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Abstract 

Rationale & Objective: Unexplained kidney failure (uKF) affects 15% of individuals needing 

kidney replacement therapy. The lack of a clear diagnosis creates uncertainty about recurrence, 

familial risk, and trial eligibility. This study sought to identify genetic variants underlying uKF. 

Study Design: Genomic analyses were conducted using whole genome sequencing (WGS) that 

were reviewed by a multidisciplinary team who identified candidate pathogenic variants. A case-

control study was implemented for single and structural variants to perform gene-based and 

polygenic risk score association testing.  

Setting & Participants: The study recruited 218 patients with uKF onset before age 50 from the 

UK’s 100,000 Genomes Project. Association analysis was performed in 180 uKF cases who 

remained unsolved after clinical analysis and constituted the non-monogenic uKF cohort (NM-

uKF). 26,373 controls were derived from the unaffected relatives of non-renal probands. 

Exposures: Candidate variants in 537 genes were assessed at a structural and single variant level 

in the 218 recruited patients as were high-risk APOL1 genotypes and polygenic risk scores for 

chronic kidney disease and various glomerulonephritides. 

Outcome: The primary outcomes were establishing a genetic diagnosis and the associations 

between genetic findings, age, family history, and ancestry. 

Analytical Approach: Candidate variants were reviewed for pathogenicity. Gene-based and 

structural variant analyses and high-risk APOL1 genotype assessments were performed. 

Polygenic risk scores and post-hoc HLA associations were also investigated. 

Results: Monogenic diagnoses were made in 38 of 218 patients (17%) using WGS via the 

clinical arm of the 100,000 Genomes Project. Median uKF onset was 36 years. Diagnoses were 

less frequent in patients aged 36 or older, irrespective of family history. Three older patients 
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without a family history had pathogenic variants in type IV collagen genes. Among individuals 

with recent African ancestry, high-risk APOL1 genotypes were significantly more common in 

those with uKF (52% vs. 8.4% in those without uKF, P<0.001). An elevated steroid sensitive 

nephrotic syndrome (SSNS) polygenic risk score was observed in those with high-risk APOL1 

genotypes and uKF, partly due to differences at HLA-DQB1*03:19. 

Limitations: Potential limitations include the small sizes of subgroups and use of short-read 

WGS. 

Conclusions: WGS yielded a monogenic diagnosis in 17% of patients with uKF, with no 

additional solved cases arising from the case-control analysis. These findings underscore 

APOL1's role in those with recent African ancestry and suggest a genetic architecture distinct 

from common chronic kidney disease. 

 

Keywords: whole-genome sequencing, kidney failure, unexplained kidney failure, CKD, renal 

replacement therapy, APOL1, genetics, genomics, HLA 
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Plain-Language Summary 

Our study was motivated by the difficulty in understanding why some people develop kidney 

failure without a clear cause. Many patients face uncertainty about their future health and 

treatment because doctors cannot always find an explanation for their condition. To address this 

challenge, we examined the complete genetic blueprint of individuals with unexplained kidney 

failure. We looked for genetic clues that might reveal hidden risks. Our work uncovered specific 

genetic factors that appear to contribute to kidney failure, especially among people with African 

heritage. These insights are important because they may help explain why kidney failure happens 

in some cases and inform personalized diagnosis and treatment.  
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Introduction 

Chronic kidney disease (CKD) is often asymptomatic until damage to the kidneys is 

advanced. Consequently, patients (especially adults) frequently present with non-specific 

glomerulosclerosis and tubulointerstitial fibrosis on kidney biopsy which is uninformative as to 

the underlying cause of their disease. As a result, around 15-20% of adults who require chronic 

dialysis or kidney transplantation (kidney replacement therapy, KRT) have kidney failure that is 

unexplained (uKF)1.  Rare diseases, such as monogenic kidney diseases, make a contribution to 

KF that is disproportionate to their frequency among patients with earlier stages of CKD and 

may account for a significant proportion of uKF2.  

Over 450 genes have been identified that cause monogenic kidney disease with recent 

technological advances making gene panels, whole exome (WES), or whole genome sequencing 

(WGS), available to large numbers of patients3. These technologies have shown that monogenic 

causes make a substantial contribution to the overall burden of kidney disease, identifying a 

molecular diagnosis in 9.3% of over 3300 patients with kidney disease/failure including 17% of 

those with nephropathy of unknown origin4. Exome and genome sequencing carried out in 

smaller cohorts of uKF report a diagnostic yield between 12-47% depending on the population 

studied 5–9.   

