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The dynamics of thin viscous liquid films flowing down an inclined wall under gravity
in the presence of an upward flowing high-speed air stream is considered. The air stream
induces nonlinear waves on the interface and asymptotic solutions are developed to derive
a non-local evolution equation forced by the air pressure which is obtained analytically, and
incorporating a constant tangential stress. Benney equations in the capillary (strong surface
tension) and inertio-capillary regimes are derived and studied. The air stream produces
Turing-type short wave instabilities in sub-critical Reynolds number regimes that would
be stable in the absence of the outer flow. Extensive numerical experiments are carried out
to elucidate the rich dynamics in the above-mentioned short-wave regime. The stability
of different branches of solutions of non-uniform steady states is carried out, along with
time-dependent nonlinear computations that are used to track the large-time behaviour of
attractors. A fairly complete picture of different solution types are categorised in parameter
space. The effect of the Reynolds number on the wave characteristics in the inertio-
capillary regime is also investigated. It is observed that, for each value of the slenderness
parameter δ, there exists a critical Reynolds number Rc above which the solutions become
unbounded by encountering finite-time singularities. Increasing the air speed significantly
decreases Rc, making the system more prone to large amplitude singular events even at
low Reynolds numbers when the system would have been stable in the absence of the air
stream.
Key words: interfacial flows (free surface), thin films, shallow water flows

1. Introduction
Falling liquid film flows have been the subject of numerous linear and nonlinear stability
investigations. Gas-sheared liquid film flows arise in a number of natural phenomena
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and technological applications, e.g. cooling of electronic devices, mass transfer in
distillation columns and falling film flows in nuclear fusion reactors. A series of interesting
hydrodynamic phenomena have been observed in gas-sheared film flows, for example,
the so-called flooding event, which is a fundamental in process engineering (Semyonov
1944). A fundamental theoretical understanding of such phenomena is critical in efforts to
establish dominant physical mechanisms and utilise them to investigate possible control of
liquid films in diverse engineering applications.

The initiation of waves on falling liquid films sheared by a high-speed gas flow (in
many cases turbulent), was initially investigated by Jeffreys (1925) a hundred years
ago, who presented a linear theory using integral momentum balances to investigate
the formation of roll waves. Hanratty & Hershman (1961) extended that theory and
explained the initiation of roll waves by calculating the neutral stability curve. Chang
(1986) derived a long-wave model that included the air effect, and the long wave stability
was compared with that of Smith (1970) based on the Orr–Sommerfeld equation. With
the linear stability analysis of the sheared channel flows and falling films, McCready &
Chang (1996) revealed the different mechanism of the formation of large secondary
disturbances or solitary waves. In the former case, the lower-frequency unstable mode
was resonant with the most unstable mode, eventually leading to the formation of solitary
waves of a special frequency. Alekseenko et al. (2009) focused on the primary instability
of gas/liquid flows, and they experimentally obtained the dispersion characteristics by
exciting linear waves in a wide range of frequencies. The secondary instabilities were
studied by Lavalle et al. (2020) when the liquid film and gas flow have a comparable
thickness. At high gas velocities, the secondary instability leads to flooding, while for
low gas velocities the instability introduces high-frequency modulation of the wave
amplitude.

The formation and dynamics of nonlinear waves on the free surface of gas-sheared
film flows have also received substantial attention. Hanratty & Engen (1957) mapped
out the wave transitions as the gas flow rate increases: the initially smooth liquid surface
successively gave way to two-dimensional waves, squalls, roll waves and dispersed flows.
Peng, Jurman & McCready (1991) found that the solitary waves on gas–liquid shear
layers appeared as a secondary transition from existing large amplitude waves at low
fluid Reynolds numbers. The effect of the gas velocity and liquid Reynolds number on
the shape, amplitude and velocity of travelling waves were also investigated in detail
(Trifonov 2010b; Tseluiko & Kalliadasis 2011; Kofman, Mergui & Ruyer-Quil 2017). It
is also noted that the channel wall geometry also influences the patterns and dynamics
of the nonlinear waves on the gas–liquid interface. Frank (2008) studied the long two-
dimensional travelling waves in a channel with two different aspect ratios. It was shown
that decreasing the aspect ratio suppresses the wave amplitude but increases the phase
speed. Trifonov (2011) considered the influence of substrate corrugation on liquid film
flowing on vertical plates as the gas velocity changes. Waves formed on the liquid–air
interface and the flooding phenomenon (this is detrimental to efficient process operation)
was found as the gas flow rate increased; this was characterised by the sudden increase of
wave amplitude and flow reversal. Research was conducted to understand the mechanism
of this event from both experimental and numerical viewpoints. Kofman et al. (2017)
conducted various experiments and found two distinct flooding scenarios. The first is
the onset of upward-moving ripples caused by a short-wave instability mode Miesen &
Boersma (1995), while another scenario is the occurrence of ‘slug’ at high liquid Reynolds
numbers. The upward-travelling ripples were also observed in Özgen et al. (2002) and
Ishimura et al. (2023). Trifonov (2010a,b) investigated the onset of flooding based on
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the Navier–Stokes equations and found a region of the gas velocity where two solutions
exist at the same parameters and flooding takes place. The flooding points depend on the
gas/liquid properties, liquid Reynolds numbers and the distance between the plates were
also studied.

For modelling the perturbations of shear stress and pressure introduced by the gas
flow, the Benjamin–Miles quasi-laminarity assumption is widely used (Demekhin 1981;
Trifonov 2010b; Tseluiko & Kalliadasis 2011; Tsvelodub & Bacharov 2018, 2020 and
references therein). In this paper, we assume that the tangential stress is constant with
a known drag coefficient CD while the pressure is determined analytically by wavy liquid
films whose amplitude is small relative to the vertical extent of the outer gas region. Our
approach is different from that of the recent study of Ishimura et al. (2023), who use the
long-wave analysis in the gas region initiated by Camassa, Ogrosky & Olander (2017). We
assume that the vertical extend of the gas region is large compared with the mean film
thickness but of the same order as the long wavelength of the perturbations. This leads
to a non-local coupling, as detailed in Tuck (1975) and King, Tuck & Vanden-Broeck
(1993), with the outer inviscid gas exerting a pressure (found analytically) on the interface
to drive the viscous film motion. We start from the Navier–Stokes equations in the liquid
film and use asymptotic expansions in the small parameter ε that denotes the ratio of
the mean film thickness to its wavelength, to derive two canonical evolution equations
of the Benney type for the flow. First, a strong surface tension (inertialess) model, and
second, an inertio-capillary model relevant at smaller values of the surface. The inertialess
model is identical, after re-scaling and dropping of unsteady terms) to the equation studied
in Meng, Papageorgiou & Vanden-Broeck (2024) where rich bifurcation diagrams of
steady gravity–capillary air-blown waves were computed for a wide range of parameters.
However, the stability of the steady solutions has not been studied and the present study
undertakes this along with an extensive exploration of the nonlinear dynamics that is
investigated for the first time. We also carry out extensive computations in the inertio-
capillary regime and evaluate the effect of the Reynolds number and the air flow velocity
on wave characteristics. In both cases the models support secondary instabilities that lead
to time-periodic travelling wave solutions; such time-periodic solutions were observed in
the experiments of Lavalle et al. (2020). The inertial Benney equation produces travelling
waves that can become unbounded in finite time as parameters vary. Such singular events
lead to breakdown of the equations, and we also consider the effect of the air speed on their
occurrence through numerical experiments; it is shown that as the air speed increases the
critical Reynolds number above which blow up occurs, decreases monotonically. There
are other modelling approaches to the Benney formalism described above. These are
motivated by the construction of models that can better capture linear stability features
as well as the possibility of removing finite-time blow up. The reader is referred to the
work of Ruyer-Quil & Manneville (2000), and references therein, that carries out improved
modelling of falling film problems.

The structure of the paper is as follows. Section 2 presents the mathematical problem
and describes the asymptotic analysis that leads to the strong surface tension and inertio-
capillary evolution equations. Section 3 describes our numerical algorithms and includes
their validation with other work. Section 4 is concerned with the strong surface tension
case and presents results on the stability of steady states studied by the authors elsewhere
(Meng et al. 2024), in addition to solving the initial value problem to map and categorising
the most attracting solutions. Section 5 describes the dynamics in the inertio-capillary
regime and investigates in detail the boundary in parameter space that separates travelling
waves and solutions that blow up. Finally, we summarise our findings in § 6.
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Figure 1. Schematic of the problem and coordinate system.

