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Thesis Abstract 

 

Background: Genome-wide association studies (GWAS) have enhanced the understanding of 
the genetics of bipolar disorder (BD), yet its profound clinical and genetic heterogeneity 
remains a major obstacle to diagnosis and treatment. The wide range of clinical presentations, 
partly driven by high rates of comorbidity and individual variability, can obscure genetic 
discoveries and complicates the search for reliable biomarkers. 

Aims: This thesis aims to deconstruct the clinical heterogeneity of BD by identifying novel 
dimensional frameworks by dissecting the genetic architecture of specific clinical 
subphenotypes. The central goal is to identify distinct genetic mechanisms and biological 
pathways that can inform biomarker discovery, advance precision medicine, and identify 
potentially new functional genomic targets. 

Methods: This research employed a multi-stage approach, beginning with the development of 
a dimensional model of BD psychopathology that integrated premorbid factors (Chapter 3). 
Subsequent analyses utilized large-scale genetic data to assess transdiagnostic risk from 
schizophrenia (Chapter 4), delineate the genetic architecture of 11 distinct clinical 
subphenotypes using Multi-Trait Analysis of GWAS (MTAG) (Chapter 5), and evaluate the 
impact of ascertainment and ancestry on polygenic prediction (Chapter 6). 

Results: A novel ‘Adverse Chronic Trajectory’ (ACT) dimension was identified, potentially 
linking premorbid neurodevelopmental deficits to chronic BD outcomes; this dimension was 
genetically associated with polygenic risk for ADHD and anxiety, not core BD. Multi-trait 
analyses of eleven subphenotypes revealed four underlying genetic dimensions, including a 
‘Severe Illness’ dimension defined by a unique neuro-immune signature (a protective 
association with the human Major Histocompatibility Complex (MHC) Human Leukocyte 
Antigen, Class II, DM Alpha gene (HLA-DMA) and specific risk loci Sodium Voltage-Gated 
Channel Alpha Subunit 2 (SCN2A), and a ‘Comorbidity’ dimension linked to 
neurodevelopmental genes such as Deleted in Colorectal Carcinoma (DCC). Further analyses 
demonstrated that the predictive power of polygenic scores is substantially influenced by both 
patient ascertainment strategies and genetic ancestry. 

Conclusions: This thesis advances the understanding of BD’s genetic architecture by 
providing a biological framework that helps explain its clinical diversity. The identification of 
distinct genetic dimensions and subphenotype-specific pathways begins to address the “hidden 
heritability” challenge by revealing previously obscured genetic mechanisms. These findings 
offer novel, biologically grounded hypotheses for future research and lay the groundwork for 
developing stratified, personalized treatment strategies in the pursuit of precision psychiatry. 
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Impact Statement 
 

The profound clinical and genetic heterogeneity of bipolar disorder (BD) presents a formidable 
challenge for research and treatment, a problem now being addressed by large-scale genomic 
analyses that provide new biological insights. As a leading cause of disability worldwide, 
individuals with BD experience a suicide risk many times higher than that of the general 
population, and a reduction in life expectancy [7]. The disorder’s complex aetiology, involving 
substantial genetic contributions (estimated at 85-89% of heritability) [1], and environmental 
factors, presents challenges. The clinical course of the illness underscores these difficulties, as 
many patients in long-term outpatient care experience high rates of relapse and struggle to 
achieve full functional recovery. Treatment is also complicated by high rates of comorbidity; 
most individuals reported one or more other psychiatric or medical conditions in a 
comprehensive survey of BD. Lifetime, (and 12-month) prevalence estimates are 1.0% (.6%) 
for bipolar disorder I (BD1), 1.1% (.8%) for bipolar disorder II (BD2), and 2.4% (1.4%) for 
subthreshold symptoms [53]. Consequently, many patients do not achieve an adequate 
response to first- or second-line medications. While research has identified numerous genetic 
variants associated with BD, the disorder’s profound clinical heterogeneity makes pinpointing 
causal genes and developing targeted treatments exceptionally difficult. 

This thesis directly confronts this challenge by investigating the clinical diversity of BD and 
its genetic underpinnings. By seeking to elucidate the aetiology of the disorder, the overarching 
aim is to lay the scientific groundwork for future advancements in prevention strategies, 
diagnostic precision, and treatment options, ultimately to enhance the quality of life (QoL) for 
those affected. 

The key contributions of this research are summarised below. Methodologically, this thesis 
demonstrates that a subphenotypic approach can advance genomic discovery in BD. By 
leveraging a multi-trait analysis and deconstructing the disorder’s heterogeneity, this work 
yielded 53 novel risk loci and incrementally improved polygenic risk prediction, providing a 
direct, evidence-based strategy for addressing the ‘missing heritability’ in BD. 

This granular approach allowed for the identification of several distinct clinical-genetic 
profiles. The results provide strong evidence for an ’Adverse Chronic Trajectory’ (ACT) 
(Chapter 3), a dimension linking premorbid factors to a chronic course, which was uniquely 
predicted by polygenic risk for attention-deficit/hyperactivity disorder (ADHD) and anxiety 
rather than core BD. This suggests a distinct biological basis for this challenging trajectory. 
Furthermore, this research advances risk stratification by showing that schizophrenia (SCZ) 
polygenic risk scores can predict severe outcomes including psychosis and earlier onset in BD. 
Individual-level pathway analysis of these findings implicates specific biological mechanisms, 
such as mitochondrial dysfunction, as potential markers of severe illness (Chapter 4). 
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Ultimately, this thesis proposes a new framework for understanding BD, deconstructing it into 
genetically-informed dimensions distinguished by unique biological signatures, such as a 
neuro-immune profile for severe illness and specific neurodevelopmental pathways for 
comorbid forms (Chapter 5). By moving beyond a monolithic view of the disorder (Chapter 6), 
this work lays a crucial foundation for more comprehensive etiological models. The 
implications for designing targeted, genetically-informed clinical trials and enhancing public 
health awareness of BD’s complexity underscore the broad relevance of this research and 
warrant its dissemination to the wider scientific community. 

Note: For references see Section 8.1. 

    -------------------------------------- 

This thesis presents my own account of investigations, the entirety of which were undertaken 
during the period of research supervision. This demonstrates my ability to design and 
implement several independent research projects, outlined in Chapters 3 to 6. 
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1 Introduction 
 

Bipolar disorder (BD) presents a psychiatric challenge, primarily due to its profound clinical 
and genetic heterogeneity. This complexity hinders accurate diagnosis, effective patient 
management, and the elucidation of underlying etiological mechanisms, ultimately 
complicating the development of individualised therapies. 

This thesis presents a comprehensive investigation into the systematic dissection of this 
heterogeneity. The thesis is structured to first critically review current understanding of BD’s 
diverse presentations, complex genetics, and research limitations (Chapter 1). Subsequent 
empirical chapters will develop dimensional models of BD psychopathology (Chapter 3); 
examine the impact of transdiagnostic polygenic risks on clinical outcomes (Chapter 4); 
delineate distinct and shared genetic architectures of numerous clinical subphenotypes (see 
section 1.1 below) through large-scale multi-trait analyses (Chapter 5); and evaluate 
methodological factors, including cohort ascertainment and ancestry, that influence polygenic 
risk prediction (Chapter 6). Finally, these diverse findings will be synthesised and their broader 
implications discussed (Chapter 7). Achieving a deeper, more nuanced understanding of these 
intricate layers is paramount for advancing the field towards the promise of precision 
psychiatry. 

This first chapter, therefore, provides the crucial foundation for this structured inquiry by 
reviewing current knowledge, identifying research gaps, and culminating in an outline of the 
specific aims of this thesis, which endeavours to contribute novel and impactful insights into 
these crucial issues. 

1.1 Bipolar Disorder 

Bipolar disorder (BD) arises from a combination of genetic factors and environmental 
influences and exhibit high heritability. Twin studies have indicated heritability rates of 85% 
to 89%. Specifically, the rate was 85% with a narrow concordance (95% confidence interval 
[CI], .73-.93) and 89% with a broad concordance (95% CI, .61-1.0)). While research into the 
genetic basis of BD has advanced, the search for reliable biomarkers for diagnosis and 
treatment response continues. This endeavour is complicated by evidence that gene variants 
genetically associated with BD are also implicated in other psychiatric and human diseases. 
This challenge is notable given the high heritability estimates for BD [1], which have yet to 
fully translate into readily identifiable biomarkers. The pathophysiology of BD remains largely 
undetermined. Observed changes in cellular function and brain structure could suggest 
neurodevelopmental processes and neuroprogression, which may be associated with epigenetic 
alterations, mitochondrial dysfunction, neurotrophic factors, inflammation, and oxidative stress 
mechanisms, according to a selective review [2]. Magnetic Resonance Imaging (MRI) studies 
have corroborated these findings, showing reduced cortical thickness in widespread frontal and 
parietal regions among BD patients relative to healthy controls. The same study also found that 
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a longer duration of illness was specifically associated with reduced thickness in medial parietal 
and occipital regions [3].  

Moreover, BD is characterised as both polygenic and pleiotropic, resulting in substantial 
bidirectional genetic influences with various other human diseases and traits, including 
cardiovascular disease (CVD), SCZ and intelligence [4-5]. Comorbidity contributes to the 
disorder’s heterogeneity, affecting its clinical presentation, course, and treatment outcomes. 

This can confound research results and hamper diagnoses and response to therapeutics. 
Although some medical comorbidities can be identified through testing, no specific laboratory 
test currently exists for BD.  

Unpacking Bipolar Disorder: The Concept of Subphenotypes 

In the context of bipolar disorder, a subphenotype refers to a more specific and relatively 
uniform subgroup of individuals who all share the broader diagnosis but are distinguished by 
a particular set of clinical features, patterns of illness, or biological markers. This approach 
acknowledges that bipolar disorder is not a monolithic entity but rather a heterogeneous 
condition with diverse presentations and underlying causes. 

The core idea behind identifying subphenotypes is to move beyond the general diagnostic 
criteria of bipolar I or bipolar II disorder and delineate more homogeneous patient groups. 
This refined classification has significant implications for both research and clinical practice, 
with the ultimate goal of developing more personalized and effective treatments. 

Key Characteristics Used to Define Bipolar Subphenotypes: 

Researchers are exploring various characteristics to define these subgroups, often integrating 
clinical observations with genetic and neurobiological data. Some of the key areas of 
investigation for bipolar disorder subphenotypes include: 

• Clinical Course and Features: This is one of the most common ways to categorize 
subphenotypes. Examples include: 

o Presence or Absence of Psychosis: Individuals with a history of psychotic 
symptoms (delusions or hallucinations) during mood episodes may represent a 
distinct subphenotype compared to those who have never experienced 
psychosis. 

o Age of Onset: Whether the disorder begins in adolescence or adulthood can 
signify different underlying mechanisms and long-term outcomes. 

o Rapid Cycling: Patients who experience four or more mood episodes within a 
single year fall into this well-established subphenotype, which often presents 
unique treatment challenges. 

o Pattern of Inter-episode Remission: The degree to which an individual 
returns to their baseline level of functioning between mood episodes can be a 
defining characteristic. 
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• Comorbidity: The presence of other co-occurring psychiatric conditions is another 
critical factor. A common example is the subphenotype of bipolar disorder with a 
comorbid anxiety disorder, which can influence both the presentation of the illness 
and the response to treatment. 

• Genetic and Familial Factors: With advancements in genetic research, scientists are 
identifying specific genetic markers and polygenic risk scores (an individual’s overall 
genetic predisposition) associated with certain clinical features of bipolar disorder. 
For instance, some subphenotypes may have a stronger genetic link to schizophrenia, 
while others may share more genetic overlap with major depressive disorder. 

• Neurobiological Markers: While still largely in the research phase, efforts are 
underway to identify biological markers, such as specific patterns of brain activity or 
inflammation, that could help to objectively define different subphenotypes. 

The Goal: From Subphenotype to “Endophenotype” 

The identification of subphenotypes is a crucial step towards a deeper understanding of the 
biological underpinnings of bipolar disorder. The ultimate aim for researchers is to define 
endophenotypes. An endophenotype is a subphenotype that is linked to a specific, 
measurable biological mechanism. By understanding the distinct pathophysiology of these 
more uniform groups, clinicians can hope to develop targeted therapies that address the root 
cause of an individual’s specific type of bipolar disorder, moving away from a one-size-fits-
all approach to treatment. 

1.2 BD Comorbidities  

A 2024 review of 114 studies, conducted between 1993 and 2022, detailed frequent comorbid 
BD disorders such as anxiety, substance use disorders (SUD), Attention-Deficit/Hyperactivity 
Disorder (ADHD), and impulse-control disorders [6], alongside medical conditions including 
diabetes, metabolic syndrome, and cardiovascular diseases. For a recent review of BD 
comorbidities, see Oliva et al. (2025) [7]. For BD subphenotype prevalences, see literature in 
Chapter 2 Table 10 and Supplementary Table 58. Comorbidities are consequential as they may 
influence risk or resilience, affecting how individuals navigate environmental stressors that can 
provoke BD episodes, response to treatments and impact the disorder’s progression [8]. A study 
on adolescent BD found that lower socioeconomic status (SES) was associated with a higher 
likelihood of comorbid disruptive behaviour disorders, anxiety disorders, substance use 
disorders, and a more severe clinical presentation of BD [9]. These factors, alongside comorbid 
ADHD and obsessive compulsive disorder (OCD) have been associated with a poorer 
prognosis, including rapid cycling, more severe illness and adverse functional outcomes [7].  

While this thesis emphasises genetic risk factors, a variety of environmental influences likely 
also interact with genetic susceptibilities. Investigating the interplay between BD, its 
comorbidities, and the environment (Table 1) will be crucial for refining future diagnostic and 
treatment approaches. 



 24 

Table 1 Putative Bipolar Disorder Risk Factors and Prodromal Symptoms 

 

Adapted from Vieta et al. 2018, Early Intervention in Bipolar Disorder [10]. These categories of factors 
often interact and influence each other in the development and course of the disorder. For example, 
genetic predisposition might interact with environmental stressors to increase the risk of BD. 

 

1.3 History And Classification Of BD 
 
Early Differentiation from Schizophrenia and Depression 

The classification of bipolar disorder (BD) relies on diagnostic criteria specified in the 
International Classification of Diseases (ICD) from the World Health Organization (WHO) 
[11] and the Diagnostic and Statistical Manual of Mental Disorders (DSM) from the American 
Psychiatric Association (APA) [12]. The origins of BD criteria trace back to Aristaeus of 
Cappadocia, a 1st-century Greek physician who described mania and melancholia as 
manifestations of a single disease, a concept later noted by Falret (1851) and Baillarger (1854) 
[13]. In 1899, psychiatrist Emil Kraepelin introduced the single concept of ‘manic-depressive 
insanity’ to describe cyclical mood states, distinguishing it from the chronic , deteriorating 
course of dementia praecox (now schizophrenia) based on long-term outcomes and episodic 
recovery patterns [14]. This pivotal contribution established a framework for distinguishing 
major psychotic disorders by their trajectory and marked a substantial step in psychiatric 
nosology by integrating various mood disorders into one unifying concept. This observation of 
remission as a distinguishing feature of BD has evolved, with current evidence indicating many 
individuals experience incomplete remission due to residual symptoms, often exacerbated by 
comorbid disorders [15]. This historical overview highlights the evolving understanding of BD, 
a crucial context for appreciating the heterogeneity this thesis aims to address. 
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Evolution of Subclassifications of Bipolar Disorders 

The understanding of BD extends beyond a simple dichotomy with unipolar depression. Kleist 
and Leonhard first proposed subclassifying BD in 1957 to better differentiate it. 
Schizoaffective disorders were later categorized into schizoaffective bipolar type (SZA) and 
schizoaffective depressive type in the DSM-III-R in 1987. Individuals with schizoaffective 
bipolar type have a high risk for psychosis, characterized by symptoms such as hallucinations 
and delusions, alongside manic and depressive mood episodes [16].  

Kraepelin’s foundational work also informed our understanding of temperaments and mixed 
states. Akiskal, in 1998, expanded on these ideas, identifying specific temperaments and their 
associations with mood disorders, including cyclothymia [17]. Mendel first described 
hypomania in 1881 [18].  Later, Dunner et al. (1976) differentiated bipolar disorder type II 
(BD2) from bipolar disorder type I (BD1), noting that BD2 is characterized by depressive and 
hypomanic rather than manic episodes [19]. It remains uncertain if a labile-cyclothymic 
temperament is clinically distinct from BD2.  

Griesinger first articulated the concept of rapid switching in 1845 [20] that foreshadowed the 
concept of rapid cycling. Dunner and Fieve established the formal definition of rapid cycling 
in the 1970s, describing a BD course involving four or more affective episodes within a year, 
which was typically unresponsive to lithium monotherapy [21]. In certain instances, rapid-
cycling BD may manifest as mood shifts occurring over hours, a phenomenon termed ultrarapid 
cycling, associated with a more severe, treatment-resistant form of bipolar illness [22]. This 
can be accompanied by irritability, impulsivity, and suicidal behaviour, presenting diagnostic 
challenges, as ADHD and borderline personality disorder (BPD), as defined by the Diagnostic 
and Statistical Manual of Mental Disorders (DSM) , also exhibit similar mood fluctuations [23-
24]. Interestingly, cases of prepubertal and early adolescent BD were distinguished from 
ADHD by mania-specific criteria, though both often displayed ultra-rapid or ultradian cycling 
[23]. In BD, mixed states refer to the simultaneous experience of manic and depressive 
symptoms, while rapid cycling describes four or more distinct mood episodes (mania, 
hypomania, or depression) within a year. However, mixed states may involve rapid-sequence 
manic and depressive symptoms [7]. For a comprehensive history of bipolar disorder 
subclassifications, refer to Angst and Marneros 2001 [13]. 

 
History of Diagnostic Criteria (ICD, DSM, RDoC) 

BD clinical diagnosis relies on the presence, frequency, and severity of hypo(manic) and 
depressive symptoms. Three primary diagnostic systems are used in psychiatry today: the ICD 
from the World Health Organisation (WHO) [11], the DSM from the American Psychiatric 
Association [12], and the Research Domain Criteria (RDoC) from the National Institute of 
Mental Health (NIMH) [25]. The DSM originated in the United States in 1952, established by 
the APA to gather psychiatric hospital statistics. Subsequent revisions led to the current edition, 
DSM-5, published in 2013 [12], with the most recent update being the DSM-5-TR (Text 
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Revision), published in 2022 [26]. In contrast, the International Classification of Diseases 
(ICD) evolved as a global initiative for standardizing data across countries and timeframes. Its 
origins trace back to the ‘Bertillon Classification of Causes of Death’ (1893), developed by 
French statistician Jacques Bertillon. The WHO later adopted this classification, which evolved 
into ICD-10, published in 1992 [27], and the latest version, ICD-11, was adopted in 2019 and 
implemented in 2022 [28-29].  

Differences exist between the ICD-10 and DSM-5. The DSM-5 targets mental disorders 
specifically, while the ICD-10 encompasses a broader range of physiological conditions. 
Additionally, they differ in classifying BD, particularly regarding manic episode frequency: 
the DSM-5 requires at least one hypo(manic) episode, while the ICD-10 specifies two affective 
disorder episodes, one of which must be hypo(manic). The DSM-5 acknowledges BD2, 
whereas the ICD-10 did not differentiate this subtype (though ICD-11 does).  

Unlike the DSM and ICD initially, RDoC focuses on the required biological factors rather than 
solely on symptomatology [25, 30] and aims to address heterogeneity and comorbidity within 
current classifications. Although RDoC provides a valuable framework, it is not intended for 
clinical diagnosis of BD but seeks to inform future diagnostic criteria. While RDoC has moved 
research towards a dimensional approach of BD, it is complex and evolving and is yet to 
meaningfully impact clinical practice. 

 

1.4 BD Classification Criteria And Course Specifiers 

Both the DSM-5 and ICD-11 acknowledge BD1 and BD2. The ICD-11 adopts a dimensional 
symptom assessment approach, retaining the mixed episode diagnosis and subthreshold states 
eliminated by the DSM-5 [29]. Both systems require at least one hypomanic and one depressive 
episode for a BD2 diagnosis, defining hypo(manic) episodes by mood elevation or irritability 
combined with increased activity or other criteria. The three key subtypes recognized in both 
the ICD-11 and DSM-5-TR are BD1, BD2, and cyclothymic disorder. BD1 is characterized as 
a manic-depressive disorder potentially including psychotic features, while BD2 is defined by 
alternating depressive and less severe hypomanic episodes. Cyclothymic disorder features 
shorter depression and hypomania episodes. Additionally, a Bipolar Disorder Not Otherwise 
Specified (BD-NOS) category exists, identified by multiple depressive episodes. Diagnostic 
distinctions between BD1 and BD2 depend on manic and hypomanic episode severity and 
duration. BD1 is marked by full manic episodes; BD2 by hypomanic and major depressive 
episodes. BD2 often presents with higher depressive episode frequency compared to BD1, 
which has higher hospitalisation rates and more extreme mood episodes [7]. Differentiating 
schizoaffective disorder, bipolar type (SZA) from BD1 is relevant due to worse outcomes in 
SZA, including prolonged duration of untreated psychosis (DUP), greater illness severity, and 
poorer Global Assessment of Functioning (GAF) scores [31]. 
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Bipolar Disorder I 

Bipolar Disorder I (BD1) is diagnosed following at least one manic or mixed episode, without 
requiring preceding hypomanic or depressive episodes. The DSM-5 defines a manic episode 
as a distinct period of persistently elevated or irritable mood with increased activity for at least 
one week or necessitating hospitalisation. Confirmation requires three or more of the following 
symptoms (four if irritability is present): 1. inflated self-esteem, 2. reduced need for sleep, 3. 
excessive talkativeness, 4. racing thoughts, 5. distractibility, 6. increased goal-directed activity 
or psychomotor agitation, and 7. risky behaviours. These symptoms must disrupt functionality 
and not be attributable to substance use disorders (SUD) or medications [26]. 

Bipolar Disorder II 

A Bipolar Disorder II (BD2) diagnosis requires at least one hypomanic and one depressive 
episode, with no history of manic episodes. A hypomanic episode involves a sustained elevated 
or irritable mood plus increased activity for at least four consecutive days. Similar to BD1, at 
least three symptoms (four if irritability is involved) must match those for hypomania. This 
distinct change in functioning should not cause substantial impairment or psychotic features, 
nor be attributable to substances or medication [26]. 

Bipolar Disorder Specifiers 

Clinical features serving as BD course specifiers were incorporated into the DSM-IV [32] and 
DSM-5 [12], enhancing diagnostic utility for prognosis and treatment guidance beyond simple 
categorical diagnoses. Current DSM-5 specifiers include longitudinal course, remission status, 
severity, anxious distress, mixed features, catatonia, mood-incongruent psychotic features, 
peripartum onset, seasonal patterns, and rapid cycling.  

Other potential clinical variables are suggested but await formal DSM-5 acceptance [7]. For 
instance, evidence indicates age of onset can influence clinical manifestation, with early-onset 
cases leading to a more severe illness course, higher suicidality risk, and more comorbidities 
[33]. Research on BD course specifiers, including the age of the onset BD, psychotic features, 
comorbidities and rapid cycling (explored in Chapters 3 to 5 of this thesis), indicates potential 
distinct genetic factors. However, specifiers are likely influenced by a complex interplay 
between genetic predisposition and environmental factors, such as childhood trauma, which 
can affect onset timing and illness severity [7]. 

Differential Diagnoses 

Common differential diagnoses for BD include schizophrenia (SCZ), major depressive 
disorder (MDD), anxiety disorders (ANX), substance use disorders (SUD) and borderline 
personality disorder (BPD). In children exhibiting early ‘BD’ symptoms, ADHD and 
oppositional defiant disorder are prevalent concerns [34-35]. Particular attention is needed for 
children displaying subsyndromal manic symptoms, mood instability, irritability, anxiety, and 
depression. However, even in this subset, symptom onset and severity remain heterogeneous, 
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requiring individual risk assessment [10]. Initial physical BD evaluations may include tests 
ruling out secondary causes, including urine and blood screenings, metabolic panels, and 
thyroid function and folate level assessments [36]. 

Bipolar Disorder Diagnostic Challenges 

Current classifications mask considerable genetic heterogeneity within BD, which 
encompasses various psychiatric conditions [37]. Genetic studies highlight genetic overlap 
with other disorders but do not consistently align with existing classification systems. 
Approximately 60% of individuals with BD are initially misdiagnosed, often with unipolar 
depression. In one national survey, more than one-third remain misdiagnosed for 10 years or 
more [38]. Only 20% may receive a correct diagnosis within the first year of seeking treatment 
[39]. This diagnostic difficulty is compounded by the genetic overlap BD shares with other 
psychiatric conditions, potentially contributing to the challenges in identifying specific genetic 
markers for BD. Diagnosis can be challenging as BD can initially present as depressive 
episodes [40-41]. This could be further complicated when prior hypo(manic) episodes go 
unnoticed or unreported [42]. Family studies indicate that polarity at onset may have heritable 
components [43]. Identifying divergent genetic markers could therefore help clarify disorder 
boundaries and trajectories, within a continuum of genetic risk for BD and other psychiatric 
conditions. 

Prognosis 

BD prognosis is multifactorial, influenced by timely diagnosis, mood episode severity and 
frequency, comorbid conditions, and individual treatment response. Early intervention, 
particularly pharmacological and psychoeducational approaches, may enhance functional 
outcomes [44]. Individuals with early onset, associated with worse outcomes, could be a target 
group as they showed increased burden for a wider trait spectrum. Predominance of depressed 
versus hypomanic episodes may also impact subtype distinctions and prognoses [45]. 
Furthermore, the clinical course is often complicated by persistent cognitive impairment, which 
can affect memory, attention, and executive function even during periods of euthymia, 
significantly impacting long-term functional recovery and quality of life [46]. 
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Figure 1 Inter- and Intra-Heterogeneity in Bipolar Disorder.  
This illustrates distinct illness trajectories contributing to the clinical heterogeneity 
characteristic of BD. 
 

A predominantly depressive polarity is frequently associated with an increased risk for 
depressive illness onset, Bipolar Disorder Type II (BD2), mixed episodes, and suicidality. In 
contrast, a predominantly manic polarity is often linked to a younger age of onset, a manic or 
psychotic illness onset, and a higher risk of substance abuse preceding the first mood episode, 
underscoring the disorder’s diverse presentations [47]. A predominantly depressive polarity is 
associated with increased risk of depressive illness onset, BD2, mixed episodes, and increased 
suicidality risk. In contrast, a predominantly manic polarity is associated with younger age of 
onset, manic/psychotic illness onset, and higher pre-first-episode substance abuse risk [47].  

Chronicity and comorbid ADHD and ANX are associated with poorer outcomes [48]. 
Comorbid ADHD-BD subjects had younger BD onset, more depressive episodes, more ANX 
and substance use/dependency disorders (SUDs), and greater BPD trait and cyclothymic 
temperament risk [49]. Both mixed states and rapid cycling are associated with a more severe 
BD form, higher comorbidity, and poor outcomes, potentially leading to inadequate treatment 
response, higher disability, and greater suicide risk [29]. BD patient mortality risk is elevated, 
particularly from cardiovascular diseases and suicide, with approximately 30-60% 
experiencing suicidal ideation and 15-20% completing suicide [50]. 

 
 
 
 
 
 
 
 
 
 



 30 

Treatments 

Treatment typically combines medication and psychotherapy. Medications include mood 
stabilizers (e.g., lithium, valproic acid, lamotrigine) for managing hypo(manic) and depressive 
episodes. Antipsychotics (e.g., haloperidol, olanzapine, risperidone) also contribute to mood 
stabilization. While antidepressants, particularly Selective Serotonin Reuptake Inhibitors 
(SSRIs), may be used with mood stabilizers, they are contraindicated as standalone treatments 
and during manic phases due to mania induction risk [51]. Psychotherapy is an important 
adjunctive therapy to pharmacological BD treatments. While the evidence base has 
complexities, several modalities such as Cognitive Behavioural Therapy (CBT), Family-
Focused Therapy (FFT), and psychoeducation have demonstrated benefits for outcomes such 
as relapse prevention and medication adherence [52]. 

 
Prevalence 

Bipolar disorder is a prevalent psychiatric condition, estimates range from 1 to 3% in the 
general population [53]. According to the latest Global Burden of Disease (GBD) report (2019), 
around 1 in 150 adults (roughly 40-50 million people globally) are diagnosed with bipolar 
disorder [54]. Lifetime bipolar spectrum disorder prevalence was estimated at 4.4%, with a 12-
month prevalence of 2.8%. Specifically, BD1, BD2, and subthreshold BD prevalence were 
1.0%, 1.1%, and 2.4% respectively, with 12-month prevalences of .6%, .8%, and 1.4%. Actual 
prevalence may be as high as 4 to 6% in outpatient settings when considering subthreshold 
bipolarity symptoms [53].  

The GBD report highlights that BD, similar to SCZ, is highly heritable and shares genetic 
overlap, maintaining relatively stable worldwide prevalence, although variations occur by 
income level, birth cohort, and geographical regions. Acute psychotic episodes are associated 
with the highest disability risk, while depressive and anxiety are among the leading disability 
causes, elevating severe outcome risks including suicide [54]. The GBD report indicated no 
sex variation in bipolar disorder burden, aligning with recent comprehensive genetic studies 
[55-56]. Prior reports suggested greater BD2 prevalence in females; however, current evidence 
indicates higher bipolar disorder incidence reporting across all forms in females [57]. Notably, 
about three-quarters of individuals on the bipolar spectrum report a comorbid disorder, with 
ANX, particularly panic attacks, being most prevalent. 
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1.5 Clinical Features, Correlates And Functioning 

Bipolar disorders are fundamentally characterised by chronic mood instability. The core 
characteristic of “switching” represents fluctuations between euthymic states, mania, and 
depression. Episodes can manifest as manic, hypomanic, depressive, or mixed, interspersed 
with inter-episode periods, with or without subsyndromal symptomatology (Figures 1-4 are 
referenced generally here, with specific figures detailed below). While BD broadly 
encompasses symptoms associated with several psychiatric disorders (Figure 2), its 
distinguishing feature is cycling (Figures 3-4). Therefore, identifying genetic mechanisms of 
cycling could be key to understanding BD aetiology [58]. Functional impairment is a key 
distinction between BD1, BD2, and SZA subtypes. BD1’s hallmark manic episodes 
(elevated/irritable mood for at least one week [14, 27] typically cause marked functional 
impairment. In contrast, BD2’s less pronounced hypomanic episodes generally have a lesser 
immediate functional impact than mania [12]. SZA, combining bipolar disorder and 
schizophrenia features [59], often results in more severe, persistent functional deficits than 
BD1 or BD2 due to its combined mood and psychotic symptoms. 

Bipolar disorder is distinguished from MDD by hypo(mania) presence. BD1 is characterised 
by at least one manic episode; BD2 has no manic episodes (Figure 3). Depressive episodes are 
defined as persistent low moods lasting more than two weeks. Symptoms include loss of 
interest in typically enjoyed activities, fatigue, insomnia or hypersomnia, hopelessness, suicidal 
ideation, reduced self-esteem, and social withdrawal [27]. Difficulties differentiating BD1, 
BD2, and unipolar depression may contribute to up to a 10 year  diagnostic and treatment delay 
[60]. Evidence supports potential unipolar depression misdiagnosis, as 20% of patients 
developed hypo(mania) within five years in one longitudinal study [61]. 

Subsyndromal Bipolar Disorder Symptoms 

BD can be associated with progressive cognitive deficits, residual symptoms, sleep 
disturbances, and emotional dysregulation between mood episodes [62]. An estimated 20-50% 
of patients experienced inter-episodic or chronic subsyndromal symptoms in one review of 
periods of euthymia [62] (Figure 4). 

Early Onset Bipolar Disorder 

Early onset bipolar disorder (EOBD) has been proposed as a DSM-5 course specifier. EOBD 
presence correlates with increased chronicity and comorbidity risk [63]. It is associated with 
higher comorbid anxiety and SUD instances, more episodes, less euthymia, and greater suicide 
attempt risk. Most reported EOBD comorbid conditions are ADHD, SUD, and anxiety. In a 
983 BD1 adult case study, early-onset BD was associated with more severe illness course, 
increased suicidality and comorbid psychopathology risk, more episodes, and worse functional 
outcomes compared to later onset [64]. Childhood onset represented only 5% of cases, 25% 
adolescence, and 53% at peak ages 15-25 [65]. A recent genetic study (34,658 alcohol use 
dependency [AUD] and 20,352 BD cases) suggested shared aetiology [66].  
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The prognosis of BD is shaped by its typical natural history. The age of onset often follows a 
trimodal distribution, with peaks in adolescence, the early twenties, and around age 40 [67]. 
EOBD cases between 12-18 years and even earlier are reported (age < 12), most qualifying as 
early onset (occurring before 17 years of age). Two further onset peaks were reported: 26 and 
42 years old [67]. Critically, for many individuals, the illness begins not with mania but with 
one or more depressive episodes, often leading to initial misdiagnosis and significant treatment 
delays [41]. Furthermore, a defining feature of the illness is its high rate of recurrence. Seminal 
longitudinal work, such as Angst’s studies of the Zurich cohort, demonstrates that BD is a 
highly recurrent condition, and full functional recovery between episodes is often incomplete 
[13, 62]. This pattern of recurrence and residual impairment has direct relevance for the 
investigation of a chronic illness trajectory in this thesis (Chapter 3). 

Rapid Cycling Bipolar Disorder 

Rapid cycling (RC-BD) was first noted before available pharmacologic treatments, some 
potentially worsening switching, suggesting it is not solely a medication artifact. Consistent 
lithium non-responsiveness evidence also exists [21]. Rapid cycling occurs in approximately 
10-20% of BD cases, characterized by four or more episodes per year (RC; ≥ 4 episodes/year). 
A recent RC-BD systematic review/meta-analysis identified RC-BD in 9.36% of cases (3.74% 
BD1, 15.2% BD2) [68]. However, another study found higher RC-BD prevalence: in a large 
54,257 BD case cross-national community sample (lifetime and 12-month data), approximately 
30% met rapid cycling criteria. Rapid cycling may be prognostic for onset, clinical course, and 
outcomes, associated with increased chronicity and comorbidity risk. It is more often reported 
early in diagnosis, suggesting the rapid cycling experience may prompt help-seeking 
behaviour. It is associated with greater severity, chronicity, worse global functioning, and 
higher suicidal risk [17]. Despite this, no clear treatment consensus exists [69]. One 
longitudinal study reported rapid cycling often resolved within two years of onset in 4 to 5 
cases [70]. While some individuals experience RC-BD temporarily; for others, it is recurring 
or persistent. 

Mixed features 

Mixed features and rapid cycling share a similar poor BD trajectory. At least 30-70% of BD 
patients present with mixed mania or depression [29]. Frequent mixed episodes are associated 
with a severe, chronic course, comorbid disorders, cognitive impairments, rapid mood swings, 
and treatment resistance [7]. 

Bipolar disorder with Psychosis 

Similar to EOBD and RC-BD, other specifiers such as psychosis might be better described as 
dimensional, existing on a severity spectrum (Figures 1-2). While BD and SCZ can involve 
psychosis, the key difference is mood episode presence and psychotic symptom persistence: in 
BD, psychosis typically occurs during manic/depressive episodes; in SCZ, psychosis is primary 
and persistent. In BD, psychosis describes a state of being disconnected from reality, often 
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involving hallucinations, delusions, and disorganized thoughts or speech, occurring during 
manic or depressive episodes. Grandiose delusions and paranoia are mania features; however, 
psychotic symptom presence represents severe BD. The prevalence of psychotic symptoms 
varies across the different phases of the illness. A systematic review highlighted that such 
symptoms are significantly more common during manic and mixed episodes compared to 
depressive phases, underscoring the strong link between psychosis and elevated mood states in 
BD (See Chapter 4 [39]). 

Psychosis is classified as either mood congruent (symptoms align with current mood state) or 
mood incongruent (symptoms do not correspond). The distinction between mood-congruent 
and mood-incongruent psychosis has significant diagnostic implications, particularly at the 
boundary between bipolar disorder and schizophrenia. The presence of mood-incongruent 
psychotic symptoms, especially when persistent, raises the diagnostic possibility of 
schizoaffective disorder, bipolar type (SZA). The work of researchers such as Andreasen et al. 
(1987); Akiskal and Pinto (1999), has been central to debating these diagnostic boundaries, 
highlighting the challenge of classifying patients who present with a mix of severe mood and 
psychotic features [71-72]. This classification quandary is not merely academic; as 
demonstrated in a machine learning analysis of the Northwick Park functional psychosis trial, 
these symptom dimensions can help separate affective psychoses from schizophrenia [73-74]. 
This has direct relevance for the genetic analyses in this thesis, where polygenic risk for 
schizophrenia is used to probe the biological basis of psychotic features within BD (Chapter 
4). 



 34 

 

Figure 2 Shared Phenotypic and Genetic Correlations. 
Adapted from Gordovez and McMahon (2020), The genetics of bipolar disorder [58]. The genetics of 
bipolar disorder, which used estimated genetic correlation (rG) extracted from an atlas of genetic 
correlations (see Chapter 2 [24]). This figure displays instead the genetic correlation (rG) generated in 
this thesis, Chapter 5. This network reveals psychiatric trait (modules) genetic correlations. Each node 
represents a specific psychiatric trait: BD1, BD2, autism spectrum disorder (ASD), SZA, BPD, ADHD, 
MDD, and ANX. Node size is proportional to its degree (number of other traits with genetic 
correlations), with larger nodes indicating a more widespread influence on the overall genetic 
correlation structure. Node colour represents the trait’s module (cluster) determined by unsupervised 
hierarchical clustering, where same-coloured traits exhibit stronger genetic interconnectedness patterns, 
helping identify broader shared genetic underpinnings across different disorders. Edges (lines) connect 
trait pairs with reported genetic correlation (rG value), with edge opacity and width reflecting the 
strength (absolute value) of this relationship; thicker, darker edges indicate stronger genetic 
associations. 
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Figure 3 Mood Frequencies Across BD and Depression.  
Adapted, from O’Connell and Coombes (2021), Genetic contributions of bipolar disorder: current 
status and future direction [75]. The figure represents a comparison of polarity and mood switch 
frequency across BD1, BD2, and unipolar mania (UM) and depression. 
 
 
Subsyndromal Bipolar Disorder Symptoms 

BD is associated with progressive cognitive deficits, residual symptoms, sleep disturbances, 
and emotional dysregulation between mood episodes. An estimated 20-50% of patients 
experience inter-episodic or chronic subsyndromal symptoms [62] (Figure 4). 

 

Figure 4 Subsyndromal Symptoms in Bipolar Spectrum Disorders.  
Adapted from Grunze and Born (2020), The Impact of Subsyndromal Bipolar Symptoms on Patient’s 
Functionality and Quality of Life [62]. Prodromal symptoms may occur before full condition onset, 
influencing functionality, QoL, and increasing relapse risk. Residual symptoms may persist after an 
episode (e.g., cyclothymia [low-level depression, mildly elevated mood/irritability], sleep disturbances, 
and difficulty concentrating). 
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1.6 Bipolar Disorder Aetiology 

This section reviews known genetic, biomarker, and environmental BD contributors. 
Heritability in BD aetiology is multifaceted; genetics is a pivotal risk factor. Children of BD 
parents are eight to 10 times more likely to develop BD, though most do not [30]. These 
offspring, however, have a heightened risk for other psychiatric disorder risk [76]. A 
longitudinal study found preschool ADHD children with early-onset BD parents had higher 
BD development risk than community controls [77]. 

A Neurodevelopmental Model of BD 

Neurodevelopmental disorders stem from early brain abnormalities due to 
genetic/environmental neurodevelopmental influences. Evidence suggests BD may develop 
early, leading to adverse adult conditions [78]. This premise is debatable, possibly applying 
more to psychosis than BD phenotypes [79]. Kloiber et al. (2020) provides a comprehensive 
review discussing neurodevelopmental abnormality evidence in early-onset BD-linked 
psychotic symptoms [80]. Neurodevelopmental evidence may be too subtle for pre-onset BD 
detection or distinguishing some early-stage psychiatric diseases [81]. Shared pathogenic 
mechanism evidence with other neurodevelopmental disorders (intellectual disability, ASD 
and ADHD) led some researchers to propose BD exists on a neurodevelopmental continuum 
with these early-onset disorders [82]. This prompted increased focus on adolescent/young adult 
longitudinal studies, as BD symptoms often emerge then. Typically, depression presents first, 
often during or before puberty [83] while manic episodes usually manifest post-puberty [84]. 
Most commonly, BD onset is in young adulthood, when brain development slows and synaptic 
pruning increases, enhancing efficiency by eliminating redundant neural connections [85]. In 
contrast, during adolescence, BD individuals may experience grey matter and neuron loss 
without typical white matter connection increase seen in unaffected adolescents [3, 86], 
particularly in prefrontal cortex and insula (MRI studies). Imaging research revealed BD 
patient hyper- and hypoactivation differences compared to healthy controls. Amygdala, 
prefrontal cortex, and visual system hyperactivation may be critical in emotional dysfunction. 
Anterior cingulate cortex (ACC) hypoactivation could contribute to cognitive deficits in BD 
patients younger than 18 years [87]. 

When compared with the neurodevelopmental model for SCZ, the trajectory for BD appears 
distinct. Landmark longitudinal studies, such as the Dunedin cohort, suggest that SCZ is often 
preceded by subtle motor and cognitive deficits in early childhood [88]. In contrast, the major 
functional and structural brain abnormalities in BD typically emerge later, during adolescence 
and young adulthood, often coinciding with the onset of the first mood episode [80, 83]. Within 
this framework, mania can be seen as the fulcrum that differentiates the BD subtypes. The 
emergence of a full manic episode, often linked to more pronounced disruptions in prefrontal 
cortical development, defines the transition to BD1. In contrast, the absence of mania in BD2 
may suggest a different, possibly less severe, neurodevelopmental impact [89]. This distinction 
is critical for understanding the different long-term outcomes and treatment needs associated 
with the BD1 and BD2 diagnoses. 
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Neural Substrates in Bipolar Disorder 

Mechanisms underlying BD symptoms are complex. Specific brain region structural 
abnormalities may correlate with emotional dysregulation and cognitive dysfunction. Cortical 
thickness/surface area show high heritability, are associated with various genetic influences 
[90-91] and may be affected by largely distinct gene sets [92-93]. BD structural changes are 
documented across multiple brain regions (prefrontal/temporal cortices). Factors considered 
include genetics, comorbid disorders, and accelerated aging [94]. Neuroimaging studies 
identified neuroanatomical alterations (cortical thickness/surface area changes, and grey matter 
volume changes) corresponding to BD-associated cognitive/behavioural functional 
impairments [3]. Cross-sectional studies highlighted BD-specific structural abnormalities 
primarily in prefrontal/temporal cortex, cingulate gyrus, subcortical regions, and insula. 
Notably, amygdala, hippocampus, and thalamus subcortical alterations are documented in BD 
patients [94].  

Manic episodes consistently correlate with cortical volume or thickness reductions, especially 
prefrontal [3]. Additional findings indicate psychotic history BD patients demonstrate thinner 
frontal, temporal, and parietal cortical grey matter (both hemispheres), alongside reduced 
cortical surface area [94]. The large-scale Enhancing Neuro Imaging Genetics through Meta 
Analysis (ENIGMA) project further evidenced thinner frontal/temporal cortices in BD patients 
[3, 95]. The ventrolateral prefrontal cortex (VLPFC), crucial for emotional regulation/reward 
processing, shows greatest cortical thickness depletion [96]. Investigating regional cortical 
thickness/surface area discrepancies may facilitate identifying meaningful biomarkers for 
different BD subtypes and course specifiers. However, a critical challenge in current 
neuroimaging biomarker identification efforts, is main BD phenotype heterogeneity [97], 
potentially exacerbated in large-scale consortium studies by intra- and inter-cohort differences. 

Progressive Deterioration in Brain Structures 

Research indicates repeated manic episodes may contribute to structural changes (particularly 
prefrontal cortex), with observed correlation between episode frequency and illness severity 
[94]. Psychosis presence and type (mood-congruent/incongruent) in first-episode mania were 
suggested to have different phenotypic markers [98]. This ‘neuro-progressive’ model, which 
posits that mood episodes themselves may have a neurotoxic effect, is supported by some 
longitudinal evidence. Large-scale collaborative studies from the ENIGMA Bipolar Disorder 
Working Group have demonstrated correlations between a higher number of manic episodes 
and accelerated cortical thinning over time, particularly in prefrontal regions [3]. Such findings 
could bolster the rationale for early and sustained intervention to mitigate potential long-term 
structural brain changes. While some interpret this correlation within a ‘neuro-progressive’ 
model where episodes may have a neurotoxic effect, it is important to note that much of the 
evidence is cross-sectional. Such study designs cannot definitively distinguish between illness 
progression and pre-existing vulnerabilities. Robust longitudinal studies are needed to confirm 
a causal relationship and rule out other confounders such as medication effects or comorbid 
conditions. 
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Chapter 4 investigates the potential of using SCZ PRS to identify individuals with BD at higher 
risk of psychosis, which aligns with the need for early detection highlighted by this neuro-
progressive model. Understanding neurobiological underpinnings is crucial for episode 
prevention to mitigate further damage. However, exact brain volume reduction mechanisms 
are not fully understood. Neuroinflammation, altered neurotransmitter activity, and disrupted 
brain connectivity are associated with psychosis [99]. Full episode structural changes may be 
caused by neuroinflammatory/oxidative stress [100-101], dysregulated hypothalamic-
pituitary-adrenal (HPA) system hormonal release, and neurotrophic factor secretion defects 
[102]. These alterations can persist during euthymia. MRI scans show BD-associated focal 
demyelination and axon/nerve fibre loss, observed in children and adolescents at rates similar 
to unipolar depression and schizophrenia [103]. A notable lack of longitudinal studies tracks 
neuroanatomical changes across the lifespan. Untreated patient research is scarce; many studies 
focus on euthymic patients for methodological reasons, limiting understanding of manic 
episode functional and structural changes. Nonetheless, one study controlling for confounders 
still identified BD cognitive impairments [104]. Similarly, another found untreated bipolar 
patients had smaller left anterior cingulate volumes than healthy controls [105]. Lithium-
treated bipolar patient comparisons suggested lithium might influence cingulate volumes, 
possibly via neuroprotective effects [105]. These findings emphasize identifying BD genetic 
factors and biological mechanisms, as this knowledge could help predict early signs and 
facilitate targeted interventions potentially preventing full-blown bipolar disorder episodes. 

Cognitive Deficits in Bipolar Disorder 

Besides disentangling grey matter volume loss contributors, understanding how mania-related 
changes translate to symptomatology, such as social and cognitive functioning, is crucial for 
treatment. Cognitive impairment is a central BD feature, affecting memory, attention, and 
executive function, impacting recovery, work ability, and quality of life (QoL). Frontal, 
subcortical, and limbic structure functional abnormalities are broadly implicated in mood 
disorder pathophysiology, where BD neuropathology involves mood, cognition, and behaviour 
dysregulation. 

Premorbid BD cognitive deficit studies report lower risk compared to SCZ [104,106]. 
Accordingly, psychotic history BD patients had greater impairment in several cognitive 
domains. However, effect size differences between BD subjects with and without psychosis 
were moderate, potentially representing a severity spectrum rather than a qualitative distinction 
[107]. Orbitofrontal cortex (OFC) subregion activation neuroimaging studies reported 
decreased activity during manic episodes and in depressed bipolar subjects [108]. While OFC 
abnormalities are reported across psychiatric disorders, in BD the OFC mediates executive 
function, including inappropriate response control, decision-making, and behavioural 
flexibility [109]. 

These cognitive deficits are not limited to acute episodes but are also observed during euthymic 
phases [46], where they may be complicated by medication effects. BD1 cognitive impairment 
is reportedly more severe and widespread across cognitive measures than BD2 [110]. However, 
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the neural correlates that could explain these cognitive changes over time are largely unknown. 
One five-year BD neurocognitive trajectory longitudinal study found a positive association 
between the number of hypo(manic) episodes and a greater decline in cognitive measures such 
as working memory [111]. Comorbidity also complicates treatment; for instance, BD comorbid 
with ADHD may exacerbate anxiety and mood dysregulation risk, suggesting a hierarchical 
treatment plan is necessary [112]. 

The frequent co-occurrence of cognitive deficits and personality traits in bipolar disorder, along 
with the need to understand their underlying genetic links, provides a key impetus for the 
dimensional and cross-trait analyses explored in this thesis. This need for a deeper biological 
understanding is critical, as currently no medications specifically improve BD cognitive 
functional outcomes. Moreover, common bipolar disorder medication side effects (affecting 
concentration, memory, processing speed difficulties, and impaired executive function) may 
exacerbate symptoms. 

Anterior Insula in BD Symptomatology 

Converging evidence indicates early subcortical, caudal, and especially ventral prefrontal 
cortex (vPFC) and insula dysfunction in BD, and between these brain region interconnections. 
Altered functioning within these regions may be implicated in specific BD symptoms: 
interoception (insular cortex), motor changes (precentral gyrus), and cognition (prefrontal 
cortex). The insula is a hub for saliency, cognitive control (inhibitory control, behavioural 
regulation), and interoceptive (internal bodily) awareness. The anterior insula (AI) together 
with the anterior cingulate cortex (ACC) integrates external/internal bodily information to 
guide goal-directed behaviour. The insula has substantial DLPFC connections, especially from 
the AI, influencing attention, working memory, and decision-making. Early childhood BD 
manifestations include inattention, hyperactivity, and disruptive behaviours [113]. AI and 
frontoparietal executive control/saliency network functional connectivity is reported as a 
differential biomarker between BD and unipolar depression, a potential BD therapeutic target 
[114] and an early indicator of the disorder [86]. A BD neurological model proposes emotion 
circuitry area activity imbalance, disrupting emotion regulation. BD occurs when the ventral 
system (regulates emotion perception in the amygdala, insula, ACC, and prefrontal cortex) is 
overactivated. Conversely, the dorsal system (regulates emotion in hippocampus, dorsal ACC 
[dACC], and prefrontal regions) is under activated [115]. 

Biological Pathways in Bipolar Disorder 

In summary, BD is a complex trait influenced by multiple genetic variants across various 
biological pathways. Key pathways include signalling mechanisms, epigenetic processes, and 
neurotransmitter systems. Specific signalling pathways involved are Gamma-Aminobutyric 
Acid (GABA), glutamate, and calcium signalling, alongside neurotransmitter systems 
(serotonergic, noradrenergic, and dopaminergic). Additional affected biological functions 
encompass neuroinflammation, oxidative stress, mitochondrial dysfunction, impaired 
neuroplasticity, and circadian rhythm dysregulation. These factors contribute to cellular 
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changes crucial to BD pathophysiology. Notably, BD dysregulation is associated with 
intracellular calcium level disturbances, interneuron deficits, and glial cell abnormalities. 
While cellular changes are evident across brain regions, prefrontal cortex and hippocampus 
may be especially impacted. 

Excitatory/Inhibitory Balance in BD 

Research indicates excitatory and inhibitory (E/I) neuronal activity imbalance might be crucial 
in BD. Post-mortem BD individual studies show neurotransmission changes involving 
glutamate (excitatory) and GABA (inhibitory) signalling. The E/I balance concept 
(excitation/inhibition ratio), initially an autism spectrum disorder (ASD) model [116], is now 
associated with various neurodevelopmental and neuropsychiatric conditions, such as 
intellectual disability [117-18] and schizophrenia [119]. Rebalancing E/I ratio is suggested as 
part of lithium’s therapeutic effect by promoting inhibition [120]. Accumulating evidence 
suggests glutamate is involved in BD aetiology. Post-mortem analyses uncovered prefrontal 
cortex (PFC) excitotoxicity [121], ACC glutamatergic function and synaptic connection 
abnormalities [122], and broader glutamatergic system disruptions. Glial cells are crucial in 
glutamate metabolism management; astrocytes are vital in synaptic cleft glutamate uptake 
[123]. Both post-mortem studies and in vivo Transcranial Magnetic Stimulation (TMS) 
research revealed impaired BD cortical inhibition [124]. Elevated glutamate levels are 
associated with executive dysfunction [125]. Excessive glutamate can activate ionotropic 
receptors in extra-synaptic locations, leading to neurotoxicity via calcium influx and free 
radical (e.g., nitric oxide) production. Persistent [123] or repeated mood episode glutamate 
elevation may contribute to BD neuro-progressive pathogenesis.  

Glutamate and GABA network disruptions could lead to BD-associated neurotransmission and 
neuronal plasticity irregularities. Further research highlighted GABA neurotransmission’s role 
in BD mood-regulating brain region interneuron synapses [126]. Various studies show GABA 
level alterations in brain, cerebrospinal fluid, and blood [127]. Glutamic acid decarboxylase 
(enzyme essential for GABA synthesis) decreased activity is associated with depressed 
patients, potentially diminishing GABAergic activity [126]. GABAergic system changes could 
also be associated with BD cognitive deficits [128]. GABAergic interneurons help integrate 
information to synchronise neural networks. Post-mortem studies found reduced cortical 
interneuron densities in BD1 parahippocampal tissue, resembling SCZ patterns compared to 
healthy controls [129]. However, confounders such as comorbid panic disorders [130], anxiety 
[131], and alcohol dependence [132] could complicate the assumed direct neurotransmission 
and BD association. Recent proton magnetic resonance spectroscopy (1H-MRS) studies 
indicated obsessive-compulsive disorder (OCD) individuals exhibit higher Anterior Cingulate 
Cortex (ACC) glutamate and lower GABA levels than those without OCD [133]. Future 
research must fully clarify glutamate/GABA effects in BD, distinguishing them from BD 
comorbid disorder effects. (See Chapter 5, which demonstrates differential glutamate and 
GABA gene set and cell type expression across BD subtypes, specifiers, and comorbid 
disorders). 
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Neurotransmission 

Neurotransmitters (brain chemical messengers) play a key BD role. Substantial data support 
BD neurotransmitter system dysfunction which is frequently investigated as potential 
therapeutic targets. BD is associated with imbalances in serotonin, dopamine, norepinephrine, 
and GABA. Glutamate and GABA abnormalities are consistently identified in BD literature; 
these two amino acids are the most abundant in brain excitation/inhibition controlling 
neurotransmitters [127]. Brain catecholamines (dopamine, norepinephrine, and epinephrine) 
are relatively low compared to other neurotransmitters but are crucial in regulating brain 
functions and are vital therapeutic targets. 

The Dopamine Hypothesis in BD 

Neurotransmitters such as dopamine, norepinephrine (noradrenaline), and serotonin are 
abnormally regulated in BD. Limbic system dysfunction impacts sleep, alertness, and emotion 
regulation [134]. The ‘cholinergic-adrenergic balance’ hypothesis initially explained different 
BD affective states [135]. However, in a neuroimaging, neuropharmacological, and genetic 
study review, it was suggested there is stronger evidence of the ‘catecholaminergic-cholinergic 
balance’ hypothesis. Nevertheless, these neurotransmitter system interplays do not fully 
account for mania/depression cycling [136]. Dopamine is singled out as a key player in BD 
core symptoms, especially depression/mania transition [137]. Signalling primarily involves G 
protein-coupled receptors (GPCRs), modulating fast synaptic transmission in 
glutamatergic/GABAergic neurons. These receptors are crucial for various physiological and 
cellular processes [138], making GPCRs pivotal therapeutic targets (many medications aim to 
modify their activity). The BD dopamine hypothesis posits dopamine transport and receptor 
availability dysregulation may explain the disorder’s depressive/manic phases [139]. Evidence 
indicates heightened dopamine transmission (particularly in the mesolimbic region, associated 
with reward and motivation) is linked to manic episodes, possibly with increased D2/3 receptor 
availability and a hyper-responsive reward system. Conversely, reduced dopamine activity 
(possibly due to elevated dopamine transporter [DAT] levels) is linked to depressive episodes. 
Extensive support for dopamine’s BD role exists, with robust research accumulating since the 
1970s (post-mortem, pharmacological, functional magnetic resonance, and molecular imaging) 
(see Ashok et al. 2017 [139]). Post-mortem analyses noted DLPFC D2/3 receptor upregulation 
in BD patients; however, studies do not specify illness phase [140-41]. This systematic review 
of BD dopamine effects [139] highlights converging pharmacological and imaging study 
results, indicating elevated D2/3 receptor availability and reward processing network 
hyperactivity contribute to mania. DAT level imbalances are observed in bipolar depression, 
however other dopaminergic functioning aspects yielded inconsistent results. 

More recent multimodal imaging work continues to refine this model. For instance, a 2025 
study by Jauhar and colleagues in JAMA Psychiatry provided further evidence linking striatal 
dopamine function not just to psychosis, but to the interaction between psychosis and mood 
severity in affective disorders [142]. Their findings suggest that the dopaminergic 
dysregulation in bipolar psychosis may be distinct from that seen in SCZ, potentially being 
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more closely tied to the affective state, which has significant implications for diagnosis and the 
development of state-specific therapeutics. Across all patient groups, higher dopamine 
synthesis in the associative region of the striatum was linked with greater severity of positive 
psychotic symptoms (e.g., hallucinations, delusions), regardless of the specific mood disorder 
diagnosis. The study also found however, that dopamine dysregulation was not uniform. 
Patients with manic psychosis showed higher dopamine synthesis, particularly in the brain’s 
limbic region, compared to those with psychosis and depression. The results suggest that the 
biological basis of psychosis does not perfectly align with traditional diagnostic categories. 
This implies that antipsychotic drugs, which modulate the dopamine system, could be 
beneficial for treating psychotic symptoms across a wider range of mood disorders than is 
current practice.  

Noradrenaline 

Noradrenaline levels were low in bipolar disorder and depression; however, greater 
noradrenaline metabolite levels were detected during manic episodes [143], suggested to be 
due to low inhibitory alpha2-adrenaline receptor sensitivity, and also observed in panic disorder 
(PD) [144], a common BD comorbidity. 

Serotonin 

Serotonin studies have associated serotonin with other commonly BD-comorbid disorders 
[145]. In contrast, small BD patient studies yielded inconclusive results [146]. Several research 
efforts associated cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) (serotonin 
metabolite) concentrations with impulsivity, aggression, and unipolar depression suicide risk 
[147]. However, 5-HIAA CSF level differences were not clearly distinguishable between 
manic depressive episode patients and unipolar depression patients [148-149]. 

Intracellular Signalling 

BD pathophysiology research includes intracellular signalling cascade network studies, 
searching for new mood disorder treatments. Complex signalling networks support cell 
communication involving mood/wakefulness-related targets (glucocorticoids, thyroid/gonadal 
hormones). Intracellular (IC) signal transduction system changes are a focal point [146]. 
Various intermediaries are associated with BD; post-mortem studies and pharmacological 
evidence implicate lithium in the phosphatidylinositol (PI) pathway. Functional changes occur 
as neurotransmitters and neuromodulators bind GPCRs. Cyclic adenosine monophosphate 
(cAMP) and diacylglycerol (DAG) impact protein kinase A (PKA) and protein kinase C (PKC), 
regulating metabolism and transcription factors [150]. Lithium’s bidirectional cAMP impact 
suggests broad therapeutic effects across manic and depressive phases [151]. Lithium impacts 
PI pathway by depleting myo-inositol levels, reducing intracellular transmission via targeted 
key protein downregulation (Figures 5, 6) [152], including PKC phosphoprotein substrate 
myristoylated alanine-rich C kinase substrate (MARCKS)[152]. Lithium inhibition is proposed 
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to mitigate increased intracellular calcium levels which is expected to be hyperactive in BD 
patients [153-155]. 

Neuroplasticity and Neurotrophic Signalling 

Neuroplasticity and neuroprotection effects are associated with BD pathophysiology. 
Neuroplasticity may explain decreased cellular plasticity and damage in BD, possibly 
associated with functional deficits increasing mood episode severity. Neurotrophic factors are 
involved in key processes: (proteins regulating neuronal cell survival/growth, synapse 
formation, and neuroplasticity processes [synapse remodelling, long-term potentiation (LTP), 
axonal growth, synaptogenesis and neurogenesis]) [156]. Neurotrophins modulate central 
nervous system (CNS) via tyrosine kinase (Trk) receptors, activating mitogen-activated protein 
kinase (MAPK) pathway, increasing neuroprotective proteins such as Bcl-2 [157] (see Figure 
6). Brain-derived neurotrophic factor (BDNF) is frequently implicated in BD. BDNF and 
neurotrophin-4 (NT-4) bind TrkB receptor. Several studies report decreased BDNF/TrkB 
levels in blood/brain of medicated/unmedicated BD patients [158]. Antidepressant/mood 
stabiliser action mechanisms are also associated with BDNF levels. Transcription factor cAMP 
Response Element-Binding Protein (CREB) influences BDNF function; increased levels of 
both are reported in antidepressant-treated patients [146]. Additionally, glycogen synthase 
kinase 3 (GSK-3) enzyme, which promotes apoptosis, is inhibited by BDNF [159], lithium, 
and valproate [160]. PKA’s role recently gained focus, AKAP11 gene (deficiencies can inhibit 
PKA-activation of GSK-3) which was identified in the largest BD Whole-Exome Sequencing 
(WES) study to date [161] (see below). 

Mitochondrial Dysfunction and Oxidative Stress 

Accumulating evidence indicates mitochondrial dysfunction and reactive oxygen species 
(ROS) production in BD pathogenesis. Brain mitochondria (organelles) are critical for cell 
survival [162], producing energy (adenosine triphosphate [ATP]) for neuronal function; 
dysfunction can contribute to neuronal degeneration. Mitochondrial function is essential for 
synaptic plasticity (crucial for learning and memory)[163]. BD patient brain studies report 
glycolytic shift, indicating mitochondrial dysfunction related to neuronal sodium 
(Na+)/potassium (K+)-ATPase activity. This dysfunction may promote neurodegeneration via 
glutamate excitotoxicity/neuronal apoptosis [164], potentially inducing hyperexcitable state 
(mania) or inhibiting neurotransmitter release (depression)[165]. Other energy metabolism 
mechanisms are implicated in BD, including nuclear messenger ribonucleic acid (mRNA) 
product downregulation (Krebs cycle involvement). This suggests decreased nicotinamide 
adenine dinucleotide + hydrogen (NADH) and flavin adenine dinucleotide (FADH2) oxidation 
in BD might increase ROS production, causing oxidative stress. Excessive ROS can impair 
cognitive functions (learning, memory, and executive function)[166]. 

This link between mitochondrial function and BD is further substantiated by pharmacogenomic 
research. For example, studies using Induced Pluripotent Stem Cells (iPSCs) derived from 
patients with BD have shown that lithium responders exhibit a rescue of mitochondrial deficits 
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that are not seen in non-responders. Specifically, lithium treatment in cells from responders has 
been shown to normalize deficits in energy metabolism and reduce oxidative stress. Much of 
this research has pointed towards dysfunction in mitochondrial complex I (MC1) as a key 
pathological hub, with evidence showing altered MC1 activity and expression in patient-
derived cells, a deficit that may be directly modulated by lithium’s therapeutic action [167]. 

Immune-Inflammatory Imbalance and Kynurenine Pathway 

Dysfunctional kynurenine metabolism can result from inflammatory response, reported in 
mood disorders, potentially contributing to BD patient volume loss [168]. Pro-inflammatory 
cytokines such as interleukin-6 (IL-6) are associated with BD, suggesting a potential direct 
immune dysfunction role in BD pathogenesis. Several mechanisms are proposed: blood-brain 
barrier integrity, genetic factors, gut-brain axis dysfunction, and kynurenine pathway 
involvement. Kynurenine metabolites are associated with neurotoxicity/impaired 
neurotransmission [145]. Unmedicated BD patient research found dendritic atrophy may 
correlate with amygdala and hippocampus volume loss, potentially due to protective 
kynurenine metabolite loss [169]. However, translating these associations into effective 
treatments has proven challenging. While observational data suggest a role for immune 
dysfunction, the clinical evidence for anti-inflammatory interventions remains equivocal. 
Notably, a large-scale randomized controlled trial of the anti-inflammatory agent minocycline 
as an adjunctive treatment for bipolar depression failed to find a significant benefit over 
placebo, highlighting the complexity of targeting this pathway in BD [170]. 

Circadian Rhythm 

Circadian rhythm disruptions may be associated with sleep disturbances (often reported in BD 
during acute and inter-episode periods) and can influence body temperature and hormone 
secretion (melatonin and cortisol levels typically follow a circadian pattern). Studies show BD 
patient cortisol secretion is higher than controls (regardless of circadian phase), aligning with 
increased hippocampal/amygdala glucocorticoid receptor (GR) mRNA levels in BD [171-72]. 
Sleep deprivation is known to trigger BD manic episodes [173]. Interestingly, some research 
indicates short-term antidepressant effects in some bipolar depression individuals [174], 
possibly due to rapid BDNF level increase, resembling antidepressant actions [175]. Genetic 
studies revealing numerous associations with circadian rhythm regulating genes, bolster these 
consistent findings [176]. Identifying exact BD pathophysiology mechanisms is challenging, 
which relies largely on isolating individual functional mechanisms or postmortem brain tissue 
use. Such studies may not accurately reflect active, holistic brain physiology and their results 
are likely influenced by lifetime medication use. A recent living donor fresh brain tissue study 
highlighted potential postmortem and live tissue discrepancies [177]. Also, cell metabolism 
results from intricate genetic and environmental factor interactions. While genetic 
predispositions are substantial, BD pathophysiology remains dynamic; accumulated 
psychosocial stress and sleep deprivation can instigate mood episodes independently of genetic 
factors. Genetic predisposition may interact with various environmental factors including 
early-life adversities, leading to epigenetic, endocrine, and inflammatory alterations [7]. 
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Neuroendocrine System 

Numerous studies report Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity even in 
unmedicated depressed/bipolar depressed patients. The HPA axis includes the hypothalamus, 
pituitary, and adrenal glands. Elevated HPA activity is associated less with manic episodes than 
mixed episodes/bipolar depression. Bipolar disorder studies associate increased HPA activity 
with mixed manic states/depression, and less consistently with classical manic episodes [178]. 
HPA dysregulation is also linked to bipolar disorder clinical course outcomes, increasing 
cognitive deterioration and risk for relapse [179]. Robust evidence suggests manic episodes 
may be preceded by heightened cortisol/adrenocorticotropic hormone (ACTH) levels [180]. 
HPA alterations are tied to familial risk; bipolar disorder patient first-degree relatives 
reportedly exhibit elevated baseline cortisol [181]. A thyroid hormone/mood disorder 
relationship in BD is well-supported. Thyroid hormones have neurotrophic effects; 
thyroxine/triiodothyronine (T3) treatments for treatment-resistant depression (TRD) or bipolar 
disorder increase intracellular CREB [182]. Gonadal hormone influence on mood disorders is 
well-documented. Oestrogen modulates serotonin’s antidepressant effects via 
neurotransmitters (noradrenaline, dopamine, GABA), and influences neuroplasticity via 
intracellular PKC signalling [146]. Progesterone and testosterone, recognised primarily for 
reproductive functions, also substantially affect mood and mental health; imbalances can 
potentially lead to anxiety, depression, and mood swings. 

Epigenetic Mechanisms 

Epigenetic mechanisms (DNA methylation, histone modifications, chromatin remodelling) 
influence BD physiology by modulating gene expression. These long-term gene function 
modifications occur responding to environmental factors. DNA methylation may dysregulate 
BD gene expression; abnormal DNA methylation is observed in known BD risk genes such as 
BDNF, this suggested this was more affected in BD2 than BD1 [183]. Epigenetics is implicated 
in the main BD phenotype, psychosis, and suicide risk. Twin studies report serotonin 
transporter gene SLC6A4 hypermethylation and lower KCNQ3 gene methylation (associated 
with BD via neuronal hyperactivity regulation role). Candidate Plasticity Gene 2 (CpG2) 
(SYNE1 splice variant) methylation status predicts previous mood episode number and suicide 
attempts. However, epigenetic mechanism associations with BD are relatively limited 
compared to, for example borderline personality disorder (BPD) [184]. Epigenetic alterations 
may influence BD development of risk and resilience (captured in BD parent offspring who 
developed the disorder) [185-86]. Conversely, early-life trauma-induced alterations 
destabilising epigenetic methylation, can increase later adult psychopathology risk [187-88]. 
DNA methylation related to gene expression repression, may become dysregulated from early 
childhood adversities, continuing into adulthood via sustained adult prefrontal cortex BDNF 
gene expression depletion. Recent hypotheses suggest 5-hydroxytryptamine 3A receptor (5-
HT3AR) methylation could mediate early adversity effects on adult psychopathology, 
potentially modulating the risk for developing BD, BPD and ADHD. Additionally, RELN and 
GAD67 gene downregulation (involved in GABA synthesis and secretion) was studied, this 
revealed respective promoter CpG island (CGI) hypermethylation evidence in BD and SCZ 
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patients. Post-translational histone modifications modulating transcription (CREB histone 
acetylation, H3K4 trimethylation in synapsin genes) are also associated with BD, based on BD 
patient post-mortem brain sample studies [184]. 

Environmental Risk 

Several environmental factors are proposed to trigger BD in biologically vulnerable 
individuals. The “Developmental Risk Factor” Model may clarify BD/SCZ similarities beyond 
shared genetic liabilities [189-90]. The model posits psychosis genetic predisposition 
combined with early-life experiences contributes to disorder development [191-92]. Identified 
risk factors include obstetric complications, peripartum asphyxia, low birth weight, maternal 
pregnancy stress, and perinatal infections. Maternal stress is also associated with SCZ, 
depression, anxiety, and a range of ADHD symptoms [193]. Research indicates concordant 
associations between obstetric complications, peripartum asphyxia and BD. Peripartum 
asphyxia (newborn oxygen deprivation) can lead to potential brain damage, resulting from 
complications [194] such as premature birth, prolonged labour, or cord suppression. Notably a 
brain MRI study found perinatal asphyxia/severe obstetric setbacks correlated with smaller 
amygdala and hippocampal volumes later [195]. A Finnish birth cohort study noted maternal 
smoking also increased BD risk [196]. However, a recent epidemiological twin study 
reinforced maternal stress poses a higher risk compared to smoking or alcohol consumption. 
Maternal stress was associated with subclinical hypomania, elevated mood, irritability 
symptoms in BD-risk youths and young adults [197]. Current research aims to identify 
potential epigenetic mechanisms illustrating gene-environment interaction risk influence in 
longitudinal studies. More understanding could be essential for effective prevention strategies. 

Pharmacogenetics 

Available BD medications include mood stabilisers, antipsychotics, antidepressants, and anti-
anxiety medications. While pathophysiology and drug action understanding has grown, the 
exact BD medication combination depends on individual symptoms. Antidepressants are not 
recommended alone without a mood stabiliser (especially in BD1), as evidence suggests 
antidepressants may induce hypo(manic) episodes or increase mood switching. 
Antidepressants are also not advised if mixed features are present (coinciding 
depressive/hypomanic symptoms, are often indicated by irritability)[198]. Antidepressant BD 
mania trigger mechanisms are also unknown; one study identified opposing lithium (mood 
stabiliser) and fluoxetine (antidepressant), their therapeutic effects both converging in the PI 
pathway [199]. Antidepressants also affect serotonin and norepinephrine systems (SSRIs), and 
dopamine. Combined with a mood stabiliser (lithium, valproic acid [VPA], lamotrigine) to 
regulate mood, antipsychotics (olanzapine, risperidone) can also address psychosis symptoms. 
Medication responses vary widely; some patients cycle through medications before finding 
effective treatment with minimal side effects. Pharmacogenomic studies aim to leverage 
genetics to help predict treatment responses. A pivotal BD pharmacogenomics challenge is in 
measuring treatment response, restricted by follow-up duration, medication adherence, and 
multi-drug strategy confounders. The Alda lithium response scale [200], a systematic, high 
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inter-rater reliability rating system was developed to quantify BD clinical improvement during 
treatment, accounting for response confounders [201]. However, study design and sample 
heterogeneity yielded limited replication. While not yet replicable or presenting inconsistent 
results, promising BD pharmacogenomic findings were summarised in a recent review, see 
Gordovez and McMahon (2020) [58]. One Swedish/UK patient genetic study implicated an 
intronic SNP on chromosome 2q31.2 related to SESTD1 (spectrin repeat containing nuclear 
envelope protein 1), a phospholipid regulation gene; intriguing as phospholipids are strongly 
associated with lithium targets [202]. Subsequently, a chromosome 21 locus was identified, 
involving long non-coding RNA (lncRNA) genes AL157359.3 / AL157359.4 , which are crucial 
for CNS gene expression regulators [203]. An early identified genome-wide association (below 
genome-wide significance) implicated the gene GRIA2 (glutamate ionotropic receptor AMPA 
type subunit 2) [204]. A notable Han Chinese patient study implicated the GADL1 (glutamate 
decarboxylase-like protein 1) gene [205] that was not replicated in European [206] or Asian 
[207-208] samples. A recent meta-analysis (6,300 BD cases previously analysed for lithium 
responsiveness) replicated the ADCY1 (adenylate cyclase 1) protein-coding gene association 
[202, 209-10]. ADCY1 plays essential roles in regulatory processes implicating neuroplasticity, 
dopamine D4 receptors, sleep disturbances, and circadian rhythm dysfunction.  

Most prior pharmacogenomic studies focused on lithium response. However, more recent 
studies explored the genetic associations with anti-epileptic mood stabiliser response, 
providing insights into two SNP-level associations (THSD7A, SLC35F3), and two gene-level 
associations (ABCC1, DISP1) [211]. Recent genetic findings illuminating probable drug targets 
associated with bipolar disorder (BD) suggest a potential for repurposing existing 
pharmacological agents. For instance, calcium channel blockers (CCBs), traditionally utilised 
in the treatment of hypertension and cardiovascular conditions, have garnered renewed interest 
as a therapeutic avenue for BD [212]. This resurgence is largely due to the widespread 
implication of the CACNA1C gene (calcium voltage-gated channel subunit alpha1 C), a locus 
consistently identified as one of the strongest genetic associations with BD [58]. Research 
further indicates that CCBs may exert neuroprotective effects [213] and influence 
neuroplasticity [214], although the potential for these agents to exacerbate certain symptoms, 
particularly cognitive deficits in bipolar disorder, warrants careful consideration, see section 
‘Cognitive Deficits in Bipolar Disorder’ above. 