Identifying the molecular cause of kidney disease in a patient can confirm the diagnosis, 

inform prognosis, enable predictive testing of family members, and facilitate transplant and 

reproductive decisions. Efforts to broaden availability of genomic testing are underway in many 

countries across the world. However, interpretation of genetic variants in known monogenic 

kidney disease genes can be challenging because of the frequent occurrence of rare (non –

disease-causing) variants in individuals and so a high level of certainty is needed that the variant 
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identified is responsible for a patient’s disease in order for it to be reported back to them. Variant 

interpretation is therefore a significant obstacle to delivery of medically actionable information 

from genetic tests. The overall likelihood that a medical test result is interpreted correctly is 

heavily dependent on the prior probability of that outcome, so information that allows prior 

probability to be estimated accurately is enormously valuable, assisting both the interpretation of 

candidate variants and policy decisions on which patient groups (as defined by clinical features) 

are most likely to benefit from genetic testing. 

Here we use clinically accredited WGS data from individuals with uKF recruited to the UK’s 

100,000 Genomes Project to examine which clinical features are associated with an underlying 

monogenic disorder. In addition, we combine rare variant studies with analyses of the burden of 

known common genetic risk factors for different types of kidney disease (polygenic risk scores 

and APOL1-related kidney disease) to gain insight into the contribution of non-Mendelian 

diseases to uKF. This work has driven the adoption of uKF as an indication for WGS as part of 

England’s National Health Service (NHS) Genomic Medicine Service10, meaning any patient 

who meets the inclusion criteria can have WGS sent by their clinician.  

Methods 

The 100,000 Genomes Project 

The Genomics England dataset (version 10) includes WGS data, clinical phenotypes encoded 

using Human Phenotype Ontology (HPO) codes, and NHS hospital records for 89,139 

individuals recruited with cancer, rare disease, and their unaffected relatives. Patients were 

recruited by their treating clinician locally if they met the nationally agreed recruitment criteria. 

Ethical approval for the 100KGP was granted by the Research Ethics Committee for East of 

England – Cambridge South (REC Ref: 14/EE/1112). Informed consent was obtained at each 
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recruiting centre using the 100,000 Genomes Project centralised consent form. The recruitment 

window was between 2015-2018.  

Unexplained kidney failure in young people 

Unrelated probands recruited to the ‘Unexplained kidney failure in young people’ cohort in 

the 100,000 Genomes Project (100KGP) were identified. These patients were recruited by their 

local clinicians who applied the inclusion and exclusion criteria locally before recruiting patients 

into the 100KGP study. These are individuals who required KRT before the age of 50 years in the 

absence of an identified cause for their KF. Prior to recruitment, any patients with a personal or 

family history of gout before the age of 30 in the absence of CKD stage 3, 4 or 5, or diabetes, 

were expected to be tested for UMOD and HNF1B variants, respectively. 

The exclusion criteria were: likely or proven diabetic nephropathy; likely or proven 

renovascular disease; identified glomerular disorder on kidney biopsy (other than 

glomerulocystic disease, ischaemic changes or secondary glomerulosclerosis); evidence of 

autoimmune, infectious, malignant, metabolic or other systemic disorder likely to be responsible 

for kidney disease; renal sarcoidosis or tuberculosis; paraproteinaemia (unless kidney biopsy 

shows no evidence of renal monoclonal deposition); exposure to nephrotoxin suspected of 

causing renal dysfunction; obstructive uropathy; significant proteinuria (>1g/day; uPCR >100 

mg/mmol) at presentation unless presentation was with kidney failure; identified 

tubular/electrolyte/acid base disorder; >5 kidney cysts (not attributable to acquired cystic disease 

of CKD); nephrolithiasis; structural kidney and urinary tract malformations.  

DNA preparation and extraction, WGS, alignment and variant calling is described in detail in 

Item S1 and S2. 

Identification of pathogenic and likely pathogenic variants  
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An expert-curated virtual gene panel of 183 (see Table S1 for the full gene list) known 

kidney disease genes(https://panelapp.genomicsengland.co.uk/panels/678/ - version 3.0) was 

applied to the WGS data of patients. This panel was created using panelapp11, a publicly 

available, expert curated platform that iteratively analyses publicly available datasets to provide 

clinical grade gene panels. This results in panels with three levels of confidence of pathogenicity 

assigned by a traffic light system, green genes being those that can be used  for clinical grade 

genome interpretation. 

