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Abstract
Augmented reality (AR) technologies offer unique opportunities to explore funda-
mental ideas in calculus by blending digital and physical worlds, yet realising the 
full potential of this hybrid reality requires a degree of creativity as we grapple with 
existing theoretical constructs and seek new ones. This study centres on a single-
participant case: Karim, a 15-year-old secondary-school student who used an AR 
prototype “Touch the Derivative” to investigate relationships between functions and 
their derivatives. In this paper, we examine how AR technologies can support rich 
mathematical inquiry by rethinking two interconnected elements: affordances and 
feedback. We analyse the crucial role of the physical world within AR environments 
through two intersecting perspectives: the spatial affordances enabled by six degrees 
of freedom (6DoF), and the physical, cognitive, and contextual dimensions of AR. 
We then examine how AR facilitates various forms of feedback—through Karim’s 
interactions with both the researcher and the AR environment itself—highlighting 
the role of feedback to support understanding and engagement. We conclude by 
exploring how intentionally designed feedback mechanisms—enabled by analytics 
and automation—can amplify the affordances of AR and provide more impactful, 
inquiry-based learning experiences.
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Introduction

Augmented reality (AR) offers a new environment for the exploration of, and engage-
ment with calculus, but designing AR tasks for students to explore its foundations is a 
highly complex and multifaceted endeavour (Akçayır & Akçayır, 2017). What insights 
can be gained from existing research on AR in calculus education, particularly when 
it comes to introducing students to differential calculus? The first thing to address is 
the technology itself; what are the affordances unique to AR, and in which contexts 
could AR be more effective than other digital technologies (Radu et al., 2023)? To help 
unpick this, it may help to understand the problem AR was trying to solve. AR was ini-
tially conceptualised as a “see-through” form of virtual reality (VR) (Caudell & Mizell, 
1992), resulting in the creation of a unique environment which supplements the physi-
cal world, rather than completely replacing it (Azuma, 1997). This hybrid nature is pre-
cisely what sets AR apart from VR and other digital tools.

If AR environments are to be introduced into educational settings, do pedagogical 
approaches exist that are more conducive to AR, or is it time to develop new theo-
ries? Feedback is a vital component of any learning environment; physical, digital, or 
hybrid. Educators must design feedback that is timely, specific, and supportive, guiding 
students through their explorations without stifling their autonomy (Laurillard, 2016). 
This demands not only a deep understanding of direct feedback embedded in AR sys-
tems but also the way in which learners can receive feedback from other subjects within 
the shared AR learning environment (such as teachers and peers). How can we strike 
the perfect balance of knowing when to intervene to correct misconceptions and when 
to step back, allowing students to wrestle with the concepts and make their own “dis-
coveries” (Gravemeijer & Doorman, 1999)? Indeed, the metaphorical point of “perfect 
balance” will differ for each student. By exploring these questions, we can better under-
stand the future of calculus education and the role of AR in shaping it.

In this paper, we examine how AR technologies can support rich mathematical 
inquiry by rethinking two interconnected themes: affordances and feedback. While 
these can often be treated separately in educational design, we argue that their con-
nection is vital—affordances shape what is possible within an AR environment, 
while feedback influences how learners interact with those possibilities. In this 
sense, inquiry acts as a natural bridge: for inquiry to flourish, learners must both 
perceive what actions are possible (affordances) and receive meaningful guidance 
on those actions (feedback). Guided by this view, we ask how feedback mechanisms 
can be designed to meaningfully exploit the unique affordances of AR and thus sup-
port deeper mathematical inquiry. We address the question through a case study of 
“Touch the Derivative”, an AR prototype that enables a student, “Karim”, to explore 
relationships between functions and their derivatives. Hence our reference to “the 
Karim case”. After a brief literature review, we analyse the case from two comple-
mentary angles: (1) the spatial affordances of six degrees of freedom (6DoF) and 
the impact of situating artefacts in the “real” world and (2) the multi-level feedback 
that emerges from the AR system and interactions with the facilitator. We conclude 
by synthesising these analyses to offer design directions for future AR environments 
that seek to cultivate more impactful, inquiry-based learning experiences.
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Literature Review

We begin by analysing how early calculus concepts are introduced in the English 
curriculum, then examine the use of digital tools (pre-AR) in teaching introductory 
calculus. The review transitions to recent AR studies, focusing on how this technol-
ogy has been applied in calculus education, with particular attention to the spectrum 
of feedback mechanisms afforded by AR environments, such as physical artefacts, 
task-level, and process-level feedback.

