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“A person jumps high and performs a side kick in midair”

Bird Gliding Style

“A man runs in a circle”

“A woman hops forward on
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Fig. 1. A showcase of generated motions driven by the unsupervised style of bird gliding. Our method synthesizes motions by combining textual
descriptions of desired content with style references characterized by the distinctive body postures and fluid dynamics of bird gliding. The resulting motions
seamlessly integrate the style characteristics of the reference with the motion content conveyed by the textual input, demonstrating both creative adaptability

and precise control.

“Corresponding author

Authors’ Contact Information: Linjun Wu, State Key Lab of CAD&CG, Zhejiang
University , Hangzhou, China, 12321232@zju.edu.cn; Xiangjun Tang, State Key Lab
of CAD&CG, Zhejiang University , Hangzhou, China, xiangjun.tang@outlook.com;
Jingyuan Cong, University of California San Diego , San Diego, United States of America,
cjy6647@gmail.com; He Wang, UCL Centre for Artificial Intelligence, Department
of Computer Science, University College London (UCL) , London, United Kingdom,
he_wang@ucl.ac.uk; Bo Hu, Tencent Technology Co., Ltd., Shenzhen, China, corehu@
tencent.com; Xu Gong, Tencent Technology Co., Ltd., Shenzhen, China, xugong@
tencent.com; Songnan Li, Tencent Technology Co., Ltd., Shenzhen, China, sunnysnli@
tencent.com; Yuchen Liao, Tencent Technology Co., Ltd., Shenzhen, China, bluecatliao@
tencent.com; Yigian Wu, State Key Lab of CAD&CG, Zhejiang University, Hangzhou,
China, onethousand1250@gmail.com; Chen Liu, State Key Lab of CAD&CG, Zhejiang
University, Hangzhou, China, eric.liu@linctex.com; Xiaogang Jin, State Key Lab of
CAD&CG, Zhejiang University , Hangzhou, China, jin@cad.zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

Text-to-stylized human motion generation leverages text descriptions for
motion generation with fine-grained style control with respect to a reference
motion. However, existing approaches typically rely on supervised style
learning with labeled datasets, constraining their adaptability and general-
ization for effective diverse style control. Additionally, they have not fully
explored the temporal correlations between motion, textual descriptions, and
style, making it challenging to generate semantically consistent motion with
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precise style alignment. To address these limitations, we introduce a novel
method that integrates unsupervised style from arbitrary references into
a text-driven diffusion model to generate semantically consistent stylized
human motion. The core innovation lies in leveraging text as a mediator to
capture the temporal correspondences between motion and style, enabling
the seamless integration of temporally dynamic style into motion features.
Specifically, we first train a diffusion model on a text-motion dataset to cap-
ture the correlation between motion and text semantics. A style adapter then
extracts temporally dynamic style features from reference motions and inte-
grates a novel Semantic-Aware Style Injection (SASI) module to infuse these
features into the diffusion model. The SASI module computes the semantic
correlation between motion and style features based on text, selectively in-
corporating style features that align with motion content, ensuring semantic
consistency and precise style alignment. Our style adapter does not require a
labeled style dataset for training, enhancing adaptability and generalization
of style control. Extensive evaluations show that our method outperforms
previous approaches in terms of semantic consistency and style expressivity.
Our webpage, https://fivezerojun.github.io/stylization.github.io/, includes
links to the supplementary video and code.

CCS Concepts: « Computing methodologies — Motion processing;
Neural networks.

Additional Key Words and Phrases: Motion Synthesis; Motion Stylization;
Text-Driven Generation.
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1 Introduction

Text-driven human motion generation harnesses the intuitive and
versatile nature of text descriptions to express rich motion semantics,
enabling the creation of diverse human motions with flexibility
for applications in film, gaming, and digital human development.
However, accurately capturing style characteristics using text alone
remains a significant challenge. This problem has only recently been
targeted. The state-of-the-art text-to-stylized motion methods [Li
et al. 2024; Zhong et al. 2025] can partially mitigate this issue by
explicitly combining content texts (textual descriptions of motion
content) with stylized motion references to generate motions.

While effective, these approaches are based on supervised style
learning, which requires style labels in the training datasets to guide
a classifier. This reliance significantly limits their practical applica-
bility for several reasons. First, motion styles are often ambiguous to
label, particularly when styles are subtle, composite, or temporally
dynamic [Jang et al. 2022]. Second, motion sequences often exhibit
varying style characteristics across different actions, adding fur-
ther complexity to labeling. Finally, many publicly available motion
datasets lack style annotations altogether, and manually labeling
them is both time-consuming and labor-intensive.

