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Diagnosing migraine from genome-wide genotype data: a

machine learning analysis
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Abstract

Migraine has an assumed polygenic basis, but the genetic risk variants identified in genome-wide
association studies only explain a proportion of the heritability. We aimed to develop machine

learning models, capturing non-additive and interactive effects, to address the missing heritability.

This was a cross-sectional population-based study of participants in the second and third Trgndelag
Health Study. Individuals underwent genome-wide-genotyping and were phenotyped based on
validated modified criteria of the International Classification of Headache Disorders. Four datasets
of increasing number of genetic variants~were created using different thresholds of linkage
disequilibrium and univariate genome-wide associated p-values. A series of machine learning and
deep learning methods were optimized and evaluated. The genotype tools PLINK and LDPred?2
were used for polygenic risk.scoring. Models were trained on a partition of the dataset and tested
in a hold-out set. The area under the receiver operating characteristics curve was used as the
primary scoring metric. Classification by machine learning was statistically compared to that of
polygenic risk scoring..Finally, we explored the biological functions of the variants unique to the

machine learning.approach.

43,197 individuals (51% women), with a mean age of 54.6 years, were included in the modelling.
A light gradient boosting machine performed best for the three smallest datasets (108, 7,771 and
7,840 variants), all with hold-out test set area under curve at 0.63. A multinomial naive Bayes
model performed best in the largest dataset (140,467 variants) with a hold-out test set area under
curve of 0.62. The models were statistically significantly superior to polygenic risk scoring (area
under curve 0.52 to 0.59) for all the datasets (p<0.001 to p=0.02). Machine learning identified
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many of the same genes and pathways identified in genome-wide association studies, but also
several unique pathways, mainly related to signal transduction and neurological function.
Interestingly, pathways related to botulinum toxins, and pathways related to the calcitonin gene-

related peptide receptor also emerged.

This study suggests that migraine may follow a non-additive and interactive genetic causal
structure, potentially best captured by complex machine learning models. Such.structure may be
concealed where the data dimensionality (high number of genetic variants) is insufficiently
supported by the scale of available data, leaving a misleading impression.of purely additive effects.
Future machine learning models using substantially larger sample-sizes could harness both the
additive and the interactive effects, enhancing precision and_offering deeper understanding of

genetic interactions underlying migraine.
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Introduction

Migraine is a common primary headache disorder with a substantial global disease burden.! The
global prevalence is estimated to 14%,2 and it is ranked second among causes of disability, and
first among women under 50 years of age.® Migraine is characterized by recurring attacks of
intense, often unilateral and pulsating headaches, accompanied by nausea, vomiting, and
sensitivity to light-and sound.* In up to a third of individuals the attacks are at times preceded by

transient focal-neurological aura symptoms, most commonly visual or sensory.

The etiology of migraine is complex and incompletely understood. Inheritance has long been
recognized as important, as migraine tends to cluster in families.>® Twin studies have confirmed
consistently higher concordance rates of migraine in monozygotic twins versus dizygotic twins,’

with an estimated heritability of around 50%.8

The largest genome-wide association study (GWAS) meta-analysis identified 123 migraine risk
loci.® Other GWAS have identified similar and other risk variants.1911 Yet, the sum of the risk

variants does not explain the full heritability of migraine.’? Indeed, it was estimated that the 123
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risk loci from the 2022 GWAS only explain 11.2% of the heritability. The missing heritability—
defined as the gap between heritability estimates from twin studies and the heritability explained
by the identified genetic variants—may be attributable to at least two factors.12 First, there are
likely many small-effect-variants that increase therisk of migraine but fail to reach the significance
level required in GWAS. Second, there may be epistatic interactions, where the effect of one gene
is modified by other genes complicating the genetic architecture. This results in an overall effect
that is not merely the sum of each gene’s contribution (additive effects) butisiinstead driven by

the combined influence of interacting genes (non-additive effects).14

Polygenic risk scoring (PRS) can be used to estimate the additive risk of complex traits based on
the sum of all risk alleles carried by an individual.1® This summing across variants assumes an
additive genetic architecture, with independence of risk variants,*>and does not take into account
any gene-gene or gene-environment interactions.® Such an.approach is not suited to explain any

interactive genetic factors contributing to the missing heritability.

Therefore, implementing a model that accounts for interactive effects—in addition to additive
effects—could distinguish individuals with migraine from headache-free controls using genotype
data with better precision. Importantly, it could also help explain the missing heritability and
increase our understanding of the genetic architecture of migraine. We hypothesized that complex,
high-dimensional machine learning models that can handle a large number of input variables while

preserving covariate interactions.may address the shortcomings of PRS.

The objectives of this study were to (1) estimate the accuracy of machine learning in distinguishing
migraine from genome-wide genotype data; (2) compare the diagnostic accuracy of machine
learning smodels.with PRS across increasing dimensionalities (increasing number of genetic
variants) of genetic input data, and (3) evaluate possible biological mechanisms of genes and

interactions identified through machine learning modelling.

Materials and methods

Data sources and data materials

This was a cross-sectional population-based machine learning analysis of genome-wide genotype

data for classifying individuals with migraine versus headache-free controls. The methods for
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acquiring genotype data and phenotype assignment were similar to those reported in previous

studies of the same health survey and biobank data material.17-18

The Trendelag health study

The Trgndelag Health Study (HUNT) is a large, population-based cohort study from Trgndelag
county in Norway that has been carried out in four waves (HUNT1 to HUNT4).1° All inhabitants
aged twenty years or older living in the county were invited to participate. Participation was based
on informed, written consent, and the study was approved by the Regional Committee for Medical
and Health Research (#2015/576/REK Midt and #2014/144/REK Midt). Data was collected
through questionnaires and clinical examinations. DNA from whole blood was collected in
HUNT2 (1995-1997) and HUNT3 (2006-2008). Questionnaire data for phenotype assignment
was collected in HUNT2 and HUNTS.