Pedagogical Approaches Within the Teaching and Learning of Differential 
Calculus

The birth of calculus marked a pivotal moment in mathematical history. Since the 
early twentieth century, calculus has become a standard component of mathemat-
ics education for most 16-year-olds in European schools (Zuccheri & Zudini, 2014). 
The derivative, a central concept in calculus, is often defined as the instantaneous 
rate of change—the ratio of the instantaneous change in the dependent variable to 
that of the independent variable (Stewart, 2020). In mathematics classrooms, the 
independent and dependent variables are usually introduced in abstract form: x and 
y, respectively. Later, this concept can be extended to include velocities and the 
gradients of tangents (Strang & Herman, 2016)—typical contexts for applied math-
ematics problems, which often intersect with physics. As such, derivatives are criti-
cal in the interpretation of rates of change across natural sciences, engineering, and 
social sciences (Stewart, 2020; Strang & Herman, 2016).

In England, if teachers adhere strictly to the sequence outlined in the National 
Curriculum, students will start with a formal definition of the gradient, then 
move to the “First Principles Differentiation” (Department for Education, 2016). 
Although the new notation may be met with initial bewilderment, it seems pro-
cedural fluency is much easier to achieve than an understanding of the underly-
ing concepts (Kaput, 1994). However, the mechanical “tricks” of calculus may be 
limited, and conceptual shortcomings can be exposed when students encounter 
unfamiliar contexts (Doorman & van Maanen, 2008). Furthermore, studies have 
shown that students often struggle to understand the relationship between a func-
tion and its derivative, particularly when interpreting their graphs or applying them 
to authentic real-life problems (Hilmi et al., 2021).

The “calculus reform movement” of the  1990 s, which originated in the USA, 
initiated a significant shift in pedagogical approaches to calculus instruction. This 
movement advocated for a more conceptual approach, utilising multiple represen-
tations—graphical, numerical, and symbolic—to deepen student understanding 
(Doorman & van Maanen, 2008). This aligned with the arrival of graphic calcula-
tors as new mathematical tools, and the emphasis shifted towards fostering an intui-
tive grasp of fundamental concepts like derivatives, moving beyond traditional pro-
cedural instruction. The reform instigated the rollout of graphing calculators across 
leading curricula in the West: the Advanced Placement (AP), International Bacca-
laureate (IB), A-Levels (Hallett, 2006). In fact, some calculus questions across these 
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curricula are so intricate that students would be at a disadvantage without the use of 
a calculator (Torres-Skoumal et al., 2014).

Pedagogically, the tension between direct instruction and inquiry-based learn-
ing has been a persistent theme in debates surrounding calculus education. Should 
educators lead students through a carefully structured progression of concepts, or 
should students be guided to “rediscover” the principles of calculus for themselves? 
Freudenthal (1991) advocated for guided reinvention, arguing that true understand-
ing emerges not from passively receiving knowledge but from actively constructing 
it. In this case, Gravemeijer (2004) encourages instructional designers to shift their 
focus from decomposing expert knowledge into digestible pieces to imagining stu-
dents elaborating, refining, and adjusting their current ways of knowing.

The debate around the use of context in calculus education is equally nuanced. 
Using everyday, real-world scenarios as contextual anchors may enable students to 
make sense of calculus, especially those who struggle to “see” mathematics through 
symbolic notation (Doorman, 2005). On the other hand, real-world examples may 
leave others overwhelmed by the extraneous details, leading to confusion rather than 
clarity (Akçayır & Akçayır, 2017). To understand what role context may play when 
first introducing students to calculus, Bisson et al. (2020) used comparative analy-
sis to examine the learning outcomes of two teaching conditions: one group of stu-
dents was introduced to differential calculus using decontextualised representations, 
whereas the other group engaged with contextualised problems such as projectile 
motion and optimisation puzzles. The researchers found that both groups achieved 
comparable learning outcomes, challenging the notion that one method holds a clear 
advantage over the other. Given the highly subjective nature of context, the inter-
esting “contextual” problems designed by teachers may appear completely abstract 
to students (Gravemeijer & Doorman, 1999). If context-based tasks are intended to 
truly motivate students, then these contexts must serve as meaningful metaphors for 
each individual student (Papert, 1980), be it from real life or fantasy (Van den Heu-
vel-Panhuizen & Drijvers, 2014).

