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Abstract: Optical coherence tomography (OCT) image stability often suffers during in vivo
imaging of the retina due to axial motion of the subject’s head and changes in their visual focus.
Ocular accommodation can actively adjust the focus, affecting the axial intensity distribution
across the retinal cross-section and the lateral resolution of the target layers. Axial motion shifts
the retinal image and affects en face visualization of retinal layers. We present an automated
procedure for stabilization of axial motion and focus during OCT retinal image acquisition using
deep reinforcement learning (DRL) for defocus correction. The correction process requires only
B-scan images as inputs, making it suitable for real-time correction. In silico training and in vivo
fine-tuning experiments have been conducted and presented to validate the performance of the
correction procedure for retinal imaging.
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1. Introduction

Optical coherence tomography (OCT) is a commonly used imaging modality for high axial
resolution ophthalmic imaging [1]. Real-time in vivo imaging of the human retina often suffers
from artifacts due to lateral and axial motion of the eye. Lateral motion eye tracking is an area of
active research and development, with solutions integrated into commercial devices, and also
in laboratory-grade instruments such as [2–7]. Additionally, the head movement of the subject
and the accommodative micro-fluctuations of the intraocular lens are dominant sources of errors
in the axial direction, which leads to the instability of the focal plane location within the axial
field of view [8,9]. Focus changes affect the axial location of the focal plane and alter the axial
intensity distribution of the cross-sectional OCT images. For en face visualization, defocus
reduces the lateral resolution of the desired retinal layer. Axial motion affects the target layer
selection and can make continuous en face visualization of a specific retinal layer challenging.

The stability of the focus is crucial for OCT imaging with instruments that have a high
numerical aperture (NA) because the small focal waist at the sample rapidly diverges away from
the focal plane. Changes in focus have significant effects on the axial intensity distribution
in high-NA OCT B-scan images. Another factor that motivates the use of automated focus
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stabilization for high lateral resolution OCT is the application of adaptive optics (AO) [10]. AO
has been applied to OCT retinal imaging to correct ocular aberrations and significantly increase
the image quality [11]. As AO reduces the actual beam waist by eliminating aberrations, bringing
it closer to diffraction-limited Gaussian width, the focus-changing effects become dominant,
highlighting the need to be addressed.

High-resolution retinal imaging is commonly based on AO methods using direct measurement
of ocular aberrations with wavefront sensors (WFS). Alternative approaches referred to as
wavefront sensor-less (WFS-less) AO have also been demonstrated, which correct aberrations
by optimizing image quality metrics through the reconstruction of the wavefront using varying
modal wavefront coefficients [12–17]. Images used for optimization are often en face slices of
the retina at a target depth. Under these scenarios, changes in focus during optimization alter
the relative metric values used for optimization, resulting in the finding of suboptimal modal
wavefront coefficient values for aberration correction. For WFS-less AO optimization based on
en face images, axial motion also affects the target layer selection.

Dedicated hardware, allowing for the stabilization of focus and axial motion, has been widely
used in OCT instruments. Tunable focus lenses are commercially available to adjust the focus of
the optical system to a selected, specific target focal plane at the retina. OCT reference arms
might have a fast adjustable axial length to control the relative axial position of the retinal image
and to match variation in axial eye length. High-speed and small-scale axial pathlength changes
can be achieved physically by a translation stage, electrically controlled motors, or voice coils
[18–21]. The automation of these correction processes assists the system operators and increases
the success rate of image acquisition sessions. Some automatic focus and axial position tracking
methods have been developed for OCT to compensate for axial motion and focal accommodation.
An approach to achieving continuous focus tracking and a depth-independent transverse resolution
for real-time OCT imaging has been reported [22]. An automated hands-free focus tracking
and z-tracking for point-of-care OCT that uses continuous gradient ascent optimization of focal
position by searching for maximum B-scan intensity and a real-time detection of sample depth
position in B-scans has been previously reported [23]. An automatic focus method using the
interference fringes magnitudes of OCT has also been proposed [24].

