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A B S T R A C T

This work focuses on estimating the globally averaged mass transfer coefficient in liquid-particle agitated
vessels. After discussing how this coefficient is defined and calculated, we review the main methods for deriving
its correlations, namely the dimensional analysis, steady-state theory, unsteady-state theory, and Kolmogorov
theory methods. These rely on simplifying assumptions that limit their accuracy, such as the possibility of
neglecting the effects of particle interactions and free-stream turbulence on mass transfer. To overcome these
limitations, we propose a new method that obtains the global mass transfer coefficient by averaging the local
mass transfer coefficient over the entire fluid domain. To determine the local mass transfer coefficient field, we
adopt a new model that accounts for the combined effects of fluid-particle slip velocity, particle interactions
and free-stream turbulence on mass transfer. The fields of the required fluid dynamic variables are obtained
using a validated turbulent multifluid model. The proposed approach is validated against selected experimental
datasets covering a wide range of operating conditions. Compared to existing methods, our method yields
significantly improved accuracy, with relative errors below 30% for most cases.
. Introduction

Mass transfer between liquids and particles is critical in many indus-
rial applications, such as adsorption, crystallization and extraction. In
hese applications, agitated vessels are commonly employed to suspend
he particles and enhance mass transfer between the phases. In general,
he mass transfer rate within a vessel is quantified using a globally
veraged mass transfer coefficient 𝑘, or its dimensionless equivalent,
 globally averaged Sherwood number Sh, which is usually correlated
ith the physical properties and fluid dynamic variables of the system.
owever, in agitated vessels, the fluid dynamic variables are inherently
onuniform and the flow is usually turbulent; therefore, estimating 𝑘
ccurately is challenging.

To estimate 𝑘 in agitated vessels and develop suitable correlations,
everal methods have been proposed, including those based on dimen-
ional analysis and the steady-state, unsteady-state and Kolmogorov
heories. Among these, the first considers the globally averaged mass
ransfer coefficient directly, whereas the others start by considering the
ass transfer coefficient for a generic particle within the vessel and

hen relate it to the globally averaged mass transfer coefficient.
Studies based on the dimensional analysis theory use the Buck-

ngham theorem to find the dimensionless groups characterizing the
ass transfer process in agitated vessels, such as Sh, the Reynolds
umber and the Schmidt number [1–7]. After, they use experimental

∗ Corresponding author.
E-mail address: l.mazzei@ucl.ac.uk (L. Mazzei).

data to correlate these dimensionless groups. But certain important
dimensionless groups may be overlooked; furthermore, the correlations
are often case-specific, with different forms found (for the same system)
in different studies. In addition, geometric similarity, typically required
by this method [8], may be absent in some studies, potentially leading
to inaccuracies.

The steady-state theory calculates the mass transfer coefficient of a
generic particle within a vessel using correlations for isolated particles
derived under the assumption that away from the particle the fluid
velocity of approach is uniform and constant (that is, the fluid-particle
slip velocity, or free-stream velocity, is fixed) [9–12]. Correlations
of this type are those by Frossling [13] and Friedlander [14]. These
require knowledge of the slip velocity between the fluid and the par-
ticle in question. To obtain this, Kuboi et al. [10] solved the Tchen
equation [15], assuming that fluid-mediated particle–particle interac-
tions are negligible; for dense suspensions, this assumption may cause
inaccuracies. Moreover, in agitated vessels fluid dynamic variables are
nonuniform, leading to varying slip velocities among the particles.
However, solving the Tchen equation for each particle to obtain all
the corresponding slip velocities is impractical; accordingly, Kuboi
et al. [10] assumed that the slip velocity is equal for all the particles
in the vessel and, using this value in the correlations for isolated
ttps://doi.org/10.1016/j.cej.2025.168162
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Chemical Engineering Journal 523 (2025) 168162 
particles, estimated the globally averaged mass transfer coefficient
(which therefore coincides with the mass transfer coefficient of each
individual particle). This simplification may also reduce accuracy. Al-
ernatively, Hartmann et al. [11] and Hormann et al. [12] estimated the

slip velocity for each particle by using the Discrete Particle Modeling
(DPM) method and calculated the mass transfer coefficients for all
the particles. But these studies did not extend their analysis to the
globally averaged mass transfer coefficient; furthermore, this approach
is computationally demanding, being viable only for systems with
relatively small numbers of particles. Moreover, this theory suffers from
a few additional limitations. On the one hand, agitated vessels usually
contain dense suspensions, where the presence of other particles affects
the mass transfer process for a specific one; consequently, correlations
for isolated particles may be inapplicable, and those that consider this
effect are required [16–19]. On the other hand, in agitated vessels the
flow is usually turbulent, and the free-stream velocity is not uniform
or constant but fluctuates rapidly. Under these conditions (that is, in
the presence of free-stream turbulence), eddies from the fluid bulk
penetrate the laminar boundary layers around the particles, causing
fluctuations in velocity and concentration, thereby enhancing mass
transfer [20,21]; nonetheless, the correlations mentioned above do not
account for this effect.

To capture the effect of free-stream turbulence, researchers have
proposed the unsteady-state theory, on which various approaches have
been developed. One identifies the relevant dimensionless groups as-
sociated with mass transfer for a fixed particle in a turbulent flow,
with the turbulence in the free stream statistically uniform and steady;
besides the dimensionless groups present in the absence of free-stream
turbulence, the most important additional group is the free-stream
turbulence intensity, defined as the ratio between the root mean square
of the fluid velocity fluctuations and the mean fluid velocity in the
free stream (e.g., [21–26]). Using experimental data of mass trans-
fer coefficients for this system, these studies modify the correlations
adopted by the steady-state theory. But all these works are limited to
fixed isolated particles, and the applicability of these modifications to
agitated vessels, where both liquid and particles are in motion and
many particles are involved, remains untested.

Another approach solves the Reynolds-averaged boundary layer
quations, where the averaging process introduces additional terms
ssociated with turbulent dispersion. The resulting mean concentration
rofile near the fluid-solid interface is then used to derive the mass
ransfer coefficient (e.g., [20]). However, studies using this approach

have focused only on flat plates and cylinders, and no correlations have
been developed for spherical particles.

A third method based on the unsteady-stated theory models the
mass transfer process via the penetration theory, which assumes that
eddies continuously bring small fluid elements from the bulk of the
liquid to the fluid-solid interface and vice versa; these remain at the
interface for a certain time during which unsteady diffusion dominates

ass transfer (e.g., [9,10,27–30]). This method leads to correlations
involving the Kolmogorov eddy dissipation rate [10,30]. Because in
agitated vessels this rate is nonuniform, in general the mass transfer
coefficient is different for each particle. But similarly to what we dis-
cussed for the steady-state theory, several studies neglect this variation,
assuming for all the particles an equal mass transfer coefficient based
on the mean dissipation rate [10,30]. This is a simplification that might
generate inaccuracies. In addition, the penetration theory assumes a
uniform velocity distribution near the particle surface, which is justified
for bubbles but certainly not for (solid) particles.

Studies based on the Kolmogorov theory regard the root mean
quare of the relative velocity between two points in a turbulent flow,
enoted as 𝑢′, as the effective velocity for mass transfer, employing it
n mass transfer coefficient correlations [30–34]. As for the steady-state

theory, this approach typically adopts correlations for isolated particles,
neglecting the effects of the surrounding particles. Furthermore, 𝑢′
depends on the distance between the two selected points; this distance
2 
is generally assumed to be equal to the particle diameter, a choice
without a strong theoretical basis. Moreover, 𝑢′ is a function of the

olmogorov eddy dissipation rate, and thus for different particles in
the vessel its value varies. Nevertheless, as for similar works based on
the unsteady-state theory, these studies usually assume that 𝑢′, and in
turn the mass transfer coefficient, is equal for all the particles, and
use the average dissipation rate to compute the globally averaged mass
transfer coefficient. In addition, some studies have considered several
influential factors and modified the correlations; for instance, Levins
and Glastonbury [32] accounted for the effects of the ratio between
the densities of the particle and the liquid and for the ratio between
the diameters of the vessel and the impeller, while Bong et al. [34]
considered the effect of the solid volume fraction. But these modifica-
tions are often case-specific and may not apply when system conditions
change.

In conclusion, this section has highlighted some limitations of the
available methods for estimating the globally averaged mass trans-
fer coefficient in agitated vessels. To overcome these limitations, we
propose a new method that integrates the multiphase fluid dynamics
in the vessel, predicted using a turbulent multifluid model, and the
effects of fluid-particle slip velocity, particle interactions and free-
stream turbulence on mass transfer. The article is structured as follows:
Section 2 briefly reviews the definition and calculation of the globally
averaged mass transfer coefficient; Section 3 discusses the available
heories for developing its correlations; Section 4 describes the method-

ology employed in this study; finally, Section 5 validates the proposed
pproach by comparing its predictions with experimental data.

2. Definition and calculation of the coefficient

In this section, we define the globally averaged mass transfer co-
efficient in agitated vessels and describe how it is calculated from
xperimental data.

2.1. Definition of the coefficient

Let us consider an agitated vessel containing an isothermal fluid-
article suspension composed of a Newtonian liquid and uniformly
ized spherical particles with equal density. In the literature, the glob-
lly averaged mass transfer coefficient between the particles and the
iquid in the vessel, denoted as 𝑘, is generally defined using the follow-

ing equation:
𝑑 𝑀𝑉
𝑑 𝑡 ≡ 𝐴𝑉 𝑘(𝐶𝑠 − 𝐶) (2.1)

Here, 𝑑 𝑀𝑉 ∕𝑑 𝑡 and 𝐴𝑉 denote the global mass transfer rate between
the liquid and the particles and the total surface area of the particles,
respectively. 𝐶𝑠 is the saturation concentration at the particle surface,
while 𝐶 is the mean solute concentration in the vessel, which changes
owing to mass transfer. If all the particles are suspended, 𝐴𝑉 can
be calculated using the globally averaged solid volume fraction 𝛼𝑠 as
follows:

𝐴𝑉 = 6𝛼𝑠𝑉𝑉 ∕𝑑𝑝 (2.2)

Here, 𝑉𝑉 is the total volume of the suspension, whose variation due to
mass transfer is generally neglected, and 𝑑𝑝 is the particle diameter.
As summarized in Table 1, in the experiments usually one uses ion
exchange beads or dissolving particles. For the former, 𝑑𝑝 and 𝛼𝑠 typ-
ically change negligibly, while for the latter, they both change during
the experiment. Moreover, individual particles may exhibit different
mass transfer rates, leading to a distribution in particle diameter; but
capturing this variability is complex, so it is often assumed that all the
articles have identical size. Combining Eqs. (2.1) and (2.2) yields:
𝑑 𝑀𝑉
𝑑 𝑡 =

6𝛼𝑠𝑉𝑉
𝑑𝑝

𝑘(𝐶𝑠 − 𝐶) (2.3)

Using this equation, three approaches have been proposed to derive
analytical expressions for 𝑘, which can be used to obtain the value of
𝑘 experimentally. These will be discussed in the following section.
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Table 1
Summary of the experimental conditions of liquid-particle mass transfer coefficient measurement in agitated vessels.

Reference Liquid Particles Impeller type 𝑑𝑉 (cm) 𝐻∕𝑑𝑉 𝑑𝐼 ∕𝑑𝑉 𝐶𝐼 ∕𝑑𝑉 𝑑𝑝 (𝑚𝑚) 𝛼𝑠,0 (%) Sc 𝑁 (rpm)

Hixson and
Wilkens [35]

Water, sperm, cottonseed, and
rapeseed oil

Benzoic acid Propeller-4 15–61 1 0.33 0.17 6.35 0.88–2.96 485–2.5 ⋅ 106 88–500

Hixson and
Baum [1]

Water, benzene, and ethylene
glycol

Benzoic acid and rock salt Propeller-4 15–119 1 0.33 0.17 6.35 14.5 776 89–353

Humphrey and
Van Ness [2]

Water Sodium thiosulfate pentahydrate
(cylindrical shape)

Propeller-3 and
FBT-6

30.48 1 0.33 0.25 NA NA NA 200–1300

Nagata et al.
[4]

Gelatine, polyviny lalcohol,
sucrose and glycerine in water,
hydrogen chloride and aqueous
solutions

Zn, AgNO3 , KMnO4 , K2Cr2O7 ,
NaCl, NH4NO3 , NH4Cl, H3BO3 ,
CO(NH2)2 , phenylacetic acid
and crotonic acid

45◦ , 75◦ and
90◦ paddles-4

10–30 1 0.5 0.4 0.111–2.27 0.01–0.29 100–5 ⋅ 104 175–800

Barker and
Treybal [3]

Water and sucrose solution Boric acid, rock salt and
benzoic acid

DT-6 15–46 0.99–1 0.25–0.67 0.33 0.93–5.45 1.54–10.3 958–6.2 ⋅ 104 57–13412

Harriott [9] HR solution, HR in meghocel
solution, HR in glycerine
solution, dextrose solution,
water, and HCl solution

Benzoic acid, butyl-benzoic acid,
boric acid, lead sulfate, zinc,
and ion exchange beads

DT-6 10–54 0.93–1.75 0.25–0.5 0.23–0.46 0.008–7.88 6.4 518–1.27 ⋅ 105 52–1046

Sykes and
Gomezplata [6]

Potassium iodide and iodine in
water and sucrose solution

Copper Propeller-3,
DT-6, FDT and
45◦ paddle-6

13.46 1.13 0.47 0.33, 0.5 3.175 0.15 770–1.13 ⋅ 104 250–650

Nienow [36] Water K2SO4 , NH4Cl, alum, and salt DT-6 14 1 0.26–0.52 0.14–0.33 0.2–8.8 0.89–4.37 441–1839 63–2046
Kuboi et al.
[10]

Water Ion-exchange resin DT-6 10.5 1 0.5 0.33 0.25–0.94 NA NA 380–3600

Nienow [37] Water NaCl DT-6, FBT-2,
and PTD-4

14–28 1 0.25–0.75 0.17–0.5 2.23 17.83 649 79–1700

Boon-Long
et al. [7]

Water Benzoic acid DT-6 9–63 1 0.33 0.5 2.9 0.0001–0.05 943 25–176

Lal et al. [38] Water, glycol, and cellulose
solutions

Benzoic acid FBT-2, DT-(2-6),
and propeller-4

14.5–25 1 0.22–0.67 0.33 5.13–20.08 0.18–0.22 772 0.98–2440

Armenante and
Kirwan [30]

NaOH solution, NaOH in
glycerol solution, and AgNO3 in
NaNO3 solution

Ion exchange beads DT-6 19 1.07 0.33 0.36 0.001–0.43 0.009–0.046 547–1.3 ⋅ 105 81–970

Jadhav and
Pangarkar [39]

Water and cellulose solution Benzoic acid DT-4, FBT-4,
and FBT-6

15–57 1 0.33 0.13–0.33 0.0005–1.1 0.39 800 251–960

Bong [40] NaOH solution Ion exchange beads DT-6 20–30 1 0.33 0.25 0.67 0.6–40 669 352–611
Carletti et al.
[41]

Water NaCl DT-6, A310-3,
and PTD-6

23–48 1.18 0.31–0.42 0.33 3 0.008 1000 22–807

DT = disk turbine, PTD = pitched-blade turbine (downflow), FBT = flat-blade turbine, FDT = fan disk turbine, A310 = Lightnin A310 turbine. The number after the impeller type is the blade number. ‘NA’ denotes the related data is unavailable.
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2.2. Calculation of the coefficient

To derive an analytical expression for 𝑘, most experimental studies
determine 𝑑 𝑀𝑉 ∕𝑑 𝑡 by measuring how 𝐶 varies in time [3,6,9,30,34].
In this case, Eq. (2.3) is rewritten as:
𝑑 𝑀𝑉
𝑑 𝑡 = 𝑉𝑉

𝑑[(1 − 𝛼𝑠)𝐶 ]
𝑑 𝑡 =

6𝛼𝑠𝑉𝑉
𝑑𝑝

𝑘(𝐶𝑠 − 𝐶) (2.4)

For ion exchange beads, because their size changes negligibly, 𝛼𝑠 and
𝑑𝑝 are replaced by their initial values, denoted as 𝛼𝑠,0 and 𝑑𝑝,0, respec-
tively. Often, this is also done for dissolving particles, even if 𝛼𝑠 and 𝑑𝑝
vary over time. This is justified when 𝑘 is measured over a short time
interval in which only a small fraction of the particles dissolves [3]. For
experiments where particles fully dissolve, this assumption may lead to
naccurate results.

