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N E U R O S C I E N C E

Personalized mapping of inhibitory spinal cord circuits 
in humans via noninvasive neural decoding and in 
silico modeling
Alejandro Pascual-Valdunciel1,2*†, Natalia T. Cónsul1, Robert M. Brownstone3, Marco Beato4,  
Dario Farina1*‡, Filipe Nascimento3,4*†‡, M. Görkem Özyurt3,4*†‡

Studying human motoneuron activity through electromyography (EMG) can yield insights into the operation of 
fundamental spinal cord microcircuits. Traditional surface and needle EMG methodologies have limited capacity to 
shed light on the diversity of motor unit (MU) control strategies that may be unique to each individual. Here, we 
used high-density surface EMG (HDsEMG) to sample multiple MUs per participant to investigate the features of in-
hibitory spinal microcircuits in both upper and lower limb control. We characterized the net inhibition as a function 
of individual MU firing rates, revealing participant-specific relationships. In silico modeling replicated these experi-
mental characteristics and suggested that properties of the inhibitory currents rather than motoneuron size are 
responsible for net functional inhibition. Our results show that HDsEMG can highlight distinct control strategies 
across circuits and motor pools, revealing participant-specific properties of inhibitory spinal microcircuits.

INTRODUCTION
Movement relies on the precise coordination of muscle contractions, 
enabling fundamental actions like grasping and walking. Muscles are 
composed of individual fibers innervated by spinal motoneurons. A 
single motoneuron connects to a group of muscle fibers, collectively 
forming a motor unit (MU). While large parts of the central nervous 
system (CNS) are responsible for various aspects of movement, mo-
toneurons serve as the “final common pathway” responsible for its 
execution (1).

Electromyography (EMG) is a valuable tool for studying moto-
neurons and their associated circuits. EMG can be used to record 
gross muscle activity, reflecting neuronal activity in the population 
(pool) of motoneurons innervating that muscle through global sur-
face EMG (sEMG) or intramuscular EMG (iEMG). In addition, the 
activity of individual MUs can be recorded via single unit iEMG, 
which reflects the action potentials of individual motoneurons. 
Hence, motoneurons are the most readily recordable cell type in the 
human CNS, offering a valuable window into CNS activity.

The region of the CNS that is responsible for organizing the pat-
tern of muscle contractions for limb movement is the spinal cord. 
Various fundamental spinal circuits have been identified in animal 
studies, with some also characterized in humans. One well-
characterized example is the circuit controlling reciprocal inhibition 
between antagonist muscles, mediated by Ia inhibitory interneurons 
(2, 3). This circuit, also responsible for inhibition of antagonist mus-
cles in stretch reflexes, plays a key role in ensuring proper flexor-
extensor alternation during locomotion (4). Another example is the 

circuit responsible for producing a “cutaneous silent period” (CSP) 
(5), a transient pause in voluntary muscle contraction produced by 
electrical stimulation of a cutaneous nerve, part of a protective be-
havior in response to noxious cutaneous stimuli.

While both of these circuits can be measured in humans, current 
techniques fail to give an accurate picture of their operation. In hu-
mans, sEMG recordings provide low-resolution data and underesti-
mate the duration of both circuits (6–8). On the other hand, iEMG 
using fine wires or needles provides single-unit resolution and a bet-
ter estimation of inhibition duration but is invasive and only sam-
ples one or few MUs within highly heterogeneous motoneuron 
populations and therefore falls short in estimating the temporal 
characteristics of circuits as a whole. To overcome the limited sam-
pling, participant data are usually pooled (9), but doing so relies on 
the assumption that motor pool properties are similar between indi-
viduals (10), which we know is not the case (10, 11). That is, only 
limited mechanistic, physiological insights into the operation of spi-
nal circuits can be gained using sEMG and iEMG methods.

If, as in animal studies (12), the function of human inhibitory 
circuits reflects the status of a disease such as amyotrophic lateral 
sclerosis, then it will be necessary to measure inhibition accurately, 
reproducibly, and in a participant-specific manner. Recent studies 
have pointed to spinal circuit alterations in neurological diseases 
(13–15), yet the technical constraints imposed by traditional sEMG 
and iEMG have meant the loss of participant specificity. Enhanced 
sampling methods capable of sampling multiple MUs and capturing 
their respective spinal cord circuit features will greatly improve the 
accuracy of physiological and pathophysiological measures. We 
have therefore sought to establish methodologies for probing spinal 
circuit function at higher resolution, which would enable more pre-
cise assessments of MU behavior and individual variability.

Advancements in high-density sEMG (HDsEMG) techniques 
are transforming the landscape in the field of motor physiology (16). 
This noninvasive method uses arrays of closely spaced electrodes to 
achieve high spatial and temporal resolution of the activity of indi-
vidual MUs, recording a high proportion of units that comprise an 
individual muscle. HDsEMG has facilitated the study of a variety of 
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MU properties, such as conduction velocity and discharge rate (17), 
as well as network-level features such as common synaptic inputs to 
motoneurons during movements, indicating a potential to shed 
light into the mechanisms of motoneuron integration of input and 
recruitment across a pool (18, 19).

In this work, we present an optimized framework for the use of 
HDsEMG in the study of spinal circuits in both upper and lower 
limb muscles. We focus on two distinct inhibitory pathways, CSP 
and reciprocal inhibition, as these circuits are involved in key physi-
ological functions and have biomarker potential (13, 20, 21). Using 
simultaneous testing across different muscles, we draw inferences 
about distinct inhibitory spinal pathways. By successfully sampling 
multiple MUs per participant, we were able to conduct participant-
specific analyses of the temporal properties of CSP and reciprocal 
inhibition. This allowed us to characterize these circuits by taking 
participant-level variations into account and to provide more accu-
rate estimates of functional inhibition acting on firing motoneu-
rons. We then modeled these circuits in silico to obtain insights into 
the relationship between synaptic inhibition and motoneuron in-
trinsic properties. Together, we demonstrate how HDsEMG can be 
used to investigate spinal cord circuit mechanisms and support its 
broader application in neuromuscular research and clinics.

RESULTS
Participant-specific analysis of CSP
Reasoning that the use of HDsEMG provides an opportunity to 
study stimulus-evoked inhibition of many motoneurons simultane-
ously and that the duration of inhibition reflects the temporal profile 
of the inhibitory input received by each motoneuron (7,  22), we 
turned to methods of quantifying the times of onset and termination 
of inhibition based on spiking profiles. Peristimulus time histograms 
(PSTHs) constructed from single unit data show spiking activity in 
response to the stimulus and accurately reflect the onset latency of 
inhibition of a MU (23, 24). Plotting the frequency of firing, peris-
timulus frequencygrams (PSFs) can pinpoint when the firing fre-
quency returns to its baseline (prestimulus) level, reflecting the 
termination of inhibition of firing (7, 13, 22). Thus, from these two 
plots, the duration of inhibition during ongoing MU activity can be 
calculated (7, 22, 25). We then used PSTH (1-ms bins typically con-
taining one to two MU firings) and PSF measures for all units re-
corded via HDsEMG, including all MUs with robust inhibition 
defined as a deviation of the cumulative summation (CUSUM) ex-
ceeding the limits [i.e., error-box (26)] seen in the 200 ms preceding 
the stimulus (fig. S1). CUSUM provides a sequential monitoring of 
the deviations from the mean MU firing occurrence (for PSTH) or 
mean firing rate (for PSF) from a prestimulus baseline window, with 
deflections of the CUSUM trace providing a sensitive approach to-
ward the objective identification of the onset and duration of inhibi-
tion on a unit-by-unit basis. In our measurements, we are capturing 
MU discharge during steady voluntary contraction and determining 
the duration of the period in which MU firing rate is affected by the 
inhibitory synaptic input—a parameter we term “functional inhibi-
tion,” recognizing that this does not reflect an inhibitory postsynaptic 
potential (IPSP) alone. That is, functional inhibition refers to a 
stimulus-evoked reduction in motoneuron firing output during vol-
untary contraction, reflecting the duration of inhibition as changes 
in discharge probability and firing rate.

We initially focused on the upper limb CSP, a robust and repro-
ducible stimulus carried by A-delta fibers to spinal dorsal interneu-
rons, which in turn inhibit motoneurons innervating intrinsic hand 
muscles (Fig. 1A) (5, 27–29). We placed 64-channel HDsEMG grids 
on top of the first dorsal interosseous (FDI) muscle and instructed 
the participants to perform a pinching task for 200 s at 10% of their 
maximum voluntary contraction (MVC), electrically stimulating 
the fifth finger [at ×10 the sensory threshold (ST)] every 1.8 s (28). 
Single MUs were decomposed from the raw EMG (Fig. 1A) to mea-
sure the temporal properties of inhibition (Fig. 1B).

