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Abstract  6 

Migraine has an assumed polygenic basis, but the genetic risk variants identified in genome-wide 7 

association studies only explain a proportion of the heritability. We aimed to develop machine 8 

learning models, capturing non-additive and interactive effects, to address the missing heritability. 9 

This was a cross-sectional population-based study of participants in the second and third Trøndelag 10 

Health Study. Individuals underwent genome-wide genotyping and were phenotyped based on 11 

validated modified criteria of the International Classification of Headache Disorders. Four datasets 12 

of increasing number of genetic variants were created using different thresholds of linkage 13 

disequilibrium and univariate genome-wide associated p-values. A series of machine learning and 14 

deep learning methods were optimized and evaluated. The genotype tools PLINK and LDPred2 15 

were used for polygenic risk scoring. Models were trained on a partition of the dataset and tested 16 

in a hold-out set. The area under the receiver operating characteristics curve was used as the 17 

primary scoring metric. Classification by machine learning was statistically compared to that of 18 

polygenic risk scoring. Finally, we explored the biological functions of the variants unique to the 19 

machine learning approach.  20 

43,197 individuals (51% women), with a mean age of 54.6 years, were included in the modelling. 21 

A light gradient boosting machine performed best for the three smallest datasets (108, 7,771 and 22 

7,840 variants), all with hold-out test set area under curve at 0.63. A multinomial naïve Bayes 23 

model performed best in the largest dataset (140,467 variants) with a hold -out test set area under 24 

curve of 0.62. The models were statistically significantly superior to polygenic risk scoring (area 25 

under curve 0.52 to 0.59) for all the datasets (p<0.001 to p=0.02). Machine learning identified 26 
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many of the same genes and pathways identified in genome-wide association studies, but also 1 

several unique pathways, mainly related to signal transduction and neurological function. 2 

Interestingly, pathways related to botulinum toxins, and pathways related to the calcitonin gene-3 

related peptide receptor also emerged. 4 

This study suggests that migraine may follow a non-additive and interactive genetic causal 5 

structure, potentially best captured by complex machine learning models. Such structure may be 6 

concealed where the data dimensionality (high number of genetic variants) is insufficiently 7 

supported by the scale of available data, leaving a misleading impression of purely additive effects. 8 

Future machine learning models using substantially larger sample sizes could harness both the 9 

additive and the interactive effects, enhancing precision and offering deeper understanding of 10 

genetic interactions underlying migraine.  11 
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 13 

Introduction  14 

Migraine is a common primary headache disorder with a substantial global disease burden.1 The 15 

global prevalence is estimated to 14%,2 and it is ranked second among causes of disability, and 16 

first among women under 50 years of age.3 Migraine is characterized by recurring attacks of 17 

intense, often unilateral and pulsating headaches, accompanied by nausea, vomiting, and 18 

sensitivity to light and sound.4 In up to a third of individuals the attacks are at times preceded by 19 

transient focal neurological aura symptoms, most commonly visual or sensory. 20 

The etiology of migraine is complex and incompletely understood. Inheritance has long been 21 

recognized as important, as migraine tends to cluster in families.5,6 Twin studies have confirmed 22 

consistently higher concordance rates of migraine in monozygotic twins versus dizygotic twins,7 23 

with an estimated heritability of around 50%.8 24 

The largest genome-wide association study (GWAS) meta-analysis identified 123 migraine risk 25 

loci.9 Other GWAS have identified similar and other risk variants.10,11 Yet, the sum of the risk 26 

variants does not explain the full heritability of migraine.12 Indeed, it was estimated that the 123 27 
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risk loci from the 2022 GWAS only explain 11.2% of the heritability. The missing heritability—1 

defined as the gap between heritability estimates from twin studies and the heritability explained 2 

by the identified genetic variants—may be attributable to at least two factors.13 First, there are 3 

likely many small-effect-variants that increase the risk of migraine but fail to reach the significance 4 

level required in GWAS. Second, there may be epistatic interactions, where the effect of one gene 5 

is modified by other genes complicating the genetic architecture. This results in an overall effect 6 

that is not merely the sum of each gene’s contribution (additive effects) but is instead driven by 7 

the combined influence of interacting genes (non-additive effects).14  8 

Polygenic risk scoring (PRS) can be used to estimate the additive risk of complex traits based on 9 

the sum of all risk alleles carried by an individual.15 This summing across variants assumes an 10 

additive genetic architecture, with independence of risk variants,15 and does not take into account 11 

any gene-gene or gene-environment interactions.16 Such an approach is not suited to explain any 12 

interactive genetic factors contributing to the missing heritability. 13 

Therefore, implementing a model that accounts for interactive effects–in addition to additive 14 

effects–could distinguish individuals with migraine from headache-free controls using genotype 15 

data with better precision. Importantly, it could also help explain the missing heritability and 16 

increase our understanding of the genetic architecture of migraine. We hypothesized that complex, 17 

high-dimensional machine learning models that can handle a large number of input variables while 18 

preserving covariate interactions may address the shortcomings of PRS.   19 

The objectives of this study were to (1) estimate the accuracy of machine learning in distinguishing 20 

migraine from genome-wide genotype data; (2) compare the diagnostic accuracy of machine 21 

learning models with PRS across increasing dimensionalities (increasing number of genetic 22 

variants) of genetic input data, and (3) evaluate possible biological mechanisms of genes and 23 

interactions identified through machine learning modelling.  24 

Materials and methods 25 

Data sources and data materials 26 

This was a cross-sectional population-based machine learning analysis of genome-wide genotype 27 

data for classifying individuals with migraine versus headache-free controls. The methods for 28 
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acquiring genotype data and phenotype assignment were similar to those reported in previous 1 

studies of the same health survey and biobank data material.17,18 2 

The Trøndelag health study 3 

The Trøndelag Health Study (HUNT) is a large, population-based cohort study from Trøndelag 4 

county in Norway that has been carried out in four waves (HUNT1 to HUNT4).19 All inhabitants 5 

aged twenty years or older living in the county were invited to participate. Participation was based 6 

on informed, written consent, and the study was approved by the Regional Committee for Medical 7 

and Health Research (#2015/576/REK Midt and #2014/144/REK Midt). Data was collected 8 

through questionnaires and clinical examinations. DNA from whole blood was collected in 9 