Furthermore, 𝑘 is usually assumed to be constant, even if during
the experiments in general mass transfer makes the liquid and particle
properties change. But for sufficiently short experiments, this approx-
imation is also acceptable. Then, integrating Eq. (2.4) from the initial
state to time 𝜏 yields:

ln
𝐶𝑠− 𝐶𝜏
𝐶𝑠− 𝐶0

= −
[ 6𝛼𝑠,0𝑘

(1 − 𝛼𝑠,0)𝑑𝑝,0

]

𝜏 (2.5)

where 𝐶0 and 𝐶𝜏 are the globally averaged solute concentrations at
time zero and time 𝜏, respectively. By measuring 𝐶𝜏 over time, one
can use the above equation to estimate 𝑘. However, 𝐶𝜏 is generally
measured at a single point in the vessel, assuming that the solute is
uniformly distributed (i.e., well mixed) in the vessel. As noted by Mon-
tante et al. [42], this assumption is reasonable for dilute suspensions
in lab-scale vessels, but may be inaccurate for dense suspensions or
arge-scale vessels. Furthermore, some studies (for instance, Barker and
reybal [3] and Bong et al. [34]) omitted the term 1∕(1 − 𝛼𝑠,0), even for
ense suspensions; therefore, their results may have to be corrected.

As described, the method above does not account for variations in
article diameter and volume fraction. For dissolving particles, these
ariations may be significant. To overcome this, two other methods
ave been adopted. One obtains 𝑑 𝑀𝑉 ∕𝑑 𝑡 by measuring how the total
article mass 𝑀𝑠 changes in time [36,37,43,44], expressing Eq. (2.3)
s:
𝑑 𝑀𝑉
𝑑 𝑡 = − 𝑑 𝑀𝑠

𝑑 𝑡 = − 𝑉𝑉 𝜌𝑠
𝑑 𝛼𝑠
𝑑 𝑡 =

6𝛼𝑠𝑉𝑉
𝑑𝑝

𝑘(𝐶𝑠− 𝐶) (2.6)

where 𝜌𝑠 is the particle density. The total volume of the suspension 𝑉𝑉
is assumed to be constant, while 𝑑𝑝 is related to 𝛼𝑠 as follows:
𝑑𝑝
𝑑𝑝,0

=
( 𝛼𝑠
𝛼𝑠,0

)1∕3

(2.7)

Substituting Eq. (2.7) into Eq. (2.6) results in:

𝑑 𝛼𝑠
𝑑 𝑡 = −

[6𝛼1∕3𝑠,0 𝑘(𝐶𝑠− 𝐶)

𝜌𝑠𝑑𝑝,0

]

𝛼2∕3𝑠 (2.8)

Due to mass transfer, 𝐶 is time-dependent, so an analytical solution
annot be derived. But if 𝐶 Î 𝐶𝑠 or if 𝐶 changes minimally during the

dissolution process, Eq. (2.8) yields:
(𝛼𝑠,𝜏
𝛼𝑠,0

)1∕3
=
(𝑀𝑠,𝜏

𝑀𝑠,0

)1∕3
= 1 −

[

2𝑘(𝐶𝑠− 𝐶)
𝜌𝑠𝑑𝑝,0

]

𝜏 (2.9)

where 𝛼𝑠,𝜏 and 𝑀𝑠,𝜏 are the solid volume fraction and total solid mass at
time 𝜏, respectively, while 𝑀𝑠,0 is the initial mass of the solid. Eq. (2.9)
llows estimating 𝑘 by measuring the total solid mass over time [44].

Furthermore, for cases where particles fully dissolve, once 𝑀𝑠,𝜏 reaches
zero, the second term on the right-hand side of Eq. (2.9) equals unity, so
𝑘 can be estimated by measuring the dissolution time. For cases where
he particle size varies substantially, this approach is more rigorous

than the previous one (Eq. (2.5)) but holds only if 𝐶 Î 𝐶𝑠 or if 𝐶
changes minimally.
4 
To account for variations in particle diameter and solid volume frac-
ion, Grisafi et al. [45] introduced the globally averaged concentration

assuming complete dissolution of all particles, denoted as 𝐶𝑑 (note that
𝐶𝑑 may exceed 𝐶𝑠). 𝐶𝑑 is related to 𝐶0 and 𝐶 via the following mass
onservation equation:

𝑀𝑠,0 + 𝑉𝑒𝐶0 =𝑀𝑠 + 𝑉𝑒𝐶 = 𝑉𝑒𝐶𝑑 (2.10)

in which 𝑉𝑒 is the liquid volume, assumed by the authors to be constant
during the dissolution process. Then, Eq. (2.10) is rewritten as:
𝑀𝑠
𝑀𝑠,0

=
𝐶𝑑 − 𝐶

𝐶𝑑 − 𝐶0
(2.11)

Substituting this into Eq. (2.6) leads to:

𝑑𝐶
𝑑 𝑡 = 𝛹

(

𝐶𝑑 − 𝐶

𝐶𝑑 − 𝐶0

)2∕3

𝑘(𝐶𝑠− 𝐶) ; 𝛹 ≡
6(𝐶𝑑 − 𝐶0)
𝜌𝑠𝑑𝑝,0

(2.12)

where 𝛹 is a constant of known value. Integrating Eq. (2.12) from time
zero to time 𝜏, and assuming that 𝑘 is constant, yields:

1
2
ln
[(

1 − 𝑦𝑠
𝑦𝜏 − 𝑦𝑠

)3( 𝑦3𝜏 − 𝑦
3
𝑠

1 − 𝑦3𝑠

)]

+
√

3 ar ct an
(

2𝑦𝜏 + 𝑦𝑠
√

3𝑦𝑠

)

−
√

3 ar ct an
(

2 + 𝑦𝑠
√

3𝑦𝑠

)

= 𝑦2𝑠𝛹𝑘 𝜏 (2.13)

where:

𝑦𝑠 ≡
(

𝐶𝑑 − 𝐶𝑠
𝐶𝑑 − 𝐶0

)1∕3
; 𝑦𝜏 ≡

(

𝐶𝑑 − 𝐶𝜏
𝐶𝑑 − 𝐶0

)1∕3
(2.14)

For 𝐶𝜏Î 𝐶𝑠, Eq. (2.13) reduces to Eq. (2.9). Moreover, Eq. (2.13) is
valid only for 𝑦𝑠 ≠ 0 (i.e., for 𝐶𝑑 ≠ 𝐶𝑠); if these concentrations are
qual, the solution reads:

𝑦𝜏 = [1 − (2∕3)𝛹𝑘 𝜏]−1∕2 (2.15)

If the values of 𝐶0, 𝐶𝑑 , 𝐶𝑠 and 𝛹 are known, by measuring the function
𝐶𝜏 one may obtain 𝑘. But note that the above derivation assumes
that the liquid volume changes negligibly; moreover, the challenges
associated with measuring 𝐶𝜏 , as discussed below Eq. (2.5), still exist.

In summary, we have reviewed three methods for experimentally
calculating the globally averaged mass transfer coefficient. Each in-
volves certain assumptions and simplifications. The first method is less
accurate when the particle size changes significantly, for it uses the
initial values of the particle size and solid volume fraction. Although
the other two methods account for changes in these variables, the sec-
ond method applies only when 𝐶 Î 𝐶𝑠 or when 𝐶 changes negligibly,
while the third neglects changes in the liquid volume. In addition,
all three methods assume that 𝑘 is constant, an assumption which is
reasonable when measurements are conducted over a sufficiently short
time interval but that may introduce uncertainties when measurements
span the entire mass transfer process.

3. Methods for developing correlations for the coefficient

As discussed in Section 1, many methods have been proposed for
obtaining correlations for the globally averaged mass transfer coeffi-
cient in agitated vessels; these include the dimensional analysis theory,
the steady-state theory, the unsteady-state theory and the Kolmogorov
theory. Among them, only the first considers 𝑘 directly, while the others
tart from evaluating the mass transfer coefficient 𝑘𝑖 for a generic

particle 𝑖 and then relate it to 𝑘. Below, Section 3.1 reviews the
steady-state, unsteady-state and Kolmogorov theories methods, which
are adopted to develop correlations for 𝑘𝑖, while Section 3.2 discusses
ow 𝑘𝑖 can be related to 𝑘, concluding by reviewing the dimensional

analysis approach.
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3.1. Mass transfer coefficient for isolated particles

3.1.1. Steady-state theory
In the literature, when the slip (or relative) velocity between the

fluid and a generic particle 𝑖, denoted as 𝑢𝑟,𝑖, is uniform and constant
i.e., in the absence of free-stream turbulence), the correlations for the

mass transfer coefficient 𝑘𝑖 usually have the form:

Sh𝑖 = 2 +𝐶𝑐Re𝑝𝑖 Sc𝑞 ; Sh𝑖 ≡ 𝑘𝑖𝑑𝑝∕D ; Re𝑖 ≡ 𝑢𝑟,𝑖𝑑𝑝∕𝜈𝑒 ; Sc ≡ 𝜈𝑒∕D

(3.1)

Here, the constant 2 accounts for mass transfer owing to molecular
iffusion under zero flow conditions. Sh𝑖 is the Sherwood number
or the particle, Sc is the Schmidt number, and Re𝑖 is the particle

Reynolds number, characterized by the fluid-particle slip velocity 𝑢𝑟,𝑖.
D is the molecular diffusivity of the solute, and 𝜈𝑒 is the kinematic
viscosity of the fluid. 𝐶𝑐 , 𝑝, and 𝑞 are constants; their values depend
on the assumptions adopted in deriving the correlation. Two popular
orrelations, based on the laminar boundary layer theory, are those by
riedlander [14], for Re𝑖 Î 1 (𝐶𝑐 = 0.991, 𝑝 = 𝑞 = 1∕3), and Frossling

[13], for Re𝑖 Ï 1 (𝐶𝑐 = 0.552, 𝑝 = 1∕2, 𝑞 = 1∕3). In the latter
case, although turbulence may arise beyond the separation point due
to the large values of the local Reynolds number, the wakes contribute
negligibly to mass transfer [13] – a behavior distinctly different from
hat induced by free-stream turbulence.

3.1.2. Unsteady-state theory
To account for the effect of free-stream turbulence, several methods

have been used, including those based on the dimensional analysis,
boundary layer and penetration theories.

Dimensional analysis method
In this method, one first identifies the parameters characterizing

the mass transfer process for a particle in a turbulent flow and then
applies the Buckingham theorem to find the relevant dimensionless
groups [21–26]. In addition to the dimensionless groups shown in
q. (3.1), two others, characterizing turbulence, are introduced: the

dimensionless turbulence integral length scale L𝑖 and the turbulence
intensity T𝑖. The former, defined as the ratio between the turbulence
integral length scale and the particle diameter, is usually neglected,
because it plays a minor role; the key quantity that affects mass transfer
is the latter, which, for a fixed particle in a turbulent stream, is defined
as:

T𝑖 ≡
1

|⟨𝒖̄𝑟,𝑖⟩|

√

⟨(𝒖̄𝑟,𝑖 − ⟨𝒖̄𝑟,𝑖⟩)2⟩
3

(3.2)

where 𝒖̄𝑟,𝑖 is the (instantaneous) velocity of approach of the fluid in the
free stream and ⟨⋅⟩ is the Reynolds averaging symbol. Since the particle
does not move, 𝒖̄𝑟,𝑖 = 𝒖̄𝑒, where 𝒖̄𝑒 is the (instantaneous) velocity of the
fluid in the free stream, which is assumed to be statistically uniform
and steady.

To correlate these dimensionless groups, these studies measured the
mass or heat transfer coefficient for single particles fixed in statistically
teady turbulent flows (according to the Chilton-Colburn analogy, these
oefficients are equivalent). Due to the free-stream turbulence, the

transfer coefficients are random variables, so the measured values are
essentially time-averaged quantities. These studies revealed that the
influence of L𝑖 was minimal while that of T𝑖 was significant. Eq. (3.1)

as modified to:

⟨Sh𝑖⟩ = 𝐴1 + 𝐴2𝐴
𝑣
𝑇 Re

𝑝
𝑖 Sc

𝑞 ; Re𝑖 ≡ |⟨𝒖̄𝑟,𝑖⟩|𝑑𝑝∕𝜈𝑒 (3.3)

where 𝑝 and 𝑞 retain their values from Eq. (3.1), and 𝐴1, 𝐴2 and 𝑣
are additional constants. 𝐴1, equal to 0 or 2, indicates whether mass
ransfer owing to molecular diffusion under zero flow conditions is

considered; when Re𝑖 Ï 1, this is negligible. 𝐴𝑇 depends on Re𝑖 and T𝑖
(see Table 2); even if both are related to |⟨𝒖̄𝑟,𝑖⟩|, these are independent
arameters. To decouple them, in experiments one usually fixes the
5 
value of Re𝑖 and varies that of T𝑖 by generating the turbulence with
a grid upstream of the particle and varying the distance between the
grid and the particle.

Table 2 presents several models developed with this approach; these
differ in the values of the constants and in the expression for 𝐴𝑇 ,
with some models having a specified validity range. By comparing
qs. (3.1) and (3.3), we note that free-stream turbulence modifies only
he exponent of Re𝑖, while the exponent of Sc remains unchanged.
s shown in the following sections, this finding is consistent with

he boundary layer theory but differs from the models derived from
enetration theory.

Boundary layer theory
The mass transfer coefficient can be derived using Fick’s law, which

requires the concentration gradient at the fluid-solid interface. This
can be obtained by solving the boundary layer equations [8]. When
ree-stream turbulence is present, eddies from the fluid bulk pene-
rate the velocity and concentration boundary layers – provided that
he Reynolds and Peclet numbers are large – leading to fluctuations
n these regions [20,21]. Because of this unsteadiness, solving the

boundary layer equations directly is complex, but doing so is unnec-
essary, because only the Reynolds-average value of the mass transfer
coefficient is usually of interest, and this can be obtained by solv-
ing the Reynolds-averaged balance equations. The averaging process
simplifies the analysis but introduces additional terms associated with
fluctuations, such as the turbulent stress tensor in the averaged linear
momentum balance equation and the turbulent dispersion term in the
averaged mass balance equation for the solute. These are often modeled
using a turbulent diffusivity D𝑡 (assumed to be the same for momentum
and mass), which depends on T𝑖. With this approach, Ruckenstein
[46] and Smith and Kuethe [20] developed correlations for the Nusselt
number (equivalent to Sh for mass transfer problems) for flat plates
and cylinders, respectively, but no such correlation was established
for spheres. Nonetheless, these results allow examining the effect of
free-stream turbulence on mass transfer. The results confirm that free-
stream turbulence introduces a dependence of Sh on T𝑖 and alters the
exponent of Re𝑖. Conversely, the exponent of Sc remains equal to 1∕3,
since for liquids the Peclet number is much larger than the Reynolds
number, so that the concentration boundary layer is far thinner than the
velocity boundary layer, and within the former the velocity profile is
essentially linear [8]. These conclusions are consistent with those from
the dimensional analysis method.

Penetration theory
To account for free-stream turbulence, several studies have adopted

the penetration theory [9,10,27,28,30,47]; this assumes that the solid–
iquid interface is made up of a variety of small liquid elements that
re continuously brought up to the interface from the bulk of the
iquid and vice versa by the motion of the liquid phase. Each liquid

element stays at the interface for a time 𝜏𝑒, known as exposure time.
hile it is there, each liquid element is assumed to be stagnant, so

hat mass is transferred within the liquid element solely by unsteady
olecular diffusion in the direction perpendicular to the interface [48].

This theory yields the following expression for the mean mass transfer
oefficient of a single liquid element over its exposure period:

𝑘𝜏 = 2
√

D∕𝜋 𝜏𝑒 (3.4)

Following this theory, Kuboi et al. [10] developed correlations for
particles with size much larger than the Kolmogorov length scale 𝜂. Two
exposure time distributions were adopted: a constant one given by 1∕𝛬,
and a randomly distributed one given by (1∕𝛬) exp (− 𝜏𝑒∕𝛬), where 𝛬 is
the average exposure time of the liquid elements, taken to be equal
to 𝑑𝑝∕𝑢𝑟,𝑖. With these distributions and Eq. (3.4), one can derive two
correlations for the Sherwood number; these are given by:

⟨Sh𝑖⟩ = 2 + 𝐶𝑐 (Re𝑖Sc)1∕2 for 𝑑𝑝 Ï 𝜂 ; Re𝑖 ≡ 𝑢𝑟,𝑖𝑑𝑝∕𝜈𝑒 ;
√

2
𝑢𝑟,𝑖 ≡ ⟨(𝒖̄𝑒 − 𝒖̄𝑝,𝑖) ⟩ (3.5)
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Table 2
Models for mass (or heat) transfer to a fixed particle in a fluid with free-stream turbulence.