In addition to the decomposition of individual MUs, the HDsEMG 
grid can also act as a standard bipolar sEMG electrode by record-
ing the voltage difference between two adjacent electrodes, provid-
ing a conventional sEMG signal for assessing overall muscle activity 
(fig. S1). We therefore compared the duration of inhibition obtained 
from the individual MUs decomposed with HDsEMG to the conven-
tional sEMG signal obtained during the same recordings (Fig. 1C). 
We found a consistently shorter CSP duration when measured from 
the rectified sEMG (58 ± 18 ms) compared to the durations measured 
from individual MUs using PSF (121 ± 22 ms), indicating that bipolar 
sEMG recordings are sensitive only to the shortest duration inhibi-
tory responses (μdiff = 72 ms, 95% confidence interval (CI) = [59, 85]; 
g = 2.25, 95% CI = [1.82, 2.84]). The sEMG provides an averaged 
signal of multiple MUs, each with slightly different timing for inhi-
bition onset and termination. Because sEMG estimation of inhibi-
tion is defined solely by spike occurrence or spike count (7), MUs 
with shorter inhibition periods resume firing earlier, potentially 
masking ongoing inhibition in other units that experience longer 
duration inhibition. Moreover, even when an MU resumes firing, 
its discharge rate may remain below baseline reflecting a continued 
hyperpolarization of the membrane potential. As a result, PSF esti-
mates taken from individual MUs recorded with HDsEMG better 
reflect the underlying membrane dynamics and thus capture longer 
inhibition durations by incorporating both the presence and ampli-
tude of the inhibitory postsynaptic potentials (30). Overall, single-
unit HDsEMG data revealed a wide range of durations, with many 
units being inhibited over twice as long as estimated by rectified 
global sEMG.

The duration of the CSP during voluntary contractions is highly 
variable and influenced by the MU discharge rate (6, 20). Therefore, 
interpreting inhibition duration is best done relative to firing rate 
(6, 20). The coefficient of determination (R2) is a standard metric for 
assessing goodness of fit (31, 32) and is widely used to validate linear 
relationships, such as firing rate versus inhibition duration in moto-
neuron studies (7, 13, 14, 20). An R2 value of 1 indicates a perfect 
linear relationship, meaning that firing rate fully accounts for the 
variability in inhibition duration, whereas an R2 of 0 means that fir-
ing rate provides no explanatory power, with inhibition duration 
varying independently. For this study, we classified the strength of 
the R2 using thresholds of 0.67, 0.33, or 0.19, corresponding to 
strong, moderate, and weak relationships, respectively, based on es-
tablished statistical conventions (fig.  S2) (33,  34). In addition, we 
report P values to assess whether the relationship between firing rate 
and inhibition duration is statistically significant.

When plotting firing rate against CSP duration, we observed that 
inhibition duration is poorly predicted by firing rate for all MUs 
combined from all participants, as shown by a weak R2 (Fig. 1D). 
However, this R2 (R2 = 0.24) was similar to that reported previously 
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Fig. 1. Characterization of CSP on individual motoneurons in humans. (A) Schematic of the CSP spinal pathway and experimental setup (left) and the decomposition 
methods used to extract the firing phase and frequency of individual MUs with HDsEMG (right). (B) Examples of PSTH (top) and PSF (bottom) of individual MUs from the 
FDI muscle active at different frequencies, with CUSUM traces in blue for each. Dotted yellow lines depicted inhibition start defined by PSTH and end by PSF. (C) Estimation 
plots illustrating the comparison of the inhibition duration estimation methods: rectified sEMG and individual MUs with the PSF method, with dots color-coded per indi-
vidual. (D) Estimation of inhibition duration of single MUs and their firing rate across participants. Colored dots represent MUs and the linear regression fit per individual; 
black line represents the linear regression fit for the group data with respective R2 shown. (E) Inhibition duration of single MUs versus their firing rate per individual (pink 
dots). Yellow lines represent the individualized linear regression models (LMexp) with respective R2 and P value; blue dotted lines represent the LMM regression per par-
ticipant; pps, pulse per second.
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using iEMG for healthy participants (R2 = 0.31) (13). Although low 
R2 values may still help identify trends within the data, they are lim-
ited in predictive accuracy and precision (35). FDI MUs showed a 
significant negative relationship between recruitment threshold and 
firing rate, supporting the expected hierarchical organization of mo-
toneuron activation under our recording conditions (fig. S7A and 
table S17).

While single-unit iEMG has been useful to establish group-level 
clinical outcomes when pooling data from groups of participants 
(13, 14), it typically samples only one to two MUs per participant in 
studies of inhibitory spinal microcircuits (13, 14). This limited sam-
pling of the motor pool within a single individual fails to capture 
motoneuron heterogeneity within and between participants, result-
ing in low-dimensional data that reduce measurement precision and 
limit the ability to make participant-specific assessments (9). In con-
trast, the increased MU sampling enabled by HDsEMG allows for 
the creation of robust hierarchical datasets (level 1, MUs; level 2, 
participants), making it possible to assess how individual differences 
influence the relationship between inhibition duration and dis-
charge rate for CSP.

To quantify the influence of participant-specific variability in the 
interpretation of CSP experimental data obtained with HDsEMG, we 
implemented a linear model (LMexp) for each individual and used a 
linear mixed model (LMM) to account for participant-specific ran-
dom effects. For the FDI muscle, individual LMexp consistently out-
performed the pooled correlation for firing rate versus inhibition 
duration relationships, yielding higher R2 values. Specifically, 6 of the 
10 participants exhibited strong R2, indicating that firing rate ex-
plained a substantial portion of the variability in inhibition duration 
(P < 0.05). An additional two participants had a high R2 but P = 0.08, 
potentially reflecting low power due to the few MUs extracted. The 
remaining two individuals exhibited moderate R2 with the partici-
pant with the fewest sampled MUs (three MUs) showing no mean-
ingful relationship (P = 0.5) (Fig. 1E). The LMM results indicate that 
inhibition duration varied significantly with firing rate, with a de-
crease of 15 ms in inhibition duration for every 1-Hz increase in dis-
charge rate (table  S1). However, the LMM captured 84% of data 
variability (R2  =  0.84), driven by intersubject differences that ac-
counted for 80% of total variance [intraclass correlation coefficient 
(ICC) = 0.80]. The LMM analysis revealed significant differences in 
inhibitory profiles across participants, with individuals with longer 
inhibition durations having less reduction in inhibition duration with 
increasing firing rate (see table S1). The disparities in the measured 
effects between grouped and participant-specific analyses underscore 
the importance of considering individuality when interpreting the ef-
fect of synaptic inhibition on MU behavior.

Together, we demonstrate that HDsEMG is a more sensitive 
method than traditional EMG approaches for estimating CSP dura-
tion. Unlike traditional methods, HDsEMG offers a noninvasive 
estimation comparable to single-unit iEMG while also allowing for 
the sampling of multiple MUs per participant. Furthermore, the hi-
erarchical datasets generated through HDsEMG provide a robust 
framework for studying inhibition duration on a participant-specific 
level, accounting for interindividual variability.

Predicting CSP characteristics using in silico modeling
Inhibition of motoneurons depends on the strength of the inhibito-
ry inputs and the response properties of the motoneurons. Intrinsic 
neuronal properties influence how synaptic inputs are integrated, 

potentially affecting inhibition duration. For example, the physical 
dimensions of motoneurons are directly linked to their intrinsic 
properties: Motoneurons with larger somas and dendritic trees re-
quire greater synaptic input to achieve the same membrane voltage 
change as smaller motoneurons (36, 37).

Historically, in vivo and in vitro preparations from animals have 
enabled single-cell recordings, allowing for controlled current injec-
tions and intracellular voltage measurements (38–41). These tech-
niques provide insight into synaptic inputs and intrinsic properties, 
such as whole-cell capacitance, which can be used as a surrogate 
marker of motoneuron size. HDsEMG, however, cannot directly 
measure these parameters.

During voluntary contractions, FDI motoneurons firing at high-
er firing rates exhibit shorter CSP inhibition despite delivering the 
same nerve stimulation intensity, indicating that motoneurons like-
ly receive the same synaptic drive from afferents (36, 37, 42). Is this 
effect purely due to firing rate, and/or do differences in intrinsic 
properties play a role? To disentangle these factors, we built an in 
silico model replicating FDI CSP inhibition and manipulated moto-
neuron size and firing rate to assess their distinct effects on inhibi-
tion duration.

We generated a two-compartment Hodgkin-Huxley biophysical 
model (43) and simulated the CSP experiments previously de-
scribed. The model simulated common input to a motor pool of 20 
motoneurons replicating an isometric contraction, with an inhibi-
tory synaptic input delivered every 1.8 s during the steady phase of 
the isometric contraction (Fig. 2A). The motoneurons were mod-
eled on the basis of the characteristics of S-type motoneurons de-
rived from in vivo motoneuron recordings from cats (44–49), which 
primarily govern sustained, low-force contractions (table S6). These 
motoneurons were assigned sizes ranging from the smallest to the 
largest (189 to 214 pF of cell soma capacitance), with properties lin-
early interpolated to reflect a physiological gradient in excitability 
and recruitment thresholds, consistent with known motor pool or-
ganization (36, 50, 51). We recorded the spike train outputs in all 
motoneurons across 154 realizations, each defined by a unique com-
bination of amplitude [A; 1 to 3 arbitrary units (a.u.), in 0.2-a.u. 
steps] and tau (τ; 7 to 20 ms, in 1-ms steps) of the inhibitory synap-
tic input, a parameter analogous to an inhibitory postsynaptic cur-
rent (IPSC), distributed uniformly across motoneurons. For each 
realization, we quantified the duration of functional inhibition of 
each simulated motoneuron using the same PSTH and PSF methods 
applied to the experimental HDsEMG data (Fig. 2B) and kept only 
the units showing inhibitory responses that exceeded the variability 
of the 200-ms prestimulus baseline based on the CUSUM approach 
described above for HDsEMG recordings (fig.  S1). The simulated 
inhibition durations and respective firing rates were linearly fitted 
for each realization, leading to 154 linear models (LMsim) with a 
range of R2, slopes and intercept consistent with those observed 
across participants (fig. S3A).