Candidate variants were assessed against American College of Medical Genetics and 

Genomics (ACMG) criteria to identify pathogenic or likely pathogenic variants12. These well-

defined criteria integrate variant information including population frequency, computational 

predictions of deleteriousness, functional domain localisation, putative mechanism of disease and 

previous associations with phenotypes in reputable databases.  

For the majority of patients, variants were discussed in a multidisciplinary team including 

clinical and molecular geneticists and the recruiting clinician. Outcomes were recorded as 

“solved,” “partially solved” or “not solved” by the local clinical multidisciplinary team based on 

their consensus after assessment of the variant(s) identified in each individual against the 

ACMG/AMP criteria and outcomes were collected in an Exit Questionnaire returned to 

Genomics England. This dataset was queried for patients from the uKF cohort and those taken as 

“solved” with respect to their kidney disease were placed into the solved category.  

“Not solved” patients were redefined as “non-monogenic” uKF patients (NM-uKF). Given 

the initial assessment by Genomics England in 2019 used version 3 of the uKF panel comprising 

183 genes we  reanalysed the NM-uKF cohorts’ WGS data looking for high impact variants (e.g. 

likely loss-of function) and de novo moderate impact variants (e.g. missense) using an updated 
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panel of 537 genes (in total) from version 12.8 of the uKF panel (Table S2 and 

https://panelapp.genomicsengland.co.uk/panels/678/).  

Case control creation for association analyses 

Taking the uKF cohort we created an ancestrally matched control cohort to conduct 

downstream analyses. To generate the controls, we started with the unaffected relatives of 

probands recruited to the 100KGP with non-renal conditions. We then further depleted the cohort 

by removing those with any HPO or Hospital Episode Statistics (HES) pertaining to kidney 

disease. We then ensured there was no relatedness within or between cases and controls. The 

controls were then ancestry matched to the cases to generate a final cohort of 218 cases and 

26,373 controls (Figure S1). Full details of the cohort creation and collapsing analyses can be 

found in Item S3-S5. This cohort was used for the HLA, APOL1, polygenic risk score and 

collapsing variant analyses. 

In the NM-uKF patients (N=180) we attempted to ascertain whether there were missed 

genetic drivers at a population level by performing collapsing single and structural variant 

analyses. For this we used the same cohort creation method as above to generate a cohort of 180 

cases and 26,373 ancestrally matched, unrelated controls. Full details of the cohort creation can 

be found in Item S1-S3.  

APOL1 ascertainment 

Using genetically predicted ancestries calculated by the 100KGP, we divided the uKF cohort 

into those predicted with greater than 90% confidence to be of African ancestry (n=27) and those 

not (n=191) and created a subset of the controls who were of African ancestry without uKF 

(n=608). The APOL1 G1 (S342G and I384M) and G2 (del388N389Y) renal risk variants were 

bioinformatically ascertained from WGS data for the cases and controls. Patients with a G2 allele 
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who had the protective p.N264K missense variant 13, were reassigned as non-high risk APOL1 

genotype. The 169 people without a monogenic diagnosis and without a high risk APOL1 

genotype were labelled as “unsolved” unexplained kidney failure (unsolved-uKF) to differentiate 

them from the NM-uKF cohort of 180 non-monogenic patients.  

HLA ascertainment in the high risk APOL1 genotype cohort in 100KGP and UK Biobank 

Using HIBAG14, HLA types were imputed at two field resolution for HLA-A, HLA-C, HLA-

B, HLA-DRB1, HLA-DQA1, HLA-DQB1, and HLA-DPB1 centrally by Genomics England15. 

These were then extracted for the cases and controls  with high risk APOL1 genotypes.  

To increase numbers to detect whether HLA allotype modified APOL1 related risk, we sought 

additional cases and controls from the UK Biobank (UKBB)16. Using WES data in UKBB we 

identified individuals carrying high-risk APOL1 variants (G1/G1, G1/G2 and G2/G2). Cases 

(n=7) were defined as people with CKD stage 4, CKD stage 5 or requiring KRT before the age of 

50, without known causes for CKD based on hospital inpatient diagnoses and operative and 

procedural records as taken from ICD-10 and OPCS [v4] codes. Controls (n=417) were people 

with the same age-range as cases without hypertension or CKD related codes. Imputed HLA 

allotypes (performed by UKBB using HLA*IMP:0217) were extracted for all individuals and the 

top two alleles of each HLA type were assigned based on the highest imputation probabilities. 