HUNT2 (1995–1997) and HUNT3 (2006–2008). Questionnaire data for phenotype assignment 10 

was collected in HUNT2 and HUNT3. 11 

Genotyping 12 

Genotyping of HUNT2 and HUNT3 participants was performed at the Genomics-Core Facility at 13 

the NTNU Norwegian University of Science and Technology. Three different versions of the 14 

Illumina HumanCoreExome microarray (Illumina HumanCoreExome12 v.1.0, 15 

HumanCoreExome12 v.1.1 and HumanCoreExome24 with custom content) were used. The 16 

quality control and imputation has been described in detail elsewhere.20 In brief, after rigorous 17 

quality control, genotypes were imputed using a customized reference panel consisting of the 18 

Haplotype Reference consortium release 1.1.. Finally, variants with imputation quality r2 <0.3 19 

were excluded.  20 

Phenotype assignment 21 

A diagnosis of migraine was assessed using a modified version of the International Classification 22 

of Headache Disorders21,22 based on questionnaires in HUNT2 and HUNT3. Participants were 23 

asked whether they had suffered from headache during the last 12 months, and those who answered 24 

“yes” were classified as headache sufferers, while those who answered “no” constituted the control 25 

group of headache-free individuals. Those answering “yes” were subsequently asked questions 26 

about their headache to assess whether they fulfilled criteria for migraine or not. Those fulfilling 27 

the criteria for migraine were classified as migraine cases in this study. This method of phenotype 28 
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assignment is reported in detail elsewhere and has been validated through clinical interviews by a 1 

headache neurologist.23,24   2 

Genome-wide association study data and dataset creation 3 

From the largest migraine GWAS meta-analysis, which was based on 102,084 cases with migraine 4 

and 771,257 controls,9 we acquired summary statistics for the lead variants of the 123 identified 5 

migraine risk loci, and the 8,117 migraine variants that reached the genome-wide significance 6 

threshold of p<5*10-8. Because HUNT participants were part of the GWAS meta-analysis,9 a 7 

reverse meta-analysis was conducted to derive a new beta coefficient and standard error for each 8 

variant after excluding individuals from the HUNT study. Using the recalculated beta and standard 9 

error, updated p-values for the migraine association were obtained by calculating the cumulative 10 

density function of a normal distribution, with a mean of 0.0 and a standard deviation of 1.0. This 11 

method of reverse meta-analysis allowed us to re-calculate the summary statistics without the 12 

influenced by HUNT individuals, in turn allowing machine learning and PRS classification of the 13 

“unseen” HUNT samples. The re-calculated summary statistics were used to create dataset 1 and 14 

2 (see below).  15 

In addition to the 2022 GWAS meta-analysis9 summary statistics for significant variants, we used 16 

the complete, genome-wide summary statistics from this meta-analysis after excluding 23andMe, 17 

owing to data availability.9 A reverse meta-analysis method, as described above, was again used 18 

to remove the influence of the HUNT individuals. These summary statistics were used to create 19 

dataset 3 and 4 (see below).  20 

To compare the diagnostic accuracy of machine learning versus PRS and evaluate the effect of the 21 

dimensionality of the genotype input data, four different datasets with increasing number of 22 

genetic variants were created: 23 

(1) the linkage disequilibrium independent variants with an r2 threshold of 0.1, reaching the 24 

genome-wide significance threshold of p<5*10-8, identified among the 8,117 genome-wide 25 

significant variants from the 2022 GWAS meta-analysis9 after having performed reverse meta-26 

analysis to remove HUNT individuals;  27 
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(2) the variants available in our dataset, among the 8,117 variants from the 2022 GWAS meta-1 

analysis,9 reaching the genome-wide significance level of p<5*10-8 after having performed reverse 2 

meta-analysis to remove HUNT individuals;  3 

(3) the variants reaching a significance level of p<1*10-5 captured from the summary statistics of 4 

the 2022 GWAS meta-analysis9 excluding 23andMe and after having performed reverse meta-5 

analysis to remove HUNT individuals;  6 

(4) the LD-independent variants, at an r2 threshold of 0.1, from available variants in the summary 7 

statistics of the 2022 GWAS meta-analysis9 excluding 23andMe and after having performed 8 

reverse meta-analysis to remove HUNT individuals. 9 

Machine diagnostic modelling 10 

The genotyped variants (where available) or imputed variants (dosages, i.e. a decimal number 11 

between 0 and 2 describing the probability of the imputation corresponding to a given allele 12 

combination) were used as input variables (features) for the models. The genetic variant dosages 13 

were one-hot-encoded (redefined as dummy variables) in datasets 1-3. Dataset 4, was not one-hot-14 

encoded because its dimensionality (number of variables) was already significant  and one-hot-15 

encoding would three-fold the feature size, resulting in a problematically large feature-to-sample 16 

size ratio.25 The phenotype assignment (migraine or headache-free) was used as the outcome 17 

(label).  Figure 1 is a schematic of the study design and modelling strategy.  18 