Defocus and axial motion affect the depth-resolved images differently. Defocus alters the
intensity distribution across the depth of the retina, while axial motion shifts the position of
the retina layers. Images acquired with different focal planes will have distinct axial features in
cross-sectional B-scan images since different retinal layers are being highlighted. The difference
in image features could hamper the axial registration, especially when the images are single
frames acquired for real-time interaction during acquisition. Axial shifts during the defocus
optimization process may degrade the defocus correction performance because the target layer
selected may change due to motion.

In this work, we present a systematic procedure of real-time non-iterative focus and axial
motion correction for OCT retinal imaging, specifically with a single-step deep deterministic
policy gradient (DDPG) method for defocus correction. DDPG is a self-learning agent that does
not require labeled data and allows for interactive learning and hardware control [25–27]. The
method works by continually stabilizing target B-scan frames during acquisition to a reference
B-scan frame chosen by the user. Compared to iterative defocus optimization based on the
sharpness of en face images, the B-scans provide higher-level information of the general axial
intensity distribution, which can be mapped to focus differences non-iteratively by a deep neural
network (DNN). In the procedure, the axial motion is corrected first through a pre-defined
metric, and then the defocus is corrected by the single-step DDPG agent. One-dimensional
lightweight convolutional neural network (CNN) structures are employed for the DDPG agent
to process the A-scans averaged from the reference and target B-scans for fast fine-tuning and
inference speed for real-time stabilization. The DDPG agent was initially trained and validated in
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a simulated environment. This was followed by fast fine-tuning and validations of performance
and generalizability on in vivo retinal imaging sessions of human retina, proving the ability of
the model to adapt to various retinal structures quickly for real-time axial motion and focus
stabilization.

2. Method

2.1. OCT system

We employed a custom-built dual-spectrometer spectral domain OCT (SD-OCT) for the demon-
stration of this method [28]. The schematic of the OCT system is shown in Fig. 1. The OCT is
equipped with a zoom fiber collimator to adjust the beam diameter and, consequently, the NA for
retinal imaging. The tunable NA range is approximately (0.04, 0.12). A Corning Varioptic Lens
is used to change the axial position of the focal plane at the retina with a tunable range of (-5, 15)
D. Data acquisition and OCT processing were performed using custom-developed software with
GPU acceleration, allowing the A-scan rate of up to 400 kHz and real-time processing at up to
800 B-scan frames per second [29,30]. This software was previously demonstrated for real-time
integration with AI-based layer segmentation [31].

Fig. 1. OCT system overview. FC: Fiber Coupler; FL: Fiber Launcher. The system utilizes
a zoom fiber collimator with adjustable focal length from 6 mm to 18 mm, corresponding to
a beam diameter at the eye from 1.6 mm to 4.8 mm. The superluminescent diode used has a
central wavelength of 810 nm and a spectral width full width at half maximum (FWHM) of
100 nm.

2.2. Correction procedure

Figure 2 shows the OCT B-scan axial motion and defocus correction procedure. The reference
B-scan is an arbitrarily chosen frame that the following frames are registered to, including
both focus position depth and axial placement of the B-scan. The reference frame is a type of
‘promptable interface’ for the user to interactively select the appearance of the retina when the
focus is placed at the desired image depth. During acquisition, the target B-scans are continuously
acquired in real-time to be registered to the reference. The axial motion is corrected first based on
post-processed A-scans averaged from the reference and target B-scans. The defocus is corrected
by a DDPG agent in a single correction step based on the axial registration result.
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Fig. 2. OCT B-scan axial motion and defocus correction procedure. The top row shows a
block diagram of rapid axial motion correction; the bottom row shows a block diagram of
AI-in-the-loop focus correction.