2. Mathematical model and derivation of the wind-driven equations
Consider a Newtonian fluid with constant density ρl and viscosity µl , flowing under
gravity along a flat substrate inclined to the horizontal direction at an angle α. A schematic
is given in figure 1. A Cartesian coordinate system (x, y) is introduced, where the
x-axis points up the substrate and y is perpendicular to it with y = 0 on the substrate.
The velocity in the liquid film is u = (u, v). The air–liquid surface tension coefficient is σ
and the acceleration due to gravity is denoted by g. The liquid film is driven by an air
stream of density ρa and velocity u = (ua, 0) as y → ∞. Solving the full equations of this
air/liquid flow is a challenging direct numerical simulation problem. We are interested
in exploiting the multi-scale nature of the problem in the presence of the air stream
found in applications, and in what follows we make certain assumptions to derive reduced
dimension systems that allow us to study extensively the nonlinear dynamics. The analysis
leading to the evolution equations studied here follows and extends the work of King et al.
(1993) by incorporating inertia effects.

We begin with the dimensional problem. The flow in the viscous liquid film is governed
by the Navier–Stokes equations

ρ (ut + (u · ∇)u)) = −∇ p + µl∇2u − ρl g(sin α, cos α), (2.1)
∇ · u = 0, (2.2)

subject to no slip at the wall (p is the pressure)

u = v = 0, at y = 0, (2.3)

a kinematic boundary condition at the free surface

v = ht + uhx , at y = h(x, t), (2.4)

along with normal and tangential stress balances at the interface y = h(x, t)

1(
1 + h2

x
)
(

4µlhxvy + µl
(
1 − h2

x
)
(uy + vx )

)
= τs, (2.5)

pA − p + 2µl
1 + h2

x

1 − h2
x
vy = σhxx

(
1 + h2

x
)3/2 . (2.6)

One of our modelling assumptions is that τs = (1/2)ρau2
aCD in (2.5) is a constant that

represents the shear exerted by the outer flow on the liquid film (CD is the constant
drag coefficient). The effect of non-uniform tangential stress will be discussed in detail
later. In (2.6) pA represents the pressure just above the interface exerted by the air flow
accounting for coupling between the two phases. The airflow is assumed to be inviscid,
incompressible and irrotational. Introducing a velocity potential φ so that u = ∇φ in the
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air region, and considering two-dimensional flows we have

φxx + φyy = 0, y > h(x, t). (2.7)

At the air–liquid interface y = h(x, t), we must satisfy kinematic and dynamic boundary
conditions which read

ht + φx hx = φy, (2.8)

φt + 1
2
(
φ2

x + φ2
y
)
+ pa

ρa
= 1

2
u2

A, (2.9)

where ρa is the density of the air and the Bernoulli constant u2
a/2 follows from the

condition at y = ∞.
The equations in the liquid film are the incompressible Navier–Stokes equations.

Lengths in the vertical and horizontal directions are non-dimensionalised by the
undisturbed liquid layer depth H and a typical wavelength λ, respectively. We assume
that δ = H/λ% 1 since the layer is thin. The horizontal velocity is scaled with the Nusselt
scale U0 = (ρl gH2 sin α)/2µl , the vertical velocity by δU0 due to mass conservation, time
by t0 = λ/U0 and the pressure by ρlU 2

0 . We write h = Hh̃, u = U0ũ, v = δU0ṽ, t = t0 t̃ and
p = ρlU 2

0 p̃, substitute into (2.1), (2.2) and boundary conditions (2.3)–(2.6) and drop tildes
to find

δ
(
ut + uux + vuy

)
= −δ px + 1

R

(
δ2uxx + uyy

)
− 2

R
, (2.10)

δ2(vt + uvx + vvy
)
= −py + 1

R

(
δ3vxx + δvyy

)
− 2

R
cot α, (2.11)

ux + vy = 0, (2.12)
subject to

u = v = 0, at y = 0, (2.13)
v = ht + uhx , at y = h, (2.14)

4δ2hxvy +
(
1 − δ2h2

x
)(

uy + δ2vx
)
= CCD

(
1 + δ2h2

x
)
, at y = h, (2.15)

C Pa − 1
2

Rp + δ
1 + h2

x

1 − h2
x
vy = δ2hxx

2D(1 + δ2h2
x )

3/2 , at y = h, (2.16)

where we have used the outer pressure scaling pa = ρau2
a Pa . The dimensionless

parameters appearing above are a Reynolds number R, an air-speed parameter C and a
capillary number D

R = ρlU0 H
µl

= ρ2
l gH3 sin α

2µ2
l

, C=
1
2ρau2

a H

µlU0
= ρau2

a

ρl gH sin α
, D=µlU0

σ
= ρl gH2 sin α

2σ
.

(2.17)

As mentioned above, in our model the coupling between the air stream and the liquid
film is through the dimensionless air pressure term pa/ρgH sin α in the normal stress
balance (2.16). Before analysing the liquid film flow we derive an expression for this
pressure that is in terms of the interfacial position h(x, t), thus producing a single
evolution equation for h(x, t) as we show subsequently.

Next we consider the dimensionless form of the outer problem given by (2.7) and
boundary conditions (2.8)–(2.9). Observing that the air region is thick relative to the liquid
layer thickness (expected in applications), we introduce a new variable Y = O(1) given by
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y = λY (recall that x = λx̃ with tildes dropped). Velocities scale with ua and hence we
write φ = uaλ(, which casts (2.7) into its dimensionless form

(xx + (Y Y = 0, Y > δh(x, t). (2.18)

To non-dimensionalise (2.8)–(2.9) we write pa = ρau2
a Pa (as in (2.16)) and use the time

scale t0 introduced earlier to find
δU0

ua
ht + δ(x hx = (Y , on Y = δh(x, t), (2.19)

U0

ua
(t + 1

2
(
(2

x + (2
Y
)
+ Pa = 1

2
, on Y = δh(x, t). (2.20)

An asymptotic solution to (2.18)–(2.20) can be found as follows:

( = x + δ(1 + · · · , Pa = δPa0 + · · · . (2.21)

The leading-order problem is

(1xx + (1Y Y = 0, Y > 0, (2.22)

subject to

hx = (1Y , on Y = 0, (2.23)
(1x + Pa0 = 0, on Y = 0, (2.24)

where in arriving at (2.24) we have assumed that U0/ua % 1 and the outer problem is
quasi-steady to leading order. For a physical example of an oil film having millimetric
thickness on an incline with angle α = )/6, we have U0 ≈ 5 × 10−3 m s−1, and hence
if the outer flow has speed ua = 10 m s−1 (i.e. 36 km h−1) then we find U0/ua < 10−3.
The problem (2.22)–(2.24) can be solved in different ways (e.g. Fourier transforms or
equivalently complex variable formulation and Cauchy’s theorem) to give the perturbation
pressure in the air that couples into the normal stress balance (2.16). The result is

Pa0 = −H[hx ], H[g](x) = 1
)

∫
−

∞

−∞

g(ξ)dξ

x − ξ
, (2.25)

and H is the Hilbert transform operator. The result above provides an explicit dependence
of Pa0 on h(x, t) and hence the liquid film problem can be addressed as a closed system.
We do this next in two scenarios, an inertialess and an inertial one.

2.1. Surface tension dominated regime
Inspection of the normal stress balance condition (2.16) shows that a small capillary
number D = δ3 D (here and in what follows bars denote order one quantities) induces a
pressure in the film of order 1/δ. To retain the external flow effects and recalling the
expansion (2.21), we conclude that C = δ−2C . The large capillary pressure drives an
order one flow in the film and the appropriate expansions are u = u0 + O(δ), v = v0 +
O(δ), p = δ−1 p0 + O(1), h = h0 + O(δ). To retain gravitational effects we need small
inclination angles α = O(δ) and write cot α = G/δ where G is a constant. Substitution
into (2.10)–(2.12) gives

−p0x + 1
R

u0yy − 2
R

= 0, (2.26)

p0y + 2
R

G = 0, (2.27)

u0x + v0y = 0. (2.28)
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The no-slip conditions (2.13), (2.14) are unchanged besides dependent variables gaining
a subscript 0. To retain shear stresses in (2.15) we need CCD = O(1) since the left-hand
side is of O(1). Hence, we write CCD = τ with τ an order one constant. The kinematic
condition (2.14) and the stress balances (2.15)–(2.16) give to leading order

v0 = h0t + u0h0x , at y = h0, (2.29)
u0y = τ , at y = h0, (2.30)

−CH[h0x ] − 1
2

Rp0 = 1
2D

h0xx , at y = h0, (2.31)

where the solution (2.25) has been used. A single equation for h0(x, t) is obtained as
follows. Integration of (2.27) gives p0 = p0(x, t) − 2Gy/R, while integration of (2.26)
with respect to y, use of no slip u0(x, 0, t) = 0 and the tangential stress balance (2.30)
gives u0 = y(y − 2h0)[(1/2)R p0x + 1] + τh0. Mass conservation (2.28) immediately
yields v0 after the condition v0(x, 0, t) = 0 is used. The normal stress balance (2.31) gives
R p0 = −2CH[h0x ] + 2Gh0 − (1/D)h0xx . Using this in the solutions for u0 and v0 and
substituting the velocities into (2.29) provides the desired evolution equation

h0t +
[

−2h3
0

3
+ τ

2
h2

0 − 2G
3

h3
0h0x + 2C

3
H[h0xx ]h3

0 + 1
3D

h0xxx h3
0

]

x

= 0. (2.32)