Genotyping

Genotyping of HUNTZ2 and HUNTS participants was performed at the Genomics-Core Facility at
the NTNU Norwegian University of Science and Technology. Three different versions of the
[lumina HumanCoreExome microarray (IMlumina HumanCoreExomel2 v.1.0,
HumanCoreExomel2 v.1.1 and HumanCoreExome24 with custom content) were used. The
quality control and imputation has been described in detail elsewhere.?° In brief, after rigorous
quality control, genotypes were imputed using a customized reference panel consisting of the
Haplotype Reference consortium release 1.1.. Finally, variants with imputation quality r? <0.3

were excluded:

Phenotype assighment

A diagnosisof migraine was assessed using a modified version of the International Classification
of Headache Disorders?122 based on questionnaires in HUNT2 and HUNTS3. Participants were
asked whetherthey had suffered from headache during the last 12 months, and those who answered
“yes” were classified as headache sufferers, while those who answered “no” constituted the control
group of headache-free individuals. Those answering “yes” were subsequently asked questions
about their headache to assess whether they fulfilled criteria for migraine or not. Those fulfilling

the criteria for migraine were classified as migraine cases in this study. This method of phenotype

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



16
17
18
19
20

21
22
23

24
25
26
27

assignment is reported in detail elsewhere and has been validated through clinical interviews by a

headache neurologist.23:24

Genome-wide association study data and dataset creation

From the largest migraine GWAS meta-analysis, which was based on 102,084 cases with migraine
and 771,257 controls,® we acquired summary statistics for the lead variants of the123 identified
migraine risk loci, and the 8,117 migraine variants that reached the genome-wide significance
threshold of p<5*10-8. Because HUNT participants were part of the GWAS meta-analysis,® a
reverse meta-analysis was conducted to derive a new beta coefficient and standard error for each
variant afterexcluding individuals from the HUNT study. Using the recalculated beta and standard
error, updated p-values for the migraine association were obtained by calculating the cumulative
density function of a normal distribution, with a mean of.0.0'and a standard deviation of 1.0. This
method of reverse meta-analysis allowed us to re-calculate the summary statistics without the
influenced by HUNT individuals, in turn allowing machine learning and PRS classification of the
“unseen” HUNT samples. The re-calculated<summary statistics were used to create dataset 1 and

2 (see below).

In addition to the 2022 GWAS meta-analysis® summary statistics for significant variants, we used
the complete, genome-wide summary statistics from this meta-analysis after excluding 23andMe,
owing to data availability:® A reverse meta-analysis method, as described above, was again used
to remove the influence of the HUNT individuals. These summary statistics were used to create

dataset 3 and 4 (see below).

To compare the diagnostic accuracy of machine learning versus PRS and evaluate the effect of the
dimensionality rof the genotype input data, four different datasets with increasing number of

genetic variants were created:

(1) the'linkage disequilibrium independent variants with an r? threshold of 0.1, reaching the
genome-wide significance threshold of p<5*10-8 identified among the 8,117 genome-wide
significant variants from the 2022 GWAS meta-analysis® after having performed reverse meta-

analysis to remove HUNT individuals;
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(2) the variants available in our dataset, among the 8,117 variants from the 2022 GWAS meta-
analysis,® reaching the genome-wide significance level of p<5*10-8 after having performed reverse

meta-analysis to remove HUNT individuals;

(3) the variants reaching a significance level of p<1*10-°captured from the summary statistics of
the 2022 GWAS meta-analysis® excluding 23andMe and after having performed reverse meta-

analysis to remove HUNT individuals;

(4) the LD-independent variants, at an r? threshold of 0.1, from available variants in the summary
statistics of the 2022 GWAS meta-analysis® excluding 23andMe and after:having performed

reverse meta-analysis to remove HUNT individuals.

Machine diagnostic modelling

The genotyped variants (where available) or imputed variants (dosages, i.e. a decimal number
between 0 and 2 describing the probability of the imputation corresponding to a given allele
combination) were used as input variables (features) for the models. The genetic variant dosages
were one-hot-encoded (redefined as dummy variables) in datasets 1-3. Dataset 4, was not one-hot-
encoded because its dimensionality (number of variables) was already significant and one-hot-
encoding would three-fold the feature size, resulting in a problematically large feature-to-sample
size ratio.?®> The phenotype assignment (migraine or headache-free) was used as the outcome

(label). Figure 1 is a schematic of the study design and modelling strategy.

The data was splitdin a random stratified fashion into a training and a test set in a 9:1 ratio. The test
set was the same forall machine learning and PRS models and was kept unseen until the final

model evaluation.

A series of standard machine learning classification architectures were evaluated: logistic
regression, least absolute shrinkage and selection operator, support vector machines, decision
trees, k-nearest neighbors, naive Bayes, random forest, gradient boosting methods, and ensemble
methods. Owing to the substantial number of features for dataset 4, this data was trained in chunks
with the following classifiers: perceptron, stochastic gradient descent, passive-aggressive
classifier, and multinomial, Bernoulli, gaussian and complement naive Bayes. Finally, deep
learning architectures, including TabNet,26 GenNet2” and fDDN2 (specifically to tackle the issue

with input dimensionality surpassing sample size), were evaluated. GenNet is a deep learning
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network that preprocesses data based on genetic annotation. FDNN is a deep learning network

specifically developed to handle cases with a large feature-to-sample ratio.

Model hyperparameters were optimized using Optuna?® with 500 trials. Models were trained on
the training set and performance was continuously evaluated with 10-fold cross-validation: For the
largest dataset a single train/validate split was used owing to extensive compute time. The area
under the receiver operating characteristics curve (AUC) was used as a scoring metric.for training
and optimizing the models. The mean AUC and it’s standard deviation (SD) were calculated across
the ten training foldsto summarize the model's training performance and‘the variability between
folds. In addition to AUC, we calculated accuracy, precision, recall.and. F1-score. The precision is
the proportion of those classified as migraine that indeed have migraine and is identical with the
positive predictive value. The recall is the proportion of those that have migraine that were
classified as migraine and is the same as sensitivity. The Fl=score is a compound metric of
precision and recall. The top performing model for each of the four datasets was finally applied on
the test set to quantify out-of-sample performance, calculating AUC with 95% confidence intervals
(C1). All machine learning analyses were conducted using Python 3.10 (Python Software

Foundation) with open-source packages (Supplementary table 1).

Sample characteristics, demographics and phenotype assignment were statistically described as

proportions for dichotomous variables and means with SD for continuous variables.
Sensitivity analysis of relatedness

To estimate the‘influence of relatedness of individuals, we conducted a sensitivity analysis on
unrelated individuals (up to 3" degree relatedness was clumped), using the PLINK command
plink2 --bfile plinkFileName --king-cutoff 0.006.

Sensitivity analysis of feature dimensionality

Post=hoc, a series of intermediate datasets with number of variants between dataset 3 and dataset
4 were created to better elucidate the impact of feature dimensionality and model complexity.
These datasets were created by changing the linkage disequilibrium threshold. Each of the
intermediate datasets were used to train the best simple additive machine learning model, and the

best complex machine learning model.
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Polygenic risk scoring

Two methods were employed for calculating PRS: PLINK, 3% and LDpred2.31 PLINK extracts the
PRS based on the clumping and thresholding approach. This minimizes the risk of
overrepresenting certain genomic regions due to high linkage disequilibrium, using.a linkage
disequilibrium clumping correlation (r?) cut-off value of 0.1 to determine which variants are
considered too correlated. PRS was calculated for each subject using five different p-value
thresholds (107, 108, 10-%, 10-1° and 10-11) representing the significance of association with the
migraine label. The p-value threshold with the best model fit was used. Population structure was
accounted for by incorporating ten principal components capturing ancestry-related differences as
covariates to make the findings more reliable across diverse groups. Finally, the PRS were
normalized and using a 0.5 decision threshold is used to distinguish cases and controls. LDpred2
also performs linkage disequilibrium clumping and accountsfor population stratification using 10
principal components, similar to PLINK. Thereafter a logistic regression model is trained to
achieve the best fit of the PRS on the data. Finally, the trained regression model is used to classify
the phenotype. The dataset train/test split used for hold-out test set evaluation of the PRS
approaches was identical to that of the machine learning models.