The UKBB and the 100KGP cohorts were then combined to create a case (n=21) control (n=468) 

cohort of patients of recent African ancestry with high risk APOL1 genotypes and their imputed 

HLA types.  

To address confounding by population stratification, we generated principal components of 

the common variant genotype matrix of the cohort, to include as covariates. A list of high quality, 

biallelic, LD- and complex-region-pruned single nucleotide variants with a minor allele 
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frequency > 0.05, defined in the Genomics England dataset (see data availability) for ancestry 

estimation, were extracted. These were intersected with UKBB imputed genotypes (imputed  by 

UKBB  against TOPMed R2 panel18). Principal components analysis was performed on 63,523 

variants using PLINK (version 1.9)19.  These were used in the downstream analysis.  

Population statistics for specific HLA types were taken from the allele frequency net database20. 

Polygenic risk scoring 

Four polygenic risk scores (PRS) were applied to the uKF cohort and ancestry matched 

controls. A multi-ancestry IgA nephropathy score encompassing 77 variants21; a European 

membranous nephropathy score encompassing 12 variants22; a European steroid sensitive 

nephrotic syndrome (SSNS) score encompassing 5 variants23 and a multi-ancestry CKD score 

encompassing 471,316 variants24.  The scores were lifted over from genome build 37 to 38 using 

the UCSC liftover tool25 and applied to the cohorts using the “score” command in PLINK219. 

PRS scores were standardized to controls using Z-score scaling.  

The uKF cases were divided into those with high-risk APOL1 genotypes, those with a 

monogenic diagnosis delivered by the clinical arm of 100KGP and those patients who were 

unsolved (labelled as unsolved-uKF). The three patients with both a monogenic diagnosis and a 

high risk APOL1 genotype were reviewed and for this analysis classified as high risk APOL1 

only for the purposes of statistical analysis.  

Bioinformatic analysis of the non-monogenic uKF cohort  

In the 180 NM-uKF patients and 26,373 matched controls we attempted to ascertain whether 

there were missed genetic drivers by performing genome-wide rare variant collapsing analysis 

using SAIGE-GENE26, collapsing variants across a number of “masks” or filters. The masks 

used for this analysis were a rare, damaging missense mask (“missense+”), a high confidence 
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loss of function mask (“LoF”), an intronic mask (“intronic”), a splice site mask, a 3-prime 

untranslated region mask (3’-UTR) and a 5-prime UTR mask (5’-UTR). We then applied an 

exome-wide structural variant analysis pipeline, using calls made by MANTA27 and CANVAS28 

to look for structural and copy number variants that may account for uKF cases. We examined 

variants in all known coding genes.  

Full details of the cohort creation and collapsing analyses can be found in Item S4-S5.  

Statistics 

Clinical and demographic analysis of the whole uKF cohort who underwent WGS (n=218) 

Baseline characteristics are expressed as frequencies (n, %) and medians (IQR), as dictated 

by data type. A two-sided Fisher’s exact test was used to compare clinical characteristics of those 

with and without a genetic diagnosis. A Wilcoxon-Mann-Whitney test was used to compare age 

of KF between groups. Multivariable logistic regression was performed to identify clinical 

characteristics associated with a positive genetic result using sex, age at kidney failure, family 

history, extra-renal features and consanguinity as covariates. Differences between PRS scores in 

cases and controls were compared using multivariable logistic regression using sex, age and ten 

principal components as covariates. All statistical analysis was performed in R (version 3.6.2). 

Two-sided p values < 0.05 were considered statistically significant.  

Case-control analyses 

The burden of high risk APOL1 genotypes (G1/G1, G1/G2 and G2/G2) were compared 

across cohorts (case vs control, APOL1 cases versus African ancestry controls with and without 

high risk APOL1) using a one-sided Fisher’s exact test and this variable (the presence or absence 

of a high-risk genotype) was used as part of the logistic regression model alongside various 

polygenic risk scores, the first ten principal components, age and sex.  

Jo
urn

al 
Pre-

pro
of



13 
 

To test the significance between the PRS of the three case cohorts and controls we applied an 

ANOVA test followed by a Tukey’s HSD test to differentiate the source of statistical significance 

in R 29.  

The HLA types in the combined UKBB/100KGP cohort with high risk APOL1 genotypes 

was analysed using a logistic regression model as implemented within the HIBAG tool using 

HLA-type and five principal components as covariates. A chi-squared test was used for 

significance testing using a Bonferroni corrected P-value of 0.007 (7 HLA classes analysed, 

α=0.05).  