Equation (2.32) is solved on periodic domains of dimensionless size L , i.e. h(x, t) =
h(x + L , t). The size L is a crucial dimensionless parameter with the number of linearly
unstable modes increasing with L . In order to compare with the results of Meng et al.
(2024) we rescale to spatial domains of unit length. This is achieved by writing x = Lx̄ ,
h = (τ/2)h̄, and t = (12L/τ 2)t̄ , to cast (2.32) into (after dropping bars)

ht + 2
[(

ν2)

d1
H[hxx ] + ν3

d2
hxxx − νhx − 1

)
h3 + 3

2
h2
]

x
= 0, (2.33)

where

d1 = )G2τ

C
, d2 = Dτ 2G3

2
, ν = Gτ

2L
, (2.34)

where d1 measures the induced drag, d2 is a scaled Bond number (small d2 implies
large surface tension) and ν is inversely proportional to the size of the system (small
ν corresponds to large dimensionless wavelengths). Equation (2.33) is identical to the
problem studied in Meng et al. (2024) (a factor of 2 is removable by the additional
rescaling τ → 2τ which is due to a factor of 2 difference in the non-dimensionalisation
of the shear stress in the present study), and is to be solved on spatially periodic domains
of unit length. Version (2.33) is very useful because it enables us to directly study the
stability and dynamics of the nonlinear bifurcation branches computed in Meng et al.
(2024). This is undertaken later.

2.2. The inertio-capillary regime
This regime arises when the capillary number is not as small as in § 2.1 so that pressure
perturbations due to surface tension and the air stream are O(1); this happens when D =
δ2 D in (2.16), the angle cot α =O(1), C = δ−1C and R, τ being order one constants. The
leading-order pressure Pa0 in the air region is given by (2.25). Expanding variables in
the liquid film, u = u0 + δu1 + · · · , v = v0 + δv1 + · · · , p = p0 + δp1 + · · · , h = h0 +
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δh1 + · · · and substituting into (2.10)–(2.12) gives to leading order

u0yy = 2, p0y = − 2
R

cot α, u0x + v0y = 0, (2.35)

which gives, using the no-slip and tangential shear-stress conditions

u0 = y(y − 2h0) + τ y, v0 = h0x y2, p0 = −2 cot α
R

y + p0(x, t). (2.36)

The pressure p0 follows from the normal stress balance condition (2.16) at leading order
1
2

R p0(x, t) = cot α h0 − CH[h0x ] − 1
2D

h0xx . (2.37)

The kinematic condition (2.14) gives, to leading order

h0t +
(

τ

2
h2

0 − 2
3

h3
0

)

x
= 0. (2.38)

Similar leading-order behaviour was found in Tseluiko & Papageorgiou (2006). Solutions
of (2.38) for fairly general initial conditions (e.g. smooth spatially periodic initial
data) encounter infinite slopes in finite time heralding the breakdown of the long-wave
asymptotic expansion. The singularity can be regularised by incorporating high-order
terms including surface tension, as done by Tseluiko & Papageorgiou (2006) in a related
problem. The analysis leading to the desired evolution equation (2.39) below, is provided
in Appendix A

ht +
[

−2
3

h3 + τ

2
h2 + δ

(
8R
15

h6 − 4Rτ

15
h5 − 2 cot α

3
h3
)

hx + 2δC
3

h3H[hxx ]

+ δ

3D
h3hxxx

]

x
= 0. (2.39)

Equation (2.39) agrees with that in Tseluiko & Papageorgiou (2006) in the absence of the
air stream here and no electric field in that study. Equation (2.39) is solved on L-periodic
domains, i.e. h(x, t) = h(x + L , t). In the computations presented in § 5 we take L = 1
and also increase it to L = 2) in order to evaluate the effect of domain size on the
solution.

3. Numerical solution of the evolution equations

3.1. Numerical methods and validation
To fix matters, we will describe our numerical methods for the inertio-capillary (2.39).
Totally analogous schemes are implemented to solve (2.33). Either equation is written as

ht +A(h) =B(h), (3.1)

where the nonlinear operator A(h) contains terms involving h3hxxxx , h3H[hxxx ] and
h3hxx , and all remaining terms are grouped into B(h). For (2.39) these are

A(h) = (A1H[hxxx ] + A2hxxxx − A3hxx ) h3, (3.2)

B(h) =
[

B1h3 + B2h2 + δB3

(
8R
15

h6 − 4R
15

CCDh5
)

hx

]

x

+ 3h2hx (A1H[hxx ] + A2hxxx − A3hx ), (3.3)
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and analogous expressions with different coefficients Ai and Bi arise for (2.33). In
our numerical schemes the function A(h) is treated implicitly whilst the part B(h) is
evaluated explicitly. Spatially periodic domains [0, L] are considered (all computations
in the present work use L = 1 unless stated otherwise). On implementing the schemes, the
spatial domain [0, L] is split into N (odd) equidistant points and the time step is defined by
dt ; typically we take dt ≈ 10−4 or smaller to guarantee the conservation of the mean film
thickness

∫ L
0 h(x, t)dx as dictated by the equation. Second-order backward differentiation

formulas (BDF) are used for the time discretisation (see Akrivis et al. (2011) for all BDF
formulas up to sixth-order accuracy)

3
2

hn+2 + dtA(hn+2) = 2hn+1 + 2dtB(hn+1) − 1
2

hn − dtB(hn). (3.4)

To start the time integration (3.4), we need h1 starting from the initial condition h0. This is
achieved by one step of the implicit Euler method. After computation of hn and hn+1, the
implicit time stepping requires solution of a nonlinear system to obtain hn+2. There are N
unknowns, hn+2

j , at the collocation points j = 1, 2, 3 · · · N . Newton’s method is applied
to solve the resultant nonlinear algebraic systems at the collocation points. The Jacobian
matrix is computed analytically prior to each iteration by taking advantage of spectral
matrices. Iterations are terminated when the error is less than 10−8, thus guaranteeing
accurate results. The square matrix of the discrete Hilbert transform, denoted by H, is
given by

H(i, j) =
{

1−(−1)i− j

2N cot
(

)(i− j)
2N

)
− 1+(−1)i− j

2N tan
(

)(i− j)
2N

)
, mod(i − j, N ) (≡ 0

0, mod(i − j, N ) ≡ 0,
(3.5)

and the first derivative matrix is given by

D(i, j) =
{

0, mod(i − j, 2) ≡ 0,
(−1)(i− j))

L csc
(

)(i− j)
N

)
, mod(i − j, 2) (≡ 0,

(3.6)

where L is the spatial period mentioned above (see Trefethen (2000) for detailed
derivations). For the inertia-less model (2.33) we take L = 1 and vary ν to study waves
of different unscaled wavelengths, while for the inertio-capillary regime, the effect of
computation domain sizes is directly examined by changing L .

To verify the numerical scheme, we perform the time integration for models with and
without inertia, and numerical parameters N = 501 and dt = 10−4. In the first numerical
experiment, we select a small amplitude initial condition h = 1 + 0.02 cos(2)x), so that
the growth rate at an early stage can be predicted by the linear theory in Meng et al. (2024).
Figure 2(a) shows the evolution of the wave amplitude (solid blue curve) superimposed
with the prediction of linear theory; agreement is seen to be excellent prior to nonlinear
saturation effects that enter around t ≈ 0.8. For the second computation, we compute a
steady solution of (2.39) and use it as the initial condition in our code. Figure 2(b) shows
the time evolution and as expected the solution remains unchanged (to within truncation
errors) for a relatively large computed time t = 40, verifying once again the accuracy of
our algorithms. To classify different types of unsteady solutions as parameters vary we
follow the energy E =

∫ 1
0 h2(x, t)dx of the solutions The maxima and minima of E(t) are

tracked to construct numerically Poincaré maps in order to probe the complexity of the
dynamics – see for example Smyrlis & Papageorgiou (1991).
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g(
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0
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0.8

1.0

1.2

1.4

1.6

1.8
t =  0
t = 52

Numerical computation
Linear stability analysis

(a) (b)

Figure 2. (a) Comparison of the growth rate for d1 = 0.8 and d2 = 0.35 and ν = 0.1. Here, A is the wave
amplitude. The numerical results is based on (2.33). (b) Comparison of transient solutions of (2.39) at t = 0
and t = 40 for C = 23, D = 0.01, CD = 0.1, R = 2.5, α = )/8 and δ = 0.3365.