Comparison of machine.diagnostics with polygenic risk scoring

To compare the diagnestic performance of machine learning and PRS, the test set AUCs were
compared statistically. The null hypothesis criterion was tested by performing the Wilcoxon

nonparametric-test of independent samples.32 The statistical significance threshold was set at 0.05.
Modelexplainability

Using the.top performing model, we constructed calibration plots to check how accurately the
model’s classification matched the actual migraine outcomes. We also constructed probability
density curves for both the machine learning models and PRS to visualize the separability of cases
and controls. For the top performing machine learning model for each of the four datasets, we
calculated Shapley values. For each dataset, variants were ordered by Shapley values from highest
to lowest, and compared to the GWAS meta-analysis.® We also constructed a SHAP (Shapley
Additive exPlanations) summary plots tovisualize the relative contribution of increasing genotype

input dimensionality.33 SHAP is a framework utilizing Shapley values to explain machine learning
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model predictions. SHAP assigns each feature an importance value, which enables interpretation

of how much the feature contributes towards the prediction.

Gene annotation and pathway enrichment

To perform gene annotation and pathway enrichment analyses we identified the most<influential
variants in the top performing machine learning models and the lead variants identified in the
GWAS meta-analysis. For fair comparison, the 123 most important variants were selected. In cases
where several variants were considered equally important, so that the total number-exceeded 123,
all those of equal importance were used. Feature importances were extracted from the models and
prioritized by their importance, providing an ordered list of each variant’s contribution to the

model.

Annotations of variants to genes were based on the proximity method that maps a genetic variant
with its nearest gene (or to each of the genes it directly overlaps), using SNPnexus3* with

EnsembIDB?3® as a mapping reference.

Next, annotations of genes to pathways were preformed using the Reactome Pathway Database, %
as implemented in SNPnexus. Pathway enrichment p-values were adjusted for multiple testing
using the Benjamini-Hochberg method to control the false discovery rate36. The crude significance
threshold was set at 0.05, while thefalse discovery rate threshold was set to 0.1. The same
annotation and pathway enrichment approach was used for both the variants identified through

GWAS and the variants identified through machine learning.

Results

Sample characteristics

Demographics and phenotype assignment

43,197 individuals with available genotype and phenotype data were included in the analyses.
Supplementary Fig. 1 is a flow-chart of the study population. 10,286 individuals (24%) were
classified as having migraine and 32,911 (76%) were classified as headache-free controls. Among
those with migraine, 7,225 (70%) were women, and among the headache-free controls 15,088

(46%) were women. The mean age of the overall population was 54.6 (SD=17.3). The mean age

10
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of the migraine cases and the headache-free controls was 46.8 (SD=14.0), and 57.1 (SD=17.5),
respectively. All participants were of European ancestry. The distributions of individuals with
migraine and headache-free controls were similar in the training, validation and test splits. In the
training set, 8,322 (24%) had migraine and 26,667 (76%) were headache-free; in the validation set
for dataset 4, 925 (24%) had migraine and 2,963 (76%) were headache-free; and in_the test set,
1,039 (24%) had migraine and 3,281 (76%) were headache-free. Previous clinical validations of
the phenotype assignment found that in HUNT2, the sensitivity was 69% and-specificity 89% for
migraine.?® In HUNTS3, the sensitivity was 67% and specificity was 96%.2*

Genotype data

INnHUNT2and HUNTS3, 71,680 individuals were genotyped. After quality control and imputation,

a total of 9,832,846 variants were available for the 43,197 individuals included in the analysis.

In the reverse meta-analysis procedure, the influence of 7,801 cases and 32,423 controls from the
HUNT study was removed in the creation of datasets.1-4, and the influence of 53,109 cases and
230,876 controls from 23andMe was removed. in the creation of datasets 3 and 4. Thus 94,283
cases and 738,834 controls were used to calculate summary statistics for dataset 1 and 2 and 41,174
cases and 507,958 controls were usedto calculate summary statistics for dataset 3 and 4. Of note,
1,395 migraine cases and 1,021 controls from HUNT could not be removed from the summary
statistic calculation as they were part of a previous meta-analysis3’ already included in the 2022
GWAS meta-analysis:®

After quality control; imputation, the reverse meta-analysis procedure, calculation of summary
statistics, linkage disequilibrium pruning and pruning based on p-values for variant association the

number of variants in the four datasets were:
(1) dataset 1: 108variant;

(2)-dataset 2: 7,771 variants;

(3) dataset 3: 7,840 variants;

(4) dataset 4: 140,467 variants.

11

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



0 N o o M WDN

10
11
12
13
14
15

16

17
18
19
20

21

22
23
24
25
26
27

Machine diagnostic performance

For the first three datasets (108, 7,771 and 7,840 variants) the top performing model was the light
gradient boosting machine classifier, with cross-validated AUCsbetween 0.64 and 0.65, and cross-
validated accuracies between 0.60 and 0.62 (Table 1). The hold-out test set AUC was 0.63 (95%
Cl: 0.61-0.65), 0.63 (95% CI: 0.61-0.65) and 0.63 (95% CI: 0.62-0.66) for the datasets with 108,
7,771 and 7,804 variants, respectively. The corresponding hold-out test accuracies.were.0.60, 0.60
and 0.61. The hold-out test set precision ranged from 0.59 to 0.60, recall ranged. from'0.59 to 0.60
and the F1-score ranged from 0.55 to 0.57 (Table 1)

Inthe largest dataset, containing 140,467 variants, the top performing.model was the multinomial
naive Bayes classifier which achieved a validation set AUC of 0.62 and an accuracy of 0.57. The
hold-out test set AUC was 0.62 (95% ClI: 0.60-0.64) and the accuracy was 0.58. Test set precision,
recall and F1-score was 0.64, 0.56 and 0.43, respectively. Table 1 and Figure 2 provide additional
training and test performance metrics for the models.. Supplementary table 2 provides all the out-
of-sample and training experimental results for.the best models of each learning approach for every

dataset.

Relatedness sensitivity analysis

3,567 migraine cases and 10,417-controls were unrelated and included in the relatedness sensitivity
analysis. The mean cross-validated training AUC for the relatedness sensitivity analysis ranged
from 0.62 to 0.63 for all four-datasets. The corresponding test set AUCs ranged from 0.61 to 0.63.
Supplementary table 3 outlines all performance metrics for the sensitivity analysis.