Reference 𝐴1 𝐴2 𝐴𝑇 𝑣 Validity range

Yuge [22] 2 0.387 Re𝑖 T𝑖 0.085 Re𝑖 T𝑖 < 7000

Galloway and Sage [23] 2 1 0.439 + 1.133813𝑑1∕2𝑝 1 0.01 < T𝑖 < 0.15;
+ 0.234 T𝑖 (T𝑖 + 0.045) Re1∕2𝑖 2 < Re𝑖 < 1.33 ⋅ 106

Lavender and Pei [21] 2 0.933 Re𝑖 T𝑖 0.035 Re𝑖 T𝑖 < 1000
0 0.215 Re𝑖 T𝑖 0.25 Re𝑖 T𝑖 > 1000

Gostkowski and Costello [24] 0 1.431 Re𝑖 T𝑖 0.0214 Re𝑖 T𝑖 < 7000
0 1.287 Re𝑖 T𝑖 0.2838 Re𝑖 T𝑖 > 7000

Sandoval-Robles et al. [25] 0 0.549 Re𝑖 T𝑖 0.066 12 < Re𝑖 T𝑖 < 600
Yearling [26] 2 0.52 1 + 0.07 T0.843

𝑖 1 0 < T𝑖 < 0.11

For the model by Galloway and Sage [23], the constant in the second term of the expression for 𝐴𝑇 has been modified from
0.1807 in−1∕2 to 1.133813 m−1∕2, because in the original study 𝑑𝑝 was expressed in inches while in this study it is expressed in
meters.
a
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where 𝒖̄𝑝,𝑖 is the instantaneous velocity of particle 𝑖. For the constant
istribution 𝐶𝑐 = 2∕√𝜋 (Kuboi et al. incorrectly reported this as 1∕

√

𝜋),
while for the other 𝐶𝑐 = 1. On the right of the equation, the constant 2
was added to account for the case where the slip velocity is zero.

Armenante and Kirwan [30] extended the unsteady-state theory to
articles with size far smaller than the Kolmogorov eddy length scale
, assuming that mass transfer occurs while the particles are entrapped
n the Kolmogorov eddies, with the exposure time taken to be the
olmogorov time scale 𝛬 =

(

𝜀∕𝜈𝑒
)−1∕2, where 𝜀 is the Kolmogorov eddy

issipation rate of the surrounding fluid. Using a constant exposure
ime distribution and Eq. (3.4), they derived the following correlation:

⟨Sh𝑖⟩ = 2 + 𝐶𝑐Re3∕4𝜀 Sc1∕2 for 𝑑𝑝 Î 𝜂 ; Re𝜀 ≡ 𝜀1∕3𝑑 4∕3
𝑝 ∕𝜈𝑒 (3.6)

where 𝐶𝑐 = 2∕√𝜋 (Armenante and Kirwan reported 𝐶𝑐 = 1∕𝜋, but we
elieve that this is incorrect, because it is inconsistent with Eq. (3.4)).

In Eqs. (3.5) and (3.6), the exponent of the Schmidt number (1∕2)
differs from that in the Frossling correlation (1∕3). This is because the
penetration theory essentially assumes that the velocity profile close
to the interface between the two phases is uniform; this assumption is
accurate for gas–liquid interfaces (since in the liquid, the shear stress
is vanishingly small) but not for solid–liquid interfaces, where close
to the interface the velocity profile should be taken to be linear. This
more realistic assumption results in the exponent of 1∕3 featuring in
the Frossling correlation. For details, we refer to Bird et al. [8].

3.1.3. Kolmogorov theory
The Kolmogorov theory has also been used to model mass transfer in

turbulent systems. In this approach, the correlation shown in Eq. (3.1)
s generally used, but the particle Reynolds number is modified by
eplacing 𝑢𝑟,𝑖 with the root mean square of the relative velocity between

two points in a turbulent flow, defined as:

𝑢′ ≡
√

⟨(𝒖̄𝑒,1 − 𝒖̄𝑒,2)
2
⟩ (3.7)

where 𝒖̄𝑒,1 and 𝒖̄𝑒,2 are the instantaneous velocities of the fluid at the
two points [30–34]. When the distance 𝑑 between the points is smaller
han 𝜂, viscous dissipation is important, and it is:
𝑢′ = (𝜀∕𝜈𝑒)1∕2𝑑 for 𝑑 Î 𝜂 (3.8)

For distances larger than 𝜂, viscous dissipation is unimportant, and 𝑢′

depends only on 𝜀. Then, dimensional analysis yields:

𝑢′ = (𝜀𝑑)1∕3, for 𝜂 Î 𝑑 Î 𝐿 (3.9)

where 𝐿 is the characteristic length of the mean flow. In liquid-particle
uspensions, 𝑑 is usually replaced by the particle diameter 𝑑𝑝. This
ields:

Re𝑖 ≡ 𝑢′𝑑𝑝∕𝜈𝑒 =

⎧

⎪

⎨

⎪

𝜀1∕2𝑑 2
𝑝∕𝜈

3∕2
𝑒 = Re3∕2𝜀 ; 𝑑𝑝Î 𝜂

𝜀1∕3𝑑 4∕3
𝑝 ∕𝜈 = Re ; 𝜂 Î 𝑑 Î 𝐿

(3.10)
⎩

𝑒 𝜀 𝑝

6 
As we see, Re𝑖 relates to Re𝜀 (defined in Eq. (3.6)), which is a function
of 𝜀. However, the substitution of 𝑑 by 𝑑𝑝 lacks a strong theoretical
basis [32].

3.2. Mass transfer coefficient for agitated vessels

3.2.1. Steady-state theory
Some studies have used the steady-state theory to obtain the mass

transfer coefficients of individual particles in agitated vessels, using
Eq. (3.1) and neglecting the contribution of free-stream turbulence. In
this approach, a key point is how to determine the slip velocity 𝑢𝑟,𝑖.

In agitated vessels, the flow is globally inhomogeneous; hence, parti-
cles in different regions of the vessel experience different slip velocities
and mass transfer coefficients. To account for this, Hartmann et al.
[11] and Hormann et al. [12] used the DPM method, where particle
motions are solved using Newton’s second law for rigid bodies, with
the velocity of each particle calculated, while the equations of motion
for the fluid are (locally) volume-averaged and the volume-averaged
fluid velocity field, denoted as 𝒖𝑒, is calculated. In this framework, the
uthors defined 𝑢𝑟,𝑖 as follows:

𝑢𝑟,𝑖 ≡ |𝒖𝑒 − 𝒖̄𝑝,𝑖| (3.11)

where 𝒖̄𝑝,𝑖 denotes the velocity of particle 𝑖. Using the calculated slip
velocity values in the correlation given by Eq. (3.1), the mass transfer
oefficient for each particle was calculated. Subsequently, the mass
ransfer rate for particle 𝑖 was obtained using the equation:
𝑑 𝑀𝑠,𝑖

𝑑 𝑡 ≡ − 𝑘𝑖𝐴𝑖 (𝐶𝑠 − 𝐶) (3.12)

Here, 𝑀𝑠,𝑖 and 𝐴𝑖 denote the mass and surface area of particle 𝑖,
respectively, while 𝐶 is the locally averaged solute concentration, found
by solving the mass balance equation for the solute. Summing the mass
transfer rates for all the particles and using the definition of the globally
averaged mass transfer coefficient (Eq. (2.1)), one may calculate the
atter, provided a characteristic value of 𝐶 is specified. With sufficient

data, obtained numerically with the procedure just discussed, one could
erive correlations for the globally averaged mass transfer coefficient,
ut these studies did not explore this. Additionally, the DPM method
s computationally demanding and applicable solely for small particle
umbers. We should also note that agitated vessels often contain dense
uspensions; in these systems, neighboring particles affect the mass
ransfer for a specific one, making correlations for isolated particles
otentially unreliable [16–19].

An alternative approach to determining 𝑢𝑟,𝑖 is employing the Tchen
equation, an equation of motion for small spherical particles in tur-
bulent flow [15]; for a given fluctuating fluid velocity 𝒖̄𝑒, solving the
Tchen equation yields the instantaneous particle velocity 𝒖̄𝑝,𝑖. Then, 𝑢𝑟,𝑖
is calculated via Eq. (3.5)C [9,10,29]. Notice that the Tchen equation is
ased on several assumptions. It assumes a statistically steady turbulent

flow, which is not always present in agitated vessels. It assumes as well
that the particle diameter is smaller than the Kolmogorov eddy length
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scale – a condition that is not always satisfied; nevertheless, Harriott
[9] justified the applicability of the solution of the Tchen equation

hen 𝑑𝑝 Ï 𝜂, which is also supported by Kuboi et al. [10,29]. Finally,
he Tchen equation assumes that near the particle the turbulent flow
s homogeneous, a condition approximated by the local homogeneity

assumption.
With these assumptions, and assuming that particles respond only

to eddies larger than their size, Kuboi et al. [10,29] solved the Tchen
equation analytically. The solution indicated that the slip velocity
epends on the fluctuating fluid velocity 𝒖̄𝑒 and on the drag coefficient

of the particle in the turbulent flow, which was found to depend
n the Kolmogorov eddy dissipation rate 𝜀 of the surrounding fluid.
ince in agitated vessels the flow is globally inhomogeneous, 𝒖̄𝑒 and
vary spatially, resulting in different values of the slip velocity for

ifferent particles. However, instead of accounting for this variability,
he authors assumed a constant slip velocity for all the particles,
alculated using the fluid velocity measured in a specific sampling point
ithin the vessel and the mean (over the entire vessel) Kolmogorov
issipation rate 𝜀. Using this slip velocity in Eq. (3.1), applying ei-

ther the correlation by Friedlander [14] or that by Frossling [13],
the authors calculated the globally averaged mass transfer coefficient.
The predictions underestimated the experimental data, with relative
percent errors greater than 30%. This was attributed to the deficiency
of the steady-state theory, but additional factors may have introduced
inaccuracies; for instance, in dense suspensions, particle interactions
might affect the relative motions between the fluid and the particles –
an effect that is neglected in the Tchen equation. Furthermore, some
assumptions (e.g., that a constant slip velocity can be used for all the
particles and that correlations for isolated particles can be used) may
cause inaccuracies.

3.2.2. Unsteady-state theory
As discussed in Section 3.1.2, several methods have been proposed

to account for the effect of free-stream turbulence on mass trans-
fer. However, the correlations derived using the dimensional analysis
method hold for isolated particles fixed in turbulent flows, and their
pplicability to agitated vessels, where both the fluid and the particles
re in motion and a large number of particles are involved, has not been

investigated. In the case of the boundary layer theory, no correlations
are available for spherical particles. Thus, in this section, we only
consider the studies employing the penetration theory.

Penetration theory
As shown in Eq. (3.5), applying the correlations developed by Kuboi

t al. [10] to calculate the mass transfer coefficient for a particle in
agitated vessels requires the slip velocity 𝑢𝑟,𝑖. As stated for this study
in the previous section, the authors assumed a constant slip velocity
or all particles. This simplification allows using Eq. (3.5) to obtain the

globally averaged coefficient. Their results indicated that the constant
exposure time assumption leads to a better fit with their experimental
data on liquid-particle mass transfer coefficients. But the limitations
ssociated with determining 𝑢𝑟,𝑖, discussed in the previous section, still

stand. Furthermore, as discussed, the assumption of a uniform velocity
profile near the interface – central to penetration theory – is not valid
for liquid-particle systems, limiting its theoretical justification.

Armenante and Kirwan [30] also assumed a uniform Sherwood
number for all the particles and modified the correlation given by
q. (3.6), replacing Re𝜀 with Re 𝜀 , to obtain the globally averaged
herwood number. Because their initial calculation of 𝐶𝑐 was inac-
urate, the authors subsequently adjusted its value to better fit their
xperimental data, yet they still did not achieve good agreement.
hese deviations might stem from the use of Re 𝜀 and the assumptions

inherent to the penetration theory.
7 
3.2.3. Kolmogorov theory
Two main approaches have been used to apply the Kolmogorov the-

ry to obtain the mass transfer coefficient in agitated vessels. The first
involves calculating the local mass transfer coefficient by evaluating the
spatial distribution of 𝜀. To do this, Xie et al. [49] adopted a turbulent
multifluid model. However, 𝜀 quantifies the microscale dissipation rate
f turbulent kinetic energy, which is related to the fluctuations of the
luid point velocity; as discussed by Fox [50], the turbulent multifluid
odel instead yields the macroscale dissipation rate of turbulent kinetic

nergy, which is related to the fluctuations of the fluid mean velocity.
herefore, the method by Xie et al. [49] may be inaccurate.

More commonly, similarly to the approach of Kuboi et al. [10],
studies using the Kolmogorov theory adopt a simplified approach in
which 𝜀 in Eq. (3.10) is replaced by 𝜀 and Re 𝜀 is employed in correla-
ions of the same form as Eq. (3.1) to calculate the globally averaged

mass transfer coefficient. Following this theory, Armenante and Kirwan
[30] developed a correlation for particles with 𝑑𝑝 Î 𝜂. For these,
Re𝑖 = 𝜀1∕2𝑑 2

𝑝∕𝜈
3∕2
𝑒 = (𝑑𝑝∕𝜂)2Î 1, since 𝜂 = 𝜈3∕4𝑒 ∕𝜀1∕4. Consequently, the

uthors adopted the correlation for creeping flows by Friedlander [14],
obtaining:

⟨Sh⟩ = 2 + 0.991 Re 𝜀1∕2Sc1∕3 for 𝑑𝑝Î 𝜂 (3.13)

where Sh is the globally averaged Sherwood number. To better fit their
xperimental data, both the constant 0.991 and the exponent of Re 𝜀

were then modified to 0.52.
For particles with 𝑑𝑝 Ï 𝜂, Calderbank and Moo-Young [31] ne-

glected in Eq. (3.1) the constant 2, set 𝑞 to 1∕3 (in line with the
boundary layer theory) and estimated 𝐶𝑐 and 𝑝 experimentally. The
resulting correlation is given by:

⟨Sh⟩ = 0.13 Re 𝜀3∕4Sc1∕3 for 𝑑𝑝Ï 𝜂 (3.14)

By analyzing experimental data, Levins and Glastonbury [32] observed
that, in addition to Re 𝜀 and Sc, ⟨Sh⟩ also depends on the fluid-particle
density ratio and the impeller-to-vessel diameter ratio, but did not
propose a correlation. Bong et al. [34] investigated the effect of the
nitial solid volume fraction when 𝑑𝑝Ï 𝜂, set the values of 𝑝 and 𝑞 the

same as those in the correlation by Frossling [13], while modeled 𝐶𝑐
as a function of Re 𝜀 , obtaining the following relation:

𝐶𝑐 = − 𝑏1Re 𝜀1∕2 + 𝑏2 − 𝑏3Re 𝜀− 1∕2 (3.15)

Since the initial solid volume fraction was found to affect 𝜀, its effect
on mass transfer was considered. Here, 𝑏1, 𝑏2 and 𝑏3 are constants; their
values were found to change when experimental conditions (e.g., the
vessel size) vary, limiting the applicability of the resulting correlation.

3.2.4. Dimensional analysis method
In this method, one first identifies the parameters characterizing

he mass transfer process between the liquid and the particles in an
gitated vessel, and then applies the Buckingham theorem to determine
he relevant dimensionless groups. Finally, these groups are correlated
sing experimental data.

Hixson and Baum [1] identified as key parameters the impeller
otation speed, the vessel diameter, the liquid density and viscosity,

and the solute diffusivity, denoted as 𝑁 , 𝑑𝑉 , 𝜌𝑒, 𝜇𝑒 and D , respectively.
These resulted in the following dimensionless numbers:

Sh𝑉 ≡ 𝑘 𝑑𝑉 ∕D ; Re𝑉 ≡ 𝑁 𝑑2𝑉 ∕𝜈𝑒 ; Sc ≡ 𝜈𝑒∕D (3.16)

Here, the Sherwood and Reynolds numbers are characterized by the
vessel diameter 𝑑𝑉 . To fit experimental data from their study and that
of Hixson and Wilkens [35], the authors used the correlation:

Sh𝑉 = 𝐶𝑐Re
𝑝
𝑉 Sc

𝑞 (3.17)

Here, 𝐶𝑐 , 𝑝 and 𝑞 are constants. Due to the narrow range of Sc in the
data, Hixson and Baum [1] directly set 𝑞 to 1∕2, following penetration
heory. Then, they obtained 𝐶𝑐 and 𝑝 from data analysis, finding 𝐶𝑐 =
0.16 and 𝑝 = 0.62 for Re > 6.7 ⋅ 104, and 𝐶 = 2.7 ⋅ 10−5 and 𝑝 = 1.4 for
𝑉 𝑐
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lower values of Re𝑉 . Note that the data used by Hixson and Baum refer
to vessels without baffles, while for all the other studies considered in
our article, the data refer to baffled vessels. By reanalyzing the data
used in Hixson and Baum [1] and Marangozis and Johnson [5] found
that taking 𝑞 = 1∕3, consistent with the boundary layer theory, and
𝑐 and 𝑝 to be constant over the entire Re𝑉 range provides better
greement with the experimental data. However, they did not calculate
he values of 𝐶𝑐 and 𝑝. Other researchers used Eq. (3.17), with 𝑞 = 1∕2,

to correlate their data; Humphrey and Van Ness [2] found 𝐶𝑐 = 0.13 and
= 0.58 for propellers and 𝐶𝑐 = 0.0032 and 𝑝 = 0.87 for turbines, while

or the latter Barker and Treybal [3] found 𝐶𝑐 = 0.02 and 𝑝 = 0.833.
In the dimensional analysis of the system, Sykes and Gomezplata

[6] included as additional parameters the impeller diameter 𝑑𝐼 and
he initial particle diameter 𝑑𝑝,0. However, in the correlation they used,
hey did not include two additional dimensionless numbers, modifying

Eq. (3.17) to:

Sh = 2 + 𝐶𝑐Re𝑝𝐼 Sc
𝑞 (3.18)

with:

Sh ≡ 𝑘 𝑑𝑝,0∕D ; Re𝐼 ≡ 𝑁 𝑑2𝐼∕𝜈𝑒 (3.19)

As we see, the Sherwood number features the initial particle diame-
er, while the Reynolds number features the impeller diameter. For a
iven geometry, the ratio between 𝑑𝐼 and 𝑑𝑉 is specified, making Re𝐼
quivalent to Re𝑉 . The authors estimated the values of the constants in
q. (3.18) via data analysis, finding that 𝑞 = 1∕2 provided a better fit,
ith 𝐶𝑐 = 0.109 and 𝑝 = 0.34.