The data was split in a random stratified fashion into a training and a test set in a 9:1 ratio. The test 19 

set was the same for all machine learning and PRS models and was kept unseen until the final 20 

model evaluation.   21 

A series of standard machine learning classification architectures were evaluated: logistic 22 

regression, least absolute shrinkage and selection operator, support vector machines, decision 23 

trees, k-nearest neighbors, naïve Bayes, random forest, gradient boosting methods, and ensemble 24 

methods. Owing to the substantial number of features for dataset 4, this data was trained in chunks 25 

with the following classifiers: perceptron, stochastic gradient descent, passive-aggressive 26 

classifier, and multinomial, Bernoulli, gaussian and complement naïve Bayes. Finally, deep 27 

learning architectures, including TabNet,26 GenNet27 and fDDN28 (specifically to tackle the issue 28 

with input dimensionality surpassing sample size), were evaluated. GenNet is a deep learning 29 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

af172/8125548 by Eastm
an D

ental Institute user on 26 Septem
ber 2025



8 

network that preprocesses data based on genetic annotation. FDNN is a deep learning network 1 

specifically developed to handle cases with a large feature-to-sample ratio.  2 

Model hyperparameters were optimized using Optuna29 with 500 trials. Models were trained on 3 

the training set and performance was continuously evaluated with 10-fold cross-validation. For the 4 

largest dataset a single train/validate split was used owing to extensive compute time. The area 5 

under the receiver operating characteristics curve (AUC) was used as a scoring metric for training 6 

and optimizing the models. The mean AUC and it’s standard deviation (SD) were calculated across 7 

the ten training folds to summarize the model's training performance and the variability between 8 

folds. In addition to AUC, we calculated accuracy, precision, recall and F1-score. The precision is 9 

the proportion of those classified as migraine that indeed have migraine and is identical with the 10 

positive predictive value. The recall is the proportion of those that have migraine that were 11 

classified as migraine and is the same as sensitivity. The F1-score is a compound metric of 12 

precision and recall. The top performing model for each of the four datasets was finally applied on 13 

the test set to quantify out-of-sample performance, calculating AUC with 95% confidence intervals 14 

(CI). All machine learning analyses were conducted using Python 3.10 (Python Software 15 

Foundation) with open-source packages (Supplementary table 1). 16 

Sample characteristics, demographics and phenotype assignment were statistically described as 17 

proportions for dichotomous variables and means with SD for continuous variables. 18 

Sensitivity analysis of relatedness 19 

To estimate the influence of relatedness of individuals, we conducted a sensitivity analysis on 20 

unrelated individuals (up to 3rd degree relatedness was clumped), using the PLINK command 21 

plink2 --bfile plinkFileName --king-cutoff 0.006.  22 

Sensitivity analysis of feature dimensionality 23 

Post-hoc, a series of intermediate datasets with number of variants between dataset 3 and dataset 24 

4 were created to better elucidate the impact of feature dimensionality and model complexity. 25 

These datasets were created by changing the linkage disequilibrium threshold. Each of the 26 

intermediate datasets were used to train the best simple additive machine learning model, and the 27 

best complex machine learning model. 28 
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Polygenic risk scoring 1 

Two methods were employed for calculating PRS: PLINK,30 and LDpred2.31 PLINK extracts the 2 

PRS based on the clumping and thresholding approach. This minimizes the risk of 3 

overrepresenting certain genomic regions due to high linkage disequilibrium, using a linkage 4 

disequilibrium clumping correlation (r2) cut-off value of 0.1 to determine which variants are 5 

considered too correlated. PRS was calculated for each subject using five different p-value 6 

thresholds (10-7, 10-8, 10-9, 10-10 and 10-11) representing the significance of association with the 7 

migraine label. The p-value threshold with the best model fit was used. Population structure was 8 

accounted for by incorporating ten principal components capturing ancestry-related differences as 9 

covariates to make the findings more reliable across diverse groups. Finally, the PRS were 10 

normalized and using a 0.5 decision threshold is used to distinguish cases and controls. LDpred2 11 

also performs linkage disequilibrium clumping and accounts for population stratification using 10 12 

principal components, similar to PLINK. Thereafter a logistic regression model is trained to 13 

achieve the best fit of the PRS on the data. Finally, the trained regression model is used to classify 14 

the phenotype. The dataset train/test split used for hold-out test set evaluation of the PRS 15 

approaches was identical to that of the machine learning models. 16 

Comparison of machine diagnostics with polygenic risk scoring  17 

To compare the diagnostic performance of machine learning and PRS, the test set AUCs were 18 

compared statistically. The null hypothesis criterion was tested by performing the Wilcoxon 19 

nonparametric test of independent samples.32 The statistical significance threshold was set at 0.05. 20 

Model explainability  21 

Using the top performing model, we constructed calibration plots to check how accurately the 22 

model’s classification matched the actual migraine outcomes. We also constructed probability 23 

density curves for both the machine learning models and PRS to visualize the separability of cases 24 

and controls. For the top performing machine learning model for each of the four datasets, we 25 

calculated Shapley values. For each dataset, variants were ordered by Shapley values from highest 26 

to lowest, and compared to the GWAS meta-analysis.9 We also constructed a SHAP (Shapley 27 

Additive exPlanations) summary plots to visualize the relative contribution of increasing genotype 28 

input dimensionality.33 SHAP is a framework utilizing Shapley values to explain machine learning 29 
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model predictions. SHAP assigns each feature an importance value, which enables interpretation 1 

of how much the feature contributes towards the prediction.   2 

Gene annotation and pathway enrichment  3 

To perform gene annotation and pathway enrichment analyses we identified the most influential 4 

variants in the top performing machine learning models and the lead variants identified in the 5 

GWAS meta-analysis. For fair comparison, the 123 most important variants were selected. In cases 6 

where several variants were considered equally important, so that the total number exceeded 123, 7 

all those of equal importance were used. Feature importances were extracted from the models and 8 

prioritized by their importance, providing an ordered list of each variant’s contribution to the 9 

model.  10 

Annotations of variants to genes were based on the proximity method that maps a genetic variant 11 

with its nearest gene (or to each of the genes it directly overlaps), using SNPnexus34 with 12 

EnsemblDB35 as a mapping reference.   13 

Next, annotations of genes to pathways were preformed using the Reactome Pathway Database,36 14 

as implemented in SNPnexus. Pathway enrichment p-values were adjusted for multiple testing 15 

using the Benjamini-Hochberg method to control the false discovery rate36. The crude significance 16 

threshold was set at 0.05, while the false discovery rate threshold was set to 0.1. The same 17 

annotation and pathway enrichment approach was used for both the variants identified through 18 

GWAS and the variants identified through machine learning.  19 

Results  20 

Sample characteristics  21 

Demographics and phenotype assignment 22 

43,197 individuals with available genotype and phenotype data were included in the analyses. 23 