Feature dimensionality sensitivity analysis

Five intermediate datasets with 19,473, 57,965, 71,188, 93,237 and 114,179 variants were created.
With increasing feature dimensionality (i.e., higher number of variants) the performance of the
complex models increased until suddenly reaching a performance drop, whereas the performance
of simpler additive models such as the multinomial naive Bayes increased steadily until reaching
a plateau (Figure 3 and Supplementary table 2). The light gradient boosting machine peaked at
92,237 variants with a training and test set AUC of 0.66.

12
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Polygenic risk scores

The test set PRS AUCs using PLINK were 0.52 (95% CI 0.50-0.54) for the dataset with 108
variants, 0.52 (95% CI 0.51-0.55) for the dataset with 7,771 variants, 0.53 (95% CI 0.51-0.55) for
the dataset with 7,840 variants, and 0.53 (95% CI1 0.52-0.56) for the dataset with 140,467 variants.
The corresponding test set PRS AUCs using LDpred2 were 0.55 (95% CI1 0.53-0.57), 0.56 (95%
C1 0.54-0.58), 0.59 (95% CI 0.57-0.61), and 0.59 (95% CI1 0.57-0.61), respectively.

Comparison of machine learning and polygenic risk scores

The machine learning models outperformed PRS in all four datasets (Table 2). The difference in
AUCs was most pronounced for datasets 1 through 3 (P <0.001), and slightly less pronounced for
the largest dataset (P = 0.02). Figure 3 illustrates the ‘impact of feature dimensionality on

performance for both machine learning and PRS.
Model explainability

Figure 4 visualizes the SHAP values for the top performing machine learning models for each
dataset. These figures demonstrate that datasets1 through 3 benefits from a model that may capture
non-additive effects, whereas this advantage is lost in the largest dataset in favor of an additive
probabilistic architecture. After ordering the variants by Shapley values, the top 123 variants were
compared to those in the 2022. GWAS meta-analysis.® As expected, all 108 variants in dataset 1
were identified amongthe 123 from the GWAS meta-analysis. For the larger datasets, the number
of common variants among the 123 most important were 13, eight and none for dataset 2, 3 and 4,
respectively-(Supplementary table 4). Supplementary Fig. 2 shows the probability distribution plot
and calibration plots for the top performing machine learning model and PRS. Cases and controls
showed largely overlapping prediction probability density plots, however more so for PRS as

compared to the machine learning models.

Gene annotation and pathway enrichment

All 108 variants for dataset 1, the top 184 variants for dataset 2, the top 123 variants for dataset 3
and the top 1018 variants for dataset 4 were used for gene annotations and pathway enrichment.
In both dataset 2 and dataset 4, several variants were considered equally important, thus these

numbers exceeded 123 (184 and 1018, respectively). Table 3 and Figure 5 details the annotated
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genes and enriched pathways found to be common with those identified in the GWAS meta-

analysis and those unique to the machine learning models.

Gene comparison analysis resulted in the identification of 55 genes that were unique to the best
interactive machine learning model (light gradient boosting machine in dataset 2), and 1002 genes
that were unique to the best probabilistic/additive machine learning model (multinomial naive
Bayes in dataset 4). Further, pathway enrichment analysis resulted in the identification of 91 and
590 additional pathways for the respective machine learning models. After pruning the identified
pathways based on crude p-value threshold, 14 and 74 pathways were evaluated in detail
(supplementary table 5 and 6). Among these 21 were considered significant after correcting for a
false discovery rate of 0.1. The enriched pathways were primarily-related to signal transduction

and neurological function.
Discussion

In this study we found that machine learning outperforms PRS in distinguishing individuals with
migraine from headache-free individuals based on genotype data. The best machine learning model
achieved a hold-out test set AUC of 0.63 and the best PRS model achieved a hold -out test set AUC
of 0.59. This is the first study to.utilize machine learning to classify individuals with migraine and
headache-free controls using genotype data.3® Other studies aiming to classify headaches have

mainly focused on clinical data, MRI data or other non-genetic paraclinical data.38-40

Though an AUC of 0.63 is modest in absolute terms, it is the increment in performance of flexible
models over PRS that is critical here. Gene-environment interactions and the imprecision of single
point disease prevalence set a comparatively low ceiling on maximal achievable performance from
genotypic dataalone.*! But the substantial difference between twin study estimates of heritability
and PRS performance®12 suggests genetic susceptibility may be mediated by wider and more
complex genetic interactions than conventional PRS models are able to capture, as evidenced by
the superior performance of the flexible models used in our study. Note that the comparison
between machine learning and PRS was stacked in favor of PRS here, since the PRS was based on
ameta-analysis of 94,283 migraine cases and 738,834 controls, while the machine learning models

were based on the much smaller HUNT study population. Hence, if compared between datasets of
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equal size, the magnitude of difference would be expected to be even larger in favour of machine

learning.

Indeed, the findings from the three smallest datasets (108, 7,771 and 7,840 variants) support a non-
additive and interactive genetic architecture for migraine, and can also explain why the machine
learning approach outperforms PRS. Recall that the top performing models in these datasetswas
a light gradient boosting classifier, a model that can capture both non-linear relationships and
interactions. Therefore, the observed superiority of these models over the-purely additive PRS
supports that the missing heritability may in part be attributed to non-additive effectssuch as gene-
gene interactions. The notion that machine learning models can pick-up non-linear and interactive
effects of genotype is supported by empirical data from several-other complex traits.*2 In an
analysis of 34,702 individuals from eight U.S. cohorts, an«extreme gradient boosting model was
demonstrated to increase the variance explained, compared.to PRS, between 22 and 100 percent
for complex traits such as height, blood pressure and cholesterol levels.#2 That study supports our
finding that complex machine learning models can capture non-linear and interactive effects also
in migraine. It is further supported by several studies that have found that specific gene-gene

interactions synergistically increase the susceptibility for migraine.*3-45

We observe that the complex machine learning models show a small, but gradual, increase in
performance with increasing genetic dimensionality before performance dramatically deteriorates
beyond 93,237 variants{(Figure 3). Onthe other hand, the simpler probabilistic naive Bayes models
show a steady increase in performance before reaching a plateau beyond 57,965 variants. These

patterns can be‘explained as follows:

The machine learning models perform only slightly better in dataset 2 and 3 as compared to dataset
1, likely ‘because information from the same relatively small set of loci is used across all three
models. This is evident from the SHAP plot (figure 5) where the light gradient boosting seems to
prioritize slightly less than a fifth of variants. Notably, dataset 3 used a higher p-value threshold
for association, but was drawn from a smaller sample, likely resulting in identifying variants from

the same set of loci as dataset 1 and 2.