 
Lithium in the PI Pathway and Calcium Signalling 

Lithium is believed to exert therapeutic effects by modulating E/I balance, assuming a 
hyperactive excitatory system is key to BD pathogenesis (chronic animal model treatment 
reduced mGluR5-PKC signalling) [120]. Lithium is the first-line BD treatment reducing 
episode frequency and may also reduce suicide risk [215]. The exact mode of lithium actions 
is not well-understood; the pharmacological studies above suggest lithium targets multiple 
signalling pathways and regulatory network mechanisms. 
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Inositol depletion hypothesis 

IMPase inhibition has the most support for lithium action mechanisms (shown to target many 
enzymes, often via Mg2+ co-factor) [199]. Similar structure enzymes also targeted (GSK3, β-
arrestin-2-Akt complex) [216]) (Figure 6). Lithium inhibits two key mechanisms: inositol 
monophosphate (IMPase) and inositol polyphosphate-1-phosphatase (IPPase), depleting the 
available inositol cycle which supports downstream IC calcium-signalling. G protein activation 
by phospholipases via Trk receptors initiates phosphatidylinositol 4,5-bisphosphate hydrolysis, 
subsequently initiating the PI signal transduction cascade. Lithium IMPase inhibition prevents 
inositol availability for downstream targets (required in Inositol trisPhosphate (IP3), decreasing 
intracellular calcium release, preventing DAG/PKC activity. This downregulation and 
lithium’s transduction cascade mechanism effects are well-supported. Altered PI signalling is 
reported in BD [215]. In vivo studies support lithium treatment reduces magnetic resonance 
(MR) spectroscopy myo-inositol [217]. Although inositol depletion is yet to be refuted, 
inconsistent findings exist, prompting researchers to explore alternative mechanisms. 

Dopamine 

Mood stabilising drugs lithium/sodium valproate also impact dopamine signalling. Valproate 
reportedly increased DAT gene expression via Sp transcription factor family interaction [218]. 
L-dopa (dopamine precursor) treats Parkinson’s hallucinations. Certain antipsychotics for 
example, Haloperidol reduce mania by decreasing dopaminergic transmission via D2 receptor 
blockade. Observed therapeutic effects via dopamine transmission suggest D2/3 receptor 
blockers could be beneficial in BD depression [139]. Mood stabilising drugs lithium and 
sodium valproate also impact dopamine signalling. Valproate reportedly increased DAT gene 
expression via Sp transcription factor family interaction [218]. This corresponds with in-vivo 
neuroimaging findings; for example, a positron emission tomography (PET) study by Yatham 
and colleagues demonstrated that treatment with valproate was associated with a reduction in 
dopamine synthesis capacity in patients with mania, suggesting a direct modulatory effect on 
the presynaptic dopamine system [219]. 

 
GABA 

Long-term BD patient mood stabilizer treatment reportedly upregulated PFC/hippocampus 
GABA receptors, simultaneously downregulating hypothalamus GABA receptors. In another 
study, lithium and valproate administration reinforced GABA importance. Serum GABA 
(reportedly to be low in depressed patients) increased with manic patient valproate treatment 
[146]. Despite therapeutic advances, many patients remain nonresponsive [220] or 
noncompliant (partly due to side-effect burden). In one lithium acute mania treatment meta-
analysis, only 47% of BD patients had a good response [221]. 
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Ketamine 

Several N-methyl-D-aspartate (NMDA)-receptor antagonists recently gained attention for BD 
depression antidepressant effects [222]. Ketamine (anaesthetic drug) acts on NMDA receptor 
antagonist to target glutamate [223]. However, ketamine can have side effects including 
dissociation, increased blood pressure, nausea, and short-term cognitive changes. However, 
one review suggested there is still no clear treatment consensus. A recent case study suggested 
intranasal ketamine efficacy, demonstrating affective symptom stabilization at an 18-month 
follow-up. Future epigenetic therapeutics may include BD epigenetic effect study identified 
targets to address neuroprogression (e.g., histone methyltransferase inhibitor use has been 
suggested) [184]. This has precedence: lithium and antidepressants exert therapeutic effects via 
neurotrophic effects, maintaining adult CNS neuroplasticity. Neuroplasticity modulates mood, 
cognition, and behaviour sustaining mechanisms (including dendritic function, synaptic 
remodelling, long-term potentiation (LTP), axonal/neurite growth, synaptogenesis, and 
neurogenesis). Neuroprogression, potential BD patient brain volume loss with repeated mood 
episodes, may also be associated with lower treatment responsiveness, especially lithium and 
CBT [224-25]. This reiterates the importance of early therapeutic intervention to potentially 
preserve mechanisms, especially in those with a genetic predisposition to a chronic BD 
trajectory. 

 

Figure 5 Intracellular Mechanisms of Therapeutics.  
Adapted from Lee et al. (2022) [146]. Neuromolecular Aetiology of Bipolar Disorder: Possible 
Therapeutic Effects of Mood Stabilisers. 



 50 

 

 

Figure 6 Neuroplasticity Effects of Therapeutics.  
Adapted from Lee et al. (2022) [146]. Neuromolecular Aetiology of Bipolar Disorder: Possible 
Therapeutic Effects of Mood Stabilisers. 
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1.7 Genetics Of Bipolar Disorder 

Family, twin, and adoption studies established BD is highly heritable, suggesting a strong 
genetic contribution. Instead of single dominant genes, research indicates multiple genes are 
involved, similar to other complex disorders. Recent BD genetic studies have revealed a 
complex inheritance pattern with multiple modest-effect genes contributing to risk, including 
common and rare genetic variants, and substantial overlap with other psychiatric disorders. 

Twin and Adoption Studies 

BD familial aggregation does not solely reflect genetic contributions; environmental factors 
also play a role. Adoption and twin studies help clarify genetics’ impact. BD shows the highest 
psychiatric/behavioural disorder heritability [226] (estimates 59-87%). In Monozygotic (MZ) 
twins, this is approximately 38.5 to 58% concordance; dizygotic (DZ) twins: eight to 20% 
[227]. Adoption studies are inconclusive [228] but support largely genetic aetiology (BD risk 
was elevated only in biological parents). Despite this strong genetic contribution, no Mendelian 
inheritance pattern has been found, suggesting a complex inheritance which may also be 
influenced by assortative mating and shared environments [229]. This reiterates BD 
pathogenesis as multifactorial, involving genetics, social factors, trauma, as well as stress. 

BD Familial Burden Studies 

A large body of familial studies since 1960 indicates a strong BD genetic component 
(particularly BD1). A Swedish family-based study estimated BD risk is 7.9, 3.3, and 1.6 times 
higher for first-, second-, and third-degree BD patient relatives, respectively, compared to 
unaffected families. BD heritability was estimated at 58%. First-degree relatives’ BD risk may 
be approximately 9% (nearly ten times greater than the general population) [230-31]. Evidence 
also suggests partial BD subtype genetic segregation (BD1 to BD2 rG is approximately .88 
which is less than 1) (Figure 7). BD2 risk is higher among relatives of BD2 diagnosed 
individuals than for those with BD1 [232-34]. BD2 is considered more heterogeneous, 
positioned between BD1 and MDD [235]. In a large Swedish cohort, other psychiatric disorder 
genetic risks were 9.7-22.9 for BD individuals, and 1.7-2.8 for full siblings [236]. Similarly, in 
a Danish cohort study, a first-degree relative with mental illness increases SZA (bipolar type) 
relative risk to 2.76. Risks varied for related conditions: 2.57 for SCZ, 3.23 for BD, and 1.92 
for SZA [237]. 

Familial BD Psychiatric Burden Studies 

Studying multimorbidity in multiplex families (which feature a high concentration of 
individuals with BD) allows for delving further into BD genetic aetiology. In one bipolar 
multiplex family study, they reported that familial BD cases and unaffected members both 
exhibited higher genetic risk for BD, SCZ, and MDD [238] relative to unaffected families. 
SCZ, Autism Spectrum Disorder (ASD), and depression show particularly strong familial BD 
correlations [75]. MDD risk is greater than BD risk in BD families, with relatives of BD 
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diagnosed individuals more likely to be affected by this more prevalent MDD [236]. Familial 
BD risk also correlates with increased familial ADHD and personality disorders [30, 237, 239]. 
Studies consistently indicate BD relatives are more likely to have ADHD, suggesting shared 
familial and genetic predisposition. A familial genetic study meta-analysis revealed higher 
ADHD prevalence among BD relatives, with greater BD1 prevalence among ADHD relatives 
[240]. Borderline personality disorder (BPD) and antisocial personality disorder (ASPD) are 
also frequently observed in BD families. BPD may be more common in BD2 risk individuals. 
Research also indicates a substantial percentage of BD individuals also meet BPD criteria, 
leading some experts to propose BPD may reside on the BD spectrum. Although BPD and BD 
are both distinct, and separately diagnosable, approximately 20% of BD2 individuals and 10% 
with BD1 also qualify for a BPD diagnosis [241]. BD/BPD comorbidity is associated with 
more severe outcomes (increased psychosocial deficits, impulsivity, aggression, anxiety 
including OCD, post-traumatic stress disorder (PTSD), somatoform disorders, earlier mood 
symptom onset, hospitalisation, and worse treatment response) [242]. ADHD individuals show 
elevated BPD risk (nearly 20 times more likely than those without ADHD) [243]. 

 

Figure 7 Genetic Correlation Between BD1 and BD2 Stratified by Ascertainment.  
This figure is adapted from O’Connell, Koromina, van der Veen et al., 2025, Genomics Yields 
Biological and Phenotypic Insights into Bipolar Disorder [55]. Each node (circle) represents a 
specific BD phenotype (trait), indicated by its label and colour. Colours correspond to different 
ascertainment traits (Clinical, Community, Self-report, BD1 and BD2), as per the legend. 
Edges (lines) connecting nodes represent genetic correlations (rG) strength between traits. 
Thicker, darker edges indicate stronger genetic correlations. Node spatial arrangement by 
force-directed layout algorithm (Fruchterman-Reingold) positions nodes with stronger 
associations closer, identifying correlated traits. 
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1.8 Molecular Genetic Studies 
 
Linkage Studies 

Linkage studies indicated various BD-associated genomic locations by analysing family 
genetic marker inheritance. Several chromosomal regions are implicated, helping identify 
higher risk-associated candidate genes (e.g., a notable rare Copy Number Variant [CNV] on 
chromosome 16p11.2). Some region findings have replicated, however BD linkage study 
consistency remains elusive. To enhance statistical power, multi-study result meta-analyses 
were conducted. In one instance, 7 studies, found a potential 13q/22q loci [244]. In another, 18 
studies, identified no linkage candidates, though several regions (9p22.3-21.1, 10q11.21-22.1, 
14q24.1-32.12, and chromosome 18) showed evidence of linkage [245]. However, data in these 
meta-analyses tend to be less robust than direct combined data analyses [246]. Family linkage 
research has also focused on family subgroups (exploring greater genetic homogeneity, 
particularly concerning psychosis). Various studies found psychotic subtype linkage support. 
Noteworthy loci include: 1q42 near DISC1 (scaffold protein) associated with SZA bipolar type 
[247]; 9q31/8p21 associations for BD with psychosis [248 Park]; and 5q26/18q12-q21 in a 
combined BD/SCZ analysis [249]. Overall, while linkage studies implicated certain 
chromosomal regions, results remained inconsistent. Methods have evolved with the growing 
evidence of polygenicity in complex disorders including BD. This complexity contrasts sharply 
with straightforward Mendelian disorder (e.g., cystic fibrosis) linkage analyses [250]. 
Researchers pivoted to GWAS to discover BD-associated genetic variants, adapting to 
traditional linkage study limitations. 

Candidate Gene Studies 

Research transitioned from gene linkage to BD-related gene associations investigated via 
candidate gene studies (examining specific “candidate gene”/BD development risk 
relationships by analysing genetic variations in affected/unaffected individuals). The initial 
focus established BD mechanisms involving neurotransmitter systems (dopamine, serotonin, 
and norepinephrine). Notable genes findings included MAOA, COMT, serotonin transporter, 
and circadian rhythm-associated clock genes (an extract of BD GWAS discoveries can be 
found in Appendix 9.1). The SCZ-related DISC1 gene was examined but showed no consistent 
BD associations. In contrast, DAOA (D-amino acid oxidase activator)/G30 locus (chromosome 
13q) variations are associated with BD susceptibility. Neuregulin 1 (NRG1) was also associated 
with BD (crucial in neurogenesis, synaptic transmission, and myelination roles). BDNF 
research highlighted larger sample size requirements. BDNF (brain derived neurotrophic factor  
superfamily member, chromosome 11p13) is vital for axonal development and neuronal 
population survival [251]. Initial studies suggested a BDNF polymorphism/BD association; 
later research yielded inconsistent findings [252]. Other genes (dopamine receptor D4 [DRD4], 
solute carrier family 6, member 3 [SLC6A3]) provided modest study support. Many early 
investigations faced type I error issues, further emphasising larger sample sizes’ importance 
for identifying BD-associated genes.  
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To tackle the challenge of small sample sizes, Genome-Wide Associations Studies (GWAS) 
compared unrelated affected and unaffected individuals across many cohorts’ using meta-
analysis, eventually replicating the robust BDNF finding in BD [253]. Despite more than a 
decade of GWAS findings however, common variants alone evidently do not account for most 
twin study observed heritability, the (“missing heritability” problem). GWAS has been 
essential in robustly identifying hundreds of common genetic variants associated with complex 
traits including BD, thereby providing unprecedented insights into BD underlying biological 
pathways and polygenic architecture. 

Rare Variants 

Combined common SNP-heritability (h²snp) is far lower than family/twin study estimates. 
Twin studies suggest BD heritability of approximately 60-90% [228]. SNP-heritability (h²snp)  
(GWAS-derived estimate) is approximately 17-23% (based on a liability scale, .5-2% 
population prevalence) [55, 254-255]. Despite many common variants identified, none seem 
to substantially increase disease risk; many are also associated with SCZ and MDD. This raises 
the possibility that rare variants contribute to the heritability gap (structural variants [CNVs], 
rare SNVs, short indels), with potential gene-gene/gene-environment interactions. High costs 
meant BD whole-genome and exome sequencing (WGS/WES) studies typically focused on 
large family lineages (as they expected higher rare variant prevalence). Due to reduce costs for 
WES/WGS through innovation, studies began to provide evidence of increased rare deleterious 
variant burden in BD. BD1 diagnosed individuals exhibit greater rare deleterious SNV/rare 
CNV burden [256]. High disruptive variant burden is associated with BD age of onset [257]. 
In familial studies, up to 378 rare, non-synonymous, possibly functional variants were 
identified, indicating rare BD variant genetic overlap with ASD/SCZ [258-260]. A large BD 
exome sequencing study (Bipolar Exome [BipEx] consortium; including approximately 14,000 
cases and 14,000 controls) by Palmer et al. (2022) [161] found excess ultra-rare protein-
truncating variants (PTVs) in evolutionarily constrained BD patient genes. These PTVs were 
notably enriched within previously SCZ-implicated genes (Schizophrenia Exome Meta-
analysis [SCHEMA] consortium). Combining their results with SCHEMA [309] data, AKAP11 
(A-kinase anchoring protein 11) was identified as a definitive shared BD and SCZ risk gene 
(odds ratio [OR]=7.06). Functionally, AKAP11 interacts with GSK3β (a hypothesised lithium 
target). These findings support BD’s polygenicity, re-establish rare coding variation role in BD 
aetiology, and underscore shared BD and SCZ genetic risk. 

Copy Number Variants 

Copy Number Variants (CNVs) have been investigated in BD. CNVs are stretches of 
deoxyribonucleic acid (DNA) that result in an individual having one (a deletion), three (a 
duplication), or more copies of a particular chromosomal region, instead of the typical two 
copies found in a diploid human genome. While large, rare CNVs have been associated with 
an increased risk for SCZ, they appear to play a smaller role in BD compared to their frequency 
and impact in SCZ or other neurodevelopmental disorders. Notably, a duplication on 
chromosome 16p11.2, initially detected in SCZ [261], has demonstrated the most robust 
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association with BD and has also been linked to an early age of onset for BD [262]. The 
chromosomal regions 1q21.1 and 3q29 have also been associated with BD, although these 
findings were below genome-wide significance [263]. Both the 16p11.2 and 3q29 regions are 
also implicated in SCZ, ASD, and intellectual disability [264]. One study has suggested that 
the contribution of rare CNVs to BD may be limited to cases of schizoaffective bipolar type 
disorder (SZA) [265].  

Overall, the burden of CNVs has not been found to be substantially different between BD 
patients and controls. However, when stratified by subtype, an increased risk from CNVs was 
observed for SZA but not for other BD subtypes. This aligns with stronger evidence for CNV 
associations in SCZ and SZA compared to other BD subtypes [266]. These findings highlight 
a shared genetic architecture between BD and other psychiatric or neurodevelopmental 
disorders that extends beyond common variants, while also suggesting potential differential 
mechanisms underlying each condition. The comparatively reduced CNV burden in BD might 
be related to cognitive function, as CNVs identified in SCZ have been associated with cognitive 
dysfunction [265]. However, it is possible that smaller CNVs (less than approximately 30 
kilobytes (kb) in size) are associated with BD but are more difficult to detect with current 
technologies [58]. 

De Novo Variants 

Evidence suggests a potential impact of rare genetic variants, particularly de novo mutations 
(DNMs), on the genetic architecture of BD. Indeed, studies have identified de novo CNVs in 
individuals with BD, highlighting the role of these mutations. For instance, the first trio-based 
exome sequencing study in BD identified 71 de novo point mutations and one de novo copy-
number mutation, many of which were predicted to be loss-of-function or protein-altering 
[267]. Certain BD subtypes, such as early-onset BD, exhibit a higher frequency of CNVs, 
including de novo ones [263], emphasizing the importance of these genetic variations in 
stratified risk assessment. Two studies specifically indicate that de novo CNVs contribute to 
the likelihood of early-age BD development [268]. A total of 107 de novo variants affecting 
protein-coding genes have been identified, showing enrichment in genes associated with the 
post-synaptic density and in phosphoinositide-linked pathways, which may be relevant to 
lithium’s therapeutic effects [269]. The occurrence of de novo point mutations has been found 
to correlate with paternal age [270], and older fathers have an increased risk of having offspring 
with BD [271-72]. This finding aligns with similar associations observed in SCZ and ASD, 
reinforcing the relevance of paternal age to genetic risk for psychiatric disorders [273]. 

 
Single Nucleotide Variants 

Rare Single Nucleotide Variants (SNVs) and small insertions/deletions (indels) are typically 
not captured by Genome-Wide Association Study (GWAS) Single Nucleotide Polymorphism 
(SNP) arrays. However, the advent of next-generation sequencing (NGS) technology has 
enabled several studies to identify rare, transmitted risk variants in both living BD patients and 
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post-mortem brain tissue [259, 274]. Large-scale WES efforts, such as the BipEx study which 
identified AKAP11 as a risk gene [161] (as detailed above), have markedly advanced the 
understanding of rare coding variants in BD. A study by Ament et al. (2015) [274] involving 
the sequencing of 201 individual genomes, found that risk variants were predominantly 
noncoding with predicted regulatory effects. This research implicated rare variant associations 
with several genes (including ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, 
and NGF) that have also been associated with BD in common variant studies. These variants 
were found to be enriched in neuronal excitability pathways, such as those involving GABA 
and voltage-gated calcium channels. Indeed, SNV risk in BD families and case-control cohorts 
has been most strongly associated with risk variants in these ion channel receptor subunits.  

RNA sequencing (RNA-seq) of post-mortem BD brain tissue has been used as a method to 
identify relevant BD-specific gene expression changes compared to those in ASD or SCZ 
[275]. Such brain transcriptome analyses using RNA-seq have detected potential dysfunctions 
in neuroplasticity, circadian rhythms, and GTPase binding, all of which are processes 
implicated in BD. However, sample sizes in next generation sequencing (NGS) studies remain 
relatively low, and collaborative efforts are likely needed to uncover variants that current 
studies lack the statistical power to detect [58]. Furthermore, recent evidence suggests a 
fundamental limitation in the use of postmortem tissue, as a study on cell type-specific 
transcriptional differences identified discrepancies between living and postmortem human 
brain tissue. Specifically, cell type proportion estimation was found to be more accurate in 
samples from living individuals compared to postmortem samples [276]. 

Genetic Interactions 

Additional components of the still unaccounted for missing variance explained in BD may 
reside in genetic effects arising from gene-environment interactions (GxE) or gene-gene 
interactions (epistasis). For example, one study found that an interplay between a history of 
childhood trauma and reduced BDNF mRNA levels was associated with psychosis risk, 
potentially by impacting neurogenesis and leading to lower hippocampal volumes [277]. The 
COMT (Val158Met) polymorphism (rs4680) affects a catecholamine-degrading enzyme 
(which metabolises neurotransmitters such as dopamine), particularly in the prefrontal cortex 
(PFC). The Val allele leads to higher enzyme activity (faster dopamine breakdown) compared 
to the Met allele. Stressful life events (SLEs) are known to impact these same catecholamine 
systems. Therefore, it is plausible that an individual’s COMT genotype could moderate their 
response to stress, thereby influencing BD susceptibility or its course [278]. A subsequent 
investigation in a sample of patients with First Episode Psychosis (FEP) found that the COMT 
(Val158Val) genotype moderated the association between severe SLEs and depressive 
symptoms, with Val/Val patients experiencing SLEs reporting the highest levels of depressive 
symptoms. It is important to note that FEP cohorts can include individuals who later develop 
BD; however, this study was not conducted in an exclusively BD-diagnosed cohort and 
specifically examined depressive symptoms within the FEP context [279]. 
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1.9 Genome-Wide Association Studies  

Genome-Wide Association Studies (GWAS) compares unrelated individual genomes with and 
without disease, to identify phenotype-associated genetic markers. Variation discovery helps 
identify potentially disease-contributing genes and pathways. Understanding these provides 
insights into underlying disease biological processes. GWAS feasibility improved through 
technological advancements, for example, the HapMap Project [280], and the 1000 Genomes 
Project Consortium [281]. Cost-effective technologies also facilitated 500,000 to 2 million 
SNP genotyping. Large-scale collaborations have emphasised combining cohort sample sizes 
in GWAS meta-analyses to boost statistical power for detecting small common variant effect 
sizes. 

 
Early GWAS Insights 

Early research in BD genetics centred on family and twin studies to identify genetic factors. 
While linkage and candidate gene studies hinted at chromosomal regions and specific genes, 
their outcomes were often not definitive, even with enlarged sample sizes. GWAS allow for 
the examination of genetic variant associations in much larger groups of BD cases and healthy 
controls, without requiring harder to recruit related individuals. In the past decade, many BD-
associated loci have been reported and subsequently confirmed in meta-analyses, thereby 
consolidating our understanding of BD aetiology (for an overview of BD GWAS findings see 
9.1). 

In 2008, Baum et al. conducted the first BD GWAS (550,000 single nucleotide polymorphisms 
[SNPs]), uncovering a SNP association in the diacylglycerol kinase eta (DGKH) gene (critical 
for lithium-sensitive PI pathway) [282]. Although the BD risk effect was modest, suggesting 
BD complex polygenic disorder, follow-ups confirmed DGKH association in Han-Chinese 
[283] samples, and a nominal Japanese association [284]. To minimise type 1 errors, as millions 
of SNPs are tested, stringent multiple testing thresholds are used (typically a Bonferroni 
correction of P < 5.0x10-8).  

Cichon et al. (2011) proposed the neurocan (NCAN) gene as a potential BD susceptibility 
candidate [285]. NCAN is implicated in other mood disorders, suggesting overlapping genetic 
risk with ADHD, depression [286], and dyslexia [287]. The gene crucial for cellular 
adhesion/migration, is associated with brain volume and structure measures. The NCAN risk 
allele is associated with BD, depression, and SCZ patient mania. Ncan-deficient mice display 
hyperactive behaviour and impaired inhibition (a potential link to BD-reported cognitive 
deficits) [288]. NCAN loss could lead to cognitive impairments, and reduced brain volumes. 
BD brain imaging has indicated decreased cortical thickness, lower subcortical volume, and 
disrupted white matter integrity (described above).  

In a further meta-analysis, Ferreria et al. (2008) evaluated the WTCCC, STEP-UCL, and ED-
DUB-STEP2 cohorts. They identified strong associations with Ankyrin-G (ANK3) gene and L-
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type voltage-gated calcium channel α-1C subunit gene (CACNA1C), both involved in ion 
channel functionality [252]. Ankyrin-G influences cell motility, activation, proliferation, and 
modulates neuronal sodium channel activity, which suggests ion channel dysfunction 
involvement in BD pathogenesis. These genes and ion channel dysfunction have subsequently 
been shown as robust BD associations, e.g., most recently in O’Connell et al. (2025) [55]. Not 
all associations replicated independently (e.g., suggested chromosome 16q12 locus, produced 
mixed results across samples). In the WTCCC study, locus in gene-rich high disequilibrium 
chromosome 16q12 region associated with BD [289]. This was not replicated in an independent 
reference study; other studies have found 16p12 linkage signal evidence in BD [290] and in 
psychosis [291]. Among the findings from the Wellcome Trust Case Control Consortium 
(WTCCC) in 2009 was an association with the potassium voltage-gated channel subfamily C 
member 2 (KCNC2) gene, which encodes the Kv3.2 subunit, although this association was 
below genome-wide significance [289]. This finding potentially implicated alterations in 
neuronal excitability in the mood episodes characteristic of BD. Support also existed for the 
previously identified involvement of the GABA and glutamate systems [292]. For example, 
gamma-aminobutyric acid type A receptor subunit beta-1 (GABRB1), which encodes the 
GABAAR β1 subunit, showed a high-ranking association in the WTCCC data, along with 
SYN3 (synapsin III) [289]. These findings were strongly associated with SZA in a follow-up 
study by Craddock et al. (2010), which also included additional associations with GABAAR α4, 
α5, and β3 subunits [293]. The WTCCC study also identified a genetic association with BD in 
the region of gene GRM7 (glutamate metabotropic receptor 7) [289]. The mGlu7 receptor, 
encoded by GRM7, is a presynaptic G-protein coupled receptor (GPCR) that modulates 
neurotransmission. Mutations or reduced expression of this gene have been associated with 
neurodevelopmental disorders and were previously linked to BD [294] and BD-related 
personality traits [295]. The potential role of this gene received additional support from 
findings showing a BD association with a rare CNV at the GRM7 locus [296]. Following these 
initial discoveries, numerous GWAS have confirmed early findings and highlighted novel loci 
associated with BD.  

Advances with Larger GWAS and Meta-Analyses 

As GWAS sample sizes began to exceed 10,000 participants with BD, the number of genome-
wide discoveries for BD increased substantially. Similar to many common traits, a large 
proportion of these variants are in non-coding regions of the genome and often have small 
effect sizes, with odds ratios (ORs) typically ranging from 1.1 to 1.3. The highest standard for 
validating these genetic associations is the replication of findings in independent cohorts. 
Several genes have been consistently associated with BD across multiple studies, including 
ANK3, NCAN, CACNA1C, fatty acid desaturase 2 (FADS2), mitotic arrest deficient 1 like 1 
(MAD1L1), and tetratricopeptide repeat and ankyrin repeat containing 1 (TRANK1). However, 
limitations in sample size can still hinder the detection of variants with weaker effects. 
Collaborative meta-analyses are essential for increasing statistical power in genetic association 
studies. Nevertheless, they can introduce challenges, such as heterogeneity between study 
cohorts, which may impact the overall power to detect associations. This is compounded by 
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the inherent heterogeneity of the main BD phenotype itself. A more comprehensive list of key 
genes implicated in bipolar disorder can be found in Table 68, Appendix 9.2. 

Advances in GWAS and Insights from the Psychiatric Genomics Consortium (PGC) 

Several large-scale Genome-Wide Association Studies (GWAS) for bipolar disorder (BD) have 
been conducted by the Psychiatric Genomics Consortium (PGC) since 2011. The PGC’s 
Bipolar Disorder Working Group (BDWG) has been instrumental in leading many of the 
genetic discoveries in the field. An early PGC-led GWAS (Sklar et al. 2011), which included 
11,974 BD cases and 51,792 controls, reaffirmed the previously observed association between 
BD and the CACNA1C gene. Furthermore, a combined GWAS of BD and Schizophrenia (SCZ) 
uncovered strong SNP associations in the CACNA1C as well as in NIMA related kinase 4 
(NEK4)-inter-alpha-trypsin inhibitor heavy chain 1/3/4 (ITIH1/3/4) region [297]. A subsequent 
BD GWAS conducted by Stahl et al. (2019) analysed SNP data from 29,764 BD patients and 
169,118 controls, identifying 30 genome-wide loci associations [8]. This study again 
highlighted the roles of ion channels, neurotransmitter transporters, and synaptic components 
in the aetiology of BD. The strong association with CACNA1C was replicated, as were 
associations with NCAN and ANK3. Notably, fatty acid desaturase 1 (FADS1) and adenylate 
cyclase 2 (ADCY2) were among the newly associated genes. FADS1 is associated with 
diacylglycerol lipase alpha (DAGLA), an enzyme crucial in the production of the 
endocannabinoid 2-arachidonoylglycerol (2-AG), which is involved in lithium’s mechanism of 
action, retrograde synaptic signalling, axonal growth, and adult neurogenesis. The ADCY2 gene 
had also been previously implicated as a BD risk gene (Mühleisen et al. 2014 [298]). However, 
the strongest association at the TRANK1 locus reported in some earlier studies was not 
replicated in all follow-ups at that time.  

A more recent GWAS (Mullins et al. 2021 [256]), encompassing 41,917 individuals with BD 
and 371,549 controls from more than 50 clinical cohorts, identified 64 independent loci [41]. 
This study successfully replicated 28 out of the 30 loci reported by Stahl et al., including the 
TRANK1 association. The top association in the Mullins et al. study was also at the TRANK1 
locus on chromosome 3. Expression quantitative trait loci (eQTL) analyses suggested stronger, 
correlated expression regulation of doublecortin like kinase 3 (DCLK3), located upstream of 
TRANK1. BD was also associated with decreased expression of the furin paired basic amino 
acid cleaving enzyme (FURIN) gene, which has been implicated in neurodevelopmental 
disorders and in a 2019 SCZ GWAS [299]. The study further found that BD associations were 
enriched in gene sets related to neuronal compartments and synaptic signalling. BD risk alleles 
were particularly enriched in genes expressed in neurons and known to be targets for 
antipsychotics, calcium channel blockers (CCBs), and antiepileptic medications [256]. 

 
Investigating Homogeneous Subgroups in BD Genetics 

The analysis of BD more homogenous subgroups within GWAS can enhance statistical power, 
especially for identifying genetic variants with smaller effects. This approach reduces 
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heterogeneity that enables more precise genetic analyses [300]. The largest genetic study of 
BD to date, conducted by O’Connell et al. (2025), involved a multi-ancestry meta-analysis of 
GWAS data from 79 cohorts, comprising 158,036 individuals with BD and 2,796,499 controls 
[55]. In this study, cases were stratified by ascertainment type (clinical, community, or self-
report) and by ancestry (detailed in Chapter 6). This approach led to the discovery of 298 
genome-wide loci, representing a fourfold increase in known associations, with 267 of these 
loci being novel to BD. The analyses highlighted the importance of specific cell types, notably 
GABAergic interneurons and medium spiny neurons, in the pathophysiology of BD. Common 
variants associated with BD were found to be particularly enriched in synaptic regions, as well 
as in prefrontal cortex and hippocampal interneurons, and hippocampal pyramidal neurons. 
Gene and gene set analyses indicated enrichments for targets of anticonvulsant, antipsychotic, 
and anxiolytic medications. The genetic architecture of BD was observed to vary among the 
ascertainment-stratified subtypes. This suggests that creating more homogeneous subgroups 
can help unravel the genetic basis of heterogeneous phenotypes, a crucial consideration for 
future BD genetic studies (evidenced in Chapter 5). 

BD Pathway, Tissue, and Cell-type Enrichment Analyses 

Secondary post-GWAS analyses are crucial for assessing functional enrichment in specific 
tissues or cell types, fine-mapping loci to identify credible causal variants, and potentially 
applying findings to risk prediction through individualised Polygenic Risk Scores (PRS). 
Genetic studies in BD have successfully identified specific biological pathways implicated in 
the disorder, including the regulation of insulin secretion, retrograde endocannabinoid 
signalling, glutamate receptor activity, and calcium channel activity. 

Gene and Gene Set Pathway Analysis 

Increasing sample sizes in BD GWAS have enabled robust pathway enrichment analyses, 
leading to numerous findings that pinpoint biological pathways associated with vulnerability 
to BD. Calcium signalling has been repeatedly implicated in BD (detailed above), and 
intracellular calcium signalling has been hypothesised as a key mechanism of lithium’s 
therapeutic action [301-302]. Calcium is a ubiquitous signalling molecule that modulates 
critical neuronal processes such as neurotransmitter release, synaptic plasticity, and neurite 
outgrowth [303].  

Several studies have also implicated CACNA1C in other psychiatric disorders, including SCZ 
and MDD. The PGC’s Sklar et al. pathway analysis, which aimed to detect Gene Ontology 
(GO) term enrichment among the top 34 independent BD GWAS SNPs, identified an enriched 
pathway involving calcium channel subunits. This included three L-type calcium channel 
family members: calcium voltage-gated channel auxiliary subunits CACNA1C, CACNA1D, 
and CACNB3 [297]. Research suggests that L-type calcium channels influence neuronal firing 
and regulate neuronal excitability, potentially contributing to the mood instability characteristic 
of BD [304].  
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Subsequently, Stahl et al. (2019) tested for enrichment in curated biological pathways from 
multiple sources, using competitive gene-set tests performed with MAGMA (Multi-marker 
Analysis of GenoMic Annotation) on GWAS data [305]. These analyses controlled for biases 
related to SNP and gene density, as well as gene size. Their findings reaffirmed the earlier 
associations of CACNA1C and other voltage-gated calcium channel genes with BD. Moreover, 
this work highlighted ion transport, neurotransmitter receptors, insulin secretion, and 
endocannabinoid signalling as containing potential novel therapeutic targets. The 
endocannabinoid system had previously been implicated in the pathophysiology of SCZ [306-
308]. The gene set enrichment analysis by O’Connell et al. (2025) [55] identified six gene sets 
related to synapse function and transcription factor activity that were associated with brain gene 
expression and with early-to-mid-prenatal development. Consistent with a recent SCZ study 
suggesting that common and rare variants can converge on the same genes and biological 
pathways [309], O’Connell et al. (2025) found that 71 genes mapped to putatively causal SNPs 
were enriched for ultra-rare (defined as five or fewer minor allele counts) damaging missense 
or protein-truncating variants (PTVs) reported in the BipEx [310] or SCHEMA [309] datasets. 

Fine-mapping Genes and Pathways 

GWAS fine-mapping aims to identify the specific candidate genes within broader genomic 
regions that are most likely to be causally associated with BD. Analysing these gene 
associations seeks to enhance the understanding of genetic regulatory mechanisms implicated 
in BD. O’Connell et al. utilised transcriptome-wide association studies (TWAS) [311-12]. 
which explore correlations between gene-expression data and their associations with GWAS 
SNPs (using a Bonferroni-corrected P < .05). This approach, combined with six other fine-
mapping strategies, confirmed the roles of 36 pathobiology-implicated genes in BD. The SP4 
(Sp4 transcription factor) gene was highlighted by six of these analyses. SP4 is known to have 
regulatory influences on GABAAR subunit genes and astrocytes. Among the 36 studied genes, 
eight were mapped to presynaptic or postsynaptic compartments, with CACNA1B being 
identified solely in presynaptic compartments. 

Single-cell Gene Expression Insights 

Recent advancements in single-cell gene expression analysis have unveiled specific gene 
expression patterns that suggest potential neuronal dysfunctions associated with BD. Mullins 
et al. (2021) [256] analysed single-cell RNA-sequencing (scRNA-seq) data from adult human 
and murine brain tissue. They discovered enrichment for genes associated with both excitatory 
and inhibitory neurons, particularly within the cortex and specifically in the hippocampus. 
These findings indicated crucial activities in hippocampal pyramidal neurons and interneurons, 
as well as in the prefrontal cortex, with cell-type specificity being consistently observed across 
their analyses. Similarly, O’Connell et al. (2025) [55] implicated specific cell types, especially 
GABAergic interneurons and medium spiny neurons, in BD pathophysiology. Enrichment was 
also noted in dopamine-associated and calcium-associated biological processes, which are 
more often strongly associated with BD. 
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Other smaller studies using single-cell RNA-sequencing (scRNA-seq) data have allowed for a 
deeper examination of cell-specific transcriptional characteristics in key brain regions such as 
the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC). 
Disruptions in specific classes of excitatory and inhibitory neurons were found to correlate with 
BD development. BD dysregulation was associated with two inhibitory cell clusters, 
specifically involving vasoactive intestinal peptide (VIP) GABAergic interneurons. Gene 
expression was dysregulated in two excitatory and inhibitory cell clusters, which included VIP 
GABAergic inhibitory interneurons [313]. Earlier studies had already suggested that VIP cells, 
which release GABA and inhibit other neurons, may play a role in BD [314]. 

RNA-seq analysis of postmortem DLPFC tissue has demonstrated differentially expressed 
(DE) genes and transcripts across various psychiatric disorders. These findings have implicated 
widespread dysregulation of biological processes, including neuroplasticity, circadian rhythms, 
and GTPase binding, in psychiatric illnesses [315].  

It is likely that both neurons and glial cells are affected in BD. Some studies have suggested a 
potential decrease in cortical interneuron density in BD [316]. However, how these neurons 
and glial cells are altered structurally and functionally remains largely unknown. Post-mortem 
studies also suggest that a stoichiometric imbalance in gene expression, where the relative 
expression levels of certain genes are imbalanced, might be a key feature in BD development 
[317]. Stahl et al. (2019) [255] found that BD-associated genomic signals were enriched in 
neurons and oligodendrocyte precursor cells (OPCs). Analysis of transcriptomes from post-
mortem BD brain samples of the sgACC and amygdala, when compared to neurotypical 
controls, suggested transcriptional changes in genes associated with the immune response, 
inflammation, and the post-synaptic membrane. These data converged on sodium voltage-gated 
channel alpha subunit 2) (SCN2A) and glutamate ionotropic receptor NMDA type subunit 2A 
(GRIN2A). Enrichment for neuroimmune and synaptic pathway genes, as well as microglia-
specific genes, was found to be downregulated in BD [318]. Microglia downregulation has also 
been reported in PsychENCODE BD brain samples [319].  

The exact role of glial-neuronal interactions in BD requires further investigation. Some studies 
have proposed an association between neuroinflammation and BD pathophysiology, possibly 
through processes that modulate brain structure and support cognitive and behavioural 
functioning. These processes likely involve synaptic plasticity, neurotransmission, 
neurogenesis, neuronal survival, and apoptosis [320].  

The multiplicity of pathways implicated in BD pathophysiology may reflect the high genetic 
heterogeneity among individuals with BD. BD subtypes and other homogeneous subgroups 
have demonstrated some distinct familial patterns. Delineating BD cases into more refined 
subsets could enhance the power of discovery and help identify differential functional 
pathways that are currently masked by the heterogeneity of the main BD phenotype. Divergent 
genetic architectures for different BD subtypes have been reported, suggesting that increased 
genomic insights can be gained from stratifying cases by BD subtype or other homogeneous 
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subgroups, such as those defined by DSM-5 course specifiers, which may reflect differences 
in individual and familial trajectories.  

 

1.10  BD Subtypes 
 
Genetic Distinctions and Overlaps 

GWAS specific to BD subtypes have been conducted, with secondary analyses often focusing 
on three prominent subtypes: BD1, BD2 and SZA. While clinical divergence exists between 
these BD subtypes, genetic analyses provide evidence of substantial overlap, particularly 
between BD1 and BD2 (as illustrated in Figure 7). However, when stratified by subtype, unique 
mechanisms and overlaps between the subtypes and other psychiatric disorders, previously 
obscured by analyses of the collective BD phenotype, become clearer.  

Stahl et al. (2019) [255] identified 14 loci specific to BD1. In contrast, smaller analyses for 
BD2 and SZA in that study yielded no loci exceeding the threshold for genome-wide 
significance (P < 5.0x10-8). SNP-based heritability (h²snp) (estimate of proportion of a trait’s 
variance explained in a single sample by looking at a specific, common set of genetic markers 
(SNPs) across the entire genome) was found to differ across subtypes: BD1 and SZA showed 
similarly high heritability, while BD2 had a lower SNP-heritability (BD1 h²snp = .25, s.e.m. = 
.014; BD2 h²snp = .11, s.e.m. = .028; SZA h²snp = .25, s.e.m. = .10). Linkage Disequilibrium 
Score Regression (LDSC), used for estimating h²snp and genetic correlations between traits, 
revealed divergent genetic correlations for the subtypes. A stronger genetic correlation was 
evident between SCZ and BD1 (rG=.71, s.e.m. = .025) compared to SCZ and BD2 (rG=.51, 
s.e.m. = .072). Conversely, a stronger genetic relationship was found between MDD and BD2 
(rG=.69, s.e.m. = .093) versus MDD and BD1 (rG=.30, s.e.m. = .028).  

Polygenic Risk Scores (PRS) have increasingly facilitated the genetic risk stratification of BD 
subtypes. PRS are a statistical estimate of an individual’s genetic predisposition to develop a 
complex disease by summing up the effects of thousands of common genetic variants across 
their genome. Stahl et al. (2019) used PRS analyses to differentiate BD subtypes and psychotic 
cases based on their genetic burden for SCZ and MDD (as shown in Figure 8). PRS for SCZ 
risk alleles were higher in BD1 cases than in BD2 cases, and higher in psychotic cases versus 
non-psychotic cases. Conversely, PRS for MDD risk alleles were elevated in BD2 cases 
compared to BD1 cases. This suggests that MDD risk alleles contribute more to case-control 
differences in BD2, while SCZ risk alleles are more predictive of variance in BD1 and 
psychosis. 

Mullins et al. (2021) [256] also conducted stratified GWAS analyses for BD1 and BD2 
separately, which increased the discovery of BD1-specific loci to 44, with 13 of these being 
unique to BD1. The strongest signal among these 13 unique BD1 loci was in a region associated 
with the HTR6 (5-hydroxytryptamine receptor 6) gene. This gene encodes a G-protein coupled 
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receptor (GPCR) that is a target for various antidepressant and antipsychotic medications. For 
BD2, a single association was identified with the slit guidance ligand 3 (SLIT3) gene, which is 
involved in axon guidance, cell migration, proliferation, and differentiation. Genetic 
correlation analyses indicated that BD1 and BD2 are overlapping yet partially distinct 
phenotypes, with a correlation between them ranging from .85 to .88 (s.e.=.05), as illustrated 
in Figure 7.  

O’Connell et al. (2025) [55] further explored the genetic architecture of BD subtypes. They 
identified heterogeneity related to ascertainment type among 25,060 BD1 cases and 6,781 BD2 
cases, and stratified their analyses by ascertainment source (clinical, community, or self-
report), as shown in Figure 9 (and detailed in Chapter 6). A substantial proportion of BD1 cases 
were clinically or community-reported, whereas self-reported cases had a higher representation 
of BD2. This observation was supported by genetic correlations with other psychiatric 
disorders: Schizophrenia (SCZ) showed a stronger correlation with BD1, while self-reported 
BD indicated higher genetic correlations with major depressive disorder (MDD), anxiety-
related obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder 
(ADHD), and borderline personality disorder (BPD). Divergent patterns for BD1 and BD2 had 
been previously characterized, with more genetic overlaps observed between BD2 and other 
psychiatric conditions compared to BD1 [321]. Specifically, for BD1, the genetic correlations 
were: MDD (.34, s.e.m. = .023), anxiety-related OCD (.29, s.e.m. = .067), and ADHD (.14, 
s.e.m. = .032). This contrasts with the higher genetic correlations found for BD2 with these 
conditions: MDD (.65, s.e.m. = .048), anxiety-related OCD (.50, s.e.m. = .113), and ADHD 
(.42, s.e.m. = .049) [55]. Figure 9 illustrates this same pattern of association signals. This 
discrepancy could indicate the overdiagnosis of BD in outpatient settings, particularly among 
individuals with comorbidities [322-23], which may confound the observed differences in 
subtype genetic architecture [324]. Despite these subtype differences, the inclusion of 
additional multi-ancestry data risk alleles improved both the discovery of subtype-specific 
associations and polygenic prediction for these subtypes [55] (as detailed in Chapter 6). 
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Figure 8 PRS of MDD or SCZ in BD1 and BD2.  
Adapted from Stahl et al. (2019), Genome-wide association study identifies 30 loci associated with 
bipolar disorder [255]. Nagelkerke’s R-squared (NagR2) for BD1 versus BD2 case status association 
with PRS, stratified by source GWAS P-value threshold (pT) across disorder (SCZ: schizophrenia, 
MDD: Major Depressive Disorder). Bars represent NagR2 value (subtype variance [BD1 vs BD2] 
explained by PRS at each threshold, within SCZ or MDD group). This illustrates PRS BD1 and BD2 
subtype specific polygenic signals across varying PRS inclusion thresholds (stringency), separately for 
individuals using SCZ or MDD GWAS (colour) as variant discovery (SNPs) set. Bar length indicates 
association strength (NagR2). 
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Figure 9 Genetic Correlations of BD1 and BD2 by Ascertainment and Related Traits. 
This is adapted from O’Connell, Koromina, van der Veen et al. (2025), Genomics Yields Biological and 
Phenotypic Insights into Bipolar Disorder [55]. Genetic correlations (rG) and standard errors (s.e.) 
between primary BD phenotype (Trait1, y-axis) and related disorders (Trait2, bar colour). Horizontal 
bars: estimated positive rG. Black error bars: ±1 SE around the rG estimate. This illustrates shared and 
differential genetic burdens in BD subtypes. 
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1.11  Polygenic Risk Scores 

BD’s high pleiotropy and polygenicity contribute to substantial heterogeneity, which 
complicates the identification of genetic causes through GWAS that focus on the primary BD 
phenotype. Besides examining genetic correlations, Polygenic Risk Scores (PRS) are utilised 
to evaluate an individual’s genetic burden associated with a specific trait and to assess overlaps 
in genetic burden with other relevant traits. PRS can help reduce heterogeneity by classifying 
individuals based on their genetic burden signatures relative to numerous psychiatric 
conditions and human diseases. Although no single PRS method currently accounts for a 
substantial portion of the variation in the main BD subtypes, PRS for BD and other related 
traits are employed in research to gauge genetic burdens and explore their clinical implications, 
such as in illness onset and progression (as detailed in Chapter 3 and 4). While PRS have 
demonstrated reliable but modest predictive power across complex phenotypes, further 
diversification of these methods is needed. This is required to address issues related to the 
missing variance explained, including the biases introduced by the predominance of European 
ancestry, sole focus on common variants (SNPs) and between-cohort heterogeneity in large 
consortia genetic studies. However, it remains uncertain whether BD PRS will ever become 
robust enough for future clinical classifications, such as enhancing diagnostic procedures or 
potentially providing more personalised treatment approaches. 

 



 68 

 

Figure 10 P-value thresholds approach.  
pT+clump approach in PRSice software adapted from Euesden et al. (2015), Polygenic Risk Score 
Software [325]. PRS is estimated using a two-step redundancy minimizing process: 1. Clumping selects 
independent SNPs, and 2. P-value filtering retains most significant SNPs for PRS calculation. 
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Figure 11 PRS-CS Continuous Shrinkage Method.  
Adapted from Ge et al. (2019), Polygenic Prediction via Bayesian Regression and Continuous 
Shrinkage Priors [326]. This method uses a Bayesian regression framework with continuous shrinkage 
priors applied to SNP effect sizes, learned directly from the data, to improve risk prediction accuracy 
by better handling LD structure. 
 
 
Polygenic Risk Scoring Methods 

PRS methods are essential for understanding the genetic underpinnings of complex traits such 
as BD. GWAS have identified numerous variants associated with BD; however, these often 
have small individual effects and collectively represent only a portion of the overall heritability. 
Yang et al. (2010) illustrated that most of the heritability for traits such as height can be 
explained by aggregating the effects of thousands of SNPs [327]. The classic PRS calculation 
involves summing an individual’s risk alleles, with each allele (SNP) weighted by its effect 
size on the phenotype as determined by a GWAS. Large-scale GWAS from consortia such as 
the Psychiatric Genomics Consortium (PGC) offer robust discovery datasets due to their size, 
leading to more accurate individual scores. Typically, common biallelic alleles, defined by a 
minor allele frequency (MAF) greater than 1%, are considered in PRS construction, although 
variants with lower MAF, which are rarer, have been incorporated in more recent PRS studies 
[257, 263]. 



 70 

Different PRS methods are employed to select and weight genetic variants from GWAS, 
addressing the challenges inherent in robust polygenic score analysis. A common issue with 
some PRS approaches is the potential for overfitting, particularly when variant selection is 
based solely on P-value thresholds. Shrinkage methods, which can reduce genetic effect 
estimates, are used to enhance model generalisability.  

When comparing PRS methodologies, several have been analysed for their predictive utility. 
These include traditional methods including P-value thresholding and clumping (pT+clump) 
(Figure 10), as well as more modern approaches such as Polygenic Risk Score - Continuous 
Shrinkage (PRS-CS)-auto [326] (Figure 11), which utilises continuous shrinkage (CS) priors. 
A recent study suggested that methods such as PRS-CS-auto can outperform classic pT+clump 
techniques in terms of predictive accuracy [328]. Chapter 4 of this thesis replicated this 
improvement using PRS-CS-auto, which was subsequently utilised in the work for Chapters 3-
6. Unlike methods such as pT+clump (e.g., as implemented in PRSice [325], PRS-CS-auto 
utilizes a Bayesian Regression Framework. This framework incorporates a continuous 
shrinkage (CS) prior and facilitates automatic learning of the global shrinkage parameter (phi). 
A key difference is that PRS-CS-auto does not rely on fixed P-value thresholds for SNP 
selection. Instead, it estimates the posterior effect size for each SNP simultaneously, with most 
of these effect sizes being shrunk towards zero. The framework’s use of a CS prior for SNPs 
allows for improved handling of linkage disequilibrium (LD) and SNP effect sizes. This, in 
turn, enhances local LD modelling and improves the prediction of genetic liability for complex 
traits. To calculate a comprehensive PRS for a target cohort, PRS-CS-auto requires PLINK 2.0 
[325] to weight SNPs by their respective effect sizes to estimate individual’s risk scores. 

 
Polygenic Risk Burden in BD 

A higher bipolar disorder (BD) Polygenic Risk Score (PRS) is associated with an increased 
risk of BD in offspring (Hiser and Koenigs 2017 [329]). It has also been associated with risks 
for other traits, including other psychiatric disorders, variations in brain structures, differences 
in cognitive abilities, and various clinical outcomes. BD PRS reflects a genetic predisposition 
that is crucial in the familial transmission of BD. These scores are typically higher in parents 
with BD and their offspring compared to unaffected individuals, even beyond the consideration 
of parental diagnosis [330]. Notably, in a recent PRS analysis of new-onset cases among high-
risk offspring, BD-PRS predicted person-level BD, particularly in the offspring of parents with 
an earlier age of onset who also presented with anxiety (ANX) or depression symptoms [331]. 
An increased BD PRS has been associated with increased odds of developing psychotic 
symptoms [332]. Furthermore, a higher BD PRS correlates with an increased likelihood of 
developing both BD1 and BD2, with a particularly strong association for BD1 [55, 255-256] 
and could be a function of symptom severity [324]. 

While BD2 was previously considered a milder version of BD1, suggested by evidence of 
lower BD genetic burden, recent research has challenged this notion, based on the evidence of 
potential increase cross-disorder burden. A comparison of clinical differences between BD1 
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and BD2 in multiplex families revealed a continuum of severity, where BD1 was associated 
with a higher BD PRS, which in turn predicts more severe manic and depressive symptoms 
[324]. Conversely, BD2 was found to be correlated with an increased genetic risk for 
comorbidities, potentially predisposing individuals to chronic illness. The burden of 
depression, ADHD, and anxiety is reported to be greater in individuals with BD2 than in those 
with BD1 [321].  

PRS for BD and other traits have been utilised to help explain common comorbidities observed 
in BD. A higher BD PRS also predicts suicidal ideation in BD multiplex families. While a PRS 
for suicide has been associated with suicide itself [333], it is not always predictive of such 
outcomes [334]. Suicidality is understood to be influenced by a combination of genetic, 
environmental, and clinical factors. Suicide attempts in individuals with BD have been 
associated with a higher genetic liability for depression [335] and trauma-related outcomes 
[336]. PRS for ADHD [337], MDD, and ANX [334] have also been associated with suicidal 
behaviour.  

Research has also demonstrated an association between a higher BD polygenic burden and 
potential endophenotypes. For example, an association was recorded between a thinner 
ventromedial prefrontal cortex (vmPFC), a brain region critical for social and affective 
functioning (including emotional regulation, decision-making, and social recognition) and a 
BD diagnosis [329]. A higher BD PRS has also been associated with lower fractional 
anisotropy (FA), indicative of reduced widespread white matter integrity. It has been suggested 
that distinct bipolar subtypes may reflect varying degrees of disease expression, with an 
observed increase in white matter microstructure disruption from BD2 to BD1 [338]. 
Associations with brain structure changes are likely age-dependent and may be influenced by 
the number of mood episodes experienced and the neuro-progressive effects of medication. 
Ongoing research seeks to clarify the exact mechanisms and extent of these relationships. 
Notably, in a randomised trial examining brain structure changes in youth with BD, alterations 
in pretreatment neuroanatomic features were found to predict treatment outcomes, with these 
features later improving with treatment [339]. 

Comorbid Polygenic Burden in BD 

Investigations of multiplex BD families have shown a higher genetic burden for common SCZ 
and MDD variants in these families [239]. Patients with psychotic features experienced a 
higher genetic risk profile, as indicated by SCZ and BD PRS, which explained 9% and 2% of 
the variance in psychosis, respectively [340]. A genetic overlap is also apparent between BD 
and ADHD, though this overlap is less pronounced with other childhood psychopathologies 
[341]. Individuals with a childhood history of ADHD who later develop BD have shown 
increased ADHD genetic liability, an earlier onset of BD, and higher chances of comorbid 
ANX and SUD [336, 342-343]. An interplay between the genetic burdens for ADHD, SCZ, 
and BD has been observed to increase the risk for alcohol and nicotine dependence [344-347]. 
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Some studies suggest that BD may have a neurodevelopmental basis [348], with early signs 
likely preceding major mood episodes, a theory supported by twin studies [349]. Longitudinal 
research has also associated BD PRS with childhood conduct and oppositional defiant 
difficulties [113], while elevated ADHD and ANX PRS have been associated with a higher 
risk for rapid cycling BD [332, 350]. Individuals with rapid cycling BD typically experience 
an earlier onset of the disorder and have an increased suicide risk compared to those with non-
rapid cycling BD [68]. A transdiagnostic PRS approach has also shown promise in improving 
predictions of lithium response in BD patients [351], as heightened genetic liability for 
depression and SCZ correlates with poorer responses to lithium [352-353]. 

Clinical Dimensions 

Personality traits are often represented dimensionally, existing on continuous distributions 
rather than as distinct categories, which allows for a more nuanced understanding of individual 
differences. Similarly, there is increasing recognition of the dimensionality of BD symptoms. 
Twenty-four clinical variables related to BD have been stratified to demonstrate shared and 
differential genetic burdens between BD and SCZ. Psychosis showed a high polygenic risk 
from both BD and SCZ PRS, whereas mania was better predicted by BD PRS specifically 
[190]. This aligns with recent research suggesting that mania, depression, and psychosis can 
be considered distinct dimensions of bipolar disorder, each with potentially unique underlying 
causes and outcome patterns [354]. This recent study of BD patients found that MDD PRS was 
most strongly associated with the depression dimension, while BD PRS best predicted the 
mania dimension. The psychosis dimension, in turn, was most strongly associated with SCZ 
genetic burden (replicated in this thesis Chapter 3). Another transdiagnostic dimensional study 
reported that BD PRS was negatively associated with the depression dimension [355]. Genetic 
signatures for ADHD and ANX have also been implicated in BD pathophysiology, especially 
in rapid cycling BD, suggesting that this three-factor model (mania, depression, psychosis) 
should be extended to include these additional genetic burdens [351] (as evidenced in Chapter 
3). 

Beyond identifying individuals at higher risk for complex diseases, PRS offer the promise of 
clinical risk stratification, advancing personalised medicine, facilitating early intervention, and 
potentially informing therapeutic decisions. However this methodology has constraints. PRS 
do not consider environmental confounders. Environmental factors can interact with genetic 
predispositions, for example, by altering gene expression and impacting BD development, 
which in turn can alter the utility and interpretation of polygenic prediction. Epigenetic factors 
have been proposed to exert neurobiological consequences in BD, as well as in the context of 
childhood trauma, psychotic disorders, rapid cycling BD, and particularly ADHD [329, 350, 
356-358]. 
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Sex Differences 

Sex differences in BD are primarily observed at the phenotypic level, affecting symptoms, 
course, and outcomes, rather than at the genotypic level. These differences may stem from 
environmental influences or subtle genetic interactions that current studies may not fully 
capture. Sex differences exist in the presentation and progression of BD: females tend to 
experience more depressive episodes, mixed features, rapid cycling, and report higher rates of 
suicide attempts [359]. Males, on the other hand, often report mania more frequently and show 
a higher prevalence of SUD. Comorbid conditions such as thyroid disease, migraines, obesity, 
and ANX are more common in females.  

Despite these observable differences in symptoms, there is limited evidence to indicate that sex 
affects the response to mood stabiliser treatment [360]. The general response to lithium does 
not appear to be sex-dependent but rather may be in part driven by individual differences in 
transdiagnostic genetic burdens, although some studies suggest that females might experience 
more adverse pharmaceutical side effects, including hypothyroidism [361]. Historically, BD 
has been categorized with psychiatric conditions that show no gender difference in lifetime 
prevalence within the general population, which contrasts with MDD’s consistent higher 
prevalence in females [359]. The first large-scale sex-stratified GWAS of BD indicated a 
largely overlapping genetic architecture between sexes, an overlap that was even more similar 
when focusing solely on BD1. This suggests that observable sex differences in BD might be 
predominantly associated with the risk architecture of BD2 and its overlap with MDD (Yang 
et al. 2023 [56]).  

A recent multivariate analysis of the genetic architecture of eight psychiatric disorders, which 
identified three primary factors (psychotic, neurodevelopmental, and internalizing), found that 
problematic alcohol use and PTSD loaded more on the internalising factor for females. 
Additionally, four phenotypes (educational attainment, insomnia, smoking, and deprivation) 
demonstrated some, albeit small, sex-differentiated associations with the psychotic factor 
[362]. Future research in BD aimed at exploring sex differences and specific subgroups will 
necessitate larger sample sizes to effectively investigate sex differences at the subphenotype 
level. Moreover, this underscores the importance of thoroughly understanding the complex 
interplay of genetic and environmental factors that potentially contribute to sex differences in 
BD. 

Predictive Utility of BD PRS 

While PRS could enhance early detection and risk stratification for BD, their predictive power 
is presently limited and insufficient for routine clinical application. Integrating clinical data 
with PRS can boost predictive accuracy, especially in specific populations, such as the 
offspring of patients with early-onset mood disorders (including anxiety and depression) [331], 
or BD1 cases with psychosis (evidenced in this thesis Chapter 4).  
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Challenges remain in estimating the broad-sense heritability of the BD phenotype due to the 
complexity of genetic interactions. Most PRS models rely on narrow-sense heritability, which 
is the proportion of variance attributable only to additive variant effects and are further limited 
to variants that are high-quality genotyped or well-imputed, leading to only incremental gains 
in predictive utility. The performance of PRS derived from large multi-ancestry GWAS has 
explained only approximately 9% of the phenotypic variance in European cohorts. Individuals 
in the top quintile (20%) for BD risk, as determined by these PRS, had an odds ratio (OR) of 
7.06 (95% CI = 3.9-10.4) for a BD diagnosis (detailed in Chapter 6). Moreover, the ability of 
BD PRS to explain phenotypic variance in European cohorts is still relatively low; however, 
accuracy is expected to increase with the inclusion of larger samples from non-European 
ancestries to address current disparities.  

Chapter 5 PRS results were competitive with, and for several BD subphenotypes, exceed the 
results reported in several, recent, larger-scale PGC studies [256, 55] for a broadly defined BD 
phenotype. This suggests that the subphenotypic approach can enhance predictive power by 
leveraging more specific genetic signals, even when individual cohort sample sizes for 
subphenotypes might be smaller.  

Ongoing research (as detailed in Chapters 1 to 7) indicates that BD shares both unique and 
overlapping genetic mechanisms with multiple disorders. Transitioning towards diagnoses 
based on biological pathology will likely require the use of multiple, cross-trait, broader genetic 
architectures than only polygenic prediction measures. This approach may enhance patient 
assessment and therapeutic interventions. This is particularly important given the critical 
association between delayed treatment and adverse outcomes in BD. BD is often misdiagnosed, 
leading to delays in treatment or the administration of inappropriate treatment, thereby 
lengthening periods of distress, disability and potentially increasing morbidity and mortality; 
it remains a leading cause of lost life years for individuals aged 15-44 [54]. 

PRS Methodological Advancements 

Methodological advancements, such as focusing on genetically distinct subgroups and 
incorporating rare variants, could improve the predictive power of PRS. The ongoing 
development of frameworks that combine common and rare variants [363] is leading to better 
predictive accuracy. Rare variants, typically those with a minor allele frequency (MAF) of less 
than 1%, are often excluded from PRS calculations due to low statistical power. Williams et 
al. [363] recently developed a new PRS framework that calculates separate PRS for common 
and rare variants. Analysis of real data using this framework showed an improved predictive 
accuracy by an average of 25.7% when compared to leading PRS methods that use only 
common variants. Multiple polygenic risk score (MPS) approaches and machine learning 
techniques show promise in improving diagnostic precision and predictions of treatment 
response. Krapohl et al. [364] demonstrated a 10-fold increase in the variance explained for 
developmental outcomes by using an MPS approach that incorporated data from 81 well-
powered GWAS. Craig et al. [365] derived PRS based on a multi-trait analysis using GWAS 
data for glaucoma and its endophenotypes. The multi-trait PRS demonstrated better prediction 
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ability than PRS based on any single input trait. A novel strategy involving first stratifying 
patients genetically by their BD and SCZ risk using PRS and then training machine-learning 
models with clinical predictors, led to large improvements in predicting lithium response 
(Cearns et al. 2022 [6]). Hansen et al. (2025) [366] showed that the detection of SCZ 
progression is achievable by applying machine learning algorithms to clinical data from 
electronic health records (EHR), potentially facilitating a reduction in diagnostic delay. PRS 
combined with clinical data was most predictive of outcomes in BD1 in Chapter 4. Overall, 
while PRS currently have limitations, future developments in study design and methodology 
hold the potential for further the methodology to advance our understanding and treatment of 
BD. 

 
Summary 

Investigating pleiotropy (one gene affecting multiple traits) and polygenicity (multiple genes 
contributing to a trait) in bipolar disorder is vital for understanding its genetic basis, which can 
enhance diagnosis, treatment, and prevention strategies, in addition to help elucidate BD 
genetic architecture. Bipolar disorder is complex and heritable, but specific involved genes are 
not fully known. GWAS have identified several BD-associated genetic variants, yet these 
explain only a portion of its heritability (“missing heritability”) while Subphenotyping may 
help in identifying some of the “hidden heritability”. Examining pleiotropy and polygenicity 
can help uncover more missing heritability by identifying non-European ancestry variants and 
shared genetic influences. Pleiotropy and polygenicity findings thus far suggest substantial 
genetic overlaps between bipolar disorder and other psychiatric and human disease traits. 
Studying these overlaps can reveal biological mechanisms and potential treatment targets. The 
primary objective of this thesis is precisely this: to explore these genetic overlaps to better 
account for patient heterogeneity and understand the shared biological mechanisms in bipolar 
disorder, to potentially identify functional genomics targets which could lead to the 
development of new therapeutic targets. 
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AIMS OF THESIS 
 

 

Overarching Aim: The overarching aim of this thesis is to deconstruct the clinical and genetic 
heterogeneity of bipolar disorder (BD) to provide a more biologically grounded understanding 
of the illness. An enhanced understanding of the mechanisms underlying BD subgroups is 
essential for predicting illness course, improving treatment response, and developing 
personalized therapies. 

To achieve this, a series of integrated specific aims were established: 

1. To critically synthesize the existing literature on BD’s nosology, risk factors, and the 
limitations of current research paradigms, thereby establishing the foundation for this 
investigation (Chapter 1). 

2. To develop and validate a novel dimensional framework for BD that incorporates 
premorbid factors, moving beyond traditional diagnostic categories to identify the 
‘Adverse Chronic Trajectory’ (ACT) and other genetically informative 
subgroups (Chapter 3). 

3. To assess the transdiagnostic utility of schizophrenia polygenic risk for predicting 
severe outcomes, such as psychosis and age of onset, in high-risk BD1 patients and to 
identify associated biological pathways (Chapter 4). 

4. To perform a large-scale, multi-trait analysis across 11 clinical subphenotypes to 
delineate their shared and distinct genetic foundations and identify novel biologically-
based dimensions, such as ‘Severe Illness’ and ‘Comorbidity’ dimensions (Chapter 5). 

5. To rigorously evaluate the methodological factors critical for genetic 
discovery, specifically by examining the impact of patient ascertainment strategies 
and genetic ancestry on the accuracy of polygenic prediction (Chapter 6). 

6. To synthesize these empirical findings into a more nuanced model of BD’s genetic 
architecture and to outline limitations and key future directions for research and 
clinical practice (Chapter 7). 
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2 General Methods 
 

 

2.1 Study Population and Phenotypic Data 
 
Cohort Ascertainment and Characteristics 

The research presented in this thesis utilized data from multiple large-scale, international 
collaborations, encompassing a wide range of participant cohorts with diverse ascertainment 
strategies. Chapter 3 analyses included 2590 BD cases at the University College London (UCL) 
recruited via the National Health Service (NHS), United Kingdom (UK). The analyses in 
Chapter 4 utilized a combined European cohort of 1878 BD1 cases and 2751 controls from 
Romania (RO) and the UK (UCL). All participants were of European ancestry and provided 
written informed consent under ethically approved protocols. A detailed breakdown of the 
clinical characteristics and the traits for these samples is provided in Tables 2-6 and 17-18 
below.  

• Romanian (RO) Cohort: Unrelated BD1 patients (N=574) were recruited from the 
Obregia Psychiatric Hospital in Bucharest. Genealogical information was collected to 
ensure a homogeneous genetic sample. Diagnosis was confirmed using the Diagnostic 
Interview for Genetic Studies (DIGS) [1] based on DSM-IV [2] criteria, supplemented 
by medical records and information from relatives. Population-based controls (N=534) 
were screened with the DIGS to exclude major psychiatric history. 

• United Kingdom (UK) Cohort: The UK sample included 1304 BD1 subjects who 
fulfilled Research Diagnostic Criteria for BD1. Clinical data were collected using the 
Schizophrenia and Affective Disorder Schedule-Lifetime (SADS-L) [3] and the 
OPCRIT [4] checklist. The UK controls (N=2217) were primarily population-based and 
screened with the SADS-L. Several of the UK controls consisted of random blood 
donors who were not screened for psychiatric disorders.  

• As the mean and median Age of Onset (AO) differed significantly between the 
Romanian and UK samples, the AO data was normalized for the combined analysis 
using a rank-based inverse-normal transformation. 

The total dataset in Chapter 6 for the multi-ancestry meta-analysis included up to 158,036 cases 
with bipolar disorder and 2,796,499 controls from 79 distinct cohorts. The effective sample 
size (Neff) was 535,720, with participants primarily of European (EUR) ancestry (82.3%), 
followed by Latino (LAT) (9.1%), African (AFR) (4.4%), and East Asian (EAS) (4.2%) 
ancestry. A subset of these 79 cohorts (all EUR) with available subphenotype data were 
included in Chapter 5 analyses.  

The cohorts were broadly categorized into three ascertainment types: 
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• Clinical Cohorts: Participants were assessed using semi-structured or structured 
clinical interviews, such as the Diagnostic Interview for Genetic Studies (DIGS) or the 
Schizophrenia and Affective Disorder Schedule-Lifetime (SADS-L). 

• Community Cohorts: Participants were assessed using data from medical records, 
national registries, and detailed questionnaires. 

• Self-Reported Cohorts: Participants were classified as cases if they self-reported 
having received a clinical diagnosis or treatment for bipolar disorder in response to 
web-based surveys. 

Specific analyses within this thesis drew upon different subsets of these larger cohorts. In 
Chapter 6, individual-level genotype and phenotype data were available for 53 ‘internal’ 
cohorts, with the remaining 26 ‘external’ cohorts contributing summary statistics. The large-
scale multi-trait analysis of eleven clinical subphenotypes presented in Chapter 5 drew upon a 
sample of up to 23,819 BD cases and 163,839 controls from 56 of the 79 distinct cohorts.  

2.1.1 Specific Cohort Characteristics by Analysis 

Sample for Dimensionality Analysis (Chapter 3)  

The dimensional analysis detailed in Chapter 3 utilized a sample of 2590 individuals with a 
DSM-IV bipolar disorder diagnosis and 2402 healthy controls. The characteristics of the cases, 
stratified by subtype, are shown in Table 2. 
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Table 2 Participant characteristics stratified by bipolar disorder subtypes 

Characteristic Overall SZA  BD1  BD2  BD-NOS P-Value 
 N=2590a N=332 N=1475 N=387 N=204  

Psychosis      1.70x10-77 

No 38% 
(983/2590) 

14% 
(47/332) 

36% 
(525/1475) 

79% 
(307/387) 

51% 
(104/204)  

Yes 66% 
(1711b/2590) 

86% 
(285/332) 

64% 
(950/1475) 

21%  
(80/387) 

49% 
(100/204)  

Rapid cycling      6.80x10-6 

No 58% 
(1506/2590) 

76% 
(252/332) 

69% 
(1024/1475) 

59% 
(230/387) [N/A]  

Yes 27% 
(688/2590) 

24% 
(80/332) 

31% 
(451/1475) 

41% 
(157/387) [N/A]  

BD Age Onset 28 (11) 25 (9) 28 (11) 28 (11) [N/A] 2.10x10-4 

Sex      2.60x10-1 

Female 61.3% 
(1588/2590) 

59% 
(197/332) 

62% 
(913/1475) 

58% 
(223/387) N/A]  

Male 38.7% 
(1002/2590) 

41% 
(135/332) 

38% 
(562/1475) 

42% 
(164/387) N/A]  

Age interviewed 46 (12) 49 (13) 46 (12) 51 (14) [N/A] 3.10x10-7 
Abbreviations: SZA, schizoaffective disorder; BD1, bipolar disorder I; BD2, bipolar disorder II; BD-NOS, bipolar 
disorder not otherwise specified, N/A, data unavailable. Kruskal-Wallis rank sum test, Pearson’s Chi-squared test. a 

Subtype information was missing for 192 participants. b Occurrence of psychosis information was missing for 296 
participants. N (%); Median (IQR). 

 

Sample for SCZ-PRS Analysis in BD1 (Chapter 4)  

The investigation into schizophrenia-derived polygenic risk in Chapter 4 focused on a well-
characterized European cohort of BD1 cases and controls from Romania (RO) and the United 
Kingdom (UK). The clinical characteristics of the BD1 cases are compared across the two 
recruitment sites in Table 3. 

Table 3 Comparison of clinical traits in BD1 cases across samples 

 
Variable Overall RO UK 

 N=1878 N=574 N=1304 
Sex (Male) 38% (718/1878) 38% (216/574) 38% (502/1304) 

Age-at-interview (Mean (SD)) 47 (13) 42 (13) 49 (13) 
Age-of-onset BD1 (Mean (SD)) 25 (10) 27 (10) 25 (10) 

Psychosis (Yes) 70% (1331/1878) 84% (482/574) 65% (849/1,304) 
Rapid cycling (Yes) 16% (309/1878) 10% (55/574) 19% (254/1304) 

Irritable mania (Yes) 19.5% (366/1878) 59% (341/574) 2% (25/1304) 
Family history psychoses (Yes) 27% (499/1878) 60% (343/574) 12% (156/1304) 

Note: Missing data exists for some variables in the UK sample.  
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Sample for Multi-Trait Subphenotype Analysis (Chapter 5) 

The large-scale multi-trait analysis of 11 clinical subphenotypes in Chapter 5 drew upon a 
EUR-only sample from 56 international cohorts. Clinical characteristics are stratified by BD 
subtype and by key homogeneous subphenotype groups in Tables 4-5. 

Table 4 Clinical Characteristics Stratified by BD Subtype 

Characteristic SZA BD1 BD2 NOS 
 N=1449 N=11553 N=2401 N=405 

Psychosis 593 (96%) 6473 (68%) 476 (25%) 86 (56%) 

Rapid Cycling 58 (39%) 1505 (29%) 586 (45%) 27 (31%) 

Suicide attempt 139 (49%) 2852 (41%) 464 (39%) 20 (57%) 

AlcSUD 122 (35%) 2339 (27%) 449 (26%) 38 (25%) 

Age onset BD 21 (17, 27) 22 (16, 29) 22 (16, 31) 23 (18, 33) 
N (%); Median (IQR). Sample sizes for specific characteristics may be smaller than the total cohort size 

(23,819 BD cases) due to missing data. 
 
