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Abstract—Visible-infrared person re-identification (VI-RelID)
is a cross-modality retrieval task that aims to match images of
the same person across visible (VIS) and infrared (IR) modalities.
Existing VI-ReID methods ignore high-order structure infor-
mation of features and struggle to learn a reliable common
feature space due to the modality discrepancy between VIS
and IR images. To alleviate the above issues, we propose a
novel high-order hierarchical middle-feature learning network
(HOH-Net) for VI-ReID. We introduce a high-order structure
learning (HSL) module to explore the high-order relationships of
short- and long-range feature nodes, for significantly mitigating
model collapse and effectively obtaining discriminative features.
We further develop a fine-coarse graph attention alignment
(FCGA) module, which efficiently aligns multi-modality feature
nodes from node-level and region-level perspectives, ensuring
reliable middle-feature representations. Moreover, we exploit
a hierarchical middle-feature agent learning (HMAL) loss to
hierarchically reduce the modality discrepancy at each stage
of the network by using the agents of middle features. The
proposed HMAL loss also exchanges detailed and semantic
information between low- and high-stage networks. Finally, we
introduce a modality-range identity-center contrastive (MRIC)
loss to minimize the distances between VIS, IR, and middle
features. Extensive experiments demonstrate that the proposed
HOH-Net yields state-of-the-art performance on the image-based
and video-based VI-RelID datasets. The code is available at:
https://github.com/Jaulaucoeng/HOS-Net.

Index Terms—Visible-infrared person re-identification, high-
order structure, middle-feature learning.

I. INTRODUCTION

ERSON re-identification (ReID) [1]-[3] has drawn more
and more attention in recent years because of its critical
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role in security and surveillance. Visible-infrared person re-
identification (VI-ReID) leverages both visible (VIS) and
infrared (IR) cameras to match pedestrian images across the
bright and low-light conditions. The VI-ReID methods not
only mitigate the problems of single-modality RelD (e.g.,
occlusion and posture deformation), but also need to handle
the modality discrepancy between VIS and IR images.

To bridge the modality gap, existing VI-ReID methods
can be classified as image-level and feature-level. Image-
level methods [4], [5] often employ generative adversarial
networks (GANs [6]) to generate middle or new modality
images. For instance, to mitigate the modality discrepancy, Wei
et al. [4] introduced a reciprocal bidirectional framework that
generates the middle modality images from the latent space
by translating two opposite mappings between VIS and IR
modalities by the generative adversarial network. However,
GAN-based methods easily encounter issues such as color
inconsistency or the loss of image details, which make the
generated images less reliable for training and subsequent
retrieval.

Feature-level methods [1], [7]-[10] typically adopt a two-
step learning process. First, these methods extract VIS and IR
feature maps using weight-specific sub-networks separately.
Subsequently, the weight-shared feature extraction projects
these modality-specific features into a common feature space.
For instance, Liang et al. [11] developed a pure Transformer
network to capture long-range information from different
modalities with the modality-aware enhancement loss. To
enhance feature representation, Zhang et al. [9] have attempted
to introduce the self-distillation to consistently focus on dis-
criminative regions from the high-stage to the low-stage for
modality feature learning. The above feature-level methods
generally have three shortcomings. First, they often neglect
the high-order structural information of features, such as the
complex dependencies across feature nodes, which are crucial
for retrieving cross-modality images. Second, the traditional
methods extract person features from the low-stage to the high-
stage or enhance the feature representation by distillation from
the high-stage to the low-stage. Such strategies ignore the bi-
directional interaction between the low-stage and the high-
stage and are thus hard to explore the detailed and semantic
features. Third, existing methods try to directly minimize
the distances between VIS and IR features, or generate the
auxiliary features from one or two modalities to mitigate the
modality discrepancy, but they still lack efficient alignment
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Fig. 1. Tllustration of the proposed method. Our HOH-Net aligns different
modalities and ranges of high-order enhanced features at node-level and
region-level simultaneously to generate the reliable middle-feature agents, and
leverages the bi-directional feature enhancement to hierarchically reduce the
modality discrepancy.

and full utilization between different modality features.

To address the above issues, we propose a novel high-
order hierarchical middle-feature learning network (HOH-
Net), which is shown in Fig. 1. The HOH-Net is made up of
a high-order structure learning (HSL) module, a fine-coarse
graph attention alignment (FCGA) module, a hierarchical
middle-feature agent learning (HMAL) loss, and a modality-
range identity-center contrastive (MRIC) loss for VI-RelD.
The key innovation of our method lies in the novel formulation
of exploiting high-order structure information and hierarchical
middle-feature learning to learn a discriminative and reliable
common feature space, thereby significantly mitigating the
modality gap.

Specifically, given a VIS-IR image pair, the HSL module
captures the high-order relationships between the short-range
and long-range features that are extracted from the short- and
long-range feature extraction (SLE) module using a whitened
hypergraph. Instead of directly adding or concatenating fea-
tures from different modalities and ranges, we design an
FCGA module that aligns these features appropriately and
effectively at node-level and region-level simultaneously to
achieve reliable middle features. Besides, we propose a HMAL
loss to address the modality gap hierarchically by utilizing
middle-feature agents and executing bi-directional interactions
between different stages to enhance feature representation.
Finally, we reduce the distances among VIS, IR, and middle
center features by an MRIC loss, thereby smoothing the
learning process of the common feature space between modal-
ities. On the SYSU-MMOI1, RegDB, LLCM, and HITSZ-
VCM datasets, our method achieves impressive 76.2%, 95.1%,
65.7%, and 74.8% in Rank-1, respectively.

The main contributions of our work are as follows:

« We propose an HSL module to learn high-order structure
information of both short and long-range features. Such
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a novel way effectively models high-order relationships
across different feature nodes of each pedestrian image
and avoids the problem of model collapse.

o We design a lightweight yet effective FCGA module
that can refine the details of each high-order node-level
feature and perceive the semantic association of region-
level features simultaneously to achieve reliable middle
features.

« An HMAL loss is designed to hierarchically reduce
the modality discrepancy at each stage network by the
middle-feature agents and perform the bi-directional fea-
ture enhancement between different stages to enhance the
detailed representation and the semantic relationship of
features.

¢ An MRIC loss is designed to minimize the distances
between VIS, IR, and middle features in the embed-
ding space. This is beneficial to extracting discriminative
modality-shared pedestrian features.

This paper significantly extends our previous conference
work HOS-Net [12]. The limitations of our previous work
include the following: First, the computational cost of gen-
erating the middle features through graph attention is high
and did not make full use of the middle features. Second,
the previous method extracted modality-shared features from
the low stage to the high stage, ignoring the importance of
bi-directional interaction between different stages that can
enhance feature representation. The HOH-Net addresses these
limitations in two main ways. (1) We further develop a fine-
coarse graph attention alignment (FCGA) module to refine
the high-order node-level features and perceive the contextual
relationship between region-level features to achieve more
reliable middle features with less model complexity. (2) We
design an HMAL loss to mitigate modality discrepancy from
a hierarchical view by introducing the agents of the middle
features at each VIS and IR modality-shared feature extraction
stage. The proposed HMAL loss also enables the bi-directional
interaction of features between different stages, for obtaining
richer semantic and more detailed feature information than
the previous HOS-Net. In the experiments, we also provide
more comprehensive experimental evaluations, including com-
parative experiments, ablation studies, parameter analyses,
and visualization analyses. Compared to the previous HOS-
Net, the HOH-Net achieves lower computational cost and
superior retrieval accuracy than our previous work (the number
of parameters of the HOH-Net is reduced by 29.5%) and
the Rank-1 of our method is improved by 0.6%, 0.4%, and
0.8% on the three image-based VI-RelD datasets, i.e., SYSU-
MMO1, RegDB, and LLCM, respectively. In addition, our
method can also be easily extended to the video-based VI-
RelD field, and compared to the existing video-based methods,
our HOH-Net achieves the best 74.8% Rank-1 on the HITSZ-
VCM dataset.

II. RELATED WORK
A. Visible-Infrared Person Re-Identification (VI-RelD)

VI-ReID methods can be divided into image-level and
feature-level methods to reduce the modality discrepancy. The
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image-level methods [4], [5], [13] often minimize the modality
gap by generating middle-modality images or new modality
images. Wang et al. [13] attempted to introduce a generative
adversarial network to generate new modality images from
VIS and IR modalities by jointly aligning the pixel-level and
feature-level features. Liu et al. [5] proposed a two-stage
modality enhancement network to perform the cross-modality
style translation and optimized the structures of images for
VI-RelD. Besides, Li et al. [14] leveraged the anaglyph data
of the pedestrian as the middle modality images to reduce the
modality gap. Du et al. [15] proposed a channel-blended trans-
formation mechanism to confuse the VIS and IR information
and reduce the influence of modality-specific features, thereby
facilitating the learning of modality-shared features. However,
image-level methods easily encounter issues such as color
inconsistency or the loss of image details when generating
images by the generative adversarial network (GAN), which
is less reliable for training and subsequent visible-infrared
retrieval.

