
respectively. Additional detailed descriptions of these clinical trials can be found at Clinical Trials.gov.
Only patients of European ancestry with matching controls were included in the current analysis.
Controls subjects were drawn from the Study of Addiction: Genetics and Environment (SAGE, dbGaP
Study Accession: phs000092.v1.pl). Control subjects did not have alcohol dependence or drug
dependence diagnoses; however, mood disorders were not an exclusion criterion.

Craddock, N; Jones, I; Jones, L. | [ICCBD] | Cardiff and Worcester, UK (ICCBD-BDRN) |
bip_icuk eur

Cases were all over the age of 17 yr, living in the UK and of European descent. Cases were recruited
via systematic and not systematic methods as part of the Bipolar Disorder Research Network project
(www.bdrn.org), provided written informed consent and were interviewed using a semi-structured
diagnostic interview, the Schedules for Clinical Assessment in Neuropsychiatry. Based on the
information gathered from the interview and case notes review, best-estimate lifetime diagnosis was
made according to DSM-IV. Inter-rater reliability was formally assessed using 20 randomly selected
cases (mean K Statistic = .85). In the current study I included cases with a lifetime diagnosis of DSM-
IV bipolar disorder or schizo-affective disorder, bipolar type. The BDRN study has UK National Health
Service (NHS) Research Ethics Committee approval and local Research and Development approval in
all participating NHS Trusts/Health Boards.Controls were part of the Wellcome Trust Case Control
Consortium common control set, which comprised healthy blood donors recruited from the UK Blood
Service and samples from the 1958 British Birth Cohort. Controls were not screened for a history of
mental illness. All cases and controls were recruited under protocols approved by the appropriate IRBs.
All subjects gave written informed consent.

Ophoff, RA | Not Published | Netherlands | bip_ucla_eur

The case sample consisted of inpatients and outpatients recruited through psychiatric hospitals and
institutions throughout the Netherlands. Cases with DSM-IV bipolar disorder, determined after
interview with the SCID, were included in the analysis. Controls were collected in parallel at different
sites in the Netherlands and were volunteers with no psychiatric history after screening with the
(MINI"). Ethical approval was provided by UCLA and local ethics committees and all participants
gave written informed consent.

Paciga, S | [PGC1] | USA (Pfizer) | bip_pfle_eur

This sample comprised Caucasian individuals recruited into one of three Geodon (ziprasidone) clinical
trials (NCT00141271, NCT00282464, NCT00483548). Subjects were diagnosed by a clinician with a
primary diagnosis of Bipolar 1 Disorder, most recent episode depressed, with or without rapid cycling,
without psychotic features, as defined in the DSM-IV-TR (296.5x) and confirmed by the MINI (version
5..0). Subjects also were assessed as having a HAM-D-17 total score of >20 at the screening visit. The
trials were conducted in accordance with the protocols, International Conference on Harmonization of
Good Clinical Practice Guidelines, and applicable local regulatory requirements and laws. Patients
gave written informed consent for the collection of blood samples for DNA for use in genetic studies.
Pato, C | [ICCBD] | Los Angeles, USA (ICCBD-GPC)| bip_usc2_eur

Genomic Psychiatry Consortium (GPC) cases and controls were collected via the University of
Southern California healthcare system, as previously described®. Using a combination of focused,
direct interviews and data extraction from medical records, diagnoses were established using the
OPCRIT and were based on DSM-IV-TR criteria. Age and gender-matched controls were ascertained
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from the University of Southern California health system and assessed using a validated screening
instrument and medical records.

========PGC2 Followup Samples ========

Kelsoe, J | [PGC1] | USA (BiGS/TGEN1) | TGEN1_eur

Cases and controls for this sample were ascertained using the same procedures applied for the
bip_gain_eur sample described above. These samples formed a distinct PCA cluster from the samples
described above and were therefore analysed separately.

Li, Q | 24166486 | various Eastern Europe, shared T. Esku controls | JJ_EAST _eur

The cases were drawn from the same six clinical studies described for bip_jst5 eur except that only
patients of east European ancestry with matching controls were included in this cohort. Most of the
Eastern European controls were from the Estonian Biobank project (EGCUT)* and were ancestrally
matched with cases.