Exploring Differential Calculus with Digital Technologies

Historically, the teaching and learning of calculus has been bound to static meth-
ods—pen and paper, chalk and blackboard—leading many calculus classrooms 
to favour by-hand fluency over the use of digital technology (Clark-Wilson et  al., 
2020). As technologies are adopted by the wider education sector—from coloured 
ink to dynamic digital software—some mathematics educators have harnessed these 
tools to design tasks and activities to support teaching and learning. Design being 
the operative word: the efficacy of such technologies lies not in their intrinsic prop-
erties but in the manner in which they are deployed. In the case of differential cal-
culus, coloured ink can help students distinguish a function (in one colour) from its 
derivative (in another colour), while dynamic tools such as GeoGebra allow for the 
design of tasks that enable students to trace a function’s slope in real time (Hohen-
warter et al., 2008).
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Building on Bruner’s representational system, Tall (2019) advocates for an 
embodied approach to calculus, using tools such as Mathematica, Maple, and 
GeoGebra to illustrate how functions look “locally straight” under magnification. 
These embodied approaches make advanced concepts more accessible and support 
the shift from physical to symbolic reasoning (Abrahamson et  al., 2020; Verhoef 
et  al., 2015). Using a computer-based activity to explore the unit circle and cor-
responding trigonometric graphs, Shvarts et al. (2021) argued that blending digital 
artefacts with bodily action can enhance students’ conceptual understanding by fos-
tering sensory-motor coordination and creating “body–artifact functional systems.” 
Building on this, researchers are examining implicit feedback—such as gesture and 
gaze sensors—to better understand how embodied experiences may foster deeper 
conceptual understanding (Abrahamson et al., 2020; Shvarts et al., 2021). Wei et al. 
(2022) sought to categorise embodiment in technology-enhanced environments as 
follows: (1) embodiment not central (embodiment is implicit), (2) pseudo embodi-
ment (designs which include “sort of” embodied elements such as dragging), and (3) 
embodiment (technology-enhanced tasks which are purposely designed for embod-
ied experiences and provide feedback on such actions). It is worth noting that the 
“embodied approaches” in 2D screen-based environments differ significantly from 
the embodied experiences within 3D, AR environments. Finally, there is a concern 
that some digital tools will not only “take care” of the calculations but overshadow 
the conceptual underpinnings of calculus, particularly as technology becomes more 
sophisticated (Ferrara et  al., 2006). Given most modern-day mathematics class-
rooms focus almost exclusively on historic symbolic manipulation, at best supported 
by static visuals, it seems we are some way off technological take-overs.

Exploring Differential Calculus with Augmented Reality Technologies

One of the most powerful features of AR is its ability to superimpose digital math-
ematical information (Tomaschko & Hohenwarter, 2019) onto real-world artefacts. 
Whether analysing the slope of a hill (Schacht & Swidan, 2019) or the curvature 
of a roller coaster (Bokhove et  al., 2018), AR is able to make mathematics rele-
vant and accessible, grounding abstract concepts in everyday experiences. By pro-
viding a more tangible and interactive learning experience, AR can help students 
grasp abstract concepts more effectively (Bos et  al., 2022). Like Tall (2019) and 
Bos et al. (2022) created a learning environment for students to build their under-
standing of gradients through perception-based, action-based, and incorporation 
tasks; however, their environment was a 3D, AR environment—the AR sandbox—
as opposed to a 2D computerised environment. In the AR sandbox, students can 
feel the sand (physical) and examine mathematical relationships (digital) unfold in 
real time. This sensorimotor engagement anchors abstract ideas in physical experi-
ence, creating a robust, intuitive understanding of concepts like the gradient. When 
exploring a classic calculus problem with 18- to 19-year-old Serbian students—
maximising the volume of a box—Budinski and Lavicza (2019) designed a task 
which connected a hands-on approach (building a box using origami instructions) 
with a computer-based approach (constructing a box using GeoGebra 3D/AR). 
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They argued that adopting two approaches concurrently was better than separate, 
isolated approaches—as in a “dual approach” is greater than the sum of its parts. 
For example, the origami approach exploited the epistemic value of hands-on activi-
ties, whereas the AR task offered a “unique experience” (p. 389) for students since 
they were able to travel inside their virtual boxes and take screenshots from multiple 
points of views. If students can manipulate mathematical objects in an AR environ-
ment, moving around or even move inside the objects, the orientation perspectives 
are essentially limitless.