The feature-level methods seek to reduce the modality
discrepancy by mapping the features of different modalities
into a common feature space. A few methods [1], [8], [16]
leverage the weight-shared CNN or ViT as the backbone
to extract modality-shared features. Hybrid models of CNN
and Transformer [10], [17]-[20] can effectively extract short-
range and long-range features. For example, Zhao et al. [10]
enhanced the spatial-channel information of the pedestrian by
adopting the CNN-Transformer hybrid network. Chen et al.
[20] attempt to introduce the off-the-shelf key point extractors
(e.g., OpenPose [21]) to generate key point labels of person
images and achieve features based on the CNN-Transformer
hybrid network, aiming to learn modality-irrelevant features.
But the key point extractor may bring noisy labels, deterio-
rating the discriminability of final RelD features. However,
the above feature-level methods neglect the high-order struc-
ture information of features (i.e., the complex and diverse
relationships across features) that is important for VI-RelD.
To solve the above problem, our work introduces the high-
order structure learning to obtain the high-order relationships
between the short- and long-range features and avoid the
model collapse by a whitened hypergraph.

To obtain a common feature space, a lot of feature-level
methods [1], [8], [22]-[24] employ the contrastive-based loss
that directly minimizes the distances between VIS and IR
features. However, it is not a trivial task to learn a reliable
common feature space due to the large modality discrepancy
between modalities. Different from these methods that tend
to minimize the distances between VIS and IR features di-
rectly, Zhang et al. [25] tried to generate diverse VIS or
IR embeddings for learning informative feature representa-
tions to mitigate the modality gap. Jiang et al. [26] adopted
the modality-level and instance-level alignments for learn-
ing robust modality compensation. Li et al. [27] introduced
the cross-modality semantic alignment to explore the inter-
modality correlation for eliminating the modality discrepancy.
However, they ignored the importance of fine-coarse alignment
for generating reliable middle features from different modali-
ties and ranges to narrow the difference between VIS and IR
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images. Different from these methods, our method generates
reliable hierarchical middle-feature agents via the fine-coarse
graph attention alignment, greatly promoting our method to
learn a discriminative and reliable common feature space.

In addition, to improve the discriminative ability of the
network, Yang et al. [28] designed a saliency response mod-
ule that adopts the location attention mechanism to build
contextual connections between person features. Tian et al.
[29] adopted the variational self-distillation to fit the mutual
information between the input feature and its representation,
thus obtaining the multi-view information for VI-RelD. The
above methods follow low-to-high feature extraction, which
ignores the interaction between features at different stages. To
this end, the proposed HOH-Net performs the bi-directional
enhancement between different stages to enhance the detailed
representation and the semantic relationship of features. More-
over, we reduce the distances among VIS, IR, and middle
center features by a modality-range identity-center contrastive
loss, thereby smoothing the learning process of the common
feature space between ranges and modalities.

B. Graph Neural Network

Graph neural network (GNN) is a type of neural network
to process graph-structured data. Zhang et al. [30] adopted the
GNN to select correlated nodes for information aggregation,
thereby establishing the robust connection between the target
and the search regions. Zhang et al. [31] introduced the
GNN to perform the progressive relationship-mining for text-
to-image RelD. Contrasting with the vanilla graph models
that only allow connections between two nodes, Feng et al.
[32] proposed the novel hypergraph neural network (HGNN)
to represent high-order feature correlations by utilizing a
hypergraph structure. Wadhwa et al. [33] adopted the HGNN
to learn the complex relationship among the incomplete fea-
tures for the image inpainting. Han et al. [34] utilized the
power of the hypergraph to encode image information and
update the hypergraph structure by the fuzzy c-means method
that can reduce the computational burden. Nevertheless, the
above methods that rely on the HGNN may easily suffer
from the model collapse (i.e., complex and diverse high-
order correlations collapse to a single correlation) since the
small differences in the feature nodes of pedestrians and the
hyperedge can connect an arbitrary number of nodes. Different
from the above methods, this paper introduces the whitening
operation to HGNN, which can play the role of “scattering” on
the nodes of the hypergraph, thereby significantly alleviating
model collapse.

Besides, to establish the correspondence between feature
nodes, several methods [35]-[37] attempt to introduce the
graph attention network (GAT) to enhance the representation
of features. For instance, Dong et al. [35] fused the character-
istics of CNN and GAT to discover feature connections for hy-
perspectral image classification. However, the above methods
consider the correspondence between feature nodes at node-
level, and ignore the semantic connections between region-
level features that can encapsulate the context of features. In
this work, we develop a fine-coarse graph attention alignment
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Fig. 2. Overall of the proposed HOH-Net, including a high-order structure learning (HSL) module and a fine-coarse graph attention alignment (FCGA)
module. The HOH-Net is jointly optimized by Lo g, L7 R, and a hierarchical middle-feature agent learning (HMAL) loss L s 41, and a modality-range

identity-center contrastive loss Lyrrc.

(FCGA) module to leverage high-order node-level and region-
level features for achieving reliable middle features. Besides,
we also generate the middle-feature agents to hierarchically
mitigate the modality gap at each modality-shared feature
extraction stage by introducing a hierarchical middle-feature
agent learning (HMAL) loss.

III. PROPOSED METHOD
A. Overview

The overall of our proposed HOH-Net is given in Fig. 2. The
HOH-Net mainly consists of an HSL module and an FCGA
module with the HMAL loss and the MRIC loss. In this paper,
we adopt a two-stream AGW [1] as the backbone. Firstly,
we feed the VIS-IR image pair with the same identity to the
backbone for obtaining paired VIS-IR features. Then, the HSL
module introduces a whitened hypergraph network to exploit
high-order structure information of short-range and long-range
features that are obtained from the short- and long-range
feature extraction (SLE) module. Furthermore, the FCGA
module aligns different modalities and ranges of features to
generate reliable middle features effectively at the node-level
and region-level. The HMAL loss mitigates the modality dis-
crepancy hierarchically based on the middle-feature agents and
can constrain the bi-directional interaction between different
stages to improve the representation of features. Besides, in
the embedding space, we develop an MRIC loss to reduce the
distances between the VIS, IR, and middle features, greatly
smoothing the process of learning the common feature space.

B. High-Order Structure Learning (HSL) Module

Suppose that we have paired VIS-IR images, denoted as
{1 T"} with the same identity label. We first extract VIS
features BV** and IR features B*" from the backbone network,
respectively. Then, BV** and B? are passed through the SLE
module (more details of SLE can be seen in our previous work
[12]) to extract both short-range features (F%*/F%) and long-
range features (F7**/F7) for VIS and IR modalities. Thus,
we can obtain a feature set Q = {F¥s F¥s Fi" FI}. The
sizes of each feature in Q are RF*Wx*C where H, W, and
C correspond to the height, the width, and the number of
channels of the features, respectively.

The backbone network and the SLE module just capture
pixel-level and region-level dependencies within person im-
ages. However, they can not fully exploit the high-order
structural information that delineates complex relationships
among features (e.g., the head, torso, upper arm, and lower
arm are parts of the upper body while head, torso, arm, and
leg belong to the whole body). Inspired by the Hypergraph
Neural Network (HGNN) [32], we introduce an HSL module
to better capture high-order correlations, thereby enriching the
feature representations. Besides, due to the small differences
in the feature nodes of pedestrians, the conventional HGNN
tends to suffer from the problem of model collapse that leads
to the diverse and complex relationships tending to be the
same. To deal with this problem, we make good use of the
whitening operation and apply it to the hypergraph network,
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Fig. 3. The detailed network architecture of the proposed HSL module.

as shown in Fig. 3.

Different from the typical graph models that connect only
pairwise nodes, hypergraphs provide a more sophisticated
structure by allowing connections between an arbitrary num-
ber of nodes, thereby describing the high-order structural
information. For each feature within the set O, we construct
a whitened hypergraph, denoted as G = (V,&, W). Here,
V = {v1, ve, -, un} € = {er, es, -, ey} and
‘W represent the node set, the hyperedge set and the weight
matrix, respectively. N = HW and M correspond to the num-
bers of nodes and hyperedges, respectively. In this paper, each
1x1x C grid from the feature in Q is considered as a feature
node. The n-th node is represented as f,, € RY*€ and thus all
nodes can be represented by F = [f;; fo; ---; fy] € RVXC,

The conventional hypergraph network [32] is designed to
enable unrestricted node connections to capture high-order
structural information. However, it easily suffers from model
collapse (i.e., the nodes connected by different hyperedges
are the same) during hypergraph learning. To overcome this
difficulty, we introduce a whitening operation to project the
nodes into a spherical distribution and facilitate the learning
of subtle high-order relationships. The whitening operation
plays the role of “scattering” on the nodes, thereby preventing
the diverse high-order connections from converging into a
single connection. As a result, this approach enables us to
explore various high-order relationships across these features
effectively.