Supplementary Fig. 1 is a flow-chart of the study population. 10,286 individuals (24%) were 24 

classified as having migraine and 32,911 (76%) were classified as headache-free controls. Among 25 

those with migraine, 7,225 (70%) were women, and among the headache-free controls 15,088 26 

(46%) were women. The mean age of the overall population was 54.6 (SD=17.3). The mean age 27 
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of the migraine cases and the headache-free controls was 46.8 (SD=14.0), and 57.1 (SD=17.5), 1 

respectively. All participants were of European ancestry. The distributions of individuals with 2 

migraine and headache-free controls were similar in the training, validation and test splits. In the 3 

training set, 8,322 (24%) had migraine and 26,667 (76%) were headache-free; in the validation set 4 

for dataset 4, 925 (24%) had migraine and 2,963 (76%) were headache-free; and in the test set, 5 

1,039 (24%) had migraine and 3,281 (76%) were headache-free. Previous clinical validations of 6 

the phenotype assignment found that in HUNT2, the sensitivity was 69% and specificity 89% for 7 

migraine.23 In HUNT3, the sensitivity was 67% and specificity was 96%.24 8 

Genotype data 9 

In HUNT2 and HUNT3, 71,680 individuals were genotyped. After quality control and imputation, 10 

a total of 9,832,846 variants were available for the 43,197 individuals included in the analysis. 11 

In the reverse meta-analysis procedure, the influence of 7,801 cases and 32,423 controls from the 12 

HUNT study was removed in the creation of datasets 1-4, and the influence of 53,109 cases and 13 

230,876 controls from 23andMe was removed in the creation of datasets 3 and 4. Thus 94,283 14 

cases and 738,834 controls were used to calculate summary statistics for dataset 1 and 2 and 41,174 15 

cases and 507,958 controls were used to calculate summary statistics for dataset 3 and 4. Of note, 16 

1,395 migraine cases and 1,011 controls from HUNT could not be removed from the summary 17 

statistic calculation as they were part of a previous meta-analysis37 already included in the 2022 18 

GWAS meta-analysis.9 19 

After quality control, imputation, the reverse meta-analysis procedure, calculation of summary 20 

statistics, linkage disequilibrium pruning and pruning based on p-values for variant association the 21 

number of variants in the four datasets were: 22 

(1) dataset 1: 108variant; 23 

(2) dataset 2: 7,771 variants; 24 

(3) dataset 3: 7,840 variants;  25 

(4) dataset 4: 140,467 variants. 26 
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Machine diagnostic performance  1 

For the first three datasets (108, 7,771 and 7,840 variants) the top performing model was the light 2 

gradient boosting machine classifier, with cross-validated AUCs between 0.64 and 0.65, and cross-3 

validated accuracies between 0.60 and 0.62 (Table 1). The hold-out test set AUC was 0.63 (95% 4 

CI: 0.61-0.65), 0.63 (95% CI: 0.61-0.65) and 0.63 (95% CI: 0.62-0.66) for the datasets with 108, 5 

7,771 and 7,804 variants, respectively. The corresponding hold-out test accuracies were 0.60, 0.60 6 

and 0.61. The hold-out test set precision ranged from 0.59 to 0.60, recall ranged from 0.59 to 0.60 7 

and the F1-score ranged from 0.55 to 0.57 (Table 1) 8 

In the largest dataset, containing 140,467 variants, the top performing model was the multinomial 9 

naïve Bayes classifier which achieved a validation set AUC of 0.62 and an accuracy of 0.57. The 10 

hold-out test set AUC was 0.62 (95% CI: 0.60-0.64) and the accuracy was 0.58. Test set precision, 11 

recall and F1-score was 0.64, 0.56 and 0.43, respectively. Table 1 and Figure 2 provide additional 12 

training and test performance metrics for the models. Supplementary table 2 provides all the out -13 

of-sample and training experimental results for the best models of each learning approach for every 14 

dataset.  15 

Relatedness sensitivity analysis  16 

3,567 migraine cases and 10,417 controls were unrelated and included in the relatedness sensitivity 17 

analysis. The mean cross-validated training AUC for the relatedness sensitivity analysis ranged 18 

from 0.62 to 0.63 for all four datasets. The corresponding test set AUCs ranged from 0.61 to 0.63. 19 

Supplementary table 3 outlines all performance metrics for the sensitivity analysis.  20 

Feature dimensionality sensitivity analysis  21 

Five intermediate datasets with 19,473, 57,965, 71,188, 93,237 and 114,179 variants were created. 22 

With increasing feature dimensionality (i.e., higher number of variants) the performance of the 23 

complex models increased until suddenly reaching a performance drop, whereas the performance 24 

of simpler additive models such as the multinomial naive Bayes increased steadily until reaching 25 

a plateau (Figure 3 and Supplementary table 2). The light gradient boosting machine peaked at 26 

92,237 variants with a training and test set AUC of 0.66.  27 
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Polygenic risk scores  1 

The test set PRS AUCs using PLINK were 0.52 (95% CI 0.50-0.54) for the dataset with 108 2 

variants, 0.52 (95% CI 0.51-0.55) for the dataset with 7,771 variants, 0.53 (95% CI 0.51-0.55) for 3 

the dataset with 7,840 variants, and 0.53 (95% CI 0.52-0.56) for the dataset with 140,467 variants. 4 

The corresponding test set PRS AUCs using LDpred2 were 0.55 (95% CI 0.53-0.57), 0.56 (95% 5 

CI 0.54-0.58), 0.59 (95% CI 0.57-0.61), and 0.59 (95% CI 0.57-0.61), respectively.  6 

Comparison of machine learning and polygenic risk scores  7 

The machine learning models outperformed PRS in all four datasets (Table 2). The difference in 8 