2.2.1. Rapid axial motion correction with different focal planes

The first step of the procedure is to correct axial motion. The axial motion correction uses the
average A-scans from the reference and target B-scans. Next, we applied an edge detection map
(EDM) to the A-scans by Gaussian filtering, first derivative calculation, and normalization of
absolute values. The EDM highlights the inner and outer retinal layers that are crucial for retina
axial registration, discards unnecessary information, and normalizes the reference and target
A-scans. As the focus changes, the relative intensity between the inner and outer retinal layers is
altered, forming two individual peaks in the A-scan and the EDM. The dual-peak property of
the A-scans can be misleading, as traditional correlation methods might wrongly align the inner
layer of the reference image with the outer layer of the target image or vice versa. To increase the
robustness of the reward, we applied a peak detection to the EDM to find the rough location of
the inner retina and the outer retina, and then masked out the inner retinal layers.

The metric for the axial motion correction agent is the negative Euclidean distance (ED)
between the reference EDM Er and the target EDM Et with only outer retinal layer profiles:

Rm = −ED(Er, Et) = −

√︃
1
N

∑︂
(En

r − En
t )

2 (1)

where N is the number of pixels axially. By masking out the inner retina before comparing the
similarity of the two EDMs, the agent learns to register the B-scans based on the closeness of the
outer retinal layer. The axial motion by pixel Mp is determined by the maximum Rm found by
shifting Et between a range of Np pixels. Np can be chosen by balancing the correction speed and
the correction range.

Mp = argmax⏞ˉ̄⏟⏟ˉ̄⏞
p

{︁
{−ED (Er (z) , Et (z − p))} , p ∈

[︁
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Figure 3 exhibits an example of axially registering two B-scans with distinct focus positions.
The ED responses to pixel shift with all three data types of results peak at the same axial motion
position. However, the raw A-scans and EDMs exhibit another peak at a different location,
indicating imperfect registration and misregistration between the inner and outer retina. On the
contrary, a distinguishable singular peak at the axial motion location exists for EDMs with the
inner retina masked out.

Fig. 3. Comparison of metric responses to axial motion between data types used for axial
motion correction. The left two B-scans are acquired under distinct focus positions, with
the left focusing on the outer retina and the right on the inner. The bottom B-scans are
zoomed for illustration of axial motion. The original A-scans, EDMs, and masked EDMs are
displayed on the right side. The bottom right figure shows the Euclidean Distance response
to pixel shift, where line types represent EDs calculated using each data type. Dual-peak
profiles exist for Raw A-scans and EDMs, while only a singular peak at the axial shift
location exists for EDMs with the inner retina masked out.

2.2.2. AI-in-the-loop focus correction

Focus correction uses the reference B-scan and the most recently acquired target B-scan after axial
registration. The mapping between A-scan intensity distribution profiles and focus differences is
learned by the DDPG agent. The initial axial registration enables a more accurate point-to-point
comparison of A-scans for the focus correction DNN to learn the feature changes associated with
defocus. To utilize sufficient information from the B-scan frames and account for retinal axial
structure differences within OCT volumes, each B-scan is laterally divided into M sub-regions,
where pixels are averaged axially to form an averaged A-scan. The A-scans are then Gaussian
filtered for smoothing and noise reduction. A combination of 2M averaged A-scans from the
reference and the target B-scans is the input to the “actor” of the focus correction DDPG agent
(Actor-Focus). The output of Actor-Focus is the focus correction signal, which is translated to a
physical, tunable focus lens.

After focus correction, a new B-scan frame is acquired and compared to the reference,
generating a similarity reward evaluating the focus correction effectiveness. If the agent is under
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training, an annealing Gaussian noise will be added to the focus correction signal to enhance
exploration. The multi-channel averaged A-scans, focus correction signal, and the reward will be
stored in memory (replay buffer) for the training of the agent. It is worth noting that since the
correction process is a single-step decision and immediate rewards are acquired after correction,
multiple noise profiles can be generated and applied to the focus correction signal to generate
multiple rewards, further enhancing the exploration by the agent. Detailed explanations of the
focus correction DDPG agent terminology and algorithm are provided in the Supplement 1.

The reward shaping for training the Actor-Focus is also based on ED. The basic process
involves calculating the ED between two 1D arrays, with a normalization step to ensure that
the comparison is not influenced by differences in the scales of OCT data. The normalization
standardizes the 1D arrays by subtracting the mean and dividing by the standard deviation:

An
r,t =

Ar,t − mean{[Ar, At]}

std{[Ar, At]}
(3)

where Ar, At are the original reference and target 1D arrays, and An
r,t is the normalized 1D array.