Nagata et al. [4] included the effects of gravity and the density
difference between the liquid and the particles, proposing the following
correlation:

Sh𝑉 = 𝐶𝑐Re
𝑝
𝑉 Sc

𝑞
(

D2

𝑔 𝑑3𝑉

)𝑎(𝑑𝑝,0
𝑑𝑉

)𝑏(𝜌𝑠 − 𝜌𝑒
𝜌𝑒

)𝑐
(3.20)

where 𝑔 is the gravitational acceleration. Via data analysis, they found
𝐶𝑐 , 𝑎, 𝑏 and 𝑐 to be equal to 3.6 ⋅ 1012, 0.627, 3.08 and − 2.82,
respectively, while 𝑝 and 𝑞 resulted to be functions of all the dimen-
sionless groups featuring on the right-hand side of Eq. (3.20) except
the Reynolds number.

Boon-Long et al. [7] included in the analysis the effect of the initial
solid volume fraction 𝛼𝑠,0, but due to the limited range in the available
ata about the density difference between the liquid and the particles,

they excluded this parameter, proposing this correlation:

Sh = 𝐶𝑐Re
𝑝
𝑑Sc

𝑞Ga𝑎
(𝑑𝑝,0
𝑑𝑉

)𝑏
𝜓𝑐 (3.21)

Here, Re𝑑 is a Reynolds number related to the particle diameter, Ga is
the Galilei number and 𝜓 relates to the initial solid volume fraction,
efined as:

Re𝑑 ≡
2𝜋2𝑁 𝑑𝑉 𝑑𝑝,0

𝜈𝑒
; Ga ≡

𝑔 𝑑3𝑝,0
𝜈2𝑒

; 𝜓 ≡
𝑀𝑠,0

𝜌𝑒𝑑
3
𝑝,0

(3.22)

Through data analysis, the authors found 𝐶𝑐 = 0.046, 𝑝 = 0.283,
= 0.461, 𝑎 = 0.173, 𝑏 = − 0.019 and 𝑐 = − 0.011, respectively.

As shown, studies based on the dimensional analysis method may
overlook some dimensionless groups. While Boon-Long et al. [7] did
onsider the most influential factors, the effects of some groups could

not be studied owing to limitations in experimental data. Furthermore,
as noted by Bird et al. [8], this method requires geometric similarity;
herefore, correlations derived for an agitated vessel with a specific
eometry are inapplicable if the geometry changes – a problem often
ncountered in industrial processes.
8 
4. Methodology

In Section 3.2, we reviewed the main methods for calculating the
globally averaged mass transfer coefficient in agitated vessels, all of
which exhibit certain limitations. To address these limitations, we have
developed a new method for calculating this coefficient. In Section 4.1,
we discuss the relationship between the globally averaged and the
locally volume-averaged mass transfer coefficients, considering the ef-
fects of neighboring particles and free-stream turbulence. To determine
the distribution of the local mass transfer coefficient, the profiles of
fluid dynamic variables (such as the velocities and volume fractions
of the liquid and solid phases) are required; these are calculated via a
turbulent multifluid model, whose balance and constitutive equations
are presented in Section 4.2.

4.1. Derivation of the coefficient

4.1.1. Relationship between the globally and locally averaged coefficients
In an agitated vessel, the global mass transfer rate between the

iquid and the particles, denoted as 𝑑 𝑀𝑉 ∕𝑑 𝑡, is obtained by integrating
he local mass transfer rate per unit volume, denoted as 𝑑 𝑀∕𝑑 𝑡, over

the volume 𝑉𝑉 occupied by the suspension:
𝑑 𝑀𝑉
𝑑 𝑡 = ∫𝑉𝑉

𝑑 𝑀
𝑑 𝑡 𝑑 𝑉 (4.1)

𝑑 𝑀∕𝑑 𝑡 can be expressed in terms of the locally volume-averaged mass
ransfer coefficient 𝑘𝐿 via the below equation, where 𝐴𝐿 denotes the

particle surface area per unit volume:
𝑑 𝑀
𝑑 𝑡 ≡ 𝑘𝐿𝐴𝐿(𝐶𝑠 − 𝐶) ; 𝐴𝐿 ≡ 6𝛼𝑠∕𝑑𝑝 (4.2)

Following the discussion after Eq. (2.2), a constant particle diameter is
assumed for all particles. Furthermore, although the fluid dynamics in
the vessel is inhomogeneous, the suspension in a small local region can
be assumed to be homogeneous, with an associated value of 𝑘𝐿.

Employing Eqs. (2.1) and (4.1), a relationship between the global
and local mass transfer coefficients can be established; this is given by:

𝑘 = 1
𝛼𝑠,0𝑉𝑉 ∫𝑉𝑉

(𝐶𝑠 − 𝐶

𝐶𝑠 − 𝐶

)

𝛼𝑠𝑘𝐿𝑑 𝑉 ⇒ Sh = 1
𝛼𝑠,0𝑉𝑉

× ∫𝑉𝑉

(𝐶𝑠 − 𝐶

𝐶𝑠 − 𝐶

)

𝛼𝑠Sh𝐿𝑑 𝑉 (4.3)

where Sh𝐿 is the local Sherwood number. We now assume that the
solute concentration is much smaller than the saturation concentration,
simplifying Eq. (4.3)B to:

Sh = 1
𝛼𝑠,0𝑉𝑉 ∫𝑉𝑉

𝛼𝑠Sh𝐿𝑑 𝑉 (4.4)

This simplification permits neglecting the solute concentration, so that
the solute mass balance equation does not have to be solved; this
reduces the complexity of the model significantly (but of course, if this
assumption cannot be applied, the model can be easily generalized).

4.1.2. Effect of particle interactions and free-stream turbulence
To account for the effect of particle interactions on the mass transfer

f an individual particle, we obtain Sh𝐿 via the correlation of Wang
t al. [19]:

Sh𝐿 = 𝐵
2
𝛼− 2 (𝑚−1)∕3𝑒

[

0.63 Re𝑖 + 4.8 Re1∕2𝑖 𝛼(𝑚−1)∕2𝑒

]

2∕3Sc1∕3 ; Pe𝑖 Ï 1

(4.5)

where 𝛼𝑒 is the liquid-phase volume fraction, while Re𝑖 and Pe𝑖 are
the particle Reynolds number and Peclet number, respectively; these
numbers are defined as:

Re𝑖 ≡ |𝒖𝑒 − 𝒖𝑠|𝑑𝑝∕𝜈𝑒 ; Pe𝑖 ≡ |𝒖𝑒 − 𝒖𝑠|𝑑𝑝∕D (4.6)

where 𝒖𝑒 and 𝒖𝑠 are the locally volume-averaged velocities of the liquid
and solid phases, respectively. 𝐵 is a constant, whose value depends on
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the range of Re𝑖, while 𝑚 is given by:

𝑚 =
4.8 + 2.4 ⋅ 0.175 Re3∕4𝑡

1 + 0.175 Re3∕4𝑡

; Re𝑡 ≡ 𝑢𝑡𝑑𝑝∕𝜈𝑒 = 𝛼− (𝑚−1)𝑒 Re𝑖 (4.7)

where Re𝑡 is the Reynolds number based on the particle terminal
velocity 𝑢𝑡. Eq. (4.5) holds only for Pe𝑖 Ï 1, as it is derived from the
concentration boundary layer theory; when this condition is not met, a
erm for mass transfer under zero flow conditions should be included;
or details, see Wang et al. [19].

The above correlation was derived under the condition that there
s no free-stream turbulence. However, in agitated vessels turbulence
ften exists, so Eq. (4.5) must be modified to account for its effect. To

do this, we Reynolds average Eq. (4.4). The result and the subsequent
assages involve Reynolds averages, fluid averages and solid averages.
or a given locally volume-averaged (or Eulerian) variable 𝜁 , these
verages are denoted as ⟨𝜁⟩, ⟨𝜁⟩𝐸 and ⟨𝜁⟩𝑆 , respectively, and the

corresponding fluctuating quantities are denoted by 𝜁 ′, 𝜁 ′′ and 𝜁 ′′′,
respectively. The fluid and solid averages are related to the Reynolds
averages as follows:

⟨𝜁⟩𝐸 ≡ ⟨𝛼𝑒𝜁⟩∕⟨𝛼𝑒⟩ ; ⟨𝜁⟩𝑆 ≡ ⟨𝛼𝑠𝜁⟩∕⟨𝛼𝑠⟩ (4.8)

Using these variables, we obtain:

⟨Sh⟩ = 1
𝛼𝑠,0𝑉𝑉 ∫𝑉𝑉

⟨𝛼𝑠Sh𝐿⟩𝑑 𝑉 = 1
𝛼𝑠,0𝑉𝑉 ∫𝑉𝑉

⟨𝛼𝑠⟩⟨Sh𝐿⟩𝑆 𝑑 𝑉 (4.9)

In calculating ⟨Sh𝐿⟩𝑆 , to account for the effect of free-stream tur-
bulence, we follow the method employed to develop Eq. (3.3), the
correlation for a fixed particle in a turbulent flow. As the systems of
nterest have large Peclet number, the constant 𝐴1 accounting for mass
ransfer under zero flow conditions can be neglected, so that Eq. (3.3)
an be simplified to:

⟨Sh𝑖 ⟩ = 𝐴2 [𝐴𝑇 (Re𝑖 ,T𝑖 )]
𝑣Re𝑝𝑖 Sc

𝑞 = 𝐴2 [𝐴𝑇 (Re𝑖 ,T𝑖 )]
𝑣[Sh𝑖 (Re𝑖 ,Sc)∕𝐶𝑐 ]

(4.10)

where Sh𝑖 is calculated via Eq. (3.1)A, but with the constant 2 ne-
lected. In Eq. (4.10), we have emphasized that 𝐴𝑇 is a function of

the particle Reynolds number Re𝑖 and of the turbulent intensity T𝑖 (but
in some models, it depends only on T𝑖), while Sh𝑖 is a function of
the Schmidt number and of Re𝑖. The latter is defined in terms of the
Reynolds-averaged slip velocity between the phases (Eq. (3.3)B), while
he turbulent intensity depends on this velocity and its fluctuations
Eq. (3.2)).

In analogy, in agitated vessels where many particles are involved,
and both the fluid and the particles are in motion, ⟨Sh𝐿⟩ is calculated
with the following equation:

⟨Sh𝐿⟩ = 𝐴2 [𝐴𝑇 (Re𝑖,T𝑖)]
𝑣[Sh𝐿(⟨𝛼𝑒⟩,Re𝑖,Sc)∕𝜅] (4.11)

where 𝜅 is a constant. Nevertheless, as shown in Eq. (4.9), to calculate
Sh⟩, ⟨Sh𝐿⟩𝑆 is required. To relate it to ⟨Sh𝐿⟩, this expression, derived

by Fox [50], is used:

⟨𝜁⟩𝑆 = ⟨𝜁⟩ + ⟨𝛼′𝑠𝜁⟩∕⟨𝛼𝑠⟩ (4.12)

which yields:

⟨Sh𝐿⟩𝑆 = ⟨Sh𝐿⟩ + ⟨𝛼′𝑠Sh𝐿⟩∕⟨𝛼𝑠⟩ (4.13)

In this equation, ⟨𝛼′𝑠Sh𝐿⟩ is neglected for the lack of a good closure; this
is analogous to what Fox and other researchers have done, for instance,
for fluid-velocity triple correlations. With this approximation, ⟨Sh𝐿⟩𝑆 is
qual to ⟨Sh𝐿⟩ and can thus be calculated via Eq. (4.11).

Similarly to Eq. (4.10), in Eq. (4.11) Sh𝐿 depends on Re𝑖 and Sc,
while 𝐴𝑇 is a function of Re𝑖 and T𝑖. Re𝑖 is calculated using the
Reynolds-averaged slip velocity ⟨𝒖𝑒⟩ − ⟨𝒖𝑠⟩, while T𝑖 depends not only
on the latter but also on the slip-velocity fluctuations 𝒖′𝑒−𝒖′𝑠. However,
as we shall see in Section 4.2, the fluid dynamic model yields (only)
hase-averaged velocities and their relevant fluctuations; hence, in the
efinitions of both Re and T , the Reynolds-averaged variables must be
𝑖 𝑖
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expressed in terms of their phase-averaged counterparts.
In Eq. (4.11), Re𝑖 is defined as:

Re𝑖 ≡ |⟨𝒖𝑒⟩ − ⟨𝒖𝑠⟩|𝑑𝑝∕𝜈𝑒 (4.14)

Here, ⟨𝒖𝑒⟩ − ⟨𝒖𝑠⟩ must be expressed in terms of ⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 . To this
nd, Eq. (4.12) and the following relationship, derived by Fox [50], are
mployed:

⟨𝜁⟩𝐸 = ⟨𝜁⟩ − ⟨𝛼′𝑠𝜁⟩∕⟨𝛼𝑒⟩ (4.15)

This yields:

⟨𝒖𝑒⟩ = ⟨𝒖𝑒⟩𝐸 + ⟨𝛼′𝑠𝒖𝑒⟩∕⟨𝛼𝑒⟩ ; ⟨𝒖𝑠⟩ = ⟨𝒖𝑠⟩𝑆 − ⟨𝛼′𝑠𝒖𝑠⟩∕⟨𝛼𝑠⟩ (4.16)

whence:

⟨𝒖𝑒⟩ − ⟨𝒖𝑠⟩ = ⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 +
(

⟨𝛼′𝑠𝒖𝑒⟩
⟨𝛼𝑒⟩

+
⟨𝛼′𝑠𝒖𝑠⟩
⟨𝛼𝑠⟩

)

(4.17)

Next, we relate ⟨𝛼′𝑠𝒖𝑒⟩ and ⟨𝛼′𝑠𝒖𝑠⟩. These are equal to ⟨𝛼′𝑠𝒖
′′
𝑒 ⟩ and

𝛼′𝑠𝒖
′′′
𝑠 ⟩, respectively. According to the transport equation for the phasic

urbulent kinetic energies reported in Fox [50] (see pages 382, 385,
397, 418 and 420), it is:
⟨𝛼′𝑠𝒖

′′
𝑒 ⟩ − ⟨𝛼′𝑠𝒖

′′′
𝑠 ⟩ = − 𝐶𝑝⟨𝛼𝑒⟩(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) (4.18)

In Wang and Mazzei [51], who applied the Fox model to simulate
iquid-particle flows in agitated vessels, it was found that 𝐶𝑝 = 0

provides good predictions, so that ⟨𝛼′𝑠𝒖′′𝑒 ⟩ and ⟨𝛼′𝑠𝒖
′′′
𝑠 ⟩ are equal. Using

his relation in Eq. (4.17), we then obtain:

⟨𝒖𝑒⟩ − ⟨𝒖𝑠⟩ = ⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 + 𝒖𝑑 𝑟 ; 𝒖𝑑 𝑟 ≡
⟨𝛼′𝑠𝒖

′′
𝑒 ⟩

⟨𝛼𝑒⟩⟨𝛼𝑠⟩
(4.19)

Here, 𝒖𝑑 𝑟 is referred to as drift velocity (see Section 4.2 for further
details); its presence does not causes any problems, because this veloc-
ity is calculated by the fluid dynamic model. With this last equation,
Eq. (4.14) can be expressed as:

Re𝑖 = |⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 + 𝒖𝑑 𝑟|𝑑𝑝∕𝜈𝑒 (4.20)

which is now in closed form and can be used to calculate Re𝑖 in
Eq. (4.11).