 
Table 5 Clinical Characteristics Stratified by Homogenous Groups 

Characteristic Psychosis (No) Psychosis (Yes) Rapid Cycling (No) Rapid Cycling (Yes) 
 N=5186 N=8476 N=5617 N=2373 

Suicide attempt 1292 (25%) 2218 (26%) 1533 (27%) 703 (30%) 

AlcSUD 1105 (21%) 1892 (22%) 1139 (20%) 635 (27%) 

Subtype BD1 2995 (58%) 6473 (76%) 3741 (67%) 1505 (63%) 

Subtype BD2 1445 (28%) 476 (5.6%) 704 (13%) 586 (25%) 

Age onset BD 23 (16, 31) 22 (17, 29) 24 (19, 32) 20 (15, 29) 
N (%); Median (IQR). Sample sizes for specific characteristics may be smaller than the total cohort size (23, 819 BD cases) 

due to missing data. 

 
 

Sample for PRS Optimization Analysis (Chapter 6)  

The study on optimizing PRS prediction in Chapter 6 involved the largest multi-ancestry meta-
analysis from the PGC, utilizing data from mostly EUR, however additionally also AFR, and 
EAS ancestry cohorts. The characteristics of the target cohorts used for PRS testing are 
summarized in Table 6. 

 

 



 81 

Table 6  Target Cohorts for PRS Optimization Analysis for Chapter 6 

Ancestry Group Number of Cohorts Total Cases Total Controls 

European (EUR) 55 40,992 80,215 

African (AFR) 1 347 669 

East Asian (EAS) 3 4473 65,923 

Note: These numbers represent the target cohorts in which PRS performance was evaluated 

 

2.2 Phenotypic Assessment and Diagnosis 

Diagnosis and phenotypic characterization across the participating cohorts were established 
using internationally recognized criteria and comprehensive assessment tools. Diagnoses 
were made according to various versions of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-III, DSM-IV, DSM-IV-TR, DSM-5) [5-7] and the International 
Classification of Diseases (ICD-9, ICD-10) [8-9]. In many cohorts, a consensus best-estimate 
diagnostic procedure was employed, integrating all available clinical information to ensure 
diagnostic accuracy. 

To gather detailed clinical and symptomatic information, researchers utilized a range of semi-
structured and structured interviews. The most frequently used instruments across the cohorts 
included the Schedule for Affective Disorders and Schizophrenia-Lifetime Version (SADS-L), 
the Diagnostic Interview for Genetic Studies (DIGS), and the Structured Clinical Interview for 
DSM (SCID) [10]. 

A key instrument for the detailed documentation of symptoms, premorbid functioning, and 
longitudinal course was the 90-item Operational Criteria checklist for psychotic illness 
(OPCRIT). The OPCRIT was used to systematically assess a wide array of psychopathological 
features, providing the foundational data for the dimensional analyses presented in Chapter 
3. Inter-rater reliability for the OPCRIT assessments was formally assessed and found to be 
high (mean ĸ Statistic = .85). 

Detailed Cohort Descriptions 

Detailed descriptions of the specific diagnostic criteria and assessment procedures for each of 
the 79 cohorts contributing to the analyses in Chapters 3-6 are provided in the Appendix, 9.4. 

Subphenotype Definitions 

Across the various analyses in this thesis, the following clinical subtypes and subphenotypes 
were defined and investigated to deconstruct the heterogeneity of bipolar disorder. These were 
selected based on their clinical relevance and evidence for clustering within families, 
suggesting more genetically homogeneous subgroups. The definitions are as follows: 



 82 

• Bipolar Disorder I (BD1): Characterized by the occurrence of at least one lifetime 
manic episode. 

• Bipolar Disorder II (BD2): Characterized by at least one hypomanic episode and one 
major depressive episode, with no history of manic episodes. 

• Bipolar Disorder Not Otherwise Specified (BD-NOS): A category for individuals who 
do not meet the full criteria for BD1 or BD2 but exhibit clear bipolar features, often 
identified by multiple depressive episodes. 

• Schizoaffective Disorder, Bipolar Type (SZA): A diagnosis that includes symptoms of 
both a major mood episode (manic or major depressive) and the active-phase symptoms 
of schizophrenia, with at least a two-week period of delusions or hallucinations in the 
absence of a major mood episode. 

• Psychotic Features: The presence of hallucinations or delusions during a manic or 
major depressive episode. 

• Rapid Cycling (RC): The occurrence of four or more distinct mood episodes (manic, 
hypomanic, or depressive) within a 12-month period. 

• Unipolar Mania (UM): Characterized by recurrent manic episodes without any history 
of major depressive episodes. 

• Alcohol or Substance Use Disorder (AlcSUD): A comorbid diagnosis of an alcohol or 
substance abuse or dependence disorder. 

• Obsessive-Compulsive Disorder (OCD): A comorbid diagnosis of OCD characterized 
by obsessions and/or compulsions. 

• Panic Disorder (PD): A comorbid diagnosis of panic disorder characterized by 
recurrent unexpected panic attacks. 

• Suicide Attempt (SA): A lifetime history of one or more suicide attempts. 
• Suicidal Ideation (SI): A lifetime history of thoughts of harming oneself. 
• Age at Onset (AOO): The age at which the individual first met criteria for any primary 

mood episode (manic, mixed, or major depressive). 
• Age of onset of depression (AO_depr): The age at which the individual first met criteria 

for a major depressive episode. 
• Age of onset of mania or mixed episodes (AO_Man/Mix): The age at which the 

individual first met criteria for a manic or mixed episode. 

Note: The main source of these descriptions is the DSM-IV (Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition) or its revision, the DSM-IV-TR. 

2.3 Genotyping, Imputation, and Quality Control 

Genetic data for the analyses in this thesis were processed through rigorous, state-of-the-art 
pipelines to ensure high quality and accuracy. While the core principles of quality control (QC), 
phasing, and imputation were consistent across all studies, specific parameters and reference 
panels were tailored to the requirements of each analysis, from the focused European cohort 
studies to the large-scale multi-ancestry meta-analyses of the Psychiatric Genomics 
Consortium (PGC). This section outlines the general procedures, with specific details for each 
major analysis presented in Table 9. 
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Genotyping Platforms 

A variety of high-density single nucleotide polymorphism (SNP) genotyping arrays were used 
across the 79 contributing cohorts, reflecting the collaborative and multi-stage nature of the 
research. The most common platforms included the Illumina Global Screening Array (GSA), 
Illumina PsychArray, Illumina Omni Express, and the Affymetrix Gene Chip 500k Assay. The 
specific platform breakdowns for the focused analyses in Chapters 3 and 4 are detailed below 
(Tables 7-9).  

For the SCZ-PRS study (Chapter 4), specific post-imputation filtering steps were applied to 
handle correlated SNPs, with different approaches tailored to the analyses for each cohort. In 
the Romanian sample, this was followed by Linkage Disequilibrium (LD) 
clumping (parameters: 500 SNP window, 100 SNP overlap, r² threshold of .05). This procedure 
creates a set of approximately independent genetic variants, which is a necessary prerequisite 
for methods such as the traditional ‘clumping and thresholding’ polygenic scoring, as it 
prevents the same genetic signal from being counted multiple times and inflating the score. 

In the UK sample, a locus-definition approach was used, where the most significant SNPs were 
retained within a physical distance of less than 250 kb and an r² greater than .1. This is the 
standard method for identifying distinct, independent genetic loci from a GWAS. It ensures 
that multiple correlated SNPs in the same genomic region, which are likely tagging the same 
underlying causal variant, are correctly treated as a single genetic signal rather than multiple 
independent discoveries. 

For the dimensionality analysis (Chapter 3), the sample was genotyped across three primary 
platforms, with the following distribution of participants and post-QC imputed SNPs: 

Table 7 Genotyping Array Frequencies for Chapter 3 

Sample Affymetrix Gene 
Chip 500k 

Illumina Global 
Screening Array 

Illumina 
PsychChip 

N 

Post-QC’d 
Sample size 

491 cases, 
495 controls 

416 cases, 533 
controls 

1683 cases, 
1374 controls 

4992 

Percent % .197 .190 .613  

Post-QC’d 
Imputed SNPs 

3,080,075 3,164,648 3,443,778 Mdn=3,164,648 

For the SCZ-PRS analysis (Chapter 4), the Romanian and UK cohorts were genotyped on a 
different combination of platforms: 
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Table 8 Genotyping Array Frequencies for Chapter 4 

Sample Affymetrix 
Gene Chip 500k 

Illumina Global 
Screening Array 

Illumina Omni 
Express 

Illumina 
PsychChip 

N 

Romanian (RO) 0 309 799 0 1108 

UK 840 533 0 2148 3521 

Percent % 18.15 18.19 17.26 46.40  

Post-QC Imputed SNPs      

RO  3,930,194 3,917,108   

UK 3,080,075 3,164,648  3,443,778  

For the large-scale multi-trait and multi-ancestry meta-analyses presented in Chapters 5 and 6, 
a wider array of genotyping platforms was used across the numerous contributing cohorts. A 
detailed breakdown of the specific platforms used for each of the 56 cohorts in the 
subphenotype analysis and the 79 cohorts in the PRS optimization analysis is provided in the 
Appendix, 9.4. 

GWAS  Quality Control (QC) 

All datasets underwent stringent QC procedures aligned with PGC standards to remove low-
quality variants and samples before imputation. This involved standardized thresholds for both 
variant-level and sample-level metrics. See Table 9 below. 

Variant-level QC typically excluded SNPs with low call rates, significant deviation from 
Hardy-Weinberg Equilibrium (HWE), and low minor allele frequency (MAF). Sample-level 
QC removed individuals with low call rates, excessive heterozygosity (FHET), sex 
discrepancies, and cryptic relatedness to other individuals in the sample. 

Genotype Imputation 

To standardize genotypes across different array platforms and increase genomic coverage, all 
datasets were imputed to a common reference panel. For most analyses, the Haplotype 
Reference Consortium (HRC) [11] panel was used, which provides a high-quality reference for 
individuals of European ancestry. The standard procedure involved a pre-phasing step 
using EAGLE2 [12] followed by imputation using Minimac3 [13]. For the Romanian cohort 
analysis in Chapter 4, the 1000 Genomes Project panel [14] was used to suit the specific sample 
characteristics. 

Post-Imputation Filtering 

Following imputation, variants were filtered based on imputation quality scores (INFO or R2) 
to ensure that only accurately imputed SNPs were included in the downstream association 
analyses. A common threshold was an INFO score > .8, although more stringent filters were 
applied in some analyses to maximize confidence in the results. 
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Table 9 Genotyping and QC Parameters for Analyses 

Parameter Dimensionality Study 
(Chapter 3) 

SCZ-PRS Study 
(Chapter 4) 

Multi-Trait Subphenotype 
Study (Chapter 5) 

PGC4 PRS 
Optimization Study 

(Chapter 6) 

QC Pipeline/Standard Standard PGC 
Protocols 

Standard PGC & local 
protocols Standard PGC Protocols Standard PGC 

Protocols 

Sample-Level QC     

Subject Missingness < 2% < 2% (UK) / < 5% 
(RO) < 2% < 2% 

Heterozygosity (FHET) Outside +/- 0.20 
> 1 SD from mean 
(RO) / |Fhet| < .2 

(UK) 
Outside +/- 0.20 Outside +/- 0.20 

Relatedness (pi_hat) > 0.2 > 0.2 Not specified in main text > 0.2 

Sex mismatch Mismatches between pedigree and genetically determined sex were removed based on the F 
statistic of X chromosome homozygosity (female F < 0.2 and male F > 0.8). 

Variant-Level QC     

SNP Missingness < 5% < 5% < 5% < 5%* 

Minor Allele Freq. (MAF) > 1% > 0.1% (RO)  
/ > 1% (UK) > 1% > 1% 

HWE P-value (Controls) < 1 x 10⁻⁶ < 1 x 10⁻⁶ < 1 x 10⁻⁶ < 1 x 10⁻⁶ 

HWE P-value (Cases) < 1 x 10⁻¹⁰ < 1 x 10⁻¹⁰ < 1 x 10⁻¹⁰ < 1 x 10⁻¹⁰ 

Imputation     

Imputation Reference HRC Panel 1000 Genomes (RO) 
 / HRC (UK) HRC panel (r1.1 2016) HRC panel (v1.0) 

Phasing / Imputation 
Software Eagle / Minimac3 Eagle / Minimac3 Eagle / Minimac3 Eagle / Minimac3 

Post-Imputation Filter INFO score > 0.8 
(standard) 

Rsq > 0.8 (RO) / 
INFO > 0.9 (UK) INFO score > 0.8 Filtered SNPs in < 

75% of total Neff 

No. of SNPs in Primary 
GWAS (Million) 3.16 3.08-3.93 4.57-7.40 3.97-9.74 

Note: “Standard PGC Protocols” refers to the established quality control and analysis standards developed by the 
Psychiatric Genomics Consortium, which are implemented in the pipeline RICOPILI. * < 0.05 (before sample removal) 

and < 0.02 (after sample removal). Case-Control Missingness Difference: < 0.02. 
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2.4 Statistical and Genetic Analysis 

This section outlines the statistical and genetic methods used across the chapters. Primary 
Genome-Wide Association Studies (GWAS) were conducted for the analyses in Chapters 5 
and 6, while existing external GWAS summary statistics were utilized for polygenic scoring 
in Chapters 3 and 4. 

 

2.4.1 Sample Size and Prevalence Parameters 

Population and Sample Prevalences 

The transformation of SNP-based heritability (h²snp) and Polygenic Risk Score (PRS) variance 
explained (R²) from the observed 0-1 scale to the unobserved continuous liability scale is a 
critical step for interpreting results for binary traits. This transformation requires specifying an 
estimate of the trait’s prevalence in the general population. The specific prevalences used 
varied across the thesis analyses to match the context of each study: 

• For the dimensional analysis which included all BD subtypes in Chapter 3, a 
population prevalence of 2% was used. 

• For the SCZ-PRS study in Chapter 4, a Bipolar Disorder I (BD1) population 
prevalence of 1% was assumed. 

• For the PGC-BD PRS optimization study in Chapter 6 (and in Chapter 5), 
both 1% and 2% population prevalences were used for comparison. 

For the additional multi-trait subphenotype analyses in Chapter 5, population prevalences were 
estimated from major epidemiological studies. For course specifiers that do not have direct 
population estimates, the prevalence was calculated by multiplying the general prevalence of 
bipolar disorder by the proportion of individuals with BD who exhibit that feature. For 
example, the prevalence for the psychosis subphenotype was estimated by multiplying the ~1% 
lifetime prevalence of Bipolar Disorder (e.g., Merikangas et al., 2007)[15] by the ~50% 
proportion of BD individuals who experience psychosis (e.g., Perälä et al., 2007)[16], resulting 
in an estimated population prevalence of .5%. For comorbid disorders, the direct lifetime 
prevalence was taken from the literature. The specific values and primary sources used are 
detailed in Table 10.  

For all analyses, population prevalence estimates were based on a review of the relevant 
scientific literature. The choice of population prevalence was intentionally tailored to the 
specific scientific goal of each analysis, following a ‘fit-for-purpose’ strategy. For broad 
assessments of a general Bipolar Disorder PRS across diverse cohorts (Chapters 3, 4 and 6), 
standard 1-2% prevalences were used to ensure the results were comparable with the wider 
field and major genomic consortia. In contrast, for more granular genetic architecture analyses 
of specific subphenotypes (Chapter 5), the most precise, subtype-specific epidemiological 
estimates were used. This approach maximizes the accuracy of the heritability calculations for 
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those specific traits by ensuring the assumptions of each analysis were best aligned with its 
scientific question. 

Table 10 Population Prevalences Literature Sources  

Subphenotype Population Prevalence Used (%) Primary Source(s) 
Psychosis .005 Merikangas et al. (2007)[15]; Perälä et al. (2007)[16] 

Rapid Cycling .0025 Merikangas et al. (2007); Tondo et al. (2003) [17] 
BD1 .006 Merikangas et al. (2007) 
BD2 .004 Merikangas et al. (2007) 
SZA .003 Perälä et al. (2007) 

Panic Disorder .027 Kessler et al. (2005) [18] 
OCD .023 Ruscio et al. (2010) [19] 

AlcSUD .139 Grant et al. (2015) [20] 
Suicide Attempt .042 Nock et al. (2008) [21] 
Unipolar Mania .060 Angst & Marneros (2001) [22] 

A key exception was for the LD Score Regression (LDSC) analyses; where the effective sample 
size was provided as input, the sample prevalence was accordingly set to .5 as per standard 
methodological practice. 

Use of Total (N) vs. Effective (Neff) Sample Size 

Both total sample size (N; the actual count of cases and controls) and effective sample size 
(Neff; calculated to account for case-control imbalance) were utilized for distinct purposes 
throughout the analyses. 

• The effective sample size (Neff) was used when the statistical power of a case-control 
sample was the most relevant metric. Its applications included: 

o Quality control in the large-scale meta-analyses (Chapters 5 and 6), where SNPs 
had to be present in a minimum percentage of the total Neff to be included. 

o Weighting results in the meta-analyses of Polygenic Risk Score (PRS) 
performance across cohorts (Chapters 3-6). 

o As the sample size input for all major post-GWAS summary-statistic-based 
analyses, including LDSC [23-24], MTAG [25], Multi-marker Analysis of 
GenoMic Annotation (MAGMA) [26] (within Functional Mapping and 
Annotation of GWAS [FUMA] [27]), Transcriptome-Wide Association 
Studies (TWAS) [28], Local Analysis of [Co]variant Association (LAVA) 
[29], and Summary-data-based BayesS (SBayesS) [30]. 

• The total sample size (N) was required for statistical models that explicitly use the 
number of cases and controls as parameters. Its primary use was: 

o As input for the liability scale conversion of PRS R2 (e.g., using the Lee et al., 
2012 formula) [31], which mathematically requires the number of cases and 
controls in the sample. 
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2.5 Primary GWAS Association Analyses 
 
The foundational step in identifying genetic variants associated with bipolar disorder and its 
subphenotypes was to conduct a Genome-Wide Association Study (GWAS) on each cohort, 
followed by a meta-analysis to increase statistical power by combining the results.  

• GWAS and Meta-Analysis: To form the basis of analyses in Chapters 5 and 6, GWAS 
were run in each cohort using an additive logistic regression model in PLINK(v.190) 
[32], with the first five principal components as covariates. For these primary meta-
analyses, a genome-wide significant locus was defined as the region around a lead SNP 
(P < 5.0 x 10⁻⁸) including all variants in Linkage Disequilibrium (LD) at r² > .1 within 
a 3,000-kb window, based on the ancestry-matched HRC reference panel. 
The DENTIST [33] tool was used for quality control to detect and filter problematic 
variants. Cohort-level summary statistics were then combined using an inverse-
variance-weighted fixed-effect model in METAL [34]. To ensure robustness, all SNPs 
present in less than 75% of the total effective sample size were removed from the meta-
analyses. For the subphenotype GWAS (Chapter 5), Linkage Disequilibrium Score 
Regression (LDSC) confirmed that confounding from population stratification was 
minimal, with a median intercept of 1.015. The attenuation ratio, an estimate of the 
proportion of the GWAS signal due to confounding, had a median of .183, which is in 
line with values reported for similar large-scale psychiatric analyses. (See Watanabe et 
al. [53] and Chapter 5 [43] for comparison). 

• Multi-Trait Analysis of GWAS (MTAG): As detailed in Chapter 5, MTAG was used 
to boost statistical power by integrating the primary subphenotype GWAS with large 
external GWAS for Bipolar Disorder (BD) and Schizophrenia (SCZ). This was 
performed only for a subgroup of subphenotypes showing a strong median initial 
genetic correlation (rG> .70) with the external study. The reliability of these analyses 
was confirmed by low median maximum False Discovery Rate (maxFDR) [25] values 
(BD-only: < .00014; BD+SCZ: < .00013).  

The MTAG method was chosen specifically to enhance statistical power for subphenotype 
analyses. Its application was contingent on a strong initial genetic between the primary 
subphenotype GWAS and the external study, ensuring a valid basis for integration. The 
reliability of the MTAG results was confirmed by low median maximum False Discovery Rate 
(maxFDR) values, suggesting a reliable synthesis of signals rather than distortion from the 
larger external GWAS. Phenotypes that exhibited a higher maxFDR, including suicide ideation 
and the age of onset variables, were excluded from downstream MTAG analyses to ensure the 
robustness of the findings. 
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2.6 Polygenic Risk Scoring (PRS) 

To move beyond single-variant associations and capture the cumulative genetic risk for a 
disorder, polygenic risk scores (PRS) were constructed. This approach aggregates the small 
effects of thousands of genetic variants into a single, quantitative score representing an 
individual’s genetic liability. For the PRS in Chapters 3, 4, 5, and 6, a leave-one-cohort-out 
approach was used. This method ensures that the PRS for a given target cohort is not biased by 
its inclusion in the discovery GWAS by creating a unique set of summary statistics for each 
target cohort that excludes its own data. 

2.6.1 PRS Construction, Performance and Evaluation  

For analyses across Chapters 3, 4, 5, and 6, PRS were constructed from large, external GWAS 
summary statistics using two primary methods: 

• Clumping and Thresholding (pT+clump): Implemented in PRSice (v.2.3.3) [35], this 
method only used in Chapter 4, selected approximately independent SNPs based on a 
clumping threshold of R2< .1 within a 250 kb window, retaining SNPs that passed 
specific P-value thresholds (pT). For the analysis in Chapter 4, this was implemented 
in PRSice v2.3.3 using its default settings, and scores were generated for eight P-value 
thresholds ranging from 5 x 10⁻⁸ to .05.  

• PRS-CS-auto: For the analysis in Chapter 4 to 6, the auto-setting was used to learn the 
global shrinkage parameter. The PRS-CS-auto [36] setting uses a fully Bayesian 
approach to learn the optimal global shrinkage parameter directly from the discovery 
GWAS data, avoiding the need for a separate validation set. Raw scores were generated 
using the PLINK v2.0 score function from the posterior SNP effect means. Power 
analysis for the PRS was conducted using the AVENGME package in R [37-38] and 
G*Power 3 [39] was used for calculating the sample size and power for the statistical 
tests (F, t, χ2, Z). The following parameter were used for the power calculation; number 
of independent SNPs produced by the PRS-CS package; sample size training sample 
(sample size of the schizophrenia GWAS used); heritability and prevalence for bipolar 
disorder were obtained from Table 1 in Wray et al., 2010 [40] and the proportion of 
null markers were set as 90%. 

• Chapter 5 evaluated the predictive performance of PRS for BD subphenotypes. The 
core methodology involved developing subphenotype-specific PRS using MTAG. 
These MTAG-derived effect sizes were then used for PRS construction in target cohorts 
via PRS-CS-auto, employing a leave-one-cohort-out approach. Within each target 
cohort, PRS were standardized and their association with phenotype status was assessed 
using logistic regression, adjusted for the first five PCs. Nagelkerke’s R² was converted 
to R2 on the liability scale (R2-liability) using the method by Lee et al. (2012). A formal 
random-effects (RE) meta-analysis of the per-cohort R²-liability values was 
additionally conducted to model between-cohort heterogeneity. 

• LD Reference Panels: The selection of the Linkage Disequilibrium (LD) reference 
panel was tailored to the specific analysis and ancestry of the samples. For the PRS-
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CS analyses in the dimensionality study (Chapter 3) and the SCZ-PRS study (Chapter 
4), the 1000 Genomes Project European LD reference panel was used. For the 
primary GWAS meta-analysis and subsequent post-GWAS analyses 
(including FUMA, SBayesS, and LAVA) in the multi-trait subphenotype study 
(Chapter 5), the ancestry-matched Haplotype Reference Consortium (HRC) panel was 
used. For the TWAS analysis in this chapter, the European 1000 Genomes Project LD 
panel was used. For the main PRS-CS analyses in the PRS optimization study 
(Chapter 6), the UK Biobank European LD reference panel, as provided by the PRS-
CS developers, was used. 

PRS Performance Evaluation 
 
Raw scores were standardized to z-scores (mean=0, SD=1) to make them comparable across 
individuals. The predictive power of the PRS was assessed in linear and logistic regression 
models using Nagelkerke’s R2 (converted to liability scale R2) and the Area Under the Curve 
(AUC). To summarize performance across cohorts in Chapters 5 and 6, per-
cohort R2 estimates on the liability scale were pooled via a random-effects meta-analysis, and 
heterogeneity was assessed with the I2 and Cochran’s Q statistics. The variance explained by 
PRS was calculated as Nagelkerke’s pseudo-R² using the fmsb [41] package in R, while the 
Area Under the Curve (AUC) was calculated using the pROC [42] package.  

 

2.6.2 PRS Performance Evaluation and Metrics 

The performance of the Polygenic Risk Scores (PRS) was assessed using a comprehensive suite 
of metrics. The specific metrics reported were tailored to the primary aims of each analysis. 

The PRS-CS-auto method was selected for most analyses because it demonstrated superior 
predictive accuracy compared to the traditional pT + clump method in Chapter 4, explaining 
nearly 2% more variance on the liability scale in comparative tests (Chapter 4, Table 26). 

Metrics for the Multi-Trait Subphenotype Study (Chapter 5) 

Individual-level Polygenic Risk Scores (PRS) were constructed for participants in European 
target cohorts using effect sizes from discovery meta-analyses which combined subphenotype-
specific GWAS with data from bipolar disorder (BD) cases lacking subphenotype information 
while systematically excluding each target cohort from its respective discovery dataset. These 
PRS were adjusted for population stratification. As detailed in the external xlsx Supplementary 
Table 58, the reported metrics included: 

• Cohort: An identifier for the specific study or dataset. 
• Sample.Size_N: The total number of individuals (cases plus controls) in the analysed 

sample for that cohort. 
• N_eff_half: Half of the effective sample size, calculated as 2×Ncases×Ncontrols

/(Ncases+Ncontrols), accounting for case-control imbalances. 
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• Proportion_Cases_P: The proportion of cases within the cohort’s analysed sample. 
• Cases_NCA and Controls_NCO: The number of cases and number of controls, 

respectively. 
• NagelkerkeR2_obs: Nagelkerke’s pseudo R2 value, measuring variance explained by 

the logistic regression model on the observed scale. 
• LiabilityR2_adj: The R² value on the liability scale, estimating the proportion of 

variance in underlying disease liability explained by the PRS, adjusted for population 
prevalence (K) and sample case proportion (P). 

• PerCohort_Weighted_LiabR2_pct: The cohort’s R2-Liability multiplied by its relative 
effective sample size, expressed as a percentage, indicating its weighted contribution to 
an overall average. 

• PRS_PVal_adj_wCovars: The P-value for the overall statistical significance of the PRS 
model including covariates. 

• Coef_PRS: The regression coefficient (beta) for the standardized PRS from the logistic 
regression, representing the log-odds change per standard deviation increase in PRS. 

• Coef_SE_PRS: The standard error of the PRS coefficient. 
• CoefL_PRS and CoefH_PRS: The lower and upper bounds of the 95% confidence 

interval for the PRS coefficient. 
• Z_value_PRS: The Z-statistic for the PRS coefficient. 
• AUC (Area Under the ROC Curve): Measures the PRS model’s ability to discriminate 

between cases and controls. 
• AUC_Low and AUC_High: The 95% confidence interval for the AUC. 
• Absolute Risk:  

Estimated absolute risks are given for the AbsRisk_Quintile_Top (top PRS quintile),  
AbsRisk_Quintile_Bottom (bottom PRS quintile),  
AbsRisk_Top1pct (top 1% of PRS distribution), and  
AbsRisk_Top10pct (top 10% of PRS distribution). 

Metrics for the PRS Optimization Study (Chapter 6) 

For the study focused on comparing different ascertainment strategies and ancestries, reporting 
was focused on the primary metrics of predictive power. The key metrics included: 

• Variance Explained (Liability Scale R2): This was the main outcome measure used to 
compare the performance of the different discovery GWASs. 

• Risk Stratification (Odds Ratio): To assess clinical potential, the odds ratio (OR) was 
calculated for individuals in the top quintile (top 20%) of the PRS distribution 
compared to those in the middle quintile. 

• Discriminative Ability (AUC): The AUC was reported to measure overall 
discriminative accuracy. To isolate the predictive value added by the PRS itself, 
the AUC gain was also calculated by subtracting the median AUC of a model 
containing only covariates from the median AUC of the full model. 
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In Chapter 5, a sensitivity analysis using the Slope-Hunter [43] method in R to adjust for 
potential index event bias was also explored but was not used for the final results as it was 
found to inflate the test statistics. As a sensitivity analysis, the Slope-Hunter method was 
explored to assess the potential impact of index event bias on the effect sizes from the primary, 
single-subphenotype GWAS analyses. However, this correction was not carried forward to the 
final Polygenic Risk Score (PRS) analyses for two key reasons. First, initial tests on the single-
subphenotype GWAS indicated that, the Slope-Hunter adjustments were inflating the test 
statistics, suggesting that the underlying model assumptions of the tool were not a good fit for 
the data. Second, applying this correction to the downstream MTAG-derived summary 
statistics would be methodologically invalid, as MTAG results represent a complex mixture of 
effect sizes from cohorts with different ascertainment strategies. Therefore, a random-effects 
meta-analysis was chosen as the more appropriate and robust method to account for 
heterogeneity in the final PRS performance estimates. 
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External GWAS Summary Statistics for PRS Analyses 

The discovery GWASs used as a basis for PRS construction were selected as they were the 
largest and most recent available at the time of analysis. They included: 

Table 11 External GWAS Summary Statistics for Analyses 

Disorder/Trait Study Sample Size 
(N) 

Used in 
Chapter(s) 

Psychiatric Disorders    

Bipolar disorder O’Connell et al., 2025 [44] 840,309 3, 4, 5, 6 

Schizophrenia (SCZ) Trubetskoy et al., 2022 [45] 130,644 3, 4, 5 

Major depressive disorder (MDD) Howard et al., 2019 [46] 500,199 3, 5 

Attention deficit and hyperactivity disorder 
(ADHD) Demontis et al., 2023 [47] 225,534 3, 5 

Anxiety (ANX) Purves et al., 2020 [48] 114,091 3, 5 

Autism spectrum disorder (ASD) Grove et al., 2019 [49] 46,350 5 

Mood swings (MOOD) Neale Lab UKBB, 2018 [50] 604,063 5 

Post traumatic stress disorder (PTSD) Nievergelt et al., 2019 [51] 174,659 5 

Borderline personality disorder (BPD) Witt et al., 2017 [52] 2543 5 

Insomnia (INS) Watanabe et al., 2022 [53] 386,888 5 

Cognitive Traits    

Intelligence (INTEL) Savage et al., 2019 [54] 269,867 5 

Matrix de la Fuente et al., 2020 [55] 11,356 5 

Memory de la Fuente et al., 2020 331,679 5 

Trail Making Test B (TMTB) de la Fuente et al., 2020 78,547 5 

Tower de la Fuente et al., 2020 11,263 5 

Symbol and digit (SymDig) de la Fuente et al., 2020 87,741 5 

VNR de la Fuente et al., 2020 171,304 5 

Reaction time (RT) de la Fuente et al., 2020 330,024 5 

Note: To align phenotypes, only GWAS summary statistics without 23andMe self-report data were included. Matrix = 
Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol 
Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal Numerical 
Reasoning Test. Phenotype data was scaled before analyses and higher scores aligned to indicate better cognitive 
performance. See Figure 26, a presentation of the global genetic correlations presented in Supplementary table 59. To 
ensure comparability, only versions of the discovery sets which excluded 23andMe self-reported data were included for 
analysis (Chapter 3-5). Chapter 6 modelled PRS for datasets with and without 23andMe data. 
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2.7 Covariate and Bias Control 

The handling of covariates and bias differs across chapters due to the distinct goals and 
methodologies of each analysis. The choice of which covariates to control for and how to 
control for them is driven by the specific research question being addressed and the potential 
sources of bias inherent in that particular study design. 

Covariate and Bias Control 

• Population Stratification (Principal Component Analysis [PCA]): This method was 
applied consistently across all analyses because the entire study population shares the 
same fundamental potential confounder: genetic ancestry. PCA is a standard practice 
in genetic studies to control for population structure, which can create spurious 
associations between genetic markers and traits if not accounted for. By including the 
first five to ten principal components as covariates, the regression models were adjusted 
for this systematic bias, ensuring that any observed associations were not simply a result 
of shared ancestry. 

• Covariate Adjustment (Residualisation): This approach was specifically used for the 
Polygenic Risk Score (PRS) analyses in Chapters 3 and 4. PRS is a score derived from 
genetic data to predict an individual’s risk for a specific trait or disease. To ensure the 
PRS itself was the primary variable of interest and that its predictive power wasn’t 
inflated by other factors, the scores were “residualised.” This means that the effects of 
non-genetic factors, including age, sex, and genotyping batch, were statistically 
removed. The resulting residuals represent the portion of the PRS that is independent 
of these covariates, allowing for a cleaner and more accurate assessment of the PRS’s 
direct association with the outcome. 

• Ascertainment Bias (IPW): This method was exclusively applied to the dimensional 
analysis in Chapter 3 when modelling within-case severity. Ascertainment bias occurs 
when the method of selecting a study sample systematically favours certain individuals, 
potentially distorting the results. In this case, the analysis was performed on a case-
control sample, which is inherently biased because individuals were selected based on 
their disease status. Inverse Probability Weighting (IPW) [56-57] was used to correct 
for this. By weighting the cases and controls based on their probability of being 
selected, the method effectively rebalances the sample to be more representative of the 
source population, thereby mitigating the bias introduced by the case-control sampling 
design. 

2.7.1 Chapter 3: A Four-Dimensional Genetic Model of Bipolar Disorder 

This chapter’s primary goal was to investigate the dimensional structure of Bipolar Disorder 
(BD) using a Multiple Indicators and Multiple Causes (MIMIC) model [58]. The methods to 
control for bias were comprehensive. To mitigate confounders and ascertainment bias, 
including collider bias which can be an issue in case-only studies, this study adopted a case-
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control design. To further address potential selection bias, stabilised weights were 
implemented for the Inverse Probability Weighting (IPW). 

• Population Stratification: To control for confounding due to genetic ancestry, a 
Principal Component Analysis (PCA) was conducted using the EIGENSTRAT (v6.1.4) 
[59] software. The first ten ancestry-specific principal components were then included 
as covariates in all statistical models to adjust for population structure. 

• Ascertainment Bias: Because the analysis used a case-control sample, Inverse 
Probability Weighting (IPW) using propensity scores was applied to mitigate potential 
selection bias and adjust for imbalances between groups. This procedure was 
implemented using the R statistical environment. 

• Covariate Adjustment (Residualisation): For the PRS analyses, scores were fully 
adjusted before being used in the final models. The effects of covariates 
including age, sex, the first ten principal components, and genotyping batch/platform, 
were regressed out of the PRS. The resulting standardized residuals were used as the 
final PRS predictor, a method known as residualisation, which was performed in R. 

The following table demonstrates the effect of the multi-step covariate correction applied to 
the BD PRS in the dimensionality study (Chapter 3). The ‘pre-correction’ result reflects the 
strong, unadjusted association between the PRS and case-control status. The ‘post-correction’ 
result illustrates a known statistical artifact that occurs when controlling for a variable that is a 
proxy for the outcome itself. Such a complete elimination of the signal is the expected outcome 
when adjusting for a factor like illness severity in both cases and controls, as this statistically 
removes the core difference between the groups. In this analysis, a multi-stage correction was 
applied where standard covariates (age, sex, PCs, array) were controlled for, followed by an 
IPW adjustment for severity (hospitalization [see Table 18, OCPRIT 01 ‘Source of rating’]) in 
the cases only. 

Table 12 Correction for Covariates for Chapter 3 

 
BD PRS 

 
Analysis of Variance (ANOVA) 

  

 F df P 
Pre-correction 85.22 2, 4989 P < .001 
Post-correction .092 2, 4989 .912 
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2.7.2 Chapter 4: Schizophrenia-Derived Polygenic Risk 

This chapter’s analysis of a combined cohort from two different sites required specific 
corrections for batch and site effects in addition to standard covariate control. 

• Population Stratification: To control for genetic ancestry differences, PCA was 
performed using the EIGENSTRAT (v6.1.4) software package for both the Romanian 
and UK samples. The first ten ancestry-specific principal components were included as 
covariates to control for population structure. 

• Batch and Site Effects: A specific two-step correction was implemented to address non-
genetic variance in the PRS calculations. First, batch effects due to different genotyping 
platforms within each cohort were regressed out. Second, site effects between the 
Romanian (RO) and United Kingdom (UK) cohorts were corrected to mitigate potential 
bias. 

• Covariate Adjustment (Residualisation): The final PRS predictor was a standardized 
residual. The effects of age, sex, and the first 10 principal components were regressed 
out of the PRS scores prior to their use in regression and Random Forest (RF) models. 
All analyses were conducted in R. 

Correction for Batch and Site Effects: In the analyses for Chapter 4, the Romanian (RO) and 
United Kingdom (UK) samples were genotyped on different platforms (Table 8). These 
between-platform and between-cohort differences can introduce batch effects into the PRS 
calculations. To address this, batch effects due to platform differences were first regressed out 
of the PRS for each cohort separately in Chapter 4. Subsequent corrections were then made for 
site effects between the two cohorts.  

The following tables demonstrate the successful data harmonization process applied to the 
SCZ-PRS in the study described in Chapter 4. The ‘pre-correction’ results show that 
significant, systematic differences in the mean PRS existed due to technical factors, specifically 
the genotyping platform (batch effects) and recruitment site (site effects). The ‘post-correction’ 
results show that the two-step correction method successfully removed this non-biological 
variance, as indicated by the drop from highly significant to non-significant statistics. This 
essential harmonization step created a clean PRS variable, ensuring that the main downstream 
analyses were not biased by these technical confounders. 
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Table 13 PRS Batch Effects (Genotype Array) Correction for Chapter 4 

Romanian T-test  

 t df 

Pre-correction 13.578 1,1107 

Post-correction 0.116 1,1107 
UK ANOVA  

 F df 

Pre-correction 85.22 2, 3518 

Post-correction 0.092 2, 3518 
 

Table 14 PRS Sample (Site) Correction for Chapter 4 

RO/UK T-test  
 t df 

Pre-correction 6.861 2,4627 

Post-correction 0.180 2,4627 
 

 

2.7.3 Chapter 5: Multi-Trait Analysis of Eleven Clinical BD Subphenotypes 

This large-scale meta-analytic approach relied on including covariates directly within the 
statistical models rather than using pre-adjusted residualised scores; the same approach was 
adopted in Chapter 6. 

• Population Stratification: Standard Genome-Wide Association Study (GWAS) 
procedures, which include PCA, were conducted using the RICOPILI [60] automated 
pipeline. The first five to ten principal components of ancestry were included as 
covariates in all primary GWAS and downstream regression models. The Linkage 
Disequilibrium Score Regression (LDSC) intercept was also monitored to confirm that 
confounding from uncorrected population stratification was minimal, i.e., close to 1. 

• Ascertainment Cohort Heterogeneity: The analysis addressed between-cohort 
heterogeneity in a multi-step process. First, the DENTIST tool was used on the GWAS 
summary statistics to identify and remove problematic SNPs that showed significant 
heterogeneity across the different cohorts. In the subsequent Polygenic Risk Score 
(PRS) analysis, random-effects models were employed to directly measure and model 
the remaining heterogeneity in the prediction estimates. This provides a more robust 
and generalizable estimate that properly reflects the variability observed in the 
underlying data. 
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• Covariate Adjustment: Unlike the analyses in the preceding chapters, residualisation 
was not performed. Instead, PRS and other relevant covariates were included as 
independent variables directly in the regression models to assess their associations with 
the outcomes (as noted above). 

 

2.7.4 Chapter 6: Optimising BD Polygenic Risk Prediction 

This chapter’s primary goal was to investigate the impact of ascertainment and ancestry, using 
stratification as the main analytical method. 

• Population Stratification: PCA was conducted for each cohort 
using EIGENSTRAT (v6.1.4). The first five principal components were included as 
covariates in the logistic regression models. 

• Covariate Adjustment: The GWAS for each cohort was conducted 
using PLINK (v1.90), which directly included principal components as covariates in 
the regression model. The final PRS performance was assessed using 
the glm() function in R, which also included sex and principal components as 
covariates alongside the standardized PRS. The PRS was not residualised beforehand. 

• Ascertainment Bias: This was the central focus of the investigation rather than a 
factor to be corrected statistically. The analysis addressed ascertainment by stratifying 
cohorts based on their recruitment method (clinical, community, and self-report) and 
comparing PRS performance across these distinct groups. 

 

2.8 Post-GWAS Functional and Genetic Architecture Analyses 
 
Individual-level pathway analysis was applied in Chapter 4 using PRSet to explore the genetic 
architecture of specific clinical features. The analysis used PRSet in the PRSice package, which 
provides an individual-level representation of genetic burden within a gene-set, in contrast to 
population-level methods like Multi-marker Analysis of GenoMic Annotation  (MAGMA). 
The analysis was applied to 1878 cases and 2751 controls in the combined RO/UK 
sample. After excluding 893 SNP regions not present in both the SCZ3-GWAS summary 
statistics and the target genotypes, a total of 31,937 gene regions from the Molecular Signatures 
Database (MsigDB) [61-62] database were included for a hypothesis-free analysis of psychosis 
and individual-level subtype risk. PRSet was run with all SNPs included (P-value threshold < 
1) and performed two types of gene-set analysis: a ‘self-contained’ analysis to test if a gene set 
is associated with the phenotype, and a ‘competitive’ analysis to test if the gene set is more 
associated than a random set of genes with similar properties. The method was restricted to 
SNPs within a 10-kilobase window around each gene, and SNPs were clumped independently 
for each pathway (R² threshold = 0.1, P-value threshold = 1, 2-megabase window). The 
‘competitive’ enrichment P-value was derived from 10,000 permutations, with significance set 
at P < .05. 
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To translate genetic associations from the MTAG analyses in Chapter 5 into biological insights, 
the following suite of post-GWAS methods was employed: 

• LD Score Regression (LDSC): To estimate SNP-based heritability (h²snp) and genetic 
correlations from summary statistics while distinguishing true polygenicity from 
confounding, Linkage Disequilibrium Score Regression (LDSC) was used. A low 
median LDSC intercept of 1.015 confirmed minimal inflation from uncorrected 
population stratification. 

• Functional Mapping and Annotation of GWAS (FUMA): FUMA (v1.8.0/v1.5.2) 
was used to functionally map and annotate genetic associations using GWAS summary 
statistics aligned to the GRCh37 (hg19) reference. The SNP2GENE and GENE2FUNC 
functions were used to identify independent genomic loci and annotate putative causal 
genes, with significance based on a Bonferroni correction across 19,139 genes 
(P<2.61×10-6). For reference datasets see Table 15 below. 

o Locus Definition: Standard clumping was applied in FUMA (r² = .1, 250 kb 
window) using the 1000 Genomes Project European-ancestry reference panel.  

o Genomic risk loci were defined by identifying independent significant SNPs 
(P≤5×10-8, r2< .6) which were then clumped at a stricter threshold (r2< .1) to 
define lead SNPs. Loci were formed by merging LD blocks of independent 
SNPs within a 250 kb distance. Loci were classified as “novel” if situated more 
than 500 kb from loci previously reported in the GWAS Catalog for BD or SCZ.  

o Gene Mapping: Three strategies were used to link SNPs to genes: 
§ Positional Mapping: SNPs within a 10 kb window of a gene’s 

boundaries (based on ANNOVAR) were mapped to that gene. 
§ eQTL Mapping: SNPs were mapped to genes if they were significant 

cis-eQTLs in any of the brain tissue types considering pairs up to 1Mb 
apart. 

§ Chromatin Interaction Mapping: SNPs were mapped to genes via long-
range Hi-C data from tissue/cell types, including adult and foetal brain 
samples (e.g., Giusti-Rodriguez et al., 2019; PsychENCODE)[63-64]. 
A mapping was established if a SNP’s region interacted with a gene’s 
promoter (250 base pairs [bp] upstream to 500bp downstream of the 
transcription start site). 

o Functional Annotation: Combined Annotation Dependent Depletion 
(CADD) scores were used to predict the deleteriousness of genetic variants. A 
CADD score exceeding the widely accepted threshold of 12.37 is considered 
indicative of a potentially deleterious genetic variant [65]. 

• Gene-Set Analysis (MAGMA): MAGMA (v1.10) performed a competitive gene-set 
analysis to identify enriched biological pathways. SNPs within a window of 35 kb 
upstream and 10 kb downstream of a gene were assigned to it. The analysis tested 
17,023 gene sets (including “Canonical pathways” and “GO terms”) from MsigDB 
(v2023.1Hs), with significance at a Bonferroni-corrected threshold of P<2.94×10-6. 

• Cell-Type Specificity Analysis: To identify the specific brain cell types where the 
genetic risk for a subphenotype is concentrated, a gene-property analysis was 
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performed. A gene-property analysis using MAGMA tested for enrichment across 226 
unique cell types from 31 public single-cell RNA sequencing datasets from the human 
brain (including data from Wang et al., 2018; Hodge et al., 2019; Habib et al., 2017; 
La Manno et al., 2016; and Hochgerner et al., 2017) [66-70], [Table 15]. 

The analysis used 16,830 genes and conditioned on covariates (e.g., gene size, density). 
A 3-step workflow identified specific associations: (1) a per-dataset analysis, (2) a 
within-dataset conditional analysis, and (3) a cross-dataset conditional analysis. 
Significance was determined using the Benjamini-Hochberg (BH) [71] method, with a 
final Bonferroni-corrected threshold of P≤2.2×10-5. 

• Transcriptome-Wide Association Studies (TWAS): While FUMA annotates and 
maps risk variants to genes, TWAS provides a formal statistical test to identify which 
of those genes are likely causal by testing if their genetically predicted expression 
level is directly associated with the trait. To help prioritize potentially causal genes at 
GWAS loci by testing whether genetic risk is mediated through gene expression, a 
Transcriptome-Wide Association Study (TWAS) was conducted. The analysis was 
implemented using the  FUSION [28] software (within the GenomicSEM T-SEM 
module) [72] and utilized precomputed functional weights from large-scale eQTL 
datasets. These included 15 brain tissues from the GTEx Consortium (v8) and 
CommonMind Consortium (CMC), Table 15. To mitigate confounding from the 
highly complex Major Histocompatibility Complex (MHC) region, all primary 
analyses were conducted both with and without the MHC region, defined as 
coordinates chr6:28,477,797-33,448,354 (GRCh37/hg19). 

• The analysis was restricted to genes with significant evidence of cis-heritable 
expression (P < .01), and transcriptome-wide significance was set at a Bonferroni-
corrected threshold (P ≤ 5.54×10⁻⁷). To distinguish true causal effects from associations 
driven by linkage disequilibrium (LD) with other nearby genes, a conditional 
analysis was also performed within the FUSION framework. This analysis tests 
whether a gene’s association with a subphenotype remains significant after statistically 
accounting for the effects of all other associated genes within the same locus. This step 
is crucial for dissecting complex GWAS loci where multiple genes may show a TWAS 
signal, helping to pinpoint which gene has the most direct, independent effect on the 
trait. 

• While this conditional analysis helps to identify independent signals, it is distinct from 
more advanced fine-mapping methods such as FOCUS [73]. FOCUS goes a step further 
by using the information from all genes in a locus to calculate a posterior probability 
that each specific gene is the true causal gene. The conditional analysis performed here 
provides an essential intermediate step, giving stronger evidence for a gene’s 
independent role and increasing confidence in its prioritization for further biological 
investigation, but does not provide a formal probabilistic estimate of causality that 
FOCUS does. 
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• Local Genetic Correlation (LAVA): Local Analysis of [Co]variant Association 
(LAVA) was used to estimate local genetic correlations and identify specific genomic 
regions with shared risk between subphenotypes. 

• Genetic Architecture Analysis (SBayesS): This summary-level Bayesian model was 
used to estimate SNP-based heritability (h2snp), polygenicity, and negative selection 
(S) for subphenotypes. Heritability was transformed to the liability scale using a shrunk 
LD matrix from GCTA (available at https://yanglab.westlake.edu.cn/software/gcta). 
Model convergence was confirmed by the Gelman and Rubin statistic (R^<1.2). 

• Credible Gene Set Prioritization: A “credible” gene was defined as one meeting two 
criteria: (1) a significant association in the conditional TWAS analysis, and (2) 
implication by at least one of three mapping strategies in FUMA. To prioritize a high-
confidence set of risk genes, a gene was defined as “credible” if it was significant in 
the conditional TWAS analysis and was also implicated by at least one of the three 
FUMA mapping strategies (positional, eQTL, or chromatin interaction). The statistical 
validity of this credible gene set was then confirmed by testing for enrichment of 
established rare-variant risk genes using a one-sided Fisher’s exact test. 

• Validation with Rare-Variant Data: The credible gene sets were tested for 
enrichment of established rare-variant risk genes from the Schizophrenia Exome Meta-
analysis (SCHEMA) [74] and Bipolar Exome (BipEx) consortia [75]. The enrichment 
was assessed using a one-sided Fisher’s exact test (P< .0125). 
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Table 15 Reference Datasets and Publications for FUMA Analysis Modules and TWAS 

FUMA 
Module Category Specific Dataset/Tool Reference 

Available at https://fuma.ctglab.nl/links 
Cell Type scRNA-seq Adult Human Brain Siletti et al. (2023). Science. 382(6667). 

  GSE168408 Herring et al. (2022). Cell. 185, 4428-4447. 

  Allen Brain Atlas 
(Human MTG) 

Hodge et al. (2018). bioRxiv. doi: 
10.1101/384826. 

  DroNc Habib et al. (2017). Nat. Methods. 14, 955-958. 
  GSE76381 La Manno et al. (2016). Cell. 167, 556-580. 
  GSE101601 Hochgerner et al. (2017). Sci. Rep. 7: 16327. 
  GSE104276 Zhong et al. (2018). Nature. 555, 524-528. 

  GSE67835 Darmanis et al. (2015). Proc. Natl. Acad. Sci. 
USA. 112, 7285-90. 

SNP2GENE LD Reference Panel 1000 Genomes Project 
Phase 3 

The 1000 Genomes Project Consortium. (2015). 
Nature. 526, 68–74. 

  UK Biobank Bycroft et al. (2018). Nature. 562(7726), 203–
209. 

SNP2GENE Gene Expression (MAGMA) BrainSpan Kang et al. (2011). Nature. 478, 483-489. 

SNP2GENE eQTL Mapping Blood eQTL Browser Westra et al. (2013). Nat. Genet. 45, 1238-
1243. 

  BIOS QTL Browser Zhernakova et al. (2017). Nat. Genet. 49, 139-
145. 

  BRAINEAC Ramasamy et al. (2014). Nat. Neurosci. 17, 
1418-1428. 

  CommonMind 
Consortium 

Fromer et al. (2016). Nat. Neurosci. 16, 1442-
1453. 

  MuTHER Grundberg et al. (2012). Nat. Genet. 44, 1084-
1089. 

  xQTLServer Ng et al. (2017). Nat. Neurosci. 20, 1418-1426. 

  eQTLGen Vosa et al. (2018). bioRxiv. doi: 
10.1101/447367. 

  DICE Schmiedel et al. (2018). Cell. 175, 1701-
1715.e16. 

  van der Wijst et al. 
scRNA eQTLs 

van der Wijst et al. (2018). Nat. Genet. 50, 493-
497. 

  eQTL Catalogue Kerimov et al. (2021). Nucleic Acids Res. 
49(D1), D997-D1003. 

  EyeGEx Ratnapriya et al. (2019). Nat. Genet. 51(4), 615-
624. 

  InsPIRE Viñuela et al. (2020). Cell Reports. 31(10), 
107727. 

  TIGER Alonso et al. (2021). Cell Reports. 37(13), 
110167. 

SNP2GENE Chromatin Interaction Hi-C (GSE87112) Schmitt et al. (2016). Cell Rep. 17, 2042-2059. 

  Hi-C (Giusti-
Rodriguez et al.) 

Giusti-Rodriguez et al. (2019). bioRxiv. doi: 
10.1101/406330. 

  FANTOM5 Andersson et al. (2014). Nature. 507, 455-461. 
GENE2FUNC Gene Expression BrainSpan Kang et al. (2011). Nature. 478, 483-489. 

GENE2FUNC Gene Set Enrichment WikiPathways Kutmon et al. (2016). Nucleic Acids Res. 44, 
488-494. 

  DrugBank Wishart et al. (2008). Nucleic Acis Res. 36, 
D901-6. 



 103 

FUMA 
Module Category Specific Dataset/Tool Reference 

All Modules Core Tool PLINK Purcell et al. (2007). Am. J. Hum. Genet. 81, 
559-575. 

  MAGMA de Leeuw et al. (2015). PLoS Comput. Biol. 11, 
e1004219. 

 Annotation Tool ANNOVAR Wang et al. (2010). Nucleic Acids Res. 38:e164. 
 Annotation Score CADD Kircher et al. (2014). Nat. Genet. 46, 310-315. 

   
RegulomeDB Boyle et al. (2012). Genome Res. 22, 1790-7. 

 Annotation Data 15-core chromatin 
state (ChromHMM) 

Roadmap Epigenomics Consortium. (2015). 
Nature. 518, 317-330. 

  GTEx The GTEx Consortium. (2020). Science. 
369(6509), 1318-1330. 

  PsychENCODE Wang et al. (2018). Science. 362, eaat8464. 
 Gene Score pLI (from ExAC) Lek et al. (2016). Nature. 536, 285-291. 

  ncRVIS Petrovski et al. (2015). PLOS Genet. 11, 
e1005492. 

 Gene Set Enrichment MSigDB Liberzon et al. (2011). Bioinformatics. 27, 
1739-40. 

  GWAS Catalog MacArthur et al. (2016). Nucleic Acids Res. 
pii:gkw1133. 

TWAS 
Module Download at http://gusevlab.org/projects/fusion 

TWAS 
Module  

 
 

T-SEM (FUSION software in 
GenomicSEM module)  

 

CommonMind 
Consortium (CMC) 

Brain (DLPFC) - RNA-seq, Brain (DLPFC) - 
RNA-seq splicing 

  GTEx v8 

Amygdala, Anterior cingulate cortex (BA24), 
Caudate (basal ganglia), Cerebellar 

Hemisphere, Cerebellum, Cortex,  Frontal 
Cortex (BA9), Hippocampus, Hypothalamus, 
Nucleus accumbens (basal ganglia), Putamen 

(basal ganglia), Spinal cord (cervical c-1), 
Substantia nigra 

 

  Foetal 

O’Brien, Heath E., et al. “Expression 
quantitative trait loci in the developing human 
brain and their enrichment in neuropsychiatric 
disorders.” Genome biology 19.1 (2018): 194. 
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2.9 Psychometric and Predictive Modelling 
 
Dimensional Structure Analysis 

To investigate the underlying structure of clinical symptoms in the bipolar disorder sample, a 
multi-stage approach was employed in Chapter 3 using both Exploratory and Confirmatory 
Factor Analysis (EFA/CFA). The initial data-driven exploration used EFA to uncover latent 
dimensions of psychopathology from 77 clinical items from the Operational Criteria (OPCRIT) 
checklist. Based on multiple criteria including parallel analysis, scree plots, and model fit 
indices (Table 16, and Chapter 3 Table 19, Figures 12-13), a four-factor structure was identified 
as the most robust and clinically relevant. 

Table 16 Factor Model fit indices description for Chapter 3 & 5 

 

Data for 77 clinical symptoms from the OPCRIT with adequate sample sizes were included for 
analysis. Items with zero- or near-zero variance were removed to enable model convergence. 
The clinical sample was partitioned into balanced 60/40 splits for the exploratory (calibration) 
and confirmatory (validation) phases using the createDataPartition function in the Caret [76] 
package. The analysis was conducted on a calibration subsample of 1554 BD patients. 
The ’WLSMV’ estimator was used for the ordinal categorical items, and Geomin rotation was 
applied to allow the latent factors to correlate. Items with very low frequencies were analysed 
separately via regression. For items with a high pairwise correlation (.7 or above), the item 
with the least missingness and most clinical relevance was retained to ensure a parsimonious 
model. 

To prepare the data for factor analysis, several steps were taken in R. Redundancy between 
clinical items was assessed using the hetcor function in the polycor [77] package. Missing data, 
which was low at 8%, was assessed using the var_miss function in the Naniar [78] package, 
and its pattern was confirmed to be Missing At Random (MAR) using 
the missing_compare function in the finalfit [79] package. To avoid potential overfitting, 
imputation was not performed. The clinical sample was partitioned into balanced 60/40 splits 
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for exploration and confirmation using the createDataPartition function in the caret package. 
To further confirm the data’s suitability for structure detection, the Kaiser-Meyer-Olkin (KMO) 
[80] test was used to measure sampling adequacy, and Bartlett’s test of sphericity [81] was used 
to test for significant interrelatedness between variables. For preliminary Principal Component 
Analysis (PCA) on the clinical data, scales were normalized before computing components with 
the ’prcomp’ function in R. 

The number of factors to retain was determined using multiple criteria, including parallel 
analysis with the fa.parallel function in the psych [82] package and scree plots generated with 
the fviz_eig function in the factoextra [83] package. Exploratory and Confirmatory Factor 
Analyses were conducted using the efa and cfa functions, respectively, from the lavaan 
[84] package. The final path diagrams were visualized using the lavaanPlot [85] package. 

This structure was then formally tested and validated using CFA on an independent subsample. 
A parsimonious model consisting of the 20 core OPCRIT symptoms that loaded most strongly 
and consistently onto the four factors was developed. The items comprising this final four-
factor model are detailed in Table 17 below. A complete list of all 77 items included in the 
initial exploratory analysis, along with their full factor loadings, can be found in Chapter 3, 
Table 22. The selection of the 20 symptoms for the CFA was based on a median factor 
loading above .6 to ensure a parsimonious and reliable model, which is a widely accepted 
practice for retaining meaningful indicators. The initial threshold of .4 was used to interpret the 
EFA factor loadings. This threshold was chosen to align with criteria used in previous factor 
analyses of bipolar disorder symptoms (Allardyce et al., 2023) [86].  

The fit of the final factor models was evaluated using multiple fit indices in Chapter 3 and 5, 
though the Standardised Root Mean Squared Residual (SRMR) was not used due to evidence 
of bias in binary data. 

Further checks for multicollinearity (using eigenvalues) and the linearity assumption (using 
bivariate scatterplots of predicted factor scores) were also performed.  

To assess the genetic contributions to these latent factors, the CFA was extended into 
a Multiple Indicator Multiple Cause (MIMIC) model, a special case of Structural Equation 
Modeling (SEM). This was implemented with the ’sem’ function in lavaan, and an a 
priori power analysis for the model was conducted using the semPower [87] package in R. 
This integrated model was preferable to separate multiple regressions as it allows for the 
simultaneous modelling of both the factor-level and item-level associations with genetic load. 
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2.10  Validation and Sensitivity Analyses 

Sensitivity analyses for dimensional modelling for Chapter 3  

To test the robustness of the final CFA model and the independent contribution of each of the 
20 core clinical items in Chapter 3, a multi-stage validation process was used. Two primary 
sensitivity analyses were performed. 

First, individual-level factor scores for each of the four dimensions were estimated using 
a ”leave-one-out” approach, where each item was omitted from the CFA model in turn. The 
resulting factor scores were then used in regression models to confirm that a dimension’s score 
was the best predictor for its own constituent symptoms. 

Second, to ensure the genetic associations identified at the global SEM level held for individual 
items, regression analyses were conducted using the individual-level Polygenic Risk Scores 
(PRS) for each of the five psychiatric disorders to predict the presence of each of the 20 core 
symptoms. For both of these sensitivity analyses, participants were dichotomized into the top 
10% of scores versus the remaining 90% to assess the increased risk (Odds Ratio) for reporting 
a given symptom. 

Finally, a third set of post-hoc regression analyses was performed for two primary reasons. The 
first was to explore the association between the newly identified chronicity dimension and other 
clinically important variables known to be associated with poorer outcomes in BD. The second, 
more specific reason, was to investigate variables like rapid cycling, suicide thoughts, and 
substance use. These variables were clinically expected to correlate with the chronicity 
dimension but did not meet the strict statistical cutoff (factor loading > .6) for inclusion in the 
final, parsimonious 20-item CFA model. This post-hoc approach allowed these crucial 
relationships to be investigated without degrading the primary model. 
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Table 17 OPCRIT Variables for Analyses in Chapters 3 & 4 

OPCRIT 
Item No. Variable Name Full OPCRIT Definition & Original Coding 

Use in Thesis 
(Chapter & 
Analysis) 

Analytical 
Coding 

Part I: Core Items for Dimensional Analysis (Chapter 3) 

24 Slowed activity Obvious slowing of movement, reaction time, and 
speech. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

42 Excessive self-
reproach 

Pathological feelings of guilt, including self-blame 
and remorse which is persistent, inappropriate or 

out of proportion. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

39 Loss of pleasure 
(anhedonia) 

A pervasive loss of interest or pleasure in all or 
almost all of the patient’s usual activities. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

25 Loss of 
energy/tiredness 

Subjective experience of tiredness, weariness or 
loss of energy. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

37 Dysphoria An unpleasant mood state with features of 
depression, anxiety and/or irritability. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

31 Racing thoughts Thoughts that are so rapid the patient cannot ‘keep 
up with them’. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

30 Pressured 
speech 

An increase in the amount and/or speed of speech 
which is difficult for the interviewer to interrupt. 

(0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

22 Reduced need 
for sleep 

Patient feels rested and full of energy after only a 
few hours sleep (e.g. 3 hours less than usual). 

(0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

19 Excess activity An increase in the level of activity, e.g. at work, 
socially or sexually. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

35 Elevated mood 
A sustained feeling of wellbeing, cheerfulness, or 
elation, which is not in keeping with the patient’s 

circumstances. (0, 1, 2) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

58 Delusions of 
influence 

The belief that one’s feelings, impulses, thoughts, 
or actions are not one’s own, but are imposed by 

some external force. (0, 1) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

54 Persecutory/jeal
ous delusions 

A delusion of being persecuted (e.g. being 
followed, harassed, conspired against), or of the 

infidelity of one’s spouse or partner. (0, 1) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

67 Thought 
withdrawal 

The experience of thoughts being removed from 
one’s mind by an outside agency. (0, 1) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

66 Thought 
insertion 

The experience of thoughts, which are not one’s 
own, being inserted into one’s mind. (0, 1) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

68 Thought 
broadcast 

The experience of one’s thoughts being broadcast 
or escaping from one’s mind so that others can hear 

them. (0, 1) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

10 
Premorbid poor 

social 
adjustment 

Patient found difficulty entering or maintaining 
normal social relationships, showed persistent 

social isolation, withdrawal or maintained solitary 
interests prior to onset of psychotic symptoms. 

(0, 1) 

Chapter 3: 
EFA/CFA & 

Post-hoc 
Regressions 

Treated as 
Ordinal / 
Binarised 

11 
Premorbid 
personality 

disorder 

Evidence of 
inadequate/schizoid/schizotypal/paranoid/cyclothy
mic/psychopathic/sociopathic personality disorder 
present since adolescence and prior to the onset of 

psychotic symptoms. (0, 1) 

Chapter 3: 
EFA/CFA & 

Post-hoc 
Regressions 

Treated as 
Ordinal / 
Binarised 

9 
Premorbid poor 

work 
adjustment 

Refers to work history before onset of illness. 
Scored if the patient was unable to keep any job for 

more than 6 months, had a history of frequent 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 
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changes of job or was only able to sustain a job 
well below that expected. (0, 1) 

88 
Inter-episode 

remission 
(subsyndromal) 

Deterioration from premorbid level of functioning: 
Patient does not regain his premorbid social, 

occupational or emotional functioning after an 
acute episode of illness. (0, 1) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

90 
Course of 
disorder 
(chronic) 

Course of disorder: 1 = Single episode with good 
recovery, 2 = Multiple episodes with good recovery 

between, 3 = Multiple episodes with partial 
recovery between, 4 = Continuous chronic illness, 
5 = Continuous chronic illness with deterioration. 

(1, 2, 3, 4, 5) 

Chapter 3: 
EFA/CFA 

Treated as 
Ordinal 

Part II: Key Variables for Transdiagnostic & Predictive Analyses (Chapters 3 & 4) 

4 Age of Onset The age at which the proband first met criteria for a 
manic, mixed or major depressive episode. 

Chapter 4: 
Regression/RF 

Models 

Continuous 
(Age in 
years) 

36 Irritable mood A mood state characterized by a pervasive feeling 
of irritability. (0, 1, 2) 

Chapter 4: 
Regression/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

43 Suicidal 
thoughts 

Recurrent thoughts of death (not just fear of dying), 
recurrent suicidal ideation without a specific plan, 

or a suicide attempt or a specific plan for 
committing suicide. (0, 1) 

Chapter 3: Post-
hoc Regressions 

Binarised 
(0=No, 
1=Yes) 

80 
Other substance 

abuse/ 
dependence 

A lifetime diagnosis of abuse of or dependence on 
any other specified substance. (0, 1) 

Chapter 3: Post-
hoc Regressions 

Binarised 
(0=No, 
1=Yes) 

87 
Impairment/ 
incapacity 

during disorder 

0 = No impairment, 1 = Subjective impairment, 2 = 
Impairment in major life role, 3 = No function at all 

in major life role. 
Chapter 3: EFA Treated as 

Ordinal 

N/A Rapid Cycling 
A derived variable based on the OPCRIT 

assessment: “Four or more mood disturbances in 
one year?” 

Chapters 3 & 4: 
Regressions/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

N/A Psychosis 
(Overall) 

A composite variable defined by the presence of 
any OPCRIT item related to delusions or 

hallucinations. 

Chapter 4: 
Regression/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

 

Statistical Learning and Predictive Models for Chapter 4 

To extend the predictive analyses beyond standard regression and account for non-linear 
relationships and interactions between predictors, Random Forest (RF) models were employed, 
implemented via the cforest function in the caret package in R. As detailed in Chapter 4, these 
models were used to evaluate the predictive performance of the SCZ3-PRS alone and in 
combination with other clinical variables for several BD1 subphenotypes. The key OPCRIT-
derived variables used in these analyses are defined in Table 17 above. 

The RF models utilized a conditional inference framework (cforest) [88] to reduce the risk of 
overfitting in data with correlated predictors. Model performance for binary outcomes (e.g., 
psychosis) was assessed using 10-fold cross-validation to calculate the Area Under the Curve 
(AUC) of the Receiver Operating Characteristic (ROC). For continuous outcomes (e.g., age of 
onset), performance was assessed with Root Mean Squared Error (RMSE) and R-squared (R2). 
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The relative importance of each predictor in the models was determined using the Mean 
Decrease Accuracy (MDA) score. For comparison, penalized regression models (elastic net) 
were also used to assess variable importance using cv.glmnet [89] in R. 

To formally compare the predictive performance of different models (e.g., a model with clinical 
variables versus a model with both clinical and genetic variables), pairwise Bonferroni-
corrected one-sample t-tests were performed on the performance metrics (AUC or R2) 
generated during cross-validation. For interpretation, a model was considered to have clinical 
utility if the AUC and Positive Predictive Value (PPV) reached at least .8. An AUC value 
between .71 and .79 was considered moderately discriminative, while an AUC ≥ .79 was 
considered strongly discriminative. 

The statistical significance of each predictor’s importance score (Mean Decrease Accuracy, 
MDA) was determined using a permuted, cross-validated P-value implemented in the Vita 
[90] R package. To account for potential bias from correlated predictors, conditional 
permutation importance (CPI)[ was calculated using the Permimp [91] R package to establish 
the final variable importance rankings. 

To ensure the reliability of the prediction of BD1 traits and to handle correlated clinical 
variables, this thesis used a non-parametric algorithm in addition to standard regressions. This 
approach can detect non-linear relationships and was implemented using penalized ‘elastic net’ 
modelling and Conditional Random Forest (‘cforest’)  functions within the ‘caret’ R package, 
which uses a conditional inference framework to reduce the risk of overfitting. 

Multivariate Regression Models: For the elastic net penalty regression models, individuals with 
BD1 were randomly allocated to training, validation, or testing sets (70%:15%:15%). Ten-fold 
cross-validations were implemented to further avoid overfitting, with classification statistics 
calculated in the ‘cvAUC’ [92] package in R. These models served as a robustness check for 
comparison with the Random Forest models’ variable importance rankings. 

Non-parametric Random Forest Models:  For the RF models, individuals with BD1 were also 
randomly allocated to training, validation, and testing sets (70%:15%:15%). RF predictions 
rely on bootstrapping 1000 decision trees, and tuning parameters (mtry = 2, 4, 7, 10) were used 
to optimize the models. Predictive performance for binary outcomes was determined using ten-
fold cross-validated models to calculate the Receiver Operating Characteristic (ROC) curve, 
Area-Under-the-Curve (AUC), sensitivity, specificity, and accuracy. For continuous outcomes, 
accuracy was assessed with Mean Absolute Error (MAE) and the more stringent Root Mean 
Squared Error (RMSE) along with R-squared (R2). 

Ranking Variable Importance: The importance of variables in predicting psychosis and its 
subtypes was compared between the penalized elastic net regression and the conditional 
random forest models. For regressions, the effect size is reported as the log odds ratio 
(LogOR). For random forest, variables are ranked based on their Mean Decrease Accuracy 
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(MDA) score; higher scores represent more accuracy loss when the variable is excluded from 
the model.  

2.11  Derivation of Genetic-Clinical Dimensions from Subphenotypes 

To provide an empirical framework for the clinical heterogeneity of bipolar disorder, a multi-
step analysis was performed in Chapter 5. The primary goal was to identify underlying latent 
factors that could group the subphenotypes into broader, more genetically coherent dimensions. 

To empirically deconstruct the clinical heterogeneity of bipolar disorder for the analysis in 
Chapter 5, a multi-stage factor analysis was performed on 11 clinical subphenotypes in a 
sample of 18,800 BD cases. The suitability of the data for this analysis was first confirmed 
with the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and a significant 
Bartlett’s test of sphericity. Initial exploratory techniques included Principal Component 
Analysis (PCA) and Factor Analysis of Mixed Data (FAMD), which was implemented in 
the FactoMineR [93] R package to visualize the main components. Additionally, hierarchical 
clusters were investigated using the ’iclust’ algorithm from the psych package, where 
subphenotypes were merged into composite scales based on an increase in coefficients alpha 
and beta. A parallel analysis, conducted using the psych package in R, provided statistical 
support for a four-factor model, which was then formally tested and validated using 
Confirmatory Factor Analysis (CFA) in the lavaan package. The final four-factor clinical 
model was selected after demonstrating a superior fit compared to more parsimonious models 
with fewer factors. Finally, to validate the clinical structure with genetic data, a separate 
Principal Component Analysis (PCA) was performed on the genome-wide significant MTAG 
loci. This analysis was conducted using the FactoMineR package for computation and 
the factoextra package for visualization. The statistical reliability of the resulting genetic-
clinical dimensions was then confirmed with a one-way ANOVA using independent results 
from the LAVA analyses. 

To assess for phenotypic heterogeneity before pooling data for the meta-analyses, generalized 
linear mixed-effects models (GLMMs) were performed with geographic region included as a 
random effect. The random effect was consistently non-significant across the models, 
confirming a high degree of phenotypic homogeneity across recruitment sites and supporting 
the validity of the combined analysis. 
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Table 18 Additional OPCRIT Variables for Analyses in Chapters 3 & 4 

OPCRIT 
Item No. 

Variable 
Name Full OPCRIT Definition & Original Coding 

Use in Thesis 
(Chapter & 
Analysis) 

Analytical 
Coding 

1 Source of 
rating 

The source of the patient data –  
1 = Hospital case notes (charts). 
2 = Structured interview with subject. 
3 = Prepared abstract. 
4 = Interview with informant. 
5 = Combined sources including structured interview. 
6 = Combined sources not including structured 
interview 

Chapters 3 & 4: 
Regressions/RF 

Models 
Nominal 

4 Age of 
Onset 

The age at which the proband first met criteria for a 
manic, mixed or major depressive episode. 

Chapter 4: 
Regression/RF 

Models 

Continuous 
(Age in 
years) 

36 Irritable 
mood 

A mood state characterized by a pervasive feeling of 
irritability. (0, 1, 2) 

Chapter 4: 
Regression/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

N/A Rapid 
Cycling 

A derived variable based on the OPCRIT assessment: 
“Four or more mood disturbances in one year?” 

Chapters 3 & 4: 
Regressions/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

N/A Psychosis 
(Overall) 

A composite variable defined by the presence of any 
OPCRIT item related to delusions or hallucinations. 

Chapter 4: 
Regression/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

N/A 
Congruent/ 
Incongruent  
Psychosis 

A composite variable indicating psychotic symptoms 
consistent/inconsistent with the patient’s mood state. 

(Available for RO cohort only). 

Chapter 4: 
Regression/RF 

Models 

Binarised 
(0=No, 
1=Yes) 

 

All statistical analyses were carried out in R version 4.4.2 [3] on data stored securely on 
computer clusters supported by University College London (London, UK). 
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3 Bipolar Disorder Dimensionality 
 

 
A preprint version of the research in this chapter is available on medRxiv at 

doi: https://doi.org/10.1101/2025.05.17.25327825 

 

3.1 Abstract         

 
Background: Bipolar disorder (BD) factor models offer limited dimensional understanding 
due to incomplete integration of chronic deficits, long-term outcomes, and transdiagnostic 
genetics, thus restricting personalised interventions. This study aimed to provide a holistic 
understanding of BD psychopathology, overcoming this limitation. 

Aims: In this study I aimed to develop and validate a novel dimensional model of bipolar 
disorder (BD) that integrates premorbid factors, and to investigate the transdiagnostic genetic 
architecture of its dimensions using polygenic risk scores. The study hypothesized that a 
distinct dimension of bipolar disorder exists that links premorbid factors to a poor long-term 
illness course. Furthermore, it was predicted that this adverse trajectory would be genetically 
associated with a higher risk for ADHD and anxiety. 

Methods: Exploratory Factor Analysis of 77 OPCRIT items revealed four psychopathological 
dimensions, and Confirmatory Factor Analysis validated a 20-item, four-factor BD model. 
Polygenic Risk Scores for five relevant disorders were calculated, and Structural Equation 
Modelling analysed the genetic contributions to this dimensional model. The study applied 
Inverse Probability Weighting to address biases in a sample of 4992 participants. 