Although the initial registration from axial motion correction provides close point-to-point
comparisons between B-scans with different focus positions, the Actor-Focus is expected to
experience a certain level of axial motion to improve the robustness of focus correction under axial
motion and to avoid overfitting of point-to-point depth-resolved features instead of focus-related
intensity distribution features between A-scans. Therefore, we adopted a sliding-window ED
that axially moves the target A-scan pixel-by-pixel and calculates the corresponding ED between
the target and the reference A-scan at each location. The minimum ED acquired from the
sliding-window process represents the best achievable similarity between the reference and the
focus corrected frames:

Rf = −min
b
{ED(An

r (z), An
t (z − b)), b ∈ [−Nb, Nb]} (4)

where An
r and An

t are the normalized average A-scans from the reference and target B-scans, Rf is
the reward for the focus correction agent, b is an integer sliding variable that shifts the B-scan by
b pixels, and Nb is a configurable limit for the sliding process, which can be fine-tuned to balance
the tolerance to the axial motion and the reward calculation time. This sliding window ED reward
shaping technique enables the Actor-Focus to predict defocus with a reasonable tolerance for
axial motion, thereby increasing overall robustness.

2.3. DNN structures

The DNN structures for the actor and critic are both composed of 1-dimensional CNNs and fully
connected layers. CNNs extract the features of the multi-channel A-scan input that determine the
focus error, while the fully connected structures convert the feature maps to correction signals or
rewards.

Figure 4 illustrates a CNN-based network for Actor-Focus, a one-dimensional convolutional
neural network designed to generate a focus correction signal from the multi-channel observation.
The architecture consists of two sequential blocks of 1D convolutional layers (each with a kernel
size of three) and max-pooling operations (kernel size of two), which progressively increase the
number of output channels (16 to 32) while reducing the temporal dimensionality. The final
pooled feature maps are flattened, followed by a downstream fully connected chain of 128, 64,
and 32 neurons with ReLU activation. The final focus correction signal output is generated with
tanh activation after the last fully connected layer.

Figure 5 shows the critic network architecture for Critic-Focus that takes two sources of input.
The first input is a single value output of the actor network block (shown in Fig. 4) fed with the
multi-channel observation, and the second is the focus correction signal. Both inputs are then

https://doi.org/10.6084/m9.figshare.30182878
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Fig. 4. Actor network architecture for focus correction DDPG agent.

concatenated and fed into a deep feed-forward network comprising layers of 500, 1000, 1000,
1000, 1000, 500, and finally 200 neurons, each followed by a ReLU activation. The network’s
final output is a single reward value evaluating the correction signal given the observation.

Fig. 5. Critic network architecture for focus correction DDPG agent.

2.4. Simulation of OCT retinal image axial intensity distribution with defocus

The simulation of relative retinal axial intensity profile I(z; zf ) with different depth of focus of
the eye zf employs a model considering the axial retina intensity reflectivity R(z), amplitude
attenuation by absorption and scattering A(z), sensitivity roll-off H(z) of SD-OCT, confocal point
spread function (CPSF) T(z − zf ), and noise N(z) [32]:

I(z; zf ) = R(z)T(z − zf )A(z)H(z) + N(z). (5)

The CPSF is derived from the beam divergence correction factor and yields the following
expression for a Gaussian beam and diffuse reflection of the retina:

T(z − zf ) =
1(︂

z−zf
2nzR

)︂2
+ 1

, (6)

where n is the refractive index within the retina, and zR is the Rayleigh length of the Gaussian
beam incident on the sample [33]. Since the system does not have AO for ocular aberration
correction, the Rayleigh length zR should incorporate a reasonable beam quality factor M2 to
simulate the reduced beam quality due to ocular aberration.
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The attenuation by absorption and scattering can be expressed by an exponential decaying
model as:

A(z) = µB,NA exp(−2µOCTz), (7)

where µB,NA is a power-backscattering coefficient [34].
The expression for sensitivity roll-off H(z) can be expressed by:

H(z) =
sin2(πz/2zRD)

(πz/2zRD)
2 exp

[︄
−
π2ω2

8 ln 2

(︃
z

zRD

)︃2
]︄

, (8)

where zRD = λ
2/(4∆λ) is the maximum ranging depth where ∆λ is the wavelength spacing

between pixels, and ω = δλ/∆λ where δλ is the spectrometer’s spectral resolution (FWHM)
[35,36].