We then identified the LMsim best suited to replicate the experi-
mentally observed dependency of inhibition duration on firing rate 
for each of the 10 participants. We inputted each participant’s ex-
perimental firing rates into all 154 LMsim formulas and selected the 
LMsim with the lowest mean squared error (MSE), which minimized 
errors between predicted and observed inhibition durations. The 
LMsim with the lowest MSE was selected as the best-fitting model for 
that participant, ensuring minimal prediction error at the individual 
level (figs. S2D and S3B and table S2).
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Fig. 2. Characterization of CSP on individual motoneurons with computational modeling. (A) Schematic of the in silico computational model depicting the common 
excitatory input and inhibitory input delivered to motoneurons (MN) of varying size (left), used to simulate the experimental MU firing during voluntary contraction with 
periodic inhibitory drive to motoneurons delivered during the plateau phase (right). (B) Examples of PSTH (top) and PSF (bottom) of simulated MUs at different frequen-
cies, with CUSUM traces in blue. (C) Estimation of inhibition duration of single MUs and their firing rate across the LMsim optimized for each participant. Individual 
simulated MUs and each of the LMsim fits are shown in color; black line represents the linear regression fit for the simulated group data with respective R2 shown. 
(D) Experimental MU firing rate and inhibition duration (pink dots) with respective regression line (orange line; same LMexp as in Fig. 1E) and optimal LMsim fit for each 
participant (dotted purple line). Inset plots show distributions of square of residuals (SR) as kernel density estimates along with the corresponding Hedges’ g value.
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To illustrate comparisons between experimental data fits (LMexp) 
and the LMsim optimized for each of the 10 participants (Fig. 2C), 
we analyzed the distributions of square of residuals between the fits 
relative to each of the experimental data points and calculated 
Hedges g′ to assess differences between the distributions (Fig. 2D 
and fig.  S3C). Apart from participants 1, 3, and 8 who showed a 
notable discrepancy between the residuals, effect sizes for the re-
maining participants were small (0.15  <  g  <  0.50) or negligible 
(g < 0.15). These results suggest that, while the computational mod-
el generally captured observed CSP inhibition duration dependency 
on firing rate, its performance varied across individuals.

Motoneuron size does not contribute to variations in 
inhibition duration according to biophysical modeling
Motoneurons vary in size and form a diverse group, even within the 
same motor pool. This structural variation leads to a graded recruit-
ment pattern in response to common input, where smaller, low-
threshold motoneurons reach their action potential threshold before 
larger ones. As the input increases, smaller motoneurons will fire 
faster at the time that the larger motoneurons are recruited (and fire 
at low rates). Our experimental and simulated results indicate that 
the duration of functional inhibition is longer in later recruited mo-
toneurons, which fire slower (toward the left-end of the regression 
panels). Yet, it is unclear why the inhibition is longer in these neu-
rons: Is it because they are larger in size (late recruited motoneurons 
are usually larger motoneurons) or because they fire at a lower rate 
(i.e., receiving lower net excitatory input which may cancel out inhi-
bition)? We cannot answer this question experimentally, so we used 
our in silico model to investigate whether motoneuron size influ-
ences variations in inhibition duration.

We simulated motoneurons using the optimized model parameters 
from participant 8, characterized by long-tau (19 ms) and high-
amplitude (2.8 a.u.) simulated IPSC that produced a strong depen-
dency of functional inhibition with firing rate for the simulated MUs 
(R2 = 0.92, P = 2.37 × 10−07; table S2). We also ran a secondary set of 
simulations using parameters from participant 4, which differed sub-
stantially in both the optimal parameter values for synaptic input am-
plitude (1.8 a.u.) and tau (7 ms) and the linear fit (R2 = 0.37, P = 0.0269, 
table  S2). These contrasting conditions provided an opportunity to 
explore the effects of motoneuron size under distinctly different simu-
lation conditions. For these simulations, we doubled the simulated 
motoneuron pool (40 instead of 20) to improve resolution in charac-
terizing intrinsic property gradients. The common input was calibrat-
ed to generate steady firing rates of 11 to14 Hz during the plateau 
phase of the ramp (0.2 to 0.28 a.u. in 0.01-a.u. steps). Synaptic inputs, 
fixed in amplitude (1.8 or 2.8 a.u.) and duration (7 or 19 ms) to reflect 
physiological sensory spinal circuit behaviors (12, 42, 52), were deliv-
ered every 1.8 s, while motoneuron size was systematically varied on 
the basis of S-type motoneuron parameters (table S6), as previously 
described the CSP (Fig. 3A). This approach enabled precise control of 
MU firing rates and manipulation of motoneuron dimensions within 
set ranges, isolating the effect of cell size (i.e., capacitance) on inhibi-
tion duration.

To examine the effect of motoneuron size across different dis-
charge rates, motoneurons were clustered into three different groups 
by firing rate (11 to 12, 13 to 14, and 14 to 15 Hz) and compared across 
soma sizes (Fig. 3B and fig. S4). Group comparisons revealed that in-
hibition duration decreases as the firing rate increases (table  S3). 
However, within each firing rate group, motoneuron capacitance did 

not explain variations in inhibition duration as shown by the very 
weak R2 values. These findings were similar for the two sets of opti-
mizing parameters tested for A and τ (Fig. 3B and fig. S4). Also, moto-
neuron capacitance did not introduce any variability to the relationship 
between inhibition duration and firing rate as shown by the negligible 
ICC (ICCcapacitance < 0.20; table S3).

These results indicate that, under the controlled conditions of our 
in silico model, and for simulated S-type motoneurons, the duration 
of functional inhibition is more strongly influenced by motoneuron 
firing rate than by size. This suggests that active properties (such as 
firing rate) may play a greater role than passive membrane properties 
(such as capacitance) in determining functional inhibition.

Estimating reciprocal inhibition in the tibialis anterior 
with HDsEMG
To examine whether our finding that inhibition depends mainly 
on firing rate can be extrapolated to other inhibitory circuits, we 
next turned to the lower limb, with a focus on a different inhibitory 
circuit—reciprocal inhibition. This circuit involves recruitment of 
a different set (compared to CSP) of sensory afferents (group I) and 
spinal interneurons (Ia interneurons) and is responsible for flexor-
extensor alternations during movement (8, 53). To study reciprocal 
inhibition, we tested eight individuals by placing a 256-multielectrode 
HDsEMG grid over the tibialis anterior (TA) muscle and evoked 
reciprocal inhibition from triceps surae afferents to TA motoneu-
rons through tibial nerve stimulation (Fig. 4A). The temporal prop-
erties of inhibition were estimated as above using PSF and PSTH 
(Fig. 4B).

We first compared the estimates of inhibition duration between 
the individual MUs decomposed through HDsEMG and the con-
ventional sEMG signal obtained during the same recordings ob-
tained at 10% MVC for ankle dorsiflexion. Similar to our findings 
for CSP, sEMG measurements underestimated the duration of recip-
rocal inhibition (25 ± 11 ms), compared to the inhibition of indi-
vidual MUs (42 ± 7 ms) obtained using HDsEMG (μdiff = 19 ms, 
95% CI = [12, 26]; g = 2.16, 95% CI = [1.35, 3.13]) (Fig. 4C). This 
again highlights that individual MUs sampled with HDsEMG pro-
vide a wider range of inhibition durations.

Given that inhibition duration varies with discharge rate for CSP, 
we examined the dependence of reciprocal inhibition on motoneu-
ron firing rates. Pooled MU data across participants showed that 
inhibition duration is poorly predicted by firing rate when aggregat-
ing MU data from multiple participants (R2 = 0.00; Fig. 4D). On the 
other hand, individual LMexp yielded a moderate R2 for four of the 
eight participants (1, 3, 4, and 8; P < 0.05). For another participant, 
borderline-weak R2 was observed (R2 = 0.19, P = 0.02). Participant 
5 had a moderate R2 but a P = 0.05, whereas participants 2 and 6 did 
not have a statistically significant relationship. An LMM with ran-
dom intercept revealed a decrease of 3 ms in inhibition duration for 
every 1-Hz increase in discharge rate, with intersubject variability 
reflected by an R2 of 0.56 and an ICCsubject of 0.60 (table S4). These 
results highlight the importance of accounting for intersubject vari-
ability to accurately interpret the relationship between discharge 
rate and duration of reciprocal inhibition.

Overall, individual LMexp suggest a weaker relationship between 
reciprocal inhibition duration of TA MUs and discharge rate compared 
to that seen in CSP duration in FDI MUs. Although we sampled an 
average of 15 MUs for reciprocal inhibition and 7 MUs for CSP, firing 
rate tended to exhibit less explanatory power for reciprocal inhibition 
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LMexp (four moderate and one weak R2; P < 0.05) than for CSP LMexp 
(six strong and one moderate R2; P < 0.05). For CSP, individuals with 
fewer sampled units generally exhibited lower R2 and higher P values 
(e.g., participant 10; Fig. 1D). However, this pattern was not observed 
for reciprocal inhibition, where some participants with many sampled 
units still showed a weak R2 and, in some cases, no statistically signifi-
cant linear relationship (e.g., participant 2, Fig. 4D).