Schulze, T | [ConLiGen] | Germany | BIP_KFO_eur

The KFO sample was derived from the Clinical Research Group 241 (KFO241 consortium;
www.kf0241.de) and the PsyCourse consortium (www.psycourse.de). The samples form part of a multi-
site German/Austrian longitudinal study. Diagnoses were made according to DSM-IV. German Red
Cross controls were collected by the Central Institute for Mental Health in Mannheim, University of
Heidelberg, Germany. Volunteers who gave blood to the Red Cross were asked whether they would be
willing to participate in genetic studies of psychiatric disorders. Control subjects were not selected on
the basis of mental health screening.

======== External studies PGC3 ======—=

Stefansson, H | [PGC1 replication] | Iceland (deCODE genetics) | deCODE

The Icelandic sample consisted of 2,908 subjects with BD (1661 SNP typed) and 344,848 controls
(141,854 SNP typed). DNA was isolated from blood samples provided by patients and controls that
were recruited throughout Iceland. Approval for the study was granted by the National Bioethics
Committee of Iceland and the Icelandic Data Protection Authority and informed consent was obtained
for all participants providing a sample for the study. Diagnoses were assigned according to Research
Diagnostic Criteria®® through the use of the SADS-L* for 303 subjects. DSM-IV BD diagnoses were
obtained through the use of the Composite International Diagnostic Interview (CIDI-Auto) for 82
subjects. The remaining BD subjects were diagnosed by ICD 9 or ICD 10 at Landspitali University
Hospital in the years 1987-2018. Controls were recruited as a part of various genetic programs at
deCODE and were not screened for psychiatric disorders. Whole genome sequencing was performed
on samples from 541 BD cases and 26,014 controls. Two types of imputations were performed; into
SNP-typed individuals based on long-range phasing, followed by a familial imputation step into un-
typed relatives of SNP-typed individuals. Cases of bipolar I disorder were defined using ICD-10 codes
31.1 and 31.2 and ICD-9 codes 296.0 and 296.2. Cases of bipolar II disorder were defined using the
ICD-10 code 31.0 in the absence of ICD-10 codes F31.1 and F31.2 and ICD-9 codes 296.0 and 296.2.

Milani L | 24518929 | Estonia (Estonian Biobank) | EstonianBiobank

The Estonian Biobank (EstBB) is a population-based cohort of 200,000 participants with a rich variety
of phenotypic and health-related information collected for each individual®2. At recruitment, all
participants signed a consent to allow follow-up linkage of their electronic health records (EHR),
thereby providing a longitudinal collection of phenotypic information. Health records have been
extracted from the national Health Insurance Fund Treatment Bills (from 2004), Tartu University
Hospital (from 2008), and North Estonia Medical Center (from 2005). The diagnoses are coded in ICD-
10 format and drug dispensing data include drug ATC codes, prescription status and purchase date (if
available). For the current study, cases of bipolar disease were determined by searching the EHRs for
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data on F31* ICD-10 diagnosis. All remaining participants who did not have any ICD-10 F* group
diagnoses were defined as controls. Cases with bipolar I disorder were those with ICD codes of F31.1
and F31.2.

Zwart JA | Unpublished | Norway (the Trondelag Health Study) | HUNT

The HUNT sample consisted of 905 subjects with BD and 41,914 population controls*.. Patients and
controls were of European ancestry and were recruited from the Nord-Trendelag County, Norway.
Diagnoses were assigned according to ICD-9 or ICD-1. The controls included individuals not diagnosed
with substance use disorders, schizophrenia, bipolar disorder, major depressive disorder, anxiety
disorders, eating disorders, personality disorders, or ADHD in hospitals (ICD-9 or ICD-10) or general
practice (ICPC2). They also were >40 years of age, had low self-reported levels of anxiety and
depression (HADS-A and HADS-D < 11), and reported no use of antidepressants, anxiolytics, or
hypnotics. Approval for the study was granted by the Data Inspectorate of Norway, the Health
Directorate and the Regional Committee for Medical and Health Research Ethics. Cases of bipolar I
disorder were those with ICD codes of F31.1, F31.2 or F31.6 and individuals with an ICD-9 code of
295 or ICD-10 codes F20-F29 were excluded. Cases of bipolar II disorder were those with ICD codes
of F31.8 and individuals with an ICD-9 code of 295 or ICD-10 codes F20-F29, F31.1-.2 or F31.6 were
excluded.