In simulation sessions, an OCT B-scan of the target retina at the target location is acquired
under low NA with a large depth of field (DOF). This B-scan serves as the primary axial retina
intensity reflectivity R(z), preserving the relative reflectivity relationship between layers with
fewer effects from the beam divergence. The effects of focal depth zf changes on the axial intensity
profile were simulated by applying different zf values to the CPSF T(z − zf ) and calculating
I(z; zf ).

Nevertheless, accurate simulation of intensity requires other factors such as fiber coupling
efficiency, input beam amplitude, etc. In this paper, we center on the relative intensity distribution
at different focus positions and omit these depth-independent factors.

3. Results

3.1. In silico model training & evaluation

The simulation environment was developed under the system settings described in Section 2.1 and
physics in Section 2.4. The zoom fiber collimator focal length was set to 12 mm, corresponding
to an NA of about 0.1 in the eye. The training data were acquired from a subject with measured
eye axial length and retinal layer thickness. A series of benchmark B-scan frames acquired at a
specific focus position was chosen for the balanced illumination at the inner and outer retinal
layers to perform defocus and axial motion simulation completely online and match the real-time
defocus effects on the B-scan axial intensity redistribution.

The simulated random defocus was uniformly distributed between (-0.6, 0.6) D and the random
axial movement between (-200, 200) µm. The amount of uniform distribution of both errors was
sufficient for covering the axial motion and accommodative micro-fluctuation of a normal human
subject whose head is fixed by a chin rest and eye focused on a fixation target placed at infinity.
In reality, the distribution of focus errors should follow a Gaussian distribution, but for model
training, we applied the large-bound uniform distribution for the agent to experience more severe
defocus conditions. Also, to increase the variance of the original location of the retina in the
B-scan images, we digitally applied a random initial motion to the images that moved the retina
axially within a range of 200 µm. Similarly, the reference B-scan focus was randomly chosen and
had a variation of 0.5 D to cover the entire retina.

The axial motion was corrected first, providing a more accurate side-by-side comparison of
defocus effects for the focus correction agent. The mean error in focus correction at the end of
training was 0.015 D. The device used was a PC with an Intel i5-13600 K CPU and an Nvidia
RTX 4080 Super GPU. The average execution time for the axial motion correction and defocus
correction was approximately 1 ms and 1.5 ms, respectively.

We demonstrated the model performance under a simulated OCT imaging session, where
the random axial motion and accommodative micro-fluctuation were modeled by the Ornstein-
Uhlenbeck (OU) process, a stochastic differential equation that effectively models continuous,
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random fluctuations with a tendency to revert to a fixed equilibrium position [37]. The simulated
imaging time was 4 seconds, where the axial motion and focus changed every 40 ms, resulting
in 100 test samples in total. Since the total prediction time of the correction procedure was
much shorter, we simply treated the real-time correction as individual correction tests only with
continuous axial motion and focus error. Figure 6 shows an example simulated correction session
of axial motion and accommodative micro-fluctuation. Figure 7 is the Kymograph view of the
correction session where the consecutive B-scans are projected laterally and displayed in a row as
time-varying A-scans. The focus and axial motion errors before and after correction correspond
to the numerical results in Fig. 6.