Furthermore, these methods have not fully explored the temporal
correlations between motion, textual descriptions and style, making
it difficult to generate semantically consistent motions with precise
style alignment, especially when the content of style references
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diverges from the content texts or when the style characteristics
temporally vary across different actions. These limitations motivate
the development of a semantically consistent text-to-stylized motion
generation method that incorporates unsupervised style learning
to eliminate the need for style labels while ensuring precise style
alignment.

To achieve this, several key challenges must be addressed. First,
without explicit annotations describing style characteristics, inte-
grating style into the text-to-motion process risks compromising
the desired textual semantics. Style integration inherently involves
modifying motion features, such as characteristic poses or spatial-
temporal dynamics, which can inadvertently alter the intended
motion content. Second, distinct actions within a single motion
sequence may exhibit style variations, making it challenging to
incorporate the corresponding style characteristic into each action.

To this end, we introduce a novel method that integrates unsu-
pervised style from arbitrary references into a text-driven diffusion
model to generate semantically consistent motion with precise style
alignment. The core innovation lies in leveraging text as a mediator
to capture the temporal correspondences between motion and style,
enabling the seamless integration of temporally dynamic styles into
motion features. This concept prevents content from being altered
during style integration by prioritizing semantically consistent style
features, and it preserves the temporal dynamics of the style fea-
tures, enabling distinct actions to adopt style characteristics that
are well-matched to their semantics.

To achieve the above, we first train a diffusion model using the
HumanML3D dataset [Guo et al. 2022] to learn motion generation
from text descriptions, capturing the correlation between motion
features and textual semantics through attention scores. A style
adapter then extracts temporally dynamic style features from refer-
ence motions and integrates a novel Semantic-Aware Style Injection
(SASI) module to infuse these features into the diffusion model. The
SASI module captures the semantic correlation between motion and
style features based on text, selectively incorporating style features
aligned with motion content. This process seamlessly incorporates
the corresponding motion styles into different actions while main-
taining the diffusion model’s ability to generate motions aligned
with the content texts. Our style adapter does not require style la-
beling for training, enhancing the adaptability and generalization of
style control. We demonstrate that our method outperforms existing
methods in terms of semantic consistency and style expressivity
through extensive validation. The contributions of our work can be
summarized as follows:

e A novel semantic-aware method for integrating motion style
into text-driven motion generation, achieving enhanced style
expressivity and superior semantic consistency between text
and motion compared to existing methods.

o Anunsupervised style learning framework for text-to-stylized
motion that eliminates the need for style labeling, enhancing
adaptability and generalization of style control.

e An innovative style injection strategy that leverages correla-
tions between motion, text, and style, effectively guiding mo-
tion stylization for temporally dynamic actions while main-
taining strong semantic consistency with the content texts.
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2 Related work
2.1 Text-driven Human Motion Generation

Text-driven human motion generation has become a key research
focus due to the versatility and user-friendly nature of text descrip-
tions in representing diverse motion semantics. To bridge the gap
between motion generation and text, early methods align text and
motion modalities within a unified latent space [Ahuja and Morency
2019; Petrovich et al. 2022; Tevet et al. 2022]. However, these meth-
ods struggle to generate high-quality motions from lengthy textual
descriptions that depict multiple consecutive actions. Recently, dif-
fusion models have been integrated to establish more precise text-to-
motion mappings, leading to improved motion quality and semantic
alignment [Chen et al. 2023; Huang et al. 2024; Sun et al. 2024; Tevet
et al. 2023]. An alternative approach involves generating motion
in discrete token spaces, which can be predicted using autoregres-
sive methods [Zhang et al. 2023] or generative masked modeling
techniques [Guo et al. 2024a; Pinyoanuntapong et al. 2024].

Although text provides flexible control, it often fails to precisely
describe subtle, complex, or temporally dynamic features, such as
style [Jang et al. 2022]. To address this, several works have enhanced
motion controllability by incorporating additional inputs beyond
text. For example, utilizing spatial control can help connect motion
with its surrounding environment [Karunratanakul et al. 2023; Xie
et al. 2023]. Other approaches enable the generation of stylized
motions based on content texts and style motion references [Li et al.
2024; Zhong et al. 2025]. In this framework, the text description
includes both content and style components [Zhong et al. 2025],
allowing for separate control over each aspect. However, these text-
to-stylized motion approaches rely on supervised style learning
and struggle to generate semantically consistent motions when the
content of style references diverges from content texts. In contrast,
our approach enables the incorporation of arbitrary style into text-
driven motion generation based on unsupervised style learning
while maintaining semantic consistency.