Results: Confirmatory Factor Analysis revealed a novel Adverse Chronic Trajectory (ACT) 
dimension, characterised by the co-occurrence of premorbid deficits, reduced inter-episode 
remission and poorer long-term outcomes in individuals with BD. Structural Equation 
Modelling further showed distinct patterns of genetic liability: BD PRS for 
mania, Schizophrenia (SCZ) PRS for psychosis, and Major Depressive Disorder (MDD) 
PRS for depression. Notably, the ACT dimension exhibited a positive association 
with Attention-Deficit/Hyperactivity Disorder (ADHD) and anxiety PRSs, and an inverse 
relationship with BD PRS. 

Conclusions: This study offers a novel and clinically relevant dimensional model of BD by 
identifying the ACT dimension, which uniquely integrates crucial premorbid factors and 
outcomes. The identified direct genetic link between ADHD and anxiety with ACT (a 
trajectory associated with poorer BD outcomes) provides important new insight into a 

https://doi.org/10.1101/2025.05.17.25327825
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challenging illness course. This potentially enables earlier identification and facilitates targeted 
interventions to reduce risk for a chronic outcome and overall quality of life in BD. 

3.2 Introduction 

Limitations of Categorical Diagnosis  

Bipolar disorder (BD) shows diverse outcomes influenced by genetics beyond current 
subtyping (BD1, BD2). Traditional classifications often overlook the critical impact of 
premorbid factors on long-term outcomes. While course specifiers aim to improve treatment 
alignment [1-2], this study proposes a novel dimensional approach for a more nuanced 
understanding of BDs inherent heterogeneity beyond categorical diagnoses. 

Bipolar Disorder: A Symptom Continuum  

Many BD patients experience continuous symptoms beyond discrete episodes: cognitive 
deficits in remission are reported, with prevalence as high as 70% [3-5]; 20-50% experience 
inter-episodic symptoms [6], highlighting limitations of episodic models. Even during 
euthymia, executive dysfunction and anxiety persist, indicating vulnerability [7-8]. Personality 
traits also influence BDs onset, progression, and course [9]. 

Dimensional Frameworks in Bipolar Disorder  

Dimensional approaches dissect BDs heterogeneity, allowing researchers to identify 
potentially more genetically similar subgroups based on specific symptom profiles. 
Acknowledging this heterogeneity, research increasingly focuses on genetic differences within 
more homogeneous subgroups [10] to understand genetic contributions to diverse 
presentations. While specific BD course specifiers show familiality [11], and genetic liabilities 
for subphenotypes are being identified, single regression models can complicate interpretation 
[12-24]. A dimensional framework offers a powerful alternative by examining 
psychopathology along continuous axes, enabling nuanced analysis of specifier interrelations 
and combined genetic liabilities for a holistic understanding of BD heterogeneity. 

Impact of Premorbid Factors on Bipolar Disorder  

Cognitive and functional deficits, not fully recognised specifiers [1, 25], contribute to BD 
variability and impair quality of life, even during mood stability [4, 26]. These deficits exist on 
a spectrum, negatively impacting relationships and productivity, often leading to social 
withdrawal [27] and affecting 30-60% of adults with BD [28]. Early onset of these deficits 
links to worse outcomes including anxiety, substance use, and suicidality, with increased 
childhood risk [29-30]. Recognising genetic predisposition could potentially reduce diagnostic 
delays [31] and suicide rates in BD [32]. Examining these deficits within a broader 
psychopathological spectrum may also clarify connections to other disorders. While research 
on psychosis [12] explored premorbid risk factors, their specific impact on long-term BD 
outcomes remains less understood. 
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Genetic Contributions and Polygenic Risk Scores  

Genetic factors substantially contribute to BD comorbidity [33], with approximately 35-65% 
of individuals with BD meeting criteria for another psychiatric condition [34], indicating 
complex psychopathology interplay. This high comorbidity suggests single-disorder analyses 
might miss critical genetic factors contributing to this broader spectrum of co-occurring 
conditions. Symptoms often begin early and persist, and may be worsened by environmental 
factors [35-39].  

Polygenic risk scores (PRSs) are valuable tools for investigating the genetic basis of BD 
heterogeneity and comorbidities [40-41]. Analysing symptom clusters may reveal stronger 
genetic associations than isolated disorder analyses. For example, higher SCZ PRS is linked to 
mood-incongruent psychotic symptoms and earlier BD onset [16, 22]. Higher ADHD and 
anxiety risk correlates with rapid cycling [19, 42]. ADHD increases multimorbidity risk, 
worsening symptom severity and functional impairment [44-45]. Polygenic ADHD burden has 
been linked to earlier BD onset and lithium resistance, while lithium response can be influenced 
by family history and absence of anxiety or rapid cycling [18, 46-50]. Factor analysis can 
simplify complex relationships between symptoms and disorders, revealing underlying factors 
and their genetic contributions within a spectrum framework. 

 

3.3 Aims 

Introducing Adverse Chronic Trajectory (ACT)  

This study aimed to develop a novel dimensional model of bipolar disorder by integrating 
premorbid factors with other clinical symptoms. Building on prior BD modelling using 
OPCRIT items, this study introduces a novel four-factor model. By combining OPCRIT items 
and PRS, I identified an Adverse Chronic Trajectory (ACT) dimension, demonstrating 
correlations between premorbid deficits and adverse BD outcomes, with shared genetic 
burdens for ADHD and anxiety prominently associated with APT, thus emphasising its role 
and genetic links for advancing BD understanding, classification, and intervention. 

3.4 Methods 

The underlying structure of 77 OPCRIT [4] items was investigated using Exploratory and 
Confirmatory Factor Analysis. The genetic architecture of the resulting dimensions was then 
explored by integrating five transdiagnostic Polygenic Risk Scores into a Structural Equation 
Model (MIMIC) [72]. Central to this chapter’s investigation of long-term outcomes were two 
key OPCRIT variables used to define the illness trajectory. The “Reduced inter-episode 
remission” (item 88) was coded as a binary measure to capture whether a patient returned to 
their premorbid baseline after an acute episode. To complement this, the “Course of disorder” 
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(item 90) was treated as an ordinal variable, allowing us to model the full spectrum of outcomes 
from complete recovery to a chronic, deteriorating course (for a full description, see Table 23).   

A complete description of the participant cohorts, the OPCRIT instrument, factor 
analysis procedures, and PRS calculations is provided in Methods (Chapter 2). 

3.5 Results 

(i) Clinical Characteristics 

77 clinical symptoms were examined and five psychiatric disorder PRS estimated in 2590 
individuals with BD and 2402 healthy controls. The overall sample consisted of 61% females 
and 39% males, with no sex distribution differences across BD subtypes. A difference in age 
of onset within cases was found across BD subtypes, specifically between SZA and BD2 
(Chapter 2, Table 2). 

(ii) EFA 

Initially 77 clinical symptoms were evaluated in a calibration sample of 1554 BD patients 
(60%). Seventy-six symptoms loaded (P < .05) across four factors; Family history of 
schizophrenia (OPCRIT 13) was the exception. Symptoms exceeding .4 were visualised 
(Figure 14, Table 22). A four-factor EFA model fit best (χ² = 304, RMSEA = .033 [90% 
Confidence Intervals [CI] .024–.037], CFI = .989, and TLI = .986). Four factors were retained 
based on the lower RMSEA, parallel analysis, and scree plot (see Table 19, Figures 12-13 
below). 
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3.5.1.1 Exploratory factor analysis (EFA) models fit indices  
 

Table 19 Exploratory factor analysis (EFA) models fit indices 

 

 

 
 

Figure 12 Parallel Analyses for exploratory factor analysis.  
This figure illustrates the results of the parallel analysis conducted to determine the number of factors 
to retain in the exploratory factor analysis (EFA). The plot displays the eigenvalues obtained from the 
actual data (blue line) compared to the eigenvalues from random, uncorrelated data (red line). The 
intersection of the eigenvalues or the point where the real data eigenvalues drop below the random data 
eigenvalues typically suggests the appropriate number of underlying factors. In this specific analysis, 
the real data eigenvalues remain above the simulated data eigenvalues for four factors, suggesting that 
a four-factor model is appropriate.  



 117 

 
 

 
 

Figure 13 Scree plot for exploratory factor analysis.  
This figure illustrates the scree plot, which is a graph of the eigenvalues of the factors plotted against 
the factor number. The shape of the plot helps to determine the number of factors to retain in EFA. The 
“elbow” or point of inflection in the scree plot typically indicates where the amount of variance 
explained by subsequent factors starts to diminish, suggesting an optimal number of factors before the 
“scree” begins. In this scree plot, the elbow is observed at the fourth factor, suggesting the retention of 
four factors is appropriate.  
 

 
Table 19 presents the fit indices for Exploratory Factor Analysis (EFA) models with one to 
four factors, tested on a calibration subsample of bipolar disorder participants (N=1554). The 
fit indices included are Chi-Square, Root Mean Square Error of Approximation (RMSEA) with 
its 90% Confidence Intervals (CI), Comparative Fit Index (CFI), and Tucker-Lewis Index 
(TLI). These indices were used to evaluate the model fit for each number of factors to determine 
the optimal factor structure for the OPCRIT data. Lower RMSEA values and higher CFI and 
TLI values (typically above .90-.95) generally indicate a better model fit. A four-factor EFA 
model fit best (χ2=304, RMSEA = .033 [90% Confidence Intervals [CI] .024–.037], CFI = 
.989, and TLI = .986). 
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Figure 14 Exploratory factor analysis of 77 OPCRIT for Chapter 3.  
This figure visualises the standardised factor loadings (lambda values) and their 90% confidence 
intervals (CIs) for 77 OPCRIT items derived from Exploratory Factor Analysis. Each item is 
represented by a circle on the x-axis according to its factor loading. Circles are color-coded to indicate 
loadings above (black, ≥ .4) or below (grey, <.4) a threshold of .4. The plot reveals four distinct factors, 
labelled as: Factor 1 - Depression, Factor 2 - Mania, Factor 3 - Adverse Chronic Trajectory (ACT), and 
Factor 4 - Psychosis. 

 

(iii) CFA 

Items were identified with a median threshold of .6 for EFA factor loadings to each of four 
dimensions, to ensure a parsimonious CFA model with literature-relevant items. Twenty core 
symptoms formed a four-factor model validated by CFA. The 4-factor CFA model using 20 
clinical symptoms indicated a good fit (χ² = 505.88, RMSEA = .03 [90% CI .03–.04], CFI = 
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.99, TLI = .99; Figure 15 below). Factors, defined by highest EFA loadings, showed robust 
associations (P < .05) with all 20 symptoms. CFA generated a four-factor model with 
interrelated mania, psychosis, depression, and ACT symptom dimensions. Lower covariances 
between dimensions compared to dimension items indicated distinct structures with minimal 
overlap. 

 
Figure 15 Confirmatory four-factor analysis (CFA) and fit indices.  
This figure displays the path diagram for the four-factor Confirmatory Factor Analysis (CFA) model. 
The circles represent the four latent symptom dimensions: Mania, Psychosis, Depression, and Adverse 
Chronic Trajectory (ACT). Arrows on the the left hand side represent covariances between mania and 
the other dimensions.  
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The squares indicate the 20 core OPCRIT items that load onto these dimensions. The square boxes 
illustrate the factor loadings of each item onto its respective dimension (circle), while arrows on the 
right hand side also show the covariances between the latent dimensions. The model demonstrated good 
fit to the data (χ2=505.88, RMSEA = .03 [90% CI .03–.04], CFI = .99, TLI = .99).  

 

3.5.1.2 Confirmatory factor analysis (CFA) loadings for 20 core OPCRIT items 
 
Table 20 Confirmatory factor analysis (CFA) loadings for 20 core OPCRIT items 

Predictor Target Item Number 
Coefficient/ 

Loading 

Mania Racing thoughts 27 0.941 

Mania Elevated mood 68 0.905 

Mania Excess activity 53 0.889 

Mania Reduced need for sleep 37 0.822 

Mania Pressured speech 32 0.807 

Psychosis Thought withdrawal 47 0.692 

Psychosis Thought broadcast 72 0.677 

Psychosis Thought insertion 70 0.629 

Psychosis 
Persecutory/jealous 

delusions 58 0.613 

Psychosis Delusions of influence 45 0.610 

Depression Loss of pleasure 36 0.867 

Depression Loss of energy/tiredness 38 0.812 

Depression Excessive self-reproach 19 0.765 

Depression Slowed activity 11 0.758 

Depression Dysphoria 60 0.714 

Chronicity Premorbid personality 
disorder 

22 0.771 

Chronicity Course of disorder 
(chronic) 

51 0.756 

Chronicity 
Reduced inter-episode 

remission 
42 0.747 

Chronicity 
Premorbid poor social 

adjustment 15 0.710 

Chronicity 
Premorbid poor work 

adjustment 24 0.662 

This table presents the standardised factor loadings of the 20 core OPCRIT items on their respective 
latent dimensions (Mania, Psychosis, Depression, and Adverse Chronic Trajectory) derived from the 
confirmatory factor analysis. Significance levels for the adjusted Bonferroni P-values are also indicated 
to show the strength of the relationship between each item and its assigned dimension. This table 
supports the validity and internal consistency of the four-factor model. Factors, defined by highest EFA 
loadings, all showed robust associations (P < .05) with their respective OPRCIT items 
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(iv) SEM Multiple Indicator Multiple Cause (MIMIC) model 

The final MIMIC model indicated distinct genetic liabilities across the four clinical dimensions 
(see Figure 16, Table 21 below). The statistical significance of the 20 path coefficients from 
the five PRS to the four latent dimensions was assessed against a Bonferroni-corrected alpha 
threshold of P<0.0025 (0.05 / 20 tests) to account for multiple testing. The mania dimension, 
strongest associated with BD PRS, associated positively with psychosis and depression, and 
inversely with ACT symptoms which correlated with worse outcomes. The PRS correlated 
strongest with their symptom dimensions; SCZ with psychosis, BD with mania, MDD with 
depression, and ADHD and anxiety with ACT. The MIMIC model fit acceptably (χ² = 348.45, 
RMSEA = .04 [90% CI .04–.04], CFI = .92, TLI = 0.90) but with less reliability than the CFA, 
likely due to the additional complexity. 

 

 
Figure 16 Structural equation (MIMIC) models (SEM) fit indices.  
This figure illustrates the results of the Structural Equation Model (SEM) using the Multiple Indicator 
Multiple Cause (MIMIC) approach. Rectangles on the left represent the five Polygenic Risk Scores 
(PRSs) used as predictors: Bipolar Disorder (BD), Schizophrenia (SCZ), Major Depressive Disorder 
(MDD), ADHD, and Anxiety (ANX). The central circles represent the four latent symptom dimensions 
derived from the factor analysis: Mania, Psychosis, Depression, and the Adverse Chronic Trajectory 
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(ACT). Arrows originating from the PRSs indicate the path coefficients predicting each latent 
dimension; the specific values for these paths are detailed in Table 21. Arrows pointing from the latent 
dimensions to the boxes on the right represent the factor loadings on the 20 core OPCRIT items. 
 

3.5.1.3 Estimates for SEM (MIMIC) of 20 OPCRIT items and five genetic covariates 
 
Table 21 Estimates for SEM (MIMIC) of 20 OPCRIT items and five genetic covariates 

Dimension PRS Estimate 
Odds Ratio 

(OR) Std.Error Z-value PBonferroni PBonf.signif 

Depression ANX 0.030 1.030 0.028 1.071 0.041 * 

Depression BD 0.014 1.014 0.030 0.467 0.043 * 

Depression ADHD 0.028 1.028 0.029 0.966 0.333 ns 

Depression MDD 0.080 1.083 0.029 2.759 0.007 ** 

Depression SCZ 0.027 1.027 0.028 0.964 0.0189 * 

Mania ANX -0.035 0.966 0.027 -1.296 0.046 * 

Mania BD 0.151 1.163 0.030 5.033 5.44x10-7 **** 

Mania ADHD -0.043 0.958 0.028 -1.536 0.013 * 

Mania MDD -0.050 0.951 0.028 -1.786 0.0086 ** 

Mania SCZ 0.054 1.055 0.028 1.929 0.0035 ** 

Psychosis ANX -0.023 0.977 0.030 -0.767 0.431 ns 

Psychosis BD 0.060 1.062 0.031 1.935 0.005 ** 

Psychosis ADHD 0.053 1.054 0.030 1.767 0.08 ns 

Psychosis MDD -0.031 0.969 0.030 -1.033 0.306 ns 

Psychosis SCZ 0.097 1.102 0.029 3.345 3.0x10-5 **** 

Chronicity ANX 0.043 1.044 0.033 1.303 0.003 ** 

Chronicity BD -0.090 0.914 0.034 -2.647 8.0x10-5 **** 

Chronicity ADHD 0.071 1.074 0.033 2.152 3.0x10-4 *** 

Chronicity MDD 0.050 1.051 0.033 1.515 0.003 ** 

Chronicity SCZ 0.036 1.037 0.032 1.125 0.026 * 

This table displays the results of the Structural Equation Model (SEM) using the Multiple Indicator 
Multiple Cause (MIMIC) approach. It shows the path coefficients indicating the strength and direction 
of the relationships between the five genetic covariates (PRSs for BD, SCZ, MDD, ADHD, and ANX) 
and both the latent symptom dimensions and the individual 20 core OPCRIT items. Significance levels 
for the adjusted Bonferroni P-values are also included. This table illustrates the distinct genetic 
liabilities associated with each of the identified symptom dimensions. *(Significance levels of adjusted 
Bonferroni P-value, < .0001 ****, < .001 ***, <.01 **, < .05). 
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Figure 17 Core items associations using individuals’ leave-one-out factor scores.  
This forest plot displays the odds ratios (ORs) and 95% confidence intervals from a “leave-one-out” 
validation analysis. The y-axis lists the 20 core clinical symptoms. The x-axis represents the OR for 
reporting a symptom, comparing individuals in the top 10% of a given factor score distribution to the 
remaining 90%. Each point is the result of a separate logistic regression, where a symptom was 
predicted by the factor scores derived from a model in which that symptom was excluded. The greyscale 
colour of the points denotes the predicting factor dimension. A solid point indicates a statistically 
significant association after Bonferroni correction, while a hollow point is not significant. 
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Figure 18 Core predictions using five transdiagnostic individual-level PRS scores. 
This forest plot displays the odds ratios (ORs) from separate logistic regression analyses testing the 
direct association between transdiagnostic genetic risk and individual symptoms. The y-axis lists the 20 
core clinical symptoms. The x-axis represents the OR for reporting a symptom, comparing individuals 
in the top 10% of a specific PRS distribution to the remaining 90%. Each point represents a single model 
where one symptom was predicted by one PRS (e.g., “Racing thoughts” predicted by BD PRS). 
The greyscale colour of the points denotes the predicting PRS. A solid point indicates a statistically 
significant association after Bonferroni correction, while a hollow point is not significant. 
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 (v) Sensitivity analyses 

For the sensitivity analyses predicting the 20 core clinical symptoms from the five individual 
PRS scores, a Bonferroni correction was also applied within each set of tests. Specifically, the 
significance threshold was adjusted for the 20 symptoms tested against each PRS (alpha = 0.05 
/ 20 = 0.0025) to control for the family-wise error rate. 

Individual-level factor (dimension) scores 

To analyse each of the 20 core items independent contribution to the CFA model, regression 
analyses was performed using individual-level factor scores. Factor scores were estimated 
using leave-one-out CFA analyses. The median RMSEA remained relatively stable within the 
full CFA models confidence intervals, indicating a robust model. The 20 items were each 
predicted by one of the individual-level factor scores for each dimension. Participants in the 
top 10% of scores were more likely to report the symptom compared to those in the lower 90%. 
Their factor score for the symptom-related dimension was a better predictor than scores from 
other dimensions. The odds ratio (OR) of reporting symptoms was increased for participants 
in the top 10% of factor scores. The specificity of these factor scores is illustrated in Figure 17 
and Table 24. For example, when predicting the symptom ‘Racing thoughts,’ the Mania factor 
score (shown as a dark grey point) had a significantly higher odds ratio (OR > 2.5) than the 
scores for the Psychosis, Depression, or Chronicity dimensions (all with ORs near 1.0). This 
pattern, consistent across the 20 core items, confirms that each factor score is the most potent 
predictor of its own constituent symptoms.  

Individuals PRS Scores 

To ensure the five genetic contributions at the global SEM level held for each dimension item, 
I performed regression analyses using each item and individual-level PRS scores in turn. 
Participants with the top 10% compared to the lower 90% of scores for the respective 
dimension, were associated with a higher risk (OR) for dimension-related symptoms. 
Separation of global effects revealed a mixture of effect directions related to ANX and SCZ 
PRS for the ACT dimensions (Figure 18 and Table 25). 

 

(vi) Post hoc Regression Analyses 

Rapid cycling (RC), considered a chronic form of BD [42-43], positively associated with the 
ACT dimension in EFA and inversely with mania. RC also showed a positive association with 
premorbid social adjustment (OPCRIT 10) (OR 1.185, P = 1.04 × 10⁻¹⁰) and personality 
disorders (OR 1.391, P = 1.288 × 10⁻¹⁰). Premorbid personality disorder was associated with 
substance abuse (OPCRIT 80) (OR 1.160, P = 4.98 × 10⁻¹⁰) and suicidal ideation (OPCRIT 43) 
(OR 1.140, P = 1.28 × 10⁻¹⁰). Both personality disorder and RC were associated with a higher 
ADHD PRS (1.325 and OR 1.209, respectively, both P < 5 x 10⁻⁵) and an earlier onset of BD 
(F = -3.782, P = 6.46 x 10⁻⁶ and F = -3.026, P = 4.821 x 10⁻⁵, respectively). 
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3.6 Discussion 

A Novel Four-Factor Model and the Adverse Chronic Trajectory Dimension  

The current research specifically addresses an under-examined association between premorbid 
deficits and a chronic BD course in genetic studies. The fourth dimension, which was termed 
the ’Adverse Chronic Trajectory’ (ACT), empirically captures a clinically crucial aspect of 
bipolar disorder that goes beyond acute mood symptoms. The core items loading onto this 
factor, poor premorbid work and social adjustment, personality disorder, and a chronic illness 
course with reduced inter-episode remission, may represent the long-term, cumulative burden 
of the illness. This dimension aligns with extensive research suggesting that a substantial 
portion of the disability in BD may stem not just from acute episodes, but from a persistent 
course characterized by enduring behavioural deficits [27]. 

Conceptually, the dimensions of Mania, Depression, and Psychosis are well-established 
clinical constructs that form the core of bipolar disorder psychopathology and have been 
identified in previous factor-analytic studies [21]. The current Chapter 3 model was designed 
to first confirm their foundational three-factor structure within the current independent dataset. 
Empirically, the decision to retain four factors was strongly supported by our statistical 
analyses as well as their supplementary materials. Both the current parallel analysis and scree 
plot tests clearly indicated that a four-factor solution provided the optimal fit for the data, 
explaining significantly more variance than a three-factor model without overfitting. The fourth 
dimension, termed the ‘Adverse Chronic Trajectory’ (ACT), emerged directly from the 
exploratory factor analysis as a distinct and coherent construct, and was confirmed in the 
confirmatory stage. 

3.6.1 ACT Dimension and Long-Term Outcomes 

One interpretation is that the ACT dimension represents a neurodevelopmental factor within 
bipolar disorder. The items loading onto this factor, poor premorbid social and occupational 
adjustment, personality difficulties, and a chronic course, are consistent with an illness 
trajectory rooted in early developmental processes. This aligns with a neurodevelopmental 
model where early-life abnormalities may contribute to long-term functional deficits (Chapter 
1[82]). It could identify a subgroup of patients whose illness is defined not just by mood 
episodes, but by a persistent trajectory of functional decline rooted in cognitive and behavioural 
deficits. This distinction is critical, as it suggests that the genetic liabilities contributing to the 
ACT factor may be linked to the mechanisms that govern long-term illness progression and 
cognitive outcomes in bipolar disorder, rather than just the risk for acute mood states. However, 
a key limitation of this interpretation is that the OPCRIT checklist, while detailed, was not 
designed to capture the full spectrum of neurodevelopmental traits, such as those associated 
with Autism Spectrum Disorder (ASD). Therefore, while the ACT factor points towards a 
developmental trajectory, its characterization is constrained by the scope of the measurement 
tool used. Similarly, the personality disorder item in ACT also lacks specificity.  
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ACT Links To Cognitive and Behavioural Deficits 

The elements of the ACT factor are strongly linked in the literature to underlying cognitive and 
behavioural impairments. Cognitive impairments, affecting memory, attention, and executive 
function, is considered a central feature of bipolar disorder. A chronic course with 
subsyndromal symptoms, a core feature of the ACT, is associated with these persistent 
cognitive deficits, which are observed even during stable, euthymic phases of the illness 
(Chapter 1[46]). Furthermore, a greater number of mood episodes has been longitudinally 
associated with a greater decline in cognitive measures, including working memory (Chapter 
1[111]). These cognitive deficits may manifest behaviourally as difficulty maintaining 
employment, social withdrawal, and an overall failure to return to the previous level of 
functioning, thereby negatively impacting relationships and productivity [27]. 

ACT Genetic Links To ADHD and Anxiety 

This model uniquely links a genetically influenced ACT dimension, connecting premorbid 
deficits and adverse long-term outcomes to genetic risk for ADHD and anxiety, highlighting a 
distinct pathway to illness severity and their contribution to social functioning, work, 
personality, and a less stable BD course [39]. Identifying this ACT dimension and its genetic 
links offers a new understanding of challenges beyond BD mood episodes, suggesting a 
biological basis emphasising transdiagnostic risks in BDs spectrum and variable outcomes. 

The finding that a higher ADHD PRS is associated with a more adverse chronic trajectory 
(ACT) in bipolar disorder aligns with evidence from Agnew-Blais et al. (2021) [73], who 
demonstrated that higher ADHD genetic risk is associated with a more persistent course of 
ADHD into young adulthood. Supporting this, Duffy (2012) [74] also suggests that childhood 
ADHD may be linked to a subtype of BD with a more severe course and poorer treatment 
response [48].  

Parental BD elevates child ADHD risk [75] and early chronic challenges. These factors and 
inherited genetic predisposition may heighten suicidality risk [76]. 

The ACT dimension and its genetic links provide a new framework for understanding diverse 
BD clinical presentations. This highlights the need for integrated assessment and treatment, 
particularly when addressing co-occurring ADHD and anxiety to improve long-term chronic 
outcomes. For BD individuals with chronic/cognitive deficits, clinicians could tailor integrated 
treatment plans for optimal outcomes [77]. 

Dimensional Assessment and Early Intervention Implications  

These findings also support a dimensional assessment in BD. Evaluating an individuals chronic 
trajectory and genetic risk for associated conditions could inform more comprehensive, 
personalised treatment plans, suggesting earlier identification of individuals predisposed to a 
more challenging BD course. This could enable  preventative or early intervention strategies 
focused on bolstering cognitive and functional deficits [28, 78]. The strong genetic associations 



 128 

with the ACT dimension, particularly with ADHD and anxiety [74], further underscore the 
potential for early intervention, as these often present in childhood and adolescence. 

Four versus a Three-Factor Model  

Building on dimensional approaches, this study increased the number of OPCRIT measures 
included than prior studies, yielding a fourth ACT dimension, validated in both this and one 
other study (eResults 4) [21]. Here, three clinical dimensions (mania, depression, psychosis) 
and their genetic associations replicated their findings. Importantly, in the current analysis, the 
additional measures and PRSs loaded strongest to the novel ACT dimension, thus only a four-
factor model could account for the genetic signatures in BD course specifiers. Additionally, 
the inclusion here of the propensity scores, likely provided more accurate assessment, adjusted 
for potentially inflated effect sizes commonly reported when analysing Electronic Health 
Records (EHR) data. 

Predictive Utility of the PRS  

Sensitivity analyses confirmed symptom strength independent of global dimensions. Factor 
and PRS scores better predicted risk for the dimension symptoms within than across 
dimensions in unseen data. PRS provided incremental predictive value to clinical data, with a 
median positive predictive value (PPV) at a .8 clinical utility threshold [79]. 

Factor Loading Thresholds  

A .6 factor loading threshold for OPCRIT items was used to maintain clinical relevance and 
parsimony, though prior analyses have used lower thresholds [12, 21, 78, 70]. Here, EFA 
robustness at .4 suggests future studies could use a lower threshold. While model fit and 
sensitivity were adequate, more items do not guarantee better accuracy and risk overfitting, 
reducing generalisability [70]. 

Genetics of the ACT Dimension  

The novel ACT dimension showed distinct genetic signatures. Higher BD burden indicated 
resilience against premorbid deficits and chronic illness progression, predicting higher 
functioning in an independent BD dataset [23] and an inverse relationship with rapid cycling 
[19]. Similarly, the mania dimension positively associated with BD PRS was inversely related 
to the ACT dimension.  

Genetics of the ACT Dimension Symptoms  

Symptoms associated with BD and SCZ PRS linked to higher inter-episode remission, in 
contrast to MDD, ANX, and especially ADHD, which positively associated with reduced inter-
episode remission. Higher BD PRS predicted inter-episode remission and reduced anxiety in 
an independent BD dataset [23]. Depression, anxiety, and cognitive issues are often early BD 
symptoms [5, 80]. Rapid cycling (RC) correlated with higher ANX or ADHD PRS but 
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inversely with BD in a prior study [19]. Co-occurring ADHD and anxiety elevate the risk for 
BD onset [18, 81-82], suggesting a less favourable trajectory.  

Severe incapacity (OPCRIT 87) linked primarily to mania and psychotic features, less to ACT 
symptoms, and least to depressive symptoms. BD PRS correlated with increased symptom 
severity and lower depression polygenic burden in multiplex BD families [83]. Here, strongest 
associations existed between premorbid occupational (OPCRIT 9) and social adjustment 
(OCPRIT 10), and ADHD or SCZ PRS. The observed negative association between ACT 
(including premorbid adjustment) and mania aligns with the inverse relationship found by 
Allardyce et al. (2007) [12]. Novel in the current study however, is the inverse association 
between genetic liability to BD PRS and ACT, capturing the association of illness chronicity 
and personality within the ACT dimension. 

Longitudinal data suggests enduring chronic and cognitive deficits in BD [5]. ACT 
impairments affect (30-60)% of adults with BD [28], especially with comorbid anxiety and 
ADHD [34]. Sensitivity analysis showed ADHD PRS consistently positive with the ACT 
dimension symptoms, while ANX and SCZ PRS effects were more complex across indicators, 
suggesting nuanced relationships needing further granular investigation. 

The higher BD1 proportion of cases here, linked to lower anxiety, might have limited ANX 
PRS and ACT dimension item-level associations. Prior factor analyses found the largest BD 
subgroup to be characterised by affective stability with low anxiety and low risk for ADHD-
like behaviours, supporting this chapter’s genetic findings [15].  

ADHD PRS uniquely correlated here with a higher risk for premorbid personality disorders 
(OPCRIT 11) and other ACT dimension symptoms. ADHD and BD comorbidity increases the 
risk for personality disorder and more frequent episodes, leading to poorer functioning. 
Childhood ADHD is associated with higher borderline personality disorder (BPD) risk [84]. 

Future Studies 

Future research should focus on validating the four-factor models reproducibility across 
independent ancestral datasets, ideally utilising the same OPCRIT items to ensure 
comparability. Furthermore, the collection and analysis of longitudinal data will be essential 
for further understanding the temporal dynamics between genetic risk, the emergence of 
premorbid factors, and the subsequent longitudinal course of bipolar disorder. By tracking 
individuals over extended periods, future studies can help to establish the precise temporal 
order of these events and to identify potential causal pathways. Longitudinal data incorporating 
detailed symptom scales could also be invaluable in identifying specific temporal links and 
triggers for mood episodes, especially targeting those individuals at elevated risk of suicidality. 

While an individuals underlying genetic code remains relatively stable throughout their 
lifespan, environmental factors can influence how these genes are expressed (through 
epigenetic mechanisms) and interact with one another to either increase or decrease the 
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likelihood of developing bipolar disorder. Investigating the specific mechanisms through 
which ADHD and anxiety might trigger or exacerbate mood episodes in BD, especially in rapid 
cycling, could be a logical next step, potentially involving neuroimaging or neurochemical 
studies to explore underlying brain circuitry.  

Clinical Practice  

This study suggests early identification of chronic difficulties in individuals with higher genetic 
burden for ADHD and anxiety offers a crucial opportunity for interventions to improve long-
term BD outcomes. The findings underscore the potential utility of incorporating 
comprehensive assessments for premorbid functioning and any co-occurring symptoms of 
ADHD and anxiety in individuals with or at risk for BD. This more holistic approach could 
facilitate the earlier identification of those individuals who may be on a more adverse chronic 
trajectory, allowing for the implementation of proactive and personalised interventions that 
may ultimately improve the overall course of their illness and their quality of life.  

3.7  Limitations 

The sample, while large, primarily comprised individuals recruited through clinical settings, 
potentially overrepresenting those with more severe or chronic forms of BD who are more 
likely to seek and remain in treatment. While Inverse Probability Weighting (IPW) was applied 
to mitigate ascertainment, bias related to hospitalisation and symptom severity, the 
generalisability of the findings to community-based populations or individuals with milder 
presentations of BD warrants further investigation. The decision to exclude OPCRIT items 
with low frequency (less than 8% missingness) could potentially limit the generalisability of 
these findings to individuals presenting with rarer symptoms. The cross-sectional nature of the 
data limits the ability to infer the temporal relationships between genetic risk, premorbid 
factors, and the longitudinal course of BD. It is important to note that current PRSs for complex 
psychiatric disorders, including BD, explain a modest proportion of the overall variance in 
these conditions, and the findings, while informative at a group level, reflect trends rather than 
definitive individual-level predictions [40]. Further research efforts, including larger genome-
wide association studies and the inclusion of more diverse ancestral populations, are needed to 
enhance the predictive power of PRSs for clinical applications. 

 

3.8 Conclusions 

M analysis indicates a broader transdiagnostic genetic signature, beyond traditional mood 
disorders, contributes to a more adverse BD trajectory, potentially worsening long-term 
outcomes due to chronic and cognitive deficits, notably linked to higher ADHD and anxiety 
polygenic burden. The MIMIC model revealed a complex interplay between mania and the 
novel ACT dimension. While ADHD PRS showed a consistent positive association with ACT, 
ANX and SCZ PRS effects on ACT items were more nuanced, requiring further research. 
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These findings underscore the importance of considering transdiagnostic genetic risks in 
understanding BD heterogeneity, linked to predicting its trajectory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9 Supplementary Materials  

Exploratory Factor Analysis (EFA) 

Table 22 Exploratory factor analysis (EFA) loadings of 77 OPCRIT items 

Note: In Exploratory Factor Analysis, communalities represent the proportion of each symptom’s variance that 
the shared factors can explain. Unique variance is the proportion that is not explained by the factors and is unique 
to the symptom itself. These 77 items were selected for analysis due to adequate sample size and less than 8% 
missingness. 
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Item 
No. Item Description Depres 

(f1) 
Mania 

(f2) 
Chronicity 

(f3) 
Psychosis 

(f4) Unique.var Communalities 

1 Rapid cycling -0.001 -0.335 0.395 -0.132 0.817 0.183 

2 Weight loss 0.391 0.213 0.433 -0.314 0.435 0.565 

3 Diminished libido 0.637 0.1 0.001 -0.032 0.530 0.470 

4 Diurnal variation 0.476 0.204 -0.048 -0.016 0.647 0.353 

5 Mode of onset 0.008 -0.286 0.143 -0.194 0.868 0.132 

6 Weight gain 0.676 -0.392 -0.004 0.269 0.263 0.737 

7 Early morning waking 0.369 0.413 -0.065 0.054 0.551 0.449 

8 Middle insomnia 0.294 0.258 -0.013 0.037 0.775 0.225 

9 Initial insomnia 0.332 0.239 0.112 -0.008 0.742 0.258 

10 Increased appetite 0.617 -0.436 -0.057 0.235 0.224 0.776 

11 Slowed activity 0.758 0.069 0.02 -0.367 0.300 0.700 

12 Agitated activity 0.239 0.442 0.292 0.075 0.532 0.468 

13 Stressor prior to onset 0.09 0.265 0.043 0.047 0.893 0.107 

14 Excessive sleep 0.495 -0.058 0.1 -0.179 0.752 0.248 

15 Poor premorbid social adjustment 0.151 -0.433 0.71 -0.005 0.616 0.384 

16 Distractibility 0.213 0.537 0.285 -0.018 0.452 0.548 

17 Poor appetite 0.38 0.17 0.35 -0.426 0.477 0.523 

18 Inappropriate affect 0.035 0.253 0.093 0.3 0.822 0.178 

19 Excessive self reproach 0.765 0.045 -0.07 -0.08 0.389 0.611 

20 Poor concentration 0.498 0.302 0.089 -0.249 0.475 0.525 

21 Irritable mood 0.181 0.41 0.21 0.036 0.668 0.332 

22 Premorbid personality disorder -0.011 -0.425 0.771 0.159 0.504 0.496 

23 Increased sociability 0.089 0.633 -0.044 0.167 0.512 0.488 

24 Poor premorbid work adjustment 0.009 -0.351 0.662 0.068 0.590 0.410 

25 Alcohol/drug abuse within one year of 
onset -0.027 -0.02 0.376 0.061 0.857 0.143 

26 Family history of schizophrenia 0.098 0.044 0.103 0.046 0.969 0.031 

27 Thoughts racing -0.05 0.941 0.02 -0.021 0.150 0.850 

28 Unemployed -0.278 -0.281 0.368 -0.138 0.635 0.365 

29 Family history of other psychiatric 
disorder 0.244 0.055 -0.124 0.074 0.904 0.096 

30 Restricted affect 0.449 0.205 0.04 0.138 0.635 0.365 

31 Blunted affect 0.326 -0.087 0.219 0.09 0.846 0.154 

32 Pressured speech 0.067 0.807 -0.023 -0.03 0.298 0.702 

33 Increased self esteem 0.082 0.741 -0.005 0.391 0.298 0.702 

34 Reckless activity 0.057 0.485 0.240 -0.056 0.657 0.343 

35 Relationship psychotic/affective 
symptoms 0.392 0.435 0.008 0.331 0.364 0.636 

36 Loss of pleasure 0.867 0.037 0.12 -0.392 0.143 0.857 

37 Reduced need for sleep 0.007 0.822 -0.052 0.026 0.321 0.679 

38 Loss of energy/tiredness 0.812 -0.003 0.036 -0.514 0.169 0.831 

39 Grandiose Delusions 0.015 0.599 0.105 0.509 0.351 0.649 
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Item 
No. Item Description Depres 

(f1) 
Mania 

(f2) 
Chronicity 

(f3) 
Psychosis 

(f4) Unique.var Communalities 

40 Negative formal thought disorder 0.529 0.114 -0.099 0.214 0.577 0.423 

41 Positive formal thought disorder -0.269 0.435 0.408 0.306 0.587 0.413 

42 Reduced inter-episode remission -0.108 0.029 0.747 0.003 0.414 0.586 

43 Widespread Delusions -0.183 0.043 0.542 0.585 0.373 0.627 

44 Well organised delusions -0.108 -0.025 0.533 0.536 0.440 0.560 

45 Delusions of influence 0.256 0.227 -0.038 0.610 0.435 0.565 

46 Other (non affective) auditory 
hallucinations -0.048 0.08 0.24 0.458 0.732 0.268 

47 Life time diagnosis of cannabis 
abuse/depend 0.055 -0.217 0.624 -0.03 0.398 0.602 

48 Single (v married) 0.007 -0.16 0.314 0.007 0.884 0.116 

49 Persecutory Delusions 0.024 0.249 0.281 0.582 0.502 0.498 

50 Abusive/accusatory/persecutory 
voices 0.107 -0.131 0.409 0.428 0.631 0.369 

51 Course of disorder (chronic) -0.106 -0.097 0.756 -0.043 0.553 0.447 

52 Delusions & hallucinations last for 
one week -0.06 0.075 0.523 0.595 0.378 0.622 

53 Excessive activity 0.017 0.889 0.002 -0.064 0.191 0.809 

54 Primary delusional perception 0.31 0.202 -0.08 0.524 0.492 0.508 

55 Non-affective hallucination in any 
modality 0.12 0.174 0.126 0.373 0.767 0.233 

56 Life time diagnosis of other 
abuse/depend 0.023 -0.258 0.647 -0.101 0.397 0.603 

58 Persecutory/jealous delusions & 
hallucinations -0.034 0.05 0.467 0.613 0.412 0.588 

59 Other primary delusions 0.249 0.163 -0.055 0.406 0.685 0.315 

60 Dysphoria 0.714 0.095 0.019 -0.211 0.408 0.592 

61 Third person auditory hallucinations -0.003 -0.320 0.421 0.551 0.444 0.556 

62 Bizarre Delusions -0.122 0.018 0.277 0.600 0.572 0.428 

63 Running commentary voices -0.002 -0.14 0.358 0.595 0.511 0.489 

64 Delusions of guilt 0.414 -0.074 0.139 0.288 0.718 0.282 

65 Delusions of passivity 0.361 -0.012 0.087 0.547 0.520 0.480 

66 Nihilistic Delusions 0.474 0.096 0.181 0.257 0.643 0.357 

67 Life time diagnosis of alcohol 
abuse/depend 0.165 0.082 0.193 0.038 0.909 0.091 

68 Elevated mood -0.033 0.905 -0.056 -0.081 0.205 0.795 

69 Delusions of poverty 0.480 0.023 0.006 0.209 0.692 0.308 

70 Thought insertion 0.224 -0.205 0.227 0.629 0.476 0.524 

71 Impairment/incapacity during disorder 0.26 0.41 0.296 0.38 0.668 0.332 

72 Thought broadcast 0.237 0.015 0.04 0.677 0.444 0.556 

73 Thought echo 0.254 -0.051 0.427 0.400 0.577 0.423 

74 Thought withdrawal 0.262 -0.178 0.122 0.692 0.409 0.591 

75 Rapport difficult -0.295 -0.05 0.363 0.014 0.779 0.221 

76 Information not credible -0.185 -0.03 0.247 -0.031 0.902 0.098 
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Item 
No. Item Description Depres 

(f1) 
Mania 

(f2) 
Chronicity 

(f3) 
Psychosis 

(f4) Unique.var Communalities 

77 Lack of insight -0.418 0.143 0.283 0.063 0.786 0.214 

 
 
 

3.8.1.1 Item Definitions 
 
Table 23 OPCRIT Items for Adverse Chronic Trajectory Dimension 

Item No. Description 

9 
‘Chronicity (1)’ 

 
Poor work adjustment: Refers to work history before onset of illness. It should 
be scored if the patient was unable to keep any job for more than 6 months, had 
a history of frequent changes of job or was only able to sustain a job well below 
that expected by his educational level or training at time of first psychiatric 
contact. Also, score positively for a persistently very poor standard of housework 
(housewives) and badly failing to keep up with studies (students). (0, 1) 
 

10 
‘Chronicity (2)’ 

 
Poor premorbid social adjustment: Patient found difficulty entering or 
maintaining normal social relationships, showed persistent social isolation, 
withdrawal or maintained solitary interests prior to onset of psychotic symptoms. 
(0, 1) 
 

11 
‘Chronicity (3)’ 

 
Premorbid personality disorder: Evidence of inadequate/ schizoid/ schizotypal/ 
paranoid/ cyclothymic/ psychopathic/ sociopathic personality disorder present 
since adolescence and prior to the onset of psychotic symptoms.(0, 1) 
 

87 
‘BD outcome (4) 
Symptom severity’ 

 
Impairment/incapacity during disorder: 
0 = No impairment 
1 = Subjective impairment at work, school, or in social functioning 
2 = Impairment in major life role with definite reduction in productivity 
and/or criticism has been received 
3 = No function at all in major life role for more than 2 days or inpatient 
treatment has been required or active psychotic symptoms such as delusions or 
hallucinations have occurred 
 

 
88 
‘BD outcome (5) Inter-
episode remission’ 
 

 
Deterioration from premorbid level of functioning: Patient does not regain his 
premorbid social, occupational or emotional functioning after an acute episode 
of illness. (0, 1) 

90 
‘BD outcome (6) Illness 
recovery to chronic 
course’ 

 
Course of disorder: 
1 = Single episode with good recovery 
2 = Multiple episodes with good recovery between 
3 = Multiple episodes with partial recovery between 
4 = Continuous chronic illness 
5 = Continuous chronic illness with deterioration 
(nb score this item in hierarchical fashion, e.g. if patient’s course in past rated 
‘2’,but for the time-period now being considered it rates ‘4’, then the correct 
rating is ‘4’.) (1, 2, 3, 4, 5,) 
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Item No. Description 
 

Note: 

19. OPCRIT (version 4) (Chapter 2 [4]) includes 90 items of psychopathology, 
premorbid functioning, personal and family history information. Expansion of 
OPCRIT necessitated an increase in the number of items comprising the 
OPCRIT checklist beyond the original 74-item checklist. Lifetime occurrence 
was assessed for each patient. Inter-rater reliability was formally assessed using 
20 randomly selected cases (mean ĸ Statistic = .85). 
 

 
 
3.8.1.2 Confirmatory Factor Analysis (EFA)  
 
Table 24 Coefficients of 20 core OPCRIT items with four individual factor scores 

 

Dimension OPCRIT Item PRS 
Score Estimate Odds Ratio 

(OR) Std.Error PBonferroni PBonf.signif 

Depression Dysphoria ADHD 0.035 1.036 0.014 0.010 ** 

Depression Dysphoria ANX 0.091 1.095 0.014 <0.0001 **** 

Depression Dysphoria BD 0.057 1.059 0.063 <0.0001 **** 

Depression Dysphoria MDD 0.106 1.112 0.013 <0.0001 **** 

Depression Dysphoria SCZ 0.020 1.020 0.012 <0.0001 **** 

Depression Loss of energy/tiredness ADHD 0.030 1.030 0.013 0.027 **** 

Depression Loss of energy/tiredness ANX 0.083 1.087 0.013 <0.0001 **** 

Depression Loss of energy/tiredness BD -0.586 0.557 0.062 <0.0001 **** 

Depression Loss of energy/tiredness MDD 0.119 1.126 0.013 <0.0001 **** 

Depression Loss of energy/tiredness SCZ 0.216 1.241 0.012 <0.0001 **** 

Depression Loss of pleasure ADHD 0.024 1.024 0.013 0.008 ** 

Depression Loss of pleasure ANX 0.099 1.104 0.013 <0.0001 **** 

Depression Loss of pleasure BD -0.590 0.554 0.063 <0.0001 **** 

Depression Loss of pleasure MDD 0.126 1.134 0.013 <0.0001 **** 

Depression Loss of pleasure SCZ 0.212 1.236 0.012 <0.0001 **** 

Depression Self-reproach ADHD 0.021 1.021 0.013 0.128 ns 

Depression Self-reproach ANX 0.075 1.078 0.013 <0.0001 **** 

Depression Self-reproach BD -0.328 0.720 0.062 <0.0001 **** 

Depression Self-reproach MDD 0.075 1.078 0.012 <0.0001 **** 

Depression Self-reproach SCZ 0.127 1.135 0.012 <0.0001 **** 

Depression Slowed activity ADHD 0.017 1.017 0.014 0.208 ns 

Depression Slowed activity ANX 0.047 1.048 0.014 0.001 *** 

Depression Slowed activity BD -0.362 0.696 0.063 <0.0001 **** 

Depression Slowed activity MDD 0.062 1.064 0.013 <0.0001 **** 

Depression Slowed activity SCZ 0.100 1.105 0.012 <0.0001 **** 

Mania Elevated mood ADHD 0.021 1.021 0.007 0.007 ** 

Mania Elevated mood ANX -0.061 0.941 0.007 <0.0001 **** 

Mania Elevated mood BD 0.374 1.454 0.035 <0.0001 **** 
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Dimension OPCRIT Item PRS 
Score Estimate Odds Ratio 

(OR) Std.Error PBonferroni PBonf.signif 

Mania Elevated mood MDD -0.068 0.934 0.007 <0.0001 **** 

Mania Elevated mood SCZ 0.124 1.132 0.007 <0.0001 **** 

Mania Excess activity ADHD 0.028 1.028 0.008 <0.0001 **** 

Mania Excess activity ANX -0.051 0.950 0.008 <0.0001 **** 

Mania Excess activity BD 0.354 1.425 0.036 <0.0001 **** 

Mania Excess activity MDD -0.062 0.940 0.007 <0.0001 **** 

Mania Excess activity SCZ 0.111 1.117 0.007 <0.0001 **** 

Mania Pressured speech ADHD 0.013 1.013 0.008 0.001 *** 

Mania Pressured speech ANX -0.050 0.951 0.008 <0.0001 **** 

Mania Pressured speech BD 0.276 1.318 0.037 <0.0001 **** 

Mania Pressured speech MDD -0.057 0.945 0.008 <0.0001 **** 

Mania Pressured speech SCZ 0.099 1.104 0.007 <0.0001 **** 

Mania Racing thoughts ADHD 0.014 1.014 0.008 0.089 ns 

Mania Racing thoughts ANX -0.057 0.945 0.008 <0.0001 **** 

Mania Racing thoughts BD 0.293 1.340 0.037 <0.0001 **** 

Mania Racing thoughts MDD -0.066 0.936 0.007 <0.0001 **** 

Mania Racing thoughts SCZ 0.115 1.122 0.007 <0.0001 **** 

Mania Reduced need for sleep ADHD 0.024 1.024 0.008 0.003 ** 

Mania Reduced need for sleep ANX -0.053 0.948 0.008 <0.0001 **** 

Mania Reduced need for sleep BD 0.345 1.412 0.037 <0.0001 **** 

Mania Reduced need for sleep MDD -0.061 0.941 0.007 <0.0001 **** 

Mania Reduced need for sleep SCZ 0.121 1.129 0.007 <0.0001 **** 

Psychosis Delusions of influence ADHD 0.005 1.005 0.007 0.505 ns 

Psychosis Delusions of influence ANX -0.055 0.946 0.007 <0.0001 **** 

Psychosis Delusions of influence BD 0.135 1.145 0.033 <0.0001 **** 

Psychosis Delusions of influence MDD -0.080 0.923 0.007 <0.0001 **** 

Psychosis Delusions of influence SCZ 0.227 1.255 0.006 <0.0001 **** 

Psychosis Persecutory/jealous delusions ADHD -0.010 0.990 0.007 0.189 ns 

Psychosis Persecutory/jealous delusions ANX -0.054 0.947 0.007 <0.0001 **** 

Psychosis Persecutory/jealous delusions BD 0.399 1.490 0.033 <0.0001 **** 

Psychosis Persecutory/jealous delusions MDD -0.080 0.923 0.007 <0.0001 **** 

Psychosis Persecutory/jealous delusions SCZ 0.439 1.551 0.006 <0.0001 **** 

Psychosis Thought withdrawal ADHD -0.007 0.993 0.007 0.320 ns 

Psychosis Thought withdrawal ANX -0.057 0.945 0.007 <0.0001 **** 

Psychosis Thought withdrawal BD 0.115 1.122 0.033 <0.0001 **** 

Psychosis Thought withdrawal MDD -0.086 0.918 0.007 <0.0001 **** 

Psychosis Thought withdrawal SCZ 0.695 2.004 0.006 <0.0001 **** 

Psychosis Thought broadcast ADHD -0.005 0.995 0.007 0.530 ns 

Psychosis Thought broadcast ANX -0.062 0.940 0.007 <0.0001 **** 

Psychosis Thought broadcast BD 0.141 1.151 0.033 <0.0001 **** 

Psychosis Thought broadcast MDD -0.089 0.915 0.007 <0.0001 **** 

Psychosis Thought broadcast SCZ 0.448 1.565 0.006 <0.0001 **** 
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Dimension OPCRIT Item PRS 
Score Estimate Odds Ratio 

(OR) Std.Error PBonferroni PBonf.signif 

Psychosis Thought insertion ADHD -0.006 0.994 0.007 0.429 ns 

Psychosis Thought insertion ANX -0.056 0.946 0.007 <0.0001 **** 

Psychosis Thought insertion BD 0.142 1.153 0.033 <0.0001 **** 

Psychosis Thought insertion MDD -0.087 0.917 0.007 <0.0001 **** 

Psychosis Thought insertion SCZ 0.253 1.288 0.006 <0.0001 **** 

Chronicity Course of disorder (chronic) ADHD 0.221 1.247 0.015 0.005 ** 

Chronicity Course of disorder (chronic) ANX 0.104 1.110 0.014 <0.0001 **** 

Chronicity Course of disorder (chronic) BD -0.072 0.931 0.067 <0.0001 **** 

Chronicity Course of disorder (chronic) MDD 0.165 1.180 0.014 <0.0001 **** 

Chronicity Course of disorder (chronic) SCZ 0.282 1.326 0.013 <0.0001 **** 

Chronicity Reduced inter-episode remission ADHD 0.343 1.409 0.006 0.007 ** 

Chronicity Reduced inter-episode remission ANX 0.028 1.028 0.006 <0.0001 **** 

Chronicity Reduced inter-episode remission BD -0.202 0.817 0.028 <0.0001 **** 

Chronicity Reduced inter-episode remission MDD 0.042 1.043 0.006 <0.0001 **** 

Chronicity Reduced inter-episode remission SCZ -0.076 0.927 0.005 <0.0001 **** 

Chronicity Premorbid personality disorder ADHD 0.044 1.045 0.007 0.006 ** 

Chronicity Premorbid personality disorder ANX -0.059 0.943 0.007 <0.0001 **** 

Chronicity Premorbid personality disorder BD -0.418 0.658 0.033 <0.0001 **** 

Chronicity Premorbid personality disorder MDD -0.085 0.919 0.007 <0.0001 **** 

Chronicity Premorbid personality disorder SCZ -0.155 0.856 0.006 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment ADHD 0.064 1.066 0.007 0.004 ** 

Chronicity Premorbid poor social 
adjustment ANX -0.055 0.946 0.007 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment BD -0.411 0.663 0.033 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment MDD -0.081 0.922 0.007 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment SCZ 0.142 1.153 0.006 <0.0001 **** 

Chronicity Premorbid poor work adjustment ADHD 0.048 1.049 0.007 0.007 ** 

Chronicity Premorbid poor work adjustment ANX -0.053 0.948 0.007 <0.0001 **** 

Chronicity Premorbid poor work adjustment BD -0.426 0.653 0.033 <0.0001 **** 

Chronicity Premorbid poor work adjustment MDD -0.077 0.926 0.007 <0.0001 **** 

Chronicity Premorbid poor work adjustment SCZ 0.140 1.150 0.006 <0.0001 **** 

This table presents the coefficients and their significance levels from the regression analyses where 
each of the 20 core OPCRIT items was predicted by the individual factor scores for the four latent 
dimensions (Mania, Psychosis, Depression, and Adverse Chronic Trajectory) in a ‘leave-one-out’ cross-
validation approach. These results demonstrate the predictive ability of the factor scores for their 
respective symptoms in each of the four dimensions. *(Significance levels of adjusted Bonferroni P-
value, < .0001 ****, < .001 ***, <.01 **, < .05 ). 
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Table 25 Coefficients of 20 core OPCRIT items with five individual PRS scores 

Dimension OPCRIT Item PRS 
Score Estimate Odds Ratio 

(OR) Std.Error PBonferroni PBonf.signif 

Depression Dysphoria ADHD 0.035 1.036 0.014 0.010 ** 

Depression Dysphoria ANX 0.091 1.095 0.014 <0.0001 **** 

Depression Dysphoria BD 0.057 1.059 0.063 <0.0001 **** 

Depression Dysphoria MDD 0.106 1.112 0.013 <0.0001 **** 

Depression Dysphoria SCZ 0.020 1.020 0.012 <0.0001 **** 

Depression Loss of energy/tiredness ADHD 0.030 1.030 0.013 0.027 **** 

Depression Loss of energy/tiredness ANX 0.083 1.087 0.013 <0.0001 **** 

Depression Loss of energy/tiredness BD -0.586 0.557 0.062 <0.0001 **** 

Depression Loss of energy/tiredness MDD 0.119 1.126 0.013 <0.0001 **** 

Depression Loss of energy/tiredness SCZ 0.216 1.241 0.012 <0.0001 **** 

Depression Loss of pleasure ADHD 0.024 1.024 0.013 0.008 ** 

Depression Loss of pleasure ANX 0.099 1.104 0.013 <0.0001 **** 

Depression Loss of pleasure BD -0.590 0.554 0.063 <0.0001 **** 

Depression Loss of pleasure MDD 0.126 1.134 0.013 <0.0001 **** 

Depression Loss of pleasure SCZ 0.212 1.236 0.012 <0.0001 **** 

Depression Self-reproach ADHD 0.021 1.021 0.013 0.128 ns 

Depression Self-reproach ANX 0.075 1.078 0.013 <0.0001 **** 

Depression Self-reproach BD -0.328 0.720 0.062 <0.0001 **** 

Depression Self-reproach MDD 0.075 1.078 0.012 <0.0001 **** 

Depression Self-reproach SCZ 0.127 1.135 0.012 <0.0001 **** 

Depression Slowed activity ADHD 0.017 1.017 0.014 0.208 ns 

Depression Slowed activity ANX 0.047 1.048 0.014 0.001 *** 

Depression Slowed activity BD -0.362 0.696 0.063 <0.0001 **** 

Depression Slowed activity MDD 0.062 1.064 0.013 <0.0001 **** 

Depression Slowed activity SCZ 0.100 1.105 0.012 <0.0001 **** 

Mania Elevated mood ADHD 0.021 1.021 0.007 0.007 ** 

Mania Elevated mood ANX -0.061 0.941 0.007 <0.0001 **** 

Mania Elevated mood BD 0.374 1.454 0.035 <0.0001 **** 

Mania Elevated mood MDD -0.068 0.934 0.007 <0.0001 **** 

Mania Elevated mood SCZ 0.124 1.132 0.007 <0.0001 **** 

Mania Excess activity ADHD 0.028 1.028 0.008 <0.0001 **** 

Mania Excess activity ANX -0.051 0.950 0.008 <0.0001 **** 

Mania Excess activity BD 0.354 1.425 0.036 <0.0001 **** 

Mania Excess activity MDD -0.062 0.940 0.007 <0.0001 **** 

Mania Excess activity SCZ 0.111 1.117 0.007 <0.0001 **** 

Mania Pressured speech ADHD 0.013 1.013 0.008 0.001 *** 

Mania Pressured speech ANX -0.050 0.951 0.008 <0.0001 **** 

Mania Pressured speech BD 0.276 1.318 0.037 <0.0001 **** 

Mania Pressured speech MDD -0.057 0.945 0.008 <0.0001 **** 

Mania Pressured speech SCZ 0.099 1.104 0.007 <0.0001 **** 
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Dimension OPCRIT Item PRS 
Score Estimate Odds Ratio 

(OR) Std.Error PBonferroni PBonf.signif 

Mania Racing thoughts ADHD 0.014 1.014 0.008 0.089 ns 

Mania Racing thoughts ANX -0.057 0.945 0.008 <0.0001 **** 

Mania Racing thoughts BD 0.293 1.340 0.037 <0.0001 **** 

Mania Racing thoughts MDD -0.066 0.936 0.007 <0.0001 **** 

Mania Racing thoughts SCZ 0.115 1.122 0.007 <0.0001 **** 

Mania Reduced need for sleep ADHD 0.024 1.024 0.008 0.003 ** 

Mania Reduced need for sleep ANX -0.053 0.948 0.008 <0.0001 **** 

Mania Reduced need for sleep BD 0.345 1.412 0.037 <0.0001 **** 

Mania Reduced need for sleep MDD -0.061 0.941 0.007 <0.0001 **** 

Mania Reduced need for sleep SCZ 0.121 1.129 0.007 <0.0001 **** 

Psychosis Delusions of influence ADHD 0.005 1.005 0.007 0.505 ns 

Psychosis Delusions of influence ANX -0.055 0.946 0.007 <0.0001 **** 

Psychosis Delusions of influence BD 0.135 1.145 0.033 <0.0001 **** 

Psychosis Delusions of influence MDD -0.080 0.923 0.007 <0.0001 **** 

Psychosis Delusions of influence SCZ 0.227 1.255 0.006 <0.0001 **** 

Psychosis Persecutory/jealous delusions ADHD -0.010 0.990 0.007 0.189 ns 

Psychosis Persecutory/jealous delusions ANX -0.054 0.947 0.007 <0.0001 **** 

Psychosis Persecutory/jealous delusions BD 0.399 1.490 0.033 <0.0001 **** 

Psychosis Persecutory/jealous delusions MDD -0.080 0.923 0.007 <0.0001 **** 

Psychosis Persecutory/jealous delusions SCZ 0.439 1.551 0.006 <0.0001 **** 

Psychosis Thought withdrawal ADHD -0.007 0.993 0.007 0.320 ns 

Psychosis Thought withdrawal ANX -0.057 0.945 0.007 <0.0001 **** 

Psychosis Thought withdrawal BD 0.115 1.122 0.033 <0.0001 **** 

Psychosis Thought withdrawal MDD -0.086 0.918 0.007 <0.0001 **** 

Psychosis Thought withdrawal SCZ 0.695 2.004 0.006 <0.0001 **** 

Psychosis Thought broadcast ADHD -0.005 0.995 0.007 0.530 ns 

Psychosis Thought broadcast ANX -0.062 0.940 0.007 <0.0001 **** 

Psychosis Thought broadcast BD 0.141 1.151 0.033 <0.0001 **** 

Psychosis Thought broadcast MDD -0.089 0.915 0.007 <0.0001 **** 

Psychosis Thought broadcast SCZ 0.448 1.565 0.006 <0.0001 **** 

Psychosis Thought insertion ADHD -0.006 0.994 0.007 0.429 ns 

Psychosis Thought insertion ANX -0.056 0.946 0.007 <0.0001 **** 

Psychosis Thought insertion BD 0.142 1.153 0.033 <0.0001 **** 

Psychosis Thought insertion MDD -0.087 0.917 0.007 <0.0001 **** 

Psychosis Thought insertion SCZ 0.253 1.288 0.006 <0.0001 **** 

Chronicity Course of disorder (chronic) ADHD 0.221 1.247 0.015 0.005 ** 

Chronicity Course of disorder (chronic) ANX 0.104 1.110 0.014 <0.0001 **** 

Chronicity Course of disorder (chronic) BD -0.072 0.931 0.067 <0.0001 **** 

Chronicity Course of disorder (chronic) MDD 0.165 1.180 0.014 <0.0001 **** 

Chronicity Course of disorder (chronic) SCZ 0.282 1.326 0.013 <0.0001 **** 

Chronicity Reduced inter-episode remission ADHD 0.343 1.409 0.006 0.007 ** 

Chronicity Reduced inter-episode remission ANX 0.028 1.028 0.006 <0.0001 **** 
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Dimension OPCRIT Item PRS 
Score Estimate Odds Ratio 

(OR) Std.Error PBonferroni PBonf.signif 

Chronicity Reduced inter-episode remission BD -0.202 0.817 0.028 <0.0001 **** 

Chronicity Reduced inter-episode remission MDD 0.042 1.043 0.006 <0.0001 **** 

Chronicity Reduced inter-episode remission SCZ -0.076 0.927 0.005 <0.0001 **** 

Chronicity Premorbid personality disorder ADHD 0.044 1.045 0.007 0.006 ** 

Chronicity Premorbid personality disorder ANX -0.059 0.943 0.007 <0.0001 **** 

Chronicity Premorbid personality disorder BD -0.418 0.658 0.033 <0.0001 **** 

Chronicity Premorbid personality disorder MDD -0.085 0.919 0.007 <0.0001 **** 

Chronicity Premorbid personality disorder SCZ -0.155 0.856 0.006 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment ADHD 0.064 1.066 0.007 0.004 ** 

Chronicity Premorbid poor social 
adjustment ANX -0.055 0.946 0.007 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment BD -0.411 0.663 0.033 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment MDD -0.081 0.922 0.007 <0.0001 **** 

Chronicity Premorbid poor social 
adjustment SCZ 0.142 1.153 0.006 <0.0001 **** 

Chronicity Premorbid poor work adjustment ADHD 0.048 1.049 0.007 0.007 ** 

Chronicity Premorbid poor work adjustment ANX -0.053 0.948 0.007 <0.0001 **** 

Chronicity Premorbid poor work adjustment BD -0.426 0.653 0.033 <0.0001 **** 

Chronicity Premorbid poor work adjustment MDD -0.077 0.926 0.007 <0.0001 **** 

Chronicity Premorbid poor work adjustment SCZ 0.140 1.150 0.006 <0.0001 **** 

This table shows the coefficients and their significance levels from the regression analyses where each 
of the 20 core OPCRIT items was predicted by the five individual polygenic risk scores (BD, SCZ, 
MDD, ADHD, and ANX). These results illustrate the relationship between the genetic burden for each 
disorder and the individual clinical symptoms in each of the four dimensions. *(Significance levels of 
adjusted Bonferroni P-value, < .0001 ****, < .001 ***, <.01 **, < .05). 

 

   ---------------------------------------------------  

Chapter 3 established a dimensional model of bipolar disorder, revealing distinct genetic 
influences on dimensions such as mania, psychosis, depression, and a novel chronicity factor. 
While this provides a broader understanding of BD’s structure, the significant genetic overlap 
between BD and schizophrenia (SCZ), particularly concerning the severe psychotic features 
often prominent in bipolar disorder I (BD1), warrants more focused investigation. Therefore, 
building on the utility of Polygenic Risk Scores (PRS) in dissecting heterogeneity, Chapter 4 
will focus on this critical area of transdiagnostic overlap to explore its clinical application. This 
chapter aims to specifically evaluate the utility of the SCZ3-PRS in predicting key clinical 
features of BD1, namely the presence and severity of psychosis and age of onset, while also 
exploring the associated biological pathways to identify potential biomarkers. 
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4 PRS-SCZ3 and BD1 
 

 
A published version of the research in this chapter is available in the Journal of Affective 

Disorders (2024) at DOI: 10.1016/j.jad.2024.04.066 
 

4.1 Abstract 

Background: Schizophrenia (SCZ) and bipolar disorder (BD) exhibit shared genetic 
liability. This study aimed to investigate the predictive value of polygenic risk scores (PRS) 
derived from the most recent schizophrenia genome-wide association study (GWAS) (SCZ3) 
for phenotypic traits of bipolar disorder type 1 (BD1).  

Aims: To determine the predictive power of SCZ3-PRS, alone and in combination with clinical 
variables, for various BD1 subphenotypes, including age of onset (general, depression, mania), 
psychosis (overall, congruent, incongruent), and rapid cycling, in a European BD1 case-control 
cohort, with validation in an independent cohort. Additionally, the aim was to identify 
biological pathways associated with psychosis in BD1 using individual-level gene set pathway 
analysis. 

Methods: SCZ3-PRS was computed using PRSice-v2.3.3 (clumping and thresholding) and 
PRS-CS (Continuous Shrinkage) in 1878 BD1 cases and 2751 controls from Romania (RO) 
and the United Kingdom (UK). Univariate linear and logistic regressions assessed the 
predictive power of SCZ3-PRS for BD1 subphenotypes. Random forest (RF) models evaluated 
the predictive performance of SCZ3-PRS alone and in combination with nine clinical 
variables. Pathway analysis using PRSet explored gene sets associated with psychosis.  

Results: SCZ3-PRS predicted psychosis (overall and incongruent), general age-of-onset of 
BD1, age-of-onset of depression and mania, and rapid cycling in univariate analyses. An 
inverse relationship was observed between SCZ3-SNP loading and rapid cycling, potentially 
suggesting different underlying genetic mechanisms. A negative correlation was observed 
between the number of depressive episodes and psychosis (mainly incongruent). RF models 
showed that combinations of SCZ3-PRS-CS and clinical variables provided the best 
predictions for BD1 subphenotypes, closely followed by models using only clinical variables. 
The most important clinical variables in predicting psychosis alongside SCZ3-PRS were family 
history and irritable mania. Gene set pathway analysis identified 22 pathways underlying 
psychosis in BD1.  

Conclusions: These findings suggest that SCZ3-PRS has a modest clinical utility in predicting 
phenotypic traits of BD1. Its predictive performance is enhanced when combined with clinical 
variables. These results highlight the shared genetic underpinnings of SCZ and BD1 while also 
emphasising the importance of considering clinical information for improved prediction of 
BD1 subphenotypes. 

https://doi.org/10.1016/j.jad.2024.04.066


 143 

4.2 Introduction 

 
Developmental psychopathology, family studies, and genetic investigations have consistently 
indicated a shared vulnerability between schizophrenia (SCZ) and bipolar disorder (BD), 
alongside specific features that distinguish these diagnoses. Genome-wide association studies 
(GWAS) have corroborated this overlap, revealing a substantial genetic correlation (rG) of .70 
between SCZ and BD based on common single nucleotide polymorphisms (SNPs) [1]. A 
broader analysis across eleven major psychiatric disorders further identified a “psychotic 
factor” encompassing shared genetic variants for both BD and SCZ [2]. Despite this shared 
genetic architecture, subsets of SNPs exert differential effects in SCZ and BD [3], potentially 
contributing to their distinct clinical presentations. Earlier research explored the association 
between SCZ-derived SNP sets [4] and certain BD phenotypic traits, such as age of onset 
(AO) [3, 5], and psychosis [6-8]. While some associations were reported, replication across 
studies has been inconsistent [9]. Notably, studies have suggested a higher loading of SCZ 
polygenic risk scores (PRS) in bipolar disorder I (BD1) compared to BD2 [8], and even higher 
in BD1 with psychosis compared to those without [10]. Furthermore, SCZ-PRS have been 
associated with treatment response within BD [11-12]. A recognised challenge in large-scale 
psychiatric GWAS is the inherent phenotypic heterogeneity arising from diverse populations, 
varying diagnostic criteria, recruitment settings, and the inclusion of different BD subtypes, 
including schizoaffective disorder [8-9]. To address this issue, the current study focused on 
investigating the predictive value of PRS derived from the most recent and largest 
schizophrenia GWAS (SCZ3) for phenotypic traits of BD1 within two phenotypically more 
homogeneous and well-characterised samples - a Romanian sample with detailed genealogical 
data to ensure genetic homogeneity and a well-phenotyped UK sample with comprehensive 
clinical assessments. 
 

4.3  Aims 

The aim was to investigate the predictive value of polygenic risk scores (PRS) derived from 
the Psychiatric Genomics Consortium (PGC) Schizophrenia GWAS 2022 (SCZ3) [13] for 
phenotypic traits of BD1 in two phenotypically homogeneous and well-characterised samples: 
a RO sample and a UK sample. More specifically, the aims were to determine the predictive 
power of SCZ3-PRS alone and in combination with clinical variables for several BD1 
subphenotypes, i.e., clinical features. These included: General age of onset (AO) of BD1, age 
of onset of the first depressive episode, age of onset of the first manic/mixed episode, presence 
of psychosis (overall, as well as congruent and incongruent types), and rapid cycling. 
Additionally, the aim was to conduct pathway analysis using SCZ3-PRS to identify biological 
pathways associated with psychosis in BD1. 

4.4 Methods 

The predictive utility of schizophrenia-derived polygenic risk scores (SCZ3-PRS) for key 
clinical features of Bipolar Disorder I (BD1) was assessed in a European case-control cohort. 
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PRS were computed using both clumping-and-thresholding and continuous shrinkage methods. 
The performance of the SCZ3-PRS, alone and combined with clinical variables, was evaluated 
using regularised regression analyses and Random Forest (RF) models. Individual-level gene 
set pathway analysis was performed using PRSet to identify biological pathways associated 
with psychosis. 

Full details regarding the cohorts, genotyping, PRS computation, and all statistical 
models are available in the General Methods (Chapter 2). 

4.5 Results 

The predictive power was analysed of SCZ3-PRS-CS (Table 27) and of eight P-thresholds (pT) 
containing SNPs associated with SCZ (P = 5 x 10-8 to P = .05) (Tables 31-35) for several 
phenotypic traits of BD1 (general AO, AO-first depression, psychosis and incongruent 
psychosis) in the RO, the UK and the combined RO-UK samples.  
 
Differentiation of cases and controls  
 
First, the ability of the SCZ3-PRS-CS and of the eight SCZ3-PRS-pTs was tested to 
differentiate the cases from controls in each national sample and in the combined RO-UK 
sample. All versions of SCZ3-PRS distinguished the cases from controls with high certainty, 
see corrected P-values (Table 27), demonstrating a clear separation based on PRS. The detailed 
results for the separate Romanian and UK samples are provided in Table 38 and Table 39, 
respectively. More variance was explained  when using the superior PRS-CS-auto 
methodology rather than the existing pT threshold method (Table 26). 
 
Table 26 Comparison of two methods for calculating SCZ3 individual-level PRS 

PRSice (pT) NgR2 (liability scale 
%) 

1e-8 .838 

1e-7 .933 

1e-6 1.279 

1e-5 1.943 

1e-4 2.813 

.001 4.094 

.01 5.031 

.05 6.044 

C+T (pT Mdn) 2.378 

PRS-CS 4.261 
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Table 27 PRS-SCZ3 BD1 and subphenotypes in RO-UK samples 

 

 

Phenotypic traits of bipolar disorder I (BD1)  

Subsequently, several phenotypic traits of BD1 were analysed: the general age of onset (AO) 
of BD1 irrespective of polarity at onset, AO of the first depressive episode, AO of the first 
manic/mixed episode, presence of psychosis, presence of incongruent and congruent psychosis, 
and rapid cycling.  
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General age of onset of BD1  

In the combined sample the general AO was predicted by SCZ3-PRS-CS (median P = 3.33 x 
10-4) and by all eight pTs (pT+clump method) (FDR-corrected P-values) (Table 27). In the RO 
sample the general AO was predicted by SCZ3-PRS-CS (P = 3.36 x 10-5), while in the UK 
sample just a trend was visible (P = .090) (Table 27). In both national samples the regression 
coefficients were negative indicating that a higher SCZ3-SNP loading was associated with a 
younger AO in BD1 patients.  