======—==PGC PsychChip Samples =====—===

Pato, C | Not published | [PGC Psychchip] | gpcwl

The cases and controls in this study were ascertained in the same manner as those described above for
bip_usc2 eur.

Reif, A | Not published | [PGC Psychchip] | germ1

Cases were recruited in the same manner as those described above for BOMA-Germany II |
bip_bmg2 eur. Control subjects were healthy participants who were recruited from the community of
the same region as cases. They were of Caucasian descent and fluent in German. Exclusion criteria were
manifest or lifetime DSM-IV axis I disorder, severe medical conditions, intake of psychoactive
medication as well as alcohol abuse or abuse of illicit drugs. Absence of DSM-IV axis I disorder was
ascertained using the German versions of the Mini International Psychiatric Interview. IQ was above
85 as ascertained by the German version of the Culture Fair Intelligence Test 2*%. Study protocols were
reviewed and approved by the ethical committee of the Medical Faculty of the University of Wiirzburg.
All subjects provided written informed consent.

Serretti, A, Vieta E, Ribases M | Not published | [PGC Psychchip] | spsp3

The sample includes 267 BD subjects (Spanish Wave2 Serretti PsychChip QC Summary), of which 180
Spanish and 87 Italian. Spanish sample: 180 subjects were enrolled in a naturalistic cohort study,
consecutively admitted to the out-patient Bipolar Disorders Unit, Hospital Clinic, University of
Barcelona. This is a systematic cross-sectional analysis deeply described in a previous paper on the
same sample investigating rs10997870 SIRT1 gene variant®. Inclusion criteria were a diagnosis of
bipolar disorder (type 1 or 2) according to DSM-IV TR criteria and age of 18 years or older. The study
was approved by the local ethical committee and carried out in accordance with the ethical standards
laid down in the Declaration of Helsinki. Signed informed consent was obtained from all participants
after a detailed and extensive description of the study and patient’s confidentiality was preserved. The
current and lifetime diagnoses of mental disorders were formulated by independent senior psychiatrists
(diagnostic concordance: Kappa=.80) according to DSM-IV TR clinical criteria and confirmed through
the semi-structured interviews for Axis I disorders according to DSM IV TR criteria (SCID I).
Furthermore, all available clinical data coming from follow-up at our unit and collateral information
concerning illness history were cross-referred in order to ensure accuracy and obtain complete clinical
information. Specific psychopathological dimensions were assessed by means of rating scales and
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clinical questionnaires administered by clinicians, adequately trained to enhance inter-rater reliability.
Mood episodes were defined according to DSM-IV TR criteria and their severity was measured through
the administration of the 21-item Hamilton Depression Rating Scale (HDRS-21, Spanish version). The
most severe depressive episode was defined on the basis of the severity at the HDRS (total score > 14)
and clinical judgment. Italian sample: 87 subjects with bipolar depression were enrolled into the study
when admitted at the Department of Psychiatry, University of Bologna, Italy. A description of the
subjects has been previously reported when analyzing clinical features*. Inclusion criteria were a
diagnosis of bipolar disorder, most recent episode depressive as assessed by DSM-IV-TR criteria;
Young Mania Rating Scale (YMRS) score <12; Hamilton Depression Rating Scale (HAM-D) <12.
Exclusion criteria were presence of a bipolar disorder, most recent episode manic or hypomanic;
presence of severe medical conditions; presence of moderate to severe dementia (Mini Mental State
Examination score <20). The following scales were administered biweekly during the hospitalization:
HAM-D, Hamilton Anxiety Rating Scale (HAM-A), YMRS and Dosage Record and Treatment
Emergent Symptom Scale (DOTES). Written informed consent was obtained for each patient recruited.
The study protocol was approved by the local Ethical Committee and it has been performed in
accordance with the ethical standards laid down in the 1975 Declaration of Helsinki.