Reciprocal inhibition measured from the TA had an ~fourfold 
shorter inhibition duration and a fivefold smaller change in inhibi-
tion duration with discharge rate than the CSP for FDI (tables S1 
and S4). This could affect the relationship between firing rate and 
inhibition duration by reducing the overall influence of inhibition 
on motoneuron discharge characteristics, potentially contributing 
to a weaker correlation between reciprocal inhibition duration and 
firing rate in TA MUs compared to CSP duration in FDI MUs. Nev-
ertheless, similar to the experimental observations for the CSP, our 
results highlight the need to sample multiple units per participant to 

capture individual reciprocal inhibition effects. We also extracted 
recruitment thresholds from the initial ramp phase in seven of the 
eight participants. As with the FDI, we observed a significant nega-
tive relationship between recruitment threshold and firing rate in 
the TA, consistent with a size principle–based recruitment pattern 
(fig. S7B and table S18).

Predicting reciprocal inhibition characteristics using in 
silico modeling
We now extended our in silico approach to investigate reciprocal inhibi-
tion. We simulated the common input into a motor pool of 20 moto-
neurons of varying size (same as for CSP; table  S6) to reproduce an 
isometric contraction. Initially, we ran simulations with a 0.20-a.u. com-
mon input, which replicated experimental firing rates. However, to 
minimize background noise that affected PSTH-PSF inhibition dura-
tion estimates for some realizations, we performed additional simula-
tions with a reduced 0.15-a.u. common input. This adjustment preserved 

Fig. 3. Influence of motoneuron size on inhibition duration in silico. (A) Schematic of the computational model, showing the different common inputs that generated 
three distinct firing rates, with MN size varying per discharge rate group and with inhibition strength of fixed amplitude and duration. (B) Inhibition duration across simu-
lated motoneurons with varying size (blue dots) with each plot representing a different firing rate, with purple line representing the linear regression between capacitance 
and inhibition duration. Capacitance values represent simulated soma capacitance. Simulations were obtained using optimized parameters for participant 8 (inhibitory 
input amplitude of 2.8 a.u. and duration of 19 ms).
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Fig. 4. Characterization of reciprocal inhibition of the TA on individual motoneurons in humans. (A) Schematic of the reciprocal inhibition spinal circuit and experi-
mental setup used to measure inhibition from the TA muscle. (B) Examples of PSTH (top) and PSF (bottom) of individual MUs at different frequencies following TA muscle 
activation, with CUSUM traces in blue for each. (C) Estimation plots depicting comparison of the inhibition duration estimation methods: rectified sEMG and individual 
MUs with the PSTH-PSF method. (D) Estimation of inhibition duration of single MUs with varying firing rate across participants. Colored dots represent MUs and the linear 
regression fit per individual; black line represents the linear regression fit for the group data with respective R2 shown. (E) Inhibition duration of single MUs and their firing 
rate per individual (pink dots). Yellow lines represent the individualized linear fits (LMexp) with respective R2 and P value; blue dotted lines represent the LMM regression 
per participant.
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realistic firing rates while reducing noise interference when estimating 
inhibition duration. Inhibitory synaptic inputs received by motoneu-
rons during the steady-state phase of the isometric contractions were 
delivered every 2 s (Fig. 5A). Motoneuron size was systematically varied 
using the same parameters employed in earlier simulations (table S6). 
We recorded spike discharges across realizations, each defined by a 

combination of inhibitory inputs of varying A (1 to 3 a.u. in 0.2 steps) 
and τ (1 to 4 ms in 1-ms steps). We analyzed inhibition duration of each 
simulated motoneuron using the PSTH and PSF, keeping only units 
with detectable inhibition (Fig. 5B). The simulated firing rates and inhi-
bition durations were fitted per realization (fig. S5). For some realiza-
tions, we obtained two or fewer units with detectable inhibition, which 

Fig. 5. Characterization of reciprocal inhibition on individual motoneurons with computational modeling. (A) Schematic of the in silico computational model used 
to simulate the common input and inhibitory input delivered to MN of varying size (left), during artificial voluntary contraction with periodic inhibitory inputs to moto-
neurons delivered during the plateau phase (right). (B) Examples of PSTH (top) and PSF (bottom) of simulated MUs at different frequencies, with CUSUM traces in blue. 
(C) Simulated data points and respective linear fits for inhibition duration relationship with discharge rate across the LMsim optimized for each participant (different shades 
of blue per optimized LMsim); black line represents the linear fit for the simulated group data with respective R2 shown. (D) Experimental MU inhibition durations and firing 
rate (pink dots) with respective regression line (orange line; same LMexp as in Fig. 4E) and optimal LMsim fit for each participant (dotted purple line). Inset plots show dis-
tributions of SR as kernel density estimates and the corresponding Hedges’ g value.
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did not allow us to establish linear regressions. Across all A and τ com-
binations, with either 0.20 or 0.15 a.u. common input, R2, slope, and 
intercept showed no consistent pattern (fig. S5A). We then chose the 
LMsim that best explained the experimentally observed dependency of 
inhibition on firing rate for each of the eight individuals, as previously 
done for the CSP simulations (figs. S2D and S5C and table S5).

When comparing the optimized LMsim for each participant 
(Fig. 5C) to the experimental fits (LMexp; Fig. 5D) based on distri-
butions of square of residuals between experimental data points 
and fitted lines, we observed only small effect sizes for partici-
pants 1 and 3, while no effects were found for the other participants. 
Although the LMsim realizations did not follow a consistent selec-
tion pattern and appeared to be nearly random (fig. S5, C and D), 
they nonetheless produced fits that qualitatively resembled the ex-
perimental reciprocal inhibition data. However, the generally low R2 
values indicate that these fits may not reflect a strong or systematic 
relationship. While the biophysical models yielded fits that occa-
sionally matched the experimental data, these matches may reflect 
partial or incidental agreement.

DISCUSSION
In this work, we used HDsEMG to study the temporal properties of 
the CSP in a hand muscle (FDI) and reciprocal Ia inhibition in the 
lower leg (TA muscle). We successfully sampled multiple MUs per 
individual and demonstrated that functional inhibition duration is 
best interpreted in the context of varying MU discharge rates, em-
phasizing the need for participant-specific analysis. By measuring 
inhibition using firing rates, we are not measuring IPSP but rather 
how the inhibition affects motoneuron output. For example, large 
amplitude IPSPs may appear to be of shorter duration if they recruit 
active currents [e.g., hyperpolarization-activated current (Ih) (54, 55) 
or CaV3 currents (56, 57)], leading to earlier onset firing. We also 
used in silico modeling, which indicated that the underlying firing 
rates and characteristics of the inhibitory inputs rather than varia-
tions in S-type motoneuron size play roles in determining the func-
tional duration of inhibition across different MUs.

Participant-specific analysis of spinal inhibitory circuits
Interindividual variability is intrinsic to the human nervous system, 
as evidenced by neuroimaging (58), electroencephalography (58), 
transcranial magnetic stimulation (59, 60), and electromyographic 
and kinematic studies (10, 61, 62). Such variability influences com-
putational modeling of human neurophysiology (10,  63–65). In 
clinical neurophysiology, traditional methods such as sEMG or 
iEMG yield low-dimensional data due to their technical limitations, 
which limit the assessment of interindividual differences. For ex-
ample, the electrical response obtained with sEMG does not inform 
about individual MUs, and single MU iEMG is invasive, leading to 
sampling of only a few units (9). Such constraints result in data ho-
mogeneity being assumed a priori, leading to individual MU data 
being aggregated across participants and analyzed collectively. In 
contrast, with HDsEMG, we were able to extract multiple units per 
individual, resulting in datasets with a hierarchical structure: that is, 
MU data are nested within participants. This not only opens the 
possibility for clinically relevant participant-specific studies with 
HDsEMG but also introduces more rigor in data interpretation by 
addressing data dependencies, thus reducing the risk of false posi-
tives (66–68).

For example, recent work using iEMG established weak relation-
ships (R2  <  0.33) between CSP inhibition duration and MU dis-
charge rate (R2 = 0.30) (13), similar to our findings when we plotted 
all sampled MUs together (R2 = 0.24). However, by sampling an av-
erage of seven units per individual, unlike for iEMG (13), we were 
able to establish linear regressions for each individual and use more 
rigorous statistical approaches that account for the high (80%) inter-
individual variability of the CSP. Together, our findings highlight the 
potential of HDsEMG in the study of inhibitory spinal circuits by 
permitting participant-specific clinical insights.

CSP and reciprocal inhibition: Methodological and 
physiological considerations
We observed that interparticipant variability, the strength of inhibition, 
and the relationships between discharge rate and inhibition duration 
were not the same for the CSP measured from the FDI and reciprocal 
inhibition recorded from the TA muscle. These differences could be in-
fluenced by multiple factors such as different stimulation paradigms to 
evoke CSP and reciprocal inhibition (22), upper and lower limb moto-
neurons, and microcircuit physiologies and contraction profiles.

For the CSP, we used a stimulation protocol designed to robustly 
activate A-delta fibers mediating the withdrawal reflex (5, 27–29). To 
evoke reciprocal inhibition, we stimulated the tibial nerve at 1.1× the 
minimum H-reflex amplitude threshold to minimize activation of af-
ferents other than the largest (e.g., proprioceptive Ia afferents) and 
cross-talk contamination from heteronymous monosynaptic Ia affer-
ent excitation to the TA muscle (69, 70). Therefore our stimulation pro-
tocol likely recruited robust Ia reciprocal inhibition. The synaptic input 
received by motoneurons when evoking the CSP is considerably 
slower (71) likely because of γ-aminobutyric acid type A receptor 
activation (72), whereas reciprocal inhibition is purely glycinergic 
(73, 74); such factors could lead to differences between CSP and re-
ciprocal inhibition in the strength and timing of inhibition in moto-
neurons (75, 76). Furthermore, although TA and FDI muscles have 
similar muscle fiber composition, contractile properties, and dis-
charge rates (77), physiological differences may exist between upper 
and lower limb circuitries that may affect the strength of the correla-
tions with discharge rate. One must also consider the impact of 
active conductances in our PSTH-PSF estimations; for example, com-
putational studies have suggested that activation of Ih at more hy-
perpolarized voltages, which may have been elicited at stronger 
stimulation intensities may produce a faster rebound that could 
shorten inhibition (55). Last, one must consider that synaptic noise 
introduces variability in spike timing, which can disproportionately 
affect PSF and PSTH estimates, particularly when detecting smaller-
size functional inhibition (22, 78).