The whitened node f], can be obtained as

£, = (07! (F2 — ug))" + B, )
where 0 € RE*¢ denotes the lower triangular matrix that is
obtained by the cholesky decomposition oo™ = 1 (F —

1pp)T(F — 1up); pp € RYXC denotes the mean vector of
F; 1 € RV*! is a column vector of all ones; v, € R'*! and
Bn € R are the learnable affine parameters. In such a way,
F' = [f]; f5; ---; fiy] € RVN*C can represent all the whitened
nodes, where f,, € R'*C is the n-th node in F'.

Similarly to [38], we use cross-correlation to learn the
incidence matrix H € RN*M je

H = =(3(F')A(F ) U(F)"Q(F")), @

where ¥(F') € RYXC introduces the learnable parameters
to perform the linear transformation for the whitened nodes
for all the whitened nodes F’. Q(F) ¢ RV*M gets M
hyperedges of whitened nodes by trainable parameters for
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the F’. The diagonal operation in A(-) is used to capture the
context relationship of the whitened nodes and determine their
distance contributions to the corresponding hyperedges, where
A(F") € REXC. g(-) is the step function. Hence in this end-
to-end trainable way, the high-order structure information in
person features can be well exploited with H.

Based on the above H, we introduce the hypergraph con-
volutional operation [32] to aggregate high-order structure
information and the high-order relation-enhanced feature R &
RN can be obtained as

R=(I-DY?2HWB 'H'D V/2)FFO+F, (3)

where I € RV*¥ is the identity matrix; W € RM*M denotes
the weight matrix; D € RN*YN and B € RM*M represent the
node degree matrix and the hyperedge degree matrix obtained
by the broadcast operation, respectively; © € R€*C denotes
the learnable parameters. Following the above steps, we feed
features from Q into the HSL module and obtain a relation-
enhanced feature set R = {R%, RY*, RY, R}, where each
feature in R is obtained by Eq. (3).

C. Fine-Coarse Graph Attention Alignment (FCGA) Module

Some existing feature-level methods [1], [7] try to directly
reduce the distances between VIS and IR features by the loss
function, which can not achieve a reliable common feature
space because of the large modality gap. Later, some methods
[25], [26], [39] generate the auxiliary features from one or two
modalities to mitigate the modality discrepancy, but they still
lack efficient alignment and full utilization between different
modality features. In order to effectively mitigate modality
discrepancy, we leverage a fine-coarse graph attention align-
ment (FCGA) module, which aligns the features from different
modalities and ranges by combining the fine-grain graph at-
tention alignment (FGA) with the coarse-grain graph attention
alignment (CGA), so as to generate reliable middle features,
as shown in Fig. 4. In the FCGA module, the short-range
features can offer local details to long-range features, making
pedestrian feature representation more discriminative, while
the long-range features can provide contextual information
for short-range features to focus on the global relationship
between detailed features.

During the feature alignment, the fine-grain graph attention
establishes the dense connections between feature nodes that
can reserve the details of middle features. Besides, the coarse-
grain graph attention perceives the semantic associations of
regional feature nodes to improve the quality of the overall
middle feature. Specifically, we align each feature with the
other three features in R and generate a middle feature, which
involves the information from different modalities and ranges.
We take the alignment between two features RY?® and RY as
an example.

For the fine-grain graph attention alignment (FGA), first,
we establish the similarity matrix U € RY*Y between RY*
and R by using the inner product and the softmax function,
which can be formulated as

U = Softmax(RY*0, s(RE 0 1)), )
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Fig. 4. The detailed network architecture of the proposed FCGA module
(Taking aligning R“” with R” RY, and RY'® as an example).

where 0, ; € RE*T and Or,5 € RE*% are linear transfor-
mations; 7 is a reduction ratio used to perform the squeeze
and excitation, thereby reducing the number of parameters;
Softmax(-) denotes the softmax function.

Then, we adopt the graph attention [37] to perform align-
ment between RY% and R” accordlng to the srmrlarlty matrix.
Therefore, the aggregated node R”S e RVXT is

Rf:sSL _ FGA( vis Rzr)
= ReLU(U — A\Mean(redU)117)(RZ6, ;),

Jwhere FGAC(:) denotes the fine-grain graph attention align-
ment operation; 0, 5 € RC*< is the linear transformation;
A is the balancing parameter that reduces nodes with low
similarity; 117 € RV*¥ is a matrix of all ones; and ReLU(")
and Mean(-) represent the ReLU activation function that sets
similarity values less than O to 0 and the mean operation,
respectively.

Different from the fine-grain alignment that needs to refine
the details of each node-level feature, by compacting the
feature nodes (e.g., classify each node and merge similar
nodes into a single node), the representation ability of the
feature nodes can be further enhanced, and the computational
complexity of the feature alignment process can be reduced.
So, we introduce a coarse-grain graph attention alignment
(CGA) to improve the efficiency of generating intermediate
features and enhance the semantic association of the middle
features.

To begin with, we classify each feature node of RY** into Y
regions (i.e., head, arm, torso, leg, and so on) by a learnable
classifier, and achieve the total region probability P€ RVXY
that is,

P = Classifier(RY") =

(&)

. pn], (0)

where Classifier(-) is a fully connected layer which consists of
learnable parameters 6, € RE*Y; p,, € R'*Y represents the

[pla P2,

6

probability values that the n-th (n € {1,2,---
node respectively belongs to the Y regions.

Then, we denote idx, . as the index value of the n-th
feature node belonging to the z-th (z € {1,2,---,Y}) region.
The idz, . can be defined as

,N}) feature

1, if argmax (pny) =2
idwy, ., = ye{1,2,--,Y} , @)
0, otherwise

where arg max(-) returns the index of the maximum proba-
bility value in p,, = [p'n,,lv Pn.2, ) pn,Y] € RIXY, and
Pn,y means the probability value of the n-th feature node
belonging to the y-th region.

For the z-th region, we can get the index vector idx, =
lidxy », idrs,, ---, idrN,], and then the feature node set
Ovis:L with the same z-th region can be obtained as

Oy = Mask(R7", idx.), ®)
where Mask(-) sets the value of the n-th feature node to 0
when the corresponding idx,, . is 0; otherwise keep the same
value as before.

Finally, we perform an average operation on feature nodes
ovis:k = [OZTf’L,tog’L, 0" € RVXC (o obtain the
z-th compact representation OZ”L , 1e.,

N vis,L
Zn lozn

Avis,L __
OZ T vis,L ’
N +e€

(&)
where ol%L represents the n-th feature node of OYisE;
N?*s:L means the number of non-zero feature nodes in Q¥**%;
€ is a very small value (i.e., e~%) added to the denominator
for numerical stability. Similarly to Eq. (9), we can get the
other Y-1 compact feature nodes and thus the final compact
feature node set can be represented as O} € RY €,

Moreover, to improve the efficiency of feature alignment,
and explore contextual semantic associations in different
modalities and ranges. Hence, we design a coarse-grain graph
attention (CGA) to align O”“ and O, and the aligned
compact feature node set O;’T“SL € RNX% can be formulated
as

O;};.SSL CGA( vis Ozr)

= 6,.,ReLU(Softmax(0%*0, .(0% 6 .)T)) (076, ..),
(10)

where 0,. € RCOX$ , Opc € RCX%, Oy € REXS and
Ocu € RN>Y are the linear transformations. Unlike FGA,
the CGA allocates all feature nodes to the limited Y regions,
without suppressing low similarity feature regions to ensure
the efficiency of the coarse-grain alignment.

Based on the above, we employ an effective and efficient
fine-coarse graph attention alignment (FCGA) module to align
different modalities and ranges of feature nodes from node-
level and region-level, respectively, as follows

FGA( vis RZ7)
CGA( vis RIT)

FCGA(RY®,RY) =
(Im
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Through the FCGA module with a small number of pa-
rameters, a middle feature MY € RV*C can be obtained
by aligning RY* with the other three features RY, RY", and
RY* in R, that is,

My = (FCGA(RY, RY) + FCGAR", RY)+ |
FCGA(R", RE"))6, + Ry,
where 6, € R xC represents the linear transformation.
We can get the other reliable middle features similar to
Eq. (_12). Hence, we Aobtain the middle feature set R =
(M, My, My, My}

D. Hierarchical Middle-Feature Agent Learning (HMAL) Loss

We generate agents of middle features at each modality-
shared feature extraction stage to assist the network in learning
a better common feature space and reducing the modality dis-
crepancy hierarchically. For example, we generate the middle-
feature agent A; € R X1 for Stage 1 of the network based
on the above middle feature set R, that is,

Al = Gm,l(Avg(’R)), (13)

where Avg(-) is the average pooling operation; 6, is the
learnable parameter that adjusts the feature size to 1 x 1 x C
(C7 means the number of channels of the features in Stage 1).