The Spanish controls were part of the Mental-Cat clinical sample or the INSchool population-based
cohort. A total of 1,774 controls from the Mental-Cat cohort (6.5% males) were evaluated and recruited
prospectively from a restricted geographic area at the Hospital Universitari Vall d’Hebron of Barcelona
(Spain) and consisted of unrelated healthy blood donors. The INSchool sample consisting of 771
children (76.2% males) from schools in Catalonia were involved for screening using the Achenbach
System of Empirically Based Assessment (ASEBA) with the Child Behavior Checklist CBCL/4-18
(completed by parents or surrogates), the Teacher Report Form TRF/5-18 (completed by teachers and
other school staff) and the Youth Self-Report YSR/11-18 (completed by youths); the Strengths and
Difficulties Questionnaire (SDQ) and the Conner’s ADHD Rating Scales (Parents and Teachers).
Genomic DNA samples were obtained either from peripheral blood lymphocytes by the salting out
procedure or from saliva using the Oragene DNA Self-Collection Kit (DNA Genotek, Kanata, Ontario
Canada). DNA concentrations were determined using the Pico- Green dsDNA Quantitation Kit
(Molecular Probes, Eugene, OR) and genotyped with the [llumina Infinium PsychArray-24 v1.1 at the
Genomics Platform of the Broad Institute. The study was approved by the Clinical Research Ethics
Committee (CREC) of Hospital Universitari Vall d’Hebron, all methods were performed in accordance
with the relevant guidelines and regulations and written informed consent was obtained from participant
parents before inclusion into the study. Detailed information has been published previously*~.

Perlis, R; Sklar, P; Smoller, J, Goes F, Mathews CA, Waldman I | Not published | [PGC
Psychchip] | usaw4

Perlis, R; Sklar, P; Smoller, J: EHR data were obtained from a health care system of more than 4.6
million patients*® spanning more than 20 years. Experienced clinicians reviewed charts to identify text
features and coded data consistent or inconsistent with a diagnosis of bipolar disorder. Natural language
processing was used to train a diagnostic algorithm with 95% specificity for classifying bipolar disorder.
Filtered coded data were used to derive three additional classification rules for case subjects and one
for control subjects. The positive predictive value (PPV) of EHR-based bipolar disorder and
subphenotype diagnoses was calculated against diagnoses from direct semistructured interviews of 190
patients by trained clinicians blind to EHR diagnosis. The PPV of bipolar disorder defined by natural
language processing was .86. Coded classification based on strict filtering achieved a value of .84, but
classifications based on less stringent criteria performed less well. No EHR-classified control subject
received a diagnosis of bipolar disorder on the basis of direct interview (PPV=1.0). For most
subphenotypes, PPV exceeded .8. The EHR-based classifications were used to accrue bipolar disorder
cases and controls for genetic analyses. Samples were genotyped on the Psychchip array.
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Goes, FS: Cases represented independent probands from a European American family sample that was
collected at Johns Hopkins University from 1988-201. Families had at least 2 additional relatives with
a major mood disorder (defined as bipolar disorder type 1, bipolar type 2 or recurrent major depressive
disorder). Diagnostic interviews were performed using the Schedule for Affective Disorders and
Schizophrenia-Lifetime Version (N=81) and the Diagnostic Instrument for Genetics Studies
(N=161). All cases underwent best-estimate diagnostic procedures. After genotyping quality control
there were 242 cases, of which 240 were diagnosed as bipolar disorder type 1 and 2 as schizoaffective
disorder, bipolar type. Diagnoses were based on DSM-III and DSM-IV criteria. Probands from
this sample have been previously studied in family based linkage and exome studies.**=!