Fig. 6. Example correction session of simulated axial motion and accommodative micro-
fluctuation. A comparison between the test conditions (test motion and test defocus) and
residual axial motion and defocus error after correction. The top panel displays axial motion,
where the Test-Motion trajectory (blue) shows significant fluctuations (standard deviation:
53.2 µm), which the axial motion correction reduced to a standard deviation of 0.85 µm (red).
Similarly, the bottom panel depicts accommodative micro-fluctuations, with the real-time
data (green) exhibiting a standard deviation of 0.27 D, reduced to 0.008 D (orange). The
shaded regions indicate the respective ranges of variability.

3.2. In vivo validation

For in vivo validation, we first examined the performance of the model trained by synthetic data
directly applied to in vivo imaging sessions. The performance was acceptable within a small
defocus range, but the prediction error increased quickly with a larger amount of defocus (Fig. 8).
For optimal in vivo performance, model fine-tuning with in vivo data is required.

Challenges exist for in vivo training of agents to perform focus stabilization. The focus
correction agent needs immediate focus correction effectiveness reward feedback after each
correction attempt in one episode, meaning that continuous interaction with the optical system
and engagement of the subject are required. Continuous imaging of the eye causes eye fatigue,
which is clinically unideal for the subjects being imaged. The intermittent blinking of the eye
also ruins image acquisition and further slows down the training. To address the challenges, we
employed an A-scan focus interpolation method to reduce the amount of data acquisition required
while providing sufficient in vivo data for fine-tuning of the model.
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Fig. 7. Kymograph visualization of an example simulated correction session. The first
B-scan of the target images was used as the reference. The middle row demonstrates the
results of image axial stabilization only, with axial intensity distribution variations across
time. The bottom row reveals a uniform appearance of the motion and defocus corrected
B-scans.

Fig. 8. In vivo defocus correction test with an agent trained in silico. This figure shows the
effectiveness of the predictions of defocus between reference and target B-scan frames by
the focus correction agent trained in silico. 71 linearly changing defocus values (green line)
were applied to the system, and corresponding target frames were acquired to be compared
to the reference for focus signal predictions (red curve). A single focus correction signal
output is collected from the Actor-Focus at each test. The correction error (blue curve) is the
difference between the predicted and applied defocus values. The horizontal axis shows the
test indices (cardinal numbers), and the vertical axis shows the diopter values relative to that
of the reference frame.

3.2.1. Direct in vivo application of in silico focus correction model

We conducted an in vivo stabilization experiment on the OCT system (Fig. 1) on the same subject
whose data were used for in silico training, but imaged a different retinal eccentricity.

The reference B-scan was acquired with the focus on the outer retina. The target B-scan
frames were acquired in a swept-focus manner, achieved by the tunable focus lens that sampled
the diopter values around the reference focus within (-0.5, 0.5) D. Random movement was
intentionally generated during the acquisition. This emulates the eye accommodation with a
structured defocus change for model evaluation and the axial motion. The correction accuracy
of defocus was evaluated by the difference between the recorded swept-focus values and the
predicted defocus values by the agent.
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Figure 8 shows the diopter change of the tunable lens and the focus correction signal predicted
by the focus correction agent. The agent successfully corrected the defocus with an average error
of 0.02 D when the defocus was within (-0.3, 0.3) D, proving that the simulation successfully
identified the core informational changes in B-scans associated with defocus. Nevertheless,
the agent’s correction accuracy decreased to 0.035 D overall as the defocus increased beyond
0.4 D. Fluctuations in correction errors can be caused by imperfect simulation or minor eye
accommodation during testing.

3.2.2. Model fine-tuning with A-scan focus interpolation

The direct application of models trained in simulation on unseen retina structures proves the
extrapolation ability of the network design; however, the networks are not designed to stabilize
all retinal structures on all subjects, which requires a large database for training. Instead, the
lightweight design allows for swift fine-tuning for the specific target retinal locations.

As discussed above, in vivo fine-tuning of the focus correction agent can be time-consuming
and demanding for the subject to stabilize. We adopted an A-scan focus interpolation method
to generate A-scans at different focus positions, reducing the amount of data acquisition and
migrating the training process online without imaging subject involvement. The details for data
acquisition, Data processing, and focus interpolation are described below.