Accuracy of in silico modeling of inhibitory spinal circuits
Biophysical simulations for the CSP revealed that R2 increased with 
higher inhibition amplitude (A) and longer tau (τ). The optimized 
parameters for each participant varied widely across participants 
(Fig. 2D and fig. S3B). Some individuals, particularly those near the 
limits of the hyperparameter space, showed poor fits (e.g., partici-
pant 1), while others had a better fit to the experimental HDsEMG 
data (e.g., participant 5). In some cases, multiple realizations could 
perform similarly (participant 2) and, for others, there were fewer 
realizations with low MSE (participant 6; Fig. 2D and fig. S3, B and 
C). Together, these results highlight the complexity of simulating bi-
ological relationships for spinal microcircuits with robust inhibition.

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2025



Pascual-Valdunciel et al., Sci. Adv. 11, eadz5524 (2025)     19 September 2025

S c i e n c e  A d va  n c e s  |  R e s e ar  c h  R e s o u r c e

11 of 18

Caution must be taken about the interpretation of the robustness 
and predictive power of the in silico models. The HDsEMG data for 
reciprocal inhibition did not yield any strong R2 coefficients for the 
tested individuals (Fig.  4D), and simulating data reproducing ex-
perimental relationships with weak R2 values is inherently more 
challenging (79). The optimized parameters for most participants 
(six of eight) were located near the boundaries of the explored hy-
perparameter space, both near the lower and upper ends of A and τ 
(fig. S5, C to D), suggesting that our simulations may not have fully 
captured the range of physiological variability. While simulations 
were more realistic and performed well for circuits with robust inhi-
bition such as the CSP (fig. S3A), they were less reliable for pathways 
with shorter inhibition such as reciprocal inhibition (fig. S5, A and 
B). In these cases, multiple factors, such as synaptic noise or fewer 
inhibited spikes, may influence the linear relationships between in-
hibition duration and MU discharge rate, potentially leading to un-
realistic and oversimplified fits that happened to align with the 
experimental data (80). These findings suggest that reciprocal inhi-
bition measured in our experimental conditions, is not only physi-
ologically weaker than CSP but also more difficult to quantify and 
model accurately, thus stressing the need for caution when work-
ing with weak or noisy fits in both experimental and simulated 
HDsEMG data.

Motoneurons are complex neuronal cells characterized by an 
extensive dendritic tree, large soma, complex axonal excitability 
features, high density and variety of synaptic inputs, and diverse, 
spatially localized ion channels and metabotropic receptors (81). 
Such complexity would be best captured with multicompartment 
models, but, for our purposes, we used a simple two-compartment 
model as it has been shown that both single- and two-compartment 
models can successfully replicate variations in MU firing under 
different modulatory and synaptic inputs (10, 82–84). Our model 
used simplified ionic conductance parameters, omitting additional 
active conductances (e.g., persistent inward currents) that could 
potentially influence the simulated MU firing rates. Furthermore, 
we did not include any neuromodulatory paramaters; such effects 
would affect intrinsic motoneuron properties as well as synaptic 
inputs, which may affect inhibition duration (85). Despite these 
constraints, our in silico simulations successfully reproduced the 
observed MU firing rate-inhibition duration relationships across most 
participants, indicating that synaptic input dynamics primarily drive 
these phenomena.

In line with recent work (10), we emphasize the importance of 
participant-specific parameter considerations when generating com-
putational models for the study of spinal circuits. Biophysical models 
accounting for individual participants not only better replicate ex-
perimental findings but are also essential for understanding spinal 
connectivity and functional impact of synaptic inputs. This is because 
direct, invasive measurements are not feasible in humans (80), thus 
making in silico models indispensable for studying human spinal 
synaptic physiology.

Dependence of inhibition duration on firing rate and 
motoneuron size
Our computational model was fine-tuned on experimental data ob-
tained at 10% MVC, with simulations reflecting the behavior of 
early-recruited MU, likely representing a portion of small-sized mo-
toneurons within the FDI muscle [the “size principle” (36, 42)]. The 
differences in soma capacitance between the largest and smallest 

motoneurons in our simulated dataset did not exceed 15%. Howev-
er, incorporating parameters from fast motoneurons typically re-
cruited at higher MVCs could reveal ~twofold differences in soma 
capacitance between the smallest and largest motoneurons (Fig. 3) 
(82). Simulations restricted to small motoneurons may risk overes-
timating the uniformity of inhibition duration across the motor 
pool as they may not represent true neuromuscular physiology. Of 
note, although smaller motoneurons would be more susceptible to 
an incoming inhibitory input than their larger counterparts (42, 52), 
any potential effects of motoneuron size on inhibition duration 
would likely be more readily detectable in our simulations.

Linear increases in common input revealed greater rates of 
change in firing rate among earlier recruited units with later-
recruited units plateauing in their discharge rates at higher contrac-
tion levels (86). Furthermore, the FDI stops recruiting units at lower 
MVCs when compared to other muscles (86), suggesting that our 
simulations replicating an experimentally observed 10% MVC may 
have included enough MU diversity to detect any size-dependent 
effects on inhibition duration with varying firing rate.

While we cannot exclude the possibility that alternative parame-
ters outside the explored hyperparameter space could produce differ-
ent outcomes, we tested optimized parameters from two individuals 
with markedly different values of A (1.8 and 2.8 a.u.) and τ (7 and 
19 ms). In both cases, motoneuron size had only a minor effect on 
inhibition duration, suggesting that the strength of inhibition is 
unlikely to play a role in the observed relationship.

MUs recruited at low MVCs likely reflect activity of smaller, low-
threshold motoneurons, which are typically more resistant to degen-
eration in conditions such as motoneuron disease (87). This suggests 
that our approach—combining peripheral nerve stimulation with 
HDsEMG MU-level analysis—may remain viable even in symptom-
atic stages, offering potential insights into microcircuit-related resil-
ience mechanisms. However, we acknowledge that the generalizability 
of our findings to high-threshold MUs remains limited.

Our study highlights HDsEMG as a tool that offers unparalleled 
resolution for participant-specific studies of spinal inhibitory mi-
crocircuits. By integrating experimental data with in silico model-
ing, we further extend the scope of HDsEMG in elucidating both 
circuit function and the biophysical properties of its neuronal ele-
ments. We hope that our work encourages broader adoption of 
HDsEMG as an approach to probe motor circuit function in health 
and disease, given that its technical advantages open frontiers in the 
quality and depth of data attainable from human participants.

MATERIALS AND METHODS
Participants
Eighteen healthy participants (10 male and 8 female, aged 25 ± 
5 years, height 172 ± 10 cm) were recruited for this study. The study 
was approved by Imperial College London ethics committee (refer-
ence number 18IC4685), the experiments were conducted in accor-
dance with the Declaration of Helsinki, and all the participants 
signed a written consent form before the experiments.