AUCs was most pronounced for datasets 1 through 3 (P < 0.001), and slightly less pronounced for 9 

the largest dataset (P = 0.02). Figure 3 illustrates the impact of feature dimensionality on 10 

performance for both machine learning and PRS.  11 

Model explainability   12 

Figure 4 visualizes the SHAP values for the top performing machine learning models for each 13 

dataset. These figures demonstrate that datasets 1 through 3 benefits from a model that may capture 14 

non-additive effects, whereas this advantage is lost in the largest dataset in favor of an additive 15 

probabilistic architecture. After ordering the variants by Shapley values, the top 123 variants were 16 

compared to those in the 2022 GWAS meta-analysis.9 As expected, all 108 variants in dataset 1 17 

were identified among the 123 from the GWAS meta-analysis. For the larger datasets, the number 18 

of common variants among the 123 most important were 13, eight and none for dataset 2, 3 and 4, 19 

respectively (Supplementary table 4). Supplementary Fig. 2 shows the probability distribution plot 20 

and calibration plots for the top performing machine learning model and PRS. Cases and controls 21 

showed largely overlapping prediction probability density plots, however more so for PRS as 22 

compared to the machine learning models. 23 

Gene annotation and pathway enrichment  24 

All 108 variants for dataset 1, the top 184 variants for dataset 2, the top 123 variants for dataset 3 25 

and the top 1018 variants for dataset 4 were used for gene annotations and pathway enrichment. 26 

In both dataset 2 and dataset 4, several variants were considered equally important, thus these 27 

numbers exceeded 123 (184 and 1018, respectively). Table 3 and Figure 5 details the annotated 28 
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genes and enriched pathways found to be common with those identified in the GWAS meta-1 

analysis and those unique to the machine learning models.  2 

Gene comparison analysis resulted in the identification of 55 genes that were unique to the best 3 

interactive machine learning model (light gradient boosting machine in dataset 2), and 1002 genes 4 

that were unique to the best probabilistic/additive machine learning model (multinomial naive 5 

Bayes in dataset 4). Further, pathway enrichment analysis resulted in the identification of 91 and 6 

590 additional pathways for the respective machine learning models. After pruning the identified 7 

pathways based on crude p-value threshold, 14 and 74 pathways were evaluated in detail 8 

(supplementary table 5 and 6). Among these 21 were considered significant after correcting for a 9 

false discovery rate of 0.1. The enriched pathways were primarily related to signal transduction 10 

and neurological function. 11 

Discussion  12 

In this study we found that machine learning outperforms PRS in distinguishing individuals with 13 

migraine from headache-free individuals based on genotype data. The best machine learning model 14 

achieved a hold-out test set AUC of 0.63 and the best PRS model achieved a hold -out test set AUC 15 

of 0.59. This is the first study to utilize machine learning to classify individuals with migraine and 16 

headache-free controls using genotype data.38 Other studies aiming to classify headaches have 17 

mainly focused on clinical data, MRI data or other non-genetic paraclinical data.38-40  18 

Though an AUC of 0.63 is modest in absolute terms, it is the increment in performance of flexible 19 

models over PRS that is critical here. Gene-environment interactions and the imprecision of single 20 

point disease prevalence set a comparatively low ceiling on maximal achievable performance from 21 

genotypic data alone.41 But the substantial difference between twin study estimates of heritability 22 

and PRS performance9,12 suggests genetic susceptibility may be mediated by wider and more 23 

complex genetic interactions than conventional PRS models are able to capture, as evidenced by 24 

the superior performance of the flexible models used in our study. Note that the comparison 25 

between machine learning and PRS was stacked in favor of PRS here, since the PRS was based on 26 

a meta-analysis of 94,283 migraine cases and 738,834 controls, while the machine learning models 27 

were based on the much smaller HUNT study population. Hence, if compared between datasets of 28 
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equal size, the magnitude of difference would be expected to be even larger in favour of machine 1 

learning.  2 

Indeed, the findings from the three smallest datasets (108, 7,771 and 7,840 variants) support a non-3 

additive and interactive genetic architecture for migraine, and can also explain why the machine 4 

learning approach outperforms PRS. Recall that the top performing models in these datasets was 5 

a light gradient boosting classifier, a model that can capture both non-linear relationships and 6 

interactions. Therefore, the observed superiority of these models over the purely additive PRS 7 

supports that the missing heritability may in part be attributed to non-additive effects such as gene-8 

gene interactions. The notion that machine learning models can pick up non-linear and interactive 9 

effects of genotype is supported by empirical data from several other complex traits.42 In an 10 

analysis of 34,702 individuals from eight U.S. cohorts, an extreme gradient boosting model was 11 

demonstrated to increase the variance explained, compared to PRS, between 22 and 100 percent 12 

for complex traits such as height, blood pressure and cholesterol levels.42 That study supports our 13 

finding that complex machine learning models can capture non-linear and interactive effects also 14 

in migraine. It is further supported by several studies that have found that specific gene-gene 15 

interactions synergistically increase the susceptibility for migraine.43-45 16 

We observe that the complex machine learning models show a small, but gradual, increase in 17 

performance with increasing genetic dimensionality before performance dramatically deteriorates 18 

beyond 93,237 variants (Figure 3). On the other hand, the simpler probabilistic naïve Bayes models 19 

show a steady increase in performance before reaching a plateau beyond 57,965 variants. These 20 

patterns can be explained as follows:  21 

The machine learning models perform only slightly better in dataset 2 and 3 as compared to dataset 22 