2.2 Motion Style Transfer

Motion Style Transfer is a related field that aims to modify the style
of a motion while preserving its content. Early works focus on align-
ing different motions to capture their style differences [Hsu et al.
2005] or modeling style in the frequency domain [Bruderlin and
Williams 1995; Pullen and Bregler 2002; Unuma et al. 1995; Yumer
and Mitra 2016], but these methods typically handle relatively small
datasets. Recent approaches leverage large labeled datasets to map
between domains [Almahairi et al. 2018; Dong et al. 2020] or define
style as a shared feature of motions with the same label [Mason
et al. 2022; Xia et al. 2015]. Styles can be represented using one-hot
embeddings [Chang et al. 2022; Park et al. 2021; Smith et al. 2019] or
continuous style variables [Brand and Hertzmann 2000]. However,
these representations often lack the granularity to capture tempo-
rally varying style characteristics. To address this, some methods
model style variance using latent vectors [Zhou et al. 2023], em-
ploying techniques such as Gram Matrices [Holden et al. 2017] or
AdalN [Aberman et al. 2020; Park et al. 2021; Zhang et al. 2024]. In
addition, body part-level attention mechanisms are employed to
capture fine-grained style variation [Jang et al. 2022, 2023; Kim et al.
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2024; Song et al. 2023]. Furthermore, contact is explicitly decoupled
from content by controlling it through hip velocity [Tang et al. 2024],
allowing for more precise motion style control. Diffusion models
have also been explored for motion style transfer [Song et al. 2024].
And prior information encoded in pre-trained diffusion models is
leveraged to enhance motion transfer [Raab et al. 2024].

Style transfer can be integrated into text-to-motion pipelines to
achieve stylized text-to-motion [Guo et al. 2024b]. However, due
to the inherent ambiguity in distinguishing motion content and
style [Song et al. 2023; Tang et al. 2024], style transfer without
semantic guidance introduces semantic inconsistency when incor-
porating style into motion generated driven by content texts. Incor-
porating the semantics of motion style patterns with action labels
enables more precise control over motion styles [Song et al. 2023].
However, their method degrades performance when the reference
motion deviates from the intended semantics. On the other hand, the
semantic-guided style transfer learning strategy proposed by [Hu
et al. 2024] enables few-shot style transfer. However, it requires
fine-tuning a separate style transfer model for each new style exam-
ple, increasing significant storage and time costs. In contrast, our
method only requires a single training session to incorporate the
style of arbitrary reference motions.

3 Methodology

Our method takes text descriptions of motion content and unla-
beled style reference motions as input, generating stylized motions
that preserve semantic consistency with the content texts while
aligning with the reference style. To achieve this, we first train a
text-conditioned diffusion model (Sec. 3.1), which combines a text
encoder and a denoising U-Net model to enable motion generation
from text prompts. Next, we train a style adapter (Sec. 3.2), which
utilizes a CNN style encoder to extract temporally dynamic style
features from reference motions and injects these features into the
U-Net layers through the SASI module. We also design specific
losses for training (Sec. 3.3). The following sections will describe
the details.

3.1 Text-conditioned Diffusion Model

Our method harnesses the potential of a text-conditioned diffu-
sion model, which is built upon the framework of the ConviD
U-Net, to achieve textual control over motion content. Inspired
by [Huang et al. 2024; Liang et al. 2024], we incorporate a cross-
attention scheme to fuse the motion and text features. Specifically,
given the motion latent feature xﬁn € RN*DPm and text embeddings
ct € REXD: \where xgn denotes the backbone feature of the it?
U-Net layer, N represents the length of the motion sequence, Dy,
refers to the dimension of the motion features, L signifies the count
of text tokens, and D; represents the text embedding dimension, an

attention score matrix A (x!

. ct) is computed, via

i OxKet!
A(x},, ct) = softmax (% , 1)
Ox =x}, - W2 K¢y = ct- WK, )

where WQ € RPmXPm WK ¢ RP:XDm are the projection matrix
for motion query and text key features, d = Dy, represents the
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Fig. 2. Overview of our method. (a) Our method takes text descriptions of motion content and unlabeled style reference motions as input, generating

stylized motions that maintain semantic consistency with the given content texts while aligning with the reference style. (b) The Semantics-Aware Style Inject
(SASI) module leverages text as a mediator to capture the temporal correspondences between motion latent and style features, injecting style features into the

layers of the denoising U-Net.

scaling factor. Within this attention score, each column :?[(x::n, ct)y j
provides a correspondence between the motion sequence and the
jt h text token. Then the text values Vet = ct - WY are integrated
within the motion sequence, via

Xfmt = x;n + X;ext = Xén + ﬁ(xﬁn, ct)Vet, 3)
where Xiext denotes the text-based cross-attention feature, and
xfm[ € RN*Dm denotes the output of the ith U-Net layer.