When information from additional parts of the genome are incorporated in the models in the
intermediate post-hoc analyses (recall that these datasets used increasingly higher r? cut-offs), it

led to an increase in performance, before the sudden stall beyond 93,237 variants. This drop in
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performance can be explained by overfitting when feature dimensionality and complexity surpass
what can be supported by the available sample size. A rule of thumb states that there should be at
aminimum 5-10 samples for each feature (or dimension).4® However, despite performance initially
increasing as the number of dimensions increases, beyond a certain dimensionality, the

performance deteriorates.*®

On the contrary, the relatively “simpler” multinomial naive Bayes model, assuming.an additive
probabilistic architecture, similar to PRS, plateaus beyond 57,965 variants where additional small -
effect-variants provide negligible additional performance. This plateauing is, as expected, also
observed for PRS (figure 3). In summary, we argue that complex-maodels capture non-additive
effectsas long as the feature to sample ratio is appropriate, beyond-which the simpler models are
favoured. This paradoxical phenomenon supports the second explanation for the “missing
heritability”, namely that there are many small-to-medium Size variants that fail to reach the
genome-wide significance threshold but have an impact.in PRS and additive models such as naive

Bayes.

In this study, we identified several genes and pathways that seem to be unique for the machine
learning approach. While the best model for the smallest dataset primarily identified genes and
pathways already established inthe GWAS meta-analysis, the complex models of dataset 2 and 3
resulted in several unique genes and-pathways. The majority of the most important variants as
identified by the Shapley analysis were also unique for datasets 2 and 3. The genes annotated to
these variants wereprimarily.enriched in pathways related to signal transduction and neurological
function, which is biologically plausible for migraine. Dataset 4 with 140,167 variants and a
probabilistic naive Bayes model resulted in almost exclusively unique genes. This is likely dueto
the larger number of variants included in the annotation and pathway analysis, naturally leading to
inclusion of awider part of the genome and thus significantly more genes and pathways. Therefore,

any biological interpretations from this dataset must be done with caution.

Interestingly, the overall best model (light gradient boosting machine in dataset 2) highlighted
pathways related to calcitonin gene-like receptors, and the toxicity of botulinum toxin A, D, E and
F. The calcitonin gene-related ligand and its receptor play an important role in migraine
pathophysiology where they mediate trigeminovascular pain transmission and vasodilatory

neurogenic inflammation.*” They are also targets of several monoclonal antibodies that have
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demonstrated effect in preventing migraine.#® One of the risk loci identified in the 2022 GWAS
meta-analysis contains the gene encoding calcitonin gene-related peptide itself, but not its
receptor.® The identification of the receptor in this study suggests that both the ligand and receptor
are relevant for the susceptibility of migraine. OnabotulinumtoxinA is a therapeutic agent used as
preventive treatment for migraine.*° Its mechanism of action is thought to be the inhibition of pro-
inflammatory and excitatory neurotransmitters and neuropeptides from primary  afferent
nociceptive pain fibers in the head and neck that participate in the development.of peripheral and
central sensitization.>® The pathway identified here involve the SV2A gene,encoding synaptic
vesicle glycoprotein 2A, which has been shown to be the receptor for botulinum toxin A.5% It is
therefore conceivable that an upregulation of the receptor increase the susceptibility to both

migraine and a treatment effect of OnabotulinumtoxinA.

The approach of complex genotype modelling has several~ potential downstream clinical
implications. First, future models with improved performance could serve as an objective measure
of migraine. Second, the modeling approach is transferrable and could prove a valuable risk
scoring tool for other phenotypically diverse, idiopathic neurological traits of non-additive genetic
architecture. Finally, further unraveling ‘of the model architecture could help elucidate the
underlying etiology and pathophysiology of migraine, paving the way for clinical and therapeutic

markers.

We believe that complex models that can capture both interactive and additive effects will further
improve classification by genotype, given a sufficiently large sample. The prerequisites for such
models to be successful rely on sufficiently large sample sizes to allow complex modelling without
overfitting;-and the use of the right computational algorithms, such as non-linear machine learning
models and deep neural networks. Future efforts to classify migraine by genotypic data adhering
to these prerequisites are likely to outperform the classification performance of this study.
Moreover, future studies should aim to incorporate demographic, phenotypic and other medical
data that could further take advantage of important gene-environment and epigenetic factors that
most likely partake in the migraine etiology.? Finally, it is important that future research efforts

also aim to validate the models in out-of-sample cohorts to assess their generalizability.
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Strengths and limitations

This paper has several strengths. First, the models are rigorously validated in a held-out unseen
test set. The test set performances are faithful to the trained model suggesting that it is
generalizable. Secondly, the developed models are compared to a validated standard, namely PRS,
which establishes its robustness. Both strengths overcome challenges that are repeatedly cited as
barriers to why machine learning fails to prove clinically useful in medicine.38:52 Thirdly, the
models are free from any apparent data leaks, contrary to what typically happens when the input
for the classification models is the symptomatology of the migraine which is what determines the
headache status, thus leading to overly optimistic classification results. Weaknesses of the study
includes the moderate sensitivity of the phenotype assignment, although with near-perfect
specificity—a potential classification bias. However, because migraine is the minority class, with
lower sensitivity the class imbalance increases, thereby creating a more challenging classification
task which ultimately leads to underestimation of.the moadel precision. Another limitation is that
we were not able to remove the influence of afew HUNT individuals in the calculation of summary
statistics, which could have biased the models in favour of the dataset at hand. Nevertheless, this
limitation is expected to increase the performance also of the PRS, hence this weakness does not

invalidate the finding that machine learning outperforms PRS.

When comparing the machine learning and PRS, there are several strengths and weaknesses of
both approaches that'should be acknowledged. The most important strength of the machine
learning models for the task at hand is the ability to capture non-additive and interactive effects.
However, it comes at the cost of often high computational time and limited interpretability. PRS
on the other hand,.is a validated and commonly accepted method of assessing the risk of complex
traits'and is much less computationally expensive.30 Still, it is limited to assessing additive genetic

architectures, which likely is insufficient for migraine.12
Conclusion

In this study we demonstrate that machine learning outperforms PRS in distinguishing migraine
from headache-free controls when using genome-wide genotype dataand succeed in identifying
new genes and pathways potentially implicated in the disease. Complex machine learning models

significantly outperform PRS when the number of genetic variants are relatively low, supporting
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a non-additive and interactive genetic architecture. However, this benefit diminishes with
increasing input dimensionality in favour of additive effects. Our findings support both an additive
and an interactive and non-additive genetic basis for migraine, validating the hypothesized
explanations for the missing heritability. Future research investigating larger cohorts with complex
models that capture both additive and interactive relationships could likely improve classification

performance based on genotype.
Data availability

The minimum dataset required to replicate this work contains personal sensitive information and
is not publicly available nor available upon request. The analytical code may be provided upon

reasonable request.
Acknowledgements

The Trgndelag Health Study (HUNT) is a collaboration-between HUNT Research Centre (Faculty
of Medicine and Health Sciences, Norwegian University of Science and Technology NTNU),
Trendelag County Council, Central Norway Regional Health Authority, and the Norwegian
Institute of Public Health. The genotyping was financed by the National Institute of health (NI1H),
University of Michigan, The Norwegian Research council, and Central Norway Regional Health
Authority and the Faculty'of Medicine and Health Sciences, Norwegian University of Science and
Technology (NTNU). The genotype quality control and imputation has been conducted by the
K.G. Jebsen center for'genetic epidemiology, Department of public health and nursing, Faculty of
medicine and. health. sciences, Norwegian University of Science and Technology (NTNU).
References for HUNT: https://pubmed.ncbi.nim.nih.gov/36777998/,
https://pubmed.ncbi.nlm.nih.gov/22879362/, https://pubmed.ncbi.nlm.nih.gov/35578897/

Funding

The Research Council of Norway. The funder had no role in design, conduction or interpretation

of the study.