1, likely because information from the same relatively small set of loci is used across all three 23 

models. This is evident from the SHAP plot (figure 5) where the light gradient boosting seems to 24 

prioritize slightly less than a fifth of variants. Notably, dataset 3 used a higher p-value threshold 25 

for association, but was drawn from a smaller sample, likely resulting in identifying variants from 26 

the same set of loci as dataset 1 and 2.  27 

When information from additional parts of the genome are incorporated in the models in the 28 

intermediate post-hoc analyses (recall that these datasets used increasingly higher r2 cut-offs), it 29 

led to an increase in performance, before the sudden stall beyond 93,237 variants. This drop in 30 
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performance can be explained by overfitting when feature dimensionality and complexity surpass 1 

what can be supported by the available sample size. A rule of thumb states that there should be at 2 

a minimum 5-10 samples for each feature (or dimension).46 However, despite performance initially 3 

increasing as the number of dimensions increases, beyond a certain dimensionality, the 4 

performance deteriorates.46  5 

On the contrary, the relatively “simpler” multinomial naïve Bayes model, assuming an additive 6 

probabilistic architecture, similar to PRS, plateaus beyond 57,965 variants where additional small -7 

effect-variants provide negligible additional performance. This plateauing is, as expected, also 8 

observed for PRS (figure 3). In summary, we argue that complex models capture non-additive 9 

effects as long as the feature to sample ratio is appropriate, beyond which the simpler models are 10 

favoured. This paradoxical phenomenon supports the second explanation for the “missing 11 

heritability”, namely that there are many small-to-medium size variants that fail to reach the 12 

genome-wide significance threshold but have an impact in PRS and additive models such as naïve 13 

Bayes.  14 

In this study, we identified several genes and pathways that seem to be unique for the machine 15 

learning approach. While the best model for the smallest dataset primarily identified genes and 16 

pathways already established in the GWAS meta-analysis, the complex models of dataset 2 and 3 17 

resulted in several unique genes and pathways. The majority of the most important variants as 18 

identified by the Shapley analysis were also unique for datasets 2 and 3. The genes annotated to 19 

these variants were primarily enriched in pathways related to signal transduction and neurological 20 

function, which is biologically plausible for migraine. Dataset 4 with 140,167 variants and a 21 

probabilistic naïve Bayes model resulted in almost exclusively unique genes. This is likely due to 22 

the larger number of variants included in the annotation and pathway analysis, naturally leading to 23 

inclusion of a wider part of the genome and thus significantly more genes and pathways. Therefore, 24 

any biological interpretations from this dataset must be done with caution.  25 

Interestingly, the overall best model (light gradient boosting machine in dataset 2) highlighted 26 

pathways related to calcitonin gene-like receptors, and the toxicity of botulinum toxin A, D, E and 27 

F. The calcitonin gene-related ligand and its receptor play an important role in migraine 28 

pathophysiology where they mediate trigeminovascular pain transmission and vasodilatory 29 

neurogenic inflammation.47 They are also targets of several monoclonal antibodies that have 30 
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demonstrated effect in preventing migraine.48 One of the risk loci identified in the 2022 GWAS 1 

meta-analysis contains the gene encoding calcitonin gene-related peptide itself, but not its 2 

receptor.9 The identification of the receptor in this study suggests that both the ligand and receptor 3 

are relevant for the susceptibility of migraine. OnabotulinumtoxinA is a therapeutic agent used as 4 

preventive treatment for migraine.49 Its mechanism of action is thought to be the inhibition of pro-5 

inflammatory and excitatory neurotransmitters and neuropeptides from primary afferent 6 

nociceptive pain fibers in the head and neck that participate in the development of peripheral and 7 

central sensitization.50 The pathway identified here involve the SV2A gene, encoding synaptic 8 

vesicle glycoprotein 2A, which has been shown to be the receptor for botulinum toxin  A.51 It is 9 

therefore conceivable that an upregulation of the receptor increase the susceptibility to both 10 

migraine and a treatment effect of OnabotulinumtoxinA. 11 

The approach of complex genotype modelling has several potential downstream clinical 12 

implications. First, future models with improved performance could serve as an objective measure 13 

of migraine. Second, the modeling approach is transferrable and could prove a valuable risk 14 

scoring tool for other phenotypically diverse, idiopathic neurological traits of non-additive genetic 15 

architecture. Finally, further unraveling of the model architecture could help elucidate the 16 

underlying etiology and pathophysiology of migraine, paving the way for clinical and therapeutic 17 

markers. 18 

We believe that complex models that can capture both interactive and additive effects will further 19 

improve classification by genotype, given a sufficiently large sample. The prerequisites for such 20 

models to be successful rely on sufficiently large sample sizes to allow complex modelling without 21 

overfitting; and the use of the right computational algorithms, such as non-linear machine learning 22 

models and deep neural networks. Future efforts to classify migraine by genotypic data adhering 23 

to these prerequisites are likely to outperform the classification performance of this study. 24 

Moreover, future studies should aim to incorporate demographic, phenotypic and other medical 25 

data that could further take advantage of important gene-environment and epigenetic factors that 26 

most likely partake in the migraine etiology.12 Finally, it is important that future research efforts 27 

also aim to validate the models in out-of-sample cohorts to assess their generalizability. 28 
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Strengths and limitations  1 

This paper has several strengths. First, the models are rigorously validated in a held -out unseen 2 

test set. The test set performances are faithful to the trained model suggesting that it is 3 

generalizable. Secondly, the developed models are compared to a validated standard, namely PRS, 4 

which establishes its robustness. Both strengths overcome challenges that are repeatedly cited as 5 

barriers to why machine learning fails to prove clinically useful in medicine.38,52 Thirdly, the 6 

models are free from any apparent data leaks, contrary to what typically happens when the input 7 

for the classification models is the symptomatology of the migraine which is what determines the 8 

headache status, thus leading to overly optimistic classification results. Weaknesses of the study 9 

includes the moderate sensitivity of the phenotype assignment, although with near-perfect 10 

specificity—a potential classification bias. However, because migraine is the minority class, with 11 

lower sensitivity the class imbalance increases, thereby creating a more challenging classification 12 

task which ultimately leads to underestimation of the model precision. Another limitation is that 13 

we were not able to remove the influence of a few HUNT individuals in the calculation of summary 14 

statistics, which could have biased the models in favour of the dataset at hand. Nevertheless, this 15 

limitation is expected to increase the performance also of the PRS, hence this weakness does not 16 

invalidate the finding that machine learning outperforms PRS.  17 

When comparing the machine learning and PRS, there are several strengths and weaknesses of 18 

both approaches that should be acknowledged. The most important strength of the machine 19 

learning models for the task at hand is the ability to capture non-additive and interactive effects. 20 