Procedures
High-density sEMG
Before the application of the HDsEMG electrodes, the skin was pre-
pared by applying abrasive paste and water. For the CSP experiment, 
one HDsEMG grid (64 electrodes, 13 rows, and 5 columns; 1-mm 
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electrode diameter, 4-mm interelectrode distance; OT Bioelettronica, 
Italy) was placed on the FDI of the dominant hand. Two wet wrist-
bands were used as reference and grounding electrodes on the right 
wrist of the participants. For the reciprocal inhibition experiment, a 
customized HDsEMG grid (256 electrodes, 32 rows, and 4 columns; 
0.5-mm electrode diameter, 4-mm interelectrode distance; OT 
Bioelettronica, Italy) was placed on the TA of the dominant leg. Two 
HDsEMG grids (128 electrodes, 26 rows, and 5 columns; 0.5-mm elec-
trode diameter, 4-mm interelectrode distance; OT Bioelettronica, 
Italy) were placed on the medial and lateral head of the soleus (SOL). 
Two wet wristbands were used as reference and grounding elec-
trodes on the right ankle of the participants. All the signals from 
the HDsEMG electrodes were acquired at 2042.48 Hz in monopolar 
mode (Quattrocento, OT Bioelettronica, Italy).
Cutaneous silent period
To study CSP, the participants were asked to perform a pinching 
task between the medial side of the third phalanx of the first digit of 
the hand and the thumb finger while stimulation on the fifth digit of 
the hand was delivered. The participants were sat on a chair while 
conducting the experiment. A load cell (FC22, Measurement Spe-
cialties, US) was used to measure the force applied on the index fin-
ger. The force signals were acquired at 2042.48 Hz simultaneously 
with the HDsEMG and displayed as visual feedback. The partici-
pants were asked to perform their MVC for the pinching task. Then, 
stimuli were delivered using two stainless steel rings that were 
placed between the first and the second phalanges of the fifth digit of 
the hand. Stimulation pulse width was set to 200 μs, and conductive 
gel was applied between the ring electrodes and the skin to reduce 
impedance—extra care was taken to remove any conductive paste 
between the ring electrodes to prevent shorting. ST, defined as the 
minimum stimulation intensity that generated a subjective percep-
tion on the finger, was found for each participant, and stimulus in-
tensity was set at 10 times this ST for each participant. After 
familiarization with the execution of the force-tracking task, the 
participants were asked to perform a submaximal trapezoidal iso-
metric contraction at 10% MVC (2-s ramp up, 200-s plateau, and 2-s 
ramp down), while single electrical stimuli were delivered on the 
fifth digit of the hand (1.8 ± 0.2 s interstimulus interval; ~111 stim-
uli) during the plateau.
Reciprocal inhibition
To study reciprocal inhibition on the TA, the participants were 
asked to perform an isometric dorsiflexion task while electrical 
stimuli were delivered on the tibial nerve. The participants were sat 
on a chair while their leg was fixed into an ankle dynamometer (OT 
Bioelettronica, Italy) using straps (ankle position at 10°, 0° being the 
neutral foot perpendicular to the shank; knee at 75°). The dorsiflex-
ion force signals were acquired at 2042.48 Hz simultaneously with 
the HDsEMG and displayed as visual feedback. The participants 
were asked to perform their MVC for the dorsiflexion task. A stimu-
lation electrode (7.5 cm–by–13 cm adhesive electrode, ValueTrode, 
Axelgaard, Denmark) was placed as anode over the patella, while a 
stimulation electrode was placed as cathode (1-cm diameter cus-
tomized metal ball) over the middle part of the popliteal fossa. The 
final stimulation position of the cathode was optimized for each 
participant to elicit a clear H-reflex response in the SOL (88). Stimu-
lation pulse width was set to 1 ms, and conductive gel was applied to 
the cathode to reduce skin impedance and discomfort. The stimula-
tion intensity was selected as 1.1× of the stimulation intensity neces-
sary to elicit the minimum detectable H-reflex on the SOL (based on 

selection of monopolar channels from the medial head of the SOL). 
After familiarization with the performance of the force-tracking task, 
the participants were asked to perform a submaximal trapezoidal 
dorsiflexion contraction at 10% MVC (2-s ramp up, 300-s plateau, 
and 2-s ramp down) while single electrical stimuli were delivered to 
the tibial nerve (2.0 ± 0.2 s interstimulus interval; ~150 stimuli) dur-
ing the plateau. This stimulus rate was appropriate to avoid exacer-
bating post-activation depression (89).
In silico modeling
To model CSP and reciprocal inhibition circuits in the motor pool, 
we implemented a Hodgkin-Huxley model with dendritic and so-
matic compartments (82). The differential equations to compute the 
membrane voltage for each motoneuron was computed using Eq. 1 
and solved with the fourth-order Runge-Kutta method with a 0.2-ms 
step resolution (90, 91)

where Cm represents the membrane capacitance, and Iext is the exter-
nal synaptic input to the cell. The conductance of a specific synaptic 
or intrinsic ion channel k is denoted by gk, while v represents the 
compartment’s voltage. The term Ek corresponds to the reversal po-
tential associated with each conductance, which may represent either 
the equilibrium potential of a specific ion in the case of intrinsic cur-
rents, or the effective reversal potential for excitatory and inhibitory 
synaptic inputs. Since each compartment has distinct ion channels 
and inputs, their governing equations differ. The somatic compart-
ment includes sodium channels and both fast and slow potassium 
channels, while the dendritic compartment contains sodium chan-
nels along with excitatory and inhibitory synaptic inputs (Eq. 2)

with Csoma and Cdendrite representing the capacitance of each compart-
ment; gcoupling the electrical coupling between somatic and dendritic 
compartments—computed using axial resistivity and compartment 
geometry, modeling the soma and dendrite as cylinders; vsoma and 
vdendrite are the voltages at a given time t for each motoneuron and 
compartment; gleak are the conductances for leak currents; gNa repre-
sents voltage-gated Na+ channels; gKfast and gKslow indicate fast and 
slow-kinetics voltage-gated K+ channels, respectively.

Gating variables followed first-order kinetic equations, repre-
senting the probability of ion channels being open or closed; m and 
h govern the activation and inactivation of sodium channels, n and 
q control the activation of fast and slow potassium channels, respec-
tively, and p regulates calcium channel activation; ENa, EK, ECa, and 
Eleak are the equilibrium potentials for Na+, K+, Ca+, and leak chan-
nels; Eexcit and Einhib are the reversal potentials for excitatory and 
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inhibitory inputs; Exc represents the excitatory common input (a.u.) 
given to the motoneuron pool—in this case, a trapezoid signal—and 
Inh (a.u.) is the inhibitory input received reproducing the CSP or 
reciprocal inhibition; and Gexcit and Ginhib are the synaptic conduc-
tance for excitation and inhibition. To introduce biological variabil-
ity, each motoneuron receives an excitatory input and a white 
Gaussian independent noise that follows a distribution of N 
(0,0.25σ2). Motoneuron firing occurred when somatic voltage ex-
ceeds a threshold calculated as the product of the minimum current 
to elicit an action potential and input resistance.

The motoneuron parameters were obtained from in vivo moto-
neuron recordings obtained from S-type motoneurons from decer-
ebrated cats (44–49) and linearly interpolated across n simulated 
motoneurons, ranging from the smallest to the largest motoneuron 
sizes (see table S6). In particular, soma and dendrite length and di-
ameter were linearly varied within the range of parameters for the n 
simulated motoneurons, using these values to estimate the soma 
and dendrite conductance and capacitance for each neuron. S-type 
motoneurons were specifically chosen as they best represent the 
motoneuron pool recruited at low contraction intensities (10% 
MVC) during experimental HDsEMG recordings.

A motor pool of 20 motoneurons was simulated, each receiving 
trapezoidal common synaptic input mimicking the force trajectory 
performed in the experimental conditions: a 2-s ramp-up and ramp-
down phase with a 200-s plateau phase in between for the CSP mod-
eling, and 300-s plateau for the reciprocal inhibition modeling. 
Before the modeling of the inhibitory responses, we adjusted the 
amplitude of the excitatory common input (between 0.15 and 0.3 a.u.) 
to replicate the firing rates measured with HDsEMG from the FDI 
and TA muscles. We compared the experimental firing rate—aver-
aged across all participants—and checked that it closely mimicked 
the simulated data by computing the error between them (error ~ 0) 
and also by implementing a Kolmogorov-Smirnov test. This test con-
firmed that both datasets followed the same distribution (P = 0.48). 
After testing different amplitudes for the excitatory common input, 
we found that an amplitude of 0.2 a.u. replicated the experimental 
average firing rate well for both muscles. In addition, for reciprocal 
inhibition, an amplitude of 0.15 a.u. for the common input was simu-
lated to minimize noise effect of background firing rate on estimating 
inhibition duration, without deviating from experimentally observed 
firing rates (fig. S5).

The inhibitory input (Inh) replicating the inhibitory responses 
elicited through electrical stimulation was modeled as an alpha 
function (a.u.) with time constant (τ) and amplitude (A). This ap-
proach was chosen to capture the rapid onset of inhibition followed 
by a gradual decay (see Figs. 2A and 5A)

To reproduce the inhibitory responses observed in the experimental 
CSP and reciprocal inhibition, we conducted a hyperparameter sweep 
to explore different combinations of inhibition amplitude (A) and time 
constant (τ). This allowed us to map a parameter space that could gen-
erate motoneuron inhibition profiles consistent with the experimental 
data. The inhibitory input (Inh) to the simulated motoneurons was de-
livered every 1.8 s for CSP (Fig. 2A) and every 2 s for reciprocal inhibi-
tion (Fig. 5A). Inhibition amplitudes (A) ranged from 1 to 3 a.u., 
varying in 0.2-a.u. increments, while the time constant (τ) varied be-
tween 7 and 20 ms for CSP and 1 to 4 ms for reciprocal inhibition in 

1-ms steps. The resulting motoneuron spike trains were downsampled 
from 20K to 2 kHz to match the experimental MU spike trains, and the 
inhibitory responses were analyzed manually.

To investigate the impact of motoneuron biophysical properties, 
namely motoneuron size, on the duration of inhibition for CSP, we 
simulated a larger pool of 40 motoneurons using the previously de-
scribed paradigm. We doubled the number of motoneurons for these 
simulations to achieve a higher resolution in mapping the intrinsic 
property gradients of motoneurons. In this case, the inhibitory input 
strength was held constant within each simulated motoneuron pool, 
triggered every 1.8 s with A and τ values were selected so they closely 
matched experimental data from one of the participants (participant 
4, randomly selected;  Fig.  3A). Meanwhile, for each motoneuron 
pool simulated, the common excitatory synaptic input was varied 
(Exc varying from 0.21 to 0.28 a.u., with 0.01-a.u. increments). The 
output motoneuron spike trains were downsampled to 2 kHz, and the 
inhibitory responses were analyzed manually following the methods 
described below. The goal of these simulations was to generate moto-
neurons with different sizes that, despite receiving the same inhibi-
tory drive, discharged at similar firing rates due to differences in the 
strength of the common excitatory input.