19

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



10
11
12
13
14
15
16
17
18
19
20
21

22

Competing interests

Anker Stubberud has received lecture honoraria from TEVA. AS is share-holder and patent holder
of Nordic Brain Tech AS and the Cerebri app.

Supplementary material
Supplementary material is available at Brain online.

Appendix 1

International Headache Genetics Consortium

Full details are provided in the Supplementary material.

Verneri Anttila, Ville Artto, Andrea C. Belin, Anna Bjornsdottir, Gyda Bjornsdottir, Dorret I.
Boomsma, Sigrid Bgrte, Mona A. Chalmer, Daniel I.Chasman, Bru Cormand, Ester Cuenca-Leon,
George Davey-Smith, Irene de Boer, Martin Dichgans, Tonu Esko, Tobias Freilinger, Padhraig
Gormley, Lyn R. Griffiths, Eija Hamalainen, Thomas F. Hansen, Aster V. E. Harder, Heidi
Hautakangas, Marjo Hiekkala, Maria G. Hrafnsdottir, M. Arfan Ikram, Marjo-Riitta Jarvelin, Risto
Kajanne, Mikko Kallela, Jaakko Kaprio, Mari Kaunisto, Lisette J. A. Kogelman, Espen S.
Kristoffersen, Christian‘Kubisch,/Mitja Kurki, Tobias Kurth, Lenore Launer, Terho Lehtimaki,
Davor Lessel, Lannie Ligthart, Sigurdur H. Magnusson, Rainer Malik, Bertram Muller-Myhsok,
Carrie Northover, Dale R. Nyholt, Jes Olesen, Aarno Palotie, Priit Palta, Linda M Pedersen, Nancy
Pedersen, MattiPirinen, Danielle Posthuma, Patricia Pozo-Rosich, Alice Pressman, Olli Raitakari,
Caroline Ran, Gudrun R. Sigurdardottir, Hreinn Stefansson, Kari Stefansson, Olafur A. Sveinsson,
Gisela M. Terwindt, Thorgeir E. Thorgeirsson, Arn M. J. M. van den Maagdenberg, Cornelia van
Duijn,;"Maija Wessman, Bendik S. Winsvold, John-Anker Zwart.

20

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



11
12
13

14
15

16
17

18
19

20
21

22
23
24

25
26
27

References

10.

Stovner LJ, Nichols E, Steiner TJ, et al. Global, regional, and national burden of migraine
and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of
Disease Study 2016. The Lancet Neurology. 2018;17(11):954-976.

Stovner LJ, Hagen K, Linde M, Steiner TJ. The global prevalence of headache:an update,
with analysis of the influences of methodological factors on prevalence estimates. The
journal of headache and pain. 2022;23(1):34.

Steiner T, Stovner L, Jensen R, Uluduz D, Katsarava Z. Migraine remains second among

the world’s causes of disability, and first among young:women: findings from GBD2019.
The journal of headache and pain. 2020;21:137-141.

Headache Classification Committee of the International Headache Society (IHS) The
International Classification of Headache Disorders, 3rd edition. Cephalalgia.
2018;38(1):1-211.

Merikangas KR, Risch NJ, Merikangas JR, Weissman MM, Kidd KK. Migraine and

depression: association and-familial transmission. J Psychiatr Res. 1988;22(2):119-129.

Russell MB, Olesen J. Increased familial risk and evidence of genetic factor in migraine.
British medical journal. 1995;311(7004):541-545.

Honkasalo ML, Kaprio J, Winter T, Heikkila K, Sillanpdd M, Koskenvuo M. Migraine and
concomitant symptoms among 8167 adult twin pairs. Headache. 1995;35(2):70-78.

Nielsen 'CS; Knudsen GP, Steingrimsdéttir O A. Twin studies of pain. Clin Genet.
2012;82(4):331-340.

Hautakangas H, Winsvold BS, Ruotsalainen SE, et al. Genome-wide analysis of 102,084
migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nature genetics.
2022;54(2):152-160.

Bjornsdottir G, Chalmer MA, StefansdottirL, et al. Rare variants with large effectsprovide
functional insights into the pathology of migraine subtypes, with and without aura. Nature
genetics. 2023;55(11):1843-1853.

21

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



10
11

12
13

14
15

16
17

18
19

20
21
22

23
24
25

26
27
28

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

Choquet H, Yin J, Jacobson AS, et al. New and sex-specific migraine susceptibility loci
identified from a multiethnic genome-wide meta-analysis. Communications Biology.
2021;4(1):864.

Grangeon L, Lange KS, Waliszewska-Prosot M, et al. Genetics of migraine: where are we
now? The journal of headache and pain. 2023;24(1):12.

Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex
diseases. Nature. 2009;461(7265):747-753.

Eising E, de Vries B, Ferrari MD, Terwindt GM, van den Maagdenberg AM. Pearls and
pitfalls in genetic studies of migraine. Cephalalgia. 2013;33(8):614-625.

Lewis C, Vassos E. Polygenic risk scores: from research tools to clinical instruments.
Genome medicine. 2020;12(1):44.

Aschard H. A perspective on interaction. effects in genetic association studies. Genetic
epidemiology. 2016;40(8):678-688.

Brumpton BM, Graham S, Surakka.l, et al. The HUNT study: A population-based cohort
for genetic research. Cell Genom. 2022;2(10):100193.

Barte S, Zwart J-A, Skogholt AH, et al. Mitochondrial genome-wide association study of
migraine — the HUNT Study. Cephalalgia. 2020;40(6):625-634.

Krokstad S, LLanghammer A, Hveem K, et al. Cohort profile: the HUNT study, Norway.
International journal of epidemiology. 2013;42(4):968-977.

Winsvold BS, Kitsos I, Thomas LF, et al. Genome-Wide Association Study of 2,093 Cases
With Idiopathic Polyneuropathy and 445,256 Controls Identifies First Susceptibility Loci.
Front Neurol. 2021;12:789093.