1. Data acquisition. We sparsely sampled the focus position and recorded the corresponding
B-scan images. For a focus range of (-1, 1) D, 21 samples with a 0.1 D interval were
experimentally sufficient for accurate interpolation. The sampling frequency of focus
at different locations was optimized to sample more data when the focal plane transits
between retinal layers and sample less data at out-of-focus positions. With our system
settings, batches of B-scans were acquired and processed in 10-20 ms, depending on the
batch size to be processed, meaning that the acquisition of 20 samples is under 0.5 s. Under
this timeframe, we assumed that the focus and axial position stability of the B-scans could
easily be maintained with minor effort of cooperation from the subjects.

2. Data processing. B-scans were registered axially using the motion correction algorithm
(Fig. 2) to correct any residual axial motion within the imaging window. The registered
B-scans were then processed by lateral channel division, averaging, and Gaussian filtering
(Fig. 2). The Gaussian filtering is critical since it removes the bumpy and noisy features in
the A-scans while keeping the general intensity distribution map that determines the focus
position.

3. Focus interpolation. We combined the processed A-scans of different focus positions into a
2D array where the first axis is the focus and the second is the depth of the retina. For each
pixel of depth, we calculated the A-scan intensity values corresponding to interpolated
focus values.

After interpolation, the data have a much higher focus resolution that can be used for model
fine-tuning, where the in vivo A-scans at different focus positions can be substituted by inferences
in the interpolated A-scan focus map. The fine-tuning sessions take about 2-5 minutes on a
desktop computer with an Intel i5-13600 K CPU and an Nvidia RTX 4080 Super GPU, depending
on the hardware and the performance of the model before fine-tuning on unseen data.

Figure 9 shows the prediction accuracy after fine-tuning the original model trained on simulated
data for an additional 3 minutes on real A-scans with focus interpolation. The average correction
error with defocus ranging from (-0.5, 0.5) D is 0.015 D. Compared to the direct application of
the model trained in silico, the fine-tuned version performs consistently within a 20-40% larger
correction range and lower correction error.
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Fig. 9. In vivo defocus & axial motion correction test with fine-tuned agent. Panel A shows
the effectiveness of the predictions by the focus correction agent with different defocus values
between the reference and target frames. 71 linearly changing defocus values (green line)
were applied to the system and corresponding target frames were acquired to be compared
to the reference for focus signal predictions (red curve). A single focus correction signal
output is collected from the Actor-Focus at each test. The correction error (blue curve) is the
difference between the predicted and applied defocus values. The horizontal axis shows the
test indices (cardinal numbers), and the vertical axis shows the diopter values relative to that
of the reference frame. Panel B is a visualization of 71 B-scan frames (projected laterally
for visualization) corresponding to the line graph, demonstrating the effects from both the
axial motion and defocus errors (raw frames), the effects of axial motion correction (axially
registered), and the correction of both errors (axially registered and focus corrected).

To further demonstrate that the focus correction agent learns the key features associated
with focus changes instead of region-specific details, we tested the same fine-tuned model on
a completely different eccentricity of the retina. The average focus correction error is 0.02 D,
details shown in Fig. 10. Animated visualizations of the B-scans and averaged A-scans are
provided in the Supplement 1 as Visualization 1 and Visualization 2, respectively.

4. Discussion

In this paper, we presented a real-time defocus and axial motion correction procedure for OCT
retinal imaging, specifically using deep deterministic policy gradient for defocus correction.
The axial intensity distribution profile is used for the determination of both axial motion and
focus shift. The effectiveness of the approach was demonstrated with a simulation based on
an SD-OCT system that incorporates the physical parameters that determine the A-scan retinal
reflectivity profile response to focus position. The successful stabilization of the simulated axial
motion and estimation of the position of the focal plane prove that the A-scan retinal intensity
profile is sufficient for determining and correcting the focus and axial motion.