However, it comes at the cost of often high computational time and limited interpretability. PRS 21 

on the other hand, is a validated and commonly accepted method of assessing the risk of complex 22 

traits and is much less computationally expensive.30 Still, it is limited to assessing additive genetic 23 

architectures, which likely is insufficient for migraine.12 24 

Conclusion  25 

In this study we demonstrate that machine learning outperforms PRS in distinguishing migraine 26 

from headache-free controls when using genome-wide genotype data and succeed in identifying 27 

new genes and pathways potentially implicated in the disease. Complex machine learning models 28 

significantly outperform PRS when the number of genetic variants are relatively low, supporting 29 
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a non-additive and interactive genetic architecture. However, this benefit diminishes with 1 

increasing input dimensionality in favour of additive effects. Our findings support both an additive 2 

and an interactive and non-additive genetic basis for migraine, validating the hypothesized 3 

explanations for the missing heritability. Future research investigating larger cohorts with complex 4 

models that capture both additive and interactive relationships could likely improve classification 5 

performance based on genotype. 6 
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 21 

Figure legends 22 

Figure 1 Schematic overview of the study design. Among 43,197 individuals, 10,286 had 23 

migraine and 32,911 were headache-free controls. Four different datasets with an increasing 24 

number of genetic variants were used for distinguishing migraine vs. headache-free controls. These 25 

datasets were split in the same 9:1 ratio training and test sets. The training data was subsequently 26 

preprocessed, trained and optimized using 10-fold cross-validation. The best model for each 27 

dataset was evaluated on the test set.  28 
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 1 

Figure 2 Performance of the best machine learning models. Receiver operating characteristics 2 

curves for top performing machine learning models for each of the four datasets showing mean 3 

10-fold cross-validated area under curve (blue line) ± 1 standard deviation (grey shaded area), and 4 

test set area under curve (orange line). (A) Dataset 1 with 108 variants. (B) Dataset 2 with 7,771 5 

variants. (C) Dataset 4 with 7,840 variants. (D) Dataset 4 with 140,467 variants. 6 

 7 

Figure 3 Impact of feature dimensionality. The hold-out test set area under curve (y-axis) is 8 

plotted against the number of variants included in the model (y-axis) for the best machine learning 9 

and polygenic risk scoring approaches. For each color, solid lines represent training performance 10 

and dotted lines represent test performance for a given modelling approach. Performance for the 11 

intermediate datasets (19,473 to 114,179 variants) were only calculated for the best non-linear 12 

complex machine learning approach (light gradient boosting) and the best simple additive model 13 

(multinomial naïve Bayes) as part of the post-hoc sensitivity analyses. Note that light gradient 14 

boosting increases in performance up to 93,237 variants before sharply dropping, indicating 15 

overfitting when the feature space exceeds a limit. Multinomial naïve Bayes, however, increases 16 

steadily before reaching a plateau beyond 57,965 variants. LightGBM: light gradient boosting 17 

machine. MNB: multnomial naïve Bayes. 18 

 19 

Figure 4 SHAP summary plots. Plots illustrating the relative contribution of the included variants 20 

to the predictions for the best machine learning model for each dataset. The x-axes denote number 21 

of variants, the y-axes denote the absolute SHAP value on a logarithmic scale. (A) In dataset 1, all 22 

108 variants contributed towards the prediction. (B) In dataset 2, 1,486 out of 7,771 variants 23 

contributed. (C) In dataset 3, 1,442 out of 7,840 variants contributed. In the two latter cases, a 24 

large majority of variants do not contribute to the prediction suggesting that the model omits the 25 

less important variants, however, still achieving higher accuracy than polygenic risk scoring 26 

suggesting that some non-additive effects between the contributing variants are captured. (D) In 27 

dataset 4, all 140,467 variants contribute but with small contribution each. This is due to the 28 

probabilistic additive architecture of the naive Bayes approach, more similar to polygenic risk 29 

scoring. SHAP: Shapley additive explanations. 30 
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 1 

Figure 5 Venn diagrams showing overlap of annotated genes and enriched pathways. (A) 2 

Overlap of annotated genes from variants identified in the genome-wide association study, the best 3 

complex model (light gradient boosting machine in dataset 2) and the best additive machine 4 

learning model (multinomial naïve Bayes in dataset 4). (B) Overlap of enriched pathways from 5 

genes and variants identified in the genome-wide association study, the best complex model (light 6 

gradient boosting machine in dataset 2) and the best additive machine learning model (multinomial 7 

naïve Bayes in dataset 4).  8 

 9 

Table 1 Performance of best machine learning models 10 
 AUC Accuracy Recall Precision F1-Score 

Dataset Train Test Train Test Train Test Train Test Train Test 

Dataset 1 (108 

variants)a 

0.64 ± 

0.010 

0.63 0.60 ± 

0.009 

0.60 0.59 ± 

0.010 

0.59 0.59 ± 

0.010 

0.59 0.55 ± 

0.009 

0.55 

Dataset 2 (7771 
variants)b 

0.64 ± 
0.010 

0.63 0.62 ± 
0.008 

0.61 0.60 ± 
0.009 

0.59 0.60 ± 
0.009 

0.59 0.55 ± 
0.009 

0.55 

Dataset 3 (7840 

variants)c 

0.65 ± 

0.012 

0.63 0.61 ± 

0.009 

0.62 0.60 ± 

0.011 

0.60 0.60 ± 

0.011 

0.60 0.58 ± 

0.010 

0.57 

Dataset 4 (140 467 
variants)d 

0.62 0.62 0.59 0.58 0.57 0.56 0.65 0.64 0.45 0.43 

For each scoring metric, the training set performance is presented as the mean of 10-fold cross validation (± standard deviation), except for 11 
dataset 4, in which only one train/validate split was evaluated. The test value is the performance of the trained model in the hold -out test set. 12 
aLead variants from risk loci identified in the 2022 genome-wide association study meta-analysis10 (108 variants). 13 
bAll variants with p-value <5 × 10-8 identified from the 2022 genome-wide association study meta-analysis10 summary statistics (7771 variants). 14 
cAll variants with a p-value <1 × 10-5 identified from the re-calculated summary statistics without 23andMe (7840 variants). 15 
dAll linkage disequilibrium independent variants among all genotyped variants (140  467 variants). 16 
 17 
 18 