Then, we introduce the modality discrepancy reduction
(MDR) loss to reduce the difference between the pooled VIS
feature (Fl,vis), IR feature (f‘l,ir) and middle-feature agent
(A;) in Stage 1 of the network, as follows

ﬁi}g}?l = LI(FL'L}Z’S + 1::"1.,1’7“7 2A1) + Ll(ﬁl,vim ﬁl,ir)~
14

where L;(-) represents the L1 distance; Fy ;s € RIX1xC1
and f‘l,ir € R'™1XC1 mean the VIS feature F1 s and IR
feature Fq ;. after the pooling operation, respectively.
Similarly to Eq. (13), we can achieve other middle-feature
agents (i.e., Ay, A3z, and Ay), and the total MDR loss can be
expressed as:
LMDR - _ pFioA, +£F2<—>A2 +£F3<—>A3 +£F~‘4<—>A4

HMAL MDR MDR MDR MDR
(15)

With the agent of the middle features, our method can
learn discriminative features from all the network stages and
hierarchically enhance feature representations to achieve a
reliable common feature space between different modalities.

The existing VI-ReID methods [1], [40] follow low-to-high
feature extraction, which ignores the interaction of features at
different stages. The features of the low stage contain more
detailed information, while the features of the high stage have
rich semantic relationships. In this subsection, we will use
the BFE loss to build the mutual interaction bridge and thus
achieve the bi-directional enhancement between the features
of different stages. The interactions of the high-to-low and the
low-to-high can improve the ability of the network to capture
discriminative features. In other words, the low-stage network
can focus on detailed features guided by semantic relationships
from the high-stage, and the high-stage network can enhance
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the semantic relationship by using detailed information from
the low-stage.

We take the bi-directional enhancement between the features
of Stage 1 (S7) and Stage 2 (S2) as an example. First, we
adopt the pooling operation on the features of S; and S
to obtain the feature representations F; € R*1XC1 and
F, € R1¥1XC2 (0, is the number of channels of the features
in Sy), that is, F; = Avg(F;) and Fy = Avg(F3). Here
Avg(+) is the average pooling operation; F; € RH1xW1ixCh
and Fy € RH2xW2xC2 gre the features of S; and Ss,
respectively (H1/Hy and W;/W5 correspond to the height and
width of the features in S1/55, respectively).

Then, we perform the upsample and downsample operations
on the features F; and F; to achieve F}? € R*1xC2 and
Fgown ¢ R11%C1 respectively, which can be formulated as

F'” = Upsample(F,); F°“" = Downsample(Fy), (16)

where the Upsample(-) and Downsample(-) operations make
F'? and F4°*" become the same size as Fy and F; by linear
transformations.

To provide detailed information from low-stage features to
high-stage features and transfer high-stage semantic informa-
tion to low-stage features, we adopt the L; distance to perform
the bi-directional interaction between the features of S; and
S5, which is defined as

L35 = Li(FyP, Fy) + Ly (F4" Fy).  (17)

We also perform bi-directional enhancement between S
and S3 and between S3 and Sy, and thus the final BFE loss
can be written as

CHRRL = £ L ChT. 09
The final HMAL loss, which is defined as

Lramar = Ly, + LEAaL- (19)

E. Modality-Range Identity-Center Contrastive (MRIC) Loss

To reduce the intra-class difference and increase inter-class
discrepancy, we introduce the MRIC loss to improve feature
representations and minimize the modality gaps among the
VIS, IR, and middle features. The MRIC loss consists of three
items: an intra-range loss, a middle feature loss, and an inter-
modality loss based on identity centers. The illustration of the
MRIC loss is presented in Fig. 5.

Following previous works [1], [7], we apply the holistic
and partial generalized mean pooling to each feature in R
and concatenate the pooling features to obtain the 1D middle
features, and we can get the 1D middle feature set R =
{m¥* m¥%*, m¥, m¥}. Analogously, we apply the same
pooling and concatenation operations to each feature in R
and thus obtain the 1D feature set R’ = {r¥’*, r%s ri" r&}.

The robustness of the identity centers ensures they are not
influenced by pedestrian appearance changes. Technically, we
first obtain identity centers through the weighted average of the
features of each person at the specific modality and range. For
example, the center of the relation-enhanced features for the
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‘Intra-range distance‘ l Middle-feature distance l Inter-modality distance

I Middle feature centers

® Modality representations

Fig. 5. Tllustration of the proposed MRIC loss. Different colors represent
different identities.

pedestrian with the identity ¢ at the long-range VIS modality
can be achieved as

T
oo =3 OPEim LML ) s

= zj-ilexp(zk )
where K represents the number of VIS features of each
person; r’i” € R denotes the k-th 1D relation-enhanced
long-range VIS feature with the identity ¢ in R’'.

Accordingly, we can obtain the identity center sets
Czis ({chj P 1) Cms ({cvzs P1)9 Cir ({C g 53:1)
€Y e G el 8 degil. ¢
et ; f:l), and C¥ ({&% 9 P ), where C and C represent
the center sets for the enhanced features and the middle
features at a specific range and modality, respectively; P is
the number of pedestrian identities in the training set.

The intra-range loss L35 is to reduce the distances
between the same-range VIS and IR features from the same
pedestrian while enlarging the distances between the same-
range VIS and IR features from different pedestrian, that is,

(20)

cvis cir cvis i
‘Ci[LRIC = lzzv?mc5 +£1\{RIC ) @n
where
Zl oM
MRIC Zz 1exp(./\/l“-4"8)
AB

log exp(M;;7) »
—Z —AB 22)

Y exp(MZF)

+ Z Ll(ai —
i=1

Here, M5 € RP*F denotes the cosine similarity matrix be-
tween A and 5. MA]B denotes the cosine similarity between
the i-th row (a;) of matrix .4 and the j-th row (b;) of matrlx
B; L1(-) represents the L; norm. By minimizing the LA M R 10
we can effectively decrease and increase the distance between
the same pedestrian and different pedestrians in the feature
space, respectively.

The middle-feature loss £3/ZD  reduces the distances be-
tween different middle features, which is defined as

MID Cszs cvzs vis C C is Czr
‘CJWRIC - ‘CMRIC +‘C1\/IRIC + ‘CJ\IRIC + (23)

cyis.clr Cyis cir cir cir
Lyirié + Lairic + Lairic-

8

The inter-modality loss £}/, is leveraged to mitigate the
intra-class discrepancy and enlarge the inter-class distances
between VIS, IR, and middle features, which is formulated as

VIM cvis Czr Cvis,cm,id CiT,C"”'d
Lirric = Lyric + Lyric Lygic @49
where C"*, C'", and C™ represent the identity center sets
of VIS, IR, and middle features, respectively; C¥** and C""
denote the averaged features from the same modality for each
person; C™ is obtained by averaging all the middle features
for each person. Thus, the MRIC loss is

Lyric = Lifric + Litiic + Liirico- (25)

Finally, we adopt the cross-entropy loss (Lcop [41]), the

triplet loss (L7 gy [42]), the HMAL loss (Lgarar), and the

MRIC loss (Lprrrc) to jointly train the HOH-Net. The joint
loss L is defined as

L=Lcg~+Lrrr +Lumar + Lyric: (26)

IV. EXPERIMENTS
A. Experimental Settings

Image-based Datasets. The SYSU-MMO1 [22] dataset con-
tains 491 identities. Its training set includes 395 identities with
22,258 VIS and 11,909 IR images, while the test set has 96
identities with 301 VIS and 3,803 IR images. The RegDB [43]
dataset consists of 412 identities, each with 10 VIS and 10
IR images captured by two overlapping cameras. The LLCM
[25] dataset provides 713 identities in the training set and 351
identities in the test set.

Video-based Dataset. The HITSZ-VCM dataset [44] is cap-
tured by 12 RGB and 12 IR cameras. Its training set includes
500 identities with 11,061 tracklets, while the test set contains
427 identities with 10,802 tracklets.

Implementation Details. During the training phase, all images
are resized to 3 x 288 x 144 with data augmentation [45]. For
each mini-batch, we randomly select 8 identities with 4 VIS
images and 4 IR images for each identity. We adopt AGW
[1] as our backbone network. The learning rate is warmed
up from 0.01 to 0.1 over the first 10 epochs, then decays to
0.01 at epoch 20 and 0.001 at epoch 50. We use SGD as the
optimizer with a momentum parameter set to 0.9. The number
of hyperedges M in the HSL module is set to 256. In the
FCGA module, the reduction ratio 7 is set to 32. X in Eq. (5)
is set to 1.3, 1.1, 1.3, and 1.3 on the SYSU-MMOI1, RegDB,
LLCM, and HITSZ-VCM datasets, respectively. In the FCGA
module, the number Y of person regions is set to 9, 8, 9, and
9 on the SYSU-MMO1, RegDB, LLCM, and HITSZ-VCM
datasets, respectively. For HITSZ-VCM, each video sequence
consists of 14 frames, averaged as the video representation. We
train the HOH-Net for 120 epochs. The proposed HOH-Net is
implemented in PyTorch on an NVIDIA A40 GPU.

