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Modelling neural coding in the auditory 
midbrain with high resolution and accuracy
 

Fotios Drakopoulos    1  , Lloyd Pellatt1, Shievanie Sabesan1, Yiqing Xia    1, 
Andreas Fragner2 & Nicholas A. Lesica    1

Computational models of auditory processing can be valuable tools 
for research and technology development. Models of the cochlea are 
highly accurate and widely used, but models of the auditory brain lag far 
behind in both performance and penetration. Here we present ICNet, a 
convolutional encoder–decoder model of neural coding in the inferior 
colliculus. We developed ICNet using large-scale intracranial recordings 
from anaesthetized gerbils, addressing three key modelling challenges 
that are common across all sensory systems: capturing the full statistical 
structure of neuronal response patterns; accounting for physiological 
and experimental non-stationarity; and extracting features of sensory 
processing that are shared across different brains. ICNet provides highly 
accurate simulation of multi-unit neural responses to a wide range of 
complex sounds, including near-perfect responses to speech. It also 
reproduces key neurophysiological phenomena such as forward masking 
and dynamic range adaptation. ICNet can be used to simulate activity from 
thousands of neural units or to provide a compact representation of early 
central auditory processing through its latent dynamics, facilitating a wide 
range of hearing and audio applications. It can also serve as a foundation 
core, providing a baseline neural representation for models of active 
listening or higher-level auditory processing.

Computational models of sensory systems are widely used in funda-
mental research, offering a platform to synthesize existing knowledge 
and enabling the generation and preliminary testing of hypotheses 
without the need for in vivo experiments. They can also facilitate the 
development of technologies that seek to approximate natural sen-
sory function in artificial systems. However, the utility of a model for 
a particular application depends on the degree to which it provides 
an accurate simulation of the true biological system at the relevant 
spatial and temporal scales. Numerous high-resolution models of the 
cochlea have been developed that faithfully capture its mechanical 
and electrical properties1, with widespread uptake across academia 
and industry. Models of auditory processing in the brain, on the other 
hand, are much less accurate, with even the best missing out on a sub-
stantial fraction of the explainable variance in subcortical and cortical 
neural activity2,3.

Models of the cochlea have typically been designed by hand to 
mimic the transformations performed by the biological system. This 
approach works well for the cochlea because it contains only a few 
stages with relatively homogeneous elements. The brain, however, 
with its many interconnected and diverse neural networks, is too 
complex for such an approach. Hand-designed models of the audi-
tory brain can be effective in describing specific features of responses 
to a limited class of sounds4–7, but more general models of the brain 
require the use of ‘black box’ frameworks with parameters estimated 
from neural recordings. To facilitate model fitting from limited data, 
the allowable transformations are typically constrained to be either 
linear or low-order nonlinear2. These constraints aid interpretability, 
but such models lack the capacity to capture the full complexity of 
auditory processing and, thus, are not accurate enough for many 
applications.
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model to decouple the fundamental aspects of auditory processing 
from the effects of physiological degradation or electrode drift so 
that, once fully trained, it can generate outputs that reflect optimal 
recording conditions. The final model, which we call ICNet, can simu-
late neural activity across many brains in response to a wide range of 
sounds with high accuracy and fast execution, and its latent dynamics 
provide a compact description of auditory processing that can serve a 
variety of applications. ICNet can be used as a standalone model with 
outputs that reflect the baseline neural representation at the level 
of the IC, or as a foundation core for models that include additional 
aspects of auditory processing such as behavioural modulation or 
higher-level computations.

In the following sections, we describe the DNN-based framework 
that we used to develop ICNet and then evaluate its performance. We 
first describe the DNN components that we designed to address each 
of the three modelling challenges. We then present the final model and 
demonstrate how its encoder can be used as a front end for automatic 
speech recognition (ASR). We establish the remarkable accuracy of 
the model by comparing neural responses simulated by ICNet with 
those recorded from the IC for a variety of sounds that were not part 
of training (including speech in quiet and in noise, moving ripples, and 
music at different intensities). Finally, we demonstrate that ICNet also 
captures fundamental neurophysiological phenomena and further 
establish its generality across new animals and sounds.

Results
To collect the dataset required for model training, we recorded neural 
activity from the IC of nine normal-hearing gerbils, a common animal 
model for human hearing, using custom-designed electrode arrays 
with 512 channels21,22 (Fig. 1a). We made the recordings under anaes-
thesia, allowing us to present a wide variety of sounds to each animal 
across a range of intensities, including speech in quiet and in noise, 
processed speech, music, environmental sounds, moving ripples and 
tones that together totalled more than 10 h in duration. We processed 
the recordings to extract MUA (threshold crossing counts on each 
recording channel in 1.3-ms time bins)20,21. We included all recorded 
units in model training, but only those units with a signal correlation 
(correlation of responses across repeated trials of broadband noise) 
of 0.2 or higher are included in our model evaluation (494 ± 16.7 units 
from each animal, resulting in a total of 4,446 units across all animals; 
Supplementary Fig. 1).

We trained DNN models to simulate neural coding, that is, to take 
as input each presented sound waveform and produce as output the 
corresponding MUA spiking patterns recorded from all units in each 
individual animal. These models use a cascade of convolutional layers 
to encode the sound waveform s to a latent representation ̂rb (bottle-
neck), which is then passed to a simple linear decoder to predict the 
response ̂R for the recorded units (Fig. 1b). The output of the decoder 
for each unit in each time bin defines a probability distribution p( ̂R|s), 
from which we can then sample to simulate the activity ̂R of each unit 
across time with millisecond precision. Once trained, the DNN models 
can be used to simulate the neural activity of all recorded units for any 
sound, whether it was presented during neural recordings or not.

DNNs can capture the statistics of neural response patterns
We first trained a set of baseline models to simulate activity across 
all units for each animal through Poisson regression21 (number of 
classes (Nc) = 1 in the decoder layer of Fig. 1b to produce the Poisson 
rate parameter λ). The Poisson assumption is common in models of 
neural coding. It provides a theoretical basis for the optimal estima-
tion of model parameters via classical statistical methods, and it is a 
reasonable approximation of the true distribution of activity in some 
brain areas. However, activity in subcortical areas such as the IC is typi-
cally underdispersed, that is, it is much more reliable across trials than 
is expected for a Poisson process23,24. This phenomenon is illustrated 

Advances in deep learning have created a new opportunity to 
develop accurate models of sensory processing in the brain, making it 
feasible to fit models that capture arbitrary nonlinear transformations 
directly from data. Recent studies have shown that deep neural network 
(DNN) models of the sensory periphery can be highly accurate. DNNs 
perform similarly to biophysical models of the cochlea in predicting 
a wide range of auditory phenomena8–11, and beyond the auditory 
system, models of the retina provide accurate predictions of ganglion 
cell responses to natural scenes12. Initial attempts to build DNN mod-
els of sensory processing in the brain have also produced impressive 
results. Models of primary visual cortex (V1) responses to natural 
images explained 50–90% of the explainable variance in recorded 
activity13–15, while models of V4 explained 90% (ref. 16). DNN models of 
primary auditory cortex (A1) responses to natural sounds perform simi-
larly well, explaining 60–70% of the explainable variance in recorded 
activity17,18. However, these models reproduce only low-resolution 
measurements of activity (calcium transients13,15, spike counts over 
large time windows14,16, field potentials18 or functional magnetic reso-
nance imaging voxels17), ignoring potentially important information 
in the neural code that is present at fine spatial and temporal scales. 
One recent attempt to use DNNs to model single- and multi-unit spik-
ing in auditory cortex with a temporal resolution of 10 ms succeeded 
in capturing approximately half of the explainable variance19.

For a model of neural coding in the early auditory pathway, both 
high spatial and temporal resolution are essential20. We recently devel-
oped a DNN model of the inferior colliculus (IC), the midbrain hub of 
the central auditory pathway, to simulate neural response patterns with 
millisecond precision21. We trained the model on multi-unit activity 
(MUA) recorded across the extent of the IC, with the goal of identify-
ing and capturing latent neural dynamics that reflect the fundamental 
computations that are common to all brains, rather than the idiosyn-
crasies of particular neurons. This model was effective in predicting 
mean responses to a limited set of speech sounds. However, to bring its 
performance up to the level required for it to serve as a useful general 
model of central auditory processing or as a valid in silico surrogate  
for the IC in auditory neuroscience, there are three key challenges 
that must be addressed. The first is to capture the full statistical com-
plexity of neural activity. Models of neural coding typically rely on 
regression frameworks with assumed distributions (for example,  
Poisson) that constrain the relationship between response strength and 
reliability2. Although these assumed distributions might be valid for 
some higher-level brain areas, they are a poor match for early sensory 
pathways where strength and reliability exhibit complex interactions.

The second challenge is to address non-stationarity. Even in the 
absence of behavioural modulation, the mapping between sensory 
input and recorded neural activity can change over time for both physi-
ological reasons (for example, changes in brain state) and experimental 
reasons (for example, movement of the recording electrode within 
the brain). Because training high-capacity models requires the use of 
large datasets recorded over long periods of time, non-stationarity is 
inevitable and must be explicitly accounted for. The final challenge is 
to overcome the idiosyncrasy of individual brains and the recordings 
made from them. While models must be trained on individual record-
ings, the final model of a sensory brain area should reflect only the 
processing that is common across all healthy individuals.