In Eq. (4.11), T𝑖 is defined as:

T𝑖 ≡
1

|⟨𝒖𝑒⟩ − ⟨𝒖𝑠⟩|

√

⟨(𝒖′𝑒 − 𝒖′𝑠)2⟩
3

(4.21)

This definition is inconvenient, because it is in terms of 𝒖′𝑒 and 𝒖′𝑠,
hereas, as discussed in Section 4.2, the fluid dynamic model yields
roperties related to 𝒖′′𝑒 and 𝒖′′′𝑠 . To overcome this issue, we use the

following transformations:

𝒖′𝑒 = 𝒖𝑒 − ⟨𝒖𝑒⟩ = 𝒖𝑒 − ⟨𝒖𝑒⟩𝐸 − ⟨𝛼′𝑠𝒖𝑒⟩∕⟨𝛼𝑒⟩ = 𝒖′′𝑒 − ⟨𝛼′𝑠𝒖𝑒⟩∕⟨𝛼𝑒⟩
′
𝑠 = 𝒖𝑠 − ⟨𝒖𝑠⟩ = 𝒖𝑠 − ⟨𝒖𝑠⟩𝑆 + ⟨𝛼′𝑠𝒖𝑠⟩∕⟨𝛼𝑠⟩ = 𝒖′′′𝑠 + ⟨𝛼′𝑠𝒖𝑠⟩∕⟨𝛼𝑠⟩ (4.22)

where Eqs. (4.12) and (4.15) have been used. This yields:

𝒖′𝑒 − 𝒖′𝑠 = 𝒖′′𝑒 − 𝒖′′′𝑠 −
(

⟨𝛼′𝑠𝒖𝑒⟩
⟨𝛼𝑒⟩

+
⟨𝛼′𝑠𝒖𝑠⟩
⟨𝛼𝑠⟩

)

= 𝒖′′𝑒 − 𝒖′′′𝑠 − 𝒖𝑑 𝑟 (4.23)

Accordingly, we have:

⟨(𝒖′𝑒 − 𝒖′𝑠)
2
⟩ = ⟨(𝒖′′𝑒 − 𝒖′′′𝑠 − 𝒖𝑑 𝑟)2⟩

= ⟨𝒖′′𝑒 ⋅ 𝒖′′𝑒 ⟩ + ⟨𝒖′′′𝑠 ⋅ 𝒖′′′𝑠 ⟩ − 2⟨𝒖′′𝑒 ⋅ 𝒖′′′𝑠 ⟩ − 2⟨(𝒖′′𝑒 − 𝒖′′′𝑠 ) ⋅ 𝒖𝑑 𝑟⟩ + ⟨𝒖𝑑 𝑟 ⋅ 𝒖𝑑 𝑟⟩
(4.24)

As we see from Eq. (4.19)B, 𝒖𝑑 𝑟 is a function of (ensemble) averaged
variables – that is, 𝒖𝑑 𝑟 is not a random variable. So, ⟨𝒖𝑑 𝑟⟩ = 𝒖𝑑 𝑟.
Moreover, as reported by Fox [50], it is:
⟨𝛼′𝑠𝜁⟩ = ⟨𝛼′𝑠𝜁

′′
⟩ = ⟨𝛼′𝑠𝜁

′′′
⟩ = ⟨𝛼𝑒⟩⟨𝜁

′′
⟩ = − ⟨𝛼𝑠⟩⟨𝜁

′′′
⟩ (4.25)

Thus, we have:

⟨𝒖′′ − 𝒖′′′⟩ =
⟨𝛼′𝑠𝒖

′′
𝑒 ⟩ +

⟨𝛼′𝑠𝒖
′′′
𝑠 ⟩

= 𝒖 (4.26)
𝑒 𝑠
⟨𝛼𝑒⟩ ⟨𝛼𝑠⟩

𝑑 𝑟
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Using Eqs. (4.12) and (4.15), the first three terms on the right-hand
ide of Eq. (4.24) are rewritten as:

⟨𝒖′′𝑒 ⋅ 𝒖′′𝑒 ⟩ = ⟨𝒖′′𝑒 ⋅ 𝒖′′𝑒 ⟩𝐸 + ⟨𝛼′𝑠𝒖
′′
𝑒 ⋅ 𝒖′′𝑒 ⟩∕⟨𝛼𝑒⟩ ;

⟨𝒖′′′𝑠 ⋅ 𝒖′′′𝑠 ⟩ = ⟨𝒖′′′𝑠 ⋅ 𝒖′′′𝑠 ⟩𝑆 − ⟨𝛼′𝑠𝒖
′′′
𝑠 ⋅ 𝒖′′′𝑠 ⟩∕⟨𝛼𝑠⟩ ;

⟨𝒖′′𝑒 ⋅ 𝒖′′′𝑠 ⟩ = ⟨𝒖′′𝑒 ⋅ 𝒖′′′𝑠 ⟩𝑆 − ⟨𝛼′𝑠𝒖
′′
𝑒 ⋅ 𝒖′′′𝑠 ⟩∕⟨𝛼𝑠⟩ (4.27)

Here, the second terms on the right-hand sides of the above relations
re neglected for lack of good closures, see page 397 in Fox [50], while
he first terms are related to the turbulent kinetic energies of the phases,
ee pages 378 and 395 in Fox [50], given by:

⟨𝒖′′𝑒 ⋅ 𝒖′′𝑒 ⟩𝐸 = 2𝑘𝑒 ; ⟨𝒖′′′𝑠 ⋅ 𝒖′′′𝑠 ⟩𝑆 = 2𝑘𝑠 ; ⟨𝒖′′𝑒 ⋅ 𝒖′′′𝑠 ⟩𝑆 = 2(𝑘𝑒𝑘𝑠)1∕2

(4.28)

Here, 𝑘𝑒 and 𝑘𝑠 represent the turbulent kinetic energies of the fluid and
olid phases, respectively, which can be calculated by the multifluid
odel presented in Section 4.2. Using these expressions, we have:

⟨(𝒖′𝑒 − 𝒖′𝑠)
2
⟩ = 2(

√

𝑘𝑒 −
√

𝑘𝑠
)2− 𝒖2𝑑 𝑟 (4.29)

Using this relation and Eq. (4.19)A in Eq. (4.21) yields:

T𝑖 =
1

|⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 + 𝒖𝑑 𝑟|

√

2
(√

𝑘𝑒 −
√

𝑘𝑠
)2− 𝒖2𝑑 𝑟

3
(4.30)

which is now in closed form and can be used to calculate T𝑖 in
q. (4.11).

Finally, we must determine the value of the constant 𝜅. To do so,
e start from the correlation for isolated particles derived in Wang

t al. [19] and then extend the analysis to the case of suspensions. For
he case of isolated particles, in the absence of free-stream turbulence,
he correlation derived by Wang et al. [19] is given by the following
xpression:

Sh𝑖 =
𝐵𝑖
2

(

0.63 Re𝑖 + 4.8 Re1∕2𝑖

)

2∕3Sc1∕3 ; 𝐵𝑖 =
{

0.682 for Re𝑖 < 0.1
0.469 for Re𝑖 > 10

(4.31)

As we see, this contains different exponents for Re𝑖. Next, we refor-
ulate it in the form of Eq. (3.1)A, since doing this facilitates the

determination of 𝜅.
When Re𝑖 Î 50, we have 0.63 Re𝑖 Î 4.8 Re1∕2𝑖 ; therefore, the first term

in the bracket of Eq. (4.31)A can be neglected, leading to:
(

0.63 Re𝑖 + 4.8 Re1∕2𝑖

)

2∕3 ≈
(

4.8 Re1∕2𝑖

)

2∕3 for Re𝑖 Î 50 (4.32)

For Re𝑖 < 0.1, this approximation yields a relative error within 3%,
iving:

Sh𝑖 =
𝐵𝑖
2
4.82∕3Re1∕3𝑖 Sc1∕3 = 1.423𝐵𝑖Re1∕3𝑖 Sc1∕3 for Re𝑖 < 0.1 (4.33)

Thus, 𝜅 = 1.423𝐵𝑖. Although the value of 𝐵𝑖 is not required, as it cancels
out in Eq. (4.10), using 𝐵𝑖 = 0.682 results in 𝜅 = 0.97, which is very
lose to the constant 0.991 used by Friedlander [14]. Furthermore, the

exponent of Re𝑖 is also consistent.
In Eq. (3.1)A, for Re𝑖 Ï 1, the exponent of Re𝑖 used by Frossling

13] is 1∕2. Accordingly, in Eq. (4.31), we require that:
(

0.63 Re𝑖 + 4.8 Re1∕2𝑖

)

2∕3 ∼ Re1∕2𝑖 (4.34)

This can be equivalently written as:
(

0.632Re2𝑖 + 2 ⋅ 0.63 ⋅ 4.8 Re3∕2𝑖 + 4.82Re𝑖
)

1∕3 ∼ Re1∕2𝑖 (4.35)

This condition is met when the term featuring Re3∕2𝑖 on the left-hand
ide dominates over the other two terms. This occurs for 10 Î Re𝑖 Î
250. This range is quite small, but for most values of Re𝑖 within this
range, the first or the third term in the bracket is comparable to the
second term; thus, a good approximation is:
10 
(

0.632Re2𝑖 + 2 ⋅ 0.63 ⋅ 4.8 Re3∕2𝑖 + 4.82Re𝑖
)

1∕3 ≈ (2 ⋅ 2 ⋅ 0.63 ⋅ 4.8)1∕3Re1∕2𝑖

(4.36)

For 10 < Re𝑖 < 250, this approximation results in a relative error
within 7%. Examining its applicability for larger values of Re𝑖, we find
that even for Re𝑖 up to 1000, the relative error is within 15%. Thus,
Eq. (4.31)A is rewritten as:

Sh𝑖 =
𝐵𝑖
2
(2 ⋅ 2 ⋅ 0.63 ⋅ 4.8)1∕3Re1∕2𝑖 Sc1∕3 = 1.148𝐵𝑖Re1∕2𝑖 Sc1∕3

for 10 < Re𝑖 < 1000 (4.37)

In this case, 𝜅 = 1.148𝐵𝑖. Taking 𝐵𝑖 = 0.469 yields 𝜅 = 0.538, which is
ery close to the constant 0.552 by Frossling [13]. The exponent of Re𝑖

is also consistent.
For Re𝑖 > 1000 (i.e., Re𝑖 Ï 50), we have 0.63 Re𝑖 Ï 4.8 Re1∕2𝑖 , and so

he second term in the bracket of Eq. (4.31)A can be neglected:
(

0.63 Re𝑖 + 4.8 Re1∕2𝑖

)

2∕3 ≈
(

0.63 Re𝑖
)

2∕3 for Re𝑖 > 1000 (4.38)

The relative error of this approximation is within 15%. Thus, Eq. (4.31)
A simplifies to:

Sh𝑖 =
𝐵𝑖
2
0.632∕3Re2∕3𝑖 Sc1∕3 = 0.367𝐵𝑖Re2∕3𝑖 Sc1∕3 for Re𝑖 > 1000

(4.39)

which results in 𝜅 = 0.367𝐵𝑖. Using these methodology and results, we
next intend to extend the analysis to the case of suspensions, which is
more relevant to our system of interest.

In the absence of free-stream turbulence, the mass transfer coef-
ficient for homogeneous suspensions can be calculated by Eq. (4.5),

hich can be equivalently written as:

Sh𝐿 = 𝐵
2

(

0.63 Re𝑡 + 4.8 Re1∕2𝑡

)

2∕3Sc1∕3 ; Re𝑡 ≡ Re𝑖𝛼
1 −𝑚
𝑒 (4.40)

As we see, if Re𝑡 is replaced by Re𝑖, Eq. (4.40)A becomes identical
to Eq. (4.31)A. Therefore, the conclusions drawn for isolated particles
also apply to suspensions, except that the criterion is now based on
Re𝑡 instead of Re𝑖. For Re𝑡 < 0.1, the first term in the bracket of
Eq. (4.40)A is negligible, and the expression below offers an accurate
approximation, with a relative error within 3%:

Sh𝐿 = 𝐵
2
4.82∕3Re1∕3𝑡 Sc1∕3 = 1.423𝐵Re1∕3𝑡 Sc1∕3 for Re𝑡 < 0.1 (4.41)

So, 𝜅 = 1.423𝐵. For 10 < Re𝑡 < 1000, the approximation below is valid,
with a relative error within 15%:

Sh𝐿 = 𝐵
2
(2 ⋅ 2 ⋅ 0.63 ⋅ 4.8)1∕3Re1∕2𝑡 Sc1∕3 = 1.148𝐵Re1∕2𝑡 Sc1∕3

for 10 < Re𝑡 < 1000 (4.42)

Therefore, 𝜅 = 1.148𝐵. For 0.1 < Re𝑡 < 10, determining a single
exponent for Re𝑡 is challenging, and so a value for the parameter
𝜅 cannot be found. To address this, we examine the applicability of
Eqs. (4.41) and (4.42) within this range. For 0.1 < Re𝑡 < 5, Eq. (4.41)
(𝜅 = 1.423𝐵) provides a good approximation, while for 5 < Re𝑡 < 10,
q. (4.42) (𝜅 = 1.148𝐵) is more accurate; in both cases, the relative

error is within 15%. For Re𝑡 > 1000, the second term in the bracket of
Eq. (4.40)A is negligible. The resulting approximation is:
Sh𝐿 = 𝐵

2
0.632∕3Re2∕3𝑡 Sc1∕3 = 0.367𝐵Re2∕3𝑡 Sc1∕3, Re𝑡 > 1000 (4.43)

with a relative error within 15%. Therefore, for this case, 𝜅 = 0.367𝐵.
Note that in these expressions for 𝜅, the value of 𝐵 is not required,
ecause it cancels out in Eq. (4.11); in any case, the values of 𝐵 are

known and are reported in Wang et al. [19].
Employing Eqs. (4.20) and (4.30) in the free-stream-turbulence

models summarized in Table 2 and adopting the values for 𝜅 that we
have just derived, ⟨Sh⟩ can be calculated via Eqs. (4.9), (4.11) and
(4.40). This method allows accounting for the combined effect of fluid-
article slip velocity, particle interactions and free-stream turbulence

(all calculated locally) on mass transfer.
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4.2. Turbulent multifluid model

To use the proposed method, we must know the profiles of the fluid
dynamic variables within the vessel, such as the phase averages of the
mean velocities, the Reynolds averages of the volume fractions and the
turbulent kinetic energies of the phases. In general, fluid dynamics is
affected by mass transfer, because this alters the physical properties
of the fluid, such as density and viscosity, as well as the particle size
and the solid volume fraction. Hence, in liquid-particle agitated vessels
where mass transfer takes place, the fluid dynamics is time dependent,
making ⟨Sh⟩ vary with time (the time scale of this process is far larger
than that characterizing the Sh fluctuations). However, as discussed in
Section 2.2, ⟨Sh⟩ is usually taken to be constant. This assumption is
valid when the measurements are conducted over a sufficiently short
time interval, so that variations in the fluid and particle properties, as
well as in the solute concentration, are negligible. Conversely, assuming
⟨Sh⟩ to be constant during the entire dissolution process may lead to
uncertainties, if measurements are made over the entire dissolution
process [3,6,9,30,34,36,37,45]. We will assume that ⟨Sh⟩ is constant,
o that it is reasonable to calculate the fluid dynamic variables by using
he initial properties of the fluid and the particles. These variables can
hen be used in Eqs. (4.9) and (4.11) to calculate ⟨Sh⟩. In this study,
he fluid dynamic variables are calculated via the turbulent multifluid

model of Fox [50], which is briefly presented below. For details, see
lso Wang and Mazzei [51].

4.2.1. Governing equations
For the liquid phase, the Reynolds averaged continuity and dynam-

ical equations read:

𝜕𝑡⟨𝛼𝑒⟩ = − 𝜕𝒙 ⋅ ⟨𝛼𝑒⟩⟨𝒖𝑒⟩𝐸 (4.44)
𝜌𝑒𝜕𝑡(⟨𝛼𝑒⟩⟨𝒖𝑒⟩𝐸 ) = − 𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩⟨𝒖𝑒⟩𝐸⟨𝒖𝑒⟩𝐸 − 𝜕𝒙 ⋅ ⟨𝑺𝑒⟩ − 𝜕𝒙 ⋅ 𝑻 𝑒 − ⟨𝒇 𝑝⟩

+⟨𝛼𝑒⟩𝜌𝑒𝒈 (4.45)

where 𝑺𝑒 and 𝑻 𝑒 are the effective stress tensor and turbulent stress
ensor for the fluid phase, respectively, and 𝒇 𝑝 is the mean fluid-particle
nteraction force. For the solid phase, the Reynolds averaged continuity

and dynamical equations read:

𝜕𝑡⟨𝛼𝑠⟩ = − 𝜕𝒙 ⋅ ⟨𝛼𝑠⟩⟨𝒖𝑠⟩𝑆 (4.46)
𝜌𝑠𝜕𝑡(⟨𝛼𝑠⟩⟨𝒖𝑠⟩𝑆 ) = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩⟨𝒖𝑠⟩𝑆⟨𝒖𝑠⟩𝑆 − 𝜕𝒙 ⋅ ⟨𝑺𝑠⟩ − 𝜕𝒙 ⋅ 𝑻 𝑠 + ⟨𝒇 𝑝⟩

+⟨𝛼𝑠⟩𝜌𝑠𝒈 (4.47)

where 𝑺𝑠 and 𝑻 𝑠 are the effective stress tensor and turbulent stress
tensor for the solid phase, respectively. At moderately large solid
volume fractions, particle collisions significantly affect the solid phase
effective stress tensor and in turn the fluid dynamics of the suspension.
Thus, the set of balance equations for mass and linear momentum is
complemented by a balance equation for the granular internal energy,
(3∕2)𝜃𝑠, where 𝜃𝑠 is the granular temperature [52,53]. The Reynolds
average of this equation reads:

𝜌𝑠𝜕𝑡[⟨𝛼𝑠⟩(3∕2)⟨𝜃𝑠⟩𝑆 ] = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩(3∕2)⟨𝜃𝑠⟩𝑆⟨𝒖𝑠⟩𝑆 − 𝜕𝒙 ⋅ 𝒒𝑠𝑡
− 𝜕𝒙 ⋅ ⟨𝒒𝑠⟩ − ⟨𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠⟩ − ⟨𝑆𝑐⟩ − ⟨𝑆𝑣⟩ (4.48)

Here, 𝒒𝑠 and 𝒒𝑠𝑡 are the granular and turbulent heat fluxes, respectively.
𝑆𝑐 and 𝑆𝑣 are sink terms of granular internal energy owing to inelastic
particle collisions and viscous resistance to particle motion.