3.2 Semantic-aware Style Adapter

Our semantic-aware style adapter serves to extract temporally dy-
namic style features from the input reference motions and inject
these features into denoising U-Net layers.

3.2.1 Style Encoder. Considering that style may vary across dif-
ferent actions, we preserve its dynamic characteristics, which en-
compass both global and local temporal variations. For instance,
the elderly individual’s hunchback posture represents a global style
feature, while a faltering footstep reflects a local spatial-temporal
variation. Our style extraction process operates on multiple tem-
poral scales to accurately capture global and local style features.
Using a CNN network, the model first extracts style features on the
original temporal scale, followed by downsampling convolutions
to capture higher-level temporal style features. This process results
in the formation of a pyramid of style features as cs = {csi}{i »
where cs’ denotes the style feature from the ith convolution layer
and H represents the total number of convolution layers. Notably,
the temporal scale of this pyramid aligns precisely with the corre-
sponding feature within the U-Net, which allows us to incorporate
style characteristics at the corresponding temporal level.

3.2.2  Semantic-Aware Style Injection. Building on extracted style
features, the previous method [Zhong et al. 2025] utilizes ControlNet
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to integrate styles as temporally invariant features into the diffusion
model. However, since styles are temporally dynamic, certain parts
from style motions can influence specific sub-region actions in the
generated motion, highlighting the need to establish a temporal
correspondence between motion and style. As both poses and style
fluidly change within a motion, directly establishing the correspon-
dence is challenging. To address this, we need to map motion and
style non-linearly to another feature that also fluidly changes. We
found that texts can fulfill this role by mapping motions and styles
into a shared encoded text space for further analysis.

Building on this idea, we first utilize the cross-attention module
to capture the correspondences between the style features and the
content texts, given by

. KT
A(cs', ct) = softmax (QCSTM) , (4)
Qcs = cs' - W2 K¢t = ct - WK, (5)

where W9, WK are the query and key projection matrix for the
style and text features, respectively. We utilize the same query and
key projection matrix from the motion-text cross-attention layer to
leverage the learned cross-modal correspondences. Subsequently,
we deploy the temporal correspondences between content texts,
motion latent, and style features to derive the attention score matrix
between motion latent and style features, via

ﬂ(xﬁn, cst) = ﬂ(xén, ct)A(cs!, ct)T, 6)

ﬂ(xﬁn,csi)j’k = ﬂ(xﬁn,ct)j,* - A(cs, ct)*T’k (7)
= cos(A(x! ct)j, ﬂ(csi,ct)ky*),

mn’
where ﬂ(xgn, ct)j« and Alcst, ct)y . represent the attention scores
between each text token with the j th motion token and the k%"

style token, respectively, capturing the semantics of motion and



(a) The correspondences of style motion and generated motion with content texts
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(b) Attention map between motion and style features
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Fig. 3. Visualization of the correlations between motion, content texts, and style. (a) The correspondences of style motion and generated motion with

content texts. Both reference style motion and our generated motion are color-coded based on their attention to key content text tokens (e.g., “walks”,

» o«

son
sits’,

and “up”). (b) Attention map between motion and style features. We highlight high-attention regions and annotate the corresponding poses in the generated

motion and reference motion to illustrate their correlation.
style tokens. According to Eq. 7, fﬂ(xgn, csi)j,k denotes the cosine
similarity between the semantics of the motion and style token,
serving as the attention score. A higher score indicates a stronger
semantic alignment between the motion segment and the reference
style segment, which will be further demonstrated in Sec. 4.

Then, we norm the attention scores ﬂ(x::n, csi) to maintain a
standardized range of attention values, via

A’ (x! . ¢es') = norm (ﬂ(xén, csi)) , (8)
Y. .
norm(Y); j = %,Y e R™M™,
j=1 Yij

Then, the style features are integrated within the motion sequence,
via
= A (%, cs)) Vs,

in’ ©)

X;ty
where V¢ = cs’ - WY denotes the reference style value feature.
Finally, we directly add the output of the style adapter to the
text-based cross-attention features, harmonizing the text and style
controls. Hence, the output of the i*" U-Net layer is defined as:

i i i
Xout = Xjp ¥ Xpext + Xsty' (10)

In particular, during the SASI module training, the query projection
matrix W2 and key projection matrix WX remain frozen, with only
the value projection matrix WV trained.