To address these challenges and derive an accurate and general 
model of early central auditory processing, we developed a encoder–
decoder framework for modelling neural coding that we trained 
on large-scale recordings from the IC of anaesthetized gerbils. The 
framework comprises a shared encoder that maps a sound waveform 
to a generic latent representation, followed by separate decoders that 
map the generic representation to the neural activity of individual 
brains. Each decoder also receives a second input that serves as a 
time stamp, which it uses to modulate the generic representation to 
account for non-stationarity specific to each brain. This allows the 
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in Fig. 1c, which compares the peri-stimulus time histograms (PSTHs) 
of recorded and simulated neural responses for an example IC unit to 
128 trials of a pure tone. The Poisson model captured the mean activity 
across trials well (indicated by the solid lines), but overestimated the 
variability across trials (indicated by the shaded areas).

Fortunately, DNNs can be trained to predict full activity distribu-
tions without any assumptions by framing the problem as classifica-
tion rather than regression25. We trained the same DNN architecture 
for each animal with a cross-entropy loss and categorical distribu-
tions with Nc = 5 discrete classes (corresponding to the probability of 
each unit having a count of 0–4 within a given 1.3-ms time bin). The 
cross-entropy model accurately captured both the mean activity and 
the variability across trials for the example unit (Fig. 1c). For all time 
bins within the duration of the tone, the Fano factor (ratio of variance 
to mean) was 0.55 for the true response, 0.54 for the cross-entropy 
model and 1.16 for the Poisson model (note that, because the rate of 
the Poisson model varies across time bins, the overall Fano factor 
of its activity does not need to be exactly 1). For all units from one 
example animal in response to four different tone frequencies, the 
Fano factor for the cross-entropy model was much closer to the true 
value than the Fano factor for the Poisson model (Fig. 1d; the aver-
age absolute error was 0.38 for the Poisson model and 0.07 for the 
cross-entropy model).

To compare the overall performance of the Poisson and cross- 
entropy models, we simulated responses for all animals to four differ-
ent sounds: speech in quiet, speech in noise, moving ripples and music. 
As shown in Fig. 1e for four example units, the cross-entropy model 
accurately predicted the full MUA count distributions for each sound. 
We compared the overall performance of the models for each animal 
and sound using two metrics (averaged across all time bins and units): 
the root-mean-square error (RMSE) between the recorded and pre-
dicted activity, and the logarithm of the probability (log-likelihood) of 
observing the recorded activity from the activity distribution inferred 
by the model. We found consistent improvements for the cross-entropy 
models across all animals and sounds (Fig. 1f; improvement of 15.98% 
(15.88–16.02) for RMSE (median and 95% confidence intervals over 
bootstrap samples) and 8.13% (8.04–8.16) for log-likelihood). These 
results demonstrate that characterizing the full distributions of spik-
ing activity for each neural unit is feasible and improves the accuracy 
of simulated neural coding in the IC.

DNNs can account for non-stationarity in neural recordings
Capturing the full nonlinearity of auditory processing requires the use 
of high-capacity models, which in turn requires large datasets recorded 
over long periods of time. Non-stationarity in such recordings is inevi-
table, as the physiological state of the animal or the electrode position 
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Fig. 1 | Modelling the statistical properties of neural activity. a, A schematic of 
the geometry of custom-designed electrode arrays for large-scale recordings in 
the gerbil IC. The recording sites were distributed across 8 electrode shanks and 
spanned a plane measuring 1.4 × 0.45 mm within each hemisphere. b, A schematic 
diagram of the DNN architecture trained to map a sound waveform to neural 
activity for 512 units from the IC of a single animal. Nc is the number of parameters 
in the probability distribution p( ̂R|s), which is 1 for Poisson models and 5 for 
cross-entropy models. c, PSTHs of recorded and predicted neural activity for one 
unit (CF of 4.1 kHz) in response to 128 presentations of a 0.9 kHz pure tone at 
85 dB SPL. Neural activity was simulated using either a Poisson or cross-entropy 
model. The lines and shaded regions indicate the mean and standard deviation 
across the 128 trials. The bottom panel shows the distribution of MUA counts 

across trials for the responses in the PSTH plots, averaged across time bins during 
the presentation of the tone. d, A comparison of the Fano factor (variance-to-
mean ratio) between recorded and predicted neural activity (each point 
corresponds to 1 of 483 units from one animal) for the Poisson and cross-entropy 
models (columns) in response to 4 tones (rows). Points are coloured on the basis 
of the CF of the corresponding unit, with brighter colours indicating higher  
CFs. For further discussion of model accuracy for narrowband sounds, see 
Supplementary Fig. 2. e, A comparison of MUA count distributions for recorded 
and predicted neural activity for four units (columns) in response to four sounds 
(rows). f, A performance comparison across nine animals and four sounds 
between Poisson and cross-entropy models. Each symbol represents the average 
across all time bins and units for one animal in response to one sound.
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can vary over the course of the recording, altering the mapping from 
sound to neural activity expressed by individual units. Figure 2a illus-
trates this for two of our recordings, where neural activity in response 
to the same speech sound was either stable (stationary) or variable 
(non-stationary) over the 10 h of recording. While there is an overall 
trend of decreased activity in the second example, the non-stationarity 
can vary widely across individual units (Fig. 2b), creating a challenging 
modelling problem.

A standard encoder–decoder model can only capture a time- 
invariant encoding that will reflect the average mapping from sound 
to neural activity over a large dataset. To overcome this limitation, 
we designed a time-variant version of the cross-entropy model 
that includes an additional input: a time stamp reflecting the spe-
cific moment during the recording when the sound was presented 
(Fig. 2d). The interactions between the two inputs within the encoder 
enable the model to alter its sound encoding as needed to account 
for non-stationarity. After the model is trained, neural activity can be 
simulated to reflect the sound encoding at specific timepoints during 
the recording (by providing the appropriate additional inputs), or 
the simulation can made stationary by keeping the additional input 
constant across all sounds.

As a first test, we trained time-invariant and time-variant models 
to predict the neural activity of the example non-stationary recording 

and evaluated their performance in predicting the responses shown in 
Fig. 2a. The time-invariant model, by construction, predicts the same 
responses each time a sound is presented. However, the time-variant 
model learned to utilize the additional input to capture the changes 
over the course of the recording, predicting strong responses at early 
recording times and weak responses at late recording times (Fig. 2c) 
while capturing non-uniform and non-monotonic changes in activity 
across units (Supplementary Fig. 3). We quantified the differences in 
model performance for this example by computing the fraction of 
explainable variance in the recorded activity (that is, the covariance 
across repeated trials) that each model explained across all units for 
each of the five speech presentations. The results demonstrate that 
the time-variant model can capture the changes in the mapping from 
sound to neural activity over time, consistently explaining close to 
90% of the explainable variance across the entire recording (Fig. 2e), 
while the performance of the time-invariant model was much more 
variable and worse overall.

Across all animals and sounds, we found that the time-variant 
models improved performance by an average of 2.67% (2.60–2.69) for 
RMSE and by 3.22% (3.11–3.26) for log-likelihood (Fig. 2f). However, 
we did not expect performance improvements across all animals, as 
the time-variant model should achieve better predictions only for 
recordings that are non-stationary. We categorized the recordings for 
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Fig. 2 | Accounting for non-stationarity in neural recordings. a, Example neural 
activity in response to the same sound (speech at 60 dB SPL) presented at  
5 different times within 2 individual recordings. Units were ordered on the basis 
of their CFs. Brighter colours indicate higher activity. b, The mean activity  
(per bin) of 20 randomly selected units from the non-stationary recording shown 
in a. c, The predicted neural activity for the non-stationary recording in a using 
the time-invariant and time-variant models. d, A schematic diagram of the time-
variant DNN architecture. e, The median predictive power of the time-invariant 
and time-variant models across all units at five different times during the 

non-stationary recording shown in a. Predictive power was computed from the 
simulated and recorded neural responses as the fraction of explainable variance 
explained for a 30-s speech segment presented at 60 dB SPL. f, Performance 
comparison across nine animals and four sounds between time-variant and time-
invariant DNN models. Each symbol represents the average across all time bins 
and units for one animal in response to one sound. g, Performance difference 
between models (time-variant − time-invariant) as a function of recording non-
stationarity across seven animals and four sounds.
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which we had repeated trials of the same sounds presented at differ-
ent times in the recording (seven out of nine animals) based on their 
non-stationarity. We measured non-stationarity as the absolute differ-
ence of the covariance of neural activity between two successive trials 
and two trials recorded several hours apart. As expected, we found that 
the benefit of the time-variant model increased with non-stationarity 
for both the RMSE and the log-likelihood measures (Fig. 2f), approach-
ing 10% improvement on RMSE and 15% improvement on log-likelihood 
for the most non-stationary recordings. These results demonstrate 
that time-variant DNNs can flexibly model non-stationarity, improving 
performance for recordings that are unstable without compromising 
performance for stable recordings.

Multi-branch DNNs can capture shared latent dynamics  
across animals
Our goal was not to model any individual animal, but rather to develop 
a generic model of the IC that describes the features of sound encoding 
that are common across all animals. Recordings from any individual 
animal will inevitably contain idiosyncrasies that reflect variations in 
anatomy or physiology, or in the position of the recording electrode 
within the IC. These idiosyncrasies may be critical to preserve when 
developing models for applications such as hearing aid development, 
which requires sound processing to be unique to each individual 
hearing loss profile. However, for applications requiring a generic 
model of normal auditory processing, architectures that can extract  
common patterns across recordings from different individuals are 
more appropriate.