Not everyone can form mental images of functions from abstract algebraic nota-
tion, and AR can certainly “bridge” that process (Swidan et al., 2023). As such, many 
AR studies have been designed for students to visualise and interact with mathemati-
cal concepts, without the need for real-world counterparts. Construct 3D was an early 
AR system (headset and software) built for students to explore mathematical surfaces 
(Kaufmann, 2004). Virtual mathematical objects, planes, and points were constructed 
in “open space”, not superimposed onto or alongside any concrete objects. Partici-
pants reported better understanding of 3D constructions when viewing these stereo-
scopically through the head-mounted device (as opposed to a 2D computer monitor), 
adding that many of the tasks would have been impossible to draw with pen and paper 
or existing CAD programs. Li et al. (2022) built an AR multi-representational learning 
environment to support students’ understanding of linear functions. Their AR+ Beijing 
travel plan consisted of a 3D animation of a vehicle travelling at constant speed (con-
crete), alongside the corresponding graph (semi-concrete) and algebraic expressions 
(abstract)—all realised in AR. Students with strong prior representational knowledge 
moved sequentially from concrete to abstract representations, while those with weaker 
backgrounds showed no clear learning path. Participants in Orozco et  al.’s (2006) 
study described positive feelings when “holding” AR paraboloids in their hands. Simi-
lar “a-ha” moments were reported by Monteiro Paulo et al. (2021) as participants used 
GeoGebra AR to intersect planes and hyperbolic paraboloids. How might physical 
artefacts enhance these AR explorations, if at all? In the hyperbolic paraboloid explo-
ration, could a physical artefact—say, a Pringles crisp (a physical artefact in the shape 
of a hyperbolic paraboloid)—enhance the AR task by merging digital and tactile rep-
resentations of the surface? Of course, as with any educational innovation, integrat-
ing AR into the curriculum presents challenges. The necessity for adequate resources, 
teacher training, and student adaptation is a real concern, echoing the early days of 
computer-based learning. In line with Drijvers et  al. (2014), Schutera et  al. (2021) 
remind us that while AR holds tremendous potential, it requires careful planning and 
support to be truly effective.

The Role of Feedback Within AR Tasks

Finally, the role of instructional feedback is generally regarded as crucial for enhancing 
knowledge and skill acquisition and motivating learning (Shute, 2008). Instructional 
feedback is any information regarding aspects of one’s performance or understanding 
communicated to the learner, intended to modify their thinking or behaviour to improve 
learning (Hattie & Timperley, 2007; Lipnevich & Smith, 2022; Narciss, 2008; Shute, 
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2008). Feedback might come from various sources, including teachers, peers, or the 
task itself (Lipnevich & Panadero, 2021). It may include information on the learner’s 
current status, goals, and the steps and strategies required for improvement (Hattie & 
Timperley, 2007; Lipnevich & Panadero, 2021). AR technology can enhance the feed-
back process by overlaying simulated cues onto the physical world, creating immer-
sive and interactive learning environments (Wu et al., 2013). The real-time interaction 
and 3D presentation features of AR provide visual and interactive feedback to foster 
students’ sense of immediacy (Kotranza et al., 2009). This immediacy can help rein-
force learning, as students can quickly see the results of their actions and make neces-
sary adjustments (Bokhove et  al., 2018). Visual feedback presents visual representa-
tions such as texts, images, models, and animations, making abstract concepts more 
concrete, highlighting errors or demonstrating correct procedures (Akçayir & Akçayir, 
(2017). Interactive feedback, delivered through simulations and hands-on activities, 
allows learners to receive feedback based on their actions and decisions within the AR 
environment (Yoon et al., 2018). This type of feedback helps learners understand the 
consequences of their actions in a simulated yet realistic context.