Age of onset of the first depressive episode  

Both in the combined RO-UK sample (median P = 1.96 x 10-4) and in the separate national 
samples the age of onset of the first depressive episode was predicted by the SCZ3-PRS-CS (P 
= 1.96 x 10-4 for RO; P = 3.24 x 10-2 for UK) (Table 27). Similarly, all eight SCZ3-pTs 
computed through the pT+clump method predicted the AO of depression with significant P-
values and with negative regression coefficients in the RO-UK sample (Table 32) and in the 
national samples (data not shown) indicating a negative effect of SCZ3-PRS on AO of 
depression. The AO-depression was younger in psychotic patients than in non-psychotic 
patients in the RO-UK sample (AO-depression in psychotic cases mean = 25.90, SD = 10.38, 
AO-depression in non-psychotics =27.04, SD = 11.44; t = 2.89; P = .004), as well the general 
AO of BD1 (AO in psychotic cases mean = 25.05; SD = 9.54; AO in non-psychotic cases mean 
= 26.35; SD =11.16 (t = 2.49; P = .013).  

Age of onset of the first manic episode   

Age of onset of the first manic episode was predicted by the SCZ3-PRS-CS both in the 
combined sample (P = 4.82 x 10-5) and in the national samples (P = 4.02 x 10-4 for RO; P = 
9.68 x 10-3  for UK) (Table 27). The pT+clump method did not predict the AO of the first manic 
episode either in the national or in the combined samples (data not shown). In the samples there 
was a significant difference in AO of depression between female and male cases (RO sample 
mean AO-depression: males mean = 30.27 years (SD = 10.60); females mean = 27.11 years 
(SD = 9.77; t = 3.364, df = 1/497, P = .00082; UK sample: males mean = 26.45 (SD = 11.33; 
females Mean = 24.26 (SD = 10.41; t = 2.95, df = 1/884, P = .003); RO-UK sample AO-
depression; males mean = 27.76, SD = 11.23; females mean = 25.31, SD = 10.27, df = 1/1381; 
t = 4.15, P = 1.7 x 10-5). Linear regressions for AO-mania were performed with sex as a 
covariate in the combined sample (data not shown).  

Presence of lifetime psychosis and incongruent psychosis   

Similar to other BD samples [39] the prevalence of psychosis (congruent and incongruent) 
reached 71% in the RO-UK BD1 sample. Both PRS computation methods (CS and pT+clump) 
yielded highly significant P-values for the prediction of psychosis irrespective of type and for 
the mood incongruent psychosis in the combined sample (Tables 27, 33-34) and the national 
samples (data not shown). A novel finding indicated a negative correlation between the number 
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of depressive episodes and psychosis. This finding was confirmed by a multivariate logistic 
regression (β = -.407; SD = .143, Wald = 8.113; OR = .666, 95%CI = .503-.881, P = .004) 
including six clinical variables, in regularised regressions (RF) (Table 30). The same negative 
correlation was valid for the incongruent psychosis, but not for congruent psychosis. The mood 
congruent psychosis was predicted only by the SCZ3-PRS-CS in the combined sample, but not 
by the pT +clump method.  

Rapid cycling   

Both the SCZ3-PRS-CS method (Table 27) and the pT +clump SCZ3-PRS method with five 
pTs (Table 35) predicted the rapid cycling trait. But the ORs were below 1 and the regression 
coefficients were negative suggesting that rapid cycling and SCZ3-PRS loading have an 
inverse relationship. This could suggest a different underlying genetic architecture for rapid 
cycling compared to other psychosis-related features.  

Family history for major psychoses   

Major psychoses (schizophrenia, schizoaffective disorders, bipolar disorder, unipolar major 
depression) was nominally predicted by three SCZ3-pTs (Table 30) indicating that only 
specific SNPs and genes are involved in familial inheritance.  

Table 28 PRS-SCZ3 prediction of BD-traits (10-fold cross-validated RF classification) 

 
Performance metrics from a 10-fold cross-validated Random Forest (RF) model, detailing  
the accuracy of the SCZ3-PRS in predicting various continuous and binary BD traits. 
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Table 29 Random forest 10-fold cross-validated predictions 

 
This analysis compared the predictive performance of models using either clinical predictors only, 
genetic predictors only (SCZ3-PRS-CS), and a combination of both in the RO/UK samples. 
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Table 30 Comparison between variable importance 

 
Outcome Predictor LogORᶜ SE CLow CLhigh P-value Sig. MDAᵈ SE Sig. 

Psychosis Fam hist maj 
psychoses 1.769 0.138 1.48 2.076 <0.001 *** 0.0216 0.011 ** 

Psychosis SCZ3 PRS 0.194 0.051 0.1 0.293 <0.001 *** 0.003 0.009 * 
Psychosis Nr depres epis -0.132 0.066 -0.244 -0.011 0.028 ** 0.002 0.002 * 
Psychosis Nr mania epis 0.29 0.109 0.232 0.627 <0.001 *** 0.002 0.031 * 
Psychosis Age onset mania -0.014 0.013 -0.039 0.011 0.204 n.s. 0.0002 0.017 * 
Psychosis Rapid cycling -0.746 0.325 -1.293 -0.02 <0.001 *** 0.002 0.027 * 
Psychosis Irritable mania 2.479 0.225 2.053 2.954 <0.001 *** 0.002 0.052  

Psychosis Nr epis total 0.108 0.026 0.015 0.12 0.012 ** 0.001 0.023 * 
Psychosis Age onset depress -0.037 0.015 -0.065 -0.009 0.016 * 0.0001 0.024 * 
Psychosis Age onset BPI -0.069 0.017 -0.108 -0.041 <0.001 *** 0.0003 0.029 * 

MIP SCZ3 PRS 0.261 0.047 0.211 0.404 <0.001 *** 0.008 0.012 * 

MIP Fam hist maj 
psychoses 2.325 0.142 2.158 2.744 <0.001 *** 0.006 0.009 ** 

MIP Irritable mania 1.739 0.226 1.295 2.165 <0.001 *** 0.001 0.003 * 
MIP Age onset depress -0.041 0.017 -0.067 -0.002 0.02 * 0.0005 0.021 * 
MIP Age onset mania -0.009 0.013 -0.032 0.018 0.456  0.001 0.021 * 
MIP Nr epis mania 0.197 0.039 0.13 0.268 0.004 ** 0.001 0.028 * 
MIP Age onset BPI -0.086 0.013 -0.117 -0.064 <0.001 *** 0.001 0.027 * 
MIP Nr epis depres 0.067 0.111 -0.313 0.04 0.4  0.003 0.033 * 
MIP Rapid cycling -0.083 0.197 -0.412 0.39 0.776  0.0005 0.009 ** 
MIP Nr epis total 0.109 0.019 0.077 0.158 <0.001 *** 0.0003 0.04 * 
MIP Fam hist aff dis 1.85 0.119 1.575 2.033 <0.001 *** 0.01 0.013 *** 
MIP SCZ3 PRS 0.173 0.051 0.068 0.265 <0.001 *** 0.005 0.009 ** 
MIP Nr epis depres 0.27 0.053 0.192 0.367 0.004 ** 0.001 0.024 * 
MIP Nr epis mania 0.384 0.042 0.307 0.478 <0.001 *** 0.001 0.024 * 
MIP Age onset mania -0.075 0.014 -0.12 -0.056 <0.001 *** 0.001 0.026 * 
MIP Rapid cycling -0.277 0.305 -0.427 -0.122 <0.001 *** 0.0002 0.004 ** 
MIP Irritable mania 1.68 0.186 1.358 2.121 <0.001 *** 0.002 0.022 * 
MIP Nr epis total 0.2 0.022 0.158 0.249 <0.001 *** 0.0004 0.034 * 
MIP Age onset depres -0.11 0.019 -0.178 -0.106 <0.001 *** 0.001 0.027 * 
MIP Age onset BPI -0.118 0.016 -0.171 -0.108 <0.001 *** 0.001 0.043 * 

Notes: a. MIP – Mood-Incongruent Psychosis. A Penalised (Elastic Net) logistic regression used for measuring outcome 
associations with constrained, correlated predictor variables. Bootstrapped Std.Error, CI, Confidence Intervals (95%) and 

P-values. Significant at * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 b. Random (conditional) forest modelling 
for nonlinear approximation of relationships between outcome and the predictor variables. Variable importance measure 
used Conditional Permutation Importance c. LogOR, absolute log odds ratio (OR) per standard deviation (SD) d. MDA, 

Mean Decrease Accuracy expresses how much accuracy the model losses by excluding each variable. 

 
This analysis compared the variable importance rankings derived from Random Forest and regularised 
regression models for predicting psychosis and its subtypes. 
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Predictive performance of SCZ3-PRS in combination with clinical traits of BD1   

After investigating the predictive power of SCZ3-PRS-CS for phenotypic traits of BD1 in 
univariate regressions (only the SCZ3-PRS-CS regressed against each outcome), the predictive 
power of SCZ3-PRS-CS was investigated in combinations with clinical variables (family 
history of major psychoses in first and second degree relatives, number of depressive and manic 
episodes, AO-mania, rapid cycling, irritable mania, total number of episodes, AO-depression, 
general AO) for certain BD1 traits in the RO-UK sample with the random forest method that 
controls the collinearity between predictor variables (Table 28-30). BD1 cases were randomly 
allocated to either training, validation or testing sets. To determine the predictive performance, 
i.e., classification by the cross-validated RF model of the binary outcomes, the ROC (Receiver 
Operating Characteristic) and its Area under the curve (AUC), sensitivity, specificity, and 
accuracy were used. Additionally, the Positive Predictive Value (PPV) indicating the risk for 
false positives is lower with a higher value, and the F1 score, a more accurate metric for 
prediction accuracy with uneven class distribution, were both reported. Accuracy for the cross-
validated RF regression of the continuous outcomes was assessed with R2 and RMSE (Table 
28), shows that both the accuracy and AUC-values for binary subphenotypes (psychosis and 
its subtypes) and R2 and RMSE for continuous subphenotypes indicate a moderate predictive 
performance of SCZ3-PRS-CS and clinical variables. The best predictions were for psychosis, 
incongruent psychosis (AUC close to .8) and AO-depression, consistently across methods.  

Prediction Models for BD1 Phenotypic Traits 

Models using SCZ3-PRS alone do not achieve 100% accuracy in predicting BD1 phenotypic 
traits [40]. Factors such as family history and age-of-onset may also play a role. To explore 
this further, prediction models were developed for each BD1 trait, comparing the effectiveness 
of clinical variables, SCZ3-PRS-CS, and a combination of both. Clinical variables included 
family history of major psychoses, total number of episodes, number of manic episodes, 
number of depressive episodes, irritable mania, rapid cycling, general age of onset (AO), AO-
depression, and AO-mania. Each variable was excluded when it served as the outcome (Table 
29). 

Comparison of Predictive Power 

For all investigated BD1 traits, the most accurate predictions were obtained from models 
combining SCZ3-PRS-CS and clinical variables, followed by models using only clinical 
variables. Models relying solely on SCZ3-PRS-CS showed the weakest prediction indicators 
(Table 29). Pairwise Bonferroni-corrected one-sample t-tests revealed significant differences 
in metrics between the clinical and clinical plus SCZ3-PRS models, except for congruent 
psychosis and AO-mania, where only trends were observed. Psychosis, incongruent psychosis, 
and AO-depression showed the best prediction accuracy. 

Variable Importance in Predicting Psychosis 
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Given that psychosis was the best predicted BD1 subphenotype, the importance of the variables 
in predicting psychosis and its subtypes was examined using two cross-validation methods: 
regularized regression (elastic net in “cv.glmnet”) and conditional random forest (RF) (cforest) 
in R (Table 30). In the RF model, higher Mean Depreciation Accuracy (MDA) scores indicate 
greater importance of a variable for outcome classification. Table 30, illustrates that the 
importance of variables varies with this method used. The elastic net model highlighted family 
history, SCZ3-PRS-CS, number of mania episodes, rapid cycling, irritable mania, and general 
AO as having the highest and equal importance for psychosis prediction. In contrast, the RF 
model showed diminished importance for these variables, although they remained significant. 
For mood-incongruent psychosis, family history of major psychoses and irritable mania were 
the most important predictors in both models, while SCZ3-PRS-CS and general AO of BD1 
remained significant but with higher P-values. 

Table 31 General Age of Onset (AO) in the combined RO/UK sample 

RO/UK  General AO     

SCZ3-PRS Beta/ SE 95%CI P FDR-P R2 R2 
adj. 

pT-5 x 10-8 -0.52 (0.24) -0.98 - -0.06 0.027 0.027 0.003 0.002 

pT-1 x 10-7 -0.54 (0.24) -1.00 - -0.08 0.021 0.025 0.003 0.002 

pT-1 x 10-6 -0.75 (0.23) -1.21 - -0.29 0.0013 0.0018 0.006 0.005 

pT-1 x 10-5 -0.94 (0.23) -1.40 - -0.48 5.46 x 10-5 8.74 x 10-5 0.009 0.008 

pT-1 x 10-4 -0.99 (0.23) -1.44 - -0.54 1.76 x 10-5 3.52 x 10-5 0.01 0.01 

pT-0.001 -0.99 (0.23) -1.44 - -0.54 1.68 x 10-5 4.49 x 10-5 0.01 0.01 

pT- 0.01 -1 (0.23) -1.46 - -0.55 1.63 x 10-5 6.51 x 10-5 0.01 0.01 

pT-0.05 -1.51 (0.27) -2.03 - -0.98 2.00 x 10-8 2.00 x 10-7 0.017 0.017 

Results from linear regression models assessing the association between SCZ3-PRS (at various P-value 
thresholds) and the general age of onset for bipolar disorder in the combined RO/UK sample. 
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Table 32 Age of onset of depression in the combined RO/UK sample 

 
RO/UK AO depression   

SCZ3-PRS Beta SE 95% CI P FDR-P Adj.R2 
pT-5E-08 -1.131 0.365 -0.41 - -1.85 0.0020 0.00232 0.007 
pT-1E-07 -1.144 0.366 -0.43 - -1.86 0.0018 0.00232 0.007 
pT-1E-06 -1.326 0.361 -0.62 - -2.03 2.51x10-4 6.70E-04 0.011 
pT-1E-05 -1.472 0.359 -0.77 - -2.18 4.54x10-5 1.80E-04 0.014 
pT-1E-04 -1.435 0.349 -0.75 - -2.12 4.36x10-5 1.80E-04 0.014 
pT-0.001 -1.243 0.352 -0.55 - -1.93 4.29x10-4 8.60E-04 0.010 
pT- 0.01 -1.155 0.355 -0.46 - -1.85 0.0012 0.0019 0.008 
pT-0.05 -0.837 0.404 -0.04 - -1.63 0.039 0.039 0.003 

Results from linear regression models assessing the association between SCZ3-PRS (at various P-value 
thresholds) and the age of onset for depression in the combined RO/UK sample. 

Table 33 Prediction of Psychosis irrespective of subtype in the RO/UK sample 

Results from logistic regression models assessing the ability of the SCZ3-PRS (at various P-value 
thresholds) to predict the presence of psychosis in the combined RO/UK sample. 

 

Table 34 Prediction of incongruent Psychosis in combined RO/UK sample 

RO/UK   Incongruent    

SCZ3-PRS OR S.E. 95% CI P FDR-P R2 AdjR2 

pT-5x10-8 1.1 0.05 1.00 - 1.22 0.047 0.047 0.003 

pT-1x10-7 1.11 0.05 1.01 - 1.22 0.038 0.043 0.003 

pT-1x10-6 1.21 0.06 1.10 - 1.34 1.00x10-4 1.00x10-4 0.011 

pT-1x10-5 1.39 0.07 1.26 - 1.54 1.00x10-10 2.00x10-10 0.032 

pT-1x10-4 1.45 0.08 1.31 - 1.61 8.00x10-13 2.00x10-12 0.041 

pT-0.001 1.51 0.08 1.36 - 1.68 2.00x10-14 1.00x10-13 0.047 

pT- 0.01 1.51 0.08 1.36 - 1.68 2.00x10-14 1.00x10-13 0.047 

pT-0.05 1.65 0.11 1.44 - 1.89 4.00x10-13 1.20x10-12 0.046 

Results from logistic regression models assessing the ability of the SCZ3-PRS (at various P-value 
thresholds) to predict the presence of mood-incongruent psychosis in the combined RO/UK sample 

RO/UK   Psychosis    

SCZ3-PRS OR SE 95% CI P FDR-P AdjR2 
pT-5x10-8 1.06 0.06 0.95 - 1.17 0.30 0.30 <0.00018 
pT-1x10-7 1.06 0.06 0.96 - 1.18 0.23 0.27 0.001 
pT-1x10-6 1.18 0.06 1.07 - 1.31 0.0014 0.0019 0.008 
pT-1x10-5 1.31 0.07 1.18 - 1.45 4.83x10-7 9.65x10-7 0.020 
pT-1x10-4 1.37 0.07 1.23 - 1.52 7.20x10-9 1.90x10-8 0.028 

pT-0.001 1.45 0.08 1.30 - 1.62 1.00x10-10 4.00x10-10 0.036 

pT- 0.01 1.41 0.08 1.27 - 1.58 8.00x10-10 3.30x10-9 0.032 
pT-0.05 1.24 0.08 1.09 - 1.41 0.0010 0.0016 0.009 
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Table 35 Prediction of BD1 rapid cycling by SCZ3-PRS (logistic regression) 

RO/UK    Rapid 
Cycling    

SCZ3-PRS OR SE Beta 95% CI AdjR2 P FDR-P 
pT-5x10-8 1.041 0.069 0.041 0.91-1.19 0.00 0.556 0.556 
pT-1x10-7 1.044 0.069 0.043 0.91-1.19 0.001 0.534 0.610 
pT-1x10-6 0.93 0.067 -0.072 0,81-1.06 0.002 0.283 0.377 
pT-1x10-5 0.856 0.068 -0.153 0.75-0.98 0.007 0.024 0.0384 
pT-1x10-4 0.809 0.068 -0.212 0.71-0.92 0.013 0.002 5.33x10-3 

pT-0.001 0.723 0.071 -0.324 0.63-0.83 0.029 4.97x10-6 1.99x10-5 

pT- 0.01 0.699 0.072 -0.357 0.61-0.80 0.034 7.354x10-7 5.88x10-6 
pT-0.05 0.830 0.080 -0.186 0.70-0.97 0.007 0.020 0.040 

Results from logistic regression models assessing the association between SCZ3-PRS 
(at various P-value thresholds) and rapid cycling in individuals with BD1. 

 

Pathway analysis of psychosis in BD1   

Twenty-two pathways (Table 36) had a competitive P-value of ≤ .05, defined as showing 
association. All enriched pathways contained at least one gene identified in previous or most 
recent GWAS of SCZ [13] or BD [41], see Table 40. The highest associated pathways 
were ZNF318 (R2 = .951, FDR-P = .003), Apoptosis (R2 = .958; FDR-P = .003), and 
Mitochondrion (R2 = .754; FDR-P = .037). ZNF318 (zinc finger protein 318) was identified 
in the most recent BD GWAS [41]. Other pathways associated with psychosis in the samples 
were pathways relevant to brain function, including synaptic transmission involving both ion 
channels and dendrites (regulation_of_dendritic_spine_development; 
regulation_of_membrane_repolarization; regulation_of_dopamine_receptor_signaling), to the 
autonomous nervous system (abnormality_of_the_autonomic_nervous_system), to the 
immune system (regulation_of_immune_system_process). 
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Table 36 PRSet SCZ3 Individual level pathway analysis in RO-UK sample 
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4.6 Discussion 

A strength of this study is the phenotypic homogeneity of strictly diagnosed BD1 cases and the 
direct investigation of the controls with a psychiatric interview, which is not always the 
situation in the large-scale GWAS samples, which allows for the highlighting of some new 
associations. This investigation into the predictive capacity of the latest schizophrenia 
polygenic risk score (SCZ3-PRS) for bipolar disorder type 1(BD1) phenotypes in a well-
characterized European cohort yields several noteworthy findings. It was demonstrated that 
SCZ3-PRS, while primarily developed for schizophrenia, exhibits a significant, albeit modest, 
ability to predict various BD1 subphenotypes, including age of onset (for both the disorder 
generally and for depressive and manic episodes), and the presence of psychosis, particularly 
the mood-incongruent subtype. This underscores the substantial shared genetic underpinnings 
between these two major psychiatric disorders, aligning with prior reports of high genetic 
correlation and a common “psychotic factor”. This study is among the first investigating the 
predictive validity of the SCZ3-PRS for BD1 clinical traits, specifically age of onset and 
psychosis,  in phenotypically homogeneous clinical samples. There is only one published study 
using SCZ3-PRS for prediction of the clinical course of the disease in psychotic patients 
(mainly schizophrenia) [42] but not for predicting those clinical traits investigated here. I also 
evidenced a negative correlation between the number of depressive episodes and psychosis. 
The results confirm findings of previous studies that used the SCZ-SNP-set 2014 [3] and SCZ3-
SNP-set [13] on psychosis in BD1 [6, 43-44] and on AO in BD1 [3, 5, 45]. Moreover, a higher 
burden of SCZ3-PRS was associated not only with younger general AO of BD1, but also with 
decreased AO of first depressive episode and of the first manic episode. A relationship between 
SCZ3-PRS and AO-depression was reported [46] for the AO of unipolar major depression in 
the UK biobank.  
 
To our knowledge the negative correlation between the number of depressive episodes and 
psychosis found in the samples both in regularised regressions and RF is a novel finding 
supported by a meta-analysis of 54 studies of psychotic symptoms in BD [39] showing that 
psychosis is four times more frequent in manic/mixed episodes than in depressive episodes of 
BD1. The negative correlation found between the number of depressive episodes and the 
presence of psychosis, especially incongruent psychosis, warrants further exploration into the 
complex interplay of mood episodes and psychotic features in BD1. In contrast to previous 
work [44] who found no effect of SCZ3-PRS on mania in BD, a positive association of SCZ3-
PRS on the AO of mania was found here. The difference could originate from ascertainment, 
the current study contained only BD1 samples, while their sample additionally contained 
28.8% BD2 cases.  
 
The predictive power of SCZ3-PRS-CS was further tested in combinations with other nine 
clinical variables in Random Forest (RF) models that model non-linear relationships and 
control for the collinearity between predictor variables. According to AUC and accuracy values 
for dichotomous traits and R2 and RMSE for continuous traits the predictive power of SCZ3-
PRS was more modest than in simple linear/logistic regressions, but the best prediction was for 
incongruent psychosis and AO-depression. Moreover, the RF models that compared the 
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predictions based on only SCZ3-PRS, on SCZ3-PRS plus clinical variables, and on only 
clinical variables showed that the worst prediction was provided by the SCZ3-PRS and that the 
accuracy of the prediction based on only clinical variables was not far from that based on both 
SCZ3-PRS and clinical variables. This finding is in line with an earlier observation [42] that 
SCZ3-PRS had minimal value for outcome prediction relative to information from the clinical 
diagnostic system. Two studies suggested that clinical variables such as psychiatric family 
history and age of onset improve the predictions based on PRS for clinical purposes [47-48]. 
This was evident here in the ranking of clinical variables in the prediction of psychosis, as well 
as in the comparison of the RF model based on only SCZ3-PRS with the model including 
SCZ3-PRS plus clinical variables.  
 
Therefore, the application of random forest models provided valuable insights into the relative 
contributions of genetic and clinical factors in predicting BD1 traits. Consistently, the most 
robust predictions were achieved when SCZ3-PRS was integrated with clinical variables, 
outperforming models relying solely on clinical information or SCZ3-PRS alone. This 
highlights the multifactorial nature of BD1 and the necessity of combining genetic 
predisposition with clinical presentation for improved predictive accuracy. While SCZ3-PRS 
contributes meaningfully to this predictive power, its clinical utility appears to be maximized 
within a broader clinical context. Notably, psychosis, particularly its incongruent form, and the 
age of onset of depression emerged as the most predictable phenotypes in the combined models. 
A comparison of the variance explained (liability Nagelkerke R2) by the two PRS methods 
indicated a marked increase in phenotypic variance explained by PRS-CS compared to the pT 
+ clump method. For some investigated BD1 traits (AO-mania, mood-congruent psychosis) 
the two PRS computation methods gave different results. On the other hand, the pT+clump 
method showed that pTs stringently associated SCZ3-SNPs (e.g. pT-5 x 10-8; pT-1 x 10-7) offer 
significant predictions for incongruent psychosis and AO-depression supporting their clinical 
validity. Intriguingly, I an inverse relationship between SCZ3-PRS loading and the rapid 
cycling phenotype in BD1 was observed, suggesting a potentially distinct genetic architecture 
influencing this specific course of illness. Both PRS methods significantly confirmed the trend 
observed earlier [3] that there is an inverse relationship between SCZ-SNP loading and BD 
rapid cycling.  
 
The finding that SCZ-PRS most strongly predicts mood-incongruent psychosis has important 
nosological implications. It suggests that individuals with BD1 who present with this feature 
may carry a greater burden of the genetic risk typically associated with schizophrenia. This 
supports a dimensional view where mood-incongruent psychosis in BD represents a point of 
significant biological overlap on a continuum between affective and non-affective psychoses. 
Clinically, these individuals may represent a distinct subgroup with a different prognosis or 
treatment response profile, warranting further investigation into whether this specific genetic 
signature could be used for patient stratification in the future.  
 
The pathway enrichment analysis identified twenty-two biological pathways associated with 
schizophrenia and psychosis in BD1, offering potential avenues for future research into the 
specific molecular mechanisms underlying this critical aspect of the disorder. These findings 



 157 

may contribute to a more refined understanding of the pathophysiology shared and distinct 
between schizophrenia and bipolar disorder with psychosis. The enriched pathways are 
relevant to brain function, including synaptic transmission involving both ion channels and 
dendrites, and brain development. The pathways that explained the highest variance of 
psychosis were: ZNF318, Apoptosis, Mitochondrion. Neuroimaging studies showed 
progressive loss of cortical grey matter in first-episode psychosis (FEP) [49], therefore a role 
for apoptosis mechanisms producing cell or localised synaptic/dendritic loss in psychosis is 
plausible. Defects in the structure of dendrites of pyramidal neurons may also have direct 
effects leading to the loss of cortical volume (regulation_of_dendritic_spine_development) 
[50]. Mitochondrial dysfunction (Mitochondrion) was linked to alterations in dopamine 
signalling, glutamatergic dysfunction and oxidative stress in schizophrenia [51-52] and in BD 
[53]. Both the “Mitochondrion” and “ZNF318” pathways contain the CREB3L4-
gene. CREB3L4 is a subtype of the CREB1-gene, expression of which is downregulated in 
brain tissue of SCZ, BD, MDD patients compared with healthy controls [54]. The chr1p21-
pathway with the microRNA encoding gene MIR137HG that regulates signalling pathways for 
neural development is implicated in schizophrenia risk [55] and its early onset 
[56]. NCOA2 (R2 = .542, FDR-P = .027) was one of 9 genes differentially expressed in the 
dorsolateral prefrontal cortex (DLPFC) in patients with BD [57]. Regulation of dopamine was 
implicated in psychosis by the regulation_of_dopamine_ receptor_signaling_pathway. 
Excessive dopaminergic modulation of striatal function has long been hypothesized to mediate 
psychosis and antipsychotic drugs target dopaminergic innervation in the striatum [58].  
 
There is also evidence to involve the immune system in the pathogenesis of psychosis  
(regulation_of_immune_system_process). Increased risk of adulthood psychosis has been 
linked to high concentrations of proinflammatory cytokines in childhood [59]. In a GWAS of 
response of BD patients to lithium treatment [11] genes related to the immune system (HLA 
antigen complex and inflammatory cytokines) were associated with the treatment response and 
the same genes in the HLA region were also associated with risk for BD [41] and SCZ [13]. In 
the “negative_regulation_of_immune_system_process” and the “ZNF318” pathways appears 
the MAD1L1-gene and in the NOA2-pathway appears the NT5C2-gene that were associated 
with BD and SCZ in several GWAS; they were also associated earlier with the AO of BD1 in 
the RO sample [60]. The immune system PRS pathway, further implicated the gene FURIN, 
recently associated with BD [41] it was linked with decreased neurite outgrowth [61-62]. 
Altered function of the autonomic nervous system involving heart rate was previously 
documented in SCZ and psychosis [63-64] and genes present in this pathway were associated 
with cardiac β-adrenergic signalling and cardiac hypertrophy signalling in BD [57]. Several 
genes (CACNA1C, GABBR1, GABBR2, SLC6A9; NT5C2) in pathways linked to psychosis in 
the BD1 sample are also involved in the epigenomic differential methylation of DNA in SCZ 
and psychosis [65-66]. DNA methylation was also linked to the AO of SCZ [67] and BD1 [68]. 
The limited variance explained by PRS alone in predicting BD1 phenotypes also highlights the 
remaining challenge of “missing heritability” in psychiatric genetics. 
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4.5 Limitations 

 
There was heterogeneity in BD1 severity. The combined Romanian and UK sample had 
varying degrees of BD1 severity. The Romanian sample, and partially the UK sample, 
primarily included hospitalized BD1 cases. Hospitalization is generally an indicator of more 
severe illness, which could have influenced the findings, especially for phenotypes related to 
severity, such as the presence of psychotic symptoms [39]. Furthermore, there was incomplete 
subphenotype information. Not all participants in the UK sample had complete information for 
all the BD1 subphenotypes being studied. This missing data (Table 37) could have introduced 
bias or reduced the statistical power for analyses involving those specific subphenotypes within 
the UK cohort and the combined sample. 

 

4.6 Conclusions 

The study is among the first investigating the predictive value of the SCZ3-PRS and shows that 
these biomarkers have a modest clinical value for predicting some phenotypic traits of BD1 in 
machine learning models. The findings demonstrate a modest clinical value of SCZ3-PRS. 
SCZ3-PRS has a limited, or modest, clinical value when used alone for predicting phenotypic 
traits of bipolar disorder type 1 (BD1). The predictive performance of SCZ3-PRS for BD1 
subphenotypes is improved when it is used in combination with clinical variables. The best 
predictions were achieved by models that integrated both genetic and clinical data. The 
prediction of certain BD1 traits by an SCZ-derived PRS further supports the idea of shared 
genetic liability between schizophrenia and bipolar disorder. SCZ3-PRS showed predictive 
ability for specific BD1 subphenotypes, including psychosis (especially mood-incongruent 
psychosis), and the age of onset of the disorder and its mood episodes. An inverse relationship 
was observed between SCZ3-PRS loading and the rapid cycling phenotype, suggesting a 
potentially different genetic influence on this specific feature of BD1. The study identified 
several biological pathways associated with psychosis in BD1, offering potential targets for 
future research into the underlying mechanisms. The findings underscore the complex, 
multifactorial nature of BD1 and highlight the importance of considering both genetic and 
clinical information for better prediction and understanding of the disorder. SCZ3-PRS might 
be used in the clinical counselling for BD1 treatment since previous studies using SCZ-PRS 
derived from an older SCZ-GWAS [4] showed that a high burden of SCZ-PRS is associated 
with poor response to antipsychotic and lithium treatment [12, 69-70]. 
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4.7 Supplementary Materials  
 
Table 37 Comparison of clinical traits in BD1 cases across samples 

 

A summary of key clinical and demographic traits for Bipolar Disorder I (BD1) cases, stratified by the 
Romanian (RO) and UK cohorts. 
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Table 38 Differentiation between BD1 cases and controls in RO sample 

 RO      

pT Beta (ß) OR 95% CI R2 P FDR - P 

pT-5 x 10-8 ß = -.26 
s.e. = .062 .77 .68-.87 .022 .000020 2.00 x 10-5 

pT-1 x 10-7 ß = -.27 
s.e. = .062 .76 .67-.96 .024 .000010 1.14 x 10-5 

pT-1 x 10-6 ß = -.31 
s.e.=.062 .74 .65-.83 .030 9.19 x 10-7 1.23 x 10-6 

pT-1 x 10-5 ß =-.36 
s.e. = .063 .70 .62-.79 .040 1.79x 10- 10 3.59 x 10-10 

pT-1 x 10-4 ß = .41 
s.e.= .064 1.50 1.33-1.70 .051 1.79 x 10-10 2.87 x 10-10 

pT-0.001 ß = .45 
s.e. =.065 1.57 1.38-1.79 .062 2.46 x 10-12 6.55 x 10-12 

pT- 0.01 ß = -.49 
s.e.= .065 .61 0.54-0.70 .071 6.48 x 10-14 5.18 x 10-13 

pT-0.05 ß = -2.979 
s.e.=.41 .051 0.02-0.11 .066 4.91 x 10-13 1.96 x 10-12 

Results of logistic regression analyses at various P-value thresholds (pT), showing the predictive power 
of the SCZ3-PRS in distinguishing BD1 cases from controls in the Romanian (RO) sample. 

 

Table 39 Differentiation between BD1 cases and controls in UK sample 

                       

Results of logistic regression analyses at various P-value thresholds (pT), showing the predictive power 
of the SCZ3-PRS in distinguishing BD1 cases from controls in the UK sample. 
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Prediction of family history for major psychoses in BD1 probands 

RO       

pT Beta S.E. Wald OR 95% CI P-value 

pT-5x10-8 0.154 0.088 3.084 1.167 0.982; 1.386 0.079 

pT-1x10-7 0.176 0.088 4.001 1.192 1.004; 1.416 0.045 

pT-1x10-6 0.175 0.088 3.998 1.192 1.003; 1.415 0.046 

pT-1x10-5 0.135 0.086 2.471 1.145 0.967; 1.355 0.116 

pT-1x10-4 0.052 0.083 0.393 1.053 0.895; 1.239 0.531 

pT-0.001 0.708 0.281 6.377 2.031 1.17; 3.51 0.012 

pT- 0.01 0.101 0.087 1.344 1.106 0.933; 1.311 0.246 

pT-0.05 0.542 0.544 0.993 1.719 0.592; 4.988 0.319 

Results from a pT + clump analysis assessing the association between SCZ3-PRS and a family history 
of major psychoses in BD1 probands from the Romanian (RO) sample. 
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Table 40 GWAS genes associated with psychosis included in the enriched pathways 

Pathway Associated GWAS Genes 

1. MITOCHONDRION 

BRD8, TRIM31, CKB, SFXN2, CLU, CLIC1, GLYCTK, SLC9B2, LETM2, 
CREB3L4, METTL15, MARK2, ALAS1, FEN1, FHIT, MLXIP, FOXO3, 
HARS2, GABBR1, HSPA9, HSPD1, HSPE1, IRF3, YJEFN3, FADS1, 

MAPT, MSRA, NDUFA2, NRGN, CISD2, PCCB, TMX2, MRPS33, PLEC, 
POLG, MIEF1, NDFIP2, DARS2, NDUFAF7, AMBRA1, DNAJC11, 

MAPK3, STARD7, ELAC2, SDHAF1, NDRG4 

2. ZNF318 

CAMKK2, PTK2B, CHRNA2, MATN4, SPECC1, SYNE1, TMTC1, DOCK2, 
OASL, SLC39A1, GPM6A, TDRD9, CDC25C, NEGR1, TBL1XR1, 
ZNF664, HARBI1, NMB, CTNND1, TCTN1, MEF2C-AS1, MYO19, 

MAD1L1, DNAJC11, PLEKHO1, SDCCAG8, SMG6, IGSF9B, WDR76, 
FOXP1, DARS2, ENOX1, KDM3B, TBC1D5, UBE2D2, RC3H1, SEC11A, 

RERE, CREB3L4, GATAD2B, DOC2A, MSI2, SPPL3, ZEB2, ATG13, 
GRIN2A, DLGAP2 

3. REGULATION_OF_IMMUNE_SYSTEM_ 
PROCESS 

PLK2, RC3H1, DRD2, PLCL2, SCRIB, HSPA9, MDK, FURIN, YTHDF2, 
MAD1L1, CUL4A, DGKZ, CD47 

4. NCOA2 TARGET GENES 
ITIH1, NT5C2, PACSIN2, OGFOD2, HSPA9, IPO13, ALOX5AP, 

DYNC1LI2, RBMS3, ABCB9, RBKS, RELA, AGPAT1, SNHG3, MEF2C, 
MSANTD2 

5. MIR202_3P 
MEF2C, PLEKHO1, PTPRD, BCL7A, ZNF823, SHANK2, MOB4, MSI2, 

SH3RF3, RD3L, HSPE1-MOB4, TSPAN2 

6. MIR3125 ELAVL4, ZNF365, RC3H1, CUL4A, ANKRD45, ARL3, SUFU, TRIM8 

7. MIR6859_5P ELAVL4, RC3H1, NEBL, ARL3, SUFU, TRIM8 

8. MIR4782_5P ADD3, ALAS1, RPS6KA2, TCTN1, CALN1, SUMO2, DNMT3A, 
DYNC1LI2 

9. MIR5706 
ADD3, ALAS1, RPS6KA2, TCTN1, CALN1, SUMO2, DNMT3A, 

DYNC1LI2 

10. MIR4763_3P 
SLC6A9, DEF8, ETF1, NGEF, KIF21B, TAF12, SUFU, GATAD2B, KLF6, 

STAG1, MLXIP, SMARCD1, MEF2C, MARK2 

11. ABNORMALITY_OF_THE_AUTONOMIC 
_NERVOUS_SYSTEM 

MAPT, CACNA1C, ZEB2, CHRNA3, FGFR1, TUBB3, GIGYF2, ARL3, 
TCTN1, SNCA, GABBR2, FANCI, FANCA, FANCL, CISD2, SUFU 

12. MIR10395_3P ADD3, ATXN7, CHRNA5, KLF6, MOB4, HSPE1-MOB4, CADM2, ACE 

13. REGULATION_OF_DENDRITIC_SPINE 
_DEVELOPMENT NGEF, MEF2C, SHANK3 

14. MIR197 BCL7A, CTNND1, GATAD2B, SPPL3, ETF1 

15.REGULATION_OF_MEMBRANE_ 
REPOLARIZATION YWHAE, AKAP6 

16. APOPTOSIS BNIP3L, CLU, RELA, DPYD, ETF1 

17. CHR1P21 DPYD, NFU1P2, RPL7P9, RN7SKP270, PTBP2, MIR137HG 

18. REGULATION_OF_DOPAMINE_RECEPTOR 
_SIGNALING_PATHWAY 

DRD2 

19. MIR625_3P WDR76, PTPRD, ALAS1 

20. MIR3681_5P CSDE1, FUT10 

21. MIR6849_5P CSDE1 

22. MIR4669 CLIC1, GIGYF2 
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Genes associated with psychosis were included in the 22 pathways of SCZ3-PRS identified in the RO/UK sample 
that overlapped with genes found associated in the most recent GWAS of bipolar disorder [41] and schizophrenia 
[13]. 

 

   --------------------------------------------------------- 

The focused analysis in Chapter 4 confirmed that while specific transdiagnostic genetic risks, 
like the SCZ PRS, can predict severe features such as psychosis in BD, it also highlighted that 
different clinical specifiers (e.g., psychosis versus rapid cycling) have divergent genetic 
associations. This evidence necessitates a broader approach to systematically map the 
multifaceted genetic landscape of bipolar disorder, as its considerable clinical heterogeneity 
suggests various subphenotypes may possess distinct, as well as shared, genetic underpinnings. 
Therefore, Chapter 5 undertakes a large-scale multi-trait analysis of Genome-Wide Association 
Studies (MTAG) across eleven clinically defined BD subphenotypes. Leveraging data from 
multiple cohorts, the objectives are to systematically replicate and assess the consistency of 
Polygenic Risk Score (PRS) findings for these subphenotypes and to dissect this heterogeneity 
by identifying specific genomic loci, genes, and biological pathways that contribute to 
individual clinical presentations, as well as those shared across the broader BD spectrum and 
with schizophrenia (SCZ) and other closely related cross-disorder traits. 

--------------------------------------------------------- 
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5 Bipolar Disorder Subphenotypes 
 

 
A preprint version of the research in this chapter is available on medRxiv at 

doi: https://doi.org/10.1101/2025.06.23.25330155 
 

5.1 Abstract 

Background: The clinical heterogeneity of bipolar disorder (BD) is a major obstacle to 
improving diagnosis, predicting patient outcomes, and developing personalized treatments. A 
genetic approach is needed to deconstruct the disorder and uncover its fundamental biology. 
Previous genetic studies focusing on broad diagnostic categories have been limited in their 
ability to parse this complexity. 

Aims: The aim was to test the hypothesis that clinically distinct subphenotypes of BD are 
associated with different underlying common variant genetic architectures. 

Methods: This multicentred study included a primary genome-wide association study 
(GWAS) of up to 23, 819 bipolar disorder (BD) cases and 163, 839 controls. These results were 
integrated via multi-trait analysis of GWAS (MTAG) with external summary statistics for BD 
(59, 287 cases; 781, 022 controls) and schizophrenia (SCZ; 53, 386 cases; 77, 258 controls). 
Sample overlap was statistically accounted for. 

Results: The primary outcomes were the genetic dimensions underlying BD heterogeneity, 
differentiated by single nucleotide polymorphism (SNP)-heritability (h²snp), genetic 
correlations, genomic loci (P≤5×10⁻⁸), and functional, cell-type, and gene-expression pathway 
analyses. Four genetically-informed dimensions of BD were identified: Severe Illness, Core 
Mania, Externalizing/Impulsive Comorbidity, and Internalizing/Affective Comorbidity. The 
analyses yielded up to 181 subphenotype-associated loci, 53 of which are novel. The Severe 
Illness Dimension was characterized by a unique neuro-immune signature (a protective 
association with HLA-DMA, P=2.50×10⁻²⁷³) evident only when leveraging SCZ genetic data. 
The Internalizing/Affective dimension was associated with neurodevelopmental genes 
(e.g., DCC). Notably, the rapid-cycling subphenotype showed a unique signature of strong 
negative selection, a finding not observed in other traits. 

Conclusions: The clinical heterogeneity of bipolar disorder appears to be defined by a complex 
and multi-layered genetic architecture. The presented findings provide a data-driven, biological 
framework that may advance psychiatric nosology beyond its current diagnostic boundaries. 
The delineation of these genetically-informed dimensions offers specific hypotheses functional 
genomics studies for subsequent therapeutic discovery, laying the foundation for a transition 
from a uniform treatment model to the paradigm of precision psychiatry. Establishing this 
framework is an essential step toward refining diagnostic criteria, enabling patient 
stratification, and developing more effective, and personalized treatments. 

https://doi.org/10.1101/2025.06.23.25330155
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5.2 Introduction 

Bipolar disorder (BD) is a severe, chronic psychiatric illness affecting around 1% of the 
population. The disorder has a high heritability of over 80%, and its clinical variability 
complicates diagnosis, treatment, and research [1-4]. Previous work established distinct genetic 
overlaps between BD subtypes and other major psychiatric disorders: bipolar disorder I (BD1) 
shows a high genetic correlation with schizophrenia (SCZ) [3, 5-8], while bipolar disorder II 
(BD2) links more strongly to major depressive disorder (MDD) and attention-
deficit/hyperactivity disorder (ADHD) [2, 6, 9]. This overlap indicates that biological pathways 
are not constrained by diagnostic manuals, necessitating a data-driven approach to nosology. 
Given the genetic continuum between BD and SCZ, it was hypothesized deconstructing severe 
BD requires comparing its genetic architecture with SCZ’s to isolate disorder-specific from 
transdiagnostic risk signals. This heterogeneity impacts treatment, as features including 
psychosis or comorbidities guide distinct pharmacological strategies, and the iterative process 
of personalizing an effective regimen may contribute to the illness burden [10]. A summary of 
these transdiagnostic profiles for key bipolar disorder subphenotypes is provided in Appendix 
9.3. 

This heterogeneity is evident across multiple clinical domains. Age of onset (AOO) is a critical 
factor; an earlier AOO typically signifies a greater genetic liability and a more severe disease 
trajectory [11-12]. An onset before 28 years of age increases the risk for psychotic features, 
rapid cycling (RC), comorbid anxiety disorders, alcohol or substance use disorders (AlcSUD), 
and suicide attempts (SA) [13]. RC (defined as ≥4 mood episodes/year) [14], is linked to a 
family history of mood instability, high psychiatric comorbidity, and a lack of responsiveness 
to lithium, making it a challenging clinical presentation [15-17]. The long-observed clinical 
association with other traits, for example, thyroid dysfunction and mood instability in RC may 
be a key aspect of this profile [18-19]. While preliminary studies suggest benefits from using 
adjunctive thyroid hormone for RC, a definitive mechanistic link remains unproven [17, 20]. 

To deconstruct this heterogeneity, eleven subphenotypes were selected for this analysis. These 
were chosen to represent key domains of the illness based on their established clinical relevance 
and evidence for familial aggregation, suggesting more genetically homogeneous subgroups of 
patients which may boost genetic discovery. They encompass core diagnostic subtypes (BD1, 
BD2, SZA), key course specifiers with significant prognostic value (Psychosis, RC, UM, 
AOO), and highly prevalent and impactful comorbidities that shape the illness course 
(AlcSUD, PD, OCD, SA). 

5.3 Aims 

Genetic research into clinically distinct BD subphenotypes has been hampered by inadequate 
statistical power. This study tested the hypothesis that the clinical heterogeneity of BD is linked 
to underlying genetic heterogeneity defined by specific biological pathways. This study 
employed a two-step MTAG approach, first meta-analysing single subphenotype GWAS with 
additional BD cases and second by integrating large-scale SCZ GWAS data, to boost power to 
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identify specific genetic mechanisms. This multivariate approach aimed to reveal genetic 
factors that confer risk for specific psychopathologies, and those that underlie the observed 
genetic overlaps with other major psychiatric traits. A robust genetic-clinical framework of 
four dimensions was first established in the clinical data before GWAS, with subsequent 
downstream interrogation of the unique and shared biological pathways, spanning neuro-
immune, neurodevelopmental, and synaptic systems, that likely define them. 

 

5.4 Methods 

To dissect the genetic architecture of bipolar disorder, primary genome-wide association 
studies (GWAS) were conducted on eleven distinct clinical subphenotypes. To increase 
statistical power, these results were then integrated with large-scale external summary statistics 
for BD and schizophrenia using a two-stage Multi-Trait Analysis of GWAS (MTAG). The 
resulting high-power summary statistics were subjected to extensive downstream analyses, 
including heritability and genetic correlation estimation, functional genomics, pathway and 
cell-type enrichment, and transcriptome-wide association studies. 

A comprehensive account of the study cohorts, all GWAS and post-GWAS analysis 
procedures is provided in the General Methods (Chapter 2). 

 

5.5  Results 

5.1 Foundational Analyses: Data Quality and Phenotypic Validation 

This study included 52% females, with a median age at interview of 22 (interquartile range 
[IQR], 17-30) years. Clinical characteristics are detailed in Chapter 2, Tables 4-5.  

To ensure that phenotype definitions were consistent across international cohorts, an 
assessment of phenotypic homogeneity was performed. Generalized linear mixed effects 
(GLMER) models were constructed using pairwise analyses of BD subphenotypes to assess 
phenotype heterogeneity across geographical sites, termed ‘Region,’ which was used as the 
random effect (N = 18,800 BD cases). ‘Region’ included symptom-level data from cohorts 
across Australia, Europe, North America, or Nordic countries. Confidence intervals (95% CI) 
of predicted probabilities (y-axis) overlapped, indicating homogeneous responses to target 
phenotypes (x-axis) which met international consensus measures (DSM-IV, DSM-V, ICD-9, 
or ICD-10).(See Table 41 and Figure 19 below).  
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Figure 19 Mixed regression models of homogeneity in phenotype regions.  
Generalized linear mixed effects (GLMER) models were constructed using pairwise analyses of BD 
subphenotypes to assess phenotype heterogeneity across geographical sites, termed ‘Region,’ which 
was used as the random effect (N = 18,800 BD cases).  
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Table 41 Assessment of Phenotypic Homogeneity Across Geographic Regions 

BD  BD1 BD2 SZA PSY RC UM SA ALC PD OCD 

PSY 
1.09 
(.04) 
*** 

-1.95 
(.06) 
*** 

2.58 
(.20) 
*** 

- 
-.25 
(.05) 
*** 

.43 (.10) 
*** 

.04 
(.05) 

.24 
(.04) 
*** 

-.12 
(.06) * 

.02 
(.08) 

RC 
-.57 
(.06) 
*** 

.51 
(.06) 
*** 

.74 
(.17) 
*** 

-.26 
(.05) 
*** 

- 
-1.92 
(.29) 
*** 

.60 
(.06) 
*** 

.42 
(.06) 
*** 

1.19 
(.08) 
*** 

1.09 
(.12) 
*** 

UM 
1.29 
(.18) 
*** 

-2.63 
(.41) 
*** 

-.25 
(.23) 

.41 (.10) 
*** 

-1.92 
(.29) 
*** 

- 
-1.07 
(.11) 
*** 

-.17 
(.10) 

-.31 
(.14) ** 

-.47 
(.22) * 

SA -.01 
(.06) 

-.11 
(.06) 

.35 
(.12) 
** 

.03 (.05) .58 (.06) 
*** 

-1.07 
(.11) 
*** 

- 
.49 

(.05) 
*** 

.51 (.07) 
*** 

.36 
(.10) 
*** 

ALC .007 
(.05) 

-.12 
(.06) 

.45 
(.11) 
*** 

.23 (.04) 
*** 

.41 (.06) 
*** 

-.18 
(.10) 

.49 
(.05) 
*** 

- .50 (.06) 
*** 

.25 
(.08) 
** 

PD 
-.22 
(.07) 
** 

.15 
(.08) 

* 

.72 
(.18) 
*** 

-.13 
(.06) 
** 

1.19 
(.08) 
*** 

-.34 
(.14)   * 

.49 
(.07) 
*** 

.50 
(.06) 
*** 

- 
1.33 
(.08) 
*** 

OCD -.08 
(.10) 

.12 
(.10) 

-.21 
(.31) .01 (.08) 

1.08 
(.12) 
*** 

-.49 
(.22) 

* 

.34 
(.10) 
*** 

.25 
(.08) 
** 

1.33 
(.08) 
*** 

- 

AOO 
-.002 
(.00) 
** 

.008 
(.00) 
*** 

-.024 
(.01) 
*** 

-.017 
(.00) 
*** 

-.027 
(.00) 
*** 

.023 
(.00) 
*** 

-.030 
(.00) 
*** 

-.027 
(.00) 
*** 

-.024 
(.00) 
*** 

-.017 
(.00) 
*** 

AO-
depr 

.009 
(.00) 
** 

-.006 
(.00) 
*** 

-.029 
(.01) 

-.013 
(.00) 
*** 

-.045 
(.00) 
*** 

.023 
(.01) 

-.027 
(.00) 
*** 

-.023 
(.00) 
*** 

-.046 
(.00) 
*** 

-.027 
(.01) 
*** 

AO_ 
man/ 
mix 

.021 
(.00) 
*** 

-.019 
(.00) 
*** 

-.021 
(.01) 

-.017 
(.00) 
*** 

-.034 
(.00) 
*** 

-.008 
(.01) 

-.014 
(.00) 
*** 

-.021 
(.00) 
*** 

-.022 
(.00) 
*** 

-.022 
(.01) 
** 

 

Following these quality control steps, a Confirmatory Factor Analysis (CFA) of the 11 BD 
subphenotypes empirically derived a robust four-factor clinical model, which indicated 
acceptable fit indices (χ2=588.91, P=2.188×10⁻⁸⁷; SRMR .084; CFI .936) (Figure 20). Factor 
analysis was performed using the psych package in R to produce a visualisation of the 
homogeneous subgroups (subphenotypes) and their interrelatedness. The analysis included 
clinical data from N = 18,800 BD cases. The factor analysis supported four primary clinical 
factors for BD heterogeneity, providing an initial framework for understanding BD clinical 
substructure. The model identified: (1) a Psychosis-Spectrum Factor (schizoaffective disorder, 
bipolar type [SZA], Psychosis); (2) a Core Bipolar Subtype Factor (BD1, BD2); (3) a 
Comorbidity and Mood Instability Factor (RC, Panic Disorder [PD], Obsessive Compulsive 
Disorder [OCD], Alcohol or Substance Use/Dependency [AlcSUD], Suicide Attempt [SA], 
Unipolar mania [UM] [40-42]); and (4) an Age of Onset [AO/AOO] Factor. This four-factor 
structure determination was supported by parallel analysis (Figure 24). Support for two 
dimensions which differentiated risk for Psychosis and Comorbidity was provided further by 
Principal Component Analysis (PCA) (Figure 21). 
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Figure 20 Confirmatory Factor Analysis (CFA) model for BD heterogeneity.  
Factor analysis was performed using the psych package in R to produce a visualisation of the 
homogeneous subgroups (subphenotypes) and their interrelatedness. The analysis included N = 18,800 
BD cases. The factor analysis supported four primary clinical factors for BD heterogeneity: (F1) SZA 
and Psychosis; (F2) BD1 and BD2; (F3) a cluster of RC, PD, OCD, AlcSUD, SA, and UM; and (F4) 
AOO, AO-depression, and AO-mania/mixed. A Confirmatory Factor Analysis (CFA) of the 11 BD 
subphenotypes empirically derived this robust four-factor clinical model, which indicated acceptable fit 
indices (χ2=588.91, P=2.188×10-87; SRMR .084; CFI .936). 
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Figure 21 PCA visualization of 11 BD subphenotypes.  
PCA visualization of 11 BD subphenotypes, showing clustering. This figure visualizes how components 
account for variance in the dataset. See Supplementary Table 39 for per-cohort sample sizes for each 
subphenotype analysis. 

 

 

 

 

 

 

 

 



 171 

5.2 Identification of Four Genetically-Informed Dimensions 

Before dissecting the genetic architecture of bipolar disorder (BD), foundational analyses were 
conducted to ensure the integrity of the data. The primary genome-wide association studies 
(GWAS) of eleven clinical subphenotypes showed minimal confounding from uncorrected 
population stratification or cryptic relatedness, as indicated by Quality Control (QC) and the 
genomic inflation (GC) factors (λGC) shown in the QQ plots which were close to 1 (Figure 
22). 
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Each plot shows the observed -log10(P-values) against the expected -log10(P-values) under the null 
hypothesis of no association. Genomic inflation factors (λGC) are indicated within each plot. These 
plots indicate minimal confounding from uncorrected population stratification or cryptic relatedness, 
supporting the validity of the genetic associations. Additional Supplementary Table 53 presents the 
results from 16 distinct genome-wide association studies (GWAS) conducted on 11 subphenotypes. 

 

With the phenotypic framework established, a two-stage Multi-Trait Analysis of GWAS 
(MTAG) was employed to boost statistical power and delineate the genetic architecture of the 
subphenotypes. The initial stage involved integrating primary GWAS results with large-scale 
external BD summary statistics, followed by a second stage incorporating schizophrenia (SCZ) 
data, allowing for comparison. The increased statistical power and identified loci from the BD-
only MTAGs are visualized in the Manhattan plots (Figure 23). This determination was 
supported by parallel analysis. 

Psychosis 

 

SZA (Schizoaffective)

 
BD1 clinical/community 

 
Suicide attempt (SA) 

Figure 22 QQ plots for each of the 11 core subphenotype-GWAS 
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Unipolar mania (UM) 

 
Figure 23 Manhattan plots for each of the 10 subphenotype-BD MTAG analyses.  
Each plot displays the -log10(P-values) of all SNPs across the genome. The red line indicates the 
genome-wide significance threshold (P<5×10-8). These plots visually represent the increased statistical 
power and identified loci from the BD-only MTAGs. Supplementary Table 48 presents the results from 
the 10 subphenotype-BD-only and the 10 subphenotype-BD-SCZ MTAGs. 
 
 

 

Figure 24 Parallel analysis plot for factor determination.  
Parallel analysis determined the number of lower dimensions in the dataset to be four. Eigenvalues for 
principal components (PC) and factor analysis (FA) converged on four eigenvalues (factors), which are 
above the PC (upper red line) and FA (lower red line) cutoff, determining four factors were the best fit 
for the model. 

 

An a priori (Figure 21) and subsequent Principal Component Analysis (PCA) (Figure 25) of 
MTAG loci aligned with these clinical factors, underscoring a genetic basis for the observed 
clinical distinctions. This genetic PCA explained 81.5% of the variance and revealed four 
distinct dimensions, or clusters, that may represent points along a biological continuum rather 
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than discrete entities. The statistical validity of this structure was confirmed by a one-way 
ANOVA, which revealed a similar robust pattern of difference in LAVA local genetic 
correlation Rho(ρ) between the clusters, F(3, 1038) = 203.2, P < 2.00x10⁻¹⁶. 

 

Figure 25 PCA biplot of genomic loci in 10 subphenotype-BD-MTAGs.  
Principal component analysis (PCA) biplot of genomic loci from 10 subphenotype-BD MTAG results. 
The first two dimensions account for 81.5% of the variance. Subphenotypes with similar genetic 
architectures are closer on the biplot. Lighter colours indicate higher contribution (factor loading) to 
dimensional variance. A one-way ANOVA revealed a significant difference in LAVA local genetic 
correlation (ρ) between the PCA. 
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Table 42 shows direct tests of the incremental power gain from a single subphenotype GWAS 
to a BD-only MTAG and then to the BD-SCZ MTAG counterpart. This out-of-sample analysis 
also confirms that MTAG not only increased statistical power but also enhanced the biological 
coherence of the dimensions, revealing a more valid and meaningful genetic architecture for 
Bipolar Disorder. See Table 47 for an overview of the external summary statistics. 

 
Table 42 Independent MTAG Validation 

‘Severe Illness’ and ‘Core Mania’ Dimension (vs. Schizophrenia) 
 

Subphenotype Univariate rG with SCZ MTAG-BD rG with 
SCZ 

MTAG-SCZ-BD rG with SCZ 

Psychosis .44 .53 .75 

SZA .50 .57 .79 

BD1 .32 .37 .61 

 
‘Internalizing’ Dimension (vs. Major Depression) 
 

Subphenotype Univariate rG with MDD 
MTAG-BD rG with 

MDD MTAG-SCZ-BD rG with MDD 

BD2 .55 .60 .65 

OCD .17 .20 .26 

PD .41 .45 .49 

 
‘Externalizing’ Dimension (vs. ADHD) 
 

Subphenotype Univariate rG with ADHD 
MTAG-BD rG with 

ADHD 
MTAG-SCZ-BD rG with ADHD 

AlcSUD .35 .38 .44 

SA .28 .32 .37 

 

The statistical validity of this transdiagnostic approach was further confirmed by associations 
of the primary credible gene set (Tables 48-52) with established rare-variant risk genes from 
the SCHEMA (Chapter 2 [74]) and BipEx (Chapter 2 [75]) consortia using a one-sided Fisher’s 
exact test. Statistical significance was defined as P < .0125 (Bonferroni correction for four 
tests). Our analysis revealed a significant convergence between common- and rare-variant 
evidence. The enrichment for our primary BD-SCZ credible sets with SCHEMA rare-variant 
genes was significant (e.g., for BD-SCZ_noMHC set, P = 4.1 x 10⁻⁴), driven by overlapping 
genes TCF4, PBRM1, and ZEB2. The secondary BD-Only sets showed only a nominal 
enrichment that did not survive correction. While exploratory analyses of the BD-Only sets 
yielded suggestive trends for PBRM1 and TRANK1, the overall results allow us to begin 
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genetically dissecting the core components of BD from the broader, transdiagnostic risk factors 
it shares with SCZ for both common and rare variants. This pattern suggests the convergence 
is most robust for transdiagnostic factors shared between BD and SCZ. 

Based on their genetic and clinical composition, the four dimensions were interpreted as 
representing: 

• A Severe Illness Dimension (Psychosis, SZA) 
• A Core Mania Dimension (BD1) 
• An Externalizing/Impulsive Comorbidity Dimension (SA, AlcSUD) 
• An Internalizing/Affective Comorbidity Dimension (BD2, PD, OCD, RC, UM) 

 

5.3 Dimension 1: Severe Illness 

This dimension is defined by profound genetic overlap with SCZ (see genetic correlations,  
Figure 26, Supplementary Table 59.2), a link substantiated by this analyses and consistent with 
large-scale genomic dissections of the two disorders [43-44].  
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Figure 26 Global Genetic Correlation Heatmap of BD and Cross-Traits.  
Bivariate genetic correlations (rG) calculated using summary statistics from large-scale GWAS across 
three trait categories: 13 BD subphenotypes, ten psychiatric disorders, and seven cognitive measures. 
P-values were Bonferroni-corrected (P<1.84×10-4) and correlations were standardized in 
GenomicSEM. See Table 47 for an overview of the external summary statistics. 
 

The inclusion of SCZ variants in the MTAG amplified shared signals; for instance, the number 
of shared loci between Psychosis and SZA increased by 63% (from 16 to 26) in the BD-SCZ 
analysis (Supplementary Table 45; Figures 27-28). 
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 PSY SZA BD1 SA AlcSUD BD2 PD RC OCD UM 
PSY 71 16 62 28 32 26 28 35 30 9 
SZA 18.0% 68 52 24 26 25 27 31 29 8 
BD1 69.7% 51.5% 70 25 29 24 26 32 27 7 
SA 28.3% 23.3% 25.5% 49 25 22 24 28 25 7 

    AlcSUD 33.0% 26.5% 31.5% 29.8% 38 18 21 26 23 5 
BD2 27.1% 25.5% 25.3% 25.3% 21.2% 35 20 25 22 6 
PD 27.7% 26.7% 26.5% 26.4% 24.1% 23.0% 43 29 30 8 
RC 34.0% 3.1% 32.7% 31.8% 29.5% 28.7% 31.5% 44 29 6 

OCD 29.1% 28.2% 27.8% 28.1% 26.1% 25.6% 32.3% 31.5% 33 8 
UM 9.7% 8.6% 7.9% 8.8% 6.3% 7.8% 9.9% 7.5% 9.8% 20 

 Figure 27 UpSet plot of genomic loci overlap (BD-only MTAGs).  
Overlap of genomic loci in 10 subphenotype-BD MTAG analyses. The plot and corresponding table 
visualize the number of shared and unique genomic risk loci across the 10 analyses. 
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 PSY SZA BD1 SA AlcSUD BD2 PD RC OCD UM 
PSY 123 26 98 37 42 34 43 47 42 21 
SZA 16.6% 112 87 31 35 31 40 44 39 20 
BD1 63.2% 55.4% 119 33 38 30 39 43 38 19 
SA 23.5% 19.9% 21.7% 68 29 24 31 35 31 15 

AlcSUD 27.2% 23.3% 25.9% 25.0% 61 21 27 31 27 13 
BD2 22.5% 2.7% 2.5% 2.7% 18.1% 58 26 30 26 13 
PD 27.2% 25.0% 25.3% 26.5% 22.7% 22.2% 69 36 36 17 
RC 28.5% 26.5% 28.1% 29.2% 26.5% 25.9% 29.5% 73 35 17 

OCD 25.7% 24.3% 25.0% 26.3% 22.9% 22.8% 3.0% 28.9% 71 17 
UM 12.8% 12.2% 12.0% 13.9% 11.0% 11.6% 14.1% 14.2% 14.2% 42 

Figure 28 UpSet plot of genomic loci overlap (BD-SCZ MTAGs).  
Overlap of genomic loci in 10 subphenotype-BD-SCZ MTAG analyses. The plot and corresponding 
table visualize the number of shared and unique genomic risk loci across the 10 analyses. 
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Biologically, this dimension is differentiated by a unique neuro-immune signature. The TWAS 
analysis revealed that expression of HLA-DMA in the cerebellum showed a strong protective 
association (P = 2.50 × 10⁻²⁷³) only in the BD-SCZ MTAG context; this signal was not robust 
in the BD-only analysis, indicating this specific immune pathway is a primary feature linking 
severe BD to SCZ (Supplementary Table 50; Figure 29 below). This synaptic link is mirrored 
at the cellular level, where the genetic association for GABAergic and cortical neurons became 
more robust in the BD-SCZ context (P-adjusted for Psychosis-BD GABAergic neurons = 3.39 
× 10.0⁻⁷ vs. 1.96 × 10⁻¹¹ for Psychosis-BD-SCZ), underscoring a shared cellular vulnerability 
(see Figure 30). Furthermore, this dimension is characterized by specific synaptic biology. The 
novel, deleterious variant in the neuronal sodium channel gene SCN2A (Combined Annotation 
Dependent Depletion [CADD] [45] =19.83) was associated specifically with the Psychosis and 
BD1 subphenotypes, directly implicating fundamental neuronal excitability. This is mirrored 
in the gene-set analysis, where the significance for pathways including 
“GOCC_POSTSYNAPTIFIC_SPECIALIZATION”, driven by genes involved in scaffolding 
proteins and glutamatergic receptor subunits, became orders of magnitude stronger for this 
cluster when SCZ data was added (e.g., for SZA, P(Bonferroni) = 1.35 × 10⁻¹²), confirming 
that the shared biology is concentrated at the synapse (Supplementary Table 49; Figure 31, 
Figure 34). However, the absence of association could also be interpreted as due to a lack of 
power to detect an association.  
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Figure 29 TWAS joint tissue associations in 10 subphenotype-BD-SCZ MTAG.  
The plot shows the most robust, conditionally independent gene-tissue associations for each BD 
subphenotype across 15 brain tissue datasets. The x-axis represents the significance of the association 
(-log₁₀ P-value), corrected for all genes and tissues tested. The direction of effect is indicated by 
triangles: red for a positive Z-score (increased expression associated with risk) and blue for a negative 
Z-score (decreased expression associated with risk). See Figure 32 below for the BD-Only TWAS 
analyses. Subphenotypes included were: Psychosis, Schizoaff, Schizoaffective disorder, BD1, bipolar 
disorder I, SuicAtt, suicide attempt, AlcSUD, alcohol or substance use disorder, BD2, bipolar disorder 
II, PanicDis, panic disorder, RapidCyc, rapid cycling, OCD, obsessive compulsive disorder, 
UnipolarMan, unipolar mania. The Supplementary table 50 provides the full list of gene-tissue 
associations from the TWAS analysis. 
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Figure 30 Cell type enrichment analysis in 10 subphenotype-BD-SCZ-MTAGs.  
The heatmap displays standardized beta coefficients from cell-type enrichment analysis across 10 BD 
subphenotypes. Colour intensity corresponds to the strength of the enrichment signal, with 
subphenotypes ordered by effect size. Absence of colour indicates no association. Asterisks (*) denote 
associations that remained robust after Bonferroni correction for the number of cell types tested (P < 
.05). Corresponding results from the BD-Only analysis are shown in Figure 33 below. The 
Supplementary Table 47 provides the full list of associations from the cell type specificity analysis. The 
analyses included: Psychosis, Schizoaff, Schizoaffective disorder, BD1, bipolar disorder I, SuicAtt, 
suicide attempt, AlcSUD, alcohol or substance use disorder, BD2, bipolar disorder II, PanicDis, panic 
disorder, RapidCycl, rapid cycling, OCD, obsessive compulsive disorder, UnipolMan, unipolar mania. 
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Figure 31 Gene set enrichment analysis in 10 subphenotype-BD-SCZ-MTAGs.  
The heatmap displays standardized beta coefficients from MAGMA gene-set enrichment analysis 
across 10 BD subphenotypes. Colour intensity corresponds to the strength of the enrichment signal, 
with gene sets ordered by effect size. Absence of colour indicates no association. Asterisks (*) denote 
associations that remained robust after Bonferroni correction for the number of gene sets tested (P < 
.05). Corresponding results from the BD-Only analysis are shown in Figure 34 below. The 
Supplementary Table 49 provides the full list of gene-set associations. The analyses included: 
Psychosis, Schizoaff, Schizoaffective disorder, BD1, bipolar disorder I, SuicAtt, suicide attempt, 
AlcSUD, alcohol or substance use disorder, BD2, bipolar disorder II, PanicDis, panic disorder, 
RapidCycl, rapid cycling, OCD, obsessive compulsive disorder, UnipolMan, unipolar mania. 

 

 



 192 

 

Figure 32 Heatmap of TWAS joint tissue associations (BD-only MTAGs).  
Heatmap illustrating TWAS joint tissue associations in 10 subphenotype-BD MTAGs. Effect sizes, 
categorized by tissue, represent findings across 15 adult and foetal brain tissues. Red (positive) and blue 
(negative) triangles represent the direction of effect of the TWAS Z-statistic score. 
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Figure 33 Heatmap illustrating differential cell type enrichment (BD-only MTAGs).  
The heatmap illustrates differential cell type enrichment across 10 subphenotype-BD MTAG analyses. 
Colour intensity corresponds to the strength of the standardized beta. An asterisk (*) marks cell-type 
associations that survive Bonferroni correction (P<.05). 
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Figure 34  Heatmap illustrating differential gene set enrichment (BD-only MTAGs).  
The heatmap illustrates differential gene set enrichment across 10 subphenotype-BD MTAG analyses. 
Colour intensity corresponds to the strength of the standardized beta. An asterisk (*) marks gene sets 
that survive Bonferroni correction (P<.05). 

 

5.4 Dimension 2: Core Mania 

While genetically related to the Severe Illness Dimension, the BD1 dimension is distinguished 
by specific loci related to neuronal function and development. The TWAS analysis identified 
PACS1, involved in neuronal protein trafficking, as uniquely associated with BD1 via its 
expression in the cortex (Supplementary Table 50). The association with PACS1 suggests 
altered neurotrophic support may be a specific biological feature of the core manic phenotype. 
Furthermore, BD1 was specifically associated with a variant in ADCY2 (rs78308718), a gene 
previously linked to lithium response [46-49]. This suggests a distinct biological pathway 
related to treatment response that is characteristic of this core manic phenotype. This was 
complemented by findings for CACNA1C, a well-established risk gene for BD, which showed 
its strongest association within the Core Mania dimension, reinforcing the importance of 
calcium channel signalling in mania [3, 5]. This contrast is particularly evident when 
comparing BD1 and RC; while BD1 shows genetic specificity, RC displays a highly pleiotropic 
profile, with associated variants overlapping more extensively with other subphenotypes 
(Figure 35). 
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A. 

 

B. 

 

Figure 35 Overlap visualizations of lead SNPs across subphenotypes.  
Visualization of shared and unique lead SNPs for bipolar disorder I (BD1) (A) and rapid cycling (RC) 
(B) from the subphenotype-BD-only MTAG analyses, demonstrating the genetic specificity of BD1 
versus the pleiotropic architecture of RC. 
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5.5 Dimension 3: Externalizing/Impulsive 

This dimension is defined by a strong shared liability for impulsive and externalizing 
behaviours. This was evident in the high global genetic correlation between suicide attempt 
(SA) and Alcohol/Substance use disorder/dependency (AlcSUD) (rG ~ .80, s.e.m.=.056) and 
was validated by LAVA, which identified three shared local genetic loci between them (see 
Supplementary Table 51 and 59.2). The three local genetic loci shared between SA and 
AlcSUD included a region on chromosome 16 containing genes for synaptic vesicle transport, 
suggesting shared mechanisms of presynaptic function. This dimension shares a common 
architecture with ADHD; biologically, this dimension is distinguished by a strong enrichment 
for midbrain dopaminergic neurons, directly implicating reward and motivation pathways in 
the shared genetic risk for both SA and AlcSUD (Supplementary Table 47). The enrichment 
for dopaminergic neurons was specific to cells from the ventral tegmental area (VTA), a key 
hub in the mesolimbic reward circuit, providing a direct anatomical and cellular correlate for 
the high rates of comorbid substance use in this cluster. The novel association of the gene 
MAD1L1 (Table 43, Supplementary Table 49) (critical for neurodevelopment), with the 
AlcSUD subphenotype in the BD-SCZ MTAG, provides an additional specific biological link 
for this dimension. 
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Table 43 Key Genetic and Biological Findings Defining the Dimensions of Bipolar Disorder 

 
Pathway Key Finding Primary Evidence Analysis 

Severe Illness Dimension (Psychosis, SZA) 

Neuro-Immune HLA-DMA Protective; P=2.50×10-273 TWAS (BD-SCZ 
MTAG) 

Synaptic Function SCN2A Deleterious; CADD = 19.83 Variant Annotation 

Synaptic Function Postsynaptic Specialization P(Bonferroni) < 1.35×10-12 Gene-Set Enrichment 

Cellular VIP-expressing interneurons Top enriched cell type Cell-Type Enrichment 

Neurodevelopment 
Hippocampal Excitatory 

Neurons 
Enrichment in BD-SCZ 

analysis Cell-Type Enrichment 

Core Mania Dimension (BD1) 

Synaptic Function PACS1 P=2.00×10-19 TWAS (BD-only) 

Externalizing Dimension (SA, AlcSUD) 

Cellular 
Midbrain Dopaminergic 

Neurons Risk enrichment Cell-Type Enrichment 

Neurodevelopment MAD1L1 Novel Locus; P=1.15×10-18 
GWAS (BD-SCZ 

MTAG) 

Internalizing Dimension 

Neurodevelopment DCC (RC, UM, PD, OCD) Shared Locus; P<1.37×10-8 LAVA 

Neuro-Immune SMAD3 (RC, PD) 
PD/RC Specific Locus; 

P=3.14×10-9 
GWAS (BD-SCZ 

MTAG) 

Cellular (Gut-Brain) GLP2R enrichment (PD) Specific cell-type enrichment Cell-Type Enrichment 

Cellular 
Glutamatergic vs. 