4. Stability and nonlinear dynamics of strong surface tension waves

4.1. Stability of non-uniform steady states
In Meng et al. (2024) we computed steady periodic wave solutions to (2.33)
(equivalently (2.32)) and analysed them to develop insight into the rich bifurcation
diagrams at play. Unless otherwise stated, all computations presented in this section
pertain to (2.33) in order to facilitate direct comparisons with Meng et al. (2024).
The solutions that branch off from a flat interface as infinitesimal waves (linear waves)
form the primary branch, whereas solutions that bifurcate from other finite-amplitude
branches are denoted as secondary branches. For primary branches, based on the values
of ν obtained from weakly nonlinear analysis at the bifurcating point, we classify these
further into upper and lower branches. A natural question is the stability of the steady
solutions mapped out in Meng et al. (2024), and in cases where they are unstable the
investigation of the new dynamics they get attracted to. To examine this, we choose the
unimodal primary branches (upper branch in blue, lower branch in orange) computed
for d1 = 0.8 and d2 = 0.31 in Meng et al. (2024), and reproduced here in figure 3(a).
Several solutions on these two primary branches are picked and perturbed according
to h(x; t = 0) = h0(x) + 0.1 cos 2)x , where h0(x) is the steady non-uniform periodic
solution. Figure 3(a) also shows the location of the chosen solutions (stars for the upper
branch and a diamond for the solution selected on the lower branch).

We begin with the stability of the solutions on the upper branch. The parameter q in
what follows is the constant flux introduced by Meng et al. (2024) and arises by looking
for steady solutions of (2.33) and integrating once in x . For the state corresponding to
q = 0.43, ν = 0.1336, figure 3(b) shows the evolution of the energy E(t) of the perturbed
solution indicating that it decays to a constant value corresponding to the energy of
the steady solution – a comparison of h0(x) and h(x, t = 19) as an inset indicates this,
confirming that the solution is stable. In fact increasing the perturbation amplitudes of
the initial condition to 0.2, 0.4 and 0.6 also produces the steady state we started with.
The stability of another solution on the upper branch denoted as point 3 in figure 3(a)
and corresponding to q = 0.48,ν = 0.058, is shown in figure 3(d). It can be seen that the
energy of the waves oscillates initially but then increase to another larger constant value
(the energy of the initial steady state is depicted by the dashed line in figure 3(d)). This
illustrates that the steady solution is unstable and the instabilities evolve into a bimodal
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Figure 3. (a) The primary upper and lower branches of steady solutions of (2.33) for d1 = 0.8 and d2 = 0.31.
The stars represent chosen solutions on upper branches, the diamond represents the chosen solution on the
lower branch. (b–d) The energy and wave profiles of the perturbed solutions and the undisturbed solutions.
Panel (b) corresponds to point 1, panel (c) to point 2 and (d) to point 3. For the energy curves, the blue
solid lines represent the evolution of energy of perturbed solutions while the red dashed lines is the energy of
undisturbed steady solutions.

travelling wave (see the wave profiles in the inset to figure 3(d) with the dashed curve
denoting the initial steady state). Next, we consider the stability of the lower branch
solution and in particular point 2 in figure 3(a) at q = 0.4775, ν = 0.068. The results
are given in figure 3(c) and it is seen that the energy undergoes some large amplitude
oscillations before arriving to a larger constant state after a longer time. The evolution of
the perturbed wave leads to the emergence of another unimodal travelling wave shown by
the solid curve in the inset to figure 3(c); the initial steady state is depicted with a dashed
curve. These representative results show that the stability of steady states is complicated.
It is not easy to examine the nonlinear stability of every solution branch in the bifurcation
diagrams and we do not pursue this further.

4.2. Initial value problems, large-time dynamics and dominant attractors
A more direct way of probing the dynamics is to solve the initial value problem subject to
sinusoidal initial conditions of the form

h(x; t = 0) = 1 + 0.1[cos(2)x/L) + sin(2)x/L)], (4.1)
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NBTNMT BT
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ν

Figure 4. Schematics of the various attractors for d1 = 0.8. UT: unimodal travelling waves, TP: time-periodic
travelling waves, BT: bimodal travelling waves, QP: quasi-periodic attractors, NBT: near-bimodal travelling
waves, NMT: near-multimodal travelling waves (including near bimodal and near trimodal).

and analyse the data from a large number of numerical experiments. Different initial
conditions were tested for all results presented by increasing the amplitude to values of
0.2 and adding phase shifts to the sinusoids; all reported results are attractors in the sense
that they emerge for such ranges of initial conditions. In all computations that follow we
choose the air-speed parameter d1 = 0.8 and vary the surface tension parameter d2. As
d2 increases surface tension becomes smaller and air-stream effects become dominant.
For each fixed d2 we carry out extensive computations to determine the dynamics and
attractors as ν varies noting that as ν decreases the unscaled wave period becomes bigger.
The results of these computations are presented schematically in the solution phase space
in figure 4. The diagram depicts the most attracting state that emerges from the initial
value problem. These have been categorised into (i) unimodal travelling waves (UT),
(ii) time-periodic travelling waves (TP), (iii) bimodal travelling waves (BT), (iv) waves
with quasiperiodic oscillations in time (QP), (v) near-bimodal travelling waves (NBT)
and (vi) near-multimodal travelling waves (NMT). Window boundaries, where there is
a transition from one state to another, have been computed within the accuracy of the
reported decimals. In addition we have used the convention that the right boundary of
each window represents the largest value of ν considered belonging to the window on
the left. In all cases reported trivial solutions develop if ν is larger than a critical value
ν0(d1, d2)- these are the values of rightmost windows in figure 4. In fact we can predict this
by linearising (2.33) about h = 1 and looking for solutions of the form exp(2i)kx + st);
setting k = 1 readily produces the value of ν0 above which only trivial solutions exist

ν0(d1, d2) = d2

4)



 )

d1
+
(

)2

d2
1

− 4
d2

)1/2


. (4.2)

The values given by (4.2) are in complete agreement with our simulations. In addition, all
solutions bifurcating from trivial states are unimodal travelling waves, as indicated in the
figure. As ν decreases further the attractors depend on the surface tension parameter d2. In
what follows we describe some of these solutions to provide a quantitative picture of the
dynamics.
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Figure 5. Unimodal travelling waves for d1 = 0.8, d2 = 0.33 and ν = 0.1. (a) The evolution of the wave
profile; (b) the evolution of the energy.

The general trends of the dynamics are depicted in the schematic of figure 4. Recall
that a decrease in ν corresponds to an increase of the spatial domain size and hence an
increase in the number of unstable modes entering into the nonlinear dynamics. Starting
with the first window where non-trivial states are found, we see that as ν decreases,
the first window of unimodal travelling waves (UT) typically gives rise to time-periodic
travelling waves (TP) for the smaller values of d2 (i.e. larger surface tension forces), or
bimodal and near bimodal travelling waves for larger d2. Further decrease in ν mostly
produces bimodal travelling waves, and for the smaller values of d2 = 0.31, 0.33 we
observe complex dynamics that appear to be quasi-periodic in time, or time-periodic
travelling waves for larger d2.

We provide a more detailed view of the flows for the case d2 = 0.33 (d1 = 0.8 has been
fixed also). In figures 5–8(a) we show representative solutions from each of the attracting
windows labelled UT, TP, BT and QT in figure 4. Figure 5 has ν = 0.1 and shows the
evolution of the solution as it strongly gets attracted to a unimodal travelling wave – figure
5(a) shows the profiles as time increases and figure 5(b) shows the evolution of the energy,
clearly indicating that all transients have disappeared for t as small as 2, approximately.
It should be noted that for values of ν just larger than ν = 0.072 that denotes the window
boundary of the TP attractor there are very long-lived transients with oscillations that
eventually decay at large times to produce a unimodal travelling wave. Figure 6 presents
the solution at ν = 0.071 from the time-periodic travelling wave attractor. Panel 6(a)
shows the evolution for t > 8.25 to ensure that transients have disappeared as confirmed
by the energy plot in panel 6(b) that also clearly shows the time-periodic oscillations.
Decreasing ν further to 0.062 we enter the bimodal travelling wave window as seen by
the results of figure 7; once again there is strong attraction to these states as seen from the
evolution of the energy in panel 7(b) with transients gone by t ≈ 2. A further reduction to
ν = 0.047 puts us in a new solution window. Here, the solution undergoes spatio-temporal
oscillations that we have analysed to determine that the time oscillations are quasi-
periodic. The results are provided in figure 8 which shows the spatio-temporal evolution
of the interface in panel (a) and the corresponding energy signal that strongly indicates
a complex dynamics. Further data analysis of the latter suggests that the flow is quasi-
periodic (for example, we did not observe any fractal folding behaviour in Poincaré maps).
It is noted that when ν ! 0.041 another bifurcation takes place to produce, initially at
least, trimodal travelling waves. The computation can be continued by further decreasing ν
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Figure 6. Time-periodic attractors for d1 = 0.8, d2 = 0.33 and ν = 0.071. (a) The evolution of the wave
profile; (b) the evolution of the energy.
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Figure 7. Bimodal travelling waves for d1 = 0.8, d2 = 0.33 and ν = 0.062. (a) The evolution of the wave
profile; (b) the evolution of the energy.

and tracking subsequent attractors but for brevity we restrict our results by obtaining the
value of ν for the onset of the trimodal travelling waves. Therefore, the lowest values of ν
reported in figure 5 for different d2, correspond to the value where solutions first develop
into trimodal travelling waves. It is worth noting that we can obtain qualitatively similar
schematics of the various attractors when d2 is fixed and d1 decreases, but for brevity the
results are not included here.