Table 2 Comparison of machine learning and polygenic risk scoring 19 
Dataset Best machine 

learning model 

AUC (95% CI) 

PLINK 
AUC (95% CI) 

LDpred2 
AUC (95% CI) 

Comparison 

Dataset 1 (108 variants)a 0.63 (0.61–0.65) 0.52 (0.50–0.54 0.55 (0.53–0.57) P < 0.001 

Dataset 2 (7771 variants)b 0.63 (0.61–0.65) 0.52 (0.51–0.55) 0.56 (0.54–0.58) P < 0.001 

Dataset 3 (7840 variants)c 0.63 (0.62–0.66) 0.53 (0.51–0.55) 0.59 (0.57–0.61) P < 0.001 

Dataset 4 (140 467 variants)d 0.62 (0.60–0.64) 0.53 (0.52–0.56) 0.59 (0.57–0.61) P = 0.02 

In datasets 1, 2, and 3, a light gradient boosting machine performed best. In dataset 4, a multinomial naïve Bayes model performed best. The 20 
rightmost column is the result of a Wilcoxon nonparametric test comparing the best machine learning model and the best polygenic risk scoring 21 
approach. 22 
aLead variants from risk loci identified in the 2022 genome-wide association study meta-analysis10 (108 variants). 23 
bAll variants with p-value <5 × 10−8 identified from the 2022 genome-wide association study meta-analysis10 summary statistics (7771 variants). 24 
cAll variants with a p-value <1 × 10−5 identified from the re-calculated summary statistics without 23andMe (7840 variants). 25 
dAll linkage disequilibrium independent variants among all genotyped variants (140  467 variants). 26 
 27 
  28 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

af172/8125548 by Eastm
an D

ental Institute user on 26 Septem
ber 2025



28 

Table 3 Comparison of identified genes and pathways 1 
  Dataset 1  

(108 variants)a 
Dataset 2  

(7771 variants)b 
Dataset 3  

(7840 variants)c 
Dataset 4  

(140 467 variants)d 

Common genes, n/n (%)  73/105 (69.5) 60/115 (52.2) 38/95 (40.0) 8/1010 (0.8) 

Genes unique to machine 
learning, n/n (%)  

32/105 (30.5) 55/115 (47.8) 57/95 (60.0) 1002/1010 (99.2) 

Common pathways, n/n (%)  228/254 (89.8) 139/230 (60.4) 127/226 (56.2) 200/790 (25.3) 

Pathways unique to machine 

learning, n/n (%)  

26/254 (10.2) 91/230 (39.6) 99/226 (43.8) 590/790 (74.7) 

After gene annotation and pathway enrichment, the significant genes and pathways identified in the best machine learning models were compared 2 
to those identified in through a genome-wide association study approach. 3 
aLead variants from risk loci identified in the 2022 genome-wide association study meta-analysis10 (108 variants). 4 
bAll variants with p-value <5 × 10−8 identified from the 2022 genome-wide association study meta-analysis10 summary statistics (7771 variants). 5 
cAll variants with a p-value <1 × 10−5 identified from the re-calculated summary statistics without 23andMe (7840 variants). 6 
dAll linkage disequilibrium independent variants among all genotyped variants (140  467 variants). 7 
 8 

 9 
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*As of April 2024, TYSABRI SC can be administered outside a clinical setting (e.g. at home) by a HCP for patients who have tolerated at least 6 doses of TYSABRI well 
in a clinical setting. Please refer to section 4.2 of the SmPC.1

TYSABRI is indicated as single DMT in adults with highly active RRMS for the following patient groups:1,2

•	 Patients with highly active disease despite a full and adequate course of treatment with at least one DMT
•	 Patients with rapidly evolving severe RRMS defined by 2 or more disabling relapses in one year, and with 1 or more Gd+ lesions on brain 

MRI or a significant increase in T2 lesion load as compared to a previous recent MRI

Very common AEs include nasopharyngitis and urinary tract infection. Please refer to the SmPC for further safety information, including the 
risk of the uncommon but serious AE, PML.1,2

Abbreviations: AE: Adverse Event; DMT: Disease-Modifying Therapy; Gd+: Gadolinium-Enhancing; HCP: Healthcare Professional; IV: Intravenous; 
JCV: John Cunningham Virus; MRI: Magnetic Resonance Imaging; PD: Pharmacodynamic; PK: Pharmacokinetic; PML: Progressive Multifocal 
Leukoencephalopathy; RRMS: Relapsing-Remitting Multiple Sclerosis; SC: Subcutaneous. 

References: 1. TYSABRI SC (natalizumab) Summary of Product Characteristics. 2. TYSABRI IV (natalizumab) Summary of Product Characteristics. 
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Adverse events should be reported. For Ireland, reporting forms and information can be found at www.hpra.ie.  
For the UK, reporting forms and information can be found at https://yellowcard.mhra.gov.uk/ or via the Yellow 
Card app available from the Apple App Store or Google Play Store. Adverse events should also be reported to 

Biogen Idec on MedInfoUKI@biogen.com 1800 812 719 in Ireland and 0800 008 7401 in the UK.
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Prescribing Information

Biogen-261128. DOP: April 2025

Efficacy and safety profile comparable between TYSABRI IV and SC†1,2 
 
†Comparable PK, PD, efficacy, and safety profile of SC to IV except for injection site pain.1,2

TYSABRI SC injection with the potential to 
administer AT HOME for eligible patients*

A Biogen developed and funded JCV 
antibody index PML risk stratification 
service, validated and available exclusively 
for patients on or considering TYSABRI.

https://www.biogenlinc.co.uk/en/products/ms-portfolio/tysabri/sc-formulation/?utm_source=Oxford_University_Press&utm_medium=display&utm_campaign=2505_tysabri_key_messages_e-pdf_gbr_ms_tys_com&utm_content=e-pdf
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