3.3 Losses
In training text-conditioned diffusion model, we predict the motion
with the simple objective [Tevet et al. 2023], via
2
Limple = Bxyq(xolet).e~[1T] [I%0 = po (X, t,et) 5] . (11)
To train the style adapter, we freeze the parameters of the text-
conditioned diffusion model and exclusively train the style adapter
using the following objective:
2
‘L;imple = Exo~q(x0|ct,cs),t~[1,T] [”XO = por (Xt t,ct, cs)”z] . (12)

We use the notation £’ to distinguish it from Eq. 11, with 6’ repre-
senting the parameters of all components, as opposed to 8, which

denotes the parameters of the diffusion model only. Instead of rely-
ing on style-motion pairs, we adopt a self-supervised approach that
leverages the target motion xq as the style reference. However, since
the reference motion inherently contains more fine-grained motion
features than the text, the network tends to prioritize extracting
motion features from the reference motion. This can weaken the
control exerted by the textual input, a phenomenon referred to as
content-forgetting in [Zhong et al. 2025].

To mitigate this problem, we adopt two specific strategies. In the
training stage, we randomly crop 50% — 75% of the motion sequence
xg as the style reference cs = crop(xp). This process lessens the
overlap between the reference motion and generation target while
preserving the global style wholeness and coherence. In addition,
we present a hip loss function for content constraint, given by

Leontent = |[Hip (pg (xz.1,¢t)) —Hip (pgr (xr.t,ctoes’))|2,  (13)

where Hip(x) denotes the hip velocity sequence of motion sample
x, and c¢s’ denotes a randomly selected reference motion from the
training set. Drawing inspiration from the strong correlation be-
tween hip movement and contact timing discussed in [Tang et al.
2024], we introduced this loss to regulate the timing of the synthe-
sized motion, thereby implicitly constraining the motion content.
As a result, the training loss for the style adapter is defined as:

L=r

simple

(14)

where Acontent is empirically set to 0.5 in our experiments. Further
implementation details are provided in the Appendix.

+ Acontent Lcontent »

4 Correlations Analysis between motion, content texts,
and style

Our approach leverages content texts as a mediator to establish
temporal correspondences between motion and style, enabling the
seamless integration of style into motion. To analyze the correspon-
dences between the generated motion, style motion, and content
texts, we utilize the attention scores from Eq. 1 and Eq. 4 to color-
code the motions and key content texts with the highest attention,
highlighting them in the same color inspired by the visualization

SIGGRAPH Conference Papers 25, August 10-14, 2025, Vancouver, BC, Canada.



6 « Wuetal

Table 1. Comparison of various methods for stylized human motion generation driven by content texts and style references, evaluated on the HumanML3D
test set. The + symbol denotes the 95% confidence interval for each test. Bold and underline denote best and second best, respectively. Our method achieves a
significant improvement in semantic consistency, as evidenced by higher R-Precision and lower MM Dist.

R-Precision T

Method MM Dist | SRAT FID | Skating Ratio |
Top 1 Top 2 Top 3

Real 0.5111:0002 0'7021()‘002 0'79710.002 297910.006 0.00210.000

SMooDi 0.338%0-002 0 506%0-003 0 614%0-003 4 223+0.014 59 040+0-33¢ 1 9g5+0.027 0.113%0-001

StableMoFusion+MCM_LDM 0.343%0:003 0 511%0.002 (61740003 4 053%£0.010 g0 50%0-211 1 43%0.032 0.081%0-001

StableMoFusion+DecouplingContact ~ 0.124%0-002  .210%0-002  ( 2g3+0.003 ¢ 50120.011 73 54720211 10 6190049 ¢ 15¢*0.001

Ours 0.430%000%  0,610*0-002  0.715%0:002  3.496*0-011 (57390247 1,186+0-011  0,070+0-00!

in [Raab et al. 2024], as shown in Fig. 3 (a). We observe that these cor-
respondences are semantically aligned, with the generated motion
maintaining temporal alignment with the content texts.