Data analysis
HDsEMG decomposition
Monopolar HDsEMG signals were decomposed into individual MU 
spiking activity using a validated blind source separation algorithm 
(92–94). This algorithm provides a solution to the inverse EMG con-
volutive mixing model by estimating the separation vectors (MU 
filters) that yield the sources of the EMG signals (individual MU 
spike trains). Before the application of the decomposition algo-
rithm, signals were band-pass filtered (20 to 500 Hz, second-order 
Butterworth) and visually inspected to reject channels with low 
signal-to-noise ratio. Since the stimulation artifact and the presence 
of evoked compound action potentials could bias the identification 
of MUs, the signals contained in the interval 5 to 100 ms relative to 
the stimuli where not inputted into the decomposition algorithm. 
Because of the extended length of the recordings, a window of 30 s 
selected from the plateau of the isometric contraction was selected 
to extract the MU filters. Then, the MU filters were extended to the 
whole recording, and the MUs identified in the 30-s plateau were 
tracked throughout the entire trial. All HDsEMG signals were de-
composed using the same procedure.

Among all the MUs detected, only those with pulse-to-noise ra-
tio ≥ 28 dB (95), coefficient of variation of their discharge rate < 0.3 
and stable discharge patterns were retained for analysis. Although iso-
metric contractions tend to yield stable MU firing rates, stimulation-
evoked responses can alter this pattern via inhibition or excitation. 
Manual editing, which is a common postprocessing step in which MU 
spike trains identified by the algorithm are reviewed and possibly cor-
rected, was minimized in this study to avoid biasing the characteriza-
tion of these evoked effects. We implemented a highly objective and 
semiautomated editing approach to ensure consistency: MUs with im-
plausible firing statistics (e.g., abnormally low or high rates suggestive 
of decomposition errors) were systematically excluded on the basis of 
preset criteria. No manual corrections were made to the spike trains 
themselves. The only manual step involved was the visual marking of 
inhibition onset (from PSTH-CUSUM) and termination (from PSF-
CUSUM) for each MU. MU spike trains and HDsEMG signals were 
downsampled to 2 kHz for the subsequent analysis.

Inh(t) = A
(

t

τ

)

⋅ e−
t

τ (3)
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To estimate the onset of the MU action potential (MUAP) rela-
tive to the discharge times identified by the decomposition algo-
rithm, MUAPs were calculated by spike-averaging all the HDsEMG 
channels, and the channel with the highest peak-to-peak amplitude 
was selected to estimate the MUAP onset time (96). Using this chan-
nel, a threshold set at 20% of the maximum amplitude of the MUAP 
was set to define the onset time of the MUAP, which was checked 
visually for all the MUs included in the analysis.

Throughout the FDI and TA contractions, bipolar sEMG was 
continuously monitored to detect potential signs of fatigue. Specifi-
cally, we compared changes in sEMG amplitude, as well as individual 
MU firing rates, at the start and end of the voluntary contraction. 
While no clear increases in sEMG amplitude were detected, we ob-
served mild reductions in MU firing rate (~10%; fig. S6), as expected 
for sustained low-intensity contractions, there were no abrupt altera-
tions that would indicate the development of substantial neuromus-
cular fatigue. Furthermore, we are likely recording from homogenous 
motor pools (likely S-type MUs recruited at low MVCs), and any 
impacts of fatigue would affect MUs in a uniform manner. Therefore, 
in line with previous studies using longer sustained contractions at 
low MVCs (13, 14, 20), the inhibitory measures were not largely af-
fected by fatigue-related changes.
Inhibitory responses
An automatic procedure was applied to remove outliers in the dis-
charge pattern by removing instantaneous discharges above the me-
dian discharge rate plus 2.5× the SD and below 50% of the median 
discharge rate. The resultant MU spike trains were used to estimate 
the inhibitory responses with the PSTH used to estimate the latency 
(i.e., start of inhibition) and the PSF for duration (i.e., end of inhibi-
tion) as previously described (6, 7, 20). In summary, the PSTH, rep-
resenting the number of MU firing occurrences locked around the 
stimulation, and the PSF, representing the instantaneous discharge 
rates, were computed in bin widths of 1 ms. The CUSUM of both 
PSTH and PSF were calculated. The reasoning for using both PSTH 
and PSF is the following: PSTH reflects the probability of MU firing 
relative to the stimulus, thus making it suitable for determining in-
hibition onset. However, it cannot capture the full duration of inhi-
bition since it relays information from changes in firing probability. 
PSF tracks instantaneous discharge rate throughout time and since 
inhibition affects the firing rate rather than completely silencing all 
the units especially toward the rise phase of the IPSP (i.e., late, weak-
er phase), it provides a continuous measure of how long the synaptic 
inhibition persists. Therefore, by using PSTH for onset and PSF for 
end of inhibition, we ensure a more precise characterization of the 
inhibition duration (6, 7, 20). Since the stimulation artifact and the 
presence of direct motor response (M-wave) could be merged in 
the MU spike train leading to inaccurate discharge identification, 
the CUSUM was not updated in the window comprising ±20 ms 
around the stimulation. Inhibition events were identified manually 
by visual inspection and set as genuine inhibitory responses when 
the amplitude between two inflexion points in the PSF-CUSUM and 
PSTH-CUSUM was greater than the maximum variation in the pre-
stimulus window (−200 and −30 ms, limits fig. S1). This conservative 
threshold ensured that only clear and measurable inhibitory responses 
were analyzed (26). Genuine inhibitory events were detected ac-
cording to the criteria above in ~80 and ~70% of all MUs sampled 
for CSP and reciprocal inhibition, respectively. The motoneurons 
that have a weak inhibition but not significant (i.e., inhibition size 
smaller than the CUSUM limits) were not included into linear model 

generation, thus resulting in variable number of motoneurons in 
each realization for modeling. These excluded units did not exhibit 
systematic differences in baseline discharge characteristics com-
pared to the included MUs. The inhibition latency and end time 
points were selected manually in the PSTH-CUSUM and PSF-
CUSUM as the first clear deflection point of a trough, and the last 
deflection point or peak of the trough, respectively. The inhibition 
duration was computed as the time interval between the inhibition 
latency estimated in the PSTH and the inhibition end point selected 
in the PSF. The inhibition amplitude was computed as the difference 
between the CUSUM values at the end and onset of the inhibition 
time points for both PSTH and PSF and reported in the Supplemen-
tal Materials (tables S7 to S10).

To estimate the inhibitory responses in the global EMG, raw 
sEMG signals were digitally band-pass filtered (20 to 500 Hz, 
second-order Butterworth) and then rectified and segmented in 
600-ms windows around the stimuli. The rectified sEMG signals 
were relativized to the baseline activity, which was calculated as the 
averaged rectified sEMG in the time interval from 200 to 25 ms be-
fore the stimulus. The start of inhibition was determined manually 
as the time when the signal was lower than baseline for at least 5 ms, 
while the end of the inhibition was manually set as the time when 
the signal was no longer lower than baseline for at least 5 ms. Inhibi-
tion duration was estimated as the time difference between the start 
and the end points (see fig. S1).

Since inhibition measured through HDsEMG during voluntary 
contractions is influenced by discharge rate, parameters were inter-
preted in relation to MU firing frequencies. The experimental in-
hibitory responses (firing rate and inhibition duration) were fitted to 
a linear model (LMexp), and to evaluate how discharge rate explained 
variations in inhibition duration, we relied on the R2 metric as a 
measure of goodness of fit (31, 32). This R2 was calculated as

where yexp,i and yexp,i are the experimental data point and experi-
mental mean for the ith observation, respectively, and ŷpred is the 
predicted inhibition duration from the linear fit (fig. S2A). Although 
the relationship between inhibition duration and MU firing rate 
is the ideal proxy for estimating inhibition, we still report in the 
Supplementary Materials pertaining to PSTH and PSF amplitudes 
(tables S7 to S10).

For all in silico simulations, the inhibition response for each mo-
toneuron was manually quantified using PSTH and PSF methods, 
following the same procedure as for the experimental data analysis 
described above (Fig. 2B). Then, the inhibitory responses (firing rate 
and inhibition duration) obtained from each realization of the sim-
ulation were fitted to a linear model (LMsim; figs. S3A and S5, A and 
B). To select the optimal LMsim for each participant, we first input-
ted their experimental firing rate into all the candidate LMsim ob-
tained from all the realizations of the biophysical model across the 
different combinations of parameters A and τ. The selection process 
prioritized minimizing the MSE, which has the same numerator as 
the R2, ensuring that the chosen LMsim provided the best prediction 
of inhibition duration across participants by reducing overall devia-
tion from experimental data while preserving the underlying rela-
tionship between firing rate and inhibition duration (see fig. S2D)

R2
= 1 −
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Inhibition duration, PSTH and PSF amplitudes for CSP, and re-
ciprocal inhibition for the simulated data pertaining to the LMsim 
selected for each participant are reported in the Supplementary Ma-
terials (tables S11 to S16).

Although MUs with higher discharge rates are generally assumed 
to be smaller and recruited earlier (i.e., following the onion-skin mod-
el), this relationship may not universally apply to all MUs in all condi-
tions (97). To assess this relationship in our data, we estimated MU 
recruitment thresholds from the brief (2 s) ramp-up phase to 10% 
MVC before each sustained contraction. Although this ramp phase 
was not emphasized during data collection, we were able to reliably 
extract recruitment thresholds for the FDI of four participants and for 
the TA of seven participants. These estimates were then compared to 
the MU discharge rates measured during the steady contraction pla-
teau, revealing a negative correlation between MU firing rate and re-
cruitment threshold (fig. S7, A and B, and tables S17 to S18), indicating 
that the earliest recruited MUs do fire at higher rates.