Hedache Classification Subcommitee of the International Headache Society. The
International Classification of Headache Disorders: 2nd edition. Cephalalgia. 2004;24:9-
160.

Headache Classification Committee of the International Headache Society. Classification
and diagnostic criteria for headache disorders, cranial neuralgias and facial pain.
Cephalalgia. 1988;8:1-96.

22

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



11
12

13
14
15

16
17
18

19
20
21

22
23

24
25

26
27
28

23.

24.

25.

26.

217.

28.

29.

30.

31,

32.

33.

Hagen K, Zwart JA, Aamodt AH, et al. The validity of questionnaire-based diagnoses: the
third Nord-Trgndelag Health Study 2006-2008. The journal of headache and pain.
2010;11(1):67-73.

Hagen K, Zwart JA, Vatten L, Stovner LJ, Bovim G. Head-HUNT: validity and reliability
of a headache questionnaire in a large population-based study in Norway. Cephalalgia.
2000;20(4):244-251.

Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER. Optimal number of features as a function
of sample size for various classification rules. Bioinformatics. 2005;21(8):1509-1515.

Arik SO, Pfister T. Tabnet: Attentive interpretable tabularlearning=-In: Proceedings of the
AAAI conference on artificial intelligence. 2021:6679-6687.

van Hilten A, Kushner SA, Kayser M, et al. GenNetframework: interpretable deep learning

for predicting phenotypes from genetic data. Communications Biology. 2021;4(1):1094.

Kong Y, Yu T. A Deep Neural Network Model using Random Forest to Extract Feature
Representation for Gene Expression ~Data Classification. Scientific Reports.
2018;8(1):16477.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD

international conference.on knowledge discovery & data mining. 2019:2623-2631.

Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. The American journal of human genetics.
2007;81(3):559-575.

Privé" F, Arbel J, Vilhjalmsson BJ. LDpred2: better, faster, stronger. Bioinformatics.
2020;36(22-23):5424-5431.

Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology. 1982;143(1):29-36.

Merrick L, Taly A. The explanation game: Explaining machine learning models using
shapley values. In: International Cross-Domain Conference for Machine Learning and

Knowledge Extraction. Springer. 2020:17-38.

23

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



10
11

12
13
14

15
16

17
18
19

20
21
22

23
24
25

26
27

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C.
SNPnexus: a web server for functional annotation of human genome sequence variation
(2020 update). Nucleic acids research. 2020;48(1):185-192.

Hubbard TJ, Aken BL, Beal K, et al. Ensembl 2007. Nucleic acids research. 2007;35:610-
617.

Jassal B, MatthewsL, Viteri G, et al. The reactome pathway knowledgebase. Nucleic acids
research. 2020;48(1):498-503.

Gormley P, AnttilaV, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies
38 susceptibility loci for migraine. Nature genetics. 2016;48(8):856-866.

Stubberud A, Langseth H, Nachev P, Matharu MS, Tronvik E. Artificial intelligence and
headache. Cephalalgia. 2024;44(8):1-13.

Ihara K, Dumkrieger G, Zhang P, Takizawa T, Schwedt TJ, Chiang C-C. Application of
Artificial Intelligence in the Headache Field./Current pain and headache reports. 2024:1-
9.

Torrente A, Maccora S, Prinzi F, etal. The clinical relevance of artificial intelligence in
migraine. Brain Sciences. 2024;14(1):85-99.

YehP-K, AnY-C;Hung K-S, Yang F-C. Influences of Genetic and Environmental Factors
on Chronic Migraine: A Narrative Review. Current Pain and Headache Reports.
2024;28(4):169-180.

Elgart .M, Lyons G, Romero-Brufau S, et al. Non-linear machine learning models
incorporating SNPs and PRS improve polygenic prediction in diverse human populations.
Communications biology. 2022;5(1):856-867.

Alves-Ferreira M, Quintas M, Sequeiros J, et al. A genetic interaction of NRXN2 with
GABRE, SYT1 and CASK in migraine patients: a case-control study. The journal of
headache and pain. 2021;22(1):57.

Quintas M, Neto JL, Pereira-Monteiro J, et al. Interaction between y-aminobutyric acid A

receptor genes: new evidence in migraine susceptibility. PloS one. 2013;8(9):e74087.

24

GZ0z Jequieldes 9z uo Jesn eynysu| [ejusg uewised Aq §4SGZ18/2/ LIBMe/UIRIG/SE0 L 0 L /I0P/8|o1le-80UBAPE/UIRIG/WO0D dNO"OIWSPE.//:Sd)Y WO} papEojumo(



10
11
12
13

14
15
16

17
18

19
20

21

22

23
24
25
26
27
28

45.

46.

47.

48.

49.

50.

ol.

52.

Goncalves FM, Luizon MR, Speciali JG, Martins-Oliveira A, Dach F, Tanus-Santos JE.
Interaction among nitric oxide (NO)-related genes in migraine susceptibility. Molecular
and cellular biochemistry. 2012;370:183-189.

Zollanvari A, James AP, Sameni R. A theoretical analysis of the peaking phenomenon in
classification. Journal of Classification. 2020;37:421-434.

Puledda F, Silva EM, Suwanlaong K, Goadsbhy PJ. Migraine: from pathophysiology to
treatment. Journal of neurology. 2023;270(7):3654-3666.

Oliveira R, Gil-Gouveia R, Puledda F. CGRP-targeted medication in chronic migraine-

systematic review. The journal of headache and pain. 2024;25(1):51.

Lanteri-Minet M, Ducros A, Francois C, Olewinska E, Nikodem M, Dupont-Benjamin L.
Effectiveness of onabotulinumtoxinA (BOTOX®) for thepreventive treatment of chronic
migraine: A meta-analysis on 10 years of real-world data. Cephalalgia. 2022;42(14):1543-
1564.

Burstein R, Blumenfeld AM, Silberstein SD, Manack Adams A, Brin MF. Mechanism of
action of onabotulinumtoxinA in chronic migraine: a narrative review. Headache: The
Journal of Head and Face Pain. 2020;60(7):1259-1272.

Dong M, Yeh F, Tepp WH, et al. SV2is the protein receptor for botulinum neurotoxin A.
Science. 2006;312(5773):592-596.

Rajpurkar’P, Chen E, Banerjee O, Topol EJ. Al in health and medicine. Nature medicine.
2022;28(1):31-38.

Figure legends

Figure 1 Schematic overview of the study design. Among 43,197 individuals, 10,286 had

migraine and 32,911 were headache-free controls. Four different datasets with an increasing

number of genetic variants were used for distinguishing migraine vs. headache-free controls. These

datasets were split in the same 9:1 ratio training and test sets. The training data was subsequently

preprocessed, trained and optimized using 10-fold cross-validation. The best model for each

dataset was evaluated on the test set.
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Figure 2 Performance of the best machine learning models. Receiver operating characteristics
curves for top performing machine learning models for each of the four datasets showing mean
10-fold cross-validated area under curve (blue line) + 1 standard deviation (grey shaded area), and
test set area under curve (orange line). (A) Dataset 1 with 108 variants. (B) Dataset 2 with 7,771
variants. (C) Dataset 4 with 7,840 variants. (D) Dataset 4 with 140,467 variants.