From figure 4, we observe that an increase of the values of d2 leads to a qualitatively
different dynamics. For example, increasing d2 to 0.36, appears to remove the quasi-
periodic solutions window found for d2 = 0.31 and d2 = 0.33. It is also noted that a type
of near-bimodal waves first appear for d2 = 0.38. When d2 further increases to d2 = 0.4,
the window of time-periodic states between the unimodal and bimodal travelling waves
disappears; however, there still exist time-periodic solutions between the windows of
bimodal and trimodal or near-trimodal travelling waves. When d2 = 0.42 and as µ is
decreased, only travelling waves can be observed preceding the onset of trimodal travelling
waves. Larger values of d2 were also explored in order to establish dominant trends.
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Figure 8. The quasi-periodic solution for d1 = 0.8, d2 = 0.33 and ν = 0.047. (a) The evolution of the wave
profile; (b) The evolution of energy signals.

We find that, as d2 increases, travelling waves attain larger amplitudes and have a tendency
to touch down onto the substrate. A typical result is given in figure 9(a) for d1 = 0.8,
d2 = 0.7 and ν = 0.23. This behaviour is also observed for the upper primary branch in
Meng et al. (2024) when the limiting configuration of waves with fixed d1 is considered.
We note that there is a fundamental connection between the steady-state solutions of Meng
et al. (2024) and the travelling wave solutions computed here. In King et al. (1993) and
Meng et al. (2024) the film thickness is picked so as to give zero phase speeds for linear
waves, and these are then followed into the nonlinear regime with the mean film thickness
being part of the solution. In the present initial value problems it is more convenient to fix
the mean film thickness – linear waves in general have non-zero phase speeds as expected.
We expect, therefore, that the structure of the branches is similar and the numerical
solutions given in figure 9(a) attest to this. The travelling wave solutions emerging in
long-time computations are located on the upper branches if we computed the bifurcation
diagrams for the travelling waves.

4.3. Near-multimodal travelling waves
Next we turn to the appearance of the near-bimodal travelling waves denoted by NBT
in the schematic of figure 4. Figure 9(b) shows a typical wave profile of this type for
d1 = 0.8, d2 = 0.4 and ν = 0.057 (note that this results from the large-time evolution
of the waves starting with initial condition (4.1)). The wave speed of this solution is
approximately −0.6. Similar wave solutions were also found on vertical liquid films in
Salamon, Armstrong & Brown (1994), where a period-doubling symmetry was used to
find the secondary solutions. In order to trace the appearance of these waves, we consider
the bifurcation of travelling waves having the same wave speeds in the ν − q plane, where
q is the flux. More specifically, looking for travelling waves of (2.33) of the form h(x − ct)
and integrating once, we find

− c
2h2 + 3

2h
+ ν2)

d1
H[hxx ] + ν3

d2
hxxx − νhx − 1 = q

h3 . (4.3)

Equation (4.3) is the same as that studied by Meng et al. (2024) for steady waves if
we set c = 0 and allow the mean film thickness to emerge as part of the solution. For
a more direct comparison with our time-dependent solutions we fix the mean thickness
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Figure 9. (a) The wave profile for d1 = 0.8, d2 = 0.7 and ν = 0.23. (b) The wave profile for d1 = 0.8, d2 = 0.4
and ν = 0.057. The wave speed is approximately −0.6. (c) The bifurcation diagrams of travelling wave solutions
with fixed mean thickness of 1 for d1 = 0.8, d2 = 0.4. The wave speeds are −0.6 and 0. (d) Wave profiles for
ν = 0.057 on the bifurcation curves in figure 9(c).

to be 1 and compute the solutions with wave speed c = 0 and c = −0.6, by constructing
ν − q bifurcation curves, as shown in figure 9(c) for the case d1 = 0.8 and d2 = 0.4. The
bifurcation curves are similar to the steady primary upper branches in our previous study
Meng et al. (2024), while all solutions here have mean thickness 1 as mentioned above.
Since the bifurcation curves in figure 9(c) branch off from infinitesimal linear waves, they
are denoted as primary upper branch solutions in this section. It should be noted that
the bifurcation computed here are similar to the primary branch in Salamon et al. (1994)
since the solutions in both studies start from a flat free surface. The difference is that
the flux of the primary solution branch in Salamon et al. (1994) is fixed. We see that
branches with different wave speeds have similar shapes, and the solutions corresponding
to ν = 0.057 on these branches are shown collectively in figure 9(d)). By comparison of
the wave profiles we preclude the possibility that the near-bimodal travelling waves are
located on these primary branches. However, these type of near-bimodal solutions were
found in Meng et al. (2024) when they calculated the secondary bifurcation branches.
It is reasonable to conclude, therefore, that the near-bimodal travelling waves are on the
secondary bifurcation branch. This in turn implies that the unimodal, near-bimodal and
bimodal travelling waves emerging in the time-dependent computations presented in this
study belong to different bifurcation diagrams. Additional evidence for this follows by
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Figure 10. The variation of the energy of travelling waves for d1 = 0.8 and different d2. Panel (a) shows d2 =
0.42. From left to right, the three branches correspond to waves of the bimodal, near-bimodal and unimodal
type. Panel (b) shows d2 = 0.38. From left to right, the three branches correspond to waves of the near-bimodal,
bimodal and unimodal type.

examination of the energy of these travelling waves as ν varies, and in figure 10 we
present the cases d1 = 0.8, d2 = 0.42 and d2 = 0.38. In figure 10(a), the jumps in the
energy show that there exist three distinct solution branches in the range 0.08 !µ! 0.12,
corresponding to the bimodal, near-bimodal and unimodal travelling waves, respectively.
We also examine the energy variation for d2 = 0.38. It can be seen from figure 10(b), that
the jump also exists for this case. For d2 = 0.38, the window of the near-bimodal waves is
very narrow. The energies of the solutions in this window are very close, therefore, in the
plot we only include the energy of one solution (others are graphically indistinguishable).
The fact that near-multimodal travelling waves appear when the value of d2 is above a
threshold reveals the change of stability of solutions on the secondary bifurcation branches
as d2 increases. When d2 is relatively small (smaller than 0.38, roughly), the solutions on
the secondary bifurcation branches are all unstable and hence travelling wave solutions of
this type do not appear as large-time solutions of our time-dependent computations. The
stable travelling wave solutions appear to be exclusively located on the primary bifurcation
branches. As the value of d2 increases above 0.38, some solutions on secondary bifurcation
branches become stable and the near-bimodal waves (analogously for the near-trimodal
waves – confirmed numerically but results not included here) appear as global attractors
in the time-dependent computations.

4.4. Bimodal, trimodal and tetramodal travelling waves
In figure 11, we depict the boundaries for the onset of both bimodal and trimodal waves in
(d2, ν) space, for fixed d1 = 0.8; as surmised from the results of the schematic (figure 4),
bimodal and trimodal travelling waves appear as ν is decreased for a fixed value of d2.
The dashed (red) line in figure 11 shows the boundary of ν below which bimodal
travelling waves emerge (the open circles are results from the computations and the
straight line is the result of a least squares fit of the open circle data). With a decrease
in ν trimodal travelling waves appear and the boundary is now depicted by the dash-
dotted line (purple), with diamonds representing computations and the straight line is a
least squares fit of the diamond data. Further decrease in ν produces tetramodal travelling
waves as shown – the crosses come from nonlinear computations and the solid (magenta)
line is derived from the bimodal curve using the symmetry scaling ν → ν/2, see below.
Interestingly, similar phenomena were also found in the weakly nonlinear dynamics of
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travelling waves

Onset of trimodal 
travelling waves

Predicted onset of tetramodal
travelling waves

ν

Figure 11. The boundary for the onset of bimodal (the dashed red line and dotted blue line), trimodal (the
dashed-dotted line) and tetramodal(the solid line) travelling wave solutions in the d2 − µ plane for d1 = 0.8.
The boundary for the onset of tetramodal travelling waves is predicted by the boundary of bimodal travelling
waves by the scaling ν → ν/2. The data marked by crosses are obtained numerically.

perfectly conducting electrified falling liquid films by Tseluiko & Papageorgiou (2006),
where constant slopes are found for a specific boundary between attractors despite the
change of the computation domain parameter (analogous to our ν). For the fully nonlinear
model studied here, the solution boundaries are more complicated. For example, the
boundary of the bimodal travelling waves for d2 < 0.41 has larger slope than that for
d2 " 0.41, which is shown in figure 11 with a dotted green line and square symbols coming
from nonlinear computations. This break in the curve indicates that, for sufficiently large
d2, the onset of bimodal waves happens at a smaller ν than what would be predicted
by the extrapolated linear behaviour of the range of smaller d2 values (e.g. d2 ! 0.41 in
this example). As seen in figure 11, there is a gap between these two boundaries in the
interval 0.4 < d2 < 0.41. This fact is consistent with what we described above in § 4.3:
the near-bimodal travelling waves on the secondary bifurcation branches change their
stability and become stable when d2 is large enough. For the values of ν in this gap,
the solutions develop into the near-bimodal waves instead of the bimodal waves – this
has been confirmed numerically. Comparing the bimodal and trimodal boundaries in the
range d2 ! 0.41, we find that the values of ν on the former boundary has values of ν
that are approximately 1.5 times of those on the trimodal wave boundary. As mentioned,
the boundaries (the lines) for the bimodal and trimodal travelling waves are obtained by
the least square fits of the numerical data (the circles, squares and diamonds). Using the
scaling laws ν → ν/2 of the boundaries, we can predict the boundary for the onset of
tetramodal travelling waves from the boundary of bimodal waves by the scaling. To verify
this predicted boundary, we carried out numerical computations to find the onset values
of ν for two values of d2 = 0.31 and d2 = 0.33 (marked by crosses). Good agreement is
found with the predicted boundary.