We have previously demonstrated that the acoustic information 
in IC activity is restricted to a low-dimensional subspace that is shared 
across animals with the same hearing status21. This result suggests that 
it should be possible for a DNN with shared latent dynamics to predict 
neural activity for any normal-hearing animal. We thus designed a 
multi-branch DNN architecture comprising a shared encoder and 
separate decoder branches that are used to simulate neural activity 
for each of nine individual animals (Fig. 3a). To simulate activity for all 
animals with a shared encoder, we also had to modify the way in which 
the additional time input was used so that the non-stationarity of each 
individual recording could be accounted for and could be decoupled 
from the shared sound encoding. We introduced animal-specific time 
inputs at the level of the decoder and combined each time input with 
the bottleneck output, enabling a unique time-variant mapping from 
the generic latent representation to the neural activity for each animal. 
We considered mappings of varying complexity for the time inputs, 
but found that a simple nonlinear projection was sufficient for our pur-
poses (Supplementary Fig. 3). After training, the multi-branch model, 
which we call ICNet, can simulate neural activity for nine individual 
animals in response to any sound in a manner that reflects the state of 
each animal at any given time.

We first evaluated ICNet by simulating neural activity in response 
to four sounds (with the time input matched to the time at which each 
sound was presented to each animal). ICNet matched the perfor-
mance of the corresponding single-branch models for all nine animals 
(Fig. 3b; average RMSE increase of 0.04% (0.01–0.06) and log-likelihood 
decrease of 0.39% (0.34–0.41) compared with time-variant models 
trained to predict the activity of a single animal). To establish that ICNet 
encoded neural dynamics that were shared across all animals (rather 
than the idiosyncrasies of each), we performed a cross-validation 
experiment. We held out each of the nine individual animals in turn 
while training an eight-branch model to predict the neural activity 
of the remaining eight animals. We then froze the encoder of each 
eight-branch model and trained a new decoder that used the output of 
the frozen encoder to predict the neural activity of the held-out animal.

As shown in Fig. 3c, the models that used a frozen encoder and 
an optimized decoder performed similarly to the original ICNet 
(1.19% (1.16–1.20) decrease of RMSE and 0.41% (0.38–0.42) increase 

of log-likelihood for ICNet compared with the frozen-encoder mod-
els), that is, the performance for an individual animal was similar 
whether or not that animal was included in the dataset used to train 
the encoder. This suggests that ICNet performs a generic encoding 
that can predict the neural activity of any normal-hearing animal. To 
further validate this, we made recordings from an additional three 
animals that were not included in the training of ICNet. We used these 
recordings to train either full single-branch models or new decoders 
to be used with the frozen ICNet encoder. We found that, with only a 
few minutes of data, the performance of ICNet with the new decoders 
matched that of the single-branch models trained on the full dataset 
(Supplementary Fig. 4).

We next reversed the cross-validation experiment to establish the 
benefit of our multi-branch DNN architecture, that is, the degree to 
which the single-branch models captured the idiosyncrasies of each 
animal without fully capturing the neural dynamics that are shared 
across animals. We froze the encoder of each of the nine single-branch 
models and trained eight new decoders to predict the neural activity 
of the remaining animals. As shown in Fig. 3d, the difference in the per-
formance of ICNet and these frozen-encoder single-branch models was 
small, but the frozen-encoder models were almost always worse, espe-
cially for speech in quiet and moving ripples (average RMSE decrease 
of 3.07% (3.05–3.07) and log-likelihood increase of 2.01% (2.00–2.02) 
for ICNet compared with the frozen-encoder models). Taken together, 
the results of these experiments establish that ICNet is a generic yet 
comprehensive model of sound encoding.

The design of ICNet with its complex encoder and simple decoders 
differs from that of standard encoder–decoder DNN models. Typically, 
a complex encoder is used to map the input to an abstract latent space, 
and a decoder of similar complexity is used to map the latent represen-
tation to the final output, allowing for a complex relationship between 
the low-dimensional latent representation and the high-dimensional 
output. The simple linear decoders in ICNet, meanwhile, ensure that 
the latent representation in the bottleneck is constrained to directly 
reflect the dynamics that underlie neural activity. Because the bot-
tleneck is shared across the individual decoder branches (Fig. 3a), the 
bottleneck response ̂rb in ICNet reflects a general set of dynamics that 
is common to all animals and can be used on its own as a compact 
representation of central auditory processing.

As a demonstration, we used the ICNet sound encoder as an acous-
tic front end and trained a simple ASR DNN to classify phonemes from 
the bottleneck response ̂rb. We found that the ASR system trained on 
the ICNet bottleneck response achieved similar performance to that 
of a baseline system trained with a Mel spectrogram input (Fig. 3e). We 
also found that training on the ICNet bottleneck response resulted in 
better performance than training the same ASR system with the bot-
tleneck responses from the nine single-branch models. This difference 
was small overall, but increased at relatively high signal-to-noise ratios 
(SNRs) (Fig. 3f; average improvement of 1.24% (1.02–1.76) for consonant 
recognition and 1.60% (1.25–2.22) for vowel recognition across all SNRs 
and animals). These results demonstrate that the encoder of ICNet can 
serve in the same manner as widely used acoustic front ends such as 
auditory filterbanks or cochlear models for applications where simula-
tion of central (rather than peripheral) auditory processing is desired.

ICNet is a highly accurate model of neural coding
Figure 4a shows example segments of recorded activity and predictions 
from ICNet for four sounds, with each image showing the response of 
1,000 units (the units were selected to achieve a uniform distribution 
of characteristic frequencies (CFs) on a logarithmic scale, reflecting 
the tonotopic organization of the IC). ICNet’s simulations were nearly 
indistinguishable from the recordings across all units and all sounds. 
The full nonlinearity of the mapping from sound to neural activity that 
is captured by ICNet is difficult to appreciate from visual inspection, 
but Fig. 4a illustrates some of its remarkable features. For example, 
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the speech in quiet elicited the strongest activity even though it was 
presented at the lowest intensity of any of the sounds (60 dB sound 
pressure level (SPL) with energy concentrated at low frequencies), while 
the speech in noise, which was presented at a much higher intensity 
(85 dB SPL with a much broader range of frequencies), elicited consider-
ably less activity. The response to the moving ripples was particularly 
complex: the sound was presented at high intensity (85 dB SPL) with 
all energy concentrated at high frequencies, yet it elicited relatively 
weak activity in units with high CFs and relatively strong activity in units 
with low CFs. This frequency transposition indicates a high degree of 
nonlinearity that was captured well by ICNet.

To provide an overall measure of the predictive power of ICNet, 
we used seven of the nine animals for which we had recordings of 
responses to the same sounds on successive trials. We computed 
the fractions of the explainable variance and correlation (the covari-
ance and correlation of recorded responses on successive trials) that 
ICNet explained for sounds that were not included during training 
(measured after flattening the responses by collapsing across time 
and units for each animal; Methods). We found that ICNet performed 
best for speech in quiet, explaining more than 90% of the explainable 
variance and correlation across all animals (Fig. 4b; 91.5% (91.4–91.8) 
for variance and 92.9% (92.9–93.1) for correlation). Performance was 
also excellent for speech in noise (83.6% (83.3–84.3) for variance, 
91.2% (91.1–91.6) for correlation) and for music (83.6% (83.3–84.3) for 
variance, 91.3% (91.2–91.7) for correlation) and decreased only for the 
band-limited moving ripples (64.4% (64.0–65.2) for variance, 73.5% 
(73.3–74.0) for correlation). To further test the generality of ICNet, 
we also measured performance for four additional sounds that were 
presented on successive trials for four of the nine animals: speech in 

quiet at a higher intensity, speech in noise at a higher SNR, broadband 
moving ripples and a solo violin recording. We found that ICNet again 
explained most of the explainable variance and correlation for all 
sounds (Fig. 4c; median values for variance and correlation between 
88% and 93%).

The flattened metrics computed over all units are appropriate 
for assessing the overall predictive power of the model, but are domi-
nated by the units with the most explainable variance or correlation 
(which are, presumably, the most important units to model accurately 
because their activity carries the most information about sound). 
When we instead examined ICNet’s performance across individual 
units, we found lower values overall and substantial variability across 
units and sounds (Fig. 4d). The lower values are a result of the differ-
ence in the way the flattened and unit-by-unit metrics account for the 
variation in mean activity across units for a given sound. This varia-
tion is fully accounted for by the flattened metrics but is either partly 
(for variance) or fully (for correlation) ignored when the metrics are 
computed unit by unit. This variation makes up a substantial portion 
of the explainable variance and correlation in the full neural activity 
and is well captured by the model, so the resulting performance values 
for the flattened metrics are higher than those for the individual units. 
ICNet outperformed standard single-layer linear–nonlinear Poisson 
(LNP) models of the same units by a wide margin (Fig. 4d, shaded box 
plots), especially for non-speech sounds (note that negative values for 
the variance explained by LNP models indicate that the variance of the 
error in the model prediction was larger than the explainable variance 
in the response; equation (4)).

The variability in performance across units could have many 
sources. From the responses in Fig. 4a, it is clear that units can vary in 
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Fig. 3 | Capturing shared sound encoding across animals. a, A schematic 
diagram of the ICNet model trained to map a sound waveform to the neural 
activity of nine animals. b, Performance comparison for nine animals between 
ICNet and the corresponding single-branch models. Each symbol represents the 
average across all time bins and units for one animal in response to one sound.  
c, Cross-validation comparison between ICNet and individual eight-branch 
models with frozen encoders and decoders trained to predict the ninth animal. 
The similar performance across animals and sounds demonstrates that 
multi-branch models learn generic latent dynamics that can be transferred to 
other animals. d, Cross-validation comparison between ICNet and individual 
single-branch models with frozen encoders and decoders trained to predict the 
remaining eight animals. Distributions in the bottom show the spread of  
ICNet benefit for each sound compared with all 72 frozen-encoder models.  