Collapsing rare variant analysis was performed using SAIGE-GENE which uses logistic 

mixed modelling to look for genetic associations between uKF cases and controls. Ten principal 

components and age were used as covariates in this analysis. For collapsing structural variant 

analysis, the difference between the burden of variants in cases and controls was calculated with 

a two-sided Fisher’s exact test.  

All statistical analysis and plotting was performed with R29. 

Results 

Figure 1 gives the full study workflow and key results which are elaborated on below.  

Demographic details and outcomes from the clinical WGS arm of the uKF analysis 

We analysed WGS data from 218 probands with uKF: 62% were male, 40% had an affected 

first-degree relative, 53% had extra-renal manifestations, and 6% had self-reported parental 

consanguinity. 97 of the 218 (44.4%) patients had undergone a kidney biopsy prior to 

recruitment to the study; in those patients where the biopsy data was available the results only 

indicated non-specific histopathological changes associated with chronic kidney damage. In the 

89 patients where prior genetic testing data was available 5 (5.6%) had undergone prior panel 
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genetic testing (3 for tubulopathy and 2 for MUC1) – all of which were negative. Data on age at 

KF was available for 190/218 (87%) individuals with the median age at KF calculated as 36 

years (IQR 16).  

Using the initial virtual panel of 183 genes, 38/218 (17%) had a pathogenic or likely 

pathogenic variant affecting a known kidney disease gene, with 31/38 (82%) solved cases having 

the age at KF available (Figure 2, Table S3). Re-analysing those patients who were unsolved 

using the extended virtual panel of 537 genes did not yield any additional diagnoses. This cohort 

of patients where a monogenic variant was not found were labelled as the “non-monogenic” uKF 

cohort (NM-uKF).  

Pathogenic copy number variants (CNVs) were seen in 2/218 (0.9%) individuals: A 

homozygous 110kb whole gene deletion of NPHP1 was detected in a male with microscopic 

haematuria, proteinuria and gout who developed KF in his 30s (30-35). In addition, a 1.9Mb 

17q12 duplication (encompassing HNF1B) was detected in a female with small kidneys who 

developed KF in her 30s (30-35). This duplication segregated with her affected mother.  

Clinical predictors of a positive genetic diagnosis in the whole WGS uKF cohort 

We next investigated whether there were any differences between patients with and without a 

genetic diagnosis to ascertain who might benefit most from genetic testing (Table 1). Clinical 

and demographic features were similar between the two groups and although median age at 

kidney failure was lower in those with a genetic diagnosis, this was not statistically significant 

(Table 1). Multivariable logistic regression did not identify any significant predictors of a 

positive genetic diagnosis in this relatively small cohort (Table S4 and Figure S2) and there was 

no association seen with specific extra-renal HPO terms (eye, ear, autoimmune, haematological, 

diabetes, endocrine, neurological, dermatological, gout, congenital malformations).  
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The diagnostic yield in those with and without a family history was compared stratifying by 

age at KF (Table 2). In those with a family history, significantly fewer genetic diagnoses were 

made in those ≥ 36 years compared to those < 36 years (35% vs 11%, P=0.03) with the 

diagnostic yield in individuals ≥ 36 years without a family history just 5% (Figure S3).  

Three individuals with no family history who developed KF ≥36 years old received a genetic 

diagnosis. Interestingly, all three were heterozygous for type IV collagen variants: a likely 

pathogenic missense COL4A3:c.3760G>C;p.(Gly1254Arg) variant, previously reported in a 

patient with Alport syndrome, was detected in a female with diabetes mellitus who developed KF 

in their late 30s (36-40); a pathogenic frameshift COL4A4:c.282_283del;p.(Asp96ProfsTer13) 

variant was identified in a male who developed KF in their 50s (50-55), who had microscopic 

haematuria, proteinuria, and gout; and a likely pathogenic COL4A5:c.367G>A;p.(Gly123Arg) 

variant was seen in a male with haematuria and proteinuria who reached KF in their 30s (36-40), 

consistent with a diagnosis of X-linked Alport syndrome. Although none of the individuals had a 

documented family history, identification of these type IV collagen variants initiated additional 

screening of family members.  

We next looked for enrichment of rare variation in the NM-uKF cohort (n=180) compared to 

controls (n=26,373) using genome-wide collapsing rare variant analysis to look for novel 

candidate genes. However, this collapsing gene-based analysis did not reveal any significant 

genes at single nucleotide or structural variant level including collapsing variants that were in 

intronic, UTR or splicing domains (Figure S4).  