An influential typology categorises feedback into four levels—task, process, self-
regulation, and self (Hattie & Timperley, 2007; Lipnevich & Panadero, 2021). Exam-
ples of embedding different types of feedback into AR systems can be found in previous 
research. Task-level feedback addresses how well tasks are understood or performed, 
including feedback on knowledge of results and correct responses, and typically takes 
the form of activating digital information, such as text, video, or models, based on the 
learner’s actions to facilitate further exploration. For instance, in an AR application on 
probability, if a learner correctly identifies the coin pattern, a puppet appears on the 
coin, indicating the correct operation (Cai et al., 2020). In the research of Chen (2019) 
and Gecu-Parmaksiz and Delialioglu (2019), scanning a card with a specific pattern 
causes the corresponding geometric shape to appear, supporting further exploration. 
Additionally, virtual feedback can be based on student actions. Martin-Gonzalez et al. 
(2016) used the programme to generate vectors based on the positions of the learn-
er’s body and hands, allowing learners to explore vectors by altering their movements. 
Process-level feedback involves the key processes required to understand or complete 
tasks, guiding learners’ problem-solving in a specific sequence of behaviours. Elabo-
rated feedback, such as strategic hints, explanations, or worked examples, falls into this 
category. For example, AR feedback can include a video demonstrating the problem-
solving steps for students (Kazanidis & Pellas, 2019). Self-regulation feedback encom-
passes higher-order comments related to self-monitoring and the regulation of actions 
and emotions. AR’s visual and interactive feedback has been examined to be beneficial 
in helping students develop self-regulated learning skills (Cetintav & Yilmaz, 2023; 
Muali et  al., 2020). Self-level feedback fosters positive attitudes by providing posi-
tive incentives or praise, such as rewarding users after they select the correct answer 
(Demitriadou et al., 2020). In this paper, we use these feedback levels to observe how 
they were manifested in the interaction of the student and researcher in the AR learning 
environment.
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Two Complementary Lenses: Design Affordances and Feedback 
Analysis

In this section, we first introduce the basic details of Karim’s AR-based activities on 
learning derivatives to provide the research context. We then analyse the case from 
the perspective of AR learning activity design and examine how these designs serve 
as feedback to support learning. Each analysis part begins with a brief overview of 
the theoretical frameworks, concepts, and constructs guiding our approach, followed 
by a detailed discussion. First, we examine the unique technical features of AR and 
assess how these features are emphasised or limited in the design of Karim’s case, 
proposing alternative task designs where relevant. Finally, we evaluate the role of 
feedback within the AR environment, identifying potential benefits and challenges 
in practice, and offer recommendations for future designs.

Introducing the Karim Case

Touch the Derivative is an AR prototype designed for the Magic Leap device. 
Within the programme, there are four “families” of functions for users to explore: 
linear functions (A, B, and C), polynomials (parabolic (D) and cubic (E)), trigono-
metric (F), and exponential (G)—see Fig. 1. In the case study, a 15-year-old student, 
Karim, selected from seven function images—superimposed in a real room—to 
investigate the relationship between derivatives and their original functions. Karim 
could freely switch between these function images to test or verify his conjectures, 
making a total of 28 selections. In every session, Karim’s hand movement con-
trolled the position of an orange dot, which appeared through his headset to be in 
free space. When the orange dot was “placed” accurately on a blue function, the 
tangent line appeared and turned green, and a green point marked the correspond-
ing value of the derivative as the dot was moved incrementally along the function 
(see Fig. 2). The derivative dots emerged in real-time and formed green derivative 
functions, despite being rather “dot-like” (instead of continuous). If the orange dot 
strayed from the blue function, the tangent line turned red. Karim was asked to dis-
cover the relationship between the blue function and the emerging green (derivative) 
dots, while a researcher guided his exploration. We adopt a micro-analytic lens on 

Fig. 1   Seven 2D functions avail-
able in Touch the Derivative 
prototype
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Karim’s interaction within his AR environment—not to generalise about individ-
ual learners, but to trace how Touch the Derivative’s design features and feedback 
mechanisms play out in real time. The Karim case thus serves as a vehicle for sur-
facing the affordances and constraints of AR in supporting mathematical inquiry.

Design Affordances

What Makes AR a Distinct Reality

Before delving into the framing ideas for this analysis, we first reflect on what makes 
AR a distinct reality. We start by articulating AR’s 3D environment through the lens 
of 6DoF, a construct that describes spatial movement and orientation in physical 
space. As outlined in the introduction, AR originated from the need to address a 
real-world problem. The hybrid hallmark of AR—where the physical and digital 
elements complement one another (or at least that was the original design inten-
tion)—is precisely where AR offers great potential, straddling two worlds much like 
the dual origins of calculus.