The decrease in performance across animals and sounds demonstrates that 
single-branch models cannot fully describe the sound encoding of other animals. 
e, Vowel and consonant recognition performance of an ASR model trained to 
predict phonemes from either the ICNet bottleneck response ̂rb or a Mel 
spectrogram. Phoneme recognition was computed for sentences presented at 
65 dB SPL and mixed with speech-shaped noise at SNRs between −20 dB and 
20 dB. f, Benefit in recognition performance for the ASR model trained with the 
ICNet bottleneck response as input, compared with ASR models trained with the 
bottleneck responses of the nine single-branch models. Each dot represents the 
performance of an individual model, and the box plots display the distribution 
across models. The horizontal line indicates the median, the box spans the 25th 
to 75th percentiles (interquartile range, IQR) and the whiskers extend to the most 
extreme data points within 1.5 times the IQR from the box edges, if any exist.
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their activity depending on the match between the acoustic proper-
ties of a sound and the features to which a unit is responsive. Both 
overall activity (measured as mean count) and reliability (measured 
as the correlation of responses across successive trials) exhibited a 

wide range, varying across sounds (Fig. 4e), with a clear dependence 
on CF. To determine whether any of these properties (overall activity, 
reliability and preferred frequency) could explain the variation in 
model performance across units, we measured their correlation with 
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Fig. 4 | ICNet performance across sounds. a, Segments of recorded and ICNet 
predicted neural activity in response to four sounds. Each column shows the 
sound waveform and corresponding spectrogram, as well as the neural responses 
of 1,000 units. Units were selected from all animals to achieve a uniform 
logarithmic spacing of CFs between 300 Hz and 12,000 Hz. Brighter colours 
indicate higher stimulus intensity for the spectrograms and higher activity for 
the neural responses. b, Predictive power of ICNet across seven animals and 
four sounds, computed as the fraction of explainable variance and correlation 
explained by the model across all time bins and units of each animal. Each dot 
represents the performance of one animal, and the box plots illustrate the 
distribution across animals. The horizontal line indicates the median, the box 
spans the 25th to 75th percentiles (IQR), and the whiskers extend to the most 
extreme data points within 1.5 times the IQR from the box edges, if any exist. 
c, Predictive power of ICNet across four animals and four sounds, computed 

as the fraction of explainable variance and correlation explained by the model 
across all time bins and units of each animal. d, Predictive power of ICNet across 
4 sounds and 3,476 recorded units (from 7 animals), computed as the fraction 
of explainable variance and correlation explained by the model across all time 
bins of each unit. The box plots display the distribution across all units from all 
animals, with the horizontal line representing the median, the box indicating the 
25th to 75th percentiles (IQR), and the whiskers extending to the most extreme 
data points within 1.5 times the IQR from the box edges, if any exist. The shaded 
box plots illustrate the predictive power of LNP models for the same units.  
e, Overall activity (mean spiking activity) versus reliability (correlation between 
two successive trials) for 3,476 units from 7 animals. Each panel shows the results 
for all units in response to one sound, with each point coloured based on the CF 
of the unit. The grey points in the background show the results for all four sounds 
and are the same in each subplot.
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the fraction of explainable correlation explained across all sounds. 
We found only a weak correlation between overall activity and model 
performance (−0.12 (−0.14 to −0.10) for 3406 units from seven animals, 
after excluding units with the top and bottom 1% of explainable correla-
tion explained) and no correlation between CF and model performance 
(−0.02 (−0.03 to 0)). However, the correlation between reliability and 
model performance was much stronger (0.54 (0.53–0.55)). This sug-
gests that the reliability of neural responses to a given sound is a strong 
determinant of ICNet performance.

We also examined whether any of the errors in ICNet predictions 
were systematic, that is, consistent for a particular sound class or 
response timescale (Supplementary Fig. 2). For our four primary evalu-
ation sounds (speech in quiet, speech in noise, music and moving 
ripples), we found no evidence of systematic errors. The overall mag-
nitude of predicted and recorded activity was well matched across all 
units and sounds, and the coherence spectrum between predicted 
and recorded activity mirrored that of the recorded activity across 
successive trials. ICNet predictions for narrowband sounds were also 
generally well matched to recorded responses, but there was a consist-
ent overprediction of the responses of low-CF units to above-CF sounds 
at high intensities.

ICNet captures fundamental neurophysiological phenomena
Having established that ICNet can provide accurate simulation of 
responses to complex sounds, we investigated whether it also captures 
more fundamental neurophysiological phenomena. We designed a 
new set of sounds based on those that have traditionally been used to 
characterize response properties of IC neurons and presented the new 
sounds to two new animals along with an abridged set of our original 
training sounds (Methods). We used the recorded training dataset to 
train new decoders for the two animals (keeping the ICNet encoder 
frozen) and then used the updated models to predict the responses 
to the new evaluation sounds. ICNet performance for the new sounds 
was excellent overall, with more than 80% of the explainable variance 
and correlation captured for all sounds, and again matched the perfor-
mance of fully trained single-branch models with just a few minutes of 
training data (Supplementary Fig. 4).

We examined key response properties at the level of output units 
as well as in the bottleneck. Because the ICNet decoder is so simple, we 
expected to see direct manifestations of the phenomena underlying 
the response properties in the latent dynamics. We first examined 
simple properties of responses to tones. The frequency response areas 
(FRAs; heatmaps showing overall response magnitude as function of 
tone frequency and intensity) of ICNet output units were well matched 
to those derived from the recorded activity. The recorded and pre-
dicted FRAs for four example units from one animal are shown in the 
top two rows of Fig. 5a (for results for the second animal, see Supple-
mentary Fig. 5). To visualize the corresponding phenomena at the level 
of the bottleneck, we applied principal component analysis (PCA) to 
the bottleneck response ̂rb and computed the FRAs for the top four 
components (Fig. 5a, bottom row). While the top component was 
broadly tuned, the subsequent components seem to provide the build-
ing blocks necessary for the frequency specificity observed in the 
output units.

The temporal dynamics of the recorded responses to tones were 
relatively simple, with a strong onset followed by sustained activity 
for the duration of the tone. While these dynamics were well captured 
by ICNet (Fig. 5b, top two rows), it is important to note that the simple 
dynamics of MUA responses result from the summation of responses 
across single units that can be more complex, containing, for example, 
a pause between the onset and sustained components or a build up 
without a strong onset (Fig. 5b, bottom row). Because ICNet is trained 
on MUA, it cannot capture these phenomena that are evident only at the 
level of single units, which may be a limitation for some neurophysiol-
ogy applications.

To examine tuning for amplitude modulations, we presented 
tones with two different envelopes—a sinusoid and a raised sinu-
soid with steeper slopes26—and computed the synchrony between 
the envelope and the neural responses as a function of modulation 
frequency. ICNet captured the differences in modulation frequency 
selectivity across units as well as the general increase in synchrony 
for the raised sinusoid (Fig. 5c, top two rows). At the level of the bot-
tleneck, the top component exhibited low-pass modulation tuning 
with high synchrony for both envelope types, while the subsequent 
components were more sharply tuned and selective for a particular 
envelope type (Fig. 5c, bottom row).

We next examined more complex response properties that are 
known to be strongly present in the IC. We started with dynamic range 
adaptation27, a phenomenon that captures the ability of auditory neu-
rons to adapt their responses to changes in the statistical properties of 
the acoustic environment. We presented broadband noise with chang-
ing intensity that was drawn from distributions that were either uniform 
or contained high-probability regions (HPRs) centred at particular 
intensities. We observed clear shifts in dynamic range (illustrated 
through rate–intensity functions) based on the HPR of the intensity 
distribution, which were well captured by ICNet and clearly evident in 
the top component of the bottleneck (Fig. 5d).

We also assessed forward masking28, a phenomenon in which 
the neural response to one sound is decreased by the presence of 
another sound that preceded it. We presented probe tones that were 
preceded either by silence or by a masker tone presented at different 
intensities. We observed clear shifts in the rate–intensity functions 
for the probe tone as a result of the masker, with stronger shifts for 
the higher-intensity masker. These shifts were again well captured by 
ICNet and evident in the top component of the bottleneck (Fig. 5e).

Finally, we investigated context enhancement29, a phenomenon 
similar to forward masking but with the opposite effect, that is, an 
increase in the response to one sound because of the presence of 
another sound that preceded it. We presented a multitonal complex 
with a spectral notch as context, and then added a tone at the frequency 
in the centre of the notch either concurrently with the multitonal com-
plex or after some delay. We found little evidence of context enhance-
ment in the recorded MUA, that is, responses were decreased rather 
than increased when the onset of the tone was delayed relative to the 
context (Fig. 5f, top row). We did, however, observe context enhance-
ment in the responses of some single units (Fig. 5f, bottom row) (note 
that this phenomenon is closely related to the temporal dynamics 
shown in Fig. 5b; units with build-up dynamics are expressing a form 
of context enhancement). Overall, ICNet appears to capture many key 
response properties of IC neurons (excluding those that are evident 
only at the level of single units), with clear manifestation of the under-
lying phenomena in its latent dynamics.