Case control analysis of APOL1 genotypes in people of African ancestry  

High-risk APOL1 genotypes are observed in 13% of individuals with recent African ancestry 

and have been associated with an increased risk of kidney disease. We therefore hypothesized 
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that these renal risk alleles might contribute to uKF in this cohort. Within the cohort, 27 probands 

were of African ancestry. 16 had biallelic APOL1 G1/G2 risk alleles but two uKF patients carried 

the protective p.N264K variant alongside the G2 allele, leaving 14 cases with high-risk APOL1 

genotype. High-risk APOL1 genotypes were significantly enriched in individuals with uKF 

(14/27; 52%) when compared to controls of African ancestry (51/608; 8.4%; P<0.001;). Three 

uKF cases with high-risk APOL1 genotype had been given a monogenic diagnosis (NPHP1, 

EVC, COL4A4). There was no significant difference in the age at KF between the high-risk 

APOL1 and low-risk APOL1 uKF cases of African ancestry (median 37 vs 39 years; P=0.7).  

Polygenic risk scoring for CKD and glomerular disease in the case control cohort  

We next explored whether individuals with uKF had a genetic susceptibility to other non-

monogenic kidney diseases applying PRSs for IgA nephropathy, SSNS, membranous 

nephropathy and CKD across the uKF cohort and controls (218 cases and 26,373 controls). A 

multivariable logistic regression model was built for uKF against each PRS as well as the 

presence of high-risk APOL1 genotype, using population covariates (top ten principal 

components, age, and sex). Only high-risk APOL1 genotype was strongly associated with uKF 

(Figure 3; P<0.001; OR=9.15; 95% CI 4.11-2.03) uKF cases had a lower IgA nephropathy PRS 

than controls (P=0.04; OR=0.87; 95%CI 0.76-0.99). There was no difference between uKF cases 

and controls when applying PRSs for SSNS (P=0.05), membranous nephropathy (P=0.6) or 

CKD (P=0.6). 

Examination of the interaction between uKF, APOL1 genotypes and polygenic risk scores 

in defined subgroups 

The uKF cohort was divided into people without a monogenic diagnosis and without a high 

risk APOL1 genotype (unsolved-uKF, n=169), people with high risk APOL1 genotypes (n=14), 
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and those with a monogenic diagnosis (n=35). Of note the 3 patients with a monogenic diagnosis 

and high risk APOL1 were counted as  being in the APOL1 group for this analysis hence the drop 

in the solved cohort number from 38 to 35. The SSNS PRS was significantly higher in the cohort 

with high-risk APOL1 genotype without a monogenic diagnosis (P<0.001)  (Figure 4).There was 

no difference across the three cohorts in the remaining glomerular or CKD PRSs. The group of 3 

individuals with both a monogenic diagnosis and APOL1 risk genotype was not analysed 

separately owing to its small size and included within in the APOL1 cohort. 

The SSNS PRS remained significantly elevated when comparing the high-risk APOL1 

genotype uKF cohort (n=14) and African ancestry controls with (P=0.05, n=51) and without 

(P=0.03, n=557) high-risk APOL1 genotypes. 

Analysis of the interaction between uKF, high risk APOL1 genotypes and HLA across the 

100KGP and UK Biobank 

Three of the five loci contributing to the SSNS PRS are in HLA-DQB1. To determine 

whether an HLA-risk allotype could be identified, we conducted a joint analysis of imputed HLA 

types across the UKBB and 100KGP in 21 (14 from 100KGP and 7 from the UKBB) individuals 

with early-onset KF (< 50 years) and 468 controls, all with high-risk APOL1 genotype. This 

revealed significant enrichment of HLA-DQB1*03:19 in the early-onset KF group (P=0.001; 

OR=23.62; 95%CI 3.09-180.38, Table S5).  

Using the allele frequency net database20 we ascertained that HLA-DQB1*03:19 has a high 

frequency in Gambia (28%) with the next highest population frequency seen in Tanzania 

(5.1%)20. A full list of population allele frequencies can be found in Table 3.  

Discussion  

The monogenic diagnosis rate of 17% we observed using WGS in 218 patients with young-
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onset uKF is similar to the 17.1% reported using exome sequencing in the largest cohort 

investigated to date (n=281)4. Diagnostic rates of 12-47% have been reported in other exome-

based studies focusing on patients with uKF and/or CKD5,7,8 and a recent WGS study in 100 

individuals with CKD5 and median age at KF of 32 years reported a diagnostic yield of 25%30. 