GABAergic Weaker glutamatergic assoc. Cell-Type Enrichment 

Evolutionary Rapid Cycling (RC) Negative Selection 
(S) = -1.75 

SBayesS 

Shared / Foundational (Across Dimensions) 

Foundational Chromatin Org. & DNA 
Repair 

Top enriched pathway Gene-Set Enrichment 

Systemic (Stress) 
Nicotine/Chromaffin Cell 

Pathway 
Enriched in BD-SCZ analysis Gene-Set Enrichment 

Synaptic (Metabolic) SLC39A8, FADS1 CADD=23.1; P=2.11×10-32 
Variant Annotation, 

TWAS 

Synaptic 
(Endocannabinoid) CNR1 enrichment Shared vulnerability Gene-Set Enrichment 

Synaptic (Metabolic) GLYCTK Protective; P=5.20×10-110 TWAS (Amygdala) 

Abbreviations: AlcSUD, alcohol/substance use disorder; BD1, bipolar disorder I; BD2, bipolar disorder 
II; CADD, Combined Annotation Dependent Depletion; GWAS, Genome-Wide Association Study; 
LAVA, Local Analysis of [co]Variant Annotation; MTAG, Multi-Trait Analysis of GWAS; OCD, 
obsessive-compulsive disorder; PD, panic disorder; RC, rapid cycling; SA, suicide attempt; SZA, 
schizoaffective disorder, bipolar type; TWAS, Transcriptome-Wide Association Study; UM, unipolar 
mania. 
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5.6 Dimension 4: Internalising/Affective 

This broad dimension is underpinned by a complex substructure of shared genetic factors 
related to mood instability and anxiety. While sharing the core cellular vulnerabilities seen 
across all dimensions (including GABAergic neurons, astrocytes), its distinction comes from 
specific gene pathways. The most powerful evidence for this clustering comes from the LAVA 
analysis, which uncovered a hidden relationship between OCD and PD. Despite a moderate 
global correlation, these two subphenotypes shared 30 local genetic loci, explaining their 
clustering and demonstrating a specific, shared genetic architecture for anxiety-compulsive 
traits that is largely independent of the psychosis axis (Figure 36; Supplementary Table 51). 
The 30 shared loci between OCD and PD were significantly enriched for genes involved in 
postsynaptic density scaffolding and calcium signalling, suggesting a shared vulnerability 
based on the molecular machinery of the synapse in corticostriatal circuits. 
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Figure 36 Scatter plots of local genetic correlations.  
The Rho(ρ) correlation (x-axis) and log10-p values (y-axis) for each pairwise BD subphenotype 
analysis per locus. Black dots represent the correlated loci after Bonferroni correction.  

 

Biologically, this dimension is linked by specific neurodevelopmental and signalling pathways. 
A novel association of the neurodevelopmental guidance gene DCC (encodes netrin 1 receptor) 
was shared across the RC, UM, PD, and OCD sub-group, suggesting altered axonal guidance 
as a shared vulnerability pathway. A more specific link between rapid cycling (RC) and PD 
was the shared association with SMAD3, a gene that mediates C4-regulating TGF-β signalling, 
a pathway known to interact with thyroid hormones [50], and genes such as SMAD [51] and 
DGKH [52-53] have also been previously linked to panic disorder. This provides a potential 
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biological mechanism for the long-observed, but mechanistically elusive, association between 
thyroid dysfunction and mood instability in RC. However, this is just one potential pathway.  

Finally, SBayesS analysis further differentiated this cluster by showing that BD2’s genetic 
architecture overlaps most strongly with anxiety disorders, in contrast to BD1’s primary 
overlap with SCZ (Figure 37, Table 44), providing a clear genetic basis for their separation.  

The clinical presentation of this rapid cycling (RC) is further explored by examining the 
relationship between AOO and the increased number of comorbidities (Figure 38). 

 

Figure 37 SBayesS plots showing genetic architecture parameters.  
SBayesS is a summary-level method which uses a Bayesian mixed linear model method, to estimate 
SNP-based heritability (h²snp) polygenicity (proportion of SNPs with nonzero effects) and a measure 
of negative selection (S) from the relationship of allele frequency to SNP effects. Estimates for (a) 
three Genetic Architecture (GA) parameters in BD subphenotypes, relative to other traits; (b) 
selection (S) parameters and (c) polygenicity (π), π represents the proportion of (HapMap3) SNPs 
estimated to be causal, and S describes the effect size-MAF relationship, S is a signature of negative 
selection, (d) indicates SNP heritability (h²snp). All three parameters had good convergence 
measured by Gelman and Rubin, ^R <1.2. BD subphenotypes included were psychosis, BD1 
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Clinically ascertained, BD1 Clinical/Community, rapid cycling, BD2 Clinical and BD2 
Clinical/Community ascertained, which were compared to cross-traits (SCZ, MDD, ADHD and 
anxiety disorders). Confidence intervals for both psychosis and BD1 overlapped with SCZ, and BD2 
with anxiety. Rapid cycling (RC) was most negatively skewed indicating a pervasive negative 
selection. See Table 44 for the genetic architecture parameters produced below.  
 
 
Table 44 SBayesS Genetic Architecture Results 

Trait 
SNP-based 
Heritability 

(h²snp) 
SE Polygenicity SE 

Negative 
Selection 

(S) 
SE Group 

Schizophrenia .299 .006 .022 .001 -.530 .023 Cross_trait 
Psychosis .273 .026 .005 .001 -.524 .228 BD_trait 

BD1_Clinical .280 .013 .007 .001 -.497 .149 BD_trait 
BD1_Clinical/Community .262 .006 .012 .001 -.285 .076 BD_trait 

Rapid Cycling .285 .056 .001 .000 -1.75 .173 BD_trait 
BD2_Clinical/Community .116 .015 .014 .003 -1.13 .115 BD_trait 

Major_depression .080 .001 .022 .002 -.265 .048 Cross_trait 
ADHD .204 .005 .015 .001 -.503 .060 Cross_trait 
Anxiety .102 .008 .031 .006 -1.020 .072 Cross_trait 

 

 

Figure 38 Density plot of Age of onset of mania/mixed episode.  
Density plot revealing higher risk for comorbidities with earlier age of onset of mania/mixed episodes. 
The insert box shows coefficients for the association with rapid cycling, the risk of which increases as 
the number of comorbidities accumulates. 

 
 



 202 

5.7 Overall Genetic Discovery and Prediction 

The foundational single subphenotype GWAS for the analysed subphenotypes identified, 103 
loci, mainly BD1 (Supplementary Table 53). MTAG enhanced discovery, identifying up to 181 
subphenotype-associated loci in each subphenotype (Supplementary Table 54), including 53 
novel loci (Supplementary Table 48) not previously linked to the subphenotype, BD, or SCZ. 
Overlap of these loci is visualized in Figure 39-40, ordered by CADD. Replication of 
previously identified loci was confirmed (Supplementary Table 55).  

 

Figure 39 MTAG SNP to gene annotations for 10 Subphenotype-BD results.  
Plot of MTAG SNP to gene annotations (y-axis) for 10 Subphenotype-BD results ordered by the 
highest CADD values (CADD > 12.37), i.e. most deleterious SNP (gene) first. A CADD score 
exceeding the widely accepted threshold of 12.37 is considered indicative of a potentially deleterious 
genetic variant. Standardised (significant P<5.0×10-8) beta coefficients (βstd) and their standard errors 
are plotted on the x-axis for comparison across the 10 subphenotypes. The direction of coefficients is 
indicated in blue (positive) and red (negative). Supplementary Table 37 presents the results from the 
gene-based tests.  
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Figure 40 MTAG SNP to gene annotations for 10 Subphenotype-BD-SCZ results.  
Plot of MTAG SNP to gene annotations (y-axis) for 10 Subphenotype-BD-SCZ results ordered by the 
highest CADD values (CADD > 12.37), i.e. most deleterious SNP (gene) first. A CADD score 
exceeding the widely accepted threshold of 12.37 is considered indicative of a potentially deleterious 
genetic variant. Standardised (significant P<5.0×10-8) beta coefficients (βstd) and their standard errors 
are plotted on the x-axis for comparison across the 10 subphenotypes. The direction of coefficients is 
indicated in blue (positive) and red (negative). Supplementary Table 37 presents the results from the 
gene-based tests. 

 

PRS demonstrated effective predictive power, with variance explained on the liability scale 
(R2-liability) ranging from 5.47% for PD to 12.40% for unipolar mania; see Supplementary 
Table 58 for sample prevalences. SNP-based heritability was highest for the psychosis 
subphenotype at .278 (s.e.m.=.017). Additional random-effects PRS analyses modelled 
between-cohort heterogeneity which was substantial (Figure 41; Table 45). The overall 
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weighted average performance, including absolute risk for top and bottom PRS quintiles, is 
summarized in Table 46. 

Table 45 PRS Performance (Random-Effects Meta-Analysis) 

Phenotype Cohorts 
(k) 

Summary 
R2-liability
(RE) (%) 

95% CI for 
R2-liability 

(%) 
I2(%) 95% CI for 

I2(%) τ2 P-value (Q) 

BD1 37 9.838 7.047 - 12.980 96.4 95.7 - 97.0 .025 < .0001 

BD2 22 7.280 5.804 - 8.896 85.0 78.4 - 89.5 .004 < .0001 

Psychosis 34 9.340 7.720 - 11.080 91.0 88.4 - 93.0 .006 < .0001 

Panic Disorder (PD) 15 5.469 3.789 - 7.416 88.4 82.5 - 92.3 .005 < .0001 

Rapid Cycling (RC) 20 9.039 7.205 - 11.035 83.6 75.8 - 88.9 .005 < .0001 

Schizoaffective-BD 
(SZA) 10 8.363 5.860 - 11.218 90.1 84.0 - 93.9 .006 < .0001 

Unipolar Mania 
(UM) 7 12.402 7.572 - 18.036 85.6 72.3 - 92.5 .011 < .0001 

Suicide Attempt 
(SA) 30 8.435 6.897 - 1.098 88.2 84.3 - 91.2 .005 < .0001 

Alc. or Subst. Use 
(AlcSUD) 25 11.807 9.168 - 14.684 93.9 92.1 - 95.3 .012 < .0001 

 

Table 46 Overall Weighted Average PRS Performance 

Phenotype 
Overall Weighted 

Average R2-liability 
(%) 

Abs. Risk Top 
1% PRS (%) 

Abs. Risk Top 
10% PRS (%) 

Abs. Risk Top 
Quintile PRS 

(%) 

Abs. Risk 
Bottom Quintile 

PRS (%) 

BD1 8.76 9.27 5.30 4.20 .58 

BD2 8.18 9.37 5.86 4.78 .80 

Psychosis 9.59 9.62 5.58 4.41 .53 

Panic Disorder (PD) 4.38 6.24 4.15 3.52 .89 

Rapid Cycling (RC) 8.07 8.70 5.25 4.23 .59 

Schizoaffective-BD 
(SZA) 9.07 9.47 5.38 4.25 .53 

Unipolar Mania (UM) 11.61 11.17 5.67 4.46 .47 

Suicide Attempt (SA) 8.58 9.06 5.39 4.29 .57 
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Phenotype 
Overall Weighted 

Average R2-liability 
(%) 

Abs. Risk Top 
1% PRS (%) 

Abs. Risk Top 
10% PRS (%) 

Abs. Risk Top 
Quintile PRS 

(%) 

Abs. Risk 
Bottom Quintile 

PRS (%) 

Alc. or Subst. Use 
(AlcSUD) 9.67 9.61 5.61 4.40 .54 

 

5.6 Discussion 

The investigation reveals that the clinical heterogeneity of BD is rooted in a multi-layered 
interplay of shared and subphenotype-specific genetic factors. This confirmed a  core 
architecture affecting fundamental cellular processes, while identifying distinct genetic 
signatures that align with specific clinical subphenotypes. This evidence supports a 
dimensional approach to nosology, further challenging a purely categorical view [43-44]. 
While these dimensions may not reflect distinct aetiologies, they likely represent a continuum 
of genetic liability where different clinical features emerge at varying thresholds of risk. 
However, an alternative interpretation must be considered: that these dimensions do not reflect 
truly distinct aetiologies, but rather a single continuum of genetic liability where different 
clinical features, such as psychosis or comorbidity, emerge at varying thresholds of risk. This 
dimensional framework represents a step toward precision psychiatry, offering a new lens 
through which to view patients not as holders of a single diagnosis, but as individuals situated 
along multiple, biologically-defined continua of risk. The fact that anxiety-related 
subphenotypes share core synaptic enrichments with severe psychotic subphenotypes suggests 
a unified biological basis that can manifest in diverse ways, supported by the local correlation 
analyses. 

Notable gene findings provide leads for understanding pathophysiology. The 
deleterious SCN2A variant as a strong BD1 marker suggests a role for ion channel dysfunction 
[2-3, 5, 26, 55], potentially disrupting activity in brain regions critical for mood regulation and 
plasticity, such as the hippocampus where adult neurogenesis occurs [56]. The 
pleiotropic SLC39A8 variant, a known SCZ risk factor, was novel for seven subphenotypes and 
points to shared mechanisms involving metal homeostasis and mitochondrial function [57-59]. 
The novel association of the neurodevelopmental guidance gene DCC with the RC, UM, PD, 
and OCD cluster suggests a shared mechanism of altered axon guidance during brain formation 
[49]. The finding that altered axonal guidance underpins a cluster of internalizing and mood 
instability disorders is particularly compelling. Other notable findings include FOXO6 (FOX 
genes implicated in personality disorders) [60-61] associated with most subphenotypes but not 
BD1, and PBRM1 [2, 5, 62-63] (linked to mood-incongruent psychosis) replicated in BD1 [2]. 
The findings add to a complex genetic landscape for bipolar disorder that includes previously 
established risk loci such as 3p21.1 [63], and pathways involving endocannabinoid signalling 
[64-65] and genes including CHDH [66]. 

Biological annotations showed broadly similar enrichments in synapse biology. Notably, BD2 
displayed weaker genetic association with glutamatergic pyramidal cells versus GABAergic 
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interneurons, consistent with depression [67] and contrasting with SCZ’s increased 
glutamatergic signalling [68]. Such cellular pathway distinctions could underpin differential 
treatment responses. For example, PACS1 (unique to BD1) links to excitatory/inhibitory 
imbalance [2-3,5]. The amplification of the protective HLA-DMA signal when considering 
SCZ variants supports an integrated neuro-immune hypothesis where foundational neuronal 
vulnerabilities are compounded by aberrant immune responses. The specificity of this signal 
suggests the immune component of risk is most relevant at the severe, psychotic end of the 
mood disorder spectrum, potentially providing a biomarker to stratify patients for 
immunomodulatory trials. This connects to other immune-related genes, such 
as ZSCAN9 and C4A, linked to brain structure and synaptic pruning [69-70]. While broad 
analyses suggest C4 may not be central to BD overall [5, 55], there is emerging evidence for 
its importance at the subphenotype level, particularly in psychosis [71]. 

Chapter 5 genetic analyses illuminate distinct biological underpinnings for clinical subtypes. 
BD1 demonstrates a strong genetic overlap with schizophrenia, characterized by the 
deleterious SCN2A variant. In contrast, UM clustered within the ‘Comorbidity’ and ‘Mood 
Instability’ Factor, suggesting that while UM manifests as mania, its genetic liability draws 
more heavily from a general predisposition to comorbidity rather than from the core psychosis-
spectrum vulnerability. This implies the manic syndrome can be an endpoint for multiple 
distinct biological pathways. The distinct genetic signature of UM validates its unique position 
in psychiatric nosology and suggests it should be considered a separate entity in clinical trial 
design.  

A novel finding was that RC exhibited a unique genetic signature characterized by the most 
pronounced negative selection signatures [72]. The clinical profile of RC, early-onset, highly 
comorbid, and treatment-refractory, provides a rationale for this novel observation. This 
evidence suggests the genetic architecture of RC may be disproportionately influenced by rarer, 
more highly penetrant risk alleles that are actively purged from the population due to their 
severe fitness consequences. While compelling, this signature could also be confounded by the 
severe functional impairment and social instability of the phenotype, which independently 
impact reproductive fitness. This aligns with the clinical severity and early onset of the 
phenotype, providing a compelling rationale for dedicated studies of rare and de novo variation 
in well-phenotyped RC cohorts. This sets RC apart from other BD presentations and indicates 
that future research should expand beyond common variant GWAS to fully capture its 
aetiology. The shared genetic link to SMAD3 in RC and PD offers a potential mechanistic 
bridge for the long-observed clinical association between thyroid dysfunction and mood 
instability in RC, via the gene’s role in thyroid-interacting TGF-β signalling [18]; although, 
this is only one possible route. 

5.7 Limitations 

This study’s primary reliance on cohorts of European ancestry limits generalizability, 
underscoring the need for future multi-ancestry validation. While MTAG enhances power, its 
focus on intersected variants may mask unique loci. Despite rigorous QC, cohort heterogeneity 
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and diagnostic biases remain considerations. For instance, observed genetic distinctions could 
be inflated by diagnostic practices (e.g., assigning comorbidities based on a primary diagnosis 
of SZA vs BD with psychosis). Furthermore, two specific interpretations in the analysis warrant 
caution. First, while this identified genetic associations with suicide attempts, it is a profoundly 
complex outcome heavily influenced by psychosocial, environmental, and clinical factors that 
are not captured in the genetic models. The identified loci should therefore be seen as 
contributing to a distal risk, not as deterministic factors. Second, while the findings are 
discussed in the context of a neurodevelopmental framework, the median age of onset for most 
subphenotypes in our sample was in the early twenties. Although this period is a critical phase 
of brain maturation, these findings speak more to the emergence of the clinical syndrome rather 
than early childhood neurodevelopmental events. The genetic risks are present from birth, but 
their manifestation as a full-blown disorder is likely the result of complex, lifelong interactions 
with other factors. 

Future research must translate these associations into precise mechanistic understandings via 
functional genomics. Validation in larger, independent, multi-ancestry meta-analyses is 
crucial. Conducting de novo GWAS on the four clinical factors identified here will provide 
deeper insights, potentially enabling biologically informed diagnostic systems and novel, 
personalized therapeutics. 
 

5.8 Conclusions 

Pervasive neurodevelopmental factors, coupled with a robust neuro-immune component and 
core deficits in synaptic function, clarify BD’s aetiology. In doing so, this study offers a 
comprehensive set of insights through a multi-layered understanding of BD’s genetic 
heterogeneity. These findings move BD research towards a more biologically grounded 
psychiatric nosology, which is a foundational step toward enabling better patient stratification 
and paving the way for targeted therapeutic strategies that address specific vulnerabilities in 
this complex illness. 
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5.9 Supplementary Materials  

Table 47 External GWAS Summary Statistics Used in Cross-Trait Analyses 

Summary Statistics (abbrev.) Study N 
Bipolar disorder O’Connell et al., 2025 840,309 

Schizophrenia (SCZ) Trubetskoy et al., 2022 130,644 
Major depressive disorder (MDD) Howard et al., 2019 500,199 

Attention deficit and hyperactivity disorder (ADHD) Demontis et al., 2023 225,534 
Anxiety (ANX) Purves et al., 2020 114,091 

Autism spectrum disorder (ASD) Grove et al., 2019 46,350 
Mood swings (MOOD) Neale Lab UKBB, 2018 604,063 
Intelligence (INTEL) Savage et al., 2019 269,867 

Insomnia (INS) Watanabe et al., 2022 386,888 
Post traumatic stress disorder (PTSD) Nievergelt et al., 2019 174,659 
Borderline personality disorder (BPD) Witt et al., 2017 2,543 

Matrix de la Fuente et al., 2020 11,356 
Memory de la Fuente et al., 2020 331,679 

Trail Making Test B (TMTB) de la Fuente et al., 2020 78,547 
Tower de la Fuente et al., 2020 11,263 

Symbol and digit (SymDig) de la Fuente et al., 2020 87,741 
VNR de la Fuente et al., 2020 171,304 

Reaction time (RT) de la Fuente et al., 2020 330,024 

 

 

 

 



 209 

 

 



 210 

 

 
 



 211 

 

 

 



 212 

 

 

 
Figure 41 Random meta-analysis of Polygenic Risk Score (PRS).  
Forest plot from the meta-analysis of PRS for Subphenotype-specific-BD MTAG, summarizing the per-
cohort R² values on the liability scale (assuming K=2%). The diamond depicts the pooled summary Z-
score from a random-effects meta-analysis. 
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Table 48 Credible Gene Set from BD-SCZ MTAG Analysis (no MHC) (N=68) 

Gene 

Most 
Significant 
TWAS P-

value 
(JOINT.P) 

Associated 
Tissue 

Associated Subphenotypes 
(MTAG) 

Top TWAS 
Z-score 

(Direction) 

FUMA 
Evidence 

GLYCTK 5.20 x 10⁻¹¹⁰ Amygdala All 10 -22.3 
(Protective) 

Positional, 
eQTL 

GNL3 1.40 x 10⁻⁹² Frontal 
Cortex BA9 All 10 2.4 (Risk) 

eQTL, 
Chromatin 

Int. 

SEMA3G 2.70 x 10⁻⁷³ Cerebellum 8 (All except AlcSUD, BD2) -18.1 
(Protective) 

Positional, 
eQTL 

WDR73 3.60 x 10⁻⁶¹ Frontal 
Cortex BA9 

6 (Psychosis, SZA, BD1, PD, 
RC, OCD) 16.5 (Risk) Positional 

ENSG00000259683 3.90 x 10⁻⁵⁷ Foetal Tissue All 10 -15.9 
(Protective) Positional 

FADS1 2.11 x 10⁻³² Cerebellum 6 (Psychosis, SZA, BD1, 
AlcSUD, RC, UM) 

-12.0 
(Protective) 

Positional, 
eQTL 

SP4 5.14 x 10⁻²⁶ Pituitary All 10 1.6 (Risk) Positional, 
eQTL 

CTSF 2.01 x 10⁻²³ Substantia 
nigra All 10 -1.0 

(Protective) 
Positional, 

eQTL 

ADD3 6.12 x 10⁻²² Cerebellar 
Hemisphere All 10 9.7 (Risk) Positional, 

eQTL 

DRD2 6.45 x 10⁻¹⁸ Nucleus 
accumbens 3 (Psychosis, SZA, BD1) 8.7 (Risk) Positional, 

eQTL 

PTPRD 9.01 x 10⁻¹⁸ Putamen 5 (Psychosis, SZA, BD1, 
OCD, UM) 

-8.6 
(Protective) 

Positional, 
eQTL 

NT5C 3.01 x 10⁻¹⁴ Pituitary All 10 -7.6 
(Protective) 

Positional, 
eQTL 

WIPF3 8.89 x 10⁻¹³ Cortex All 10 7.1 (Risk) Positional 
MCHR1 1.12 x 10⁻¹² Caudate 8 (All except BD2, PD) 7.1 (Risk) eQTL 

TCF4 2.30 x 10⁻¹² Frontal 
Cortex BA9 

5 (Psychosis, SZA, BD1, 
OCD, UM) 7.0 (Risk) Positional, 

eQTL 

GRIN2A 8.11 x 10⁻¹¹ Frontal 
Cortex BA9 

4 (Psychosis, SZA, BD1, 
OCD) 6.5 (Risk) Positional 

ZSWIM6 1.33 x 10⁻¹⁰ Cortex All 10 -6.4 
(Protective) 

Positional, 
eQTL 

SLC39A8 3.45 x 10⁻¹⁰ Caudate 7 (Psychosis, SZA, BD1, SA, 
PD, RC, AlcSUD) 6.3 (Risk) Positional, 

eQTL 

KANSL1 4.18 x 10⁻¹⁰ Cerebellum All 10 -6.3 
(Protective) 

Positional, 
eQTL 

AC008124.1 8.79 x 10⁻¹⁰ Hippocampus All 10 6.1 (Risk) Positional 

NEK4 1.05 x 10⁻⁹ Frontal 
Cortex BA9 All 10 -6.1 

(Protective) 
Positional, 

eQTL 

PBRM1 1.11 x 10⁻⁹ Frontal 
Cortex BA9 4 (Psychosis, SZA, BD1, SA) 6.1 (Risk) Positional, 

eQTL 

TRANK1 1.98 x 10⁻⁹ Hippocampus 5 (SZA, BD1, SA, RC, UM) 6.0 (Risk) Positional, 
eQTL 

ZSCAN9 2.50 x 10⁻⁹ Pituitary All 10 -5.9 
(Protective) eQTL 

AC010894.2 3.12 x 10⁻⁹ Cortex All 10 5.9 (Risk) Positional 
GATAD2A 3.33 x 10⁻⁹ Cerebellum All 10 5.9 (Risk) Positional 

FAM114A2 4.01 x 10⁻⁹ Nucleus 
accumbens All 10 5.8 (Risk) Positional 
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Gene 

Most 
Significant 
TWAS P-

value 
(JOINT.P) 

Associated 
Tissue 

Associated Subphenotypes 
(MTAG) 

Top TWAS 
Z-score 

(Direction) 

FUMA 
Evidence 

SORCS3 4.25 x 10⁻⁹ Amygdala 6 (Psychosis, SZA, BD1, 
OCD, PD, UM) 

-5.8 
(Protective) 

Positional, 
eQTL 

GRM3 4.88 x 10⁻⁹ Frontal 
Cortex BA9 

4 (Psychosis, SZA, BD1, 
OCD) 5.8 (Risk) Positional, 

eQTL 

AC005253.1 5.15 x 10⁻⁹ Cerebellar 
Hemisphere All 10 5.8 (Risk) Positional 

STK4 6.62 x 10⁻⁹ Putamen 8 (All except BD1, 
Psychosis) 5.7 (Risk) Positional, 

eQTL 
MED8 7.21 x 10⁻⁹ Caudate All 10 5.7 (Risk) Positional 

WDR82 8.30 x 10⁻⁹ Caudate All 10 -5.7 
(Protective) Positional 

LINC01103 9.01 x 10⁻⁹ Nucleus 
accumbens All 10 5.7 (Risk) Positional 

ZEB2 9.98 x 10⁻⁹ Cerebellum 5 (Psychosis, SZA, BD1, 
OCD, RC) 5.6 (Risk) Positional 

SNX19 1.01 x 10⁻⁸ Amygdala 7 (SZA, BD1, SA, RC, PD, 
OCD, UM) 5.6 (Risk) Positional, 

eQTL 
LINC01021 1.15 x 10⁻⁸ Foetal Tissue All 10 5.6 (Risk) Positional 

MSRA 1.33 x 10⁻⁸ Caudate All 10 5.6 (Risk) Positional 

FADS2 1.52 x 10⁻⁸ Cerebellum 6 (Psychosis, SZA, BD1, 
AlcSUD, RC, UM) 

-5.5 
(Protective) 

Positional, 
eQTL 

TMEM258 1.88 x 10⁻⁸ Caudate All 10 5.5 (Risk) Positional 

UBE2Q2L 2.01 x 10⁻⁸ Frontal 
Cortex BA9 All 10 5.4 (Risk) Positional 

RP11-476D1.5 2.15 x 10⁻⁸ Hippocampus All 10 5.4 (Risk) Positional 
RP11-203G2.1 2.30 x 10⁻⁸ Cortex All 10 5.4 (Risk) Positional 

CTD-2234N22.2 2.51 x 10⁻⁸ Caudate All 10 5.4 (Risk) Positional 
NAPRT 2.78 x 10⁻⁸ Cerebellum All 10 5.3 (Risk) Positional 

GPR139 2.99 x 10⁻⁸ Pituitary All 10 5.3 (Risk) Positional, 
eQTL 

DARS 3.10 x 10⁻⁸ Frontal 
Cortex BA9 All 10 5.3 (Risk) Positional 

LINC01422 3.33 x 10⁻⁸ Cortex All 10 5.3 (Risk) Positional 

LINC00478 3.55 x 10⁻⁸ Cortex All 10 -5.2 
(Protective) Positional 

CTD-3074O7.2 3.75 x 10⁻⁸ Caudate All 10 -5.2 
(Protective) Positional 

C1orf132 4.01 x 10⁻⁸ Cerebellum All 10 5.2 (Risk) Positional 

LINC01511 4.18 x 10⁻⁸ Cortex All 10 -5.2 
(Protective) Positional 

CLCN3 4.39 x 10⁻⁸ Frontal 
Cortex BA9 All 10 -5.1 

(Protective) Positional 

RP11-474E11.1 4.66 x 10⁻⁸ Hippocampus All 10 5.1 (Risk) Positional 

AC10482.2 4.88 x 10⁻⁸ Nucleus 
accumbens All 10 -5.1 

(Protective) Positional 

INO80E 6.01 x 10⁻⁸ Cerebellum All 10 -5.1 
(Protective) Positional 

MADD 6.15 x 10⁻⁸ Caudate All 10 -5.0 
(Protective) Positional 

MLEC 6.30 x 10⁻⁸ Cortex All 10 -5.0 
(Protective) Positional 
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Gene 

Most 
Significant 
TWAS P-

value 
(JOINT.P) 

Associated 
Tissue 

Associated Subphenotypes 
(MTAG) 

Top TWAS 
Z-score 

(Direction) 

FUMA 
Evidence 

RP11-755F1.1 6.66 x 10⁻⁸ Hippocampus All 10 -5.0 
(Protective) Positional 

CARNMT1 7.01 x 10⁻⁸ Frontal 
Cortex BA9 All 10 -4.9 

(Protective) Positional 

C20orf196 7.22 x 10⁻⁸ Cerebellum All 10 4.9 (Risk) Positional 
DPY19L1 7.50 x 10⁻⁸ Caudate All 10 4.9 (Risk) Positional 

RUNDC3A 7.88 x 10⁻⁸ Frontal 
Cortex BA9 All 10 -4.9 

(Protective) Positional 

GLT8D1 8.11 x 10⁻⁸ Cortex All 10 4.9 (Risk) Positional 

GLIS3 8.33 x 10⁻⁸ Pituitary All 10 -4.8 
(Protective) Positional 

CHRNA3 8.55 x 10⁻⁸ Nucleus 
accumbens All 10 4.8 (Risk) Positional 

ATP6V1B1 8.79 x 10⁻⁸ Cortex All 10 -4.8 
(Protective) Positional 

 

Table 49 Credible Gene Set from BD-SCZ MTAG Analysis (with MHC) (N=17)    

Gene 
Most Significant 
TWAS P-value 

(JOINT.P) 
Associated Tissue 

Associated 
Subphenotypes 

(MTAG) 

Top TWAS Z-
score (Direction) 

FUMA 
Evidence 

HCG27 2.80 x 10-285 Hippocampus 9 (All except 
AlcSUD) 36.1 (Risk) Positional 

ZNF184 3.00 x 10-282 Hypothalamus All 10 -35.9 (Protective) Positional 

HLA-DMA 2.50 x 10-273 Cerebellum All 10 -35.3 (Protective) 
eQTL, 

Chromatin 
Int. 

PRSS16 8.20 x 10-246 Cerebellum 8 (All except 
AlcSUD, BD2) 33.5 (Risk) Positional, 

eQTL 

BTN3A2 1.10 x 10-105 Hypothalamus All 10 22.0 (Risk) Positional, 
eQTL 

HLA-C 3.33 x 10-51 Ant. Cingulate 
BA24 

6 (Psychosis, 
SZA, BD1, PD, 

OCD, UM) 
14.8 (Risk) Positional, 

eQTL 

C4A 2.15 x 10-36 Nucleus 
accumbens 

5 (Psychosis, 
SZA, BD1, SA, 

AlcSUD) 
12.6 (Risk) 

eQTL, 
Chromatin 

Int. 

CYP21A1P 1.50 x 10-29 Hippocampus 
7 (SZA, BD1, SA, 

RC, PD, OCD, 
UM) 

-11.4 (Protective) Positional 

VARS2 9.80 x 10-25 Cerebellum All 10 -1.3 (Protective) Positional 
APOM 6.70 x 10-21 Cerebellum All 10 9.4 (Risk) Positional 
BAG6 4.20 x 10-19 Caudate All 10 8.9 (Risk) Positional 

CLIC1 3.10 x 10-17 Frontal Cortex 
BA9 All 10 8.4 (Risk) Positional 

HIST1H2BK 7.70 x 10-15 Cortex All 10 -7.7 (Protective) Positional, 
eQTL 

GPANK1 2.20 x 10-11 Cerebellum All 10 6.7 (Risk) Positional 
EGFL8 4.50 x 10-10 Caudate All 10 6.2 (Risk) Positional 
FLOT1 1.80 x 10-9 Hippocampus All 10 6.0 (Risk) Positional 
HCG4B 3.30 x 10-9 Pituitary All 10 5.9 (Risk) Positional 
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Table 50 Credible Gene Set from BD-Only MTAG Analysis (no MHC) (N=25) 

Gene 
Most Significant 
TWAS P-value 

(JOINT.P) 

Associated 
Tissue 

Associated 
Subphenotypes 

(MTAG) 

Top TWAS        
Z-score 

(Direction) 

FUMA 
Evidence 

CTSF 7.91 x 10-24 Substantia nigra All 10 -1.0 (Protective) Positional, 
eQTL 

GNL3 2.15 x 10-22 Pituitary All 10 9.7 (Risk) 
eQTL, 

Chromatin 
Int. 

PACS1 2.00 x 10-19 Cortex 3 (BD1, Psychosis, 
SZA) -9.0 (Protective) Positional 

ADD3 1.18 x 10-18 Cerebellar 
Hemisphere 

9 (All except 
AlcSUD) 8.8 (Risk) Positional, 

eQTL 

FADS1 3.01 x 10-17 Cerebellum 4 (BD1, AlcSUD, RC, 
UM) -8.4 (Protective) Positional, 

eQTL 

SP4 1.45 x 10-16 Pituitary All 10 8.2 (Risk) Positional, 
eQTL 

STK4 2.05 x 10-15 Putamen 7 (All except BD1, 
SZA, Psychosis) 7.9 (Risk) Positional, 

eQTL 

NT5C 3.33 x 10-14 Pituitary 9 (All except BD1) -7.6 (Protective) Positional, 
eQTL 

WIPF3 7.21 x 10-13 Cortex 9 (All except BD1) 7.2 (Risk) Positional 

ZSWIM6 2.22 x 10-10 Cortex All 10 -6.3 (Protective) Positional, 
eQTL 

TRANK1 5.15 x 10-9 Hippocampus 4 (BD1, SA, 
Psychosis, SZA) 5.8 (Risk) Positional, 

eQTL 

ZSCAN9 8.82 x 10-9 Cerebellum 4 (BD1, BD2, PD, 
OCD) -5.7 (Protective) eQTL 

PBRM1 1.05 x 10-8 Frontal Cortex 
BA9 

3 (BD1, Psychosis, 
SZA) 5.7 (Risk) Positional, 

eQTL 

FADS2 1.48 x 10-8 Cerebellum 4 (BD1, AlcSUD, RC, 
UM) -5.6 (Protective) Positional, 

eQTL 
TMEM258 1.77 x 10-8 Caudate All 10 5.5 (Risk) Positional 

SNX19 4.88 x 10-8 Amygdala 6 (BD1, SA, PD, RC, 
OCD, UM) 5.1 (Risk) Positional, 

eQTL 

CLCN3 5.01 x 10-8 Frontal Cortex 
BA9 All 10 -5.1 (Protective) Positional 

AC008124.1 5.33 x 10-8 Hippocampus All 10 5.1 (Risk) Positional 

LINC01103 6.15 x 10-8 Nucleus 
accumbens All 10 5.0 (Risk) Positional 

GATAD2A 7.30 x 10-8 Cerebellum All 10 5.0 (Risk) Positional 
DPY19L1 7.55 x 10-8 Caudate All 10 4.9 (Risk) Positional 

RP11-476D1.5 8.90 x 10-8 Hippocampus All 10 4.9 (Risk) Positional 

CHRNA3 9.12 x 10-8 Nucleus 
accumbens All 10 4.8 (Risk) Positional 

ATP6V1B1 9.88 x 10-8 Cortex All 10 -4.8 (Protective) Positional 
C1orf132 1.01 x 10-7 Cerebellum All 10 4.8 (Risk) Positional 
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Table 51 Credible Genes from the MHC Region (BD-Only MTAG) (N=2) 

Gene 
Most Significant 
TWAS P-value 

(JOINT.P) 

Associated 
Tissue 

Associated 
Subphenotypes 

(MTAG) 

Top TWAS Z-
score (Direction) 

FUMA 
Evidence 

C4A 3.11 x 10-8 Nucleus 
accumbens Psychosis, SZA, BD1 5.5 (Risk) eQTL, 

Chromatin Int. 
HLA-DPA1 4.50 x 10-7 Cerebellum SZA, Psychosis -5.0 (Protective) eQTL 

 

Table 52 Credible Gene Sets with SCHEMA Rare-Variant Genes (N=33) 

Credible Set N Genes 
in Set 

Overlapping Genes with 
SCHEMA 

P-value 
(Fisher’s Exact) 

Significant after Correction 
(P < .0125) 

BD-SCZ_noMHC 68 3 (TCF4, PBRM1, ZEB2) 4.1 x 10-4 Yes 
BD-SCZ_wMHC 85 3 (TCF4, PBRM1, ZEB2) 1.1 x 10-3 Yes 

BD-
Only_noMHC 25 1 (PBRM1) .048 No 

BD-Only_wMHC 27 1 (PBRM1) .044 No 

 
 

The full data for Supplementary Tables are available in the attached 
file: Supplementary.tables.xlsx. This file also contains the supplementary data tables 
referenced in Chapter 6. 

 The specific contents for Chapter 5 are as follows: 

Table 53. Gene-based Tests Using Gene Annotations of MTAG Results.  
 
Table 54. Characteristics of Participating Cohorts.  
 
Table 55. Per-Cohort Sample Sizes for each Subphenotype Analysis.  
 
Table 56. Summary Statistics for Subphenotype GWAS and Post-QC Variant Counts.  
 
Table 57. Pairwise Overlap of Loci Among Subphenotype-BD-SCZ MTAGs.  
 
Table 46. Joint conditional analyses of Brain Region-Specific Gene Associations with Bipolar 
Disorder Subphenotypes 
 
Table 58. Cell Type Enrichment Results (BD-SCZ MTAG).  
 
Table 59. Novel Loci Identified in MTAG Analyses.  
 
Table 60. Gene-Set Enrichment Results (BD-SCZ MTAG).  
 
Table 61. Transcriptome-wide associations (BD-only and BD-SCZ MTAG, w/no MHC).  
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Table 62. Local Genetic Correlation (LAVA) Results.  
 
Table 63. GWAS Summary Statistics for 16 BD Subphenotypes.  
 
Table 64. Loci Identified in MTAG Analyses of Bipolar Disorder Subphenotypes.  
 
Table 65. Replication of Loci Identified in Subphenotype MTAG Analyses.  
 
Table 66. Subphenotype-Specific Bipolar Disorder Polygenic Risk Scores.  
 
Table 67. Genetic Architecture and Cross-trait correlations.  

 

 

    ------------------------------------------- 

While Chapter 5 successfully delineated the distinct genetic architectures of multiple bipolar 
disorder (BD) subphenotypes, the clinical utility of these findings depends on the accuracy and 
interpretation of polygenic risk scores (PRS). Building on these insights, this chapter addresses 
the critical question of how PRS performance for BD is influenced by key methodological 
variables. It will directly test the “bigger is better” assumption in psychiatric genetics by 
examining the trade-off between sample size and the quality of phenotyping. Specifically, this 
analysis investigates the impact of different patient ascertainment strategies (clinical, 
community biobanks, and self-report), the inclusion of multi-ancestry GWAS data, and 
stratification by BD subtypes (BD1 and BD2), with the aim of refining the application of PRS 
and establishing best practices for future genetic studies. 

                       ------------------------------------------ 
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6 Bipolar Disorder PRS Optimisation 
 

 
A published version of the research in this chapter is available in Nature (2025) at 

DOI: 10.1038/s41586-024-08468-9 
 

6.1 Abstract 

Background:  The different methods used to find and select patients (ascertainment strategies) 
create significant inconsistencies (heterogeneity) across the genetic datasets. The reliability of 
polygenic risk scores for bipolar disorder is complicated by the varied patient recruitment 
methods used in the underlying genetic studies. To create reliable polygenic risk scores for 
bipolar disorder, we must first account for the significant inconsistencies introduced by 
different patient selection strategies in the source GWAS data. While PRSs for bipolar disorder 
are a powerful tool, their predictive accuracy may be skewed by differences in how patients 
were recruited for the foundational GWAS, a factor that requires careful control via 
stratification. 

Aims: This study aimed to investigate the influence of including self-reported BD cases and 
multi-ancestry GWAS on the performance of resulting PRSs across different ascertainment, 
ancestry groups, and BD subtypes.  

Methods: PRS analyses using PRS-CS-auto were performed in 55 European ancestry (EUR) 
cohorts (40,992 cases, 80,215 controls), one African ancestry (AFR) cohort (347 cases, 669 
controls), and three East Asian ancestry (EAS) cohorts (4,473 cases, 65,923 controls). GWAS 
were conducted with and without the inclusion of self-reported BD data, and with and without 
non-European ancestry data. The variance explained (R2) and odds ratios (OR) for individuals 
in the top PRS quintile (20%) were calculated.   

Results: In EUR ancestry cohorts, PRS derived from multi-ancestry GWAS excluding self-
reported data explained significantly more cohort-weighted variance (R2 = .090) than those 
including self-reported data (R2 = .058) and those derived from EUR-only GWAS excluding 
self-reported data (R2 = .084). The top 20% of individuals (quintile), compared to the middle 
quintile based on the optimal PRS, had an OR of 7.06 for BD. Similar patterns were observed 
for bipolar  disorder I (BD1) and clinical cohorts. Conversely, including self-reported data 
showed significant increases in variance explained for bipolar disorder II (BD2) and 
community cohorts. PRS performance in EAS cohorts was generally better with GWAS 
excluding self-reported data. In the AFR cohort, including self-reported data substantially 
increased the explained variance. The study identified differences in the genetic architecture of 
BD based on ascertainment and subtype.  

https://doi.org/10.1038/s41586-024-08468-9
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Conclusions: The inclusion of self-reported data in GWAS for BD PRS derivation can 
negatively impact performance, particularly in EUR ancestry samples and for BD1 and clinical 
cohorts, likely due to increased phenotypic heterogeneity. The study highlights the importance 
of considering ascertainment bias in BD genetic studies and PRS development, suggesting that 
stratification by subtype may be crucial for future genetic investigations. While the identified 
PRS represents an improvement, its predictive power remains insufficient for diagnostic use in 
the general population.  

 

6.2 Introduction 

Bipolar disorder (BD) is a persistent and often debilitating mood disorder that diminishes 
quality of life and functional capacity, while also carrying a substantial risk of 
suicidality [1]. Typically emerging in early adulthood [1], BD exhibits a consistent prevalence 
and incidence globally [2]. While current treatment strategies, primarily involving mood 
stabilizers, antipsychotics, and antidepressants, are often coupled with chronic interventions 
[1,3], a considerable proportion of individuals, approximately one-third, experience relapse 
within the initial year of treatment [4].  

The clinical complexity of BD is underscored by the Diagnostic and Statistical Manual of 
Mental Disorders, 5th Edition (DSM-5), which classifies ‘bipolar and related disorders’ into a 
spectrum including bipolar disorder I (BD1), bipolar disorder II (BD2), and cyclothymic 
disorder [5]. Similarly, the 11th revision of the International Classification of Diseases (ICD-
11) recognises BD1 and BD2 as distinct entities [6]. BD1 is defined by the occurrence of both 
manic and depressive episodes, whereas BD2 is characterized by hypomanic and depressive 
episodes.  

Recent progress in genetics and neuroimaging is increasingly elucidating the underlying 
biological mechanisms of BD. Notably, the Psychiatric Genomics Consortium (PGC) Bipolar 
Disorder Working Group has been instrumental in advancing genetic discoveries in this 
area [7-9, 21]. Their 2021 genome-wide association study (GWAS) involving 41,917 
individuals with BD and 371,549 controls identified 64 associated genetic loci [7]. However, it 
is important to note that most of this research to date has focused almost exclusively on 
individuals of European (EUR) ancestry. 

 

6.3 Aims 

This chapter presents findings from the largest multi-ancestry GWAS meta-analysis of bipolar 
disorder (BD) PRS analyses to date, encompassing 158,036 individuals with BD and 2,796,499 
control individuals [21]. This analysis combines data from clinical, community biobanks, and 
self-reported samples, with the aim to optimise PRS prediction via stratification of the main 
BD phenotype into more homogenous subgroups. Given the hypothesis that variations in 
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patient ascertainment source, BD subtype, and genetic ancestry could influence the underlying 
genetic architecture, separate analyses of these groups were conducted. This comprehensive 
investigation provides novel insights into the genetic architecture implicated in BD, with the 
potential to guide the development of precision medicine strategies. 

6.4 Methods 

This study investigated the influence of ascertainment strategies, genetic ancestry, and subtype 
stratification on the performance of polygenic risk scores (PRS) for bipolar disorder. PRS were 
computed using PRS-CS-auto in multiple target cohorts of European, African, and East Asian 
ancestry. The discovery GWAS datasets were systematically varied to include or exclude self-
reported cases and non-European ancestry data, allowing for a direct comparison of the 
resulting PRS performance, which was primarily measured by variance explained 
(Nagelkerke’s R2 on the liability scale). 

The general methodology for cohort ascertainment, GWAS, and PRS analysis is detailed 
in the General Methods (Chapter 2). 

6.5 Results 

Genetic architecture of BD subtypes  

To investigate bipolar disorder (BD) subtypes, available GWAS summary statistics for BD1 
(25,060 individuals) and BD2 (6,781 individuals) from a prior study [7] were utilized, which 
originated from a subset of the clinical and community samples. In polygenic risk score (PRS) 
analyses, conducted using PRS-CS-auto [17] across 55 European ancestry (EUR) cohorts 
(40,992 cases and 80,215 controls), one African ancestry (AFR) cohort (347 cases and 669 
controls), and three East Asian ancestry (EAS) cohorts (4,473 cases and 65,923 controls; see 
Supplementary Tables 66-76 for cohort characteristics and distinct patterns of variance 
explained. 

Polygenic association with BD  

Specifically, within the EUR ancestry cohorts, the PRS derived from the multi-ancestry GWAS 
that excluded self-reported data demonstrated a significantly greater variance explained (R2 = 
.083, SE = .006) compared to the PRS generated from the multi-ancestry GWAS including 
self-reported data (R2 = .062, SE = .011, P = 2.72 x 10-4) and the PRS from the EUR ancestry 
GWAS excluding self-reported data (R2 = .078, SE = .007, P = 5.62 x 10-3; Figure 
42). Notably, individuals in the top 20% of PRS based on the multi-ancestry GWAS without 
self-reported data exhibited 7.06-fold increased odds (95% CI = 3.9 - 10.4) of being affected 
with BD compared to those in the middle quintile. The median area under the receiver operating 
characteristic curve (AUC) for this PRS was .70 (95% CI = .67 - .73). These findings suggest 
that the proportion of BD liability explained by current PRSs remains insufficient for diagnostic 
prediction in the general population.  
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Polygenic association with BD subtypes 

When examining specific BD subtypes and ascertainment sources within the EUR cohorts 
(variance explained presented as median weighted liability R2 assuming a 2% population 
prevalence), it was found that PRSs derived from GWAS excluding self-reported data 
consistently explained significantly more variance in BD1 cases (36 cohorts; 12,419 cases and 
33,148 controls; Neff = 14,607; Figure 43-44) and in clinical cohorts which represented more 
BD1 cases (48 cohorts; 27,833 cases and 46,623 controls; Neff = 29,543) compared to PRSs 
including self-reported data. Conversely, the inclusion of self-reported data resulted in higher 
median R2 estimates for BD2 cases (21 cohorts; 2,549 cases and 23,385 controls; Neff = 4,021) 
and in community cohorts which were more representative of BD2 cases (7 cohorts; 13,159 
cases and 36,592 controls; Neff = 17,178), although these increases were not statistically 
significant. It is hypothesised that this pattern is likely attributable to increased phenotypic 
heterogeneity introduced when self-reported data were included in the PRS discovery sample 
(Figure 44). In the three clinically ascertained EAS cohorts, PRS analysis revealed that PRSs 
derived from GWAS excluding self-reported data generally outperformed those including self-
reported data for both EUR ancestry PRS (EUR-PRS) and multi-ancestry PRS (multi-PRS) 
(Taiwan: EUR-PRS R2 = .069, multi-PRS R2 = .075 vs. EUR-PRS R2 = .026, multi-PRS R2 
= .036; Japan: EUR-PRS R2 = .027, multi-PRS R2 = .025 vs. EUR-PRS R2 = .015, multi-PRS 
R2 = .015; Korea: EUR-PRS R2 = .016, multi-PRS R2 = .022 vs. EUR-PRS R2 = .014, multi-
PRS R2 = .017). Interestingly, in the single clinically ascertained AFR target cohort, it was 
observed that the inclusion of self-reported data led to a substantial increase in explained 
variance (R2) for both the multi-PRS (from .010 to .23) and the EUR-PRS (from .010 to .22). 
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Figure 42 Liability R-squared by PRS across ancestry 
The figure displays the distribution of R-squared values (liability weighted) across different PRS 
(Polygenic Risk Score) groups, stratified by reported ancestry (European and Multi-ancestry). Violin 
plots illustrate the density of R-squared within each PRS group, while individual data points are overlaid 
to show the spread of the data. A horizontal black line within each violin represents the median R-
squared for that specific PRS group. The accompanying table provides a numerical summary of these 
results, presenting the median R-squared, the standard error of the median (estimated via bootstrapping, 
N=10,000 bootstraps), and the 95% bias-corrected and accelerated bootstrap confidence intervals for 
the median for each PRS group. This representation of the visual comparison of the central tendency 
and spread of R-squared values across the four different PRS and GWAS-ancestry (blue and grey) 
categories, is presented in the statistical estimates and their uncertainty in the table. 
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Figure 43 Liability R-squared by PRS across subtypes.  
The violin plot visualizes the distribution of liability-weighted R-squared values for each PRSS group 
(subtype group), with the black lines indicating the bootstrapped median for each group. The table 
complements this by providing a numerical summary of these distributions. For each PRSS group, the 
table presents the bootstrapped median, its standard error (a measure of the variability of the median 
estimate), and the 95% confidence interval. This confidence interval gives a range where the true 
median value is likely to fall, based on the bootstrap resampling. By comparing these medians and their 
confidence intervals across the PRSS groups, one can infer the magnitude and statistical significance of 
differences in predictive power, as measured by R-squared on the liability scale, between the PRSS 
groups by ascertainment (BD1 or BD2) and GWAS-ancestry (colour blue and grey). 
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Figure 44 Liability R-squared by PRS across ascertainment.  
The violin plot visualises the distribution of liability-weighted R-squared values for each PRSA group 
(ascertainment group), with the black lines indicating the bootstrapped median for each group. The table 
complements this by providing a numerical summary of these distributions. For each PRSA group, the 
table presents the bootstrapped median, its standard error (a measure of the variability of the median 
estimate), and the 95% confidence interval. This confidence interval gives a range where the true 
median value is likely to fall, based on the bootstrap resampling. By comparing these medians and their 
confidence intervals across the PRSA groups, one can infer the magnitude and statistical significance 
of differences in predictive power, as measured by R-squared on the liability scale, between the PRSA 
groups by ascertainment (clinical or biobank/community) and GWAS-ancestry (colour blue and grey) 
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6.6 Discussion 

 
This study represents the largest PRS analyses of GWAS of BD to date, encompassing a diverse 
range of ancestries (EUR, EAS, AFR, and LAT). The results corroborate the initial hypothesis 
that variations in ascertainment and BD subtype are associated with differences in genetic 
architecture. Subsequent post-GWAS analyses in O’Connell et al., provided novel insights into 
the biological underpinnings and genetic architecture of BD, highlighting further distinctions 
based on participant ascertainment and BD subtype. Furthermore, it was demonstrated that the 
inclusion of multi-ancestry data enhanced the polygenic prediction accuracy.  
 
The genetic correlation findings from the latest large-scale BD GWAS (O’Connell, Koromina 
and van der Veen et al., 2025) coupled with these PRS analyses, underscore that the genetic 
architecture of BD varies across ascertainment methods and subtypes, a phenomenon 
seemingly driven by the relative representation of each subtype within the 
sample. In O’Connell et al., an analysis of BD subtypes revealed a strong, albeit imperfect (rG 
= .88, SE = .05), genetic correlation between BD1 and BD2 [21]. Notably, this study observed 
high genetic correlations between both BD1 (rG = .85, SE = .03) and BD2 (rG = .95, SE = .06) 
with community-ascertained samples. In contrast, the genetic correlation between BD1 and 
self-reported BD (rG = .42, SE = .02) was significantly lower (P = 7.1 x 10-13) than that between 
BD2 and self-reported BD (rG = .76, SE = .05). Furthermore, assuming a 1% population 
prevalence [22], heritability estimates indicated a higher SNP-based heritability (h²snp) for 
BD1 (h²snp  = .21, s.e. = .01) compared to BD2 (h²snp  = .11, SE = .01). Considering the 
differing proportions of BD1 and BD2 individuals in clinical and community cohorts, the study 
also examined the genetic correlation between BD in these settings and self-reported BD, 
conditioning on the genetic risk for BD1 and BD2. Following this adjustment, the genetic 
correlation between self-reported BD and BD in community cohorts (rG = .92, s.e. = .09) was 
not significantly different (P = .10) from that observed in clinical cohorts (rG = .71, SE = .13). 
As expected, schizophrenia was more strongly genetically correlated with the main BD 
phenotype meta-analysis excluding self-reported data and with BD1 and BD in clinical 
samples. 
 
This highlights a critical trade-off in psychiatric genetics between sample characteristics and 
PRS performance. Clinically ascertained, hospital-based samples are often enriched for more 
severe illness (e.g., more BD1, higher rates of psychosis) and may have a higher underlying 
genetic burden. While a GWAS of such a sample can yield larger effect sizes, the resulting 
PRS may have limited generalizability to the wider community. Conversely, biobank and self-
report samples offer massive sample sizes but may capture a broader, more heterogeneous, and 
potentially less severe spectrum of the disorder. Our finding that excluding self-report data 
improved prediction for BD1 and clinical cohorts, while including it was neutral-to-positive 
for BD2 and community cohorts, empirically demonstrates this ascertainment-specific genetic 
architecture. Future PRS development must grapple with this trade-off, perhaps by developing 
ascertainment-specific PRS or by using methods that can model and account for this 
heterogeneity. 
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The observed differences in the genetic architecture of BD subtypes appear to be related to the 
method of ascertainment. Specifically, BD in clinical and community samples exhibited a 
strong but imperfect genetic correlation, with varying degrees of correlation with self-reported 
BD. The lower genetic correlation and limited genetic overlap between clinically ascertained 
cases and self-reported cases are likely driven by a higher proportion of BD1 within the clinical 
and community samples (O’Connell et al.). Consistent with this, the PRS derived from meta-
analyses excluding self-reported data performed better in clinical and BD1 target samples, 
whereas the inclusion of self-reported data improved PRS performance in community and BD2 
target samples. Moreover, the pattern of genetic correlations between BD and other psychiatric 
disorders shifted with the inclusion of self-reported data, with schizophrenia showing the 
strongest correlation in the absence of self-reported data, and major depressive disorder (MDD) 
exhibiting the strongest correlation when self-reported data were included (O’Connell et al. 
[21]).  
 
These findings suggest that self-reported samples may be enriched for individuals with BD2, 
aligning with recent reports of increasing depression and ADHD PRS and decreasing BD PRS 
over time in BD2 diagnoses [23]. However, O’Connell et al. recognise the potential for 
overdiagnosis of BD. This is especially a concern in outpatient settings, among individuals 
with conditions such as, chronic depression or borderline personality disorder, characterised 
by higher comorbidity rates [24-25] which warrants consideration.  
 
The multi-ancestry PRS yielded the most substantial improvement over the EUR-PRS in two 
of the three EAS ancestry target cohorts (Korea and Taiwan), with more modest gains observed 
in EUR target cohorts. The limited improvement in the AFR target cohort may be attributable 
to the genetic heterogeneity within this population [26]. These results underscore the value of 
incorporating multi-ancestry representation in PRS training data, consistent with findings in 
other complex diseases [27]. While the predictive power of the BD PRS developed in this study 
represents a notable advancement compared to previous efforts [7], it still falls short of the 
threshold for clinical utility [28]. 
 
6.7 Limitations 

The study lacked in-sample linkage disequilibrium estimates for all cohorts and relied on a 
EUR reference panel for multi-ancestry analyses. A EUR LD reference panel was used in the 
PRS analyses. This approach may not fully capture the LD patterns and interindividual 
heterogeneity present within the diverse ancestry groups included in the meta-analyses. Also, 
it was noted that some out-of-sample PRS predictions exceeded the meta-analysed SNP-based 
heritability statistic, a phenomenon that could potentially indicate inflated or spurious results 
and warrants careful consideration. The inclusion of samples with minimal phenotyping, while 
increasing sample size, may have introduced noise and reduced specificity, along with the 
influence of the effects of between-cohort heterogeneity.  
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6.7 Conclusions 

 
In conclusion, this large-scale multi-ancestry GWAS of BD has identified differences in its 
genetic architecture based on both ascertainment and subtype. This suggests that future genetic 
studies of BD will benefit from stratification by subtype. However, it is crucial to consider the 
potential impact of between-cohort heterogeneity in PRS analysis. For instance, this 
heterogeneity can lead to PRS predictions that exceed the meta-analysed SNP-based 
heritability statistic. Chapter 5 investigations offer a potential explanation for this observation, 
based on existing research [29]. Analysis supported underlying genetic architecture differences 
across cohorts, which could be mitigated by using MTAG. This approach acknowledges and 
accounts for the heterogeneity that can confound standard meta-analysis results, and post-
GWAS PRS analyses, as does the random-effects PRS models used in Chapter 5 of this thesis. 
 
6.9 Supplementary Materials  
 

The full data for Supplementary Tables are available in the attached 
file: Supplementary.tables.xlsx. This file also contains the supplementary data tables 
referenced in Chapter 5. 

 The specific contents for Chapter 6 are as follows: 

• Supplementary Table 66: Summary of 79 cohorts included in the PGC4 bipolar disorder 
meta-analyses. 

• Supplementary Table 67: Sample size (cases/controls), assessment/ascertainment type, 
and discovery from ancestry-specific and multi-ancestry meta-analyses. 

• Supplementary Table 68: Liability scale SNP-heritability estimates in EUR meta-
analyses using LD score regression. 

• Supplementary Table 69: Genetic correlation of bipolar disorder with other psychiatric 
disorders. 

• Supplementary Table 70: Multi-Ancestry PRS excluding self-report data in European 
target samples. 

• Supplementary Table 71: Multi-Ancestry PRS excluding self-report data in European 
BD1 target samples. 

• Supplementary Table 72: Multi-Ancestry PRS excluding self-report data in European 
BD2 target samples. 

• Supplementary Table 73: Multi-Ancestry PRS excluding self-report data in European 
Clinical target samples. 

• Supplementary Table 4: Multi-Ancestry PRS excluding self-report data in European 
Community target samples. 

• Supplementary Table 75: Comparison of variance explained by different PRS in 
European target samples. 

• Supplementary Table 76: Multi-ancestry and European PRS in non-European target 
samples. 
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----------------------------------------- 

The preceding chapters have demonstrated that deconstructing the heterogeneity of bipolar 
disorder (BD) requires both novel dimensional frameworks (Chapter 2) and large-scale genetic 
dissection (Chapters 3 & 4), and that the utility of these findings is shaped by critical 
methodological factors like ascertainment and ancestry (Chapter 5). The collective results 
converge on a key point: a more robust and nuanced understanding of BD is achievable, but 
requires moving beyond broad diagnostic categories. The final chapter will now synthesize 
these findings, critically discuss their broader implications and limitations, and outline future 
directions for research and clinical practice. 

----------------------------------------- 
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7 General Discussion 
 

 
Findings, Limitations, and Future Directions 

The rigorous, multi-stage research strategy employed throughout this thesis has demonstrated 
its fundamental importance in advancing our understanding of bipolar disorder (BD). By 
progressively incorporating independent cohorts for validation, thereby substantially 
increasing sample sizes, and by consistently focusing on elucidating the genetic architectures 
of more homogeneous BD subphenotypes, this body of work has made a tangible impact on 
how we approach the study of this complex condition. Specifically, this thesis has enhanced the 
reliability and generalisability of identified genetic associations, boosted the statistical power 
crucial for detecting subtle etiological effects, and enabled a more precise dissection of the 
pathways contributing to BD’s diverse clinical presentations. This methodological 
commitment, central to the research presented, represents a consequential step beyond broad 
categorisations towards a more granular, biologically informed understanding of the disorder. 

Building upon these specific contributions and the insights they have generated, this concluding 
chapter now aims not only to synthesise the findings of this thesis through a critical appraisal 
but also to offer insights into how key challenges, particularly those illuminated by the 
investigations herein, could guide and be addressed by future research. 

 

7.1 Foundational Challenges In Psychiatric Genomics  

Genome-wide association studies (GWAS) have limitations, primarily focusing on common 
variants, which excludes rarer variants. GWAS only account for a portion of the heritability of 
complex traits, leaving a substantial part unexplained. Additionally, the stringent multiple 
testing burden associated with including many genetic variants necessitates larger sample sizes 
to identify smaller effects. 

If case and control groups or cohorts are not well-matched, Wang et al. (2023) suggest this can 
lead to different sub-populations being represented and reduce statistical power for association 
[1].  This recent study proposed that between-cohort heterogeneity could be addressed by using 
Multi-Trait Analysis of GWAS (MTAG) analysis [2]. There was potential evidence to support 
this in Chapter 5 which utilized MTAG to derive SNP effect size estimates. This choice was 
motivated by a key limitation in standard fixed-effect meta-analysis: its assumption of 
homogeneity across all contributing cohorts. When this assumption is violated, a common 
occurrence in large-scale genetic studies, standard methods can produce biased SNP effect 
sizes, which are often underestimated. The analyses in this thesis were particularly susceptible 
to this issue, as demonstrated by the high heterogeneity statistics observed across all 
subphenotypes (e.g., I² = 96.4% for BD1). 
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To address this, MTAG provides a more robust estimation by treating each cohort as a distinct 
but genetically correlated trait. This model leverages the shared genetic signals across cohorts 
to improve the precision of the SNP effect estimates, thereby correcting for the bias introduced 
by heterogeneity. The practical benefit of this improved methodology is evident in the 
enhanced predictive power of the resulting Polygenic Risk Scores (PRS). The PRS for BD1, 
for example, achieved an R2-liability of 9.8%, and the score for the unipolar mania 
subphenotype reached 12.4%. These results exceed the ~4.6% reported for BD by the large-
scale [3] study, which used a standard fixed-effects approach, and are highly competitive with 
the 8.4%-9.0% R2-liability reported by [4], and even exceeding this estimate for certain 
specific subphenotypes. This may demonstrate that MTAG’s superior handling of 
heterogeneity, as argued by Wang et al. (2023) [1], leads to more powerful and predictive 
genetic scores, alongside the increased power of a multi-trait phenotypic approach. 

In contrast, the standard fixed-effects meta-analysis in Chapter 6 does not directly address 
heterogeneity. MTAG meta-analysis could take clinical cohorts as the focal trait, and 
community cohorts as genetically correlated traits, which may produce a different pattern of 
PRS variance. MTAG-PRS could show a more balanced predictive power across the two 
ascertainment groups. Under the standard model, PRS built solely on a clinical cohort (with 
potentially inflated effect sizes due to enrichment) might over-predict risk in a community 
sample. Conversely, a PRS built primarily on a community sample might under-predict risk in 
a clinical sample where the genetic burden is likely higher. Using MTAG, integrating the 
clinical cohorts as a focal trait and community data as a closely related trait, could potentially 
moderate these extreme biases, leading to a more reliable PRS performance. Subsequently, 
stratification was applied in the PRS-CS analyses in Chapter 6 to address this ascertainment 
bias. 

Chapter 6 sensitivity analyses highlighted the importance of modelling cohort-specific 
characteristics and potential heterogeneity. The MTAG method was therefore employed in the 
analysis of the BD subphenotypes in Chapter 5. Treating BD phenotypes as highly correlated 
traits within an MTAG framework may offer several advantages, including increased power to 
detect genetic associations, and more precise and potentially less biased SNP estimates which 
led to better-performing PRS. Furthermore, a sensitivity analysis was also performed that 
applied a random-effects model in out-of-sample PRS-CS subphenotype predictions, which 
improved prediction. 

Regardless, most BD subphenotype studies remain largely Eurocentric, that inherently limits 
discovery, prediction and the generalisability of findings. This is particularly relevant given 
recent evidence that depression risk can differ among people of different ancestry [5-6]. 
Studying ancestrally diverse populations in GWAS is therefore essential [7]. Tools have been 
developed to improve disease risk prediction across diverse populations. For example, the PRS-
CS method used in this thesis, has more recently been extended to improve polygenic 
prediction in ancestrally diverse populations (PRS-CSx) [8]. 
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Foundational Limitations of Genome-Wide Association Studies (GWAS) 
 
GWAS have been instrumental in identifying genetic variants associated with bipolar disorder 
(BD), however they have additional limitations to fully elucidating the disorder’s complex 
genetic basis: 
 
Missing Heritability: GWAS primarily focus on common genetic variants (Single Nucleotide 
Polymorphisms or SNPs) with a minor allele frequency of at least 1-5% in the population. This 
approach overlooks the potential contribution of rare variants, which, although individually 
infrequent, could collectively account for a portion of the “missing heritability”, the gap 
between the estimated heritability of BD from twin studies (60-85%) and the variance 
explained by identified common variants (around 25%), see Chapter 1. Also, GWAS typically 
assess the independent effect of each SNP, often overlooking complex interactions between 
multiple genes (epistasis) or between genes and environmental factors (gene-environment 
interactions), which are likely crucial in the development of BD. 
 
Small Effect Sizes of Individual Variants: Most genetic variants identified by GWAS for BD 
have small effect sizes, meaning each variant only contributes a small increase in the risk of 
developing the disorder. This makes it challenging to translate these findings into clinically 
useful predictions or diagnostic tools at the individual level. Translating GWAS findings into 
new therapeutics for psychiatry is an ongoing effort. Detecting these small effects requires very 
large sample sizes (tens of thousands of cases and controls) to achieve sufficient statistical 
power. Misclassified cases/controls in GWAS, a problem for all disorders, is especially 
impactful for BD due to its spectrum nature. For instance, studies by Zimmerman et al. 2008 
[9] and Zimmerman et al. 2010 [10] have explored whether bipolar disorder is over diagnosed 
or if previous overdiagnoses impact psychiatric classifications. This misclassification, due to 
diagnostic challenges, subtypes, and comorbidities, reduces statistical power, biases effect 
sizes, and that hinders replication. Likewise, non-random mating (mating is influenced by 
existing traits), could further bias heritability estimates. Non-random mating can violate the 
core assumptions also of Mendelian Randomization (MR) introducing bias into the results. 
 
Applying Mendelian Randomization to BD 
 
Mendelian Randomization (MR) is a valuable epidemiological tool that employs genetic 
variants as instrumental variables for exposures [11]. By leveraging the random assignment of 
genetic variants at conception, MR aims to explore causal relationships with outcomes, such 
as bipolar disorder (BD), while mitigating the confounding and reverse causation that often 
affect traditional observational studies. However, applying MR to complex diseases such as 
BD using GWAS data presents several challenges that can test MR’s core assumptions. 
Large-scale GWAS often necessitate multi-cohort designs, which can introduce sample 
heterogeneity. This lack of homogeneity may undermine key MR assumptions and prevent the 
consistent definition of BD phenotypes across studies. The commonly used two-sample MR 
approach, which utilises separate GWAS datasets for the exposure and outcome, assumes 
relative homogeneity between these samples. This assumption is a particular concern in BD 
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research, where outcome data frequently come from clinically ascertained participants, while 
risk factor (exposure) data may originate from broader population-based cohorts. Whilst the 
one-sample MR method, using a single cohort, can relax this homogeneity requirement, it 
carries a higher risk of data overfitting and weak instrument bias [12-13]. 
 
MR is therefore also not immune to potential biases. Although the fixed nature of genotypes 
helps protect against some reverse causality between the phenotypic exposure and outcome, 
violations of MR assumptions, such as horizontal pleiotropy (where genetic variants affect the 
outcome through pathways independent of the specific exposure being investigated), can still 
lead to false associations. The replicability of MR findings in BD research has also been a 
notable concern. For instance, initial MR associations reported between BD and cardiovascular 
diseases (CVD) and their subtypes did not persist after meta-analysis [14]. Similarly, MR 
studies examining the relationship between circulating metabolites and BD risk have shown 
limited replicability, often due to discrepancies between discovery and replication datasets [15-
16]. 
 
Evidence of MR Limitations in the Thesis BD Research 
 
The application of MR and sensitivity analyses to the initial GWAS results for eleven BD 
subphenotype GWAS in the current thesis work (Chapter 5), revealed heterogeneity evidenced 
by Cochran’s Q (QEgger) and horizontal pleiotropy, indicated by the MR-Egger Intercept [18]. 
While multivariable Mendelian Randomization (MVMR) could potentially address some 
horizontal pleiotropy, it would not eliminate it entirely [19-20]. Causal inference for heritable 
phenotypic risk factors using heterogeneous genetic instruments requires careful consideration 
of these limitations. Horizontal pleiotropy, where the genetic instrument affects the outcome 
through pathways independent of the exposure, poses a challenge in BD MR studies [21]. A 
genetic variant might influence specific BD subphenotypes, such as the development or 
severity of a rapid-cycling course, through mechanisms beyond its impact on the overt 
circadian disruption. For example, an SNP in a clock gene could affect both an individual’s 
intrinsic circadian rhythm (the intended exposure) and, independently, modulate critical 
intracellular calcium signalling pathways or glutamatergic neurotransmission, both of which 
are known to be involved in mood episode recurrence and the underlying pathophysiology of 
BD. In such cases, the SNP’s effect on a rapid-cycling BD subphenotype would not be solely 
mediated by the ‘propensity towards circadian disruption,’ leading to a “horizontal” pathway 
and potentially spurious causal associations. 

Environmental factors, such as inconsistent daily routines, major psychosocial stressors, or 
even seasonal changes in light exposure, also play a substantial role in the course of bipolar 
disorder and could interact with these pleiotropic pathways, further complicating the 
interpretation of MR results. Even if a genuine causal effect of circadian disruption on rapid 
cycling in BD exists, this type of horizontal pleiotropy can bias the estimated magnitude of this 
effect, either inflating or deflating it. 
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Summary: In summary, MVMR might not be a complete solution for horizontal pleiotropy in 
BD research due to the disorder’s complexity. BD has a multifaceted aetiology involving 
numerous interacting genetic and environmental factors. Identifying and accurately measuring 
all potential “other factors” influenced by a genetic variant associated with a risk factor is 
incredibly difficult, if not impossible, as all relevant biological pathways are currently 
unknown. MVMR can only mitigate some biases from weak instruments and horizontal 
pleiotropy for known confounders. BD likely has many unknown confounders, therefore 
MVMR may still be biased by residual confounding. Genetic variants identified for many BD 
risk factors might be weakly associated with those risk factors (weak instruments), which can 
amplify bias from even small amounts of horizontal pleiotropy, rendering MR results unreliable 
[22]. Given these challenges, developing methods beyond MVMR is crucial for more reliable 
causal inference in BD research using MR. Future research should focus on developing better 
instrument selection strategies to minimize the use of variants with widespread pleiotropic 
effects on pathways unrelated to BD. This ongoing effort to disentangle the complex web of 
genetic influences and causal pathways involved in the development and manifestation of 
bipolar disorder highlights the need for continued methodological advancements in the 
application of MR to this challenging condition. 

7.2 Addressing Confounding And Latent Dimensions In BD 

The factor analysis-based Multiple Indicators and Multiple Causes (MIMIC) model (Chapter 
3) is more advanced because it’s designed to study complex, underlying traits (e.g., anxiety, 
social or cognitive deficits) that cannot be measure with a single number. It does this by 
combining multiple factors at once and also accounts for the fact that our measurements are 
never perfectly accurate, due to unobservable (latent) constructs. Single regression models 
offer simplicity and ease of interpretation for examining direct relationships between observed 
variables, but they lack the ability to model latent constructs and account for measurement error 
in the same way as MIMIC models.  

Inverse Probability Weighting (IPW) Limitations 

Inverse Probability Weighting (IPW) (Chapter 3), while a powerful tool for addressing 
potential bias, is inherently limited by unmeasured confounding and potential model mis-
specification. IPW using propensity scores is a statistical method employed to mitigate 
confounding bias in observational studies, including case-control studies investigating BD. 
This technique aims to create a pseudo-population where the distribution 
of measured covariates is balanced between the exposure groups (e.g., cases and controls) by 
weighting individuals based on the inverse of their probability of belonging to their observed 
group, given their measured characteristics. The importance of considering confounding when 
assessing bias in observational research cannot be overstated. 

However, the effectiveness of IPW with propensity scores in fully adjusting for bias, 
particularly in the complex landscape of BD research, is subject to crucial assumptions and 
limitations. A core constraint is IPW’s complete dependence on observed covariates. Although 



 235 

the propensity scores constructed in Chapter 3 were based on factors that could be identified 
and measured within the statistical models, the fundamental challenge persists: any 
confounders that are unmeasured, poorly measured, or entirely unknown will not be accounted 
for by this method. Because the full spectrum of factors that could potentially confound an 
observed association is unknown (and may never be perfectly captured by measured variables 
alone), IPW despite its utility in balancing observed covariates, cannot entirely eliminate the 
risk of bias stemming from these unobserved influences. Therefore, a degree of caution must 
always be applied when interpreting results adjusted using IPW, as the potential for residual 
confounding from unknown or unmeasured factors remains. 

7.3 PRS For BD: Strengths, Caveats And Heterogeneity  

The SCZ3-PRS study in Chapter 4, among the first to investigate this specific Polygenic Risk 
Score (PRS) for bipolar disorder I (BD1), highlighted several practical limitations and findings. 
Heterogeneity in BD1 severity within the combined Romanian and UK study sample (e.g., due 
to varying proportions of hospitalized, more severe cases) and incomplete phenotype 
information for some participants potentially influenced the results and complicated the 
interpretation of PRS effects. This is a known challenge, particularly when a PRS is derived 
from a disorder such as schizophrenia (SCZ) which may have distinct severity profiles from 
BD [22]. While the SCZ3-PRS demonstrated modest clinical value for some BD1 phenotypic 
traits, providing an incremental predictive improvement when combined with clinical variables 
in machine learning models, its utility as a standalone predictor was limited. This underscores 
that while transdiagnostic PRS can be informative, their predictive power for specific 
subphenotypes of another disorder may be constrained by partially distinct genetic 
architectures. This point is relevant to findings of both shared and distinct genetic factors across 
major psychiatric disorders (Chapter 5). 