Discussion
In this study, we combined large-scale neural recordings and deep learn-
ing to develop ICNet, a comprehensive baseline model of neural coding 
in the early central auditory pathway. We presented a multi-branch 
encoder–decoder framework to describe the common features of 
sound encoding across a set of normal-hearing animals, while also 
accounting for the idiosyncrasy and non-stationarity of individual 
recordings. ICNet captures the statistical properties of neural activity 
with high resolution, simulating response patterns across thousands 
of units with millisecond precision. The simulated responses capture 
most of the explainable variance in our neural recordings across a 
wide range of sounds. Because ICNet is based on convolutional opera-
tions, it is computationally fast: neural activity can be simulated more 
than 10× faster than real time, even on a central processing unit (for 
a 420-ms sound input, simulation of 512 units takes 49 ms on an Intel 
Xeon w7-2495X central processing unit and 39 ms on an Nvidia RTX 
4090 graphics processing unit).
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To produce a model that would generalize well, we assembled a 
broad training dataset that contained representative samples of many 
complex sounds. We demonstrated that ICNet produced near-perfect 
simulations of the neural responses to a range of natural and arti-
ficial evaluation sounds that were not included in the training set, 
capturing more than 90% of the explainable variance and correlation 
in recorded activity for speech in quiet (across all units and animals) 
and at least 86% of the explainable variance and correlation for speech 
in noise, music and broadband moving ripples. ICNet also exhibited 
key neurophysiological phenomena, such as amplitude modulation 
tuning and dynamic range adaptation, in both its output units and its 
latent dynamics. The sounds used to elicit these phenomena (pure 
tones and noise bursts) are qualitatively different from the complex 
sounds on which ICNet was trained, and its success in simulating the 

processing of these sounds is strong evidence of its generality. The 
primary limitations of ICNet are a reflection of the dataset on which it 
was trained—MUA from the anaesthetized IC—which excludes features 
of neural responses that are evident only during wakefulness or at the 
level of single units. Within these constraints, ICNet is highly accurate, 
particularly for the units with the most reliable responses, and makes 
few systematic errors.

ICNet as a baseline model
We designed ICNet with a shared encoder to capture the common 
features of sound encoding across the individual animals on which 
it was trained, as most applications of auditory models require a 
generic simulation of the fundamental features of auditory pro-
cessing that are common across all normal-hearing individuals. 
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Fig. 5 | ICNet captures fundamental neurophysiological phenomena.  
a, Recorded (top row) and predicted (middle row) FRAs for four example neural 
units with a range of CFs. Each panel shows the overall activity to pure tones of 
varying intensity and frequency. The FRAs for the top four principal components 
(PCs) of the ICNet bottleneck responses are also shown (bottom row), with the 
numbers in the parentheses indicating the percentage of the total variance in the 
bottleneck responses captured by each component. b, Temporal dynamics in  
response to a 2-kHz pure tone stimulus presented at 85 dB SPL. The lines and 
shaded regions indicate the mean and standard deviation across 128 trials. 
Responses from four example single units are also shown (bottom row).  

c, Synchrony to the envelope of an amplitude-modulated narrowband noise 
(centred at 2 kHz) with two different envelopes. d, Rate–intensity functions for 
broadband noise. The noise intensity was drawn from distributions that were 
either uniform (baseline) or contained HPRs centred at one of two intensities. 
e, Rate–intensity functions for a 2-kHz pure tone that was preceded either by 
silence (unmasked) or by a masker tone presented at one of two intensities.  
f, Overall activity in response to a multitonal complex with a spectral notch 
centred at 1 kHz. A 1-kHz tone was presented either concurrently with the 
multitonal complex (test) or after some delay (conditioner + test). The overall 
activity of four example single units is also shown (bottom row).
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Phenomenological or mechanistic models that are designed by hand 
will naturally have this property, but models that are learned directly 
from experimental data will inevitably reflect the idiosyncrasies of 
the individuals from which the data were collected. The results of 
our cross-validation experiments (Figs. 3c and 5 and Supplementary 
Figs. 4 and 5) suggest that ICNet is generic, that is, that the inclusion 
of additional animals during training would not improve its gener-
ality. Because our goal was to develop a baseline model of auditory 
processing up to the level of the IC, we also designed ICNet so that 
the effects of non-stationarity (primarily due to accumulated effects 
of anaesthesia over the long duration of the recordings) could be 
separated from the shared sound encoding and individualized for 
each animal. By providing ICNet with a second input during train-
ing, which reflected the time at which each response was recorded, 
ICNet was able to capture the non-stationarity with a fixed encoder 
whose output was modulated as needed at the level of the decoder. 
After training, ICNet can provide a stationary simulation of neural 
activity under optimal recording conditions by setting the time input 
to a fixed value (for example, 1 h, corresponding to the beginning of 
recording). While the non-stationarity in our datasets was a nuisance 
that we sought to decouple from the shared sound encoding and 
remove, a similar modelling framework should be capable of cap-
turing non-stationarity that is of interest (for example, behavioural 
modulation) given an appropriate dataset for training.

Our use of anaesthesia enabled us to collect the large datasets 
required to train ICNet’s high-capacity encoder. However, it is impor-
tant to note that anaesthesia has effects on auditory processing that 
go beyond the absence of behavioural modulation. The differences 
between anaesthesia and passive wakefulness may be much less pro-
nounced in the IC than in later stages of the auditory pathway, but they 
are not negligible. These differences are, however, largely quantitative 
rather than qualitative, that is, they are restricted to coarse features of 
neural activity such as overall spike rate or adaptation timescales rather 
than fine details such as the timing of response events30. Thus, it is likely 
that ICNet’s encoder captures most, if not all, of the features required to 
simulate activity during passive wakefulness. If simulation of responses 
during passive wakefulness is needed, this should be achievable with 
a small dataset that is used to train a relatively simple decoder to map 
the ICNet bottleneck to the output units.

ICNet as a foundation core
We demonstrated that ICNet provides a baseline model of early central 
auditory processing that captures the key features of the mapping 
from sound to neural activity in the IC. ICNet generalized well across a 
number of sound classes and could accurately simulate the responses 
of new animals with just 3 min of neural data used to update the decoder 
weights. There are, of course, many features of auditory processing that 
ICNet does not capture, such as behavioural modulation or higher-level 
computations. In this sense, ICNet is analogous to the ‘core’ module in 
the foundation model of visual processing that was developed by Wang 
et al.31. ICNet could serve a similar role in models of auditory processing, 
providing a baseline representation that can be modulated based on 
behavioural factors or further processed to reflect cortical computa-
tions. The use of ICNet as a foundation core should substantially reduce 
the amount of data required to develop the modulatory mappings or 
updated decoders for advanced models.

Another critical area for further development is binaural pro-
cessing. We designed ICNet to capture the mapping between a single 
sensory input (a diotic stimulus in which the same sound was presented 
in both ears) and the neural activity recorded from both hemispheres 
of the IC. However, IC activity is strongly modulated by binaural dis-
parity, and these modulations encode information that is critical for 
spatial hearing. Fortunately, the features of neural activity that encode 
binaural disparity are largely separable from those that encode other 
acoustic information32, so it is likely that spatial hearing can also be 

captured using a module that modulates the baseline representation 
provided by ICNet.

Potential applications of ICNet
For hearing research, ICNet opens new possibilities with potential 
benefits that are both scientific (studies are no longer data limited) 
and ethical (animal experiments can be limited to confirmatory stud-
ies). Much of hearing research is focused on understanding the corti-
cal mechanisms that allow for stream segregation and recognition of 
objects in complex auditory scenes. Understanding these mechanisms 
is impossible without first specifying precisely the representation 
of the auditory scene that is made available to the cortex for further 
analysis. ICNet has the potential to be a valuable tool in this regard, 
allowing downstream computations to be referenced directly to early 
neural representations. Cochlear models are already used widely and 
successfully in this way33,34; using ICNet as a second reference point 
midway along the central auditory pathway would enable early and 
late central processing to be decoupled.

ICNet also provides a comprehensive baseline normal-hearing 
reference for technology development. It can be used as a front end in 
the design of systems that achieve natural (rather than objectively opti-
mal) performance, as its outputs reflect the physiological constraints 
that are faced by the brain. We demonstrated that ICNet’s bottleneck 
response provides a compact representation of sound encoding that 
can be effective as a front end for speech recognition and can be used 
on its own for applications that require a general auditory model, rather 
than explicit neural simulation. The use of ICNet for optimization of 
signal processing (for example, noise suppression) could unlock addi-
tional perceptual benefit beyond that achieved through optimization 
based directly on acoustics. The same may also be true for the devel-
opment of assistive listening technologies, with the output of ICNet 
serving as a target reference against which the efficacy of different 
hearing restoration strategies can be compared.

Methods
Experimental protocol
Experiments were performed on 14 young-adult gerbils of both sexes 
that were born and raised in standard laboratory conditions. IC record-
ings were made at an age of 20–28 weeks. All experimental protocols 
were approved by the UK Home Office (PPL P56840C21).

Preparation for IC recordings. Recordings were made using the 
same procedures as in previous studies21,22. Animals were placed in 
a sound-attenuated chamber and anaesthetized for surgery with an 
initial injection of 1 ml per 100 g body weight of ketamine (100 mg ml−1), 
xylazine (20 mg ml−1) and saline in a ratio of 5:1:19. The same solution 
was infused continuously during recording at a rate of approximately 
2.2 μl min−1. Internal temperature was monitored and maintained at 
38.7 °C. A small metal rod was mounted on the skull and used to secure 
the head of the animal in a stereotaxic device. The pinnae were removed 
and speakers (Etymotic ER-10X) coupled to tubes were inserted into 
both ear canals. Sounds were low-pass filtered at 12 kHz (except for 
tones) and presented at 44.1 kHz without any filtering to compen-
sate for speaker properties or ear canal acoustics. Two craniotomies 
were made along with incisions in the dura mater, and a 256-channel  
multielectrode array was inserted into the central nucleus of the IC in 
each hemisphere.

Multi-unit activity. Neural activity was recorded at 20 kHz. MUA was 
measured from recordings on each channel of the electrode array as 
follows: (1) a bandpass filter was applied with cut-off frequencies of 
700 and 5,000 Hz; (2) the standard deviation of the background noise 
in the bandpass-filtered signal was estimated as the median absolute 
deviation/0.6745 (this estimate is more robust to outlier values, for 
example, neural spikes, than direct calculation); and (3) times at which 
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the bandpass filtered signal made a positive crossing of a threshold of 
3.5 standard deviations were identified and grouped into 1.3-ms bins.