As we see, these equations involve several undetermined terms.
Details on their closures will be provided in the following section.

4.2.2. Closures
In this section, we present the closures for the undetermined terms.

The constitutive equations as well as the associated parameter values
used in our model and briefly presented below are those identified
by Wang and Mazzei [51] as preferable for simulating liquid-particle
turbulent flows in agitated vessels. Adopting the same multifluid model
11 
employed in this work, Wang and Mazzei [51] systematically examined
he impact of different closures and of the values of their parameters

– assigned within ranges commonly used in the literature – on the ac-
uracy of the model predictions. Thus, we do not perform this analysis

here, referring to their work for further details.
Most of the expressions given below are consistent with those found

in Fox [50], to whom we refer for mathematical details; however,
the notation and, more importantly, some closures are different. For
instance, Fox assumes 𝛼𝑠𝜌𝑠∕𝛽 (that is, the drag time scale) to be a
constant, where 𝛽 is the drag coefficient, while we do not; in addition,
for the effective viscosity of the fluid phase 𝜂𝑒, Fox uses the closure
𝜂𝑒 = 𝜇𝑒 + 𝜇⋆𝑒 , where 𝜇𝑒 is the molecular viscosity of the fluid and 𝜇⋆𝑒
s a ‘‘pseudo-turbulent’’ viscosity accounting for the stress arising from
he point fluid velocity fluctuations due, for instance, to particle wakes,
hile we use the expression 𝜂𝑒 = 𝛼𝑒𝜇𝑒, which is commonly adopted in

he literature [52]. ⟨𝑺𝑒⟩ is given by:

⟨𝑺𝑒⟩ = ⟨𝑝𝑒⟩𝑰 − ⟨𝜂𝑒⟩[𝜕𝒙⟨𝒖𝑒⟩𝐸 + (𝜕𝒙⟨𝒖𝑒⟩𝐸 )† − (2∕3)𝜕𝒙 ⋅ ⟨𝒖𝑒⟩𝐸 𝑰 ] (4.49)

where ⟨𝑝𝑒⟩ is the mean pressure of the fluid phase (i.e., one third of the
race of ⟨𝑺𝑒⟩), ⟨𝜂𝑒⟩ = ⟨𝛼𝑒⟩𝜇𝑒, and 𝑰 is the unit tensor. ⟨𝑺𝑠⟩ is given by:

⟨𝑺𝑠⟩ = [⟨𝑝𝑠⟩ − ⟨𝜆𝑠⟩𝜕𝒙 ⋅ ⟨𝒖𝑠⟩𝑆 ]𝑰 − ⟨𝜂𝑠⟩[𝜕𝒙⟨𝒖𝑠⟩𝑆 + (𝜕𝒙⟨𝒖𝑠⟩𝑆 )† − (2∕3)𝜕𝒙
⋅ ⟨𝒖𝑠⟩𝑆 𝑰 ] (4.50)

where the solid pressure ⟨𝑝𝑠⟩, bulk viscosity ⟨𝜆𝑠⟩ and viscosity ⟨𝜂𝑠⟩ are
given by:

⟨𝑝𝑠⟩ = ⟨𝛼𝑠⟩𝜌𝑠⟨𝜃𝑠⟩𝑆 + 2⟨𝛼𝑠⟩2𝜌𝑠⟨𝜃𝑠⟩𝑆 𝑔0(1 + 𝑒) ;

𝜆𝑠⟩ = (4∕3)⟨𝛼𝑠⟩2𝜌𝑠𝑑𝑝𝑔0(1 + 𝑒)
√

⟨𝜃𝑠⟩𝑆∕𝜋 ;

𝜂𝑠⟩ =
⟨𝛼𝑠⟩𝜌𝑠𝑑𝑝

√

⟨𝜃𝑠⟩𝑆𝜋

6 (3 − 𝑒)
[

1 + 2
5
⟨𝛼𝑠⟩𝑔0(1 + 𝑒)(3𝑒 − 1)

]

+ 3
5
⟨𝜆𝑠⟩ ;

𝑔0 =

[

1 −
(

⟨𝛼𝑠⟩
𝛼𝑠,𝑚𝑎𝑥

)1∕3
]−1

(4.51)

in which 𝑒 is the restitution coefficient, 𝑔0 is the radial distribution
function, and 𝛼𝑠,𝑚𝑎𝑥 is the packing limit (often, as also here, set at 63%).

The turbulent stress tensor of the fluid phase 𝑻 𝑒 is closed using
Boussinesq’s eddy viscosity hypothesis; therefore, we write:

𝑻 𝑒 = (2∕3)⟨𝛼𝑒⟩𝜌𝑒𝑘𝑒𝑰 − ⟨𝛼𝑒⟩𝜇𝑡,𝑒[𝜕𝒙⟨𝒖𝑒⟩𝐸 + (𝜕𝒙⟨𝒖𝑒⟩𝐸 )† − (2∕3)𝜕𝒙 ⋅ ⟨𝒖𝑒⟩𝐸 𝑰 ]

(4.52)

where 𝜇𝑡,𝑒 is the turbulent viscosity of the fluid phase, given by:

𝜇𝑡,𝑒 = 𝐶𝜇 𝑒𝜌𝑒𝑘2𝑒∕𝜀𝑒 (4.53)

where 𝜀𝑒 – not to be confused with the Kolmogorov eddy dissipation
ate 𝜀 – is the dissipation rate of the fluid turbulent kinetic energy
𝑒, and 𝐶𝜇 𝑒 is a parameter, usually set equal to 0.09 [54–56]. The

solid turbulent stress tensor 𝑻 𝑠 is closed with equations analogous to
Eqs. (4.52) and (4.53), with 𝑘𝑒 and 𝜀𝑒 replaced by 𝑘𝑠 and 𝜀𝑠, that is,
he turbulent kinetic energy of the solid phase and its dissipation rate,
espectively.

The fluid-particle interaction force ⟨𝒇 𝑝⟩ comprises various contribu-
ors; the main ones are the buoyancy ⟨𝒇 𝑝,𝐵⟩ and the drag ⟨𝒇 𝑝,𝐷⟩ forces.
ere, we only consider these [55,57–60]. For the buoyancy force, we

use the following closure:

⟨𝒇 𝑝,𝐵⟩ = − ⟨𝛼𝑠⟩𝜕𝒙⟨𝑝𝑒⟩ − 𝐶𝑝⟨𝛼𝑒⟩⟨𝛼𝑠⟩(𝜌𝑠 − 𝜌𝑒)𝒈 (4.54)

Here, 𝐶𝑝 is a constant whose value should lie between zero to unity;
following Wang and Mazzei [51], we set it to zero. The drag force is
losed as follows:

⟨𝒇 𝑝,𝐷⟩ = 𝛽 (⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 + 𝒖𝑑 𝑟) (4.55)

in which 𝛽 is the drag force coefficient and 𝒖𝑑 𝑟 ≡ ⟨𝛼′𝑠𝒖
′′
𝑒 ⟩∕(⟨𝛼𝑒⟩⟨𝛼𝑠⟩) is

referred to as drift velocity. Various closures can be found for 𝛽. For
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instance, see Jackson [53], Mazzei and Lettieri [61] and Marchisio and
ox [62] for reviews. Here, using the closure of Syamlal et al. [63], we

write:

𝛽 = 3
4
𝐶𝐷

⟨𝛼𝑒⟩⟨𝛼𝑠⟩𝜌𝑒
𝜉2𝑑𝑝

|⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 | (4.56)

where:

𝐶𝐷 =
(

0.63 + 4.8
√

Re∕𝜉

)2
;

= 1
2

[

𝐴 − 0.06 Re +
√

(0.06 Re)2 + 0.12 (2𝐵 − 𝐴) Re + 𝐴2
]

;

e ≡
|⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 |𝑑𝑝

𝜈𝑒
; 𝐴 = ⟨𝛼𝑒⟩

4.14 ;

𝐵 =
{

0.8⟨𝛼𝑒⟩
1.28 for ⟨𝛼𝑒⟩ ≤ 0.85

⟨𝛼𝑒⟩
2.65 for ⟨𝛼𝑒⟩ > 0.85

(4.57)

In Eq. (4.55), the part of ⟨𝒇 𝑝,𝐷⟩ related to 𝒖𝑑 𝑟 is referred to as turbulent
dispersion force. Fox [50] closes 𝒖𝑑 𝑟 as follows:

𝒖𝑑 𝑟 = −
𝜇𝑒,𝑡

⟨𝛼𝑒⟩⟨𝛼𝑠⟩𝜌𝑒Sc𝑒𝑠
𝜕𝒙⟨𝛼𝑠⟩ − 𝐶𝑔(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) ; Sc𝑒𝑠 ≡ (𝑘𝑒∕𝑘𝑠)

1∕2

(4.58)

Here, Sc𝑒𝑠 is the turbulent Schmidt number and 0 ≤ 𝐶𝑔 ≤ 1. As indicated
y Fox [50], the second term on the right-hand side of Eq. (4.58)A is

valid exclusively for cases where 𝜌𝑒 Î 𝜌𝑠. For liquid-particle systems,
its expression may be inaccurate and may have to be modified (but
no other closures are available). Following Wang and Mazzei [51], we
neglect this term.

The granular heat flux featuring in Eq. (4.47) is expressed via
ourier’s law, where the thermal conductivity is modeled using the

closure of Syamlal et al. [63]. Therefore, we write:

⟨𝒒𝑠⟩ = − 𝑘𝜃𝜕𝒙⟨𝜃𝑠⟩𝑆 (4.59)

with:

𝑘𝜃 =
15⟨𝛼𝑠⟩𝜌𝑠𝑑𝑝

√

⟨𝜃𝑠⟩𝑆𝜋

4 (41 − 33𝜁 )
×

{

1 +
[

12
5
𝜁2(4𝜁 − 3) + 16

15𝜋
𝜁 (41 − 33𝜁 )

]

⟨𝛼𝑠⟩𝑔0

}

(4.60)

where 𝑘𝜃 is the granular conductivity and 𝜁 ≡ (1 + 𝑒)∕2. The closures
or the sink terms related to inelastic collisions and to viscous resistance

to the particle motions read:

⟨𝑆𝑐⟩ =
⟨𝛼𝑠⟩𝜌𝑠⟨𝜃𝑠⟩𝑆 (1 − 𝑒2)

2𝜏𝑐𝑠
; 𝜏𝑐𝑠 ≡

𝑑𝑝
24⟨𝛼𝑠⟩𝑔0

√

𝜋
⟨𝜃𝑠⟩𝑆

;

⟨𝑆𝑣⟩ = 3𝛽⟨𝜃𝑠⟩𝑆 (4.61)

The turbulent heat flux 𝒒𝑠𝑡 is modeled by the gradient diffusion model,
iven by:

𝒒𝑠𝑡 = − 3
2
⟨𝛼𝑠⟩𝜇𝑡,𝑠
Pr𝑒𝑠

𝜕𝒙⟨𝜃𝑠⟩𝑆 (4.62)

where Pr𝑒𝑠 is the turbulent Prandtl number, whose value ranges from
0.5 to 0.9 [54]; here, we take it to be 0.85. The fourth term on the
right-hand side of Eq. (4.48) is expressed as follows:

⟨𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠⟩ = ⟨𝑺𝑠⟩ ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 − ⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠 (4.63)

The closures reported above require knowledge of the turbulent kinetic
nergy and of its dissipation rate for both phases. To obtain these
ields, we have to solve their transport equations. For the fluid turbulent
inetic energy, the equation reads:

𝜌𝑒𝜕𝑡(⟨𝛼𝑒⟩𝑘𝑒) = − 𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩𝑘𝑒⟨𝒖𝑒⟩𝐸 + 𝜕𝒙 ⋅
(

⟨𝜂𝑒⟩ +
⟨𝛼𝑒⟩𝜇𝑡,𝑒
𝜎𝑒,𝑘

)

𝜕𝒙𝑘𝑒

− 𝑻 ∶ 𝜕 ⟨𝒖 ⟩ − ⟨𝛼 ⟩𝜌 𝜀 +𝛱 +𝛱 +𝛱 (4.64)
𝑒 𝒙 𝑒 𝐸 𝑒 𝑒 𝑒 𝑘,𝑒 𝑘,𝑒𝑝 𝑘,𝑒𝜌 i
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Here, 𝜎𝑒,𝑘 is a constant, assigned to be unity [54]. 𝛱𝑘,𝑒, 𝛱𝑘,𝑒𝑝 and
𝑘,𝑒𝜌 are the source terms owing to the turbulent interaction between

the phases, the gradient of the Reynolds-averaged fluid pressure, and
the covariance of the fluctuations of the mean fluid velocity and fluid
pressure gradient, respectively. We follow Fox [50] and close these
terms as:

𝛱𝑘,𝑒 = 𝛽{2 [𝛹𝑘(𝑘𝑒𝑘𝑠)1∕2 − 𝑘𝑒] − (⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) ⋅ 𝒖𝑑 𝑟} ;

𝑘,𝑒𝑝 = ⟨𝛼𝑠⟩𝒖𝑑 𝑟 ⋅ 𝜕𝒙⟨𝑝𝑒⟩ ;

𝑘,𝑒𝜌 = 𝐶𝜌⟨𝛼𝑠⟩(𝜌𝑠 − 𝜌𝑒)𝒖𝑑 𝑟 ⋅ 𝒈 (4.65)

in which 𝛹𝑘 and 𝐶𝜌 are constants, taken to be unity [56]. The transport
equation for the rate of dissipation of the fluid turbulent kinetic energy
reads:

𝜌𝑒𝜕𝑡(⟨𝛼𝑒⟩𝜀𝑒) = − 𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩𝜀𝑒⟨𝒖𝑒⟩𝐸 + 𝜕𝒙 ⋅
(

⟨𝜂𝑒⟩ +
⟨𝛼𝑒⟩𝜇𝑡,𝑒
𝜎𝑒,𝜀

)

𝜕𝒙𝜀𝑒

−
𝜀𝑒
𝑘𝑒

(𝐶1𝑻 𝑒 ∶ 𝜕𝒙⟨𝒖𝑒⟩𝐸 + 𝐶2⟨𝛼𝑒⟩𝜌𝑒𝜀𝑒) +𝛱𝜀,𝑒 +
𝜀𝑠
𝑘𝑠

(𝐶4𝛱𝑘,𝑒𝑝 + 𝐶5𝛱𝑘,𝑒𝜌) (4.66)

where:

𝛱𝜀,𝑒 = 𝛽
{

2𝐶3[𝛹𝜀(𝜀𝑒𝜀𝑠)
1∕2 − 𝜀𝑒] − 𝐶4

𝜀𝑠
𝑘𝑠

(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) ⋅ 𝒖𝑑 𝑟
}

(4.67)

is a source term owing to the turbulent interaction between the phases.
𝐶1 to 𝐶5, 𝜎𝑒,𝜀 and 𝛹𝜀 are constants. 𝐶1 and 𝐶2 are taken to be 1.44 and
.92, respectively, 𝜎𝑒,𝜀 is taken to be 1.3 [54], whilst the other four

constants are taken to be unity [56]. The transport equation for the
solid turbulent kinetic energy reads:

𝜌𝑠𝜕𝑡(⟨𝛼𝑠⟩𝑘𝑠) = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩𝑘𝑠⟨𝒖𝑠⟩𝑆 + 𝜕𝒙 ⋅
(

⟨𝜂𝑠⟩ +
⟨𝛼𝑠⟩𝜇𝑡,𝑠
𝜎𝑠,𝑘

)