5. Dynamics of nonlinear inertio-capillary waves driven by an air stream
In this section, we focus on the effect of inertia on the spatio-temporal characteristics
of air-blown waves governed by (2.39). The equation is solved on spatially periodic
domains of period L; most results consider unit periods and for comparison purposes
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we also present some runs with period 2) . It is useful to consider the linear stability
properties of (2.39) around the uniform flat state h = 1. Looking for solutions of the form
exp(2) ikx/L + st), where the integer k is the wavenumber of the disturbances, implies
that the growth rate sr where s = sr + isi is

1
δ

sr = 2C̄
3

,3|k|k2 − 1
3D̄

,4k4 +
(

8R
15

− 4Rτ̄

15
− 2

3
cot α

)
,2k2, , = 2)

L
. (5.1)

Note that, in the absence of the air stream, i.e. C̄ = τ̄ = 0, instability of flat states is
possible only if R > Rc = 5 cot α/4. This is typically the case studied by numerous authors
– see for example Pumir, Manneville & Pomeau (1983), Rosenau, Oron & Hyman (1992),
Oron & Gottlieb (2002) and Scheid et al. (2005). To evaluate the effect of the air stream
in our model, we consider R < Rc, so that in the absence of the air we would expect
perturbations to die out at large times.

5.1. Low Reynolds numbers: time-periodic attractors and nonlinear travelling waves
We begin with the case δ = 0.03 and carry out numerical computations on periodic do-
mains of unit length (, = 2) in (5.1)), with C̄ = 0.69, D̄ = 13.33, τ̄ = 1.84 and α = )/8.
The range of Reynolds numbers in this numerical experiment is 0 < R ! 0.7. Note that
even for the largest Reynolds number R = 0.7, we have 8R/15 − 2 cot α/3 ≈ −1.24
placing us firmly in the subcritical stable regime in the absence of an outer air flow. Using
the chosen parameters in (5.1) we find that, for all 0 < R ! 0.7, there are two linearly
unstable modes, k = 1 and k = 2. The evolution becomes highly nonlinear even on such
relatively short domains due to the energy supplied by the air stream to rapidly increase
the wave amplitude via an interaction with the inertial terms – we provide quantitative
details later. Our computations show that in the range 0.5 ! R ! 0.7 the solutions develop
into nonlinear travelling waves, while at smaller R in the range 0 < R < 0.5, no travelling
waves appear and the solutions saturate to time-periodic attractors with different temporal
oscillation periods. Figure 12(a) and figure 12(b) show the variation of wave speed and
amplitudes of the travelling waves in the range 0.5 ! R ! 0.7. It can be seen that with the
increase of the Reynolds number, the wave speeds and amplitudes increase, a feature that
was also found in falling liquid film flows without the air stream, see Pumir et al. (1983).
In fact, when we further increase R slightly to 0.73, the solutions become unbounded
(discussed in detail later). Details of the time-periodic solutions found for 0 < R < 0.5 are
given in figure 12(c) which plots the time period T of the oscillations against R. It is seen
that as R increases the time period decreases monotonically at an apparently linear rate
until the attractor looses stability to travelling waves at R " 0.5.

5.2. Reynolds number above critical: blow up in finite time
Now we turn to the phenomenon of unbounded solutions of the Benney equation
documented in the absence of an air stream when the Reynolds number exceeds
a critical value. Such singular behaviour of the Benney equation was first reported
numerically by Pumir et al. (1983). The stability structure, including both bounded and
unbounded solutions, was later investigated by Rosenau et al. (1992) and Oron & Gottlieb
(2002) described the phenomenon quantitatively by numerically calculating the boundary
between the regions of bounded and unbounded solutions in (ε, R) space, where ε is
equivalent to our slenderness parameter δ. In later work Scheid et al. (2005) connected
dynamical systems theory to the numerical results obtained by Oron & Gottlieb (2002).
They concluded that the absence of one-hump travelling wave solutions is related to the
finite-time blow up of the Benney equations. Note that the results mentioned above are
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Figure 12. Effect of the Reynolds number on (a) travelling wave speeds, (b) travelling wave amplitudes
and (c) periods of oscillations of time-periodic solutions, for C̄ = 0.69, τ̄ = 1.84, D̄ = 13.33, α = )/8
and δ = 0.03.

based on the classical Benney equation with the instability arising from the hxx term
when R > 5 cot α/4. For the present counter-current air/liquid problem, the presence of
the air stream enhances the instabilities and leads to rich phenomena when we consider
the boundary between the bounded and unbounded solution regions in parameter space.

We have carried out extensive numerical computations to categorise the dynamics and
different attractors in the R − δ parameter plane, in order to evaluate the novel effects
of the air stream on subcritical unforced Benney solutions. All computations having
C̄ = τ̄ = 0 would be stable. The way we construct this solution space is to fix the unscaled
air-stream parameter C and surface tension parameter D and study the effect of varying δ.
To fix matters we considered C = 23, CD = 0.08, D = 0.012 and α = )/8. In terms of
these unscaled parameters (recall from § 2.2 that C = δC , D = D/δ2 and τ = CCD =
O(1)) (2.39) reads

ht +
[
−2

3
h3 + CCD

2
h2 + δ

(
8R
15

h6 − 4RCCD

15
h5 − 2 cot α

3
h3
)

hx

+ 2δ2C
3

h3H[hxx ] + δ3

3D
h3hxxx

]

x
= 0. (5.2)

1018 A49-20

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

5
��

��
��

��
��

��
��

��
2:
1.

��
76

�26
.�

�!
��

�5
��

2�
0.

�

62

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2025.10560


Journal of Fluid Mechanics

0.020

0.025

0.030

0.035

0.040

0.045

δ

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
R

Bounded unimodal waves

Bounded bimodal waves

Bounded time-periodic waves

Unbounded

Unbounded

Unbounded

Figure 13. The boundary between the domains of bounded and unbounded solutions for the Benney equation
computed numerically for C = 23, CD = 0.08, D = 0.012, α = )/8.

The spatial period is set to L = 1 and the initial value problem of (5.2) is computed
as R and δ are varied. This is more convenient than working with the scaled (2.39)
which requires C and D to change according to the scalings given above every time δ
is changed. The results are presented collectively in figure 13. For every value of the
slenderness parameter δ, there exists a critical value of the Reynolds number below which
the solutions are bounded at large times and above it a finite-time blow up is found. Below
this critical value the dynamics of the bounded solutions is rich and depends on the value
of δ. Figure 13 identifies three regions, delineated by the horizontal dashed lines. For δ
between 0.02 and 0.023 we find bounded solutions to the left of the dashed-green curve
that are time-periodic travelling waves. When δ is approximately between 0.024 and 0.028
the bounded solutions to the left of the purple-dashed curve now evolve to give bimodal
travelling waves, and for δ larger than approximately 0.029 and 0.043 we obtain bounded
unimodal travelling waves to the left of the red-dashed curve. It is interesting to note that,
in Oron & Gottlieb (2002), the boundaries in the R − δ plane are given for what they term
n = 1 and n = 2 solutions that represent the one-hump and two-hump travelling waves. As
outlined above the situation is different here and bounded attractors below critical values
of R are more complicated and analogous to those for the inertialess solutions presented
in figure 4 in § 4.2.