CF analysis. To determine the preferred frequency of the recorded 
units, 50-ms tones were presented with frequencies ranging from 
294 Hz to 16,384 Hz in 0.2-octave steps (without any high-pass filter-
ing) and intensities ranging from 4 dB SPL to 85 dB SPL in 9-dB steps. 
Tones were presented eight times each in random order with 10-ms 
cosine on and off ramps and 75-ms pause between tones. The CF of 
each unit was defined as the frequency that elicited a statistically 
significant response at the lowest intensity. Significance was defined 
as P < 0.0001 for the total MUA count elicited by a tone, assuming a 
Poisson distribution with a rate equal to the higher of either the mean 
count observed in time windows of the same duration in the absence 
of sound or 1/8.

Single-unit activity. Single-unit spikes were isolated using Kilosort as 
described in ref. 22. Recordings were separated into overlapping 1-h 
segments with a new segment starting every 15 min. Kilosort 135 was 
run separately on each segment, and clusters from separate segments 
were chained together. Clusters were retained for analysis only if they 
were present for at least 2.5 h of continuous recording.

DNN models
Time-invariant single-branch architecture. The time-invariant 
single-branch DNN that was used to predict the neural activity of indi-
vidual recordings is shown in Fig. 1. The model was trained to map a 
sound waveform s to neural activity ̂R via an inferred conditional dis-
tribution of MUA counts p( ̂R|s) using the following architecture: (1) a 
SincNet layer36 with 48 bandpass filters of size 64 and stride of 1, fol-
lowed by a symmetric logarithmic activation y = sgn (x) × log(|x| + 1); 
(2) a stack of five one-dimensional (1D) convolutional layers with 128 
filters of size 64 and stride of 2, each followed by a parametric rectified 
linear unit (PReLU) activation; (3) a 1D bottleneck convolutional layer 
with 64 filters of size 64 and a stride of 1, followed by a PReLU activation; 
and (4) a decoder convolutional layer without bias and 512 × Nc filters 
of size 1, where Nc is the number of parameters in the count distribution 
p( ̂R|s)  as described below. All convolutional layers in the encoder 
included a bias term and used a causal kernel. A cropping layer was 
added after the bottleneck to remove the left context from the output, 
which eliminated any convolutional edge effects.

For the Poisson model, Nc = 1 and the decoder output was followed 
by a softplus activation to produce the rate function λ that defined the 
conditional count distribution for each unit in each time bin (exponen-
tial activation was also tested, but softplus yielded better perfor-
mance). The loss function was ∑M

m=1∑
T

t=1(λ[m, t] − R[m, t] log λ[m, t]), 
where M and T are the number of units and time bins in the response, 
respectively. For the cross-entropy model, Nc = 5 and the decoder 
output was followed by a softmax activation to produce the probability 
of each possible count n ∈ {0,…, Nc − 1} for each unit in each time bin. 
The loss function was −∑M

m=1∑
T

t=1∑
Nc−1
n=0 R[m, t] log(p( ̂R[m, t] = n|s)). The 

choice of 4 as the maximum possible count was made on the basis of 
the MUA count distributions across all datasets (the percentage of 
counts above 4 was less than 0.02%). All neural activity was clipped 
during training and inference at a maximum value of 4.

Time-variant single-branch architecture. The time-variant single- 
branch architecture (Figs. 2 and 3) included an additional time input τ. 
Each sample of the time input defined the relative time at which the 
corresponding sound sample was presented during a given recording 
(range of approximately 0–12 h). To match the dimensionality and 
dynamic range of the sound input after the SincNet layer, the time input 
was given to a convolutional layer with 48 filters of size 1 (without bias), 
followed by a symmetric logarithmic activation. The resulting output 
was then concatenated to the output of the SincNet layer to form the 

input of the first convolutional layer of the encoder. The loss function 
was −∑M

m=1∑
T

t=1∑
Nc−1
n=0 R[m, t] log(p( ̂R[m, t] = n|s, τ)).

Time-variant multi-branch architecture. The final ICNet model 
(Figs. 3 and 4) comprises a time-variant DNN with a shared encoder 
and separate decoder branches for each of the individual animals. The 
architecture of the encoder and decoders were identical to those in the 
single-branch models, except for the additional time input. Instead of 
a single time input to the encoder, a separate time input was used for 
each animal with the same dimensionality and sampling rate as the 
bottleneck output. Each sample of the time input thus defined the 
relative time at which a corresponding MUA sample was recorded and 
was given to a convolutional layer with 64 filters of size 1 (with bias), 
followed by a PReLU activation. The output of each of these layers was 
then multiplied (elementwise) by the bottleneck output and was given 
to the corresponding decoder.

For the additional analysis in Supplementary Fig. 3, a time-variant 
multi-branch architecture with a more complex time module was 
trained. Each time input was given to a cascade of 4 convolutional lay-
ers with 128 filters of size 1 (and bias), followed by PReLU activations. 
The final output of each time module was multiplied by the bottleneck 
output and given to the corresponding decoder as in the final ICNet.

Linear–nonlinear models. For the comparison of ICNet with linear–
nonlinear models in Fig. 3d, single-layer models for seven animals were 
trained through Poisson regression. The models comprised a convolu-
tional layer with 512 filters (one for each output unit) of size 64 samples 
and stride 1 (without bias), followed by an exponential activation.  
Mel spectrograms were used as inputs and were computed as follows: 
(1) the short-time Fourier transform (STFT) of the audio inputs was 
computed using a window of 512 samples and a step size of 32 sam-
ples, resulting in spectrograms with time resolution of 762.9395 Hz  
(to match the 1.3-ms time bins of the neural activity); (2) the power 
spectrograms (squared magnitude of the STFT outputs) were mapped 
to 96 Mel bands with frequencies logarithmically spaced between 
50 Hz and 12 kHz; (3) the logarithm of the Mel spectrograms was com-
puted and was offset by 7 dB so that the spectrograms comprised only 
positive values; and (4) a sigmoid activation function was applied to 
normalize the range of the spectrograms. An L2 regularization penalty 
was additionally applied to the convolutional kernel during training 
using a factor of 10−5. A number of parameters for the spectrogram 
inputs (STFT window size, linear or Mel scale, number of frequency 
bands, and activation functions) were tested, and the values that 
produced the best performance were used.

Training
Models were trained to transform 24,414.0625 Hz sound input frames 
of 8,192 samples into 762.9395 Hz neural activity frames of 256 samples 
(Fig. 1b). Context of 2,048 samples was added on the left side of the 
sound input frame (total of 10,240 samples) and was cropped after the 
bottleneck layer (2,048 divided by a decimation factor of 25 resulted 
in 64 cropped samples at the level of the bottleneck). Sound inputs 
were scaled such that a root-mean-square (RMS) value of 0.04 cor-
responded to a level of 94 dB SPL. For the time-variant models, time 
inputs were expressed in seconds and were scaled by 1/36,000 to match 
the dynamic range to that of the sound inputs. These scalings were 
necessary to enforce training with sufficiently high decimal resolution, 
while maximally retaining the datasets’ statistical mean close to 0 and 
standard deviation close to 1 to accelerate training.

The DNN models were trained on NVidia RTX 4090 graphics pro-
cessing units using Python and Tensorflow37. A batch size of 50 was used 
with the Adam optimizer and a starting learning rate of 0.0004. All 
trainings were performed so that the learning rate was halved if the loss 
in the validation set did not decrease for two consecutive epochs. Early 
stopping was used and determined the total number of training epochs 
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if the validation loss did not decrease for four consecutive epochs. This 
resulted in an average of 38.1 ± 3.4 epochs for the nine single-branch 
models, and a total of 42 epochs for the nine-branch ICNet model. To 
speed up training, the weights from one of the single-branch models 
were used to initialize the encoder of the multi-branch models.

Training dataset. All sounds that were used for training the DNN mod-
els totalled to 7.83 h and are described below. Ten per cent of the sounds 
were randomly chosen to form the validation set during training. The 
order of the sound presentation was randomized for each animal 
during recording. Multi-branch models were trained using a dataset 
of 7.05 h, as some of the music sounds were not recorded across all 
nine animals.

Speech. Sentences were taken from the TIMIT corpus38 that contains 
speech read by a wide range of American English speakers. The entire 
corpus excluding ‘SA’ sentences was used and was presented either 
in quiet or with background noise. The intensity for each sentence 
was chosen at random from 45, 55, 65, 75, 85 or 95 dB SPL. The SNR 
was chosen at random from either 0 or 10 when the speech intensity 
was 55 or 65 dB SPL (as is typical of a quiet setting such as a home or 
an office) or −10 or 0 when the speech intensity was 75 or 85 dB SPL 
(as is typical of a noisy setting such as a pub). The total duration of 
speech in quiet was 1.25 h, and the total duration of speech in noise 
was 1.58 h.

Noise. Background noise sounds were taken from the Microsoft Scal-
able Noisy Speech Dataset39, which includes recordings of environmen-
tal sounds from a large number of different settings (for example, café, 
office and roadside) and specific noises (for example, washer–dryer, 
copy machine and public address announcements). The intensity of the 
noise presented with each sentence was determined by the intensity 
of the speech and the SNR as described above.

Processed speech. Speech from the TIMIT corpus was also processed 
in several ways: (1) the speed was increased by a factor of 2 (via simple 
resampling without pitch correction of any other additional process-
ing); (2) linear multichannel amplification was applied, with channels 
centred at 0.5, 1, 2, 4 and 8 kHz and gains of 3, 10, 17, 22 and 25 dB SPL, 
respectively; or (3) the speed was increased and linear amplification 
was applied. The total duration of processed speech was 2.08 h.