Each study has differing proportions of familial disease and extra-renal features and used 

different gene panels, likely explaining some of this variability. WGS enables ascertainment of 

almost all types of genomic variation in both coding and non-coding regions and provides more 

uniform coverage across the genome offering enhanced detection of single-nucleotide variants, 

structural variants and those found in homologous pseudogenes, as in the case of PKD124,31.  Our 

results suggest prioritizing genetic testing for those with uKF occurring before the age of 36 

years and/or a family history of kidney disease, and this is now reflected in England’s NHS 

Genomic Medicine Service eligibility criteria recommending WGS for patients with uKF under 

the age of 36 years.  

Beyond diagnostic yield, WGS also enables analysis of other types of genetic contributors to 

risk, including application of PRSs and modelling these alongside APOL1 genotype and 

monogenic causes of KF. A PRS for CKD was not elevated in uKF cases, highlighting 

differences in genetic architecture in those who present with young-onset KF versus a general 

CKD population with progressive decline in GFR 27,36. Further studies that leverage rare variants 

in the PRS and are disease specific may yield better insights into underlying genetic architecture 

of these diseases.  

The glomerular disease PRS results should be interpreted within the context of how they 

were originally derived. For example, the IgA nephropathy PRS was developed in patients who 

are likely to have presented before CKD stage 5. This suggests that undiagnosed IgA 
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nephropathy is unlikely to explain a large proportion of this unsolved uKF cohort. Membranous 

nephropathy has a median age at diagnosis of 56.4 years and typically presents with nephrotic 

syndrome and preserved kidney function32. It is therefore unsurprising that the PRS for 

membranous nephropathy was not elevated in this uKF cohort in which the upper age limit for 

KF was 50 years.  

The APOL1-associated uKF patients did show enrichment for the SSNS PRS. Although 

derived from a genome-wide association study in childhood SSNS33, this PRS is also elevated in 

individuals with gene test negative steroid resistant nephrotic syndrome and adult-onset 

nephrotic syndrome and minimal change disease, suggesting that the score identifies genetic 

predisposition to autoimmune podocytopathy14. One possible explanation for the enrichment in 

individuals with APOL1-associated uKF is that the combination of APOL1 high-risk genotype 

with autoimmune podocytopathy is a particularly strong risk factor for developing KF. However, 

none of the individuals included in the uKF cohort had a preceding diagnosis of nephrotic 

syndrome (or indeed proteinuric kidney disease) so data to support this hypothesis is lacking at 

present33. A potential role for autoimmune podocytopathy is further supported by our finding of a 

strong HLA association at DQB1 in those patients with KF and APOL1 high-risk genotypes 

across both the UKBB and 100KGP cohorts. This HLA allele is seen at high frequency in West 

African populations and its enrichment in those with KF may result from population differences 

that were not adequately corrected by the genomic control measures we implemented. 

Interestingly, while previous studies have shown associations between SSNS and HLA-DQA134 

and DQB139, this is the first time enrichment in these HLA alleles has been reported in 

individuals with a high-risk APOL1 genotype and KF.  

Our study is not without limitations. While we were able to study common and rare variants 
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in a relatively large cohort of patients with uKF the number of individuals is too small to detect 

weaker genetic effects typically observed with PRS, especially when subgroup analyses were 

performed. Therefore, the lack of PRS enrichment for CKD, IgA and membranous nephropathy 

does not exclude the possibility that these causes of kidney disease could be responsible for KF 

in a proportion of those presenting with uKF. In addition, we recognise that there are limitations 

to short-read WGS testing in both the detection of complex structural variants and the 

identification of variants in highly repetitive GC-rich regions, such as in the case of ADTKD-

MUC1, and the use of long-read sequencing technologies in the future may improve the 

diagnostic yield in this patient group. 

Our findings corroborate that monogenic causes account for a sizeable share of young-onset 

uKF and reveal an over-representation of high-risk APOL1 genotypes in UK patients of recent 

African ancestry. These high-risk APOL1 individuals carry both an elevated steroid-sensitive 

nephrotic-syndrome polygenic risk score and a marked enrichment of the class-II allele HLA-

DQB1*03:19, suggesting an additional adaptive-immune ‘hit’. Taken together, the data indicate 

that convergent innate (APOL1) and adaptive (HLA-restricted) podocyte-injury pathways can 

coexist within the same patient and ultimately present as clinically ‘unexplained’ kidney failure. 
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workflow can be found at: https://re-docs.genomicsengland.co.uk/gwas/.  
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Table 1. Comparison of clinical and demographic features in patients with (solved) and 

without (unsolved) a genetic diagnosis. 