Some typical results showing blow up are depicted in figures 14(a) and 14(b). The
parameters for this run are δ = 0.0232 and R = 2. We are slightly above the critical
Reynolds boundary and two unstable modes are present according to the dispersion
relation (5.1) with L = 1 the growth rate curve is shown in the upper part of figure 14(d)
with the two unstable modes k = 1 and k = 2 indicated by a circle. Figure 14(a) superposes
the interfacial profiles at three different times just before blow up – the times are given in
the inset to figure 14(a). A narrowing of the wave profiles can be observed coupled with
a rapid growth in the wave amplitude. In the adjacent panel 14(b) we show the spatial
behaviour of the three competing nonlinear terms in (2.39) at the final computed time
t = 9.7867 just prior to the blow up. to better understand the singularity. The spatial
dependence of the inertial term, surface tension term and air-induced pressure term at
t = 9.7867 are plotted in figure 14(b). These terms are the surface tension term shown
in blue, the inertial term shown in red and the air-induced pressure term shown in orange.
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Figure 14. (a) The shape of the surface at three different times with the parameters C = 22, D = 0.011,
δ = 0.0232, CD = 0.08, α = )/8 and R = 2 just preceding the blow-up. The computation domain L = 1.
(b) The size of different terms at t = 9.7867. (c) The shape of the surface at three different times with the
parameters C = 22, D = 0.011, δ = 0.0232, CD = 0.08, α = )/8 and R = 3 just preceding the blow-up. The
computation domain L = 2) . (d) Growth rate for L = 1 (above) and L = 2) (below) for the two cases discussed
here. The wavenumbers with positive growth rate are marked by circles.

The data indicate that there is a dominant balance between surface tension and inertia, with
the air-induced pressure being asymptotically subdominant. The role of the air stream is
to induce instability and drive the system into a highly nonlinear regime that produces
a balance between surface tension and inertia. It is expected, therefore, that the singular
structure will be the same as for the Benney equation as described by Pumir et al. (1983).
If the singularity takes place at t = ts and at position x = xs , then the self-similar solution
near the singularity is

h ∼ (ts − t)−1/9G(ξ), ξ = xs − x
(ts − t)1/6 , (5.3)

where the shape function G satisfies a nonlinear ordinary differential equation in −∞ <
ξ < ∞. We do not pursue this analysis further here since it has been addressed for the
Benney problem, however, we have confirmed that scalings in (5.3) are consistent with
our numerical data. We have also carried out computations on larger domains that support
more linearly unstable modes. A blow up singularity is encountered once again, but with
additional nonlinear wavy structures in the final profile. The case L = 2) is included in
figure 14(c) that shows the solution at three consecutive times close to the singularity.
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Figure 15. The effect of the scaled air-stream parameter C on the critical value Rc of the Reynolds number
where the transition from bounded to unbounded solutions occurs. Here, δ = 0.04, CD = 0.08 (τ = CCD =
CCD/δ = 2C), D̄ = 7.5 (D = 0.012), α = )/8. Diamonds represent computational data.

The wave structures arise due to the additional unstable modes (there are now 10 unstable
modes) as shown in the lower panel of figure 14(d). Note that both growth rate curves in
figure 14(d) are of Turing type and support short-wave unstable modes due to the presence
of the air stream. These new modes are exclusively due to the air stream since in its absence
the flow would be stable. In addition, instabilities without the air stream are only possible
above a critical Reynolds number and are of the long-wave type.

In the last part of this section, we explore the effect of the air stream C on the critical
value of R that heralds a transition from bounded to unbounded solutions. We do this for
a fixed value δ = 0.04, a fixed value of D = 0.012 (equivalently D = 7.5), α = )/8, and
also fix CD = 0.08, i.e. τ = CCD = 2C , given the scaling C = C/δ. Hence, we can study
the blow up behaviour in terms of the two parameters C and R. Solution of the initial
value problem allowed us to numerically estimate the boundary between bounded and un-
bounded solutions in the (C, Rc) space, where Rc is our estimate for the critical Reynolds
number. The results are given in figure 15. It can be seen that the presence of the air stream
enhances singularity formation of the air-stream Benney equation in the sense that blow up
occurs at smaller values of the Reynolds number as the air speed increases. The decrease
in Rc is monotonic and quite strong – an increase of C from approximately 0.9 to 1.1,
causes a tenfold decrease in Rc from 2.2 to 0.2. These results suggest that the air stream
can be used systematically to trigger large amplitude waves in the flow in the system.

5.3. Effects of non-uniform shear stress
In this section the effects of non-uniform tangential stress that can be introduced by
the air stream are investigated for both the surface tension dominated and the inertio-
capillary regimes. Tseluiko & Kalliadasis (2011) treated the interface as a rigid wall, to
leading order, and modelled the tangential and normal stresses induced by a counter-
flowing turbulent gas. The analytical results were also compared with the experiments of
Thorsness, Morrisroe & Hanratty (1978) that measured the spatial variation of shear stress
by the turbulent flow along a solid wall with small sinusoidal indentations. The theory
shows good agreement with the experiments. In light of their results, we now discuss
the effect of the variation of the tangential stress on the models developed here under
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the assumption of a constant shear stress. Our main aim is to evaluate the effect of non-
uniform shear derived from theoretical and experimental studies, on the nonlinear terminal
dynamics of the inertio-capillary regime.

Following Tseluiko & Kalliadasis (2011), the tangential shear can be represented by the
order-one constant term (τw0) and higher-order variations (τw1 · · · ). The surface tension
dominated model (2.32) arises at leading order and only order-one terms are retained,
i.e. τw0. The non-uniform shear stress has no effect on the surface tension dominated
regime. For the inertio-capillary regime, the higher-order variation τw1 will enter into the
next-order equation in the formulation. It is straightforward to modify our derivation to
include this term. The modified equation reads

ht +
[

−2
3

h3 + τ

2
h2 + δ

(
8R
15

h6 − 4Rτ

15
h5 − 2 cot α

3
h3
)

hx + 2δC
3

h3H[hxx ]

+ δ

3D
h3hxxx + δ

τ̄

2
τw1[h]h2

]

x
= 0, (5.4)

where τw1[h] is a linear non-local operator involving h and has been calculated by
Tseluiko & Kalliadasis (2011) (its symbol τ̂w1(k) say, in Fourier space is known). From
the dispersion relation (figure 12 in Tseluiko & Kalliadasis (2011)), it can be seen that the
inclusion of this term introduces instabilities and alters the linear wave speed. It should be
noted that, in their paper, the positive x direction is opposite to that in the present paper,
implying that for our coordinate system the real part of τ̂w1(k) is positive. We expect
therefore, that for sufficiently low Reynolds numbers (i.e. prior to any blow-up events), it
is more likely that the nonlinear waves travel upwards. We do not pursue travelling waves
further and concentrate more on blow-up events.

We now focus on the blow-up behaviour of solutions to (5.4) incorporating spatial
variations depending on the interfacial position in the tangential shear stress. We
examine the cases with parameters C = 23, D = 0.012, α = )/8 and Cd = 0.08 (the same
parameters as in figure 13). Two values of δ are chosen, δ = 0.038 and δ = 0.042. The
initial conditions are the same as those used in figure 13. For the constant tangential
stress, the critical Reynolds numbers above which blow-up occurs for these two values
of δ are approximately 1.1 and 1.6, respectively. Solution of (5.4) incorporating shear-
stress variations are given in figure 16. The figure shows the energy evolution of solutions
corresponding to δ = 0.038 (a) and δ = 0.042 (b), for different Reynolds numbers. It is
strongly suggested that the critical Reynolds numbers where the solutions go unbounded
do not change noticeably, indicating that inclusion of the next-order variation of shear
stress has little effect on the blow-up boundary. Note that, if we do not assume that the
air speed is large enough to induce the modulated pressure term, the equation obtained
reduces to the model in Tseluiko & Kalliadasis (2011). In such a regime, the unstable
modes introduced by the air into the system arise from the variation of shear stress alone
(the mean part of the shear stress contributes an advective term linearly). It is expected
that the critical Reynolds numbers where solutions go unbounded will change, but the
self-similar solutions near the singular time remain same and produce a balance between
surface tension and inertia. For the solutions with low Reynolds numbers, the inclusion of
the non-uniform shear stress potentially alters the speed of nonlinear travelling waves.

6. Conclusions
In this paper, we have investigated the dynamics of a thin liquid film flowing down an
inclined wall in the presence of an upward flowing air stream parallel to the wall. In the
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Figure 16. The energy evolution of transient solutions of different values of δ: (a) δ = 0.038; (b) δ = 0.042.

modelling of this gas–liquid system, we consider the gas and liquid problems separately
and make some assumptions to make analytical progress in deriving a reduced-dimension
nonlinear evolution equation to study the problem in detail. In the incompressible gas
region we introduce the velocity potential governed by the two-dimensional Laplace
equation. Under the assumption of small gas–liquid interfacial amplitudes (small relative
to the outer gas region but of the same order as the mean liquid film thickness), the
pressure induced by the air stream on the liquid film is obtained analytically. The interfacial
tangential stress induced by the air stream is taken to be constant, an empirical assumption
that is supported by experimental observations – see Tu & Wood (1996), Mendez et al.
(2021). With the outer flow supplying a forcing on the interface, we subsequently focus on
the problem of a thin liquid film and derive model equations describing the dynamics of the
interface under different dominant balances including inertialess and inertial models of the
air-stream Benney equations. Steady solutions of the inertialess model have been studied
in detail by Meng et al. (2024), who give a fairly complete picture of the bifurcations. The
stability of solutions and subsequent evolution to different attractors was not considered
and the present work undertakes this task, among others.