Mathews CA: Control samples were ascertained as part of ongoing genetic and neurophysiological
studies of hoarding, obsessive compulsive and tic disorders. Controls reported no current or lifetime
history of mania or hypomania at the time of ascertainment. Sixty-two of the 104 controls were screened
for psychiatric illness using the Structured Clinical Interview for DSM-1V TR diagnoses and diagnoses
of bipolar disorder, lifetime or current, were ruled out through a best estimate consensus diagnosis.
Other psychiatric diagnoses were not excluded. The remaining 42 participants were not formally
screened but reported no lifetime or current history of bipolar disorder, obsessive compulsive, hoarding,
or tic disorders. Samples were genotyped on the Psychchip array. Ethical approvals were obtained from
the University of Florida Human Subjects Review Board.

Waldman I: Control samples were ascertained as part of an ongoing genetic study of ADHD and other
Externalizing disorders (I.e., Oppositional Defiant Disorder and Conduct Disorder). Controls reported
no current diagnoses of Externalizing or Internalizing disorders at the time of ascertainment. Controls
were assessed for psychiatric conditions using the Emory Diagnostic Rating Scale (EDRS)¥?, a
questionnaire that assessed parent ratings of symptoms of common DSM-IV Externalizing and
Internalizing disorders (e.g., Major Depressive Disorder and various anxiety disorders). Samples were
genotyped on the Psychchip array. Ethical approvals were obtained from the Emory University and
University of Arizona Human Subjects Review Boards.

Baune, BT; Dannlowski, U | Not published | [PGC Psychchip] | bdtrs

The Bipolar Disorder treatment response Study (BP-TRS) comprises BD inpatient cases and screened
controls of Caucasian background. Psychiatric diagnosis of bipolar disorders was ascertained using
SCID or MINI 6.0 using DSM-IV criteria in a face-to-face interview by a trained psychologist /
psychiatrist for both cases and controls. Healthy controls were included if no current or lifetime
psychiatric diagnosis was identified. Cases were included if current or lifetime diagnosis of bipolar
disorder was ascertained by structured diagnostic interview. Cases and controls are of similar age range
(>=18 yrs of age) and were collected from the same geographical areas. Other assessments including
symptom ratings, psychiatric history, treatment history, treatment response was based on interview and
carried out by trained psychologists/psychiatrists. Samples were genotyped on the Psychchip array.
Ethical approval was obtained from the University of Miinster Human Ethics Committee, Miinster,
Germany.

Ophoff R, Posthuma D, Lochner C, Franke B | Not published | [PGC Psychchip] | dutch

Ophoff R: Cases and controls were collected using the same protocol as described above for the “ucla”
sample.

Lochner C: Controls include South African Caucasian population based-controls ascertained from
blood banks and controls recruited through university campuses and newspaper advertisements, who
underwent a psychiatric interview and had no current or lifetime psychiatric disorder 53-**.

Franke B: The controls included are healthy individuals from the Dutch part of the International
Multicenter ADHD Genetics (IMAGE) project 55,
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Posthuma D: Data were provided for 960 unscreened Dutch population controls from the Netherlands
Study of Cognition, Environment and Genes (NESCOG)*”. The study was approved by the institutional
review board of Vrije Universiteit Amsterdam and participants provided informed consent.

Gawlik M | Not published | [PGC Psychchip] | gawli

Patients were recruited at the Department of Psychiatry, Psychosomatics and Psychotherapy, University
of Wiirzburg, Germany. Diagnosis according to DSM-IV (Diagnostic and Statistical Manual of Mental
Disorders-fourth edition) was made by the best estimate lifetime diagnosis method, based on all
available information, including medical records, and the family history method.

Fullerton J, Mitchell PB, Schofield PR, Green MJ, Weickert CS, Weickert TW, The Australian
Schizophrenia Research Bank | Not published | [PGC Psychchip] | neucl