B. Comparison with State-of-the-Art Methods

Our proposed HOH-Net is compared with some SOTA
image-based and video-based models, including LbA [39],
TSME [5], SPOT [20], DFLN-VIT [10], PMT [8], CAL [46],
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TABLE 1
COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE SYSU-MMO1, REGDB, AND LLCM DATASETS. * AND T REPRESENT THE IMAGE-LEVEL
AND FEATURE-LEVEL METHODS, RESPECTIVELY. R-1 (%), MAP (%), FLOPS (G), AND PARAMS (M) ARE REPORTED. THE BOLD FONT AND THE
UNDERLINE DENOTE THE BEST AND SECOND-BEST PERFORMANCE, RESPECTIVELY.

SYSU-MMO1 RegDB LLCM
Methods Venue All search Indoor search VIS to IR IR to VIS VIS to IR IR to VIS FLOPs | Params
R-1/ mAP R-1 /7 mAP R-T/mAP | R-1/mAP | R-1/mAP | R-1/ mAP
LbAT [39] ICCV 21 55.4/54.1 58.5/66.3 742 /676 | 615/724 | 50.8/55.6 | 43.8/53.1 5.2 243

TSME* [5] TCSVT’22 | 642/612 64.8/71.5 87471769 | 86.4/75.7 -/ - -/ - - -

SPOTT [20] TIP’22 65.3/62.3 69.4 /74.6 804 /725 | 7941723 -/ - -/ - -

DFLN-ViTt [10] TMM’23 59.8157.7 62.1/76.0 92.1/82.1 | 91.2/81.6 -/ - -/- - -
PMT? [8] AAAT'23 67.5/65.0 71.7176.5 84.8/76.6 | 84.2/75.1 | 584/62.1 | 499/57.2 18.1 85.6

CALT [46] ICCV’23 7471717 79.7 1 83.7 94.5/88.7 | 93.6/87.6 -/ - -/- - -

DEENT [25] CVPR’23 74.7171.8 80.3/83.3 91.1/85.1 | 89.5/834 | 62.5/658 | 54.9/629 16.2 41.2
CSMSF' [28] TMM’24 70.6 / 67.5 76.0 / 80.2 85.3/76.4 | 83.9/75.2 -/ - -/ - - -

CAJL* [47] TPAMI'24 | 71.5/68.2 76.0 / 78.4 85.7/79.7 | 84.9/78.6 -/ - -/ - 52 23.5
EIFJLF * [15] TCSVT’24 | 72.2/72.8 81.8/842 82.0/825 | 82.4/83.2 -/- -/ - - -
CSC-Net T [27] TCSVT'24 | 72.7/69.6 78.6 / 82.1 91.0 /864 | 89.4/857 -/ - -/ - -

DCPLNet T [48] TII'24 74.0 / 70.4 78.3 /819 943 /873 | 91.7/848 | 60.5/63.2 | 53.4/59.8 -

DMPF T [49] TNNLS'24 | 76.4/71.6 82.3/849 88.8/81.0 | 88.9/81.9 -/ - -/ - -

AGPI?* [50] TIFS 25 72.2/70.6 83.5/84.3 89.0/83.9 | 87.9/83.0 -/ - -/ - -

CSCLT [24] TMM’25 75.7172.1 80.8 / 83.6 92.2/843 | 89.7/85.1 -/ - -/ - - -
MDANet! [23] TMM’25 75.8 /73.0 80.1/ 81.8 924 /827 | 91.8/81.9 -/ - -/ - 3.6 25.5
HOS-Net' [12] AAAD'24 75.6 1742 84.2/86.7 9477904 | 93.3/89.2 | 649/679 | 564/632 14.3 834

HOH-Net! (Ours) - 76.2 / 74.5 84.4/87.2 95.1/90.7 | 93.7/89.5 | 65.7/68.3 | 56.8/63.5 11.5 58.8

TABLE II
COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE HITSZ-VCM
DATASET. * AND T REPRESENT THE IMAGE-LEVEL AND FEATURE-LEVEL
METHODS, RESPECTIVELY. R-1 (%) AND MAP (%) ARE REPORTED. THE
BOLD FONT AND THE UNDERLINE DENOTE THE BEST AND SECOND-BEST
PERFORMANCE, RESPECTIVELY.

HITSZ-VCM
Methods Venue VIS to IR IR to VIS
R-1/mAP | R-1/ mAP
AuxNet* [51] TIFS’23 54.6 /487 | 51.1/46.0
MITML [44] CVPR’22 64.5/47.7 | 63.7/453
IBAN™ [14] TCSVT’23 69.6 /51.0 | 65.0/48.8
DMAT [52] SPL24 69.9 /523 | 66.6/50.2
SAADG* [53] ACM MM’23 | 73.1/56.1 | 69.2/53.8
CSTT [54] TMM’24 72.6 /53.0 | 69.4/51.2
HOS-Net [12] AAAT'24 73.6/56.5 | 704 /542
HOH-Net! (Ours) - 748 /57.1 | 71.4 /549

TABLE III

THE INFLUENCE OF KEY COMPONENTS OF THE PROPOSED HOH-NET ON
THE SYSU-MMO1 AND REGDB DATASETS. R-1 (%), MAP (%), FLOPS
(G), PARAMS (M), AND INFERENCE TIME (S) ON THE SYSU-MMO1
DATASET ARE REPORTED.

Scttings SYSU-MMOI[ RegDB
* SLESLFCGA LD, LETF,, Earnrc| R/ mAP “R-l T mAp| rams / FOPLs / Inference
= = - 5 - - | 6997669 850/79.1|  52/235/693
2lv - - 7177694 [89.6/848  7.1/388/805
3vovo- 7331724 [9020/87.1)  92/519/827
4lv - v 7237706 [918/868)  7.8/39.8/715
slv v v - - < | 7417727 |925/880] 9975297827
6lv v v v - - | 7451730 [938/89.1|  100/533/827
71v v v - v 748733 (942/897| 11475847827
$lv v v v v - | 7551739 |945/902|  115/588/827
9lv v v - - v | 7521740 9487904 7873987827
wv v v v v v | 7621745 9501907 11515887827

DEEN [25], DARD [55], CSMSF [28], CAJ, [47], EIFJLF
[15], CSC-Net [27], DMPF [49], AGPI? [50], CSCL [24],
MDANet [23], HOS-Net [12], AuxNet [51], MITML [44],
IBAN [14], DMA [52], SAADG [53], and CST [54], and
the comparison results on the three challenging image-based
VI-ReID datasets (i.e., SYSU-MMOI1, RegDB, and LLCM)
and one video-based VI-RelD dataset (i.e., HITSZ-VCM) are

given in Tables I and II.

SYSU-MMO1. Our proposed HOH-Net obtains the impres-
sive performance among all the state-of-the-art methods on
the SYSU-MMO1 dataset, as shown in Table I. Specifically,
compared to the image-level TSME [5], EIFJLF [15], and
AGPI? [50] methods, the HOH-Net has achieved at least
3.9% increase in mAP for the all search mode. Compared
with the previous feature-level CNN-based method LbA [39]
and the Transformer-based method PMT [8], the HOH-Net
surpasses them by at least 8.7%/9.5% in Rank-1/mAP for the
all search mode. The HOH-Net introduces the bi-directional
feature enhancement between different stages and the agent
of middle features, so it outperforms our previous method
HOS-Net [12] by 0.6% in Rank-1 for the all search mode,
which shows that our proposed HOH-Net can more effectively
improve the representation of features and better reduce the
modality discrepancy.

RegDB. As shown in Table I, it is evident that the proposed
HOH-Net achieves the best performance for the VIS to
IR and the IR to VIS search modes. For the VIS to IR
search mode, compared with the feature-level SPOT [20]
method that relies on high-quality human body structure labels
to extract modality-shared features, the HOH-Net improves
Rank-1 and mAP by at least 14.7% and 18.2%, respectively.
For the IR to VIS search mode, because the importance
of high-order structure modeling is exploited, our HOH-Net
outperformsthe feature-level MDANet [23] method by 7.6%
in mAP, respectively. Besides, compared to the feature-level
CNN-Transformer hybrid methods DFLN-ViT [10] and SPOT
[20], our method improves the mAP by at least 7.9% for the IR
to VIS search mode. This further demonstrates the superiority
of our network, which is based on high-order structures and
person structure label-free for VI-RelD.

LLCM. We also report the comparison results on the third
challenging dataset LLCM in Table 1. For the IR to VIS search
mode, our HOH-Net outperforms the feature-level method
DCPLNet [48] by 3.4%/3.7% in Rank-1/mAP. Moreover, the
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HOH-Net performs significantly better than the embedding
feature expansion network (e.g., DEEN [25]) for the VIS to
IR search mode, achieving the best results with 65.7%/68.3%
in Rank-1/mAP, respectively, which shows that the HOH-Net
can learn a discriminative and reliable common feature space
to narrow the gap.