𝜕𝒙𝑘𝑠

− 𝑻 𝑠 ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 − ⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠 +𝛱𝑘,𝑠 +𝛱𝑘,𝑠𝜌 (4.68)

𝜎𝑠,𝑘 is set to unity [54]. 𝛱𝑘,𝑠 and 𝛱𝑘,𝑠𝜌 are source terms owing to the
turbulent interaction between the two phases and the covariance of
the fluctuations of the mean solid velocity and fluid pressure gradient,
respectively. Their closures are:

𝛱𝑘,𝑠 = 2𝛽[𝛹𝑘(𝑘𝑒𝑘𝑠)1∕2 − 𝑘𝑠] ;

𝑘,𝑠𝜌 = − 𝐶𝜌𝐶𝑝⟨𝛼𝑒⟩⟨𝛼𝑠⟩(𝜌𝑠 − 𝜌𝑒)(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) ⋅ 𝒈 −𝛱𝑘,𝑒𝜌 (4.69)

The transport equation for the solid turbulent kinetic energy dissi-
ation rate reads:

𝜌𝑠𝜕𝑡(⟨𝛼𝑠⟩𝜀𝑠) = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩𝜀𝑠⟨𝒖𝑠⟩𝑆 + 𝜕𝒙 ⋅
(

⟨𝜂𝑠⟩ +
⟨𝛼𝑠⟩𝜇𝑡,𝑠
𝜎𝑠,𝜀

)

𝜕𝒙𝜀𝑠

−
𝜀𝑠
𝑘𝑠

(𝐶1𝑻 𝑠 ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 + 𝐶2⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠) +𝛱𝜀,𝑠 + 𝐶5
𝜀𝑠
𝑘𝑠
𝛱𝑘,𝑠𝜌 (4.70)

𝜎𝑠,𝜀 is taken to be 1.3 [54], and 𝛱𝜀,𝑠, caused by the turbulent interaction
between the phases, is given by the following equation:

𝛱𝜀,𝑠 = 2𝐶3𝛽[𝛹𝜀(𝜀𝑒𝜀𝑠)
1∕2 − 𝜀𝑠] (4.71)

The balance equations and closures just shown are solved with the
CFD software Fluent. For agitated vessels with a rotating impeller,
the sliding mesh (SM) and multiple reference frame (MRF) numerical
methods are commonly used. In baffled vessels, like those considered
here, the relative position between the impeller and the baffles changes
continuously, resulting in an inherently unsteady flow. But after an
initial transient period, the flow becomes periodic. The SM method can
apture both the transient and periodic evolutions of the fluid dynamic
ariables and mass transfer coefficients with high accuracy, but is quite
emanding computationally and therefore impractical. Nevertheless,
he time scales associated with the onset of the periodic flow and of the
ubsequent flow oscillations are far smaller than that relevant to mass
ransfer measurements. Thus, such variations typically do not manifest
n the experimentally measured values of the mass transfer coefficient
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𝑘. Under these conditions, the MRF method can yield approximate,
ut usually sufficiently good, solutions at a far lower computational
ost [58,60,64]. Therefore, in this study we adopt this method. Once

the profiles of the Reynolds averages of the volume fractions, of the
phase averages of the mean velocities, and of the turbulent properties
are obtained, we calculate ⟨Sh⟩ via Eqs. (4.9), (4.11), (4.20), (4.30) and
(4.40). In the next section, we will apply this method to some selected
xperimental studies and examine its applicability by comparing the
redictions with experimental data.

5. Results and discussion

In the previous section, we have developed a new method for
alculating the globally averaged mass transfer coefficient in agitated

vessels; this first predicts the fluid dynamic variables employing the
multifluid model described in Section 4.2, and then uses these variables
in Eqs. (4.9), (4.11), (4.20), (4.30) and (4.40) to calculate ⟨Sh⟩. In
ection 5.1, we validate this method by applying it to selected experi-

ments and comparing predictions with experimental data. Furthermore,
n Section 5.2, we compare the predictions of our method with those

from the approaches discussed in Section 3.2.

5.1. Method validation

To validate the method, we employ the experimental data on
lobally averaged mass transfer coefficients of Barker and Treybal
3], Nienow [36], Nienow [37], and Bong [40], details of which

can be found in Table 1. Barker and Treybal [3] and Bong [40]
easured the change in solute concentration and calculated 𝑘 using
q. (2.5). In the latter study, ion exchange beads were used, making
he assumptions of constant 𝑑𝑝 and 𝛼𝑠 reasonable. In the former study,

dissolving particles were used, but the authors estimated the mass
transfer coefficient at the initial stage, where only a small fraction
of the particles dissolves; this reduces the uncertainties introduced by
assuming 𝑑𝑝, 𝛼𝑠 and 𝑘 to be constant. Nevertheless, since both studies
overlooked the factor 1∕(1 − 𝛼𝑠,0), their data must be modified. In con-
trast, Nienow [36,37] measured either the remaining solid mass during
the dissolution process or the time for complete particle dissolution
nd estimated the value of 𝑘 with Eq. (2.9). Among these four studies,
he selected data cover a broad range of conditions: the solid volume

fraction varies between 0.6% and 40%, Sc between 650 and 4.12 ⋅ 104,
the particle diameter between 0.67 and 2.86 mm, and the density
difference between the particles and the liquid between 198 and 1660
kg∕m3. These wide ranges ensure the generality of the validation. From
these studies, we only consider data from cylindrical flat-bottomed
baffled vessels equipped with six-blade disc turbines, because these
ystems are commonly used and well-characterized. But it is important
o emphasize that the proposed methodology is not inherently limited
o any particular vessel or impeller type. Our method is general, and
he accuracy of the results depends primarily on the ability of the
ultifluid model presented in Section 4.2 to accurately predict the

fluid dynamics in the vessel (and on the accuracy of the constitutive
equations). As demonstrated in Wang and Mazzei [51], the multifluid

odel has also been validated for vessels equipped with six-blade 45◦

itched blade turbines, further supporting the generalizability of the
roposed approach to other system configurations. Information about
he numerical schemes and techniques used in the simulations, as well

as initial and boundary conditions, are provided in Appendix A and
Appendix B.

For the selected experiments, to estimate the value of Pe𝑖 within the
vessel, in Eq. (4.6)B we replace the locally volume-averaged velocities
(𝒖𝑒 and 𝒖𝑠) with their respective (ensemble) phase averages (⟨𝒖𝑒⟩ and
𝒖𝑠⟩). Using the values of these velocities obtained via the multifluid
odel, we find that the values of Pe𝑖 are on the order of 103 or

arger; hence, the concentration boundary layer theory is applicable,
nd Eq. (4.11) can be adopted without including the term for mass
 e

13 
transfer under zero flow conditions.
As discussed, to account for the effect of free-stream turbulence

on mass transfer, we employ the models summarized in Table 2, with
Re𝑖 and T𝑖 calculated with Eqs. (4.20) and (4.30), respectively. Fig. 1
compares the predicted values of ⟨Sh⟩ with the experimental data. The
predictions without considering the free-stream turbulence effect are
also reported, where instead of Eq. (4.11), ⟨Sh𝐿⟩𝑆 is calculated as:

⟨Sh𝐿⟩𝑆 = Sh𝐿(⟨𝛼𝑒⟩,Re𝑖,Sc) (5.1)

with Re𝑖 defined as per Eq. (4.20). As seen, accounting for free-stream
turbulence generally yields higher ⟨Sh⟩ values. This aligns with the
xpectation that free-stream turbulence should enhance mass transfer.

However, the values of ⟨Sh⟩ obtained from the various free-stream-
turbulence models differ significantly. For the data of Barker and
Treybal [3], reported in Fig. 1(a), the model that performs best is
hat by Lavender and Pei [21], followed by those of Sandoval-Robles

et al. [25] and Gostkowski and Costello [24]; for those of Nienow [36],
shown in Fig. 1(b), the best models, which perform equally well, are
those by Lavender and Pei [21] and Galloway and Sage [23], followed
by that of Gostkowski and Costello [24]; for the data of Nienow
[37], reported in Fig. 1(c), again the model that performs best is that
y Lavender and Pei [21], followed by those of Gostkowski and Costello
24] and Sandoval-Robles et al. [25]; finally, for the data of Bong [40],

shown in Fig. 1(d), the best model is that by Lavender and Pei [21],
followed by those of Gostkowski and Costello [24] and Galloway and
Sage [23]. Therefore, at least for the 72 experimental data considered in
his study, the model that in general performs best is that by Lavender
nd Pei [21].

When the model by Lavender and Pei [21] is employed, for most
data the relative percent error between the predicted and experimental
alues is less than 30%. This good alignment validates our proposed
ethod, showing that it applies not only when 𝑘 is measured over a

short time interval, as done by Barker and Treybal [3] and implicitly
in our method, but also when the coefficient (assumed to be constant) is

easured over relatively long ion exchange or dissolution processes, as
done by Nienow [36,37] and Bong [40]. The discrepancies between the
redictions and the measurements may arise from several factors. First,

the closures used in the turbulent multifluid model might introduce
some inaccuracies in the predicted fluid dynamics variables (see Wang
and Mazzei [51]). Second, the correlation of Wang et al. [19] adopted
to calculate the local mass transfer coefficient (Eq. (4.5)) is also affected
by error (the authors reporting that, for most cases, it is less than 30%).

hird, the models that we used to account for the effect of free-stream
turbulence on the mass transfer of fixed isolated particles and their
xtension to cases where both liquid and particles move and a large

number of particles is involved are also expected to cause uncertainties.
Finally, for the experimental data, no error bars are available, and the
assumptions made to calculate the mass transfer coefficients, such as
assuming uniform and constant particle size for dissolving particles and
a constant mass transfer coefficient when measurements span relatively
extended mass transfer processes (see Section 2.2), may also contribute
to the discrepancies.

5.2. Comparison with other methods

In this section, we compare the predictions of our method with
hose of other methods. The correlations used for this comparison
re shown in Table 3. As discussed in Section 3.2, several methods

have been proposed for estimating the globally averaged mass trans-
fer coefficient in agitated vessels. Among these, correlations derived
directly for 𝑘 using dimensional analysis are typically case-specific and
cannot be generalized when experimental conditions change, so in our
comparison these correlations are not considered.

For approaches based on the steady-state theory, which neglects the
ffect of free-stream turbulence, we consider only the method proposed
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Fig. 1. Comparisons between predictions and experimental data on ⟨Sh⟩ for experiments from (a) Barker and Treybal [3], (b) Nienow [36], (c) Nienow [37] and
(d) Bong [40] with various models for the effect of free-stream turbulence.
by Kuboi et al. [10]; this assumes a constant mass transfer coefficient
for all the particles in the vessel, and to predict 𝑘 it applies corre-
lations developed for isolated particles, such as those by Friedlander
[14] and Frossling [13]. This method requires a value for 𝑢𝑟,𝑖 (see
Eq. (3.5)C); to estimate it, we adopt the approach proposed by Kuboi
et al. [10], who, for data where 𝑑𝑝 Ï 𝜂, related 𝑢𝑟,𝑖 to the average
Kolmogorov eddy dissipation rate 𝜀, writing:

Re𝑖 = Re 𝜀∕2 ; Re𝑖 ≡ 𝑢𝑟,𝑖𝑑𝑝∕𝜈𝑒 ; Re 𝜀 ≡ 𝜀1∕3𝑑 4∕3
𝑝 ∕𝜈𝑒 (5.2)

Accordingly, we use this approximation (reported to have an accuracy
within ±50%) and substitute Re𝑖 with Re 𝜀∕2 in the relevant correlations
in Table 3.

To account for free-stream turbulence, Kuboi et al. [10] and Ar-
menante and Kirwan [30] adopted the penetration theory. We exclude
the correlation by Armenante and Kirwan [30], insofar as their experi-
ments involved particles with 𝑑𝑝 Î 𝜂. In the model by Kuboi et al. [10],
a constant mass transfer coefficient is assumed for the all particles,
enabling the use of Eq. (3.5)A for calculating the globally averaged
value. Since Eq. (3.5) depends on 𝑢𝑟,𝑖, we again use Eq. (5.2) for its
estimation and substitute Re𝑖 with Re 𝜀∕2 in the relevant correlations
in Table 3. For the correlations based on the Kolmogorov theory, we
omit those by Armenante and Kirwan [30] and Bong et al. [34]; the
former is excluded for the same reason mentioned before, and the latter
involves parameters (see Eq. (3.15)) that are unknown. Consequently,
only the correlation by Calderbank and Moo-Young [31] is considered
14 
in our comparison.

As shown, all the correlations for the comparison require 𝜀. This
is generally taken to be equal to 𝑃∕𝑀𝑒, where 𝑃 is the power input
and 𝑀𝑒 is the total mass of the liquid in the vessel. The power input is
commonly calculated using the empirical expression [30,32]:

𝑃 = 𝑁𝑝𝜌𝑒𝑁
3𝑑5𝐼 (5.3)

where 𝑁𝑝 is the power number. For baffled vessels with a six-blade
disk turbine, and for the conditions of the selected experiments, 𝑁𝑝 is
generally assumed constant, and here we adopt the value 5.6 [3,34,40].

Fig. 2 compares the predictions of the correlations reported in
Table 3 with the experimental data from Barker and Treybal [3], Nienow
[36,37] and Bong [40]. Note that for these experimental data, the
Reynolds number values, calculated using Eq. (5.2)A, are consistently
greater than unity. Therefore, for the models based on the steady-
state theory, only the correlation similar to that proposed by Frossling
[13] is applied. When free-stream turbulence is neglected, most of the
experimental data are significantly underestimated. A similar underes-
timation is evident for the correlation derived from the Kolmogorov
theory. Because 2∕

√

𝜋 ≈ 1, the two correlations derived from the
penetration theory give very similar predictions; a slight overestimation
is observed for the data from Nienow [36,37], while the overestimation
is more pronounced for the data from Barker and Treybal [3] and Bong
[40].
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Table 3
Correlations considered in the comparison with our method.

Theory Correlation for ⟨Sh⟩ Reference

Steady-state theory 2 + 0.552 Re1∕2𝑖 Sc1∕3 forRe𝑖 > 1 Kuboi et al. [10]
2 + 0.991(Re𝑖 Sc)1∕3 forRe𝑖 < 1

Unsteady-state theory 2 + 2
√

𝜋
Re1∕2𝑖 Sc1∕2 (constant) Kuboi et al. [10]

2 + Re1∕2𝑖 Sc1∕2 (random)
Kolmogorov theory 0.13 Re 𝜀3∕4Sc1∕3 Calderbank and Moo-Young [31]

‘constant’ and ‘random’ represent constant and random exposure time distributions, respectively.
Fig. 2. Comparisons between the predictions of various methods and experimental data on ⟨Sh⟩ for experiments from (a) Barker and Treybal [3], (b) Nienow
[36], (c) Nienow [37] and (d) Bong [40] with Re𝑖 = Re 𝜀∕2 (‘constant’ and ‘random’ represent constant and random exposure time distributions, respectively).
Notice that replacing Re𝑖 with Re 𝜀∕2 involves an uncertainty of up
to ±50% [10]. To evaluate the sensitivity of the model predictions to
this approximation, we consider two other formulations: Re𝑖 = Re 𝜀∕3
and Re𝑖 = Re 𝜀 . In both cases, the Reynolds number values remain larger
than unity, and thus for the models based on the steady-state theory,
only the correlation similar to that proposed by Frossling [13] is used.
The corresponding predictions are presented in Figs. 3 and 4, respec-
tively. As shown, for the correlation without free-stream turbulence, the
experimental data are still underestimated except for those from Barker
and Treybal [3] and Bong [40] when Re𝑖 = Re 𝜀 . When penetration
theory is used, the predictions for the data of Nienow [36] and Nienow
[37] show good agreement when Re𝑖 = Re 𝜀∕3 is assumed, whereas
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adopting Re𝑖 = Re 𝜀 results in a notable overestimation. Conversely,
for the data of Barker and Treybal [3] and Bong [40], both expressions
of Re𝑖 lead to significant overestimations.

In summary, the predictions of the available methods generally
exhibit larger deviations from the measured data – most exceeding 30%
– than those obtained using the method developed in this study, which
highlights the improvement of the proposed approach. These relatively
large discrepancies in the existing methods may arise from several
factors. First, neglecting free-stream turbulence leads to consistent
underestimation. When its effect is considered, correlations developed
for isolated particles are used directly for multiparticle systems, over-
looking the effect of particle interactions on mass transfer; furthermore,
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Fig. 3. Comparisons between the predictions of various methods and experimental data on ⟨Sh⟩ for experiments from (a) Barker and Treybal [3], (b) Nienow
[36], (c) Nienow [37] and (d) Bong [40] with Re𝑖 = Re 𝜀∕3 (‘constant’ and ‘random’ represent constant and random exposure time distributions, respectively).
the assumption of an equal mass transfer coefficient for all particles and
the use of 𝜀 introduce additional inaccuracies. In contrast, our method
achieves better agreement with the experimental data by accounting for
the combined effects of fluid-particle slip velocity, particle interactions
and free-stream turbulence (all calculated locally) on mass transfer.