Generally, BD exhibits a strong polygenic component, and PRS serve to quantify an 
individual’s aggregate genetic liability from numerous small-effect variants identified through 
GWAS. PRS are valuable for research stratification (as employed in Chapter 3 to 6) by 
integrating with traditional risk factors for a more comprehensive risk assessment. However, it 
is crucial to recognise that PRS are correlational, do not imply causation, and are not absolute 
predictors as they omit many other developmental and environmental influences. Nevertheless, 
PRS can help mitigate some GWAS limitations by aggregating many small effect sizes, 
including from variants that do not meet stringent GWAS significance thresholds, thereby 
contributing to addressing some of the ‘missing heritability.’ They also offer broader 
applications in risk prediction, such as for offspring of affected individuals (though current 
standalone predictive power for BD is modest), and in exploring potential cross-disorder 
genetic contributions. However, caution is warranted when interpreting PRS derived from 
GWAS with limited statistical power or those based on weak genetic instruments. 

Utilizing PRS within a Mendelian Randomization (MR) framework for BD subgroups, for 
instance, to assess features such as psychosis or age of onset in BD1, also presents distinct 
challenges. PRS for subgroups often derive from smaller effective sample sizes and lower 
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heritability estimates than PRS for the primary BD phenotype. As PRS typically explain only 
a fraction of an exposure’s variance, their use as instruments can lead to weak instrument bias 
in MR, potentially flawing causal effect assessments, especially given the existing ‘missing 
heritability.’ For example, a sensitivity analysis in Chapter 5 using the SlopeHunter method to 
adjust for potential collider bias highlighted potential concerns for using MR, as results showed 
evidence of over-correction. This was likely attributable to weak instruments, specifically a 
limited number of ‘index-specific’ SNPs for the BD subphenotype, possibly reflecting high 
genetic correlations between the main BD phenotype and its subphenotypes, alongside a lack 
of clear temporal separation from the overarching BD phenotype. 

Ultimately, the development of more powerful and reliable PRS for BD relies on large-scale 
GWAS to obtain robust effect size estimates and capture a greater spectrum of genetic variants. 
While pooling data from multiple cohorts can substantially boost statistical power in GWAS, 
it also introduces the considerable challenge of between-cohort heterogeneity, which may arise 
from differences in diagnostic criteria, sample ascertainment, and environmental factors. Such 
heterogeneity can introduce noise, potentially obscuring true genetic associations and leading 
to less generalizable PRS. Therefore, researchers face a balancing act: maximizing statistical 
power through large sample sizes while meticulously addressing and mitigating the impact of 
between-cohort heterogeneity. This thesis has attempted to address such heterogeneity in 
Chapters 3 through 6 using methods including a subphenotypic approach, mixed regression 
modelling, random-effects meta-analyses of MTAG PRS results, and stratification by BD 
ascertainment and subtypes. 

7.4 Subphenotyping BD: Limits Of Genetic Stratification  

This section explores the advantages and disadvantages of focusing research on specific 
subphenotypes of bipolar disorder (BD) compared to studying the broader BD phenotype. 

Despite limitations, the thesis work benefited from a subphenotypic approach which identified 
novel genetic insights beyond those found when analysing the main BD phenotype. This 
revealed interrelated and subphenotype-specific mechanisms within BD clinical 
characteristics, as well as shared genetic architecture with other psychiatric and somatic 
disorders, evidenced by concordant pleiotropic effects. For instance, multivariate GWAS have 
begun to reveal underlying dimensional genetic liabilities across psychiatric disorders [29]. 
Similar subphenotype-specific genetic signatures aligned in Chapter 5 with this in the pre-
defined four-factor model, potentially informing the future development of BD nosology and 
treatments. BD is a highly heterogeneous condition. Studying more homogeneous subgroups 
(subphenotypes) reduced noise. Focusing on more specific subgroups allowed for the detection 
of risk factors with greater statistical power compared to analysing the entire heterogeneous 
BD group. 

Different subphenotypes exhibited distinct underlying biological mechanisms, allowing for a 
more precise understanding of the BD’s aetiology. Identifying biomarkers associated with 
specific subphenotypes could lead to more accurate predictions of illness course, treatment 
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response, and comorbidity risk within those subgroups. Studying BD subphenotypes helped 
illuminate some genetic and clinical overlap between BD and other psychiatric conditions. This 
could help refine classification of bipolar disorders in the future. 

The Chapter 5 analysis focused exclusively on individuals of European ancestry due to the lack 
of phenotyping in non-European ancestries. This limits the applicability of these findings to 
other populations. Heterogeneity between cohorts likely also limited discovery. While 
multivariate analyses increased the effective sample size, they reduced the analysis to 
intersected variants, potentially masking unique genetic loci associated with individual traits. 
Furthermore, clinical misdiagnoses and cross-trait assortative mating could have introduced 
biases requiring further investigation. Future research should incorporate formal fine-mapping 
beyond the TWAS conditional analyses to pinpoint causal variants in larger multi-ancestry 
analyses. 

Limitations of a Subphenotypic Approach: There are also general limitations of studying 
BD subphenotypes. There is a lack of a universally agreed-upon and biologically validated 
system for defining BD subphenotypes remains a pivotal challenge. This initiative encourages 
a more dimensional, mechanistic, and integrative approach to mental health research, with the 
long-term goal of improving diagnosis and treatment. Dividing the overall BD sample into 
smaller subphenotype groups reduces statistical power, potentially hindering the detection of 
genetic associations, especially in genetic studies. An attempt was made to mitigate this by 
increasing power to subphenotype-specific SNPs in the MTAG analyses. However, dividing 
BD into too many subgroups based on superficial differences might not reflect underlying 
biological distinctions and could lead to non-replicable findings. Individuals may exhibit 
characteristics of multiple subphenotypes, making clear categorisation difficult. Therefore, 
future efforts will require more detailed, accurate subphenotype classification which requires 
comprehensive and standardised clinical assessments, which can be resource intensive. 

In summary, studying bipolar disorder subphenotypes offers promise for dissecting the 
disorder’s heterogeneity and advancing the understanding of its specific biological and clinical 
features. However, as highlighted by the limitations encountered in in the current research 
(European ancestry bias, cohort heterogeneity, focus on on intersected variants), and the 
general challenges associated with subphenotype research (definition, sample size, statistical 
power), careful consideration of both the benefits and limitations will be crucial for designing 
and interpreting research in this complex area. 

 

7.5 Advancements And Path Forward In BD Genomics  

The polygenic risk score (PRS) for bipolar disorder (BD) developed in this study represents a 
notable advancement compared to previous efforts [3], yet its predictive power still falls short 
of the threshold required for clinical utility.  
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Additional methodological short-comings are address below: 

Multi-ancestry BD Polygenic Risk Score (PRS) prediction: A critical challenge in applying 
BD PRS is achieving accurate and generalisable predictions across diverse ancestries. Current 
PRS development is often hampered by the predominant reliance on European (EUR) linkage 
disequilibrium (LD) reference panels. This approach may not adequately capture the distinct 
LD patterns and interindividual genetic heterogeneity within various ancestral groups included 
in large-scale meta-analyses, thereby limiting the portability and utility of PRS in non-EUR 
populations. Recognising these disparities, initiatives including the PRIMED Consortium are 
actively working to reduce them in polygenic risk assessment [30]. 

Increased GWAS Sample Sizes: While increasing the sample size of GWAS for BD is crucial 
for improving the power to detect more associated genetic variants, it is unlikely that this factor 
alone will be sufficient to bring PRS into routine clinical use. However, larger GWAS are 
expected to identify more genetic variants associated with BD, including those with smaller 
effect sizes. Incorporating these into PRS should lead to a modest but important increase in the 
variance explained and thus, potentially better risk stratification at the population level. Larger 
samples will likely yield more accurate estimates of the effect sizes of individual variants, 
which are used as weights in PRS calculation. This could improve the reliability and predictive 
power of the scores. With very large sample sizes, GWAS might be able to reliably identify 
common variants with lower minor allele frequencies that still contribute to BD risk. Including 
these could further enhance PRS accuracy. 

Future Challenges: PRS based solely on common variants are unlikely to capture the portion 
of heritability attributed to rare variants, copy number variations (CNVs), and complex gene-
gene and gene-environment interactions. These factors require different research approaches 
(e.g., WES/WGS). Even with more variants identified, the individual variant effect sizes for 
BD are likely to remain small. This inherent polygenic architecture of the disorder means that 
even a PRS incorporating thousands or millions of variants might only explain a limited amount 
of the overall risk. The improvement in predictive accuracy with increasing sample size may 
eventually plateau. 

The current predictive accuracy of BD PRS is far below the threshold generally considered 
necessary for routine clinical decision-making (e.g., for diagnosis or guiding treatment in 
individuals). While the largest to date BD GWAS (Chapter 6) will improve prediction, it 
remains uncertain whether further increases in sample size will be sufficient to reach this 
threshold. If a PRS for bipolar disorder were to achieve AUCs (Area Under the Curve) of .90-
.95 in well-powered, across independent validation studies, it could have clinical utility, 
particularly in already identified high-risk populations [31]. 

PRS however will only account for genetic predisposition and do not incorporate the role of 
environmental factors in BD development and course. Clinical risk prediction will likely 
require integrating PRS with environmental and clinical risk factors for meaningful individual-
level assessment. This will need to be integrated further with familial risk, clinical features, 
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and information from other types of genetic variation (rare variants, CNVs), focusing on 
specific, well-defined subphenotypes of BD, for establishing clinical utility and actionable 
strategies based on PRS results. Only through such a multifactorial approach coupled with 
larger and more diverse WGS/WES/GWAS, advancements in methodology and translational 
research, might there be the potential of genetic risk scores to be realised in the clinical 
management of BD. Given that only a fraction of CNV carriers develop psychiatric disorders 
[31], it will be vital to determine how CNVs and PRS jointly contribute to risk. While SCZ 
studies indicate an additive effect for total risk [32], interactive effects between specific CNVs 
and PRS require further research for combining these relative risk weights together for 
prediction. 

 

7.6 Research Challenges And Promising PRS Developments  
 
Addressing and Leveraging Bipolar Disorder Heterogeneity 
 
A crucial future direction, consistently highlighted throughout this thesis, lies in the continued 
exploration of inter- and intra-individual heterogeneity in BD. Moving away from analysing 
broad, heterogeneous patient groups towards dissecting more homogeneous subgroups is 
essential for clarifying the complex genetic and clinical landscape of the disorder. The 
approach taken in this thesis aimed to identify more specific subgroups, which in turn revealed 
shared and differential underlying biological mechanisms potentially informative for treatment 
response. This will require deepening phenotypic characterisation for subgroup refinement. To 
power future dissections of this heterogeneity, even deeper phenotyping will be required. This 
includes the comprehensive and detailed assessment of family history, longitudinal clinical 
characteristics, treatment history, comorbidities, cognitive function, personality traits, and 
environmental exposures, which could allow for the identification of patterns of co-occurring 
features that define previously unrecognised BD subgroups. 

Employing Data-Driven Strategies and Navigating Methodological Considerations 

Alongside deeper phenotyping, advanced data-driven approaches will be vital. Statistical 
techniques like cluster analysis, applied to rich phenotypic data, can help identify natural 
groupings of individuals with similar clinical profiles, thereby defining more homogeneous 
phenotypic subgroups. Simultaneously, methods that group individuals and genetic variants 
based on shared patterns of association can identify genetically homogeneous subgroups 
without relying on pre-defined phenotypic categories. While misdiagnosis can introduce noise 
into case and control groups, the study’s approach of using genetic data to help define 
subgroups, rather than relying solely on potentially heterogeneous phenotypic diagnoses, can 
mitigate some of this impact. Furthermore, phenomena including assortative mating, where 
individuals with similar traits preferentially partner, could indirectly affect the genetics of BD 
by concentrating risk genes within families, potentially increasing the genetic heterogeneity 
observed among BD patients. 
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Recent methodological advancements offer promise for refining BD PRS. For instance, a novel 
approach using genetic data to identify genetically homogeneous subgroups (biclusters) within 
BD subphenotypes, without relying on pre-defined clinical categories, demonstrated improved 
polygenic risk prediction for BD1 using only a small subset of bicluster-specific SNPs. This 
suggests that focusing on such genetically defined subgroups might enhance the replication of 
associated SNPs in future studies [33]. The gene-set enrichment analysis of this identified 
genetic subgroup also revealed an over-representation of pathways related to neuronal 
development and maintenance, aligning with the subtype and subphenotype differential gene-
set enrichment analyses conducted in this thesis (Chapter 5) and the individual-level pathway 
(PRSet-PRS) discrimination of psychosis in BD1 (Chapter 4). These methods underscore a 
shift towards prioritising SNPs more likely to have a functional impact, rather than treating all 
SNPs equally. 

Building on the importance of biological context, annotated genes and gene sets are crucial for 
understanding the pathways and functions potentially disrupted in BD, which may manifest as 
distinct endophenotypes. By studying these, researchers can pinpoint specific biological 
pathways for investigation. Gene-set specific PRS could then be constructed to explore 
associations with these particular endophenotypes. If a disease’s genetic architecture is 
enriched within certain biological pathways, a targeted gene-set specific PRS might capture a 
stronger, more relevant signal compared to a genome-wide PRS that includes many variants 
unrelated to that specific pathway. For complex diseases with diverse genetic underpinnings 
such as BD, different gene-set specific PRS could be particularly relevant for the distinct 
subgroups of individuals identified in Chapter 5. 

Computational and Genomic Advancements in PRS 

Further enhancing PRS utility, methods leveraging predicted epigenomic features from whole-
genome sequencing data and advanced computational techniques including machine learning 
and deep learning are emerging. As identified in Chapter 4, machine learning can capture 
complex non-linear relationships, indicating potential for improved PRS prediction through 
sophisticated feature selection and weighting by deep learning methods, such as Deep 
Convolutional Neural Networks (DCNN) [34] and Deep Ensemble Encoder Networks (DEEN) 
[35]. 

Beyond common variants, efforts are underway to incorporate a broader spectrum of genetic 
variation into PRS. While increasing GWAS sample size is crucial for better-powered common 
variant PRS, including rare SNVs and structural variations (including CNVs), often captured 
by WGS rather than SNP arrays holds promise for increasing predictability. These variants, 
though individually rare, can have larger effect sizes and contribute substantially to BD risk. 
Consequently, developing methods to effectively weight and combine rare variants with 
common variants in a PRS is an active research area. Models such as RICE [36], which 
integrates common and rare variants using ensemble learning and burden scores, and EPRS 
[37], focusing on prioritizing gene clusters with specific rare variants for risk stratification, 
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exemplify this trend. Additionally, gene-based burden scores (GBS) can identify rare variant 
associations for incorporation into PRS models [38]. 

 

7.7 Relating Subphenotypes And Endophenotypes 

Bridging Subphenotypes with Endophenotypes through Genetic Insights and Advanced 
Methodologies 

From Clinical Subphenotypes to Biological Endophenotypes: The Rationale: A primary 
goal of the Subphenotyping efforts in this thesis is to bridge clinically defined subgroups of 
BD with more biologically grounded endophenotypes, thereby advancing clinical translation. 
While the subphenotypes explored herein (e.g., characterized by predominant polarity, illness 
course, specific symptom dimensions, or age of onset) refine the clinical picture, 
endophenotypes represent heritable, measurable traits (including cognitive deficits, affective 
temperaments, or neurobiological markers) considered closer to BD’s underlying genetic 
vulnerabilities. Identifying such endophenotypes helps delineate more genetically 
homogeneous groups sharing specific biological susceptibilities. 

Polygenic Risk Scores: A Bridge to Endophenotype Discovery: PRS, particularly gene-set 
specific PRS, offer a crucial link between genetic risk and these endophenotypes. For example, 
genetic variants influencing early brain development, assessed via a gene-set PRS, have been 
associated with neurophysiological endophenotypes such as reduced P300 amplitude in 
psychosis [39]. The annotated genes, gene sets, and PRS analyses from this thesis (Chapters 4 
and 5) provide a critical foundation for future work aimed at identifying and validating such 
endophenotypes in BD, including specific biological components, such as HLA-DMA and the 
complement component 4A [40]. 

Integrating Multi-Omics Data for Deeper Biological Insights: Recent methodological 
developments further empower this transition from clinical subphenotypes to biologically 
anchored endophenotypes. Multi-omics integration, using tools such as Weighted Gene Co-
expression Network Analysis (WGCNA;[41]) to find dysregulated gene networks from 
transcriptomic data, and Multi-Omics Factor Analysis (MOFA; [42]) to uncover 
comprehensive molecular signatures from diverse data types (e.g., genomics, transcriptomics, 
epigenomics), could substantially aid in patient stratification and understanding BD’s 
heterogeneity by identifying how different biological systems interact. 

Tissue-Specific Approaches and “Biotypes”: Refining Biological Subgroups: Further 
refining this quest for biologically meaningful subgroups, methods such as CASTom-iGEx 
(Context-Aware Stratification based on Tissue-specific imputed Gene Expression; [43]) 
leverage tissue-specific gene expression data to define “biotypes.” These biotypes, representing 
a convergence of genetic risk onto specific biological pathways, can form more homogeneous 
groups at a molecular level than traditional PRS groupings and may correlate strongly with 
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distinct clinical features and endophenotype profiles, as shown in other complex disorders [43]. 
Although the application of these sophisticated multi-omics and biotyping methods in BD is 
currently limited by the need for well-characterized cohorts with comprehensive data and 
advanced analytical expertise, they may offer powerful pathways forward. 

Synthesizing Approaches for a Biologically-Informed Future in BD: By integrating the 
refined Subphenotyping approaches developed in this thesis with PRS strategies focused on 
biological pathways and these advanced multi-omics and biotyping techniques, future research 
may more effectively connect observable clinical heterogeneity in BD to robust, underlying 
endophenotypes. This convergence is essential for developing a biologically informed 
classification system and ultimately, more targeted and effective treatments for bipolar 
disorder. 

 

7.8 Advances Towards Personalised Bipolar Disorders Treatment 

The comprehensive investigations undertaken in this thesis, from delineating novel 
dimensional models (Chapter 3) and subphenotype-specific genetic architectures (Chapter 5) 
to refining polygenic risk prediction (Chapters 3 and 6), could lay critical groundwork for 
advancing personalized approaches in BD. This section outlines how these specific 
contributions may eventually be leveraged to improve clinical translation. 

1. Leveraging Thesis-Defined Dimensions and Subphenotypes for Enhanced Clinical 
Assessment: A core advance of this thesis is the identification of more homogeneous 
patient subgroups based on distinct clinical and genetic profiles, such as the novel  
‘chronic functioning’ dimension (Chapter 3) and the four genetically-informed 
dimensions (Chapter 5).  

Future work could focus on translating these refined classifications into clinically 
applicable tools: 

• Holistic Patient Profiling: The imperative, as highlighted by the thesis, is to move 
beyond current diagnostic systems that do not fully capture individual heterogeneity. 
The dimensional and subphenotype frameworks developed herein can inform more 
comprehensive assessments that integrate mood polarity with cognitive function, 
personality facets, and functional impairments. This holistic view is essential for 
understanding the individual’s experience and predicting their illness course, 
particularly given findings such as the association of the FOXO6 gene (Chapter 5) 
with BD trajectory and its potential longitudinal role in hippocampal function and 
memory [44].  

• Early Identification within At-Risk Populations: The transdiagnostic genetic links 
explored (Chapters 3 to 6), particularly the shared genetic liabilities between BD, SCZ, 
MDD, and ADHD, can refine early identification strategies. For instance, research has 
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elucidated genetic overlap between BD, MDD, and SCZ, even extending to borderline 
personality disorder [45]. Broader efforts are charting the landscape of genetic overlap 
across mental disorders and related traits such as MOOD [46], and identifying specific 
loci that highlight shared risk with both mental and somatic disorders [47]. The thesis’s 
insights into how ADHD or anxiety genetic risk contributes to specific BD 
presentations (Chapter 3) could guide vigilance for youth exhibiting such early 
comorbid symptoms, potentially signalling higher BD risk (especially for a chronic, 
more complex BD trajectory). 

2. Advancing Predictive Tools for Personalised Risk Stratification and Treatment 
Planning: This thesis has explored both the utility and limitations of PRS (Chapters 3 to 6). 
The path to personalized treatment involves building on these insights: 

• Refined PRS for Specific Subgroups: The finding that PRS performance is influenced 
by ascertainment, ancestry, and subphenotype definition (Chapter 6) underscores the 
need to develop and validate PRS tailored to more homogeneous patient groups, such 
as those identified in Chapter 4. Future efforts should aim to integrate common and rare 
variants with a subphenotypic approach, potentially using advanced methods such as 
RICE [36] or EPRS [37]), to enhance predictive power for the four genetically-
informed specific thesis-derived dimensions (Chapter 5). 

• Integrating PRS with Clinical and Biological Data: As demonstrated by the 
improved prediction when SCZ3-PRS was combined with clinical variables (Chapter 
3), future predictive models should aim to integrate genetic markers such as the thesis-
derived ones, with deep phenotypic data (longitudinal course, comorbidities, cognitive 
profiles, environmental exposures) and other biomarkers. This multi-modal approach, 
potentially leveraging machine learning (Chapter 4), is key to moving PRS towards 
clinical utility for predicting modifiable outcomes such as treatment response and 
suicidality. 

3. Targeting Novel Biological Pathways for Tailored Therapeutic Interventions: The gene and 
gene set pathway analyses conducted (Chapters 4 and 5), which implicated specific biological 
mechanisms, genes such as FOXO6 in thesis-defined subphenotypes, offer avenues for novel 
therapeutic development. 

• Subphenotype-Specific Drug Discovery: Identifying distinct biological pathways for 
different subphenotypes (Chapter 4-5) could lead to interventions targeted at the 
specific underlying biology of a patient subgroup, rather than a one-size-fits-all 
approach. For example, disruptions in pathways involving FOXO6 (regulated via the 
PI3K/PKB pathway; [44]) or other hub genes identified in specific BD subphenotypes 
could become future novel targets for functional studies. 

• Biologically-Informed Repurposing: Shared gene set pathways between BD and 
comorbid conditions (e.g., ADHD, anxiety) or related disorders (SCZ, MDD), as 
explored throughout the thesis, might also allow for the informed repurposing of 
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existing treatments for specific BD subgroups characterized by these shared genetic 
signatures. 

4. Overcoming Translational Hurdles: The Path Forward: Translating these research advances 
into routine clinical practice requires continued effort: 

• Developing Robust, Generalisable Models: This necessitates new, deeply 
phenotyped, multi-ancestry cohorts to validate and extend the subphenotype and PRS 
findings of this thesis. Advanced data-driven approaches, such as the multi-omics 
integration techniques (WGCNA [41]), MOFA [42])) and biotyping methods 
(CASTom-iGEx [43]) discussed previously, will be vital for identifying robust, 
biologically-grounded patient segments. 

• Bridging the Gap to Clinical Practice: The development of practice guidelines for 
utilizing complex, multi-modal data (including genomics) in patient assessment and 
management will be essential, alongside improved genetics training for clinicians. 

By building upon the specific dimensional and Subphenotyping frameworks established in this 
thesis and by rigorously addressing methodological challenges, future research could pave the 
way for more precise diagnostics, targeted interventions, and ultimately, more personalized and 
effective care for individuals with bipolar disorder. 
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THESIS CONCLUSION 
 

Genomics Insights into Bipolar Disorder Architectures - Pleiotropic Genes and Polygenic 
Burdens: A Step Towards Personalized Treatment 

In conclusion, this thesis has systematically dissected the intricate genetic landscape of bipolar 
disorder, making an impactful contribution by demonstrating how a detailed understanding of 
pleiotropic genes and polygenic burdens can reframe our approach to this complex 
condition. By moving beyond traditional diagnostic categories to explore its dimensional 
nature (Chapter 3) and, critically, by dissecting its heterogeneity across clinically defined 
subphenotypes (Chapter 5), this work has not only underscored the limitations of a monolithic 
view of bipolar disorder but has also yielded tangible resources for the wider research 
community. Notably, based on the subphenotype-specific genetic architectures elucidated in 
Chapter 5, summary statistics for each of the subphenotypes will be released (including those 
incorporating SCZ3-SNPs effects), offering a novel and valuable foundation for future 
investigations into these more homogeneous BD groups. The examination of transdiagnostic 
polygenic risk scores (Chapter 4) further emphasized the pervasive pleiotropy influencing BD 
by highlighting shared genetic underpinnings with other psychiatric conditions. Moreover, the 
comprehensive multi-ancestry analysis of Polygenic Risk Score (PRS) performance (Chapter 
6) has illuminated how methodological rigor in accounting for population structure and 
ascertainment is crucial when navigating the complexities of polygenic traits. 

Collectively, these in-depth explorations into polygenicity and pleiotropy have provided a 
more nuanced understanding of BD’s aetiology, directly enhancing our capacity to appreciate 
distinct genetic contributions to its varied clinical presentations. The identification of specific 
genetic loci and pathways associated with different subphenotypes (Chapter 5), informed by 
their unique polygenic and pleiotropic profiles, offers clearer and more promising avenues for 
the development of targeted biomarkers and interventions. Furthermore, the insights gained 
into the impact of ascertainment bias and ancestral diversity on PRS accuracy (Chapter 
6) reinforce the impact of this thesis in advocating for robust, personalized approaches to risk 
assessment that respect the complex interplay of an individual’s genetic background and 
clinical manifestation. 

While the journey towards personalized treatment for bipolar disorder is ongoing, this thesis 
represents a pivotal step forward, driven by its detailed characterization of how pleiotropy and 
polygenicity manifest across diverse BD presentations and methodological contexts. By 
elucidating these complex genetic interplays, providing actionable data through resources such 
as the forthcoming summary statistics, and addressing key methodological challenges, this 
work lays a more robust foundation for future research aimed at translating genomic insights 
into clinically meaningful tools. Ultimately, the deeper, more stratified understanding of 
bipolar disorder’s genetic architecture achieved and promoted in this thesis holds substantial 
promise for enabling more precise diagnostic strategies and fostering the development of 
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personalized treatment approaches that may genuinely improve outcomes for individuals living 
with this challenging condition. 
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9 Appendix 
 

 

9.1 Molecular mechanisms associated with bipolar disorders 
etiology 

 
Table 68. Molecular mechanisms associated with bipolar disorders etiology 

The table is an extract of SNP results publicly available at the NHGRI-EBI GWAS Catalog downloaded 
at https://www.ebi.ac.uk/gwas/. See 8.1.1. 
 

SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

rs1012053 17486107 13q14.11 08/05/2007 DGKH Pisanu(DGKG);Cross-
Disorder(DGKI) 

rs1006737 20351715 12p13.33 30/03/2010 CACNA1C Smoller(23453885), 
Ruderfer(24280982) 

rs12576775 21926972 11q14.1 18/09/2011 TENM4 Ikeda(28115744), 
Smoller(23453885) 

rs4765913 21926972 12p13.33 18/09/2011 CACNA1C Charney(28072414) 

rs4650608 22182935 1p31.1 20/12/2011 IFI44_ 
ADGRL4 Ruderfer(24280982) 

rs9834970 22182935 3p22.2 20/12/2011 HSPD1P6_ 
LINC02033 

CrossDisorder(31835028), 
Stahl(31043756), 

Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Hou(27329760), 
Wu(32606422) 

rs2535629 23453885 3p21.1 27/02/2013 ITIH3 Amare(30626913) 

rs12576775 23453885 11q14.1 27/02/2013 TENM4 Ikeda(28115744), 
Sklar(21926972) 

rs1006737 23453885 12p13.33 27/02/2013 CACNA1C Liu(20351715), 
Ruderfer(24280982) 

rs2710323 24166486 3p21.1 29/10/2013 ITIH1 Wang(34159505), 
Wu(32606422) 

rs17693963 24166486 6p22.1 29/10/2013 GPR89P_ 
RSL24D1P1 

Ruderfer(24280982), 
Wang(38154582) 

rs9834970 24280982 3p22.2 26/11/2013 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 
Gong(36753304), 
Wang(34159505), 

https://www.ebi.ac.uk/gwas/
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SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs1006737 24280982 12p13.33 26/11/2013 CACNA1C Smoller(23453885), 
Liu(20351715) 

rs17693963 24280982 6p22.1 26/11/2013 GPR89P_ 
RSL24D1P1 

Sleiman(24166486), 
Wang(38154582) 

rs4650608 24280982 1p31.1 26/11/2013 IFI44_ 
ADGRL4 Chen(22182935) 

rs10994415 24618891 10q21.2 11/03/2014 ANK3 Mullins(34002096) 

rs12202969 24618891 6q16.1 11/03/2014 MIR2113_ 
EIF4EBP2P3 Mullins(34002096) 

rs9834970 27329760 3p22.2 21/06/2016 HSPD1P6_ 
LINC02033 

CrossDisorder(31835028), 
Stahl(31043756), 

Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727),                 

Charney(28072414), 
Chen(22182935), 
Wu(32606422) 

rs9834970 28072414 3p22.2 10/01/2017 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs2302417 28072414 3p21.1 10/01/2017 ITIH1 Li(33263727), 
Stahl(31043756) 

rs4765913 28072414 12p13.33 10/01/2017 CACNA1C Sklar(21926972) 

rs12576775 28115744 11q14.1 24/01/2017 TENM4 Sklar(21926972), 
Smoller(23453885) 

rs9834970 28115744 3p22.2 24/01/2017 HSPD1P6_ 
LINC02033 

CrossDisorder(31835028), 
Stahl(31043756), 

Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
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SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs7405404 29121268 16p13.12 09/11/2017 TMF1P1_ 
ERCC4 Cross-Disorder(31835028) 

rs2535629 30626913 3p21.1 09/01/2019 ITIH3 Smoller(23453885) 

rs3804640 31043756 3q13.12 01/05/2019 CD47 Peyrot(33686288), 
Li(33263727) 

rs35958438 31043756 15q14 01/05/2019 LINC02694 Mullins(34002096) 

rs489337 31043756 11q13.1 01/05/2019 PACS1 Mullins(34002096) 

rs2388334 31043756 6q16.1 01/05/2019 MIR2113_ 
EIF4EBP2P3 

Peyrot(33686288), 
Li(33263727), 
Yu(38858783), 

Gong(36753304), 
Cross-Disorder 

(31835028) 

rs11624408 31043756 14q32.2 01/05/2019 BCL11B Wu(32606422), 
Wang(34159505) 

rs71395455 31043756 15q25.2 01/05/2019 ZSCAN2-AS1, 
ZSCAN2 

Yao(33479212), 
Wang(34159505), 

Cross-Disorder 
(31835028) 

rs113779084 31043756 7p21.3 01/05/2019 THSD7A Mullins(34002096) 

rs10896090 31043756 11q13.2 01/05/2019 PACS1 Li(33263727) 

rs4447398 31043756 15q15.2 01/05/2019 STARD9 Mullins(34002096), 
Peyrot(33686288) 

rs2305929 31043756 2p23.2 01/05/2019 BABAM2, 
MRPL33 Wang(38154582) 

rs10994318 31043756 10q21.2 01/05/2019 ANK3 Li(33263727) 

rs9834970 31043756 3p22.2 01/05/2019 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs11557713 31043756 18q21.33 01/05/2019 ZCCHC2 Li(33263727) 

rs6130764 31043756 20q13.12 01/05/2019 WFDC5_ 
WFDC12 Li(33263727) 

rs2302417 31043756 3p21.1 01/05/2019 ITIH1 Li(33263727), 
Charney(28072414) 

rs17183814 31043756 2q24.3 01/05/2019 SCN2A Li(33263727), 
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SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

Peyrot(33686288), 
Mullins(34002096) 

rs11647445 31043756 16p13.2 01/05/2019 GRIN2A Wu(32606422), 
Li(33263727) 

rs10744560 31043756 12p13.33 01/05/2019 
CACNA1C-

IT3, 
CACNA1C 

Wu(32606422), 
Li(33263727), 

Peyrot(33686288) 
rs10035291 31043756 5q14.1 01/05/2019 SSBP2 Li(33263727) 

rs7122539 31043756 11q13.2 01/05/2019 PC Mullins(34002096) 

rs112114764 31043756 17q21.31 01/05/2019 HDAC5 Li(33263727) 

rs10455979 31043756 6q27 01/05/2019 RPS6KA2 Mullins(34002096) 

rs111444407 31043756 19p13.11 01/05/2019 NCAN 

Li(33263727), 
Peyrot(33686288), 
Wang(38154582), 

Wu(32606422) 
rs12575685 31043756 11q13.4 01/05/2019 SHANK2 Mullins(34002096) 

rs11724116 31043756 4q32.2 01/05/2019 RPS14P7_ 
FSTL5 Peyrot(33686288) 

rs61867293 31926635 10q25.1 01/11/2019 SORCS3 Cross-Disorder 
(31835028) 

rs12552 31926635 13q14.3 01/11/2019 OLFM4 Cross-Disorder 
(31835028) 

rs7531118 31926635 1p31.1 01/11/2019 LINC02796 Cross-Disorder 
(31835028) 

rs2514218 31926635 11q23.2 01/11/2019 DRD2_ 
TMPRSS5 

Cross-
Disorder(31835028), 

Wu(32606422), 
Yao(33479212) 

rs34215985 31926635 4p13 01/11/2019 SLC30A9 Cross-Disorder 
(31835028) 

rs11682175 31926635 2p16.1 01/11/2019 EIF2S2P7_ 
ACTG1P22 

Yao(33479212), 
Wang(34159505), 

Wu(32606422) 
rs102275 31926635 11q12.2 01/11/2019 TMEM258 Gong(36753304) 

rs12958048 31926635 18q21.2 01/11/2019 TCF4 Cross-Disorder(31835028) 

rs116755193 31926635 5q23.2 01/11/2019 LINC02240 Cross-Disorder(31835028) 

rs4526442 31926635 9p13.2 01/11/2019 ZCCHC7 Cross-Disorder(31835028) 

rs915057 31926635 14q23.2 01/11/2019 SYNE2, ESR2 Cross-Disorder(31835028) 

rs10149470 31926635 14q32.33 01/11/2019 RNU7-160P_ 
BAG5 Cross-Disorder(31835028) 

rs1002656 31926635 1p34.3 01/11/2019 FTLP18_ 
GRIK3 Cross-Disorder(31835028) 

rs1226412 31926635 2q24.1 01/11/2019 LINC01876 Cross-Disorder(31835028) 

rs79879286 31926635 7p15.3 01/11/2019 GSDME_ 
OSBPL3 Cross-Disorder(31835028) 

rs1518367 31926635 2q33.1 01/11/2019 PLCL1 Cross-Disorder(31835028) 

rs1806153 31926635 11p13 01/11/2019 PAUPAR Cross-Disorder(31835028) 

rs58235352 31926635 12q24.31 01/11/2019 ACADS_ 
SPPL3 Cross-Disorder(31835028) 

rs1516725 31754094 3q27.2 21/11/2019 ETV5, DGKG See Baum(DGKH);Cross-
Disorder(DGKI) 
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SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

rs34215985 31835028 4p13 01/12/2019 SLC30A9 Coleman(31926635) 

rs10043984 31835028 5q31.2 01/12/2019 KDM3B Mullins(34002096),Wu 
(32606422) 

rs1226412 31835028 2q24.1 01/12/2019 LINC01876 Coleman(31926635) 

rs2522831 31835028 7q21.11 01/12/2019 PCLO Yao(33479212) 

rs79879286 31835028 7p15.3 01/12/2019 GSDME_ 
OSBPL3 Coleman(31926635) 

rs6125656 31835028 20q13.13 01/12/2019 KCNB1 Wu(32606422) 

rs111294930 31835028 5q33.1 01/12/2019 LINC01470 Yao(33479212) 

rs174592 31835028 11q12.2 01/12/2019 FADS2 Wang(38154582), 
Mullins(34002096) 

rs2693698 31835028 14q32.2 01/12/2019 BCL11B Mullins(34002096) 

rs59979824 31835028 2q32.3 01/12/2019 PCGEM1_ 
SLC44A3P1 Wu(32606422) 

rs1518367 31835028 2q33.1 01/12/2019 PLCL1 Coleman(31926635) 

rs7531118 31835028 1p31.1 01/12/2019 LINC02796 Coleman(31926635) 

rs11887562 31835028 2p24.1 01/12/2019 LINC03116, 
LINC01830 Yao(33479212) 

rs2910032 31835028 5q33.1 01/12/2019 LINC01470 Wu(32606422) 

rs12704290 31835028 7q21.12 01/12/2019 GRM3, 
GRM3-AS1 

Wu(32606422), 
Yao(33479212) 

rs71395455 31835028 15q25.2 01/12/2019 ZSCAN2-AS1, 
ZSCAN2 

Stahl(31043756), 
Yao(33479212), 
Wang(34159505) 

rs28681284 31835028 15q25.1 01/12/2019 CHRNA3 Yao(33479212), 
Wu(32606422) 

rs12958048 31835028 18q21.2 01/12/2019 TCF4 Coleman(31926635) 

rs4481150 31835028 3p21.1 01/12/2019 ITIH3 Yao(33479212) 

rs6694545 31835028 1p35.2 01/12/2019 LINC01756_ 
LINC01648 Wang(34159505) 

rs1806153 31835028 11p13 01/12/2019 PAUPAR Coleman(31926635) 

rs35346733 31835028 3p26.3 01/12/2019 CNTN4 Wu(32606422), 
Yao(33479212) 

rs915057 31835028 14q23.2 01/12/2019 SYNE2, ESR2 Coleman(31926635) 

rs12668848 31835028 7p22.3 01/12/2019 MAD1L1 Wang(38154582), 
Mullins(34002096) 

rs10149470 31835028 14q32.33 01/12/2019 RNU7-160P_ 
BAG5 Coleman(31926635) 

rs12898460 31835028 15q14 01/12/2019 LINC02694 Peyrot(33686288) 

rs12474906 31835028 2p23.2 01/12/2019 RBKS, 
MRPL33 

Wu(32606422), 
Wang(34159505), 
Yao(33479212) 

rs4702 31835028 15q26.1 01/12/2019 FURIN 
Mullins(34002096), 

Yao(33479212), 
Wu(32606422) 

rs2388334 31835028 6q16.1 01/12/2019 MIR2113_ 
EIF4EBP2P3 

Peyrot(33686288), 
Li(33263727), 

Stahl(31043756), 
Yu(38858783), 

Gong(36753304) 
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rs35774874 31835028 11q25 01/12/2019 SNX19_ 
RN7SL167P Yao(33479212) 

rs4298967 31835028 12p13.33 01/12/2019 CACNA1C, 
CACNA1C-IT3 

Wang(34159505),Yao 
(33479212),Wu 

(32606422) 
rs116755193 31835028 5q23.2 01/12/2019 LINC02240 Coleman(31926635) 

rs4380187 31835028 2q32.1 01/12/2019 ZNF804A_ 
ELF2P4 

Yao(33479212),Wu 
(32606422), 

Wang(34159505) 
rs12552 31835028 13q14.3 01/12/2019 OLFM4 Coleman(31926635) 

rs778353 31835028 2q37.1 01/12/2019 NGEF Wu(32606422) 

rs4526442 31835028 9p13.2 01/12/2019 ZCCHC7 Coleman(31926635) 

rs9834970 31835028 3p22.2 01/12/2019 HSPD1P6_ 
LINC02033 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982, 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs7405404 31835028 16p13.12 01/12/2019 TMF1P1_ 
ERCC4 Amare(29121268) 

rs2514218 31835028 11q23.2 01/12/2019 DRD2_ 
TMPRSS5 

Coleman(31926635), 
Wu(32606422), 
Yao(33479212) 

rs1002656 31835028 1p34.3 01/12/2019 FTLP18_ 
GRIK3 Coleman(31926635) 

rs55648125 31835028 6p12.3 01/12/2019 TFAP2B_ 
RPS17P5 

Wang(34159505), 
Yao(33479212) 

rs80256351 31835028 2p16.1 01/12/2019 ACTG1P22_ 
VRK2 

Wu(32606422), 
Yao(33479212) 

rs61867293 31835028 10q25.1 01/12/2019 SORCS3 Coleman(31926635) 

rs4619651 31835028 2q11.2 01/12/2019 LMAN2L_ 
CNNM4 

Mullins(34002096), 
Yao(33479212), 
Wu(32606422), 

Peyrot(33686288) 
rs760648 31835028 22q13.2 01/12/2019 TCF20 Wu(32606422) 

rs58235352 31835028 12q24.31 01/12/2019 ACADS_ 
SPPL3 Coleman(31926635) 

rs7785663 31835028 7q33 01/12/2019 DGKI SeeBaum(DGKH); 
Pisanu(DGKG) 

rs4619651 32606422 2q11.2 30/06/2020 LMAN2L_ 
CNNM4 

Mullins(34002096), 
Yao(33479212), 
CrossDisorder 
(31835028), 

Peyrot(33686288) 

rs111444407 32606422 19p13.11 30/06/2020 NCAN Li(33263727), 
Peyrot(33686288), 
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Stahl(31043756), 
Wang(38154582) 

rs11167136 32606422 8q24.3 30/06/2020 TSNARE1 Yao(33479212) 

rs80256351 32606422 2p16.1 30/06/2020 ACTG1P22_ 
VRK2 

CrossDisorder 
(31835028), 

Yao(33479212) 

rs4702 32606422 15q26.1 30/06/2020 FURIN 

Mullins(34002096), 
Yao(33479212), 
Cross-Disorder 

(31835028) 

rs2710323 32606422 3p21.1 30/06/2020 ITIH1 Sleiman(24166486), 
Wang(34159505) 

rs11647445 32606422 16p13.2 30/06/2020 GRIN2A Li(33263727), 
Stahl(31043756) 

rs10043984 32606422 5q31.2 30/06/2020 KDM3B 
Mullins(34002096), 

Cross-Disorder 
(31835028) 

rs13236223 32606422 7q34 30/06/2020 BRAF_ 
CCT4P1 Yao(33479212) 

rs58120505 32606422 7p22.3 30/06/2020 MAD1L1 Wang(34159505) 

rs59979824 32606422 2q32.3 30/06/2020 PCGEM1_ 
SLC44A3P1 

Cross-Disorder 
(31835028) 

rs4298967 32606422 12p13.33 30/06/2020 CACNA1C, 
CACNA1C-IT3 

CrossDisorder 
(31835028), 

Wang(34159505), 
Yao(33479212) 

rs760648 32606422 22q13.2 30/06/2020 TCF20 Cross-Disorder(31835028) 

rs2514218 32606422 11q23.2 30/06/2020 DRD2_ 
TMPRSS5 

Coleman(31926635), 
Cross-Disorder 

(31835028), 
Yao(33479212) 

rs13135092 32606422 4q24 30/06/2020 SLC39A8 Yao(33479212) 

rs2910032 32606422 5q33.1 30/06/2020 LINC01470 Cross-Disorder(31835028) 

rs35346733 32606422 3p26.3 30/06/2020 CNTN4 
CrossDisorder 
(31835028), 

Yao(33479212) 
rs12805133 32606422 11q13.2 30/06/2020 SPTBN2 Yao(33479212) 

rs11682175 32606422 2p16.1 30/06/2020 EIF2S2P7_ 
ACTG1P22 

Coleman(31926635), 
Yao(33479212), 
Wang(34159505) 

rs169738 32606422 6p21.31 30/06/2020 Metazoa_SRP
_ BAK1 Wang(34159505) 

rs6434928 32606422 2q33.1 30/06/2020 SF3B1_ 
RNU6-1029P Yao(33479212) 

rs2339519 32606422 2p24.1 30/06/2020 LINC03116, 
LINC01830 Yao(33479212) 

rs12474906 32606422 2p23.2 30/06/2020 RBKS, 
MRPL33 

Wang(34159505), 
Yao(33479212), 
Cross-Disorder 

(31835028) 

rs12704290 32606422 7q21.12 30/06/2020 GRM3, 
GRM3-AS1 

CrossDisorder 
(31835028), 

Yao(33479212) 
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rs11624408 32606422 14q32.2 30/06/2020 BCL11B Wang(34159505), 
Stahl(31043756) 

rs28681284 32606422 15q25.1 30/06/2020 CHRNA3 
Cross-Disorder 

(31835028), 
Yao(33479212) 

rs740417 32606422 12p13.33 30/06/2020 CACNA1C Yao(33479212) 

rs10497655 32606422 2q32.1 30/06/2020 MIR548AE1_ 
ZNF804A Wang(34159505) 

rs6125656 32606422 20q13.13 30/06/2020 KCNB1 Cross-Disorder(31835028) 

rs4380187 32606422 2q32.1 30/06/2020 ZNF804A_ 
ELF2P4 

Yao(33479212), 
Wang(34159505), 

Cross-Disorder 
(31835028) 

rs10744560 32606422 12p13.33 30/06/2020 
CACNA1C-

IT3, 
CACNA1C 

Li(33263727), 
Peyrot(33686288), 
Stahl(31043756) 

rs6922815 32606422 6p22.1 30/06/2020 VN1R10P_ 
ZNF204P Wang(34159505) 

rs75836205 32606422 8p12 30/06/2020 RPL6P22_ 
RPL10AP3 Wang(34159505) 

rs778353 32606422 2q37.1 30/06/2020 NGEF Cross-Disorder 
(31835028) 

rs9834970 32606422 3p22.2 30/06/2020 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760) 

rs62533709 33169155 9p13.2 10/11/2020 PAX5 Yu(38858783) 

rs994280 33169155 2q33.1 10/11/2020 SPATS2L Wang(38154582) 

rs7969091 33263727 12q13.12 02/12/2020 RHEBL1_ 
DHH Peyrot(33686288) 

rs2388334 33263727 6q16.1 02/12/2020 MIR2113_ 
EIF4EBP2P3 

Peyrot(33686288), 
Stahl(31043756), 
Yu(38858783), 

Gong(36753304), 
Cross-Disorder 

(31835028) 

rs3804640 33263727 3q13.12 02/12/2020 CD47 Stahl(31043756), 
Peyrot(33686288) 

rs9834970 33263727 3p22.2 02/12/2020 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
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Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs12672003 33263727 7p15.3 02/12/2020 PALS2 Mullins(34002096) 

rs2302417 33263727 3p21.1 02/12/2020 ITIH1 Stahl(31043756), 
Charney(28072414) 

rs17183814 33263727 2q24.3 02/12/2020 SCN2A 
Peyrot(33686288), 
Stahl(31043756), 

Mullins(34002096) 
rs10896090 33263727 11q13.2 02/12/2020 PACS1 Stahl(31043756) 

rs10035291 33263727 5q14.1 02/12/2020 SSBP2 Stahl(31043756) 

rs10994318 33263727 10q21.2 02/12/2020 ANK3 Stahl(31043756) 

rs11557713 33263727 18q21.33 02/12/2020 ZCCHC2 Stahl(31043756) 

rs11647445 33263727 16p13.2 02/12/2020 GRIN2A Wu(32606422), 
Stahl(31043756) 

rs10744560 33263727 12p13.33 02/12/2020 
CACNA1C-

IT3, 
CACNA1C 

Wu(32606422), 
Peyrot(33686288), 
Stahl(31043756) 

rs6130764 33263727 20q13.12 02/12/2020 WFDC5_ 
WFDC12 Stahl(31043756) 

rs111444407 33263727 19p13.11 02/12/2020 NCAN 

Peyrot(33686288), 
Stahl(31043756), 
Wang(38154582), 

Wu(32606422) 
rs112114764 33263727 17q21.31 02/12/2020 HDAC5 Stahl(31043756) 

rs12704290 33479212 7q21.12 21/01/2021 GRM3, 
GRM3-AS1 

Wu 
(32606422), 

Cross-Disorder 
(31835028) 

rs35774874 33479212 11q25 21/01/2021 SNX19_ 
RN7SL167P Cross-Disorder(31835028) 

rs4380187 33479212 2q32.1 21/01/2021 ZNF804A_ 
ELF2P4 

Wu(32606422), 
Wang(34159505), 

Cross-Disorder 
(31835028) 

rs28681284 33479212 15q25.1 21/01/2021 CHRNA3 
Cross-

Disorder(31835028), 
Wu(32606422) 

rs484201 33479212 11q13.1 21/01/2021 MACROD1 Wang(38154582) 

rs71395455 33479212 15q25.2 21/01/2021 ZSCAN2-AS1, 
ZSCAN2 

Stahl(31043756), 
Wang(34159505), 

Cross-Disorder 
(31835028) 

rs9834970 33479212 3p22.2 21/01/2021 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 
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Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 

Li(33263727), 
Charney(28072414), 

Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs55648125 33479212 6p12.3 21/01/2021 TFAP2B_ 
RPS17P5 

Wang(34159505), 
Cross-Disorder 

(31835028) 

rs4619651 33479212 2q11.2 21/01/2021 LMAN2L_ 
CNNM4 

Mullins(34002096), 
Wu(32606422), 
Cross-Disorder 

(31835028),Peyrot 
(33686288) 

rs80256351 33479212 2p16.1 21/01/2021 ACTG1P22_ 
VRK2 

Wu(32606422), 
Cross-Disorder 

(31835028) 

rs13236223 33479212 7q34 21/01/2021 BRAF_ 
CCT4P1 Wu(32606422) 

rs11167136 33479212 8q24.3 21/01/2021 TSNARE1 Wu(32606422) 

rs4702 33479212 15q26.1 21/01/2021 FURIN 

Mullins(34002096), 
Cross-Disorder 

(31835028), 
Wu(32606422) 

rs4298967 33479212 12p13.33 21/01/2021 CACNA1C, 
CACNA1C-IT3 

Cross-
Disorder(31835028), 

Wang(34159505), 
Wu(32606422) 

rs7001340 33479212 8p11.23 21/01/2021 LETM2, 
FGFR1 Wang(34159505) 

rs13135092 33479212 4q24 21/01/2021 SLC39A8 Wu(32606422) 

rs12563424 33479212 1p21.3 21/01/2021 ALG14_ 
TLCD4 

Peyrot(33686288), 
Wang(34159505) 

rs12154473 33479212 7p22.3 21/01/2021 MAD1L1 
Huang(35912095), 
Mullins(34002096), 
Wang(38154582) 

rs111294930 33479212 5q33.1 21/01/2021 LINC01470 Cross-Disorder 
(31835028) 

rs11887562 33479212 2p24.1 21/01/2021 LINC03116, 
LINC01830 

Cross-Disorder 
(31835028) 

rs2514218 33479212 11q23.2 21/01/2021 DRD2_ 
TMPRSS5 

Coleman(31926635), 
Cross-Disorder 

(31835028), 
Wu(32606422) 

rs4481150 33479212 3p21.1 21/01/2021 ITIH3 Cross-Disorder(31835028) 

rs740417 33479212 12p13.33 21/01/2021 CACNA1C Wu(32606422) 

rs2522831 33479212 7q21.11 21/01/2021 PCLO Cross-Disorder(31835028) 

rs12805133 33479212 11q13.2 21/01/2021 SPTBN2 Wu(32606422) 

rs35346733 33479212 3p26.3 21/01/2021 CNTN4 
Wu(32606422), 
Cross-Disorder 

(31835028) 
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rs11682175 33479212 2p16.1 21/01/2021 EIF2S2P7_ 
ACTG1P22 

Coleman(31926635), 
Wang(34159505), 

Wu(32606422) 

rs12474906 33479212 2p23.2 21/01/2021 RBKS, 
MRPL33 

Wu(32606422), 
Wang(34159505),                        

Cross-Disorder 
(31835028) 

rs68188794 33479212 6p22.1 21/01/2021 ZSCAN16-
AS1, ZSCAN16 Wang(34159505) 

rs6434928 33479212 2q33.1 21/01/2021 SF3B1_ 
RNU6-1029P Wu(32606422) 

rs72692857 33479212 1q21.2 21/01/2021 OTUD7B_ 
RPL6P31 Wang(34159505) 

rs2339519 33479212 2p24.1 21/01/2021 LINC03116, 
LINC01830 Wu(32606422) 

rs10744560 33686288 12p13.33 08/03/2021 
CACNA1C-

IT3, 
CACNA1C 

Wu(32606422), 
Li(33263727), 

Stahl(31043756) 

rs11724116 33686288 4q32.2 08/03/2021 RPS14P7_ 
FSTL5 Stahl(31043756) 

rs3804640 33686288 3q13.12 08/03/2021 CD47 Stahl(31043756) 
,Li(33263727) 

rs111444407 33686288 19p13.11 08/03/2021 NCAN 

Li(33263727), 
Stahl(31043756), 
Wang(38154582), 

Wu(32606422) 

rs7969091 33686288 12q13.12 08/03/2021 RHEBL1_ 
DHH Li(33263727) 

rs28565152 33686288 5p15.31 08/03/2021 ADCY2 Mullins(34002096) 

rs2388334 33686288 6q16.1 08/03/2021 MIR2113_ 
EIF4EBP2P3 

Li(33263727) 
,Stahl(31043756), 

Yu(38858783), 
Gong(36753304), 

Cross-Disorder 
(31835028) 

rs4447398 33686288 15q15.2 08/03/2021 STARD9 Stahl(31043756), 
Mullins(34002096) 

rs4619651 33686288 2q11.2 08/03/2021 LMAN2L_ 
CNNM4 

Mullins(34002096), 
Yao(33479212), 
Wu(32606422), 
Cross-Disorder 

(31835028) 
rs2011503 33686288 19p13.11 08/03/2021 MAU2 Wang(34159505) 

rs9834970 33686288 3p22.2 08/03/2021 HSPD1P6_ 
LINC02033 

CrossDisorder(31835028), 
Stahl(31043756), 

Mullins(34002096), 
Ruderfer(24280982), 

Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
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Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs12898460 33686288 15q14 08/03/2021 LINC02694 Cross-Disorder(31835028) 

rs17183814 33686288 2q24.3 08/03/2021 SCN2A 
Li(33263727), 

Stahl(31043756), 
Mullins(34002096) 

rs12563424 33686288 1p21.3 08/03/2021 ALG14_ 
TLCD4 

Yao(33479212), 
Wang(34159505) 

rs12202969 34002096 6q16.1 17/05/2021 MIR2113_ 
EIF4EBP2P3 Muhleisen(24618891) 

rs4676412 34002096 2q37.3 17/05/2021 GPR35, 
CAPN10 Wang(38154582) 

rs113779084 34002096 7p21.3 17/05/2021 THSD7A Stahl(31043756) 

rs12668848 34002096 7p22.3 17/05/2021 MAD1L1 Wang(38154582),Cross-
Disorder(31835028) 

rs7122539 34002096 11q13.2 17/05/2021 PC Stahl(31043756) 

rs35958438 34002096 15q14 17/05/2021 LINC02694 Stahl(31043756) 

rs12575685 34002096 11q13.4 17/05/2021 SHANK2 Stahl(31043756) 

rs9834970 34002096 3p22.2 17/05/2021 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs112481526 34002096 4q27 17/05/2021 BLTP1 Wang(38154582) 

rs28455634 34002096 16p13.2 17/05/2021 HAPSTR1_ 
RPL21P119 Wang(38154582) 

rs4619651 34002096 2q11.2 17/05/2021 LMAN2L_ 
CNNM4 

Yao(33479212), 
Wu(32606422),Cross-
Disorder(31835028), 

Peyrot(33686288) 

rs2693698 34002096 14q32.2 17/05/2021 BCL11B Cross-Disorder 
(31835028) 

rs12672003 34002096 7p15.3 17/05/2021 PALS2 Li(33263727) 

rs174592 34002096 11q12.2 17/05/2021 FADS2 
Cross-

Disorder(31835028), 
Wang(38154582) 

rs10043984 34002096 5q31.2 17/05/2021 KDM3B 
Cross-

Disorder(31835028), 
Wu(32606422) 

rs17183814 34002096 2q24.3 17/05/2021 SCN2A 
Li(33263727), 

Peyrot(33686288), 
Stahl(31043756) 
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rs12154473 34002096 7p22.3 17/05/2021 MAD1L1 
Huang(35912095), 
Wang(38154582), 
Yao(33479212) 

rs489337 34002096 11q13.1 17/05/2021 PACS1 Stahl(31043756) 

rs28565152 34002096 5p15.31 17/05/2021 ADCY2 Peyrot(33686288) 

rs112219496 34002096 19p13.11 17/05/2021 NCAN Wang(38154582) 

rs10994415 34002096 10q21.2 17/05/2021 ANK3 Muhleisen(24618891) 

rs10455979 34002096 6q27 17/05/2021 RPS6KA2 Stahl(31043756) 

rs4447398 34002096 15q15.2 17/05/2021 STARD9 Stahl(31043756), 
Peyrot(33686288) 

rs13195402 34002096 6p22.2 17/05/2021 BTN2A1 Wang(38154582) 

rs4702 34002096 15q26.1 17/05/2021 FURIN 

Yao(33479212), 
Cross-Disorder 

(31835028), 
Wu(32606422) 

rs6694545 34159505 1p35.2 16/06/2021 LINC01756_ 
LINC01648 

Cross-Disorder 
(31835028) 

rs11682175 34159505 2p16.1 16/06/2021 EIF2S2P7_ 
ACTG1P22 

Coleman(31926635), 
Yao(33479212), 
Wu(32606422) 

rs68188794 34159505 6p22.1 16/06/2021 ZSCAN16-
AS1, ZSCAN16 Yao(33479212) 

rs72692857 34159505 1q21.2 16/06/2021 OTUD7B_ 
RPL6P31 Yao(33479212) 

rs12474906 34159505 2p23.2 16/06/2021 RBKS, 
MRPL33 

Wu(32606422), 
Yao(33479212), 
Cross-Disorder 

(31835028) 

rs169738 34159505 6p21.31 16/06/2021 Metazoa_SRP
_ BAK1 Wu(32606422) 

rs10497655 34159505 2q32.1 16/06/2021 MIR548AE1_ 
ZNF804A Wu(32606422) 

rs4380187 34159505 2q32.1 16/06/2021 ZNF804A_ 
ELF2P4 

Yao(33479212), 
Wu(32606422), 
Cross-Disorder 

(31835028) 

rs6922815 34159505 6p22.1 16/06/2021 VN1R10P_ 
ZNF204P Wu(32606422) 

rs11624408 34159505 14q32.2 16/06/2021 BCL11B Wu(32606422), 
Stahl(31043756) 

rs71395455 34159505 15q25.2 16/06/2021 ZSCAN2-AS1, 
ZSCAN2 

Stahl(31043756), 
Yao(33479212), 
Cross-Disorder( 

31835028) 

rs9834970 34159505 3p22.2 16/06/2021 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Gong(36753304), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 
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SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs55648125 34159505 6p12.3 16/06/2021 TFAP2B_ 
RPS17P5 

Cross-
Disorder(31835028), 

Yao(33479212) 

rs2710323 34159505 3p21.1 16/06/2021 ITIH1 Sleiman(24166486), 
Wu(32606422) 

rs12563424 34159505 1p21.3 16/06/2021 ALG14_ 
TLCD4 

Peyrot(33686288), 
Yao(33479212) 

rs58120505 34159505 7p22.3 16/06/2021 MAD1L1 Wu(32606422) 

rs7001340 34159505 8p11.23 16/06/2021 LETM2, 
FGFR1 Yao(33479212) 

rs2011503 34159505 19p13.11 16/06/2021 MAU2 Peyrot(33686288) 

rs4298967 34159505 12p13.33 16/06/2021 CACNA1C, 
CACNA1C-IT3 

CrossDisorder 
(31835028), 

Yao(33479212), 
Wu(32606422) 

rs75836205 34159505 8p12 16/06/2021 RPL6P22_ 
RPL10AP3 Wu(32606422) 

rs12154473 35912095 7p22.3 15/07/2022 MAD1L1 
Mullins(34002096), 
Wang(38154582), 
Yao(33479212) 

rs2388334 36753304 6q16.1 08/02/2023 MIR2113_ 
EIF4EBP2P3 

Peyrot(33686288), 
Li(33263727), 

Stahl(31043756), 
Yu(38858783), 
Cross-Disorder 

(31835028) 

rs9834970 36753304 3p22.2 08/02/2023 HSPD1P6_ 
LINC02033 

CrossDisorder 
(31835028), 

Stahl(31043756), 
Mullins(34002096), 
Peyrot(33686288), 

Ruderfer(24280982), 
Wang(34159505), 
Ikeda(28115744), 
Yao(33479212), 
Li(33263727), 

Charney(28072414), 
Chen(22182935), 
Hou(27329760), 
Wu(32606422) 

rs102275 36753304 11q12.2 08/02/2023 TMEM258 Coleman(31926635) 

rs12668848 38154582 7p22.3 26/12/2023 MAD1L1 Mullins(34002096),Cross-
Disorder(31835028) 

rs28455634 38154582 16p13.2 26/12/2023 HAPSTR1_ 
RPL21P119 Mullins(34002096) 

rs112481526 38154582 4q27 26/12/2023 BLTP1 Mullins(34002096) 

rs2305929 38154582 2p23.2 26/12/2023 BABAM2, 
MRPL33 Stahl(31043756) 

rs174592 38154582 11q12.2 26/12/2023 FADS2 Cross-Disorder(31835028) 
,Mullins(34002096) 
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SNP PMID REGION Date Mapped 
gene(s) SNP Replication 

rs112219496 38154582 19p13.11 26/12/2023 NCAN Mullins(34002096) 

rs484201 38154582 11q13.1 26/12/2023 MACROD1 Yao(33479212) 

rs994280 38154582 2q33.1 26/12/2023 SPATS2L Bigdeli(33169155) 

rs12154473 38154582 7p22.3 26/12/2023 MAD1L1 
Huang(35912095), 
Mullins(34002096), 

Yao(33479212) 

rs17693963 38154582 6p22.1 26/12/2023 GPR89P_ 
RSL24D1P1 

Sleiman(24166486), 
Ruderfer(24280982) 

rs13195402 38154582 6p22.2 26/12/2023 BTN2A1 Mullins(34002096) 

rs111444407 38154582 19p13.11 26/12/2023 NCAN 

Li(33263727), 
Peyrot(33686288), 
Stahl(31043756), 
Wu(32606422) 

rs4676412 38154582 2q37.3 26/12/2023 GPR35, 
CAPN10 Mullins(34002096) 

rs62533709 38858783 9p13.2 11/06/2024 PAX5 Bigdeli(33169155) 

rs2388334 38858783 6q16.1 11/06/2024 MIR2113_ 
EIF4EBP2P3 

Peyrot(33686288), 
Li(33263727), 

Stahl(31043756), 
Gong(36753304), 

Cross-Disorder 
(31835028) 
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9.2 Key Gene Associations  
 

ADCY2 (Adenylate Cyclase 2) (Thesis Chapters 1, 5) Associated with BD1 (from SCN2A locus, 
Subphenotype-BD-MTAG) and lithium response. 

AGER (Advanced Glycosylation End-product Specific Receptor) (Chapter 5) A top-ranked gene from 
the BD-SCZ MTAG gene-based analysis, indicating a role in shared severe psychiatric illness. 

AKAP11 (A-kinase Anchoring Protein 11) (Chapter 1) Identified as a shared risk gene for BD and 
Schizophrenia from exome sequencing (WES) studies. 

ANK3 (Ankyrin-G) (Chapters: 1, 5) A robust and consistently replicated risk gene for BD, implicated 
in neuronal excitability pathways. 

ANKRD44 (Ankyrin Repeat Domain 44) (Thesis Chapters: 5) Associated with BD2 (highest CADD 
score) and shared across multiple BD subphenotypes. 

BTN1A1 (Butyrophilin Subfamily 1 Member A1) (Chapter 5) A core gene consistently ranking at the 
top for almost every BD-only subphenotype in gene-based analysis. 

C4A (Complement C4A) (Chapters 5) Associated with several BD subphenotypes, with expression 
noted in the amygdala and hypothalamus. Implicated in psychosis and shared immune-related pathways. 

CACNA1C (Calcium Voltage-Gated Channel Subunit Alpha1 C) (Chapters 1, 4, 5) One of the strongest 
and most consistently replicated risk genes for BD. Implicated in pathways for psychosis in BD1 and 
associated with nearly all subphenotypes in MTAG analyses. 

CHDH (Choline Dehydrogenase) (Chapter 5) Mentioned as an established risk locus for BD. 

CNR1 (Cannabinoid Receptor 1) (Chapter 5) Showed its highest association with the Suicide Attempt 
(SA) subphenotype. 

CREB3L4 (CREB3 Like Transcription Factor 4) (Chapters: 4) Implicated in psychosis in BD1 through 
pathway analysis (“Mitochondrion” and “ZNF318” pathways). 



 307 

DAOA (D-Amino Acid Oxidase Activator) (Chapter 1) Associated with BD susceptibility in early 
candidate gene studies. 

DCC (DCC Netrin 1 Receptor) (Chapter 5) A novel association shared across the RC, UM, PD, and 
OCD sub-group, suggesting a role for altered axonal guidance. 

DGKH (Diacylglycerol Kinase Eta) (Chapters 1, 5) Implicated in the lithium-sensitive PI pathway and 
associated with BD. The broader gene DGKI was associated with all 11 subphenotypes in the BD-SCZ 
MTAG. 

DISC1 (Disrupted in Schizophrenia 1) (Chapter 1) Associated with Schizoaffective disorder, bipolar 
type. 

DRD2 (Dopamine Receptor D2) (Chapter 5) Credibly associated almost exclusively with the psychosis-
spectrum subphenotypes in TWAS analysis. 

FADS1 / FADS2 (Fatty Acid Desaturase 1/2) (Chapters 1, 5) Consistently linked to BD, 
with FADS1 showing negative cerebellar expression across subphenotypes in TWAS analysis. A top 
shared gene in BD-only MTAGs. 

FEN1 (Flap Endonuclease 1) (Chapter 5) A core gene consistently ranking at the top for almost every 
BD-only subphenotype, implicated in DNA repair. 

FOXO6 (Forkhead Box O6) (Chapter 5) Associated with most BD subphenotypes except BD1, 
suggesting a role in non-psychotic presentations. 

FURIN (Furin Paired Basic Amino Acid Cleaving Enzyme) (Chapters  4, 5) Associated with BD and 
implicated in psychosis in BD1 through immune system pathways. 

GABBR1 / GABBR2 (Gamma-Aminobutyric Acid Type B Receptor Subunit 1/2) (Chapters 4, 5) 
Implicated in pathways for psychosis in BD1 and SZA. GABBR1 associated with AlcSUD with BD. 

GLYCTK (Glycine C-Acetyltransferase) (Chapter 4) Showed extremely strong protective associations 
in the amygdala across numerous BD-SCZ subphenotypes in TWAS analysis, pointing to glycine 
metabolism as a key pathway. 

GNL3 (Guanine Nucleotide-binding Protein-like 3) (Chapter 5) Showed pervasive and extremely 
strong positive associations across almost all subphenotypes and brain regions in TWAS analysis. 

GRIN2A (Glutamate Ionotropic Receptor NMDA Type Subunit 2A) (Chapter 5) Associated with 
multiple subphenotypes in the BD-SCZ MTAG, particularly the comorbidity dimension (OCD, UM, 
PD, etc.). 

GRM7 (Glutamate Metabotropic Receptor 7) (Chapter 1) Associated with BD and related personality 
traits in early GWAS. 

HIST1H gene family (e.g., HIST1H2BK) (Chapter 5) Consistently a top hit within the chr6p22 
positional gene set, highlighting the critical importance of histone structure and chromatin organization. 
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HLA-DMA (Major Histocompatibility Complex, Class II, DM Alpha) (Chapter 5) Showed a strong, 
protective association in the BD-SCZ MTAG context, providing a specific neuro-immune link between 
BD and SCZ. 

ITIH1 / ITIH3 / ITIH4 (Inter-Alpha-Trypsin Inhibitor Heavy Chain family) (Chapters 1, 4, 5) A locus 
robustly associated with BD and SCZ. Implicated in RC and PD subphenotypes, and a top shared gene 
in BD-only MTAGs. 

MAD1L1 (Mitotic Arrest Deficient 1 Like 1) (Chapters 1, 4, 5) A consistently linked gene for BD and 
SCZ, associated with psychosis in BD1 and emerging as a top pleiotropic gene in BD-SCZ MTAG 
analyses. 

NCAN (Neurocan) (Chapters 1, 5) A well-established risk gene for BD, associated with mania. 

NEK4 (NIMA Related Kinase 4) (Chapter 1) Associated with BD in a large PGC-led GWAS. 

NRG1 (Neuregulin 1) (Chapter 1) Associated with BD in early candidate gene studies. 

NT5C2 (5’-Nucleotidase, Cytosolic 2) (Chapters 4, 5) Associated with psychosis in BD1 and the BD2 
subphenotype. 

PACS1 (Phosphofurin Acidic Cluster Sorting Protein 1) (Chapter 5) Uniquely associated with BD1 in 
TWAS analysis, suggesting a role in neuronal protein trafficking. 

PBRM1 (Polybromo 1) (Chapter 5) Associated with BD1 and mood-incongruent psychosis; also noted 
as a key gene in SCHEMA rare-variant enrichment. 

SCN2A (Sodium Voltage-Gated Channel Alpha Subunit 2) (Chapter 5) A novel, deleterious variant was 
identified as a strong marker for BD1 and Psychosis subphenotypes. 

SLC39A8 (Solute Carrier Family 39 Member 8) (Chapter 5) A highly pleiotropic and deleterious variant 
was identified as a novel locus for seven subphenotypes, suggesting a core biological mechanism 
involving metal ion transport. 

SMAD3 (SMAD Family Member 3) (Chapter 5) A novel association specific to Panic Disorder and 
Rapid Cycling, providing a potential link to thyroid-interacting pathways. 

SP4 (Sp4 Transcription Factor) (Chapter 5) Implicated in BD pathobiology via TWAS analysis across 
multiple subphenotypes. 

TCF4 (Transcription Factor 4) (Chapter 5) A key gene driving the significant enrichment of BD-SCZ 
credible gene sets with established rare-variant risk genes from the SCHEMA consortium. 

TMEM258 (Transmembrane Protein 258) (Chapter 5) A core gene consistently ranking at the top for 
almost every BD-only subphenotype in gene-based analysis. 
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TRANK1 (Tetratricopeptide Repeat and Ankyrin Repeat Containing 1) (Chapter 1, 5) A well-
established and highly pleiotropic risk locus for BD, associated with almost all subphenotypes in 
MTAG analyses. 

ZEB2 (Zinc Finger E-Box Binding Homeobox 2) (Chapter 5) A key gene driving the significant 
enrichment of BD-SCZ credible gene sets with established rare-variant risk genes from the SCHEMA 
consortium. 

9.3 Transdiagnostic Profiles of BD Subphenotypes  
 

This overview synthesises the primary transdiagnostic genetic associations for the key bipolar disorder 
(BD) subphenotypes as investigated and discussed within this thesis. 

1. Bipolar Disorder I (BD1) Presents as a severe, psychosis-spectrum illness. 

• Primary Genetic Overlap: Shows a very strong genetic correlation with Schizophrenia 
(SCZ) (rG ~.71) and is genetically almost indistinguishable from the Psychosis subphenotype 
(rG ~.94) (Chapter 5). The SCZ Polygenic Risk Score (PRS) was a strong predictor of BD1 
status and its features (Chapter 4). 

• Secondary Overlaps: Has a weaker genetic correlation with Major Depressive Disorder 
(MDD) (rG ~.30). 

• Key Genetic Features: SBayesS analysis confirms its genetic architecture overlaps most with 
SCZ. It is specifically associated with deleterious variants in genes related to neuronal 
excitability, such as SCN2A (Chapter 5). 

2. Bipolar Disorder II (BD2) Presents with a genetic profile aligned more with internalizing and 
affective/attentional disorders. 

• Primary Genetic Overlap: Shows its strongest genetic correlation with MDD (rG ~.65) and a 
strong correlation with ADHD (rG ~.42). 

• Key Genetic Features: SBayesS analysis showed BD2’s genetic architecture overlaps most 
strongly with Anxiety disorders. It genomically clusters with the “Comorbidity” group (PD, 
OCD, RC, UM) (Chapter 5). 

3. Schizoaffective Disorder, Bipolar Type (SZA) Acts as a genetic bridge between BD and SCZ. 

• Primary Genetic Overlap: Shares substantial genetic risk with both SCZ and BD1, clustering 
with them in genomic analyses (Chapter 5). 

• Key Genetic Features: Shows one of a very high SNP-based heritability, similar to BD1. The 
inclusion of SCZ genetics in MTAG analyses massively amplified the number of shared loci 
with the Psychosis subphenotype, confirming its intermediate genetic position. 

4. Psychosis (as a feature within BD) This feature is a key marker of the shared biology between 
severe BD and SCZ. 
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• Primary Genetic Overlap: Very high correlation with BD1 and strongly predicted by SCZ 
PRS (Chapter 4). 

• Key Genetic Features: Associated with a unique, deleterious variant in the neuronal sodium 
channel gene SCN2A (Chapter 5). The genetic signal for the neuro-immune gene HLA-
DMA was only robustly significant when SCZ data was included (Chapter 5), highlighting a 
specific shared pathway. 

5. Rapid Cycling (RC) Presents a unique genetic profile suggestive of severe, multi-faceted 
dysregulation. 

• Primary Genetic Overlap: Clusters with the “Comorbidity and Mood Instability” group (PD, 
OCD, SA, UM). Has a specific shared novel genetic locus (SMAD3) with Panic Disorder. 

• Contrasting Overlap: Shows an inverse relationship with SCZ PRS (Chapter 4), suggesting its 
genetic drivers are distinct from the core psychosis spectrum. 

• Key Genetic Features: Correlates positively with ADHD and Anxiety PRS (Chapter 3). It 
exhibited the most pronounced signature of negative selection, suggesting its architecture may 
be influenced by rarer, more highly penetrant variants (Chapter 5). 

6. Suicide Attempt (SA) Shares genetic architecture with both mood and externalizing/impulsive 
disorders. 

• Primary Genetic Overlap: Strongest external correlations are with MDD, Anxiety, and PTSD. 
Within the BD subphenotypes, it has a strong genetic correlation with AlcSUD (rG ~.80) 
(Chapter 5). 