HITSZ-VCM. Our proposed method can also be well applied
to video-based VI-RelD field, and the results are shown in
Table II. We adopt the MITML [44] as the video-based VI-
ReID baseline. Compared to the image-level method IBAN
[14] which learns modality-irrelevant features by utilizing
anaglyph data from middle pedestrian images, the HOH-Net
improves Rank-1 by 5.2% for the VIS to IR search mode.
Compared to the feature-level method CST [54], our method
improves the 3.7% mAP for the IR to VIS search mode,
indicating that our method can effectively model high-order
structure information of pedestrians and better reduce the
modality gap. In addition, compared to the previous HOS-Net,
the HOH-Net outperforms the previous it by 1.2% Rank-1 for
the VIS to IR search mode. These results indicate that the
HOH-Net can adopt the HMAL loss to generate middle-feature
agents and perform the bi-directional feature enhancement to
hierarchically mitigate the modality gap between VIS and
IR video frames, thus improving the video-based VI-RelD
performance.

Model Complexity. The efficiency comparison with other
state-of-the-art methods is also given in Table I. Compared
with PMT [8], our HOH-Net method reduces FLOPs/Params
by 6.6G/26.8M, and the mAP of the indoor search mode
increased by 9.5% on the SYSU-MMO1 dataset. These exper-
iments demonstrate that the proposed HOH-Net can reduce
the modality differences between VIS and IR images more
effectively by the light-weight fine-coarse graph attention
alignment module and the hierarchical middle-feature agent
learning. In addition, compared with our previous HOS-Net
[12] method, the number of parameters of the HOH-Net is
reduced by 29.5%, and the Rank-1 of the VIS to IR search
mode is improved by 0.8% on the LLCM dataset.

C. Ablation Studies

Effectiveness of Key Components. As shown in Table III, we
conduct ablation studies to validate the effectiveness of each
key component of the proposed HOH-Net (including HSL,
FCGA, Lynar, and Lyrrrco). #1 represents the Baseline [1]
method.

SLE: By incorporating the SLE (+1.9M, +15.3G) into the
Baseline, #2 outperforms #1, achieving about 2.5% increase in
mAP on the SYSU-MMO1 dataset. This demonstrates the ef-
fectiveness of our SLE, leveraging both CNN and Transformer,
to extract both the short- and long-range person features.

HSL: By introducing HSL (+2.1M, +13.1G), #3 further
improves 3.0% increase in mAP on the SYSU-MMO1 dataset,
compared with #2. This verifies the effectiveness of HSL
adopting a whitened hypergraph network to effectively model
the high-order relationships between different feature nodes.

FCGA: By introducing FCGA (+0.7M, +1.0G) to #3, #5 has
improved accuracy by 0.8% in Rank-1 on the SYSU-MMO1

10

dataset. This demonstrates that it is effective to reduce the
modality discrepancy by learning the reliable middle features
via the fine-coarse graph attention alignment.

Lumar: Inserting modality discrepancy reduction loss
LMDE (+0.1M, +0.4G) and bi-directional feature enhance-
ment loss LBEE, . (+1.5M, +5.5G) at #5 yields Rank-1 gains
of 0.4% and 0.7% on the SYSU-MMO1 dataset, respectively.
#8 simultaneously adopts £L¥D% —and £BLE, . (o hierar-
chically mitigate the modality gap and improve the feature
representation. Compared with #5, the Rank-1 performance of
#8 has been improved by 2.0% on the RegDB dataset.

Larrrc: When we apply the MRIC loss (#10) to train the
network, we achieve the best performance results (i.e., the a
remarkable 74.5% and 90.7% mAP on the SYSU-MMO1 and
RegDB datasets, respectively). These results demonstrate the
effectiveness of the MRIC loss that can reduce discrepancies
between the VIS and IR modalities, obtaining a discriminative
and reliable common embedding space.

Though, compared to the Baseline, our method increases the
computational complexity (+6.3M) and has a higher number
of parameters (+35.3G), its performance gains are signifi-
cantly greater (e.g., our HOH-Net outperforms the Baseline
by 7.6% in mAP on the SYSU-MMOI dataset). Additionally,
the inference time of the HOH-Net is about 1.2 times longer
than that of the Baseline, yet it remains acceptable for real-
world applications. Though gradually adding modules (i.e.,
SLE, HSL, FCGA, and loss functions (Lg a4z, and Lyrric))
slightly increase complexity, they also significantly improve
the mAP from 79.1% to 90.7% on the RegDB dataset. It is
essential to highlight that the FCGA module generates reliable
middle features and middle-feature agents through the ground-
truth labels of VIS and IR images at the stage of training.
During the inference stage, the FCGA module and the loss
functions are not used for cross-modality retrieval, because the
label information is unavailable. Consequently, the inference
time of variants with and without the FCGA module and the
loss functions is the same.

TABLE IV
THE INFLUENCE OF SLE MODULE AND THE DIFFERENT NODE
RELATIONSHIP MODELING METHODS ON THE SYSU-MMO01 AND REGDB
DATASETS. R-1 (%) AND MAP (%) ARE REPORTED.

Settings SYSU-MMO1 RegDB
R-1 / mAP R-1 / mAP
Baseline 69.9 / 66.9 85.0/79.1
Baseline+SLE w/o TB 70.6 / 66.9 87.2/81.4
Baseline+SLE w/o CB 71.0 / 68.4 88.1/ 83.0
Baseline+SLE 71.7 1 69.4 89.6 / 84.8
+PConv [56] 71.9/69.2 90.2 / 85.1
+DEConv [57] 72.2 /70.6 90.7 / 85.5
+Vision-RWKYV [58] 72.3/70.4 90.5 /7 85.0
+GNN [59] 725/ 71.3 91.5/86.4
+Hypergraph [32] 72.5/70.3 91.1/86.3
+MambaVision [60] 7271719 91.4/86.7
+HSL (PCA) 72.6 /1 71.0 91.2/ 86.6
+HSL (ZCA) 73.1/71.9 91.7 /1 86.8
+HSL (Cholesky) 73.3/72.4 92.0 / 87.1

Influence of Convolutional Blocks and Transformer Blocks
in the SLE Module. We compare models trained by using the
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SLE without Transformer Blocks, denoted as “Baseline+SLE
w/o TB”, the SLE without Convolutional Blocks, denoted as
“Baseline+SLE w/o CB”, and the whole SLE, to evaluate
the influence of the SLE module, as shown in Table IV.
We adopt 3 convolutional blocks and 2 Transformer blocks
to achieve different ranges of features as our previous work
[12]. From Table IV, we can observe that when convolutional
blocks and Transformer blocks are used in the SLE module, it
achieves 71.7%/69.4% and 89.6%/84.8% in Rank-1 and mAP
on these two datasets, respectively. Especially, the SLE module
surpasses the ‘“Baseline+SLE w/o TB” and “Baseline+SLE
w/o CB” by 1.1% and 0.7% in Rank-1 on the SYSU-MMO1
dataset, respectively. This indicates that the SLE can effec-
tively explore different ranges of person features by combining
CNN with Transformer.

Effectiveness of the Different Node Relationship Modeling
Methods. To verify the effectiveness of our proposed HSL
module with Cholesky, we compare it with the different node
relationship modeling methods, i.e., PConv [56], DEConv
[57], Vision-RWKV [58], GNN [59], Hypergraph [32], and
MambaVision [60] under the setting of “Baseline+SLE [12]”.
The PConv and DEConv methods adopt the convolution kernel
layer to extract features, and the GNN method models node
relationships by discovering fixed nearest neighbor feature
nodes. Different from the PConv, DEConv, and GNN that only
focus on the limited node relationship modeling, our proposed
HSL (Cholesky) module provides a more sophisticated struc-
ture by allowing connections between an arbitrary number
of whitened nodes. As shown in Table IV, our proposed
HSL (Cholesky) outperforms the DEConv by 1.8% in mAP
on the SYSU-MMO1 dataset. Compared to the long-range
spatial-channel mix-based Vision-RWKV [58] and the state
space model-based MambaVision [60], the HSL (Cholesky)
method outperforms them by 1.0% and 0.6% in Rank-1 on
the SYSU-MMOI dataset, respectively. Especially, compared
to the GNN, the proposed HSL (Cholesky) brings 1.1%
and 0.7% improvements in mAP on the SYSU-MMOI1 and
RegDB datasets, respectively. It is important to note that
the original hypergraph [32] allows unrestricted connections
between nodes to capture high-order structural information,
but it might suffer from the influence of model collapse during
the hypergraph learning. We also analyze the impact of dif-
ferent whitening methods (i.e., PCA, ZCA, and Cholesky) on
hypergraphs. Compared to hypergraph [32], our proposed HSL
with PCA/ZCA/Cholesky can explore high-order relationships
and achieves 71.0% (+0.7%), 71.9% (+1.6%), and 72.4%
(2.1%) in mAP on the SYSU-MMO1 dataset, respectively.
This indicates that our HSL module can effectively model
the complex and diverse high-order structure relationships
between pedestrians, and can avoid the model collapse (i.e.,
the nodes connected by different hyperedges are the same),
thus achieving discriminative pedestrian features.