We adopted a pixel-shift optimization of Euclidean Distance for real-time axial motion
correction between B-scans. An inner retinal layer masking technique was used to make the
correction robust to focus changes that alternate between inner and outer retinal layers. For foveal
regions with only bright structures at the outer retina, the number of detected high intensity
peaks is less than 2, and no mask is applied. The axial motion correction method we used

https://doi.org/10.6084/m9.figshare.30182878
https://doi.org/10.6084/m9.figshare.29948942
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Fig. 10. In vivo defocus & axial motion correction test with fine-tuned agent at unseen
retina location. Panel A: Statistical visualization of focus correction effectiveness. Panel
B: B-scan flow visualization of axial motion & focus correction effectiveness. The figure
structure is the same as described in Fig. 9.

could be replaced with various digital image registration methods with higher accuracy (subpixel
resolution) if they have sufficient speed for real-time OCT B-scan acquisition and operate against
varying axial intensity distributions effectively.

The simulation of retinal axial intensity distribution changes due to defocus only addresses
the features that affect the retinal A-scan intensity distribution but does not provide accurate
full-wave analysis of the system. The focus correction agent trained in simulation was capable of
predicting focus errors for in vivo data, but it did not fully capture the retinal A-scan features
associated with defocus and required fine-tuning on real data. Nevertheless, the initial purpose of
the simulation is for the early demonstration of the hypothesis that retinal axial intensity profiles
can be used for focus prediction. In addition, with more robust simulation environments, models
can be trained to incorporate more diverse retinal structures, which can potentially work for
various system settings and retinal structures and circumvent real-time fine-tuning.

We considered that it is very challenging to train a single large model that identifies the image
features from different retina locations, different modalities of OCT, and different subjects with
healthy or diseased retinas. To make the method easily reproducible on various OCT systems
and subjects, instead of training a single large foundation model, we employed lightweight
one-dimensional CNNs for the DDPG agent to have fast adaptive learning capability. The
lightweight networks are proven to be effective in identifying the mapping between OCT A-scan
intensity signals and defocus. With the fast real data acquisition and interpolation technique
for in vivo transfer learning, transfer learning or fine-tuning for a new device or new subject
is feasible and easy to adopt. Nevertheless, an inclusive model with deeper layers and more
complex structures can be trained to cover a wide range of retina structures through simulation or
accumulated datasets of B-scans with labelled focus positions.

We have demonstrated the results of using OCT image intensity for focus correction on healthy
retinas as a proof of concept. The limitations preventing validation on diseased retinas at the
current stage of research are threefold. First, recordings of focus-shifted OCT data on a reasonably
large cohort of diseased retinas, which are needed for model training and validation, are not
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available. Second, accurate simulation of diseased retinas is more challenging than healthy
retinas since the layered structures can be altered. Finally, diseased retinas have more irregular
shapes that may require more complicated network structures to identify the focus-related features.
Nevertheless, the method still has strong potential to work in early disease detection scenarios
where the layered structures of the retina are still mostly preserved.

The correction procedure described in this report demonstrates that axial profiles can be used
to identify focus-related features in OCT B-scans of the retina. It also demonstrates the capability
and generalizability of the network designs for stabilization of focus and exhibits fast fine-tuning
speed and accuracy on target retinal locations. Further work is expected to reduce the time
required for fine-tuning, such as applying automatic early termination criteria, and developing
a fully automatic fine-tuning process for seamless and clinically friendly in vivo applications.
Eventually, this tool has the potential to help stabilize the focus and axial motion for WFS-less
AO optimization towards faster and more robust high-resolution retinal imaging with AO-OCT.

5. Conclusions

This paper presents an axial motion and defocus correction procedure for OCT image acquisition,
specifically using deep deterministic policy gradient for defocus correction. The key feature
providing information for axial motion and defocus correction is the axial intensity distribution
of the retinal cross-sectional OCT image. A model initially trained in silico effectively identified
the focus change between frames in a simulated imaging session and an in vivo imaging session.
The novel A-scan focus interpolation method permitted fast in vivo data acquisition and model
fine-tuning. The result proves the feasibility of in vivo focus stabilization through axial features
of the retinal OCT data capable of achieving an average correction accuracy of 0.02 diopters.
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