 Solved (n=38) Unsolved (n=180) Total (n=218) P 

Median age at KF 
(IQR) 

31 (12) 37 (16) 36 (16) 0.11 

Male sex (%) 24 (63%) 111 (62%) 135 (62%) 1 

Family history (%)  18 (47%) 69 (38%) 87 (40%) 0.36 

Extra-renal 
features (%) 

25 (66%) 90 (50%) 115 (53%) 0.11 

Consanguinity (%) 3 (8%) 9 (5%) 12 (6%) 0.44 

IQR, interquartile range; KF, kidney failure. P values calculated using a Mann Whitney 

Wilcoxon test (age at KF) or two-sided Fisher’s exact test. Note that 31/38 solved cases and 

159/180- unsolved cases had median age at KF available. 
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Table 2. Diagnostic yield stratified by age at kidney failure and family history. Please note 

this table only represents the 190/218 patients where age at kidney failure data was 

available.  

Family History Age at KF < 36 years Age at KF >=36 years 

Yes 9/26 (35%) 5/45 (11%) 

No 12/64 (19%) 3/55 (5%) 

P  0.17 0.46  

KF, kidney failure. P values calculated using a two-sided Fisher’s exact test. 
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Table 3. Allele frequency of HLA DQB1*03:19 across the globe as taken from the Allele 

Frequency Net Database. 
Population Allele Frequency 

(in decimals) 
Sample Size 

GMB Gambia 0.279 939 

TZA Tanzania Maasai 0.0507 336 

ARE United Arab Emirates Abu Dhabi 0.0385 52 

MEX Mexico City Mestizo population 0.014 143 

BRA Brazil Paraná Caucasian 0.0109 641 

MEX Mexico City Mestizo population2 0.0107 234 

ESP Spain 0.009 4335 

MEX Mexico Tixcacaltuyub Maya 0.0075 67 

BRA Brazil Puyanawa 0.007 150 

SAU Saudi Arabia pop 5 0.0063 158 

ZAF South Africa Worcester 0.006 159 

USA USA San Diego 0.004 496 

MYS Malaysia Peninsular Chinese 0.0026 194 

CZE Czech Republic NMDR 0.0019 5099 

PAN Panama 0.0016 462 

NLD Netherlands Leiden 0.001 1305 

ITA Italy pop 5 0.001 975 

JPN Japan pop 17 0.0003 3078 

IND India North UCBB 0.0001 5849 

IND India West UCBB 0.0001 5829 

MAR Morocco Settat Chaouya 0 98 

NMDR - National Marrow Donors Registry, UCBB - University of Central Business and 

Biotechnology    
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Figure 1 – Flow diagram of the analysis workflow and key findings.  

Green boxes donate clinical grade analyses; blue boxes donate research analyses and red boxes 

donate key results.  

 

Figure 2 - Breakdown of solved cases by gene category 

Breakdown of the solved uKF cases by gene and phenotypic category. All percentages represent 

a proportion of the total solved cases (n=38). ADTKD, autosomal dominant tubulointerstitial 

kidney disease; CAKUT, congenital anomalies of the kidneys and urinary tract.  

 

Figure 3 – Risks contributing to the chances of developing unexplained kidney failure 

Forest plot showing the outcome of the multivariable logistic regression model predicting the 

chance of developing unexplained kidney failure (uKF) using 218 cases and 26,373 controls 

when modelled against various polygenic risk scores, the absence or presence of a high risk 

APOL1 variant, age, sex and the first ten principal components. Results are presented as odds 

ratios (OR) with their 95% confidence intervals (CI). OR where the CI is above 1 indicate an 

increased risk of developing unexplained kidney failure, whereas a CI below 1 indicates a 

decreased risk of developing uKF. * Denotes statistical significance (P < 0.05) 

 

Figure 4 – Average polygenic risk score by cohort and PRS type 

Each point is the mean PRS with the bars representing the 95% confidence interval. 3 patients 

with both a monogenic diagnosis and a high risk APOL1 genotype were categorised as having 

APOL1 for the purposes of this analysis. Dotted line represents the normalized control PRS 

scores. * Denotes statistical significance. Unsolved-uKF – unsolved unexplained kidney failure, 

PRS – polygenic risk score, SSNS – steroid sensitive nephrotic syndrome, CKD – chronic kidney 

disease, IgA – Immunoglobulin A nephropathy 
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