Music. Pop music was taken from the musdb18 dataset40, which contains 
music in full mixed form as well as in stem form with isolated tracks for 
drums, bass, vocals and other (for example, guitar and keyboard). The 
total duration of the music presented from this dataset was 1.28 h. A 
subportion of this music was used when training multi-branch mod-
els, which corresponded to 0.67 h. Classical music was taken from the 
musopen dataset (https://musopen.org; including piano, violin and 
orchestral pieces) and was presented either in its original form; after its 
speed was increased by a factor of 2 or 3; after it was high-pass filtered 
with a cut-off frequency of 6 kHz; or after its speed was increased and it 
was high-pass filtered. The total duration of the music presented from 
this dataset was 0.8 h.

Moving ripples. Dynamic moving ripple sounds were created by modu-
lating a series of sustained sinusoids to achieve a desired distribu-
tion of instantaneous amplitude and frequency modulations. The 
lowest frequency sinusoid was either 300 Hz, 4.7 kHz or 6.2 kHz. The 
highest-frequency sinusoid was always 10.8 kHz. The series contained 
sinusoids at frequencies between the lowest and the highest in steps of 
0.02 octaves, with the phase of each sinusoid chosen randomly from 
between 0 and 2π. The modulation envelope was designed so that the 
instantaneous frequency modulations ranged from 0 to 4 cycles per 
octave, the instantaneous amplitude modulations ranged from 0 to 

10 Hz, and the modulation depth was 50 dB. The total duration of the 
ripples was 0.67 h.

Abridged training dataset. For the analysis in Fig. 5 (see also Supple-
mentary Figs. 5 and 4), a subportion of all sounds that were described 
above were used. The abridged training dataset was generated by 
keeping only the first 180 s of each speech segment (60% of total dura-
tion), while preserving the total duration of the remaining sounds. 
The resulting dataset totalled to 5.78 h (347 min) and included 2.95 h 
of (processed and unprocessed) speech and 2.83 h of music and rip-
ples. As before, 10% of the sounds were randomly chosen to form the 
validation set during training.

Evaluation
To predict neural activity using the trained DNN models, the decoder 
parameters were used to define either a Poisson distribution or a cat-
egorical probability distribution with Nc classes using the Tensorflow 
Probability toolbox41. The distribution was then sampled from to yield 
simulated neural activity across time bins and units, as shown in Fig. 1b.

Evaluation dataset. All model evaluations used only sounds that were 
not part of the training dataset. Each sound segment was 30 s in dura-
tion. The timing of the presentation of the evaluation sounds varied 
across animals. For two animals, each sound was presented only twice 
and the presentation times were random. For three animals, each sound 
was presented four times, twice in successive trials during the first half 
of the recording and twice in successive trials during the second half of 
the recording. For the other four animals, each sound was presented 
ten times, twice in successive trials at times that were approximately 
20%, 35%, 50%, 65% and 80% of the total recording time, respectively.

Speech in quiet. For all animals, a speech segment from the UCL SCRIBE 
dataset (http://www.phon.ucl.ac.uk/resource/scribe) consisting of 
sentences spoken by a male speaker was presented at 60 dB SPL. For 
four of the animals (Fig. 4b), another speech segment from the same 
dataset was chosen and was presented at 85 dB SPL, consisting of sen-
tences spoken by a female speaker.

Speech in noise. For all animals, a speech segment from the UCL SCRIBE 
dataset consisting of sentences spoken by a female speaker was pre-
sented at 85 dB SPL in hallway noise from the Microsoft Scalable Noisy 
Speech Dataset at 0 dB SNR. For four of the animals (Fig. 4b), another 
speech segment from the same dataset was chosen and was presented 
at 75 dB SPL, consisting of sentences spoken by a male speaker mixed 
with café noise from the Microsoft Scalable Noisy Speech Dataset at 
4 dB SNR.

Moving ripples. For all animals, dynamic moving ripples with the 
lowest frequency sinusoid of 4.7 kHz were presented at 85 dB SPL. 
For four of the animals (Fig. 4b), dynamic moving ripples with the 
lowest-frequency sinusoid of 300 Hz were also used and were pre-
sented at 60 dB SPL.

Music. For all animals, 3 s from each of ten mixed pop songs from the 
musdb18 dataset were presented at 75 dB SPL. For four of the animals 
(Fig. 4b), a solo violin recording from the musopen dataset was pre-
sented at 85 dB SPL.

Pure tones. For measuring Fano factors (Fig. 1) and assessing system-
atic errors (Supplementary Fig. 2b), 75-ms tones at four frequencies 
(891.44, 2,048, 3,565.78 and 8,192 Hz) were presented at either 59 or 
85 dB SPL with 10-ms cosine on and off ramps. Each tone was repeated 
128 times, and the resulting responses were used to compute the aver-
age, the variance and the full distribution of MUA counts (using time 
bins from 2.5 ms to 80 ms).
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Neurophysiological evaluation dataset. For the analysis in Fig. 5 
(see also Supplementary Figs. 4 and 5), a dataset was recorded that 
included sounds commonly used in experimental studies to assess 
the neurophysiological properties of IC neurons (frequency tuning, 
temporal dynamics, rate–intensity functions, dynamic range adapta-
tion, forward masking and context enhancement). This evaluation 
dataset was presented to two animals that were not included in ICNet 
training, interspersed with sounds from the abridged training dataset 
described above.

PCA was used to visualize the manifestation of the relevant phe-
nomena in the latent representation of the ICNet bottleneck. PCA 
was performed separately for each sound, after subtracting the aver-
age activity of each bottleneck channel to silence and dividing the 
resulting responses by −500 (to match the scale and sign of the MUA  
for plotting).

Frequency tuning. For the results shown in Fig. 5a and Supplemen-
tary Figs. 4e and 5a, tones were presented at frequencies from 256 to 
16,384 Hz (1/5-octave spacing) and intensities from 4 to 103 dB SPL 
(9-dB spacing) with 50-ms duration and 10-ms cosine on and off ramps. 
Each tone was presented eight times in random order with 75 ms of 
silence between presentations. The responses were used to compute 
FRA heatmaps by averaging activity across time bins from 7.9 ms to 
50 ms after tone onset.

Temporal dynamics. For the results shown in Fig. 5b and Supplementary 
Fig. 5b, tones were presented at frequencies from 294.1 to 14,263.1 Hz 
(1/5 octave spacing) and intensities of 59 and 85 dB SPL with 75-ms dura-
tion and 10-ms cosine on and off ramps. Each tone was presented 128 
times in random order with 75 ms of silence between presentations. The 
responses were used to compute the average and standard deviation of 
MUA counts in time bins from 0 to 82.9 ms after tone onset.

Dynamic range adaptation. For the results shown in Fig. 5d and Supple-
mentary Fig. 5d, the sounds defined in ref. 27 were used. For the baseline 
rate–intensity functions, noise bursts were presented at intensities 
from 21 to 96 dB SPL (2-dB spacing) with 50-ms duration. Each inten-
sity was presented 32 times in random order with 300 ms of silence 
between presentations. For the rate–intensity functions of HPR sounds, 
noise bursts were presented at intensities from 21 to 96 dB SPL (1-dB 
spacing) with 50-ms duration. The intensities were randomly drawn 
from a distribution with an HPR of 12 dB range centred at either 39 or 
75 dB SPL to create sequences of 16.15 s (no silence was added between 
noise bursts). Each value in the HPR was drawn 20 times, and all other 
values were drawn once. Sixteen different random sequences were 
presented. The responses were used to compute the rate–intensity 
functions by averaging activity across time bins from 7.9 ms to 50 ms 
after noise onset.

Amplitude-modulation tuning. For the results shown in Fig. 5c and Sup-
plementary Figs. 4g,h and 5c, the sounds defined in ref. 26 were used. 
Noise was generated with a duration of 1 s (with 4-ms cosine on and off 
ramps) and a bandwidth of one octave, centred at frequencies from 500 
to 8,000 Hz (1/2-octave spacing). The noise was either unmodulated 
or modulated with 100% modulation depth at frequencies from 2 to 
512 Hz (1-octave spacing). Two different envelope types were used for 
modulating the noise: a standard sinusoid and a sinusoid raised to the 
power of 32 (raised-sine-32 envelope in fig. 1a of ref. 26). All sounds were 
presented six times in random order with 800 ms of silence between 
presentations.

In an attempt to present the sounds at approximately 30 dB above 
threshold for most units, each sound was presented at two intensities 
that varied with centre frequency, with higher intensities used for very 
low and very high frequencies to account for the higher thresholds 
at these frequencies. The baseline intensities were 50 and 65 dB SPL 

with the addition of [15, 0, 0, 0, 20, 20] dB SPL for centre frequencies 
of [500, 1,000, 2,000, 4,000, 8,000] Hz. The additional intensities for 
other centre frequencies were determined by interpolating between 
these values.

To obtain modulation transfer functions, the fast Fourier trans-
form of the responses was computed using time bins from 7.9 ms to 
1,007.9 ms after sound onset with a matching number of frequency 
bins (763 bins). Synchrony was defined as the ratio between the modu-
lation frequency component and the d.c. component (0 Hz) of the 
magnitude-squared spectrum for all modulation frequencies.

Forward masking. For the results shown in Fig. 5e, Supplementary 
Figs. 4f and 5e, the sounds defined in ref. 4 were used. For the unmasked 
rate–intensity functions, tones (probes) were presented at frequencies 
from 500 and 11,313.71 Hz (1/2-octave spacing) with 20-ms duration 
and 10-ms cosine on and off ramps. The baseline intensities of the 
tones varied from 5 and 75 dB SPL (5-dB spacing), and the intensity was 
increased for very low and very high frequencies as described above. 
Each tone was presented 12 times in random order with 480 ms of 
silence between tones.