Influence of the FCGA Module and the HMAL Loss.
In this subsection, we evaluate the effectiveness of the FGA
and CGA in the FCGA module, as shown in Table V.
“w/o FGA” and “w/o CGA” refer to the FCGA module
without FGA or CGA, respectively. We also compare models
trained with and without HMAL loss, denoted as “+FCGA

IEEE Transactions on Circuits and Systems for Video Technology

TABLE V
THE INFLUENCE OF THE FCGA MODULE AND THE HMAL LOSS ON THE
SYSU-MMO1 AND REGDB DATASETS. R-1 (%) AND MAP (%) ARE

REPORTED.

Settings SYSU-MMO1 RegDB

R-1/ mAP R-1/ mAP
Baseline+SLE+HSL 733 /724 92.0 /87.1
+FCGA w/o FGA 73.6 /725 92.4/87.6
+FCGA w/o CGA wlo LHMAL 73.5/72.4 92.1/87.3
+FCGA 74.1/72.7 92.5/88.0
+FCGA w/o FGA 74117729 93.2/89.1
+FCGA w/o CGA w/ Ly ar wlo Agents 745 /734 93.4/89.2
+FCGA 74.6 /739 93.7/89.8
+FCGA w/o FGA 7471732 93.9/89.6
+FCGA w/o CGA w/ LHpmAL 74.5 /1733 94.5 / 90.0
+FCGA 75.5 /739 94.5 / 90.2

w/ Lygymar” and “4FCGA w/o Lyyap”, to evaluate the
influence of the HMAL loss. Besides, we denote the FCGA
using the Lpprar, without middle-feature agents and with
middle-feature agents as “+FCGA w/ Lgnar w/o Agents”
and “+FCGA w/ LyaL”, respectively.

As shown in Table V, on the SYSU-MMOI1 dataset, the
Rank-1 of “+FCGA w/o FCGA w/o Lgaar” and “+FGA w/o
CGA w/o Lypar” methods are 0.3% and 0.2% higher, re-
spectively, than the “Baseline+SLE+HSL” method. When we
combine the FGA and the CGA without L4, (“+FCGA
w/o Lyaar”), it achieves 74.1% in Rank-1 on the SYSU-
MMO1 dataset, compared with the “Baseline+SLE+HSL”
method. This shows the positive influence of the FCGA
module that aligns features at the node-level and region-level
perspectives simultaneously to achieve reliable middle features
and thus mitigate the modality gap. We adopt the HMAL
loss to hierarchically reduce the modality discrepancy with
the agents and exchange detailed and semantic information
between low- and high-stage networks (i.e., “+FCGA w/
Lumar”) and achieve 73.9% in mAP on the SYSU-MMO1
dataset. Furthermore, “+FCGA w/ Lyararz” achieves 0.8%
higher Rank-1 than the method without middle-feature agents
(i.e., “+FCGA w/ Ly ar w/o Agents” ) on the RegDB
dataset. These results prove that middle-feature agents and
the MDR loss can effectively and hierarchically reduce the
modality gap.

TABLE VI
THE INFLUENCE OF THE FEATURE ENHANCEMENT IN THE HMAL LOSS
ON THE SYSU-MMO01 AND REGDB DATASETS. R-1 (%) AND MAP (%)
ARE REPORTED.

Settings SYSU-MMO1 RegDB
R-1/ mAP R-1/ mAP
Baseline+SLE+HSL+FCGA 7417727 92.5/88.0
+Lpvar wlo Low < High 74917733 94.0 / 89.5
+LpavaL wWlo Low — High 75.21/73.5 93.9 /1 89.4
+LHMAL 75.5/73.9 94.5/90.2

Influence of the Feature Enhancement Loss. Table VI shows
that the influence of adopting different feature enhancement
strategies (i.e., one-way feature enhancement (“+Lgprar W/0O
low < high”, Ly arp w/o Low — High, +Lgpar w/o
Low <« High”, and “+Lpga a4z W/o low — high”), and bi-
directional feature enhancement (“+Lgprar” and “+Lgarar”
)). As shown in Table VI, compared to the one-way fea-
ture enhancement strategy, the BFE loss (“+Lgp41”) can
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TABLE VII
THE INFLUENCE OF THE HMAL LOSS AT DIFFERENT STAGES OF THE
BACKBONE NETWORK ON THE SYSU-MMO1 AND REGDB DATASETS.
R-1 (%) AND MAP (%) ARE REPORTED.

Settings SYSU-MMO1 RegDB

i R-1/ mAP R-1/ mAP
Baseline+SLE+HSL+FCGA 74.1 /727 92.5 / 88.0
+L AL (Stages 1-2) 7471729 94.1/90.1
+L AL (Stages 2-3) 7521737 94.2/89.9
+Lpnar (Stages 3-4) 74.8 /73.1 93.6 / 89.5
+L AL (Stages 1-4) 75.5 /739 94.5 / 90.2

bring about 0.4% and 0.7% improvements in mAP on the
SYSU-MMO1 and RegDB datasets, respectively. Notably, the
“+Lpamar” surpasses the “Baseline+SLE+HSL+FCGA” by
2.2% in mAP on the RegDB datasets. These results demon-
strate that our HMAL loss can better improve the ability of
the network to capture discriminative features by performing
the bi-directional feature enhancement.

The Influence of the HMAL Loss at Different Stages. We
analyze the influence of the different stages of the backbone
network for the HMAL loss on the SYSU-MMO1 and RegDB
datasets to verify its effectiveness. As shown in Table VII,
we can observe that the HAML loss achieves the best 75.5%
Rank-1 when applied to all the weight-shared feature extrac-
tion network stages (i.e., Stages 1-4 of the backbone). This
indicates that the HMAL loss can more effectively reduce the
modality gap and obtain richer semantic and more detailed
feature information when all the stages are equipped.

TABLE VIII
THE INFLUENCE OF EACH TERM IN THE MRIC LOSS ON THE
SYSU-MMO1 AND REGDB DATASETS. R-1 (%) AND MAP (%) ARE

REPORTED.
. SYSU-MMO1 RegDB

Settings

R-1/mAP | R-1/mAP
Baseline+SLE+HSL+FCGA+LpaaL | 755/739 | 94.5/902
+Larric who LYER wio LYIM | 756/740 | 9487903
+LyRIC WO L3 o wio LYIM | 7557743 | 9477902
+Larric who LY 7571742 | 94.9790.6
+LyRIC 762/745 | 95.1/90.7

Influence of Each Term in the MRIC Loss. To enhance
feature representation and align VIS, IR, and middle fea-
tures, we propose the MRIC loss (Ljrrrc), composed of
three terms: L3Fp;0, LMD and L£Y/M .. As shown in
Table VIII, ablation studies on the RegDB dataset con-
firm the effectiveness of each term, with mAP progres-
sively increasing from 73.9% to 74.5% as more compo-
nents are included. Compared with the model trained without
MRIC (i.e., “Baseline+SLE+HSL+FCGA+L g 41”), adding
the complete MRIC loss yields a 0.7% Rank-1 improvement
on SYSU-MMO1 dataset, which demonstrates that the HOH-
Net trained with the MRIC loss can obtain a more discrimi-
native and more reliable common feature space.

Influence of the Stage Locations of the Key Components.
Our key components (SLE, HSL, and FCGA) can be easily
integrated at any stage of the backbone network. In this paper,
we utilize the AGW as the backbone for the imaged-based
VI-RelID task, which is structured into five stages (i.e., Stages
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Fig. 6. The influence of the number M of hyperedges, the balancing
parameter A in Eq. (5), and the number Y of person regions in the FCGA
module on the SYSU-MMOI1 and RegDB datasets. R-1 (%) and mAP (%) are
reported.

0-4). We plug these key components into different stages of
the backbone and evaluate their performance in Table IX. As
shown in Table IX, inserting these components after Stage
3 yields the best performance. This indicates that high-level
semantic features from Stage 3 assist the network in better
capturing high-order structural information across modalities
and ranges, leading to more reliable intermediate features.

TABLE IX
THE INFLUENCE OF THE BACKBONE STAGE LOCATIONS OF THE KEY
COMPONENTS ON THE SYSU-MMO1 AND REGDB DATASETS. R-1 (%)
AND MAP (%) ARE REPORTED.