The NeuRA collection comprised BD cases from three cohorts ascertained in Australia: the bipolar high
risk study®® (#=97), the Imaging Genetics in Psychosis Study (IGP; n=47)* and a clinic sample (n=109)
recruited via the Sydney Bipolar Disorders Clinic. The clinic sample used the same ascertainment
procedures as described for the bip_bmau_eur sample. The bipolar high risk study is a collaborative
study with 4 US and one Australian groups, with young participants aged 12-3. The IGP sample was
recruited from outpatient services of the South Eastern Sydney-lllawarra Area Health Service
(SESIAHS), the Sydney Bipolar Disorders Clinic and the Australian Schizophrenia Research Bank.
Healthy controls were sourced from the high risk, IGP and the Cognitive and Affective Symptoms of
Schizophrenia Intervention (CASSI) trial®' studies, and were recruited from the community, had no
personal lifetime history of a DSM-IV Axis-I diagnosis as determined by psychiatric interview, and no
history of psychotic disorders among first-degree biological relatives. Additional controls were
recruited as part of the strategy to develop an Australian Schizophrenia Research Biobank for studies
into the genetics of this disease. The ascertainment of these controls has been previously described®.
Landen M, Hillert J, Alfredsson L | Not published | [PGC Psychchip] | swed1

The cases in the swedl sample were recruited using the same ascertainment methods described for the
bip_swa2_ eur sample. Population-based healthy controls, randomly selected from the Swedish national
population register, were collected as part of two case-control studies of multiple sclerosis: GEMS
(Genes and Environment in Multiple Sclerosis) and EIMS (Epidemiological Investigation of Multiple
Sclerosis)®.

Di Florio A, McQuillin A, McIntosh A, Breen G | Not published | [PGC Psychchip] | ukwal
McQuillin A: BD cases were recruited using the same protocol as the bip_uclo_eur described above. A
subset (n=448) of the control subjects were random UK blood donors obtained from the ECACC DNA
Panels (https://www.phe-culturecollections.org.uk/products/dna/hrcdna/hrcdna.jsp). The remaining
control subjects (n=814) had been screened for an absence of mental illness in using the same protocol

as the bip_uclo_eur described above.

Di Florio A: Cases were recruited across the United Kingdom in the same manner as described for the
bip_wtcc_eur and bip_icuk eur samples.

MclIntosh AM: BD cases were recruited from the clinical case loads of treating psychiatrists from
Edinburgh and across the central belt of Scotland. Controls were identified from non-genetic family
members and from the extended networks of the participants themselves. All participants were of
European ancestry and diagnosis was confirmed using an established battery developed for ICCCBD.
Breen G: Controls were drawn from blood donors to the UK Motor Neuron Disease Association DNA
Biobank®

Perlis, R; Sklar, P; Smoller, J, Nievergelt C, Kelsoe J | Not published | [PGC Psychchip] | usaw5
Kelsoe, J: The Pharmacogenomics of Bipolar Disorder (PGBD) study was a prospective assessment of
lithium response in BDI patients. The goal was to identify genes for lithium response. Subjects were
recruited from clinics at 11 international sites and followed for up to 2.5 years. Diagnosis was obtained
by DIGS interview and medical records reviewed by blind experienced clinicians. As the comparison
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was between lithium responders and non-responders, no controls were collected. All subjects provided
written informed consent.

Perlis R: Cases of bipolar disorder were Individuals treated with lithium drawn from the Partners
Healthcare electronic health record (EHR) database, which spans two large academic medical centers,
Massachusetts General Hospital and Brigham and Women’s Hospital in addition to community and
specialty outpatient clinics®. Any patients aged 18 years or older with at least one lithium prescription
between 2006 and 2013 based on e-prescribing data were included. The Partners Institutional Review
Board approved all aspects of this study. Individuals with a diagnosis of schizophrenia based on ICD9
codes were excluded.

Smoller J: Cases and controls were recruited in the same manner as described above for “usaw4”.

========PGC3 Samples ========

Ferentinos P, Dikeos D, Patrinos G | Not published | Greece (Attikon General Hospital) | greek
All adult patients with a DSM-IV-TR/DSM-5 diagnosis of bipolar disorder hospitalized at the inpatient
unit or followed-up at the specialized ‘Affective disorders and Suicide’ outpatient clinic of the 2nd
Department of Psychiatry, National and Kapodistrian University of Athens, Attikon General Hospital,
Athens, Greece from 2012 to 2017 were recruited for the current study. Patients were referred to the
specialized ‘Affective disorders and Suicide’ outpatient clinic either from the inpatient unit after
hospitalization or from the community. Diagnosis was established and demographic (age, gender,
family status, profession, employment status, education) and relevant clinical features (e.g.