For the masked rate–intensity functions, a masking tone at the 
same frequency as the probe was presented with a duration of 200 ms 
and 10-ms cosine on and off ramps, with a 10-ms pause added between 
the offset of the masker and the onset of the probe. The masker was 
presented at baseline intensities of 50 and 75 dB SPL, and the intensity 
was increased for very low and very high frequencies as for the probe 
tone, but with the additional intensities scaled by 2/3. The responses 
were used to compute the rate–intensity functions by averaging actvity 
across time bins from 7.9 ms to 20 ms after probe onset.

Context enhancement. For the results shown in Fig. 5g and Supplemen-
tary Fig. 5g, the sounds defined in ref. 29 were used. The conditioner 
and test sounds were generated by adding together equal-amplitude 
tonal components with random phases and frequencies from 200 Hz  
to 16 kHz (1/10-octave spacing). A notch was carved out of the  
spectrum with centre frequency from 500 to 8,000 Hz (1/2-octave 
spacing) and width from 0 to 2 octaves (0.5-octave spacing). For the 
test sound, an additional tone was added at the centre frequency of 
the notch. The conditioner and test sounds had durations of 500 ms 
and 100 ms, respectively, with 10-ms cosine on and off ramps. The 
sounds were presented at baseline intensities of 40 and 60 dB SPL 
and the intensity was increased for very low and very high frequen-
cies as described above. Each test sound was presented either alone 
or preceded by the conditioner 12 times in random order with 1.2 s 
of silence between presentations. The responses were used to com-
pute the average activity across time bins from 7.9 ms to 100 ms after  
test sound onset.

Non-stationarity. For Fig. 2g, we quantified the non-stationarity in 
each recording as the absolute difference of the covariance of neural 
activity elicited by the same sound on two successive trials and on two 
trials recorded several hours apart. The covariance was computed 
after flattening (collapsing neural responses across time and units 
into one dimension). To obtain a single value for the covariance on 
successive trials, the values from the two pairs of successive trials 
(one pair from early in the recording and one pair from late in the 
recording) were averaged. To obtain a single value for the covariance 
on separated trials, the values from the two pairs of separated trials 
were averaged.

Overall performance metrics. RMSE and log-likelihood were used as 
overall performance metrics (Figs. 1–3). The reported results for both 
metrics were the averages computed over two trials of each sound 
within each individual recording. One trial was chosen from the first 
half of the recording and the other from the second, resulting in times 

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-025-01104-9

of 3.51 ± 1.83 h and 8.92 ± 1.16 h across all nine animals. For each trial, 
the RMSE and log-likelihood were computed as follows:

RMSE =
√√√
√

1
MT

M

∑
m=1

T

∑
t=1

(R[m, t] − ̂R[m, t])
2

(1)

Log-likelihood = 1
MT

M

∑
m=1

T

∑
t=1

log(p( ̂R[m, t] = R[m, t]|s, τ)), (2)

where M is the number of units, T is the number of time bins, s is the 
sound stimulus, τ is the time input, R is the recorded neural activity and 
̂R is the predicted neural activity obtained by sampling from the 

inferred distribution p( ̂R|s, τ) (or p( ̂R|s) for a time-invariant model).

Predictive power metrics. To assess the predictive power of ICNet 
(Figs. 2 and 4 and Supplementary Figs. 3 and 4), we selected two metrics 
that were computed using successive trials for the seven animals for 
which this was possible (chosen from the beginning of the recording, 
resulting in times of 1.94 ± 0.46 h across animals). The two metrics are 
formulated as the fraction of explainable variance or correlation that 
the model explained across all units. The fraction of explainable cor-
relation explained was computed as follows:

Correlation explained (%) = 100
2

ρ(R1, ̂R1) + ρ(R2, ̂R2)
ρ(R1,R2)

, (3)

where R1,R2 ∈ ℕM×T  are the recorded neural activity for each trial, 
̂R1, ̂R2 ∈ ℕM×T  are the predicted neural activity and ρ is the correlation 

coefficient. The responses were flattened (collapsed across time and 
units into one dimension) before the correlation was computed.

The fraction of explainable variance explained was computed as 
follows14:

Variance explained (%)

= 100 (1 −
1

2MT
∑M

m=1∑
T

t=1(R1−Ec[ ̂R1])
2
+ 1

2MT
∑M

m=1∑
T

t=1(R2−Ec[ ̂R2])
2
−σ2noise

1
2
(Var[R1]+Var[R2])−σ2noise

) ,
(4)

σ2noise =
1
2Var[R1 − R2], (5)

where Ec denotes expectation over counts of p( ̂R|s, τ) (or p( ̂R|s) for a 
time-invariant model). The responses were flattened (collapsed 
across time and units into one dimension) before the variances in the 
denominator of equation (4) and in equation (5) were computed, 
while flattening was achieved in the numerator of equation (4) 
through the averaging across units and time. To compute the predic-
tive power of ICNet for each unit (Fig. 4d), we computed the formulas 
of equations (3)–(5) across time only (without collapsing across the 
unit dimension or averaging across units). Values above 100% for 
individual units indicate that the ICNet responses were more similar 
to the recorded responses than the recorded responses were to each 
other across successive trials, which is possible in recordings with 
high non-stationarity.

To visualize coherence in Supplementary Fig. 2a, we computed the 
magnitude-squared coherence for recorded and predicted responses 
to the four primary evaluation sounds. The coherence of the recorded 
responses across trials was computed as follows:

Coherence = 1
M

M

∑
m=1

|G12|2
G1 × G2

, (6)

where M is the number of units, and G12 is the cross-spectral density 
between the responses R1 and R2 for the two successive trials, while G1 
and G2 represent the power spectral densities for each of the responses, 

respectively. The spectral densities were computed across the first 
dimension of the neural responses (time) using 763 frequency bins 
and a Hanning window. The coherence of the predicted and recorded 
responses was obtained by computing the coherence between the 
predicted and recorded response on each trial using the same formula 
and taking the average of the two values.

Phoneme recognition
A DNN architecture based on Conv-TasNet42 was used to train an 
ASR back end that predicted phonemes from the ICNet bottleneck 
response. The DNN architecture comprised: (1) a convolutional layer 
with 64 filters of size 3 and no bias, followed by a PReLU activation, (2) a 
normalization layer, followed by a convolutional layer with 128 filters of 
size 1, (3) a block of 8 dilated convolutional layers (dilation from 1 to 27)  
with 128 filters of size 3, including PReLU activations and residual skip 
connections in between, (4) a convolutional layer with 256 filters of  
size 1, followed by a sigmoid activation, and (5) an output convolutional 
layer with 40 filters of size 3, followed by a softmax activation. All 
convolutional layers were 1D and used a causal kernel with a stride of 1.

The ASR model was trained using the train subset of the TIMIT 
corpus38. The TIMIT sentences were resampled to 24,414.0625 Hz and 
were segmented into sound input frames of 81,920 samples (windows 
of 65,536 samples with 50% overlap and left context of 16,384 samples). 
In each training step, the sound input frames were given to the frozen 
ICNet model to generate bottleneck responses at 762.9395 Hz (output 
frames of 2,048 samples with left context of 256 samples). The bot-
tleneck response was then given to the ASR back end to predict the 
probabilities of the 40 phoneme classes across time (output frames of 
2,048 samples at 762.9395 Hz after cropping the context).

The TIMIT sentences were calibrated to randomly selected levels 
between 40 dB and 90 dB SPL in steps of 5 dB, and were randomly 
mixed with the 18 noise types from the DEMAND dataset43 at SNRs of 
−30, −20, −10, 0, 10, 20, 30 and 100 dB. The phonetic transcriptions 
of the TIMIT dataset were downsampled to the sampling frequency 
of the neural activity (762.9395 Hz) and were grouped into 40 classes 
(15 vowels and 24 consonants plus the glottal stop). To account for the 
phonetic class imbalance (high prevalence of silence in the dataset), a 
focal cross-entropy loss function was used for training with the focus-
ing parameter γ set to 5.

ASR models were trained to predict speech recognition from the 
ICNet bottleneck response, as well as from the bottleneck responses 
of the nine single-branch time-variant models. The trained ASR mod-
els were evaluated using six random sentences of the test subset of 
the TIMIT corpus. The sentences were calibrated at 65 dB SPL, and 
speech-shaped noise was generated to match the long-term average 
spectrum of the sentences. A baseline system was also trained with 
the same DNN architecture, but using a standard Mel spectrogram as 
the input. The Mel spectrogram was computed from the sound input 
(24,414.0625 Hz) using frames of 512 samples, a hop size of 32 samples 
and 64 Mel channels with frequencies logarithmically spaced from 
50 to 12,000 Hz. These parameters were chosen to maximize perfor-
mance while matching the resolution of the ICNet bottleneck response 
(762.9395 Hz output frames with 64 channels).

Statistics
Confidence intervals for all reported values were computed using 1,000 
bootstrap samples. For the metrics that we used to assess model per-
formance (RMSE, log-likelihood, variance and correlation explained), 
bootstrapping was performed across units for each animal. For the 
ASR results (Fig. 3f), bootstrapping was performed across animals.

Data availability
All of the sounds and IC recordings that were used to evaluate ICNet in 
Fig. 4b,d are available in ref. 44. The four sounds can be used as inputs 
to ICNet to simulate responses for comparison with the IC recordings 
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provided for seven animals. Researchers seeking access to the full set 
of neural recordings for research purposes should contact the cor-
responding author via e-mail to set up a material transfer agreement.

Code availability
The code of the ICNet model is available via GitHub at https://github.
com/fotisdr/ICNet (ref. 45). A Jupyter notebook is included with a 
simple usage example for ICNet. A non-commercial, academic UCL 
licence applies.
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