A large number of numerical experiments are carried out centring around these two
long-wave models in order to elucidate the rich dynamics of the air-blown waves on the
interface of viscous liquid film flows. For the numerical computation, we adopt the second-
order implicit–explicit BDF scheme for time marching combined with a Newton iteration
due to the nonlinear nature of the systems. To accelerate the computation at every time
step, spectral matrices are used to build analytically the Jacobian matrix required in the
Newton iteration. The accuracy of this numerical method is confirmed by comparing the
growth rates given by the numerical computation and closed form linear stability results.

For the inertialess model, a typical picture of the various types of solution attractors
is constructed as the air speed and surface tension parameters are varied – these
are the parameters d1 and d2 in (2.33). We varied d2 for fixed d1 = 0.8, and also
confirmed (not included here for brevity) that the behaviour at different d1 is qualitatively
similar – bigger d1 requires bigger d2 to produce analogous solution windows like
the ones given in figure 4. The wave profiles and energy signals of typical solution
types are shown, including unimodal and bimodal travelling waves, time-periodic
travelling wave attractors and temporally quasi-periodic solutions. It is found that, as d2
increases (surface tension decreases), the schematics of the attractors are qualitatively
different. This is distinct from the results of the weakly nonlinear version of the
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equation as discussed in Tseluiko & Papageorgiou (2006) for the electrified falling
film problem. It is interesting to note that, when d2 is above a certain value, a new
type of travelling wave solutions, denoted as near-bimodal waves, appear. To track
the origin for the appearance of this type of wave, we examine in detail the case
d1 = 0.8 and d2 = 0.4 and compute travelling wave bifurcations for fixed mean film
thicknesses (typically equal to 1 in dimensionless terms). The results show that the
near-bimodal travelling waves are not located on the primary bifurcation branches.
This is also confirmed by the disjointed branches of the energy variation of travelling
waves with the inverse wavelength parameter ν; there are jumps in the energy as ν
varies and we transition from uni-modal, near-bimodal and bimodal travelling waves for
the typical case d1 = 0.8 and d2 = 0.42. It is speculated, therefore, that the multi-modal
travelling waves are solutions on the secondary bifurcation. The increase of d2 changes the
stability of solutions on the secondary bifurcation: below a critical value of d2, travelling
wave solutions on the secondary bifurcation branch are unstable whilst some of these
solutions become stable above a critical value.

The effect of an outer air stream on inertio-capillary waves was also considered. This
regime, developed in § 2.2 and Appendix A, derives from weaker surface tension, namely
the capillary number is of order δ2 rather than order δ3 that leads to the strong surface
tension regime derived in § 2.1. Inertia, surface tension and air-stream effects enter order δ
nonlinear regularising terms and lead to (2.39). Comparison of (2.39) with the strong
surface (2.32) shows that the former has high nonlinearities (e.g. h6hxx inertial terms) in
addition to the possibility of instabilities arising at sufficiently large values of R – see the
dispersion relation (5.1) for example. It is also established that the induced pressure on
the interface due to the air stream introduces linear instabilities that dominate those due
to inertia (if present) in the short-wave limit. We concentrated on flows with sufficiently
small R that would be stable in the absence of the air stream (linearly this condition is
R < 5 cot α/4) and computed the effect of increasing the air-stream speed through the
parameter C (or C). For fixed δ we find that as the Reynolds number increases from zero
the flow dynamics evolves to give time-periodic travelling waves or nonlinear travelling
waves at larger values of R. In all cases we find that a further increase of the Reynolds
number results in finite-time singularities that have the same structure as those for the
Benney equation in the absence of the air stream. It is also observed that blow up occurs
as the Reynolds number increases above some critical value for every δ. The boundaries
between the regions of bounded and unbounded solutions as well as the type of solutions
in the subcritical regime are calculated numerically for a wide range of δ and R. We also
calculated the effect of the air stream on the critical Reynolds number Rc above which
blow up occurs, other parameters held fixed. We find that Rc monotonically decreases with
the scaled air-stream speed C , decreasing by a factor of 10 for the range of C considered as
seen in figure 15. Physically, our results suggest that large amplitude wave structures her-
alded by the singular solutions found for small R and sufficiently large dimensionless air
speed C , could be possible routes to the fragmentation and atomisation of the liquid layer.

In addition, the effects of non-uniform tangential stress on the models developed
in this paper are investigated by including non-uniform stresses arising from an outer
turbulent gas flow. We do this by following the asymptotic solutions and models derived
in Tseluiko & Kalliadasis (2011), where it is shown that the tangential stress is constant
to leading order and spatial variations (depending on the interfacial shape in a non-
local manner) enter at the next order in the slenderness parameter. It follows, therefore,
that the higher-order variation of shear stress does not appear in the surface tension
dominated model (2.39) which emerges directly at leading order and which supports
intricate nonlinear solutions. For the inertio-capillary regime, the variation of shear stress
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leads to a non-local nonlinear term included at first order, which introduces additional
instability and potentially alters wave speeds – see (5.4). This new equation is solved
numerically in order to evaluate the effects of non-uniform shear on the blow-up behaviour
of solutions. Typical cases show that the inclusion of the higher-order variation has little
effect on the blow-up boundary and the structure of the singular solutions which arise from
a balance between nonlinear inertia terms and surface tension terms. When blow-up occurs
the models break down since the wave amplitude will have the same order of magnitude
as the wavelength. Physically, we would expect fragmentation and droplet formation,
phenomena that in general must be addressed with direct numerical simulations.

Funding. Y.M. was supported by a Roth Scholarship in the Department of Mathematics, Imperial College
London. D.T.P. was partially supported by EPSRC grant EP/V062298/1.
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Appendix A. The inertio-capillary evolution equation
Recall the asymptotic expansions in § 2.2 and the leading-order solutions (2.36), (2.37)

u0 = y(y − 2h0) + τ y, v0 = h0x y2,
1
2

R p0(x, t) = h0 cot α − CH[h0x ] − 1
2D

h0xx ,

(A1)

and the associated leading-order evolution equation (2.38). The momentum and continuity
equations at first order become

u0t + u0u0x + v0u0y + p0x = 1
R

u1yy, p1y = v0yy, u1x + v1y = 0, (A2)

and are subject to the boundary conditions

u1 = v1 = 0 at y = 0, (A3)
v0y|h0 h1 + v1|h0 = h1t + u0|h0h1x + u0y|h0h0x h1 + u1|h0h0x , (A4)

u1y |h0 = 0. (A5)

Note that the second of (A2) is not needed in the analysis at first order but is included for
completeness. Using solutions (2.36) in (A4), simplifies the latter to

h1t + τ (h0h1)x −
(
h2

0h1
)

x + u1|h0h0x − v1|h0 = 0, (A6)

which, on use of the continuity equation to write v1|h0 = −
∫ h0

0 u1x dy, casts (A6) into

h1t + τ (h0h1)x −
(
h2

0h1
)

x + ∂x

(∫ h0

0
u1dy

)
= 0. (A7)

Our task is to express (A6) in terms of h0 and h1. Integration of (A2) and use of (A3)
and (A5) gives

u1 = R
[(

−1
3

y3 + yh2
0

)
h0t + 1

3
y
(

1
2

y3 − 2h3
0

)
h0h0x + τ

3
y
(

−1
4

y3 + h3
0

)
h0x

]

+ R
(

1
2

y2 − yh0

)
p0x . (A8)
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Substitution of (A8) into (A7), and using (2.38) to eliminate h0t in favour of x−derivatives,
gives the following equation for h1:

h1t + τ (h0h1)x −
(
h2

0h1
)

x + R
(

8
15

h6
0h0x − 4

15
τh5

0h0x − 1
3

h3
0 p0x

)

x
= 0. (A9)

A regularised equation for h := h0 + δh1 (that ignores terms of O(δ2) or smaller) is found
by adding (2.38) to δ times (A9), namely

ht +
(

τ

2
h2

0 + δτh0h1 − 2
3

h3
0 − δh2

0h1

)

x
+ δR

(
8
15

h6hx − 4
15

τh5hx − 1
3

h3 p0x

)

x
= 0,

(A10)

where it is understood that the dependence of p0 is now on h rather than h0 (the penalty
for this is O(δ2) which is consistent with our two-term approximation). The second term
under the x−derivative can be written as

τ

2
(
h2

0 + 2δh0h1
)
− 2

3
(
h3

0 + 3δh2
0h1

)
= τ

2
h2 − 2

3
h3 +O(δ2), (A11)

and this produces the desired evolution (2.32)

ht + ∂

∂x

[
τ

2
h2 − 2

3
h3 + 8

15
δRh6hx − 4

15
δRτh5hx

− δ

3
h3
(

2hx cot α − 2CH[hxx ] − 1
D

hxxx

)]
= 0. (A12)
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