Additionally, our method captures the correspondences between
motion features and style features via Eq. 6 and Eq. 8. The result-
ing attention map A’ (x, cs), shown in Fig. 3 (b), visualizes these
correlations. Notably, by using text as a mediator, the motion-style
correspondences are semantically aligned. For instance, the “sit”
segments in the generated motion and the style motion correspond
to each other with high attention. Additionally, the stand-up action
in the generated motion partially corresponds to the sit-down action
in the style motion. Although the vertical speed trends of these two
actions are opposite, their poses are similar, resulting in a moderate
level of attention. This alignment provides two key advantages: (i) it
preserves content integrity during style integration by emphasizing
semantically consistent style features, ensuring that the generated
motion retains temporal alignment with the content texts, and (ii)
it allows distinct actions to incorporate fine-grained style character-
istics that are well-matched to their semantics. For example, in the
generated motion, the cross-legged characteristic is retained during
sitting, consistent with the sitting actions in the style reference.

Moreover, we have observed that even when the content of
the style reference and content texts are entirely mismatched, our
method still extracts appropriate style features. Despite the differ-
ences in overall motion trends, specific style tokens encoding local
features can still have high degrees of correspondence with certain
text tokens. Additionally, some style tokens align with descriptors
such as “person”, representing the overall subject of the motion
rather than specific actions or body parts. This alignment allows
our method to incorporate overall style characteristics, such as the
hunched posture traits of elderly individuals.

5 Experiments and Results
5.1 Settings

5.1.1 Dataset. We conduct experiments on the HumanML3D dataset
[Guo et al. 2022], currently the largest 3D human text-motion
dataset, which includes a wide range of human motions performed
by characters with diverse styles. This dataset has been widely used
for both text-to-motion [Tevet et al. 2023] and motion style trans-
fer [Song et al. 2024]. We follow the same data-splitting strategy
as [Guo et al. 2022], train our diffusion model and style adapter on
the train set, and evaluate our model on the test set.
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5.1.2  Evaluation Metrics. We evaluate the results based on three
criteria: semantic consistency, style expressivity, and motion qual-
ity. Semantic consistency is quantified through motion-retrieval
precision (R-Precision) and Multimodal Distance (MM Dist), style
expressivity is assessed by Style Recognition Accuracy (SRA), and
motion quality is evaluated by Frechet Inception Distance (FID)
and foot skating ratio. To calculate the SRA metric, we manually
annotate a subset of the HumanML3D dataset with style labels and
train a one-layer transformer as the style classifier. During testing,
we randomly select text descriptions from the HumanML3D test set
and style references from the annotated test set to generate stylized
motion. Each test is evaluated 20 times, and we report the mean
along with a 95% confidence interval. Details of these metrics and
other settings are provided in the Appendix.

5.1.3 Baselines. We compare our method against two categories
of approaches: (i) directly generating stylized motions conditioned
on content texts and style motion references, and (ii) applying style
transfer to motion sequences generated through a text-to-motion
model. Specifically, we compare our method to SMooDi [Zhong
et al. 2025] for stylized motion generation. SMooDi’s adapter is
trained on both the HumanML3D and 100STYLE datasets, with
its classifier trained on the 100STYLE dataset, following the setup
in [Zhong et al. 2025]. Additional details on the SMooDi setup are
provided in the Appendix. Additionally, we use cutting-edge meth-
ods MCM_LDM [Song et al. 2024] and DecouplingContact [Tang
et al. 2024] for motion style transfer, along with the state-of-the-art
StableMoFusion [Huang et al. 2024] for text-to-motion. We utilize
StableMoFusion+MCM_LDM to refer to a two-step pipeline: first,
StableMoFusion generates motion from text, and then MCM_LDM
transfers the generated motion into the desired style with respect
to reference motions.

5.2 Comparisons

We conducted both quantitative and qualitative comparisons with
the baseline methods. The quantitative results presented in Tab. 1
demonstrate that our method significantly enhances semantic con-
sistency (as measured by R-Precision and MM Dist) while achieving
competitive style expressivity and superior motion quality. Regard-
ing semantic consistency, our method leverages text as a mediator
to establish temporal correspondences between motion and style,
integrating semantically aligned style features into motions. This
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(a) Style: professional boxer; Content texts: A man throws jabs and crouches to dodge, then he stands up and steps back to escape.

(b) Style: old; Content texts: A person runs forward and then lies down.
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Fig. 4. Qualitative evaluation. We present two sets of stylized motion generation cases. In the figure, the gradient transition from light to dark hues visually

signifies the temporal progression of the character’s motion.

prevents content alteration during style integration, resulting in sub-
stantially better semantic alignment. Moreover, our method achieves
notable style expressivity, as evidenced by the second-highest SRA
scores. By adjusting the Classifier-Free Guidance weight for style,
our method can surpass StableMoFusion+DecouplingContact in
both semantic consistency and style expressivity, as detailed in the
Appendix. SMooDj, constrained by its reliance on a supervised style
classifier, struggles with unlabeled styles from the HumanML3D test
set, resulting in weaker performance in these scenarios. Addition-
ally, our method achieves the best motion quality, indicated by the
lowest FID and foot skating ratio, further solidifying its effectiveness
in generating high-quality motion.