For the in silico simulations exploring the impact of motoneuron 
biophysical properties on inhibition duration, the resulting moto-
neurons across all the simulations were clustered into three main 
groups based on their firing rate (11 to 12, 13 to 14, and 14 to 15 Hz). 
This clustering permitted to evaluate how cell size (i.e., capacitance) 
could explain variability in inhibition duration within fixed MU dis-
charge rate intervals (see Fig. 3B).

In our study, we used the PSTH-PSF method using ~111 stimuli 
for the FDI and  ~150 stimuli for the TA, which resulted in 1-ms 
PSTH bins typically containing one to two MU firings near the inhi-
bition phase (see Figs. 1B and 4B, top). To determine whether bin 
width or number of stimuli influenced the estimation of functional 
inhibition, we conducted additional simulations. Specifically, we 
simulated a pool of 40 motoneurons, each receiving a trapezoidal 
common excitatory input and an inhibitory input delivered periodi-
cally during the steady-state phase (same as in Fig. 2A), and we com-
pared inhibition durations using bin widths of 1  and 2 ms, and 
extended the number of stimuli delivered—250 and 500—to popu-
late the bins with more MU firings. As shown in fig. S7 (C to D), we 
found that neither bin width nor stimulus count had a substantial 
effect on the estimation of inhibition duration. Moreover, in the con-
text of HDsEMG recordings, increasing the number of stimuli would 
have substantially extended recording times, potentially enhancing 
muscle fatigue (see fig. S6) and causing discomfort, which could in 
turn could affect the quality or reliability of our measurements.

Statistical analysis
Statistical analyses, computational simulations, plots, and figures 
were generated using MATLAB R2022b (Mathworks, USA) and Mi-
crosoft Excel version 2208 (Microsoft, USA). The main statistics fo-
cused on relationships between MU activity variables, including

1) Inhibition duration and firing rate;
2) PSTH inhibition amplitude and firing rate;
3) PSF inhibition amplitude and firing rate;
4) Motoneuron capacitance and inhibition duration;
5) Firing rate and recruitment threshold.
For most of the relationships, we performed two different com-

plementary analyses as follows:

Grouped analysis
Here, we considered all the MUs as independent, and pooled ex-
perimental MU data from all participants (Figs.  1D and  4D) or 
simulated MUs pertaining to the optimized LMsim for each partici-
pant (Figs. 2C and 5C) and fitted a linear regression model (LM) 
using the fitlm function in MATLAB (98). The R2 was used to infer 
the strength of the linear regression in explaining the variance in 
each relationship and therefore the LM’s ability to capture meaning-
ful trends within the pooled data (99). For better interpretation of R2 
values obtained, we will consider the threshold values of 0.67, 0.33, 
or 0.19 as strong, moderate, and weak coefficients (fig. S2) (33, 34). 
In addition, to assess the statistical significance of the linear fit, we 
report P values obtained from fitlm (98). These P values are com-
puted from the t-statistic (t), which evaluates whether the slope (β​) 
of the regression line significantly differs from zero (100)

where SE is the standard error of the slope. The corresponding P value 
is derived from a t-distribution with degrees of freedom (n − 2), 
with statistical significance set at 0.05 (100).
Participant-specific analysis
We analyzed the data by taking into consideration intergroup vari-
abilities. Here, we fitted a linear regression model for the experi-
mental data pertaining to each participant (LMexp; Figs. 1E and 4E), 
or to the simulated MUs for each realization of the in silico bio-
physical model (figs. S3 and S5), generating linear regression mod-
els for the simulated data (LMsim). Only realizations with more than 
two MUs with detectable inhibition were fitted. For the experimen-
tal data (Figs. 1E and 4E) and the simulated MU data pertaining to 
the optimized LMsim selected for each participant (tables  S11 to 
S16), we also fitted a random intercept (model 1) and a random in-
tercept and random slope (model 2) LMM using the fitlme function 
from MATLAB under the restricted maximum likelihood fitting 
method (101) as follows

Model 1: Yi,k = β0 + Predictori,k × β1 + γsubject,k + εi,k

Model 2:  

with Yi,k representing the collected data point for “inhibition dura-
tion,” “PSTH inhibition amplitude,” or “PSF inhibition amplitude,” 
belonging to the ith observation obtained from the kth subject; β0 is 
the fixed intercept; Predictori,k is the predictor variable (“firing rate”) 
for observation i within k and β1 is its corresponding coefficient; 
γsubject,k represents the random effect intercept for the kth subject 
to capture participant-specific deviations from the fixed intercept; 
γ
Predictor
subject,k

 is the random effect slope for the predictor variable in the 
kth subject to account for participant-specific variability in the pre-
dictor and outcome relationships (e.g., slope for inhibition duration 
versus firing rate is adjusted for each participant according to their 
firing rate); and εi,k is the residual error for observation i in subject k.

From the fitlme output, we reported the predicted value for the in-
tercept and the estimated difference for the fixed effects along with re-
spective 95% CI. The fitlme also provides the SE and its 95% CI for 
each of the random effects, which we used to estimate the ICC. The 
ICC quantifies the proportion of total variance attributable to between-
participants variability, thus relaying information into the sources of 
variability in our hierarchical datasets (68, 102). For model 2, we also 

MSE =

∑

i

�

yexp,i− ŷpred,i
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report the correlation and 95% CI for the random slope and intercept 
interaction, noting that overfitting sometimes led to singular fits 
(“Singular”; see tables), indicated by a correlation of ±1. We also report 
the R2, a metric used to gauge the variance explained by the LMM (103).

For graphical representation and data interpretation, we selected 
either LMM model 1 or model 2 based on an LMM comparison. We 
used the compare function in MATLAB (104) to perform a likelihood 
ratio test, which compares each of the LMM’s log-likelihood, Akaike 
information criterion (AIC), and Bayesian information criterion (BIC) 
and provides a P value of the test. These metrics evaluate the balance 
between model fit and complexity (105), with the LMM exhibiting the 
lowest AIC/BIC, highest log-likelihood, and a P value lower than 0.05 
from the likelihood ratio test statistic being selected.

To select the optimized LMsim for each participant, we compared 
the R2 experimentally determined with recorded data (LMexp; Figs. 1E 
and 4E) with the R2 of the all the generated LMssim predicted with 
experimental firing rates (figs. S2 to S5 and Figs. 2D and 5D). The R2 
metric is a common goodness-of-fit validation metric for biophysical 
models (79) as it quantifies the proportion of variance in experimen-
tal data captured by the simulations, thus allowing to assess how well 
our in silico models aligned with the observed experimental trends 
for each participant (79, 106). For the simulations with varying moto-
neuron size (Fig. 3 and fig. S4), data obtained were grouped into three 
different firing frequency groups (11 to 12, 12 to 13, and 13 to 14 Hz) 
with varying motoneuron (MN) capacitance. A random intercept 
LMM was used to compare the changes in inhibition duration

with Yi,k representing inhibition duration for the ith observation ob-
tained for the kth motoneuron capacitance value; β0 is the fixed inter-
cept; Firing ratei,k is the firing rate group belonging to the observation 
i within k with β1 being its coefficient; γMN capacitance,k represents the 
random effect term for the kth motoneuron capacitance value; and 
εi,k is the residual error for observation i in motoneuron group k. In 
addition, to further understand the variability introduce by motoneu-
ron size in predicting inhibition duration, we calculated the ICC for 
each firing rate group through a one-way random effects ICC model 
(1, 1) (102, 107), which was estimated through the mean squares (MS) 
obtained from an one-way analysis of variance (ANOVA) performed 
with the anova function in MATLAB (108)

To provide a comparative metric when illustrating the optimized 
LMsim​ and LMexp for CSP and reciprocal inhibition (Figs.  2D 
and 5D), we used Hedges’ g to compare the distributions of squared 
residuals (SR) obtained from experimental data points against those 
from linear regressions, as follows

Hedges’ g can be used to calculate the effect size of the difference 
in residuals, with guidelines referring to small, medium, and large 
effects as 0.20, 0.50, and 0.80, respectively (109).

Data plots comparing inhibition duration estimated with the rec-
tified EMG and PSF methods (Fig.  1C), sEMG root mean square 
and MU firing rate at the start and end of the voluntary contraction 
(fig.  S6), and functional inhibition durations with different bin 
width and stimuli (fig. S7, C and D) are shown as estimations plots. 
These plots display the minimum, first quartile, median, third quar-
tile, and maximum value, with data points color-coded by partici-
pant. In addition, bootstrapped (10,000 replicas, paired or unpaired) 
mean difference and/or Hedges’ g distributions (Kernell smooth) 
are shown, along with the mean (dot) and 95% CI (whiskers). The 
“0” value is aligned with the mean of the control group, while the 
predicted mean difference is indicated by dotted horizontal lines. 
Throughout the paper, the values for inhibition duration pertaining 
to these estimation plots are reported as means ± SD. The PSTH-
CUSUM plots depict MU firing occurrence in bin widths of 1 ms 
plotted against time with respective overlapped CUSUM trace, 
whereas the PSF-CUSUM plots illustrate individual MU firing 
events throughout time with respective CUSUM line. Correlation 
graphics are shown as scatter plots with all individual data points 
plus linear model and/or LMM regression lines. Inset plots depict 
distributions of squared residuals as kernel smooth density plots 
with Hedges’ g values positioned above. Hyperparameter heatmaps 
were generated to display linear fit parameters across the different A 
and τ combinations for each realization of the in silico simulations.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Tables S1 to S18
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