Figure 3 Impact of feature dimensionality. The hold-out test set area under curve (y-axis) is
plotted against the number of variants included in the model (y-axis) for the'best machine learning
and polygenic risk scoring approaches. For each color, solid lines represent training performance
and dotted lines represent test performance for a given modelling approach. Performance for the
intermediate datasets (19,473 to 114,179 variants) were-only calculated for the best non-linear
complex machine learning approach (light gradient-boosting) and the best simple additive model
(multinomial naive Bayes) as part of the past-hoc sensitivity analyses. Note that light gradient
boosting increases in performance up ‘t0-93,237 variants before sharply dropping, indicating
overfitting when the feature space.exceeds a limit. Multinomial naive Bayes, however, increases
steadily before reaching a plateau beyond 57,965 variants. LightGBM: light gradient boosting
machine. MNB: multnomial naive Bayes.

Figure 4 SHAPsummary plots. Plots illustrating the relative contribution of the included variants
to the predictions forthe best machine learning model for each dataset. The x-axes denote number
of variants, the y-axes denote the absolute SHAP value on a logarithmic scale. (A) In dataset 1, all
108 variants contributed towards the prediction. (B) In dataset 2, 1,486 out of 7,771 variants
contributed. (C) In dataset 3, 1,442 out of 7,840 variants contributed. In the two latter cases, a
large majority of variants do not contribute to the prediction suggesting that the model omits the
less important variants, however, still achieving higher accuracy than polygenic risk scoring
suggesting that some non-additive effects between the contributing variants are captured. (D) In
dataset 4, all 140,467 variants contribute but with small contribution each. This is due to the
probabilistic additive architecture of the naive Bayes approach, more similar to polygenic risk
scoring. SHAP: Shapley additive explanations.
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Figure 5 Venn diagrams showing overlap of annotated genes and enriched pathways. (A)
Overlap of annotated genes from variants identified in the genome-wide association study, the best
complex model (light gradient boosting machine in dataset 2) and the best additive machine
learning model (multinomial naive Bayes in dataset 4). (B) Overlap of enriched pathways from
genes and variants identified in the genome-wide association study, the best complex:model (light
gradient boosting machine in dataset 2) and the best additive machine learning madel (multinomial

naive Bayes in dataset 4).

Table | Performance of best machine learning models

AUC Accuracy Recall Precision F1-Score

Dataset Train Test Train Test Train Test Train Test Train Test
Dataset | (108 0.64 £ 0.63 0.60 + 0.60 0.59 + 0.59 0.59 + 0.59 055+ 0.55
variants)® 0010 0.009 0.010 0010 0.009

Dataset 2 (7771 0.64 0.63 062 + 061 0.60 ¢ 0.59 0.60 £ 0.59 055 + 0.55
variants)® 0010 0.008 0.009 0.009 0.009

Dataset 3 (7840 0.65 £ 0.63 061 £ 0.62 0.60 + 0.60 0.60 £ 0.60 058 + 0.57
variants)© 0012 0.009 0.011 0011 0010

Dataset 4 (140 467 0.62 0.62 0.59 0.58 0.57 0.56 0.65 0.64 045 043
variants)?

For each scoring metric, the training set performance is presented as the mean of 10-fold cross validation (* standard deviation), except for
dataset 4, in which only one train/validate split was evaluated. The test value is the performance of the trained model in the hold-out test set.
2Lead variants from risk loci identified in the 2022 genome-wide association study meta-analysis'® (108 variants).

bAll variants with p-value <5 x |1 0 identified fromthe 2022 genome-wide association study meta-analysis'® summary statistics (777 | variants).
“All variants with a p-value <I x 107 identified from the re-calculated summary statistics without 23andMe (7840 variants).

94All linkage disequilibrium independent variants among all genotyped variants (140 467 variants).

Table 2 Comparison of machine learning and polygenic risk scoring

Dataset

Best machine
learning model
AUC (95% CI)

PLINK
AUC (95% CI)

LDpred2
AUC (95% CI)

Comparison

Dataset | (108 variants)® 063 (0.61-0.65) 052 (0.50-0.54 055 (0.53-0.57) P<000l
Dataset 2 (7771 variants)®_ 063 (061-065) | 052 (051-055) 056 (054—0.58) P<0001
Dataset 3 (7840 variants)° 063 (062-066) | 053 (051-055) 059 (057-061) P<000I
Dataset 4 (140467 variants)® 062 (060-064) | 053 (0.52-056) 059 (057-061) P=002

In datasets |, 2, and 3, a light gradient boosting machine performed best. In dataset 4, a multinomial naive Bayes model performed best. The
rightmost column is the result of a Wilcoxon nonparametric test comparing the best machine learning model and the best polygenic risk scoring

approach.

*Lead variants from risk loci identified in the 2022 genome-wide association study meta-analysis'® (108 variants).

PAll variants with p-value <5 x |08 identified from the 2022 genome-wide association study meta-analysis'® summary statistics (777 | variants).
SAll variants with a p-value <I x 10~ identified from the re-calculated summary statistics without 23andMe (7840 variants).
4All linkage disequilibrium independent variants among all genotyped variants (140 467 variants).
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Table 3 Comparison of identified genes and pathways

Dataset | Dataset 2 Dataset 3 Dataset 4
(108 variants)? (7771 variants)® (7840 variants)°© (140 467 variants)?

Common genes, n/n (%) 73/105 (69.5) 60/115 (52.2) 38/95 (40.0) 8/1010 (0.8)
Genes unique to machine 32/105 (30.5) 55/115 (47.8) 57/95 (60.0) 1002/1010 (99.2)
learning, n/n (%)
Common pathways, n/n (%) 228/254 (89.8) 139/230 (60.4) 127/226 (56.2) 200/790 (25.3)
Pathways unique to machine 26/254 (10.2) 91/230 (39.6) 99/226 (43.8) 590/790(74.7)
learning, n/n (%)

After gene annotation and pathway enrichment, the significant genes and pathways identified in the best machine learningmodels were compared
to those identified in through a genome-wide association study approach.

%Lead variants from risk loci identified in the 2022 genome-wide association study meta-analysis'® (108 variants).

PAll variants with p-value <5 x 10-® identified from the 2022 genome-wide association study meta-analysis'® summary statistics (7771 variants).
°All variants with a p-value <I x 10~ identified from the re-calculated summary statistics without 23andMe (7840 variants).

4All linkage disequilibrium independent variants among all genotyped variants (140 467 variants).
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