We further demonstrate the effectiveness of our approach through
qualitative results, as illustrated in Fig. 4. When the motion in-
volves multiple actions, our method seamlessly integrates distinct
styles into corresponding actions. For example, in Fig. 4 (a), the
“throws jabs” action of our generated motion preserves the punch
style of the boxer (e.g., punching skills and body dynamics), while
the “crouches”, “stands up” and “steps back” actions maintain the
guarded posture of the boxer. Other methods, by contrast, only
preserve the boxer’s guarded posture and fail to capture the punch
style. Even when the content of style motion diverges significantly
from content texts, our method still produces compelling results.
In Fig. 4 (b), for instance, our generated motion incorporates the
hunched posture of an elderly person while generating motions
such as “runs” and “lies down”. In contrast, other methods fail to
generate the “lies down” action. Additional qualitative results are
available in the supplementary video.

Given that styles are subjective and most times not well defined,
we conduct a user study for a more rigorous evaluation. We ran-
domly selected ten texts and style references from the HumanML3D
test set to generate motions. Sixteen participants rated the generated
motions on a 1-5 scale for realism, semantic consistency, and style
expressivity. Further details of the user study are provided in the
Appendix. The results presented in Tab. 2 demonstrate our method’s
competitiveness across all criteria.

5.3 Ablation Study

In this section, we conduct ablation studies on the SASI module,
content loss, and pyramid structure in the style encoder. The results
of these experiments are presented in Tab. 3.

Table 2. User study on the HumanML3D test set.

Method Realism  Semantic Consistency — Style Expressivity
StableMoFusion+MCM_LDM 3.263 3.113 2.95
StableMoFusion+DecouplingContact ~ 2.283 2.235 3.525
SMooDi 3.25 2.988 2.75
Ours 3.688 4.25 3.85

Table 3. Ablation studies on the SASI module, content loss, and pyramid
structure in the style encoder.

Method R-Precision (Top 3) T MM Dist | SRA T FID |
Ours 0.715%0-002 3.496%0-011 657390247 1 186*0-011

w/0 SASI 0.520%0-003 4.905%0-010 74 906*0-289 5 117%0.042
w/o content loss 0.643%0-003 3.953%0-013 68 6670241 1 g37%0.020
w/o pyramid 0.719%0-003 3.483%0011 60 813%0-383  1,135%0.014

5.3.1 SASI. We replace SASI module with a cross-attention module
for comparison, as shown in the second row (w/o SASI) of Tab. 3.
The cross-attention module computes query embeddings from the
motion latent and derives key and value embeddings from the refer-
ence styles, directly learning the correspondences between motion
and style features through attention maps. However, this approach
might result in inconsistent correspondences, which could com-
promise textual content consistency, leading to lower R-Precision
and higher MM Dist. In contrast, our SASI module achieves notable
improvements in semantic consistency and motion quality.

5.3.2  Content loss. We compare our model to a variant without
content loss during training to demonstrate its effectiveness, as
shown in the third row (w/o content loss) of Tab. 3. The content
loss improves semantic consistency and motion quality, with only a
slight impact on style expressivity.

5.3.3  Pyramid structure. We replace the style pyramid features
with the final-layer output of a 3-layer CNN encoder, as shown in
Tab. 3 (w/o pyramid). The pyramid structure improves SRA without
notably impacting other metrics, highlighting their contribution to
style expressivity.

5.4 Generalization Evaluation

To evaluate the generalization of our method, we conduct exper-
iments in a cross-dataset setting. Specifically, we train our style
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Table 4. Evaluation on the 100STYLE dataset. Our adapter is trained on the
HumanML3D dataset, whereas SMooDi is trained both on the HumanML3D
dataset and 100STYLE datasets.