In line with the early VR pioneers (Sutherland, 1965), we adopt 6DoF (or six 
degrees of movement) to describe motion in 3D space. 6DoF refer to three transla-
tional movements (up/down, right/left, back/forth) and three rotational movements 
(pitch, roll, and yaw)—essentially the rotations about the three axes (see Fig. 3a). 
Within 6DoF, there is no fixed x–y-z orientation; these axes are mathematical con-
ventions rather than inherent properties of 3D movement.

The AR prototype, Touch the Derivative, allows for 6DoF; however, all the math-
ematical functions explored are two-dimensional (2D). In mathematics, it is conven-
tional to represent a three-dimensional Cartesian coordinate system with the y-axis 
pointing towards the observer; however, this is not always the case in computer 
graphics (Foley & van Dam, 1982). To align with Touch the Derivative orientation, 
we constructed an example which is consistent with the negative parabola task (see 
Fig. 3b). This example demonstrates how a 2D parabola only requires two degrees 
of freedom—translation along the y-axis and translation along the x-axis. Transla-
tion along the z-axis and rotations about each axis are irrelevant, and perhaps even 
confusing.

Fig. 2   Karim moves along the 
function, triggering the tangent 
line (green) and derivative 
points (green dots)
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AR Affordances in Terms of Physical, Cognitive, and Contextual Dimensions

To explore the affordances and limitations of AR within mathematics classrooms, 
Bujak et al. (2013) proposed a theoretical construct to guide their analysis: the “AR 
Manipulative”. The researchers examine this hybrid tool through three dimensions: 
physical, cognitive, and contextual.

Physical: The interaction with tangible objects supports learning both prag-
matically and cognitively. Natural, tactile interactions reduce cognitive load by 
making abstract concepts easier to grasp (the pragmatic strand). The cognitive 
strand relates to embodied cognition; physical artefacts encourage epistemic 
actions and the formation of embodied representations, which can support 
learning.

Cognitive: AR environments may help students bridge between symbolic abstrac-
tion and physical representation, by superimposing symbolic mathematical nota-
tion over concrete representations in a continuous, real-time manner. The tools 
may enable students to uncover salient mathematical structures.

Contextual: AR not only situates mathematics in real-world contexts but also 
facilitates collaboration and personalisation. The digital part of AR is generic, 
but the physical part is highly personable. Given learners can see one another in 
a shared physical space, AR environments can afford face-to-face collaboration, 
whereas VR cannot.

Although this triple-lens framework is highly cited across the AR mathematics 
education literature (Gecu-Parmaksiz & Delialioglu, 2019; Swidan et  al., 2023), 
its application in experimental studies remains limited. Thus, we mobilise the 

Fig. 3   a The six degrees of freedom (GregorDS, CC BY-SA 4.0). b 2D parabola in 3D space
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framework in two ways: first, to unpick the Karim case, tracing how its physical, 
cognitive, and contextual affordances unfold in situ; and second, to propose alterna-
tive AR tasks which consist of digital mathematical artefacts (e.g. a function) and 
purposeful corresponding physical artefacts, merged together in real time.

Examining Karim’s Interactions Through Physical, Cognitive, and Contextual 
Dimensions

We now examine how Karim engages with these tasks through the physical, cogni-
tive, and contextual strands outlined above.

Physical: Karim, a calculus novice, starts by examining the positive linear equa-
tion (task A). The task aims for Karim to “feel” the rate of change by moving his 
hand from left to right along the x-axis (1DoF) and experiencing corresponding 
changes in the y-axis (1DoF). Essentially, Karim is required to explore 2D functions 
within a 6DoF space, raising the question: is it beneficial to explore 2D functions 
(and their derivatives) in three-dimensional “free space”? In the first 10  min, the 
researcher repeatedly reminds Karim of the “rules” for navigating the functions:

We should go along the functions one by one from the left to the right 
(0:01:44).
You can only move from left to right, but not the other direction (0:03:34).
It is forbidden to move from right to left, only from left to right (0:08:25).
We must move on the graph in this way (0:08:38).

Karim’s desire to “collect all the dots” (a pragmatic goal) may conflict with the 
epistemic goal of the task: to maintain the direction of hand movement as a proxy 
for experiencing the directional rate of change. Take y = 2 × as an example. When 
Karim moves his hand from negative x to positive x, the function “feels” consist-
ently uphill, matching the derivative of + 2. Reversing the direction (from positive x 
to