5.3. A final remark

As discussed in Section 4, the method developed for calculating
the globally averaged mass transfer coefficient refers to the case in
which all the particles dispersed in the vessel have the same size;
moreover, the particle size is assumed to be constant. About the first
assumption (i.e., particles of equal size), this can be easily relaxed,
but the simulations would become more demanding computationally.
To this end, one would have to generalize the multifluid model and
the method for the calculation of the mass transfer coefficients by
considering many particle classes, each comprising particles of equal
size (considering a continuous particle size distribution is also possible,
but this would require the implementation of a population balance
equation, which would render the simulations even more time consum-
ing). The generalization would not be complex; for instance, Eq. (4.4)
would turn into:

Sh =
𝜈
∑

𝑟= 1

[(

𝑑𝑝
𝑑𝑝,𝑟

)2(
𝛼𝑠,𝑟,0
𝛼𝑠,0

)]

Sh𝑟 ; Sh𝑟 =
1

𝛼𝑠,𝑟,0𝑉𝑉 ∫𝑉𝑉
𝛼𝑠,𝑟Sh𝐿,𝑟𝑑 𝑉

(5.4)

where 𝜈 is the number of particle classes, 𝑑𝑝 ≡ 6𝛼𝑠,0𝑉𝑉 ∕𝐴𝑉 is the
globally averaged particle diameter, 𝑑 is the diameter of the particles
𝑝,𝑟
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belonging to class 𝑟, 𝛼𝑠,𝑟,0 is the globally averaged volume fraction
of these particles, and 𝛼𝑠,𝑟 is their local volume fraction. For these
particles, the local Sherwood number Sh𝐿,𝑟 would still be calculated
using Eq. (4.5).

Also the second assumption (i.e., constant particle size) can be
relaxed; for each particle class, the change in particle size would have
to be captured through the relevant mass balance equation, which
should feature a mass transfer term involving the instantaneous local
mass transfer coefficient. Therefore, one would have to modify the
multifluid model, but not the method for calculating the mass transfer
coefficients. But since for each particle class, the particle size would
change differently in different spatial locations, a finite number of
particle classes (each with fixed particle size) would not suffice; hence,
a continuous particle size distribution would have to be considered,
and a population balance equation (PBE) would have to be solved
for the solid phase. In a CFD code, the PBE could be solved with a
quadrature-based method; this method would model the continuous
particle size distribution through a finite number of classes – but in
each class the particle size would be a function of the time and space
coordinates, hence allowing the nonuniform mass transfer process to be
accurately described. For further details about this method, we refer to
the literature (e.g., [62,65–68]).

6. Conclusions

This study developed a new method for calculating the globally av-
eraged mass transfer coefficient in agitated vessels. This method adopts
a turbulent multifluid model to predict the fluid dynamic variables in
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Fig. 4. Comparisons between the predictions of various methods and experimental data on ⟨Sh⟩ for experiments from (a) Barker and Treybal [3], (b) Nienow
[36], (c) Nienow [37] and (d) Bong [40] with Re𝑖 = Re 𝜀 (‘constant’ and ‘random’ represent constant and random exposure time distributions, respectively).
the vessel and incorporates these results into a global-mass-transfer-
coefficient model which accounts for the combined effects of fluid-
particle slip velocity, particle interactions and free-stream turbulence.

The applicability and accuracy of the method were investigated by
comparing its results to experimental data from Barker and Treybal
[3], Nienow [36], Nienow [37] and Bong [40], over a wide range of
experimental conditions. If an appropriate model for the effect of free-
stream turbulence is adopted (in this study, the model of Lavender
and Pei [21]), for most data points the relative percent error is within
30%. The discrepancies between results and experimental data can be
attributed to several factors, such as the approximations involved in
the closures of the turbulent multifluid model, the assumptions in the
calculation of the mass transfer coefficients, and the uncertainties in
the experimental measurements.

Comparatively, the available methods exhibit larger deviations due
to their inherent assumptions, such as the use of correlations for
isolated particles, the assumption of identical mass transfer coefficients
for all the particles, and the neglect of the contribution of free-stream
turbulence.
17 
Notation

𝑎 Constant –
𝐴𝑖 Surface area of particle 𝑖 m2

𝐴𝐿 Particle surface area per unit volume m2

𝐴𝑇 Function of Re𝑖 and T𝑖 –
𝐴𝑉 Total surface area of the particles m2

𝐴1 Constant –
𝐴2 Constant –
𝑏 Constant –
𝑏1 Constant –
𝑏2 Constant –
𝑏3 Constant –
𝐵 Constant –
𝐵𝑖 Constant –
𝑐 Constant –
𝐶 Locally averaged solute concentration k g∕m3

𝐶 Globally averaged solute concentration k g∕m3

𝐶𝑐 Constant –
𝐶𝑑 Globally averaged solute concentration

assuming complete dissolution
k g∕m3

𝐶𝐷 Particle drag force coefficient –
𝐶𝐼 Impeller clearance m
𝐶𝑔 Constant –
𝐶𝑝 Constant –
𝐶𝑠 Saturation concentration at the

particle surface
k g∕m3
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𝐶0 Globally averaged solute concentration
at time zero

k g∕m3

𝐶𝜇 𝑒 Constant –
𝐶𝜏 Globally averaged solute concentration

at time 𝜏
k g∕m3

𝐶𝜌 Constant –
𝐶1 Constant –
𝐶2 Constant –
𝐶3 Constant –
𝐶4 Constant –
𝐶5 Constant –
𝑑 𝑀∕𝑑 𝑡 Local mass transfer rate per unit

volume
k g∕(m3 s)

𝑑 𝑀𝑉 ∕𝑑 𝑡 Global mass transfer rate k g∕s
D Solute diffusivity m2∕s
D𝑡 Turbulent diffusivity m2∕s
𝑑 Distance between two points m
𝑑𝐼 Impeller diameter m
𝑑𝑝 Particle diameter m
𝑑𝑝 Globally averaged particle size m
𝑑𝑝,0 Particle diameter at time zero m
𝑑𝑝,𝑗 Size of the particles belonging to class

𝑗
m

𝑑𝑉 Vessel diameter m
𝑒 Restitution coefficient –
𝒇 𝑝 Mean fluid-particle interaction force k g m∕s2

𝒇 𝑝,𝐵 Buoyancy force k g m∕s2

𝒇 𝑝,𝐷 Drag force k g m∕s2

𝑔 Gravitational acceleration m∕s2

𝑔0 Radial distribution function –
Ga Galilei number –
𝐻 Liquie height m
𝑰 Unit tensor –
𝑘 Globally averaged mass transfer

coefficient
m∕s

𝑘𝑒 Turbulent kinetic energy of the fluid
phase

m2∕𝑠2

𝑘𝑖 Mass transfer coefficient of particle 𝑖 m∕s
𝑘𝐿 Locally averaged mass transfer

coefficient
m∕s

𝑘𝑠 Turbulent kinetic energy of the solid
phase

m2∕s2

𝑘𝜏 Mean mass transfer coefficient of a
single liquid element over its exposure
period

m∕s

𝑘𝜃 Granular conductivity W∕(m K )
𝐿𝑖 Turbulence integral length scale –
𝑚 Richardson-Zaki exponent –
𝑀𝑠 Total particle mass k g
𝑀𝑠,𝑖 Mass of particle 𝑖 k g
𝑀𝑠,0 Total particle mass at time zero k g
𝑀𝑠,𝜏 Total particle mass at time 𝜏 k g
𝑁 Impeller rotation speed r ps
𝑁𝑝 Power number –
𝑝 Constant –
𝑃 Power input W
𝑝𝑒 Pressure of the fluid phase k g∕(m s2)
Pe𝑖 Particle Peclet number –
Pr𝑒𝑠 Turbulent Prandtl number –
𝑝𝑠 Solid pressure k g∕(m s2)
𝑞 Constant –
𝒒𝑠 Granular heat flux W∕m2

𝒒𝑠𝑡 Turbulent heat flux W∕m2

Re Reynolds number –
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Re𝑑 Reynolds number based on particle
diameter

–

Re𝑖 Reynolds number for particle 𝑖 –
Re𝐼 Reynolds number based on impeller

diameter
–

Re𝑡 Reynolds number based on particle
terminal velocity

–

Re𝑉 Reynolds number based on vessel
diameter

–

Re𝜀 Reynolds number based on 𝜀 –
Re𝜀 Reynolds number based on 𝜀 –
Sc Schmidt number –
𝑆𝑐 Sink term of granular internal energy

owing to inelastic particle collisions
k g∕(m s3)

Sc𝑒𝑠 Turbulent Schmidt number –
𝑺𝑒 Effective stress tensor for the fluid

phase
k g∕(m s2)

Sh Globally averaged Sherwood number –
Sh𝑖 Sherwood number for particle 𝑖 –
Sh𝑗 Globally averaged Sherwood number

for particle class 𝑗
–

Sh𝐿 Locally averaged Sherwood number –
Sh𝐿,𝑗 Locally averaged Sherwood number

for particle class 𝑗
–

Sh𝑉 Sherwood number characterized by
vessel diameter

–

𝑺𝑠 Effective stress tensor for the solid
phase

k g∕(m s2)

𝑆𝑣 Sink term of granular internal energy
owing to viscous resistance to particle
motion

k g∕(m s3)

𝑻 𝑒 Turbulent stress tensor for the fluid
phase

k g∕(m s2)

T𝑖 Turbulence intensity –
𝑻 𝑠 Turbulent stress tensor for the solid

phase
k g∕(m s2)

𝑢′ Root mean square of the relative
velocity between two points in a
turbulent flow

m∕s

𝒖𝑑 𝑟 Drift velocity m∕s
𝒖𝑒 Locally averaged velocity for the fluid

phase
m∕s

𝒖̄𝑒 Instantaneous velocity of the fluid in
the free stream

m∕s

𝒖̄𝑒,1 Instantaneous velocities of the fluid at
one point

m∕s

𝒖̄𝑒,2 Instantaneous velocities of the fluid at
one point

m∕s

𝒖̄𝑝,𝑖 Instantaneous velocity of particle 𝑖 m∕s
𝑢𝑟,𝑖 Slip velocity between the fluid and

particle 𝑖
m∕s

𝒖̄𝑟,𝑖 Instantaneous velocity of approach of
the fluid in the free stream

m∕s

𝒖𝑠 Locally averaged velocity of the solid
phase

m∕s

𝑢𝑡 Particle terminal velocity m∕s
𝑣 Constant –
𝑉𝑒 Total volume of the fluid m3

𝑉𝑉 Total volume of the suspension m3

𝑦𝑠 Dimensionless concentration –
𝑦𝜏 Dimensionless concentration at time 𝜏 –

Greek symbols
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𝛼𝑒 Fluid volume fraction –
𝛼𝑠 Solid volume fraction –
𝛼𝑠,𝑗 Volume fraction for particle class 𝑗 –
𝛼𝑠,𝑚𝑎𝑥 Packing limit of the solid phase –
𝛼𝑠 Globally averaged solid volume

fraction
–

𝛼𝑠,𝑗 ,0 Globally averaged volume fraction of
particle class 𝑗

–

𝛼𝑠,0 Globally averaged solid volume
fraction at time zero

–

𝛼𝑠,𝜏 Globally averaged solid volume
fraction at time 𝜏

–

𝛽 Drag coefficient k g∕(m3 s)
𝜀 Kolmogorov eddy dissipation rate of

the surrounding fluid
m2∕s3

𝜀𝑒 Turbulent kinetic energy dissipation
rate of the fluid phase

m2∕s3

𝜀𝑠 Turbulent kinetic energy dissipation
rate of the solid phase

m2∕s3

𝜀 Globally averaged dissipation rate m2∕s3

𝜂 Kolmogorov length scale m
𝜂𝑒 Effective viscosity of the fluid phase Pa s
𝜂𝑠 Effective viscosity of the solid phase Pa s
𝜃𝑠 Granular temperature m2∕s2

𝜅 Constant –
𝛬 Average exposure time of the fluid

elements
s

𝜆𝑠 Bulk viscosity of the solid phase Pa s
𝜇𝑒 Viscosity of the fluid phase Pa s
𝜇⋆𝑒 ‘‘pseudo-turbulent’’ viscosity of the

fluid phase
Pa s

𝜇𝑡,𝑒 Turbulent viscosity of the fluid phase Pa s
𝜇𝑡,𝑠 Turbulent viscosity of the solid phase Pa s
𝜈𝑒 Kinematic viscosity of the fluid phase m2∕s
𝜁 A generic locally averaged (or

Eulerian) variable
–

⟨𝜁⟩ Reynolds average of 𝜁 –
⟨𝜁⟩𝐸 Fluid average of 𝜁 –
⟨𝜁⟩𝑆 Solid average of 𝜁 –
𝜁 ′ Fluctuating quantity corresponding to

⟨𝜁⟩
–

𝜁 ′′ Fluctuating quantity corresponding to
⟨𝜁⟩𝐸

–

𝜁 ′′′ Fluctuating quantity corresponding to
⟨𝜁⟩𝑆

–

𝛱𝑘,𝑒 Source term to the fluid phase
turbulent kinetic energy owing to the
turbulent interaction between the
phases

m2∕s3

𝛱𝑘,𝑒𝑝 Source term to the fluid phase
turbulent kinetic energy owing to the
gradient of the Reynolds-averaged
fluid pressure

m2∕s3

𝛱𝑘,𝑒𝜌 Source term to the fluid phase
turbulent kinetic energy owing to the
covariance of the fluctuations of the
mean fluid velocity and fluid pressure
gradient

m2∕s3

𝛱𝑘,𝑠 Source term to the solid phase
turbulent kinetic energy owing to the
turbulent interaction between the two
phases

m2∕s3
d
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𝛱𝑘,𝑠𝜌 Source term to the solid phase
turbulent kinetic energy owing to the
covariance of the fluctuations of the
mean solid velocity and fluid pressure
gradient

m2∕s3

𝛱𝜀,𝑒 Source term to the fluid phase
turbulent kinetic energy dissipation
rate owing to the turbulent interaction
between the phases

m2∕s4

𝛱𝜀,𝑠 Source term to the solid phase
turbulent kinetic energy dissipation
rate owing to the turbulent interaction
between the phases

m2∕s4

𝜌𝑒 Fluid density k g∕m3

𝜌𝑠 Particle density k g∕m3

𝜎𝑒,𝑘 Constant –
𝜎𝑒,𝜀 Constant –
𝜎𝑠,𝑘 Constant –
𝜎𝑠,𝜀 Constant –
𝜏 Time s
𝜏𝑒 Exposure time s
𝜓 Parameter related to the initial solid

volume fraction
–

𝛹 Constant 1∕m
𝛹𝑘 Constant –
𝛹𝜀 Constant –
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Appendix A. Boundary and initial conditions

Closed vessels were employed by Barker and Treybal [3] and
Nienow [37]; for such vessels, no-slip boundary conditions are applied
for both the fluid and solid phases at every wall, including the top
wall. In contrast, open-top vessels were employed by Nienow [36]
and Bong [40]. However, due to the presence of baffles, the gas–liquid
interface is almost flat; hence, it is modeled as a flat surface with zero
hear stress for both liquid and solid phases. This allows disregarding
he flow in the gas phase, simplifying the simulations considerably.
or all the considered cases, the surfaces of the rod and impeller are
reated as rotating moving walls, while all the remaining walls are
reated as stationary; on all the walls, no-slip boundary conditions are
pplied to both phases. Finally, the initial conditions assume a uniform
istribution of motionless particles in a still liquid.
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Appendix B. Numerical schemes and techniques

Unstructured tetrahedral meshes are adopted to discretize the flow
omain. For the selected experiments, the vessel diameter ranges from
.14 m to 0.3 m, while the vessel height is either equal to or approx-
mately equal to the diameter. The number of mesh cells employed
or these vessels is approximately 106, which falls within or exceeds
he typical range reported in previous studies using similar vessel
izes [51,60,64]. For pressure-velocity coupling, the phase-coupled
IMPLE scheme is employed. For spatial discretization, the least squares
ell based method is used for gradient calculations, and the PRESTO!
ethod is used for pressure; owing to the complexity of the fluid
odel and the flow conditions, a first-order upwind scheme is used

or momentum, volume fraction, turbulent kinetic energy and turbulent
issipation rates to ensure stability and convergence [69–71]. The Mul-
iple Reference Frame (MRF) method is adopted in conjunction with
 transient solver, with time steps ranging from 0.0001 s to 0.00025
. Each time step is considered converged when all the residuals fall
elow 10−3. Once the predicted fluid dynamic variables, such as volume
ractions, velocities and turbulent properties, become nearly constant,
he flow is considered to have reached a periodic state. During this
eriodic regime, even if the variables vary only slightly, time-averaged
esults over several seconds are used to calculate the mass transfer
oefficient.

Data availability

Data will be made available on request.
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