Method R-Precision (Top 3) T MM Dist | SRA T

Our adapter 0.640+0-002 4.016%0:006 34 962%0.253
SMooDi w/o classifier guidance 0.636%0-003 4.045%0-012  17,946%0-289
Our adapter + classifier guidance 0.687+0-003 3.732%0:008  76,112%0-238
SMooDi 0.579%0.003 4.408%0012 77 159%0.277

adapter on HumanML3D and test it on 100STYLE, comparing it to
SMooDi, which is trained on both HumanML3D and 100STYLE. The
results are presented in Tab. 4. Our method demonstrates strong
generalization under out-of-distribution conditions, as shown in the
first row of Tab. 4 (Our adapter), achieving superior style expressiv-
ity compared to SMooDi’s adapter trained on in-distribution data
(SMooDi w/o classifier guidance). Since 100STYLE provides super-
vised styles for SMooDi, we also introduce a comparable supervised
setting with classifier guidance from 100STYLE (Our adapter + clas-
sifier guidance). In this setting, our method outperforms SMooDi in
style expressivity and semantic consistency, highlighting its gener-
alization.

6 Additional Applications
6.1 Stylized Motion In-between

Stylized motion in-between is a critical research area. Without ex-
plicit style control, statistically probable motions can be used to
reach target keyframes, potentially disrupting the intended style [Tang
etal. 2023], as illustrated in Fig. 5 (a). To address this issue, we utilize
imputation and inpainting techniques and incorporate style refer-
ences to generate stylized in-between motions. When the style is
derived from the keyframe sequence, the generated motion main-
tains the style consistency, as demonstrated in Fig. 5 (b). Addition-
ally, our approach supports style transitions when the reference
motion differs in style. For example, in Fig. 5 (d), we showcase a
style transition from an “old man” walking pace to a relaxed gait.

6.2 Motion Style Transfer

Our approach enables motion style transfer, as illustrated in Fig. 6.
Specifically, we employ DDIM inversion [Song et al. 2020] to de-
termine the latent noise corresponding to the input source motion.
This latent noise, along with a style reference motion and content
texts, is then fed into our model to generate stylized motion. The
content texts serve as a semantic prior ensuring that style features
extracted from the reference motion align with the textual content,
enabling our approach to better preserve the content of the original
motion throughout the style transfer process.

7 Limitations, Future Work and Conclusions

If the style characteristics conflict with the content texts, our model
prioritizes the content, which may limit the expression of the de-
sired style in the generated motion. For instance, as shown in Fig. 7,
when given the content texts skipping rope alongside a zombie-
style reference, our method generates motion with rope-swinging
arm movements, limiting the expression of the zombie-like char-
acteristics of arms stretched forward. Nevertheless, we contend
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that content control takes precedence in most practical applications.
Future research could explore more flexible control mechanisms,
enabling users to selectively incorporate features from the style
reference while respecting the content texts.

In conclusion, we introduce a novel unsupervised style learning
method that seamlessly integrates style into text-to-motion gen-
eration while maintaining semantic consistency. Leveraging text
as a mediator to capture the temporal correspondences between
motion and style, our style adapter effectively integrates temporally
dynamic style features while preserving the diffusion model’s abil-
ity to generate motions aligned with textual content. Experimental
results validate that our method produces semantically consistent
and expressive motions across a wide range of content texts and
motion styles, outperforming state-of-the-art methods in semantic
consistency and style expressivity.
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(a) MDM [Tevet et al. 2023] (b) Ours
+ “An old man is walking while raising hands” + “A person is walking while raising hands” + keyframe style

4

(c) Style reference: relaxed pace (d) Ours
+ “A person is walking while raising hands” + relaxed style

(S

Fig. 5. Stylized motion in-between. (a) Without explicit style control, the previous diffusion method generates in-between motions that disrupt the “old
man” style. (b) Our method can incorporate the style from given keyframes, preserving the style consistency of the generated in-between motions. Given a
reference motion (c) with a different style (relaxed pace), (d) our method enables a style transition from an “old man” pace to a relaxed pace. All methods take
keyframes and text as input for generating in-between motions. In (d), our method additionally inputs the reference motion from (c) as a style reference.
Purple frames represent keyframe inputs, blue frames represent the generated motion, and orange frames represent the reference motion.

Source Style reference Ours

MCM_LDM SMooDi DecouplingContact

Fig. 6. Our method enables motion style transfer. Given a backflip motion as the source motion and a cross-legged style, our approach successfully
integrates the cross-legged style while preserving the integrity of the original backflip motion. In contrast, MCM_LDM, SMooDi, and DecouplingContact
distort the backflip, with MCM_LDM, SMooDi also causing significant body self-intersections.

Content text: A person is skipping rope.

Style reference Our method

Fig. 7. Failure case: When provided with the content texts skipping rope and a zombie-like style reference, our method generates motion featuring arm
movements characteristic of swinging the rope, which limits the expression of zombie-like characteristics of arms stretched forward.
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