• Key Genetic Features: The CNR1 (cannabinoid receptor) gene showed its highest association 
with the SA subphenotype (Chapter 5). 

7. Alcohol/Substance Use Disorder (AlcSUD) Presents with a profile linked to impulsivity and 
executive dysfunction. 

• Primary Genetic Overlap: Its strongest external correlation is with ADHD. It also clusters with 
the other “Comorbidity” subphenotypes like SA and RC. 

• Key Genetic Features: A novel association with the neurodevelopmental gene MAD1L1 was 
identified for the AlcSUD subphenotype in the BD-SCZ MTAG (Chapter 5). 

8. Panic Disorder (PD) & Obsessive-Compulsive Disorder (OCD) These anxiety-related 
subphenotypes show a remarkably strong and specific shared genetic link. 

• Primary Genetic Overlap: While showing only moderate global correlation, LAVA analysis 
revealed that OCD and PD share 30 significant local genetic loci, the strongest local link found 
between any pair in the comorbidity cluster (Chapter 5). 

• Key Genetic Features: A shared novel association with the neurodevelopmental guidance 
gene DCC (along with RC and UM) points to a common vulnerability in brain development for 
this internalizing/anxious dimension. 

9. Unipolar Mania (UM) Presents with a distinct genetic profile that validates its unique position in 
psychiatric nosology. 
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• Primary Genetic Overlap: Genomically clusters with the “Comorbidity” group (RC, PD, OCD). 
• Key Genetic Features: PRS analysis showed it had the highest predictive power of all 

subphenotypes (R²-Liability = 12.4%), suggesting a “purer” genetic signal for mania that is less 
confounded by the genetic liabilities for depression and psychosis found in BD1 (Chapter 5). It 
also has unique loci not shared with other subphenotypes, such as one near YWHAE. 

 
 
 

9.4  Detailed Cohort Descriptions 

This section provides detailed information on each cohort contributing to the study, including 
ascertainment procedures, diagnostic methods, and inclusion/exclusion criteria. For details on the 
references included below see O’Connell et al., (2025)[Chapter 1, 55]. 

 
======== PGC1 Samples ======== 
Rietschel, M; Nöthen, MM, Cichon, S | 21926972 [PGC1] | BOMA-Germany I | bip_bonn_eur 
Cases for the BOMA-Bipolar Study were ascertained from consecutive admissions to the inpatient units 
of the Department of Psychiatry and Psychotherapy at the University of Bonn and at the Central Institute 
for Mental Health in Mannheim, University of Heidelberg, Germany. DSM-IV lifetime diagnoses of 
bipolar I disorder were assigned using a consensus best-estimate procedure, based on all available 
information, including a structured interview with the SCID and SADS-L, medical records, and the 
family history method. In addition, the OPCRIT6 checklist was used for the detailed polydiagnostic 
documentation of symptoms. Controls were ascertained from three population-based studies in 
Germany (PopGen, KORA, and Heinz-Nixdorf-Recall Study). The control subjects were not screened 
for mental illness. Study protocols were reviewed and approved in advance by Institutional Review 
Boards of the participating institutions. All subjects provided written informed consent. 
Corvin, A | 18711365 [PGC1] | Ireland | bip_dub1_eur 
Samples were collected as part of a larger study of the genetics of psychotic disorders in the Republic 
of Ireland, under protocols approved by the relevant IRBs and with written informed consent that 
permitted repository use. Cases were recruited from Hospitals and Community psychiatric facilities in 
Ireland by a psychiatrist or psychiatric nurse trained to use the SCID. Diagnosis was based on the 
structured interview supplemented by case note review and collateral history where available. All 
diagnoses were reviewed by an independent reviewer. Controls were ascertained with informed consent 
from the Irish GeneBank and represented blood donors who met the same ethnicity criteria as cases. 
Controls were not specifically screened for psychiatric illness. 
Blackwood, D | 18711365 [PGC1] | Edinburgh, UK | bip_edi1_eur 
This sample comprised Caucasian individuals contacted through the inpatient and outpatient services 
of hospitals in South East Scotland. A BD-I diagnosis was based on an interview with the patient using 
the SADS-L supplemented by case note review and frequently by information from medical staff, 
relatives and caregivers. Final diagnoses, based on DSM-IV criteria, were reached by consensus 
between two trained psychiatrists. Ethnically matched controls from the same region were recruited 
through the South of Scotland Blood Transfusion Service. Controls were not directly screened to 
exclude those with a personal or family history of psychiatric illness. The study was approved by the 
Multi-Centre Research Ethics Committee for Scotland and patients gave written informed consent for 
the collection of DNA samples for use in genetic studies. 

https://paperpile.com/c/3FDJz2/kzYmB
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Kelsoe, J | 21926972 [PGC1] | USA (GAIN) | bip_gain_eur 
Genetic Association Information Network (GAIN)/ The Bipolar Genome Study (BiGS) The BD sample 
was collected under the auspices of the NIMH Genetics Initiative for BD (http://zork.wustl.edu/nimh/), 
genotyped as part of GAIN and analyzed as part of a larger GWAS conducted by the BiGS consortium. 
Approximately half of the GAIN sample was collected as multiplex families or sib pair families (waves 
1-4), the remainder were collected as individual cases (wave 5). Subjects were ascertained at 12 sites: 
Indiana University, John Hopkins University, the NIMH Intramural Research Program, Washington 
University at St. Louis, University of Pennsylvania, University of Chicago, Rush Medical School, 
University of Iowa, University of California, San Diego, University of California, San Francisco, 
Howard University, and University of Michigan. All investigations were carried out after the review of 
protocols by the IRB at each participating institution. At all sites, potential cases were identified from 
screening admissions to local treatment facilities and through publicity programs or advocacy groups. 
Potential cases were evaluated using the DIGS7, FIGS8, and information from relatives and medical 
records. All information was reviewed through a best estimate diagnostic procedure by two independent 
and non-interviewing clinicians and a consensus best-estimate diagnosis was reached. In the event of a 
disagreement, a third review was done to break the tie. Controls were from the NIMH Genetic 
Repository sample obtained by Dr. P. Gejman through a contract to Knowledge Networks, Inc.  Only 
individuals with complete or near-complete psychiatric questionnaire data who did not fulfill diagnostic 
criteria for major depression and denied a history of psychosis or BD were included as controls for 
BiGS analyses.  Controls were matched for gender and ethnicity to the cases. 
Scott, L; Myer, RM; Boehnke, M | 19416921 [PGC1] | Michigan, USA (Pritzker and NIMH) | 
bip_mich_eur 
The Pritzker Neuropsychiatric Disorders Research Consortium (NIMH/Pritzker) case and control 
samples were from the NIMH Genetics Initiative Genetics Initiative Repository. Cases were diagnosed 
according to DMS-III or DSM-IV criteria using diagnostic interviews and/or medical record review. 
Cases with low confidence diagnoses were excluded. From each wave 1-5 available non-Ashkenazi 
European-origin family, two BD1 siblings were included when possible and the proband was 
preferentially included if available (n=946 individuals in 473 sibling pairs); otherwise, a single BD1 
case was included (n=184). The bipolar sibling pairs were retained within the NIMH/Pritzker sample 
when individuals in more than one study were uniquely assigned to a study set. Controls had non-
Ashkenazi European origin, were aged 20-70 years and reported no diagnosis with or treatment for BD 
or schizophrenia, and that they had not heard voices that others could not hear. Individuals with 
suspected major depression were excluded based on answers to questions related to depressive mood. 
NIMH controls were further selected as the best match(es) to NIMH cases based on self-reported 
ancestry. 
Sklar, P; Smoller, J | 18317468 [PGC1] | USA (STEP1) | bip_stp1_eur 
The Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) was a seven-site, 
national U.S., longitudinal cohort study designed to examine the effectiveness of treatments and their 
impact on the course of BD that enrolled 4,361 participants who met DSM-IV criteria for BD1, BD2, 
bipolar not otherwise specified (NOS), schizoaffective manic or bipolar type, or cyclothymic disorder 
based on diagnostic interviews. From the parent study, 2,089 individuals who were over 18 years of age 
with BD1 and BD2 diagnoses consented to the collection of blood samples for DNA. BD samples with 
a consensus diagnosis of BD1 were selected for inclusion in STEP1. Two groups of controls samples 
from the NIMH repository were used. One comprised DNA samples derived from US Caucasian 
anonymous cord blood donors.  The second were controls who completed the online self-administered 
psychiatric screen and were ascertained as described above, by Knowledge Networks Inc.  For the 
second sample of controls only those without a history of schizophrenia, psychosis, BD or major 
depression with functional impairment were used. 

http://zork.wustl.edu/nimh/
https://paperpile.com/c/3FDJz2/7ubmJ
https://paperpile.com/c/3FDJz2/Am2Kx
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Sklar, P; Smoller, J | 18711365 [PGC1] | USA (STEP2) | bip_stp2_eur 
The STEP2 sample included BD-1 and BD-2 samples from the STEP-BD study described above along 
with BD-2 subjects from UCL study also described above. The controls samples for this study were 
from the NIMH repository as described above for the STEP1 study. 
Andreassen, OA | PMID:21926972 [PGC1], PMID:20451256 | Norway (TOP) | bip_top7_eur 
In the TOP study (Tematisk omrade psykoser), cases of European ancestry, born in Norway, were 
recruited from psychiatric hospitals in the Oslo region. Patients were diagnosed according to the ICD9 
and further ascertainment details have been reported. Healthy control subjects were randomly selected 
from statistical records of persons from the same catchment area as the patient groups. The control 
subjects were screened by interview and with the Primary Care Evaluation of Mental Disorders 
(PRIME-MD). None of the control subjects had a history of moderate/severe head injury, neurological 
disorder, mental retardation or an age outside the age range of 18-60 years. Healthy subjects were 
excluded if they or any of their close relatives had a lifetime history of a severe psychiatric disorder. 
All participants provided written informed consent and the human subjects protocol was approved by 
the Norwegian Scientific-Ethical Committee and the Norwegian Data Protection Agency. 
McQuillin, A; Gurling, H | 18317468 [PGC1] | UCL (University College London), London, UK | 
bip_uclo_eur 
The UCL sample comprised Caucasian individuals who were ascertained and received clinical 
diagnoses of bipolar 1 disorder according to UK National Health Service (NHS) psychiatrists at 
interview using the categories of the International Classification of Disease version 1. In addition, 
bipolar subjects were included only if both parents were of English, Irish, Welsh or Scottish descent 
and if three out of four grandparents were of the same descent. All volunteers read an information sheet 
approved by the Metropolitan Medical Research Ethics Committee who also approved the project for 
all NHS hospitals. Written informed consent was obtained from each volunteer. The UCL control 
subjects were recruited from London branches of the National Blood Service, from local NHS family 
doctor clinics and from university student volunteers. All control subjects were interviewed with the 
SADS-L to exclude all psychiatric disorders. 
Craddock, N, Jones, I, Jones, L | 17554300 | WTCCC | bip_wtcc_eur_sr-qc 
Cases were all over the age of 17 yr, living in the UK and of European descent. Recruitment was 
undertaken throughout the UK and included individuals who had been in contact with mental health 
services and had a lifetime history of high mood. After providing written informed consent, participants 
were interviewed by a trained psychologist or psychiatrist using a semi-structured lifetime diagnostic 
psychiatric interview (Schedules for Clinical Assessment in Neuropsychiatry) and available psychiatric 
medical records were reviewed. Using all available data, best-estimate life-time diagnoses were made 
according to the RDC12.   In the current study I included cases with a lifetime diagnosis of RDC bipolar 
1 disorder, bipolar 2 disorder or schizo-affective disorder, bipolar type. 
Controls were recruited from two sources: the 1958 Birth Cohort study and the UK Blood Service 
(blood donors) and were not screened for history of mental illness. 
All cases and controls were recruited under protocols approved by the appropriate IRBs. All subjects 
gave written informed consent. 
 
======== PGC2 Samples ======== 
Adolfsson, R | Not published | Umeå, Sweden | bip_ume4_eur 
Clinical characterization of the patients included the Mini-International Neuropsychiatric Interview 
(MINI11), the Diagnostic Interview for Genetic Studies (DIGS7), the Family Interview for Genetic 
Studies (FIGS8) and the Schedules for Clinical Assessment in Neuropsychiatry (SCAN)12. The final 
diagnoses were made according to the DSM-IV-TR and determined by consensus of 2 research 
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psychiatrists. The unrelated Swedish control individuals, consisting of a large population-based sample 
representative of the general population of the region, were randomly selected from the ‘Betula study’. 
Alda, M; Smoller, J | Not published | Nova Scotia, Canada; I2B2 controls | bip_hal2_eur 
The case samples were recruited from patients longitudinally followed at specialty mood disorders 
clinics in Halifax and Ottawa (Canada). Cases were interviewed in a blind fashion with the Schedule of 
Affective Disorders and Schizophrenia-Lifetime version (SADS-L)13 and consensus diagnoses were 
made according to DSM-IV14 and Research Diagnostic Criteria (RDC)15. Protocols and procedures were 
approved by the local Ethics Committees and written informed consent was obtained from all patients 
before participation in the study. Control subjects were drawn from the I2B2 (Informatics for 
Integrating Biology and the Bedside) project16. The study consists of de-identified healthy individuals 
recruited from a healthcare system in the Boston, MA, US area. The de-identification process meant 
that the Massachusetts General Hospital Institutional Review Board elected to waive the requirement 
of seeking informed consent as detailed by US Code of Federal Regulations, Title 45, Part 46, Section 
116 (46.116). 
 
Andreassen, OA | Not published | Norway (TOP) | bip_top8_eur 
The TOP8 bipolar disorder cases and controls were ascertained in the same way as the bip_top7_eur 
(TOP7) samples described above and recruited from hospitals across Norway. 
Biernacka, JM; Frye, MA | 27769005 | Mayo Clinic, USA | bip_may1_eur 
Bipolar cases were drawn from the Mayo Clinic Bipolar Biobank17. Enrolment sites included Mayo 
Clinic, Rochester, Minnesota; Lindner Center of HOPE/University of Cincinnati College of Medicine, 
Cincinnati, Ohio; and the University of Minnesota, Minneapolis, Minnesota. Enrolment at each site was 
approved by the local Institutional Review Board, and all participants consented to use of their data for 
future genetic studies. Participants were identified through routine clinical appointments, from in-
patients admitted in mood disorder units, and recruitment advertising. Participants were required to be 
between 18 and 80 years old and be able to speak English, provide informed consent, and have DSM-
IV-TR diagnostic confirmation of type 1 or 2 bipolar disorder or schizoaffective bipolar disorder as 
determined using the SCID.  Controls were selected from the Mayo Clinic Biobank18. Potential controls 
with ICD9 codes for bipolar disorder, schizophrenia or related diagnoses in their electronic medical 
record were excluded. 
Rietschel, M; Nöthen, MM; Schulze, TG; Reif, A; Forstner, AJ | 24618891 | BOMA-Germany II 
| bip_bmg2_eur 
Cases were recruited from consecutive admissions to psychiatric in-patient units at the University 
Hospital Würzburg. All cases received a lifetime diagnosis of BD according to the DSM-IV criteria 
using a consensus best-estimate procedure based on all available information, including semi-structured 
diagnostic interviews using the Association for Methodology and Documentation in Psychiatry23, 
medical records and the family history method. In addition, the OPCRIT system was used for the 
detailed poly diagnostic documentation of symptoms. 
Control subjects were ascertained from the population-based Heinz Nixdorf Recall (HNR) Study24. The 
controls were not screened for a history of mental illness. Study protocols were reviewed and approved 
in advance by Institutional Review Boards of the participating institutions. All subjects provided written 
informed consent. 
Rietschel, M; Nöthen, MM; Schulze, TG; Bauer, M; Forstner, AJ; Müller-Myhsok, B | 24618891 
| BOMA-Germany III | bip_bmg3_eur25 
Cases were recruited at the Central Institute of Mental Health in Mannheim, University of Heidelberg, 
and other collaborating psychiatric hospitals in Germany.  All cases received a lifetime diagnosis of BD 
according to the DSM-IV criteria using a consensus best-estimate procedure based on all available 
information including structured diagnostic interviews using the AMDP, Composite International 
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Diagnostic Screener (CID-S)26, SADS-L and/or SCID, medical records, and the family history method. 
In addition, the OPCRIT system was used for the detailed poly diagnostic documentation of symptoms. 
Controls were selected randomly from a Munich-based community sample and recruited at the Max-
Planck Institute of Psychiatry. They were screened for the presence of anxiety and mood disorders using 
the CID-S. Only individuals without mood and anxiety disorders were collected as controls. Study 
protocols were reviewed and approved in advance by Institutional Review Boards of the participating 
institutions. All subjects provided written informed consent. 
 

 
Hauser, J; Lissowska, J; Forstner, AJ | 24618891 | BOMA-Poland | bip_bmpo_eur 
Cases were recruited at the Department of Psychiatry, Poznan University of Medical Sciences, Poznan, 
Poland. All cases received a lifetime diagnosis of BD according to the DSM-IV criteria on the basis of 
a consensus best-estimate procedure and structured diagnostic interviews using the SCID. Controls 
were drawn from a population-based case-control sample recruited by the Cancer-Center and Institute 
of Oncology, Warsaw, Poland and a hospital-based case-control sample recruited by the Nofer Institute 
of Occupational Medicine, Lodz, Poland. The Polish controls were produced by the International 
Agency for Research on Cancer (IARC) and the Centre National de Génotypage (CNG) GWAS 
Initiative for a study of upper aerodigestive tract cancers. The controls were not screened for a history 
of mental illness. Study protocols were reviewed and approved in advance by Institutional Review 
Boards of the participating institutions. All subjects provided written informed consent. 
Rietschel, M; Nöthen, MM; Rivas, F; Mayoral, F; Kogevinas, M; others | 24618891 | BOMA-
Spain | bip_bmsp_eur 
Cases were recruited at the mental health departments of the following five centers in Andalusia, Spain: 
University Hospital Reina Sofia of Córdoba, Provincial Hospital of Jaen; Hospital of Jerez de la 
Frontera (Cádiz); Hospital of Puerto Real (Cádiz); Hospital Punta Europa of Algeciras (Cádiz); and 
Hospital Universitario San Cecilio (Granada). Diagnostic assessment was performed using the SADS-
L; the OPCRIT; a review of medical records; and interviews with first and/or second degree family 
members using the Family Informant Schedule and Criteria (FISC)27. Consensus best estimate BD 
diagnoses were assigned by two or more independent senior psychiatrists and/or psychologists, and 
according to the RDC, and the DSM-IV. Controls were Spanish subjects drawn from a cohort of 
individuals recruited in the framework of the European Community Respiratory Health Survey 
(ECRHS, http://www.ecrhs.org/). The controls were not screened for a history of mental illness. Study 
protocols were reviewed and approved in advance by Institutional Review Boards of the participating 
institutions. All subjects provided written informed consent. 
Fullerton, J.M.; Mitchell, P.B.; Schofield, P.R.; Martin N.G.; Cichon, S. | 24618891 | BOMA-
Australia | bip_bmau_eur 
Cases were recruited at the Mood Disorder Unit, Prince of Wales Hospital in Sydney. All cases received 
a lifetime diagnosis of BD according to the DSM-IV criteria on the basis of a consensus best-estimate 
procedure19 and structured diagnostic interviews using the DIGS, FIGS, and the SCID. Controls were 
parents of unselected adolescent twins from the Brisbane Longitudinal Twin Study. The controls were 
not screened for a history of mental illness. Study protocols were reviewed and approved in advance by 
Institutional Review Boards of the participating institutions. All subjects provided written informed 
consent. 
Grigoroiu-Serbanescu, M; Nöthen, MM | 21353194 | BOMA-Romania | bip_rom3_eur 
Cases were recruited from consecutive admissions to the Obregia Clinical Psychiatric Hospital, 
Bucharest, Romania. Patients were administered the DIGS28 and FIGS8 interviews. Information was 
also obtained from medical records and close relatives. The diagnosis of BP-I was assigned according 
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to DSM-IV criteria using the best estimate procedure.  All patients had at least two hospitalized illness 
episodes. Population-based controls were evaluated using the DIGS to exclude a lifetime history of 
major affective disorders, schizophrenia, schizoaffective disorders, and other psychoses, obsessive-
compulsive disorder, eating disorders, and alcohol or drug addiction. 
Kelsoe, J; Sklar, P; Smoller, J | [PGC1 Replication] | USA (FAT2; FaST, BiGS, TGEN) | 
bip_fat2_eur 
Cases were collected from individuals at the 11 U.S. sites described for the GAIN sample.  Eligible 
participants were age 18 or older meeting DSM-IV criteria for BD-I or BD-II by consensus diagnosis 
based on interviews with the Affective Disorders Evaluation (ADE) and MINI. All participants 
provided written informed consent and the study protocol was approved by IRBs at each site. Collection 
of phenotypic data and DNA samples were supported by NIMH grants MH063445 (JW Smoller); 
MH067288 (PI: P Sklar),  MH63420 (PI: V Nimgaonkar) and MH078151, MH92758  (PI: J. Kelsoe). 
The control samples were NIMH controls that were using the methods described in that section. The 
case and control samples were independent of those included in the GAIN sample. 
Kirov, G | 25055870 | Bulgarian trios | bip_butr_eur 
All cases were recruited in Bulgaria from psychiatric inpatient and outpatient services. Each proband 
had a history of hospitalisation and was interviewed with an abbreviated version of the SCAN. 
Consensus best-estimate diagnoses were made according to DSM-IV criteria by two researchers. All 
participants gave written informed consent and the study was approved by local ethics committees at 
the participating centers. 
Kirov, G | 25055870 | UK trios | bip_uktr_eur 
The BD subjects were recruited from lithium clinics and interviewed in person by a senior psychiatrist, 
using the abbreviated version of the SCAN. Consensus best-estimate diagnoses were made based on 
the interview and hospital notes. Ethics committee approval for the study was obtained from the relevant 
research ethics committees and all individuals provided written informed consent for participation. 
Landén, M; Sklar, P | [ICCBD] | Sweden (ICCBD) | bip_swa2_eur 
The BD subjects were identified using the Swedish National Quality Register for Bipolar Disorders 
(BipoläR) and the Swedish National Patient Register (using a validated algorithm29 requiring at least 
two hospitalizations with a BD diagnosis). A confirmatory telephone interview with a diagnostic review 
was conducted. Additional subjects were recruited from the St. Göran Bipolar Project (Affective Center 
at Northern Stockholm Psychiatry Clinic, Sweden), enrolling new and ongoing patients diagnosed  with 
BD using structured clinical interviews. Diagnoses were made according to the DSM-IV criteria 
(BipoläR and St. Göran Bipolar Project) and ICD-10 (National Patient Register). The control subjects 
used were the same as for the SCZ analyses described above. All ascertainment procedures were 
approved by the Regional Ethical Committees in Sweden. 
Landén, M; Sklar, P | [ICCBD] | Sweden (ICCBD) | bip_swei_eur 
The cases and controls in the bip_swei_eur sample were recruited using the same ascertainment 
methods described for the bip_swa2_eur sample. 
Leboyer, M |30; [PGC1 replication] | France | bip_fran_eur 
Cases with BD1 or BD2 and control samples were recruited as part of a large study of genetics of BD 
in France (Paris-Creteil, Bordeaux, Nancy) with a protocol approved by relevant IRBs and with written 
informed consent. Cases of French descent for more than 3 generations were assessed by a trained 
psychiatrist or psychologist using structured interviews supplemented by medical case notes, mood 
scales and self-rating questionnaire assessing dimensions. 
Li, Q | 24166486; 27769005 | USA (Janssen), SAGE controls | bip_jst5_eur 
The study included unrelated patients with bipolar 1 disorder from 6 clinical trials (IDs: NCT00253162, 
NCT00257075, NCT00076115, NCT00299715, NCT00309699, and NCT00309686). Participant 
recruitment was conducted by Janssen Research & Development, LLC (formerly known as Johnson & 
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Johnson Pharmaceutical Research & Development, LLC) to assess the efficacy and safety of 
risperidone. Bipolar cases were diagnosed according to DSM-IV-TR criteria. The diagnosis of bipolar 
disorder was confirmed by the Schedule for Affective Disorders and Schizophrenia for School-Age 
Children-Present and Lifetime Version (K-SADS-PL) in NCT00076115, by the SCID in NCT00257075 
and  NCT00253162, or by the MINI in NCT00299715 and NCT00309699, and NCT00309686, 
respectively. Additional detailed descriptions of these clinical trials can be found at ClinicalTrials.gov. 
Only patients of European ancestry with matching controls were included in the current analysis. 
Controls subjects were drawn from the Study of Addiction: Genetics and Environment (SAGE, dbGaP 
Study Accession: phs000092.v1.p1). Control subjects did not have alcohol dependence or drug 
dependence diagnoses; however, mood disorders were not an exclusion criterion. 
Craddock, N; Jones, I; Jones, L | [ICCBD] | Cardiff and Worcester, UK (ICCBD-BDRN) | 
bip_icuk_eur 
Cases were all over the age of 17 yr, living in the UK and of European descent. Cases were recruited 
via systematic and not systematic methods as part of the Bipolar Disorder Research Network project 
(www.bdrn.org),  provided written informed consent and  were interviewed using a semi-structured 
diagnostic interview, the Schedules for Clinical Assessment in Neuropsychiatry. Based on the 
information gathered from the interview and case notes review, best-estimate lifetime diagnosis was 
made according to DSM-IV. Inter-rater reliability was formally assessed using 20 randomly selected 
cases (mean ĸ Statistic = .85).  In the current study I included cases with a lifetime diagnosis of DSM-
IV bipolar disorder or schizo-affective disorder, bipolar type. The BDRN study has UK National Health 
Service (NHS) Research Ethics Committee approval and local Research and Development approval in 
all participating NHS Trusts/Health Boards.Controls were part of the Wellcome Trust Case Control 
Consortium common control set, which comprised healthy blood donors recruited from the UK Blood 
Service and samples from the 1958 British Birth Cohort. Controls were not screened for a history of 
mental illness. All cases and controls were recruited under protocols approved by the appropriate IRBs. 
All subjects gave written informed consent. 
Ophoff, RA | Not Published | Netherlands | bip_ucla_eur 
The case sample consisted of inpatients and outpatients recruited through psychiatric hospitals and 
institutions throughout the Netherlands. Cases with DSM-IV bipolar disorder, determined after 
interview with the SCID,  were included in the analysis. Controls were collected in parallel at different 
sites in the Netherlands and were volunteers with no psychiatric history after screening with the 
(MINI11). Ethical approval was provided by UCLA and local ethics committees and all participants 
gave written informed consent.  
Paciga, S | [PGC1] | USA (Pfizer) | bip_pf1e_eur  
This sample comprised Caucasian individuals recruited into one of three Geodon (ziprasidone) clinical 
trials (NCT00141271, NCT00282464, NCT00483548). Subjects were diagnosed by a clinician with a 
primary diagnosis of Bipolar 1 Disorder, most recent episode depressed, with or without rapid cycling, 
without psychotic features, as defined in the DSM-IV-TR (296.5x) and confirmed by the MINI (version 
5..0).  Subjects also were assessed as having a HAM-D-17 total score of >20 at the screening visit.  The 
trials were conducted in accordance with the protocols, International Conference on Harmonization of 
Good Clinical Practice Guidelines, and applicable local regulatory requirements and laws.  Patients 
gave written informed consent for the collection of blood samples for DNA for use in genetic studies. 
Pato, C | [ICCBD] | Los Angeles, USA (ICCBD-GPC)| bip_usc2_eur 
Genomic Psychiatry Consortium (GPC) cases and controls were collected via the University of 
Southern California healthcare system, as previously described31. Using a combination of focused, 
direct interviews and data extraction from medical records, diagnoses were established using the 
OPCRIT and were based on DSM-IV-TR criteria. Age and gender-matched controls were ascertained 
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from the University of Southern California health system and assessed using a validated screening 
instrument and medical records. 
 
======== PGC2 Followup Samples ======== 
Kelsoe, J | [PGC1] | USA (BiGS/TGEN1) | TGEN1_eur 
Cases and controls for this sample were ascertained using the same procedures applied for the 
bip_gain_eur sample described above. These samples formed a distinct PCA cluster from the samples 
described above and were therefore analysed separately. 
Li, Q | 24166486 | various Eastern Europe, shared T. Esku controls | JJ_EAST_eur 
The cases were drawn from the same six clinical studies described for bip_jst5_eur except that only 
patients of east European ancestry with matching controls were included in this cohort. Most of the 
Eastern European controls were from the Estonian Biobank project (EGCUT)32 and were ancestrally 
matched with cases. 
Schulze, T | [ConLiGen] | Germany | BIP_KFO_eur 
The KFO sample was derived from the Clinical Research Group 241 (KFO241 consortium; 
www.kfo241.de) and the PsyCourse consortium (www.psycourse.de). The samples form part of a multi-
site German/Austrian longitudinal study. Diagnoses were made according to DSM-IV. German Red 
Cross controls were collected by the Central Institute for Mental Health in Mannheim, University of 
Heidelberg, Germany. Volunteers who gave blood to the Red Cross were asked whether they would be 
willing to participate in genetic studies of psychiatric disorders. Control subjects were not selected on 
the basis of mental health screening. 
 
======== External studies PGC3 ======== 
Stefánsson, H | [PGC1 replication] | Iceland (deCODE genetics) | deCODE 
The Icelandic sample consisted of 2,908 subjects with BD (1661 SNP typed) and 344,848 controls 
(141,854 SNP typed).  DNA was isolated from blood samples provided by patients and controls that 
were recruited throughout Iceland. Approval for the study was granted by the National Bioethics 
Committee of Iceland and the Icelandic Data Protection Authority and informed consent was obtained 
for all participants providing a sample for the study. Diagnoses were assigned according to Research 
Diagnostic Criteria38 through the use of the SADS-L39 for 303 subjects. DSM-IV BD diagnoses were 
obtained through the use of the Composite International Diagnostic Interview (CIDI-Auto) for 82 
subjects. The remaining BD subjects were diagnosed by ICD 9 or ICD 10 at Landspitali University 
Hospital in the years 1987-2018. Controls were recruited as a part of various genetic programs at 
deCODE and were not screened for psychiatric disorders. Whole genome sequencing was performed 
on samples from 541 BD cases and 26,014 controls.  Two types of imputations were performed; into 
SNP-typed individuals based on long-range phasing, followed by a familial imputation step into un-
typed relatives of SNP-typed individuals. Cases of bipolar I disorder were defined using ICD-10 codes 
31.1 and 31.2 and ICD-9 codes 296.0 and 296.2. Cases of bipolar II disorder were defined using the 
ICD-10 code 31.0 in the absence of ICD-10 codes F31.1 and F31.2 and ICD-9 codes 296.0 and 296.2.  
Milani L | 24518929 | Estonia (Estonian Biobank) | EstonianBiobank 
The Estonian Biobank (EstBB) is a population-based cohort of 200,000 participants with a rich variety 
of phenotypic and health-related information collected for each individual32. At recruitment, all 
participants signed a consent to allow follow-up linkage of their electronic health records (EHR), 
thereby providing a longitudinal collection of phenotypic information. Health records have been 
extracted from the national Health Insurance Fund Treatment Bills (from 2004), Tartu University 
Hospital (from 2008), and North Estonia Medical Center (from 2005). The diagnoses are coded in ICD-
10 format and drug dispensing data include drug ATC codes, prescription status and purchase date (if 
available). For the current study, cases of bipolar disease were determined by searching the EHRs for 
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data on F31* ICD-10 diagnosis. All remaining participants who did not have any ICD-10 F* group 
diagnoses were defined as controls. Cases with bipolar I disorder were those with ICD codes of F31.1 
and F31.2.   
Zwart JA | Unpublished | Norway (the Trøndelag Health Study) | HUNT 
The HUNT sample consisted of 905 subjects with BD and 41,914 population controls41. Patients and 
controls were of European ancestry and were recruited from the Nord-Trøndelag County, Norway. 
Diagnoses were assigned according to ICD-9 or ICD-1. The controls included individuals not diagnosed 
with substance use disorders, schizophrenia, bipolar disorder, major depressive disorder, anxiety 
disorders, eating disorders, personality disorders, or ADHD in hospitals (ICD-9 or ICD-10) or general 
practice (ICPC2). They also were >40 years of age, had low self-reported levels of anxiety and 
depression (HADS-A and HADS-D < 11), and reported no use of antidepressants, anxiolytics, or 
hypnotics. Approval for the study was granted by the Data Inspectorate of Norway, the Health 
Directorate and the Regional Committee for Medical and Health Research Ethics. Cases of bipolar I 
disorder were those with ICD codes of F31.1, F31.2 or F31.6 and individuals with an ICD-9 code of 
295 or ICD-10 codes F20-F29 were excluded. Cases of bipolar II disorder were those with ICD codes 
of F31.8 and individuals with an ICD-9 code of 295 or ICD-10 codes F20-F29, F31.1-.2 or F31.6 were 
excluded.  
 
======== PGC PsychChip Samples ======== 
Pato, C | Not published | [PGC Psychchip] | gpcw1 
The cases and controls in this study were ascertained in the same manner as those described above for 
bip_usc2_eur. 
Reif, A | Not published | [PGC Psychchip] | germ1 
Cases were recruited in the same manner as those described above for BOMA-Germany II | 
bip_bmg2_eur. Control subjects were healthy participants who were recruited from the community of 
the same region as cases. They were of Caucasian descent and fluent in German. Exclusion criteria were 
manifest or lifetime DSM-IV axis I disorder, severe medical conditions, intake of psychoactive 
medication as well as alcohol abuse or abuse of illicit drugs. Absence of DSM-IV axis I disorder was 
ascertained using the German versions of the Mini International Psychiatric Interview. IQ was above 
85 as ascertained by the German version of the Culture Fair Intelligence Test 244. Study protocols were 
reviewed and approved by the ethical committee of the Medical Faculty of the University of Würzburg. 
All subjects provided written informed consent. 
Serretti, A, Vieta E, Ribases M | Not published | [PGC Psychchip] | spsp3 
The sample includes 267 BD subjects (Spanish Wave2 Serretti PsychChip QC Summary), of which 180 
Spanish and 87 Italian. Spanish sample: 180 subjects were enrolled in a naturalistic cohort study, 
consecutively admitted to the out-patient Bipolar Disorders Unit, Hospital Clinic, University of 
Barcelona. This is a systematic cross-sectional analysis deeply described in a previous paper on the 
same sample investigating rs10997870 SIRT1 gene variant45. Inclusion criteria were a diagnosis of 
bipolar disorder (type 1 or 2) according to DSM-IV TR criteria and age of 18 years or older. The study 
was approved by the local ethical committee and carried out in accordance with the ethical standards 
laid down in the Declaration of Helsinki. Signed informed consent was obtained from all participants 
after a detailed and extensive description of the study and patient’s confidentiality was preserved. The 
current and lifetime diagnoses of mental disorders were formulated by independent senior psychiatrists 
(diagnostic concordance: Kappa=.80) according to DSM-IV TR clinical criteria and confirmed through 
the semi-structured interviews for Axis I disorders according to DSM IV TR criteria (SCID I). 
Furthermore, all available clinical data coming from follow-up at our unit and collateral information 
concerning illness history were cross-referred in order to ensure accuracy and obtain complete clinical 
information. Specific psychopathological dimensions were assessed by means of rating scales and 
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clinical questionnaires administered by clinicians, adequately trained to enhance inter-rater reliability. 
Mood episodes were defined according to DSM-IV TR criteria and their severity was measured through 
the administration of the 21-item Hamilton Depression Rating Scale (HDRS-21, Spanish version). The 
most severe depressive episode was defined on the basis of the severity at the HDRS (total score > 14) 
and clinical judgment. Italian sample: 87 subjects with bipolar depression were enrolled into the study 
when admitted at the Department of Psychiatry, University of Bologna, Italy. A description of the 
subjects has been previously reported when analyzing clinical features46. Inclusion criteria were a 
diagnosis of bipolar disorder, most recent episode depressive as assessed by DSM-IV-TR criteria; 
Young Mania Rating Scale (YMRS) score <12; Hamilton Depression Rating Scale (HAM-D) <12. 
Exclusion criteria were presence of a bipolar disorder, most recent episode manic or hypomanic; 
presence of severe medical conditions; presence of moderate to severe dementia (Mini Mental State 
Examination score <20). The following scales were administered biweekly during the hospitalization: 
HAM-D, Hamilton Anxiety Rating Scale (HAM-A), YMRS and Dosage Record and Treatment 
Emergent Symptom Scale (DOTES). Written informed consent was obtained for each patient recruited. 
The study protocol was approved by the local Ethical Committee and it has been performed in 
accordance with the ethical standards laid down in the 1975 Declaration of Helsinki.  
The Spanish controls were part of the Mental-Cat clinical sample or the INSchool population-based 
cohort. A total of 1,774 controls from the Mental-Cat cohort (6.5% males) were evaluated and recruited 
prospectively from a restricted geographic area at the Hospital Universitari Vall d’Hebron of Barcelona 
(Spain) and consisted of unrelated healthy blood donors. The INSchool sample consisting of 771 
children (76.2% males) from schools in Catalonia were involved for screening using the Achenbach 
System of Empirically Based Assessment (ASEBA) with the Child Behavior Checklist CBCL/4-18 
(completed by parents or surrogates), the Teacher Report Form TRF/5-18 (completed by teachers and 
other school staff) and the Youth Self-Report YSR/11-18 (completed by youths); the Strengths and 
Difficulties Questionnaire (SDQ) and the Conner’s ADHD Rating Scales (Parents and Teachers). 
Genomic DNA samples were obtained either from peripheral blood lymphocytes by the salting out 
procedure or from saliva using the Oragene DNA Self-Collection Kit (DNA Genotek, Kanata, Ontario 
Canada). DNA concentrations were determined using the Pico- Green dsDNA Quantitation Kit 
(Molecular Probes, Eugene, OR) and genotyped with the Illumina Infinium PsychArray-24 v1.1 at the 
Genomics Platform of the Broad Institute. The study was approved by the Clinical Research Ethics 
Committee (CREC) of Hospital Universitari Vall d’Hebron, all methods were performed in accordance 
with the relevant guidelines and regulations and written informed consent was obtained from participant 
parents before inclusion into the study. Detailed information has been published previously47. 
Perlis, R; Sklar, P; Smoller, J, Goes F, Mathews CA, Waldman I | Not published | [PGC 
Psychchip] | usaw4 
Perlis, R; Sklar, P; Smoller, J: EHR data were obtained from a health care system of more than 4.6 
million patients48 spanning more than 20 years. Experienced clinicians reviewed charts to identify text 
features and coded data consistent or inconsistent with a diagnosis of bipolar disorder. Natural language 
processing was used to train a diagnostic algorithm with 95% specificity for classifying bipolar disorder. 
Filtered coded data were used to derive three additional classification rules for case subjects and one 
for control subjects. The positive predictive value (PPV) of EHR-based bipolar disorder and 
subphenotype diagnoses was calculated against diagnoses from direct semistructured interviews of 190 
patients by trained clinicians blind to EHR diagnosis. The PPV of bipolar disorder defined by natural 
language processing was .86. Coded classification based on strict filtering achieved a value of .84, but 
classifications based on less stringent criteria performed less well. No EHR-classified control subject 
received a diagnosis of bipolar disorder on the basis of direct interview (PPV=1.0). For most 
subphenotypes, PPV exceeded .8. The EHR-based classifications were used to accrue bipolar disorder 
cases and controls for genetic analyses. Samples were genotyped on the Psychchip array. 
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Goes, FS: Cases represented independent probands  from a European American family sample that was 
collected at Johns Hopkins University from 1988-201.  Families had at least 2 additional relatives with 
a major mood disorder (defined as bipolar disorder type 1, bipolar type 2 or recurrent major depressive 
disorder).    Diagnostic interviews were performed using the Schedule for Affective Disorders and 
Schizophrenia-Lifetime Version (N=81) and the Diagnostic Instrument for Genetics Studies 
(N=161).  All cases underwent best-estimate diagnostic procedures.  After genotyping quality control 
there were 242 cases, of which 240 were diagnosed as bipolar disorder type 1 and 2 as schizoaffective 
disorder, bipolar type.  Diagnoses were based on DSM-III and DSM-IV criteria.  Probands from 
this  sample have  been previously studied in family based linkage and exome studies.49–51 
Mathews CA: Control samples were ascertained as part of ongoing genetic and neurophysiological 
studies of hoarding, obsessive compulsive and tic disorders. Controls reported no current or lifetime 
history of mania or hypomania at the time of ascertainment. Sixty-two of the 104 controls were screened 
for psychiatric illness using the Structured Clinical Interview for DSM-IV TR diagnoses and diagnoses 
of bipolar disorder, lifetime or current, were ruled out through a best estimate consensus diagnosis. 
Other psychiatric diagnoses were not excluded.  The remaining 42 participants were not formally 
screened but reported no lifetime or current history of bipolar disorder, obsessive compulsive, hoarding, 
or tic disorders. Samples were genotyped on the Psychchip array. Ethical approvals were obtained from 
the University of Florida Human Subjects Review Board. 
Waldman I: Control samples were ascertained as part of an ongoing genetic study of ADHD and other 
Externalizing disorders (I.e., Oppositional Defiant Disorder and Conduct Disorder). Controls reported 
no current diagnoses of Externalizing or Internalizing disorders at the time of ascertainment. Controls 
were assessed for psychiatric conditions using the Emory Diagnostic Rating Scale (EDRS)52, a 
questionnaire that assessed parent ratings of symptoms of common DSM-IV Externalizing and 
Internalizing disorders (e.g., Major Depressive Disorder and various anxiety disorders). Samples were 
genotyped on the Psychchip array. Ethical approvals were obtained from the Emory University and 
University of Arizona Human Subjects Review Boards. 
Baune, BT; Dannlowski, U | Not published | [PGC Psychchip] | bdtrs 
The Bipolar Disorder treatment response Study (BP-TRS) comprises BD inpatient cases and screened 
controls of Caucasian background. Psychiatric diagnosis of bipolar disorders was ascertained using 
SCID or MINI 6.0 using DSM-IV criteria in a face-to-face interview by a trained psychologist / 
psychiatrist for both cases and controls. Healthy controls were included if no current or lifetime 
psychiatric diagnosis was identified. Cases were included if current or lifetime diagnosis of bipolar 
disorder was ascertained by structured diagnostic interview. Cases and controls are of similar age range 
(>=18 yrs of age) and were collected from the same geographical areas. Other assessments including 
symptom ratings, psychiatric history, treatment history, treatment response was based on interview and 
carried out by trained psychologists/psychiatrists. Samples were genotyped on the Psychchip array. 
Ethical approval was obtained from the University of Münster Human Ethics Committee, Münster, 
Germany. 
Ophoff R, Posthuma D, Lochner C, Franke B | Not published | [PGC Psychchip] | dutch 
Ophoff R: Cases and controls were collected using the same protocol as described above for the “ucla” 
sample. 
Lochner C: Controls include South African Caucasian population based-controls ascertained from 
blood banks and controls recruited through university campuses and newspaper advertisements, who 
underwent a psychiatric interview and had no current or lifetime psychiatric disorder 53,54.  
Franke B: The controls included are healthy individuals from the Dutch part of the International 
Multicenter ADHD Genetics (IMAGE) project 55,56.  

https://paperpile.com/c/3FDJz2/MLEUJ+pCC4A+pdftW
https://paperpile.com/c/3FDJz2/agZ6h
https://paperpile.com/c/3FDJz2/93nGX
https://paperpile.com/c/3FDJz2/waAC3
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Posthuma D: Data were provided for 960 unscreened Dutch population controls from the Netherlands 
Study of Cognition, Environment and Genes (NESCOG)57. The study was approved by the institutional 
review board of Vrije Universiteit Amsterdam and participants provided informed consent.  
Gawlik M | Not published | [PGC Psychchip] | gawli 
Patients were recruited at the Department of Psychiatry, Psychosomatics and Psychotherapy, University 
of Würzburg, Germany. Diagnosis according to DSM-IV (Diagnostic and Statistical Manual of Mental 
Disorders-fourth edition) was made by the best estimate lifetime diagnosis method, based on all 
available information, including medical records, and the family history method. 
Fullerton J, Mitchell PB, Schofield PR, Green MJ, Weickert CS, Weickert TW, The Australian 
Schizophrenia Research Bank | Not published | [PGC Psychchip] | neuc1 
The NeuRA collection comprised BD cases from three cohorts ascertained in Australia: the bipolar high 
risk study58 (n=97), the Imaging Genetics in Psychosis Study (IGP; n=47)59 and a clinic sample (n=109) 
recruited via the Sydney Bipolar Disorders Clinic. The clinic sample used the same ascertainment 
procedures as described for the bip_bmau_eur sample. The bipolar high risk study is a collaborative 
study with 4 US and one Australian groups, with young participants aged 12-3. The IGP sample was 
recruited from outpatient services of the South Eastern Sydney-Illawarra Area Health Service 
(SESIAHS), the Sydney Bipolar Disorders Clinic and the Australian Schizophrenia Research Bank. 
Healthy controls were sourced from the high risk, IGP and the Cognitive and Affective Symptoms of 
Schizophrenia Intervention (CASSI) trial61 studies, and were recruited from the community, had no 
personal lifetime history of a DSM-IV Axis-I diagnosis as determined by psychiatric interview, and no 
history of psychotic disorders among first-degree biological relatives. Additional controls were 
recruited as part of the strategy to develop an Australian Schizophrenia Research Biobank for studies 
into the genetics of this disease. The ascertainment of these controls has been previously described62. 
Landen M, Hillert J,  Alfredsson L | Not published | [PGC Psychchip] |  swed1 
The cases in the swed1 sample were recruited using the same ascertainment methods described for the 
bip_swa2_eur sample. Population-based healthy controls, randomly selected from the Swedish national 
population register, were collected as part of two case-control studies of multiple sclerosis: GEMS 
(Genes and Environment in Multiple Sclerosis) and EIMS (Epidemiological Investigation of Multiple 
Sclerosis)63. 
Di Florio A, McQuillin A, McIntosh A, Breen G  | Not published | [PGC Psychchip] | ukwa1 
McQuillin A: BD cases were recruited using the same protocol as the bip_uclo_eur described above. A 
subset (n=448) of the control subjects were random UK blood donors obtained from the ECACC DNA 
Panels (https://www.phe-culturecollections.org.uk/products/dna/hrcdna/hrcdna.jsp). The remaining 
control subjects (n=814) had been screened for an absence of mental illness in using the same protocol 
as the bip_uclo_eur described above.  
Di Florio A: Cases were recruited across the United Kingdom in the same manner as described for the 
bip_wtcc_eur and bip_icuk_eur samples.  
McIntosh AM: BD cases were recruited from the clinical case loads of treating psychiatrists from 
Edinburgh and across the central belt of Scotland. Controls were identified from non-genetic family 
members and from the extended networks of the participants themselves. All participants were of 
European ancestry and diagnosis was confirmed using an established battery developed for ICCCBD. 
Breen G: Controls were drawn from blood donors to the UK Motor Neuron Disease Association DNA 
Biobank64 
Perlis, R; Sklar, P; Smoller, J, Nievergelt C, Kelsoe J | Not published | [PGC Psychchip] | usaw5 
Kelsoe, J: The Pharmacogenomics of Bipolar Disorder (PGBD) study was a prospective assessment of 
lithium response in BDI patients. The goal was to identify genes for lithium response. Subjects were 
recruited from clinics at 11 international sites and followed for up to 2.5 years. Diagnosis was obtained 
by DIGS interview and medical records reviewed by blind experienced clinicians. As the comparison 

https://paperpile.com/c/3FDJz2/xYNBb
https://paperpile.com/c/3FDJz2/JiXT2
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was between lithium responders and non-responders, no controls were collected. All subjects provided 
written informed consent.  
Perlis R: Cases of bipolar disorder were Individuals treated with lithium drawn from the Partners 
Healthcare electronic health record (EHR) database, which spans two large academic medical centers, 
Massachusetts General Hospital and Brigham and Women’s Hospital in addition to community and 
specialty outpatient clinics65. Any patients aged 18 years or older with at least one lithium prescription 
between 2006 and 2013 based on e-prescribing data were included. The Partners Institutional Review 
Board approved all aspects of this study. Individuals with a diagnosis of schizophrenia based on ICD9 
codes were excluded. 
Smoller J: Cases and controls  were recruited in the same manner as described above for “usaw4”. 
 
======== PGC3 Samples ======== 
Ferentinos P, Dikeos D, Patrinos G | Not published | Greece (Attikon General Hospital) | greek 
All adult patients with a DSM-IV-TR/DSM-5 diagnosis of bipolar disorder hospitalized at the inpatient 
unit or followed-up at the specialized ‘Affective disorders and Suicide’ outpatient clinic of the 2nd 
Department of Psychiatry, National and Kapodistrian University of Athens, Attikon General Hospital, 
Athens, Greece from 2012 to 2017 were recruited for the current  study. Patients were referred to the 
specialized ‘Affective disorders and Suicide’ outpatient clinic either from the inpatient unit after 
hospitalization or from the community. Diagnosis was established and demographic (age, gender, 
family status, profession, employment status, education) and relevant clinical features (e.g. age at onset, 
polarity of first and most recent episode, number of lifetime depressive and manic/hypomanic episodes, 
number of hospitalizations, lifetime suicidality, lifetime psychosis) were extracted through a M.I.N.I.-
5..0-based semi-structured diagnostic interview, which was administered during patients’ initial clinical 
assessment and regularly updated ever since, interviews of primary caregivers and inspection of medical 
records. Lifetime presence of any DSM-IV-TR axis I psychiatric comorbidities (dysthymia, panic 
disorder, agoraphobia, social phobia, generalized anxiety disorder, obsessive-compulsive disorder, 
post-traumatic stress disorder, alcohol and substance abuse and dependence, anorexia nervosa, bulimia 
nervosa) was similarly extracted. Family history of major psychiatric disorders and suicidality in first 
and second degree relatives was recorded with a specific questionnaire based on the Family Interview 
for Genetic Studies. Medical comorbidities were recorded with the Cumulative Illness Rating Scale, 
completed on the basis of interview with patient and primary caregivers, inspection of patient’s medical 
records and laboratory exams (basic or specific, if considered necessary). Presence of selected medical 
diseases was specifically recorded.  
Control (unaffected) participants were a convenient sample drawn from the same geographic area as 
case participants, either within health care facilities or as community volunteers. All of them went 
through a brief clinical interview including items on psychiatric and medical history, psychiatric family 
history, past and current medical or psychiatric therapies, and a brief mental state examination. Only 
participants found to be free of lifetime major mental disorders (MDD, BD, schizophrenia, or other 
psychotic disorders) and with no family history of major mental disorder in their first-degree relatives 
were recruited as controls.  
All cases and controls were native Greek speakers. All participants provided written informed consent 
before being included in the study and the study protocol was approved by the Research Ethics 
Committee of Attikon General Hospital. 
Andreassen, OA | Not published | Norway (TOP) | norgs  
The NORGS bipolar disorder cases and controls were ascertained in the same way as the bip_top7_eur 
(TOP7) samples described above and recruited from hospitals across Norway. 
Andreassen, OA | Not published | Norway (TOP) | noroe 

https://paperpile.com/c/3FDJz2/hR4zc
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The MONROE bipolar disorder cases and controls were ascertained in the same way as the 
bip_top7_eur (TOP7) samples described above and recruited from hospitals across Norway. 
Reininghaus EZ | Not published| Austria (Medical University of Graz) | graza   
Univ. Prof. DDr. Eva Reininghaus, Priv.Doz. DDr. Susanne Bengesser, Priv.Doz. Dr. Nina Dalkner, 
Dr. Frederike Fellendorf and further team members of the special outpatient’s department for bipolar 
affective disorders at the Department of Psychiatry and Psychotherapeutic Medicine, Medical 
University of Graz, Austria: Cases with bipolar affective disorder (type I and II) and healthy controls 
were recruited at the Department of Psychiatry and Psychotherapeutic Medicine at the Medical 
University of Graz (MUG), Austria. Study protocols were approved by the ethics committee of the 
Medical University of Graz. Patients and healthy controls gave written informed consent and the study 
was conducted according to the declaration of Helsinki. All patients received a clinical interview by a 
psychiatrist or psychologist and a diagnosis according to DSM-IV with the SCID-I (Structured clinical 
interview). Healthy controls did not have a history of a psychiatric disorder. Furthermore, healthy 
controls did not have any first or second degree relatives with a psychiatric disorder. The PGC-Graz 
sample (n= 244; 114 males, 130 females) includes 167 cases with bipolar disorder and 77 healthy 
controls genotyped with Omniexpress 1.2 by Illumina. 
Grigoroiu-Serbanescu M | 31791676;  26806518  | Romania (BOMA-Romania) | bmtron 
This sample includes the BOMA-Romania sample and additional cases from the ConLiGen-Romania 
sample. For the BOMA-Romania sample, unrelated BP-I patients were recruited from consecutive 
admissions in the Obregia Psychiatric Hospital of Bucharest, Romania. All participants provided written 
informed consent following a detailed explanation of the study aims and procedures. The study was 
performed in accordance with the Code of Ethics of the World Medical Association (Declaration of 
Helsinki). All participants were of Romanian descent according to self-reported ancestry. Genealogical 
information about parents and all four grandparents was obtained through direct interview of the 
subjects. 
The patients were investigated with the Diagnostic Interview for Genetic Studies (DIGS)28 and the 
Family Interview for Genetic Studies (FIGS)8 The diagnosis of BP-I was assigned according to DSM-
IV criteria on the basis of both the DIGS and medical records. Patients were included in the sample if 
they had at least two documented hospitalized illness episodes (one manic/mixed and one depressive or 
two manic episodes) and no residual mood incongruent psychotic symptoms during remissions. This 
information was also confirmed by first degree relatives for 64% of the cases. The illness age-of-onset 
was defined as the age at which the proband first met DSM-IV criteria for a manic, mixed, or major 
depressive episode. Family history of psychiatric illness was obtained with FIGS administered both to 
the patients and to all available relatives. 
Cases in the ConLiGen-Romania study were ascertained in the same manner as for BOMA-
Romania.   Cases were required to have taken lithium for at least two years and lithium treatment 
response was evaluated with the Alda scale66.  
Population-based controls were evaluated using the DIGS and FIGS to screen for a lifetime history of 
major affective disorders, schizoaffective disorders, SCZ and other psychoses, obsessive-compulsive 
disorder, eating disorders, and alcohol or drug addiction. Unaffected individuals were included as 
controls in the present study.  
 
======== PGC4 Samples ======== 
Grigoroiu-Serbanescu M | PMID : 31791676| Romania (BOMA-Romania) | rom4 
Cases were recruited from consecutive admissions to the Obregia Clinical Psychiatric Hospital, 
Bucharest, Romania. Patients were administered the DIG 28 and FIGS8 interviews. Information was 
also obtained from medical records and close relatives. The diagnosis of BP-I was assigned according 
to DSM-IV-R criteria using the best estimate procedure.  All patients had at least two hospitalized 
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illness episodes. Population-based controls were evaluated using the DIGS to exclude a lifetime history 
of major affective disorders, schizophrenia, schizoaffective disorders, and other psychoses, obsessive-
compulsive disorder, eating disorders, and alcohol or drug addiction. 
 
McQuillin A | PMID: 37643680 | UCL (University College London), London, UK | amq1 
Case and controls were collected using the protocol described above for bip_uclo_eur. 
  
Squassina A, | PMID: 21961650 | Italy | ital1 
Patients with bipolar I or bipolar II disorder were recruited at the outpatient unit (Lithium Clinic) of the 
Clinical Psychopharmacology Centre at the Department of Biomedical Science, Section of 
Neuroscience & Clinical Pharmacology, University of Cagliari, University Hospital Agency of Cagliari, 
Italy. Clinical assessments followed a strict procedure. After providing informed consent, participants 
were interviewed using one of the structured or semistructured interviews SADS-L. Clinical diagnosis 
was confirmed by DSM-IV criteria. I also used available medical records, narrative summaries of all 
interviews, and details such as baseline assessments, clinical course, response to treatment, treatment 
adherence, psychiatric and medical comorbidities, history of suicidal behavior, and symptom profiles 
in OPCRIT format.6 
For uniform evaluation of treatment response, I used all available information including data from 
clinical records, diagnostic interviews, and prospective follow-up assessed by NIMH Life- Chart 
Method67. I used the Alda scale to assess lithium response66. 
  
Manchia M, Carpiniello B,  Squassina A | PMID: 35566641 | Italy | ital2 
The case samples were recruited among patients attending the outpatient clinic of the community mental 
health center of the Unit of Clinical Psychiatry within the University Hospital of Cagliari, Italy. Patients 
were enrolled in the genetic study if they met the following inclusion criteria: diagnosis of either Bipolar 
I or Bipolar II disorder according to DSM 568 criteria validated through the Italian version of the SCID-
5-CV (Structured Clinical Interview for DSM-5 Clinical Version); being in euthymic phase.  
All patients provided a written consent form regarding the use of their biological and clinical data for 
research purposes. Blood samples were gathered at the beginning of the study along with the relevant 
demographic and biometric data. All the clinical documents are stored in an anonymized database, 
accessible only by authorized personnel.  
The recruited subjects were phenotypically characterized with the use of the following standardized 
tests: 
·      Brief Assessment of Cognition in Affective Disorders (BACA)   
·      Brief Assessment of Cognition in Schizophrenia to assess baseline cognitive capacities 
·      Hamilton Depression Rating Scale (HDRS)  
·      Young Mania Rating Scale (YMRS)  
·      Hamilton Anxiety Rating Scale (HAM-A)  
·      Barratt Impulsivity scale (BIS)  
·      Clinical Global Impression Scale – Severity (CGI-S) 
·      Alda score for Lithium response (clinical response defined as a score  >7) 
·      OPCRIT 
 
Tondo L, Squassina A | PMID: 20348464 | Italy | ital3 
Our sample population encompasses a cohort of patients followed at the Mood Disorder Lucio Bini 
Center in Cagliari (Italy), a specialized outpatient clinic for the diagnosis, treatment and research of 
affective disorders. Since the founding of this outpatient clinic in 1977, all demographic and clinical 
information about patients have been recorded systematically by means of semi-structured initial and 
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follow-up interviews, a life chart, extensive clinical evaluation and repeated assessments with standard 
rating scales for mood such as the Hamilton Depression Rating Scale (HDRS)69, and Young Mania 
Rating Scale70, typically every 4–6 weeks. Diagnoses were updated to meet the Diagnostic and 
Statistical Manual of Mental Disorders (DSM)-5 criteria68 after the year 2013. Written informed consent 
was obtained for collection and analysis of patient data to be presented anonymously in aggregate form, 
in accordance with the requirements of Italian law and following review by a local ethical committee. 
Required data were entered into a computerized database in coded form to protect subject identity.  
Patients were included in the study if they had at least 12 months of treatment with lithium and if they 
had a diagnosis of bipolar disorder (BD) or major depressive disorder (MDD) according to DSM-5. The 
clinical response to lithium treatment was characterized using the “Retrospective Criteria of Long-Term 
Treatment Response in Research Subjects with Bipolar Disorder” scale, also known as Alda Scale66. 
Alda M | Not published | Nova Scotia, Canada | hal3 
The case samples were recruited from patients longitudinally followed at a specialty mood disorders 
clinic in Halifax (Canada). Cases were interviewed in a blind fashion with the Schedule of Affective 
Disorders and Schizophrenia-Lifetime version (SADS-L)13 by pairs of clinician researchers 
(psychiatrists and/or nurses). The interviews together with medical records were subsequently reviewed 
in a blind fashion by a panel of senior clinical researchers. Consensus diagnoses were made according 
to DSM-IV14 and Research Diagnostic Criteria (RDC)15 Protocols and procedures were approved by 
the local Ethics Committees and written informed consent was obtained from all patients before 
participation in the study. 
 

======== External Samples PGC4 ======== 
Genomic Psychiatry Cohort (GPC) (USA) | 33169155 
Details of ascertainment and diagnosis, genotyping and quality control have been described in detail 
previously82. Briefly, cases were ascertained using the Diagnostic Interview for Psychosis and Affective 
Disorders (DI-PAD), a semi-structured clinical interview administered by mental health professionals, 
which was developed specifically for the GPC study. Individuals reporting no lifetime symptoms 
indicative of psychosis or mania and who have no first-degree relatives with these symptoms are 
included as control participants. 
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Key Statistical Equations 

Equations for the following methods that were prominent in this thesis: 

1. Polygenic Risk Score (PRS) (basic summation formula, see Chapter 1 also) 
2. Linear Regression  
3. Logistic Regression (model equation and link to Odds Ratio) 
4. Odds Ratio (OR) (derived from logistic regression) 
5. Nagelkerke R²  
6. Area Under the ROC Curve (AUC)  
7. Inverse Probability Weighting (IPW)  
8. Exploratory Factor Analysis (EFA) / Confirmatory Factor Analysis (CFA)  
9. LD Score Regression (LDSC)  
10. Convert Nagelkerke’s R² to Liability Scale R  
11. Fisher’s Exact Test  

For more complex algorithms including MTAG, PRS-CS, SEM, Random Forest, PRSet, LAVA, 
SBayesS, FUMA, MAGMA, and TWAS, providing a single, comprehensive equation is often not 
feasible. These are typically complex statistical frameworks or software packages involving multiple 
steps or algorithms. For these, I recommend consulting the original publications or specialized statistical 
texts for the full mathematical details referenced below. 

 

1. Polygenic Risk Score (PRS) - Basic Summation 

The basic (weighted) polygenic risk score for an individual j (PRSj) is typically calculated as the sum 
of risk alleles an individual possesses, weighted by the effect size of each variant: 

𝑃𝑅𝑆! =	∑ 𝛽" 	#
"$% ×	𝑑𝑜𝑠𝑎𝑔𝑒"!  

Where: 

• N is the number of SNPs included in the score. 
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• βi is the effect size (e.g., log odds ratio or beta coefficient from GWAS) of variant i. 
• dosageij is the number of copies of the risk allele for SNP i in individual j (can be 0, 1, or 2 for 

hard-called genotypes, or a value between 0 and 2 for imputed dosages). 

 

2. Linear Regression (Simple) 

The equation for a simple linear regression line, predicting a dependent variable Y from an independent 
variable X, is: 

𝑌0 = 	𝛽& +	𝛽%𝑋 

Where: 

• 𝑌0   is the predicted value of the dependent variable. 
• 𝛽& is the intercept (the predicted value of Y when X=0). 
• 𝛽% is the slope (the change in Y for a one-unit change in 𝑋). For multiple linear regression 

with k predictors (𝑋%, 𝑋', …	𝑋():	𝑌0 = 	𝛽& +	𝛽%𝑋% +	𝛽'𝑋' +⋯+	𝛽(𝑋( 
 

 

3. Logistic Regression 

Logistic regression models the probability of a binary outcome (e.g., case/control status). The 
relationship is often expressed in terms of the log-odds (logit) of the outcome: 

𝑙𝑜𝑔𝑖𝑡<𝑃(𝑌 = 1)> = ln	 A
𝑃(𝑌 = 1)

1 − 𝑃(𝑌 = 1)C
= 	𝛽& +	𝛽%𝑋% +	𝛽'𝑋' +⋯+	𝛽(𝑋( 	 

here: 

• P(Y = 1) is the probability of the outcome occurring. 
• ln is the natural logarithm. 
• D )(+	$	%)

%.)(+	$	%)
E is the odds of the outcome. 

• 𝛽& is the intercept (log-odds when all Xi=0). 
• 𝛽" 	are the coefficients representing the change in log-odds for a one-unit change in 𝑋". 

Alternatively, the probability itself can be expressed as: 

𝑃(𝑌 = 1) = 	
𝑒(/!0	/"1"0⋯0	/#1#)	

1 +	𝑒(/!0	/"1"0⋯0	/#1#)	
=	

1
1 + 𝑒.(/!0	/"1"0⋯0	/#1#)		

 

 

4. Odds Ratio (OR) from Logistic Regression 
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For a one-unit increase in a predictor Xi in a logistic regression model, the odds ratio is given by 
exponentiating the coefficient βi: 

𝑂𝑅" = 𝑒/$ 

This OR represents how the odds of the outcome Y=1 change for each one-unit increase in Xi, holding 
other predictors constant. 

 

5. Nagelkerke R² (Pseudo R-squared) 

Nagelkerke R² is a pseudo R-squared statistic used to assess the goodness of fit for models with 
categorical outcomes, like logistic regression. It is a modification of the Cox & Snell R² to achieve a 
maximum value of 1. 

The Cox & Snell R² is calculated as:  

𝑅34' = 1 − A
𝐿&

𝐿56789
C
'
:

 

Then, Nagelkerke R² is:  

𝑅#;<' =	
𝑅34'

1 − 𝐿&
'
:

 

Where: 

• 𝐿& is the likelihood of the null model (model with only an intercept). 
• 𝐿56789 is the likelihood of the fitted model (with predictors). 
• n is the number of observations. 

 

6. Area Under the ROC Curve (AUC) 

The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) is a measure of a binary 
classifier’s ability to distinguish between classes. The ROC curve plots the True Positive Rate (TPR or 
Sensitivity) against the False Positive Rate (FPR or 1-Specificity) at various threshold settings. 

𝑇𝑃𝑅 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝐹𝑃𝑅 =	
𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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The AUC is the area under this plotted curve. While there isn’t a single simple “equation” for AUC 
that’s as straightforward as a regression equation (it’s often calculated numerically, e.g., using the 
trapezoidal rule or by its statistical interpretation as the probability that a randomly chosen positive 
instance is ranked higher than a randomly chosen negative instance), a common method to calculate it 
involves summing the areas of trapezoids under the ROC curve segments. Alternatively, AUC = 
(Percent Concordant + 0.5 * Percent Tied)/100. 

 

7. Inverse Probability Weighting (IPW) 

The core idea of IPW is to weight each individual in a study by the inverse of their probability of 
receiving the exposure (or treatment) they received, conditional on measured confounders. This creates 
a pseudo-population where the exposure is independent of the measured confounders. 

For estimating the Average Treatment Effect (ATE) under unconfoundedness (𝑌(𝑑) ⊥ 𝐷|𝑋) and 
positivity (0 < 𝑃(𝐷 = 1|𝑋) < 1), the ATE can be expressed using IPW as:          

𝐴𝑇𝐸 = 𝐸 U
𝐷. 𝑌

𝑃(𝐷 = 1|𝑋)
W − 𝐸 U

(1 − 𝐷). 𝑌
𝑃(𝐷 = 0|𝑋)

W 

Or, for a mean outcome 𝐸[𝑌7] for a potential treatment d: 

𝐸[𝑌7] =EZ%(=$7).+
)(=$7|1)

[ 

Where: 

• D is the treatment/exposure indicator (1 if treated, 0 if not). 
• Y is the observed outcome. 
• Y(d) is the potential outcome if treatment d was received. 
• X are the measured confounders. 
• P(D=d∣X) is the propensity score, the probability of receiving treatment d given 

confounders X. 
• 1(⋅) is the indicator function. 

These are often estimated using sample averages with estimated propensity scores. Different estimators 
like the Horvitz-Thompson or Hájek estimator exist. 

 

8. Confirmatory Factor Analysis (CFA) - Basic Measurement Model Equation 

A common representation of the measurement model in CFA for a vector of observed variables x is: 

X=Λξ+δ 

Where: 
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• X is a p×1 vector of p observed variables (indicators). 
• Λ (Lambda) is a p×k matrix of factor loadings, representing the relationship between each 

observed variable and each latent factor. 
• ξ (xi) is a k×1 vector of k latent factors (unobserved constructs). 
• δ (delta) is a p×1 vector of unique variances or measurement errors for each observed variable. 

The model-implied covariance matrix (Σ(θ)) is then:  

Σ(θ)=ΛΨΛ′+Θδ 

Where: 

• Ψ (Psi) is the k×k covariance matrix of the latent factors. 
• Θδ (Theta-delta) is the p×p covariance matrix of the measurement errors (often diagonal, 

assuming uncorrelated errors). CFA aims to test how well this model-implied covariance matrix 
reproduces the observed sample covariance matrix S. 

 

9. LD Score Regression (LDSC) 

The core equation for univariate LD Score regression relates the chi-squared (χ2) statistic of a 
SNP j from a GWAS to its LD score lj: 

𝐸^𝜒!'|𝑙!` = 𝑁
@%
A 	𝑙! +𝑁𝑎 + 1 

Where: 

• 𝐸^𝜒!'|𝑙!`	is the expected 𝜒' statistic for SNP j given its LD score. 
• N is the sample size of the GWAS. 
• ℎ' is the (SNP-based) heritability of the trait. 
• M is the number of SNPs used to estimate ℎ' (often the number of common SNPs in the 

reference panel). 
• 𝑙! =	∑ 𝑟!('(  is the LD score of SNP j, calculated by summing the squared correlations (𝑟') 

between SNP j and all other SNPs k in a reference panel (typically within a defined window). 
• a measures the contribution of confounding biases, such as cryptic relatedness and population 

stratification. The intercept of the regression of 𝜒' statistics on 𝑙! (minus 1, scaled by N for 
some forms) estimates a. 

For cross-trait LDSC, the equation looks at the product of Z-scores for two traits:  

𝐸^𝑧%!𝑧'!|𝑙!` = 	
c𝑁%𝑁'	𝜌<

𝑀
𝑙! +	

𝜌#
c𝑁%𝑁'

	𝑆! 
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(where 𝑆!can be 1 or related to sample overlap, and 𝜌< is genetic covariance, 𝜌# is environmental 
correlation/sample overlap). The genetic correlation 𝑟< is then derived from 𝜌< and the heritabilities of 
the two traits. 

 
 

10. Conversion of Nagelkerke’s R² (𝑅#' ) to Liability Scale R² (𝑅B') (Lee et al., 2012) 

This formula is used for converting Nagelkerke’s R² from a logistic regression model (observed scale) 
to the proportion of variance explained on an underlying continuous liability scale, particularly in case-
control studies. 

The formula is:  

𝑅B' =	
𝐶 ∙ 𝑅#'

1 + 𝐶 ∙ 𝜃 ∙ 𝑅#'
 

Where: 

• 𝑅B' = Proportion of variance explained on the liability scale. 
• 𝑅#'  = Nagelkerke’s R² (from the logistic regression model). 
• 𝐾 = Population prevalence of the disease/phenotype. 
• 𝑃 = Proportion of cases in the study sample. 

And the components 𝐶 and 𝜃 are derived from the following intermediate calculations: 

1. zK = qnorm(1-K) 
o This is the Z-score (quantile) from a standard normal distribution corresponding to the 

threshold defined by the population prevalence K. (In Excel, this can be calculated 
as NORM.S.INV(1-K)). 

2. t = dnorm(zK ) 
o This is the height (probability density function, PDF) of the standard normal 

distribution at the threshold zK. (In Excel, NORM.S.DIST(NORM.S.INV(1-K), 
FALSE)). 

3. 𝑐 = C%(%.C)%

D%∙)(%.))
      

o This is a scaling constant derived from the properties of the truncated normal 
distribution for cases and controls. 

4. 𝑒 = 1 − 𝑃') ∙ (1 − 𝑃)'(%.))     
o This is a specific scaling factor used in the Lee et al. (2012) formulation. 

5. C=c⋅ e 
o This is the overall scaling coefficient for 𝑅#'  in the numerator of the main conversion 

formula. 
6. 𝑖 = 	 D

C
   

o This term i represents the mean liability of affected individuals (cases) above the 
threshold zK, assuming the overall population mean liability is 0 and variance is 1. 
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7. 𝜃 = 𝑖 ∙ D).C
%.C

E ∙ D𝑖 ∙ D).C
%.C

E − z𝐾E     
o This term θ accounts for ascertainment (case/control sampling) and the properties of 

the underlying liability distribution. 

 

12. Fisher’s Exact Test is a statistical significance test used for analyzing contingency tables, 
especially when sample sizes are small. For a 2x2 contingency table: 

The formula is:  

𝑃 =
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑!𝑁!
 

 
Where: 

• a, b, c and d: the cell counts 
• N = a + b + c + d is the total number of observations. The P-value for Fisher’s Exact Test is 

obtained by summing the probabilities of the observed table and all other possible tables that 
are “more extreme” (i.e., have a lower or equal probability under the null hypothesis) while 
maintaining the same marginal totals. 

 

Methods with Complex Algorithmic/Statistical Frameworks (Not easily summarized by a single 
equation here): 

• Exploratory Factor Analysis (EFA): While based on the same common factor model as CFA, 
EFA is a data-driven technique to uncover latent structure, and its process involves various 
extraction (e.g., principal axis factoring, maximum likelihood) and rotation (e.g., varimax, 
promax) methods, each with its own mathematical basis. 

• Structural Equation Modeling (SEM): A very broad framework that simultaneously models 
relationships among multiple observed and latent variables. It involves systems of linear 
equations and covariance structure modelling. The specific equations depend entirely on the 
model being tested. 

• PRS-CS / PRS-CS-auto: (See Chapter 1 for basic summation) These methods use a Bayesian 
regression framework with continuous shrinkage priors to estimate SNP effect sizes for PRS. 
The underlying mathematics involves posterior distributions and Bayesian inference, which are 
not captured by a single equation. 

• Multi-Trait Analysis of GWAS (MTAG): This is a meta-analytic method that combines 
summary statistics from GWAS of different traits to boost power for discovering loci for a focal 
trait, accounting for genetic correlations. Its derivation involves matrix operations and 
generalises least squares. 

• Random Forest Models: An ensemble learning method based on constructing multiple decision 
trees. Its “equation” is the aggregated prediction of many trees, not a simple formula. 

• PRSet: This involves permutation testing and aggregating PRS effects for gene sets. 
• LAVA (Local Analysis of [Co]Variant Association), SBayesS, FUMA (Functional Mapping 

and Annotation of GWAS), MAGMA (Multi-marker Analysis of GenoMic Annotation), 
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TWAS (Transcriptome-Wide Association Studies): These are sophisticated bioinformatic and 
statistical tools or pipelines that involve multiple analytical steps, algorithms, and often external 
databases. 
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