Settings SYSU-MMO1 RegDB
' R-1/ mAP R-1/ mAP
Baseline 69.9 / 66.9 85.0/79.1
plugged after Stage 0 71.8 /683 93.1/884
plugged after Stage 1 70.7 1 67.2 93.8/89.2
plugged after Stage 2 72.3/69.8 94.1/89.5
plugged after Stage 3 76.2 / 74.5 95.1/90.7
plugged after Stage 4 74.2 1 72.0 93.5/88.9
TABLE X

THE INFLUENCE OF THE NUMBER OF FRAMES ON THE HITSZ-VCM
DATASET. R-1 (%) AND MAP (%) ARE REPORTED.

HITSZ-VCM

Frames VIS to IR IR to VIS
R-1/mAP | R-1/ mAP

12 729 /544 | 70.7/53.4
13 73.5/56.1 | 72.0 /545
14 74.8 /571 | 71.4/54.9
15 73.1/55.7 | 71.2/53.9
16 72.6 /552 | 70.6 /53.5

Influence of the Hyperparameters. We evaluate the influence
of the number M of hyperedges, the hyperparameter A\ in
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TABLE XI

THE INFLUENCE OF THE DIFFERENT REDUCTION RATIO VALUES ON THE

SYSU-MMO1 AND REGDB DATASETS. R-1 (%), MAP (%), FLOPS (G),
AND PARAMS (M) ARE REPORTED.

Settings SE_SIU ; I:AHIXII()) 1 Rﬁe/g]rjniP } FLOPs | Params
HOS-Net [12] 75.6 /742 94.7 1 90.4 14.3 83.4
HOH-Net (r=8) 76.1 /74.6 94.6 / 90.5 13.6 61.8
HOH-Net (r=16) 75.7174.2 94.9 / 90.6 12.2 59.8
HOH-Net (r=32) 76.2 / 74.5 95.1/90.7 11.5 58.8
HOH-Net (r=64) 74.8 1 73.6 94.2/89.9 ‘ 11.1 58.3

Eq. (5) and the number Y of person regions in the FCGA
module in the ranges of {32, 64, 128, 256, 512}, {0.9, 1.1,
1.3, 1.5, 1.7} and {6, 7, 8, 9, 10}, respectively. The results are
illustrated in Fig. 6. We first discuss the impact of parameter
M on the performance of the proposed HOH-Net. As shown
in Fig. 6, the best choice of M is 256 for our HOH-Net on
the SYSU-MMO1 and RegDB datasets. This shows that an
appropriate number of hyperedges can effectively model high-
order structure information. Then, we discuss the influence of
the parameter A\ on model performance by reducing the nodes
with low similarity. From Fig. 6, we can observe that the best
performance is achieved when the values of \ are set to 1.3 and
1.1 on the SYSU-MMOI and RegDB datasets, respectively.
We also change the number Y of person regions from 6 to
10 to explore the most effective setting of the proposed HOH-
Net. As shown in Fig. 6, the best results of the HOH-Net are
achieved when Y = 9 and Y = 8 on the SYSU-MMO1 and
RegDB datasets, respectively.

We also analyze the impact of different video frames on
video-based VI-RelD, and the corresponding results are shown
in Table X. From Table X, we can observe that the best mAP
performance is achieved when using 14 frames. This indicates
that our HOH-Net is capable of extracting discriminative
pedestrian features according to the temporal information, and
effectively reduces the modality gap by reliable middle-feature
feature agents, thereby improving the performance of cross-
modality retrieval in video-based scenarios.

Besides, we introduce the squeeze and excitation by using
the reduction ratio r to reduce the number of trainable param-
eters in the HOH-Net. As shown in Table XI, when we set the
reduction ratio r to 32, the proposed HOH-Net achieves 76.2%
and 95.1% in Rank-1 on these two datasets, respectively, and
compared to the HOS-Net [12], the number of parameters of
the HOH-Net is reduced by 29.5%, while our method can
efficiently generate middle features.

D. Visualization Analysis

Visualization of High-Order Relationship. As illustrated in
Fig. 7, we present visualizations of the high-order relationships
derived from the traditional hypergraph network and our
whitened hypergraph network on the SYSU-MMO1 dataset.
For the traditional hypergraph network, many nodes share the
same hyperedges, and thus the diverse and complex high-order
connections collapse into a single connection. In contrast,
our whitened hypergraph network prevents model collapse by

IEEE Transactions on Circuits and Systems for Video Technology

Hyperedge

Hyperedge

Node
Node

(a) Traditional Hypergraph

(b) Our Whitened Hypergraph

Fig. 7. Visualization of the high-order relationship obtained by different
methods. In each column, the green square represents that the node is
connected by a hyperedge, while the gray square represents that the node
has no connections.
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Fig. 8. (a-i) give the distributions of the intra-class and inter-class similarities
of cross-modality features from the initial network, the Baseline, and our
HOH-Net on the SYSU-MMOI, RegDB, and HITSZ-VCM datasets, respec-
tively. Intra-class and inter-class represent the positive (for the same identity)
and the negative (for the different identities) matching from the VIS and
IR modalities, respectively. The larger the distance D and the smaller the
overlapping area E, the better the model performance.

using a whitening operation to project the feature nodes into
a spherical distribution.

Feature Distribution Visualization. We randomly select
90,000 positive and negative pairs from the query and gallery
sets and visualize the cosine similarity distributions on SYSU-
MMO1, RegDB, and HITSZ-VCM (see Figs. 8(a-i)). As
shown in Figs. 8(b—c), (e—f), and (h-i), the HOH-Net shows
larger intra-/inter-class distribution differences (D2, Dy, and
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Fig. 9. (a)/(d)/(g), (b)/(e)/(h), and (c)/(f)/(i) visualize the distributions of
sample features from the initial network, the Baseline, and our HOH-Net
by t-SNE [61] on the SYSU-MMOI1, RegDB, and HITSZ-VCM datasets, re-
spectively. Circles and crosses represent features from VIS and IR modalities,
respectively. Different colors represent different people. A total of 15 persons
are chosen from the query and gallery sets of the SYSU-MMOI, RegDB, and
HITSZ-VCM datasets, respectively.

Dg) and smaller overlap areas (F,, F4, and Eg), compared
to Baseline (Dy, D3, Ds, Eq, Es, and Ej), respectively.
This demonstrates that the proposed HOH-Net effectively
reduces the modality gap between different modalities. We also
use t-SNE [61] to illustrate the feature distributions obtained
by different retrieval results produced by both our method
and the Baseline on the SYSU-MMO1, RegDB, and HITSZ-
VCM datasets, as depicted in Figs. 9(a-i). Compared with the
Baseline (see Figs. 9(b), (e), and (h)), the distance between
features of the same pedestrian obtained by our method (see
Figs. 9(c), (f), and (i)) is more compact on the SYSU-
MMO1, RegDB, and HITSZ-VCM datasets. This phenomenon
demonstrates that our HOH-Net is able to achieve a more
discriminative common feature space for effective VI-RelD,
and the discrepancy between VIS and IR modalities can be
effectively mitigated.

Retrieval Results. To further evaluate the effectiveness of
our proposed HOH-Net, we provide the attention maps and
retrieval results produced by both the Baseline and our method
on the SYSU-MMO1 and HITSZ-VCM datasets, respectively.
As illustrated in Fig. 10(b), different from the Baseline, our
HOH-Net exhibits a superior ability to focus on discriminative
features, reducing the impact of pose variations, background
interference, and modality gap. From Fig. 10(c), we can
observe that our HOH-Net can perform more accurate cross-

14

Retrieval results from R-1 to R-10 on the SYSU-MMO1 dataset

Baseline

HOH-Net

Baseline

HOH-Net

Fig. 10. Attention maps and retrieval results obtained by the Baseline and the
proposed HOH-Net on the SYSU-MMO1 and HITSZ-VCM datasets. (a) Query
images. (b) Attention maps. (c) Retrieval results (Green: correct retrieval, Red:
incorrect retrieval).

modality pedestrian retrieval, while the Baseline is easily
affected by modality discrepancy, resulting in poor retrieval
results.

V. CONCLUSION

In this paper, we propose a novel HOH-Net mainly con-
sisting of the HSL module, and the FCGA module with the
HMAL loss and the MRIC loss for VI-ReID. The HSL module
exploits diverse and complex high-order structure information
of shot- and long-range features that are extracted from the
SLE module and prevents model collapse by employing a
whitened hypergraph. Moreover, the FCGA module gener-
ates reliable middle features from the node-level and region-
level perspectives. In particular, the HMAL loss hierarchically
reduces the modality gap by leveraging the middle-feature
agents and performs the bi-directional feature enhancement
between different stages to obtain the discriminative features.
Finally, the MRIC loss minimizes the distance between the
VIS, IR, and middle features, thereby establishing a discrim-
inative and reliable common feature space. The quantitative
and qualitative experiments on the four challenging VI-RelD
datasets confirm the superiority of the HOH-Net in comparison
with several state-of-the-art methods. Our HOH-Net achieves
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impressive performance, but one limitation of our method
could be the effective learning with limited data, which is also
a common disadvantage of VI-ReID methods. In future work,
we will focus on few-shot or zero-shot learning and further
improve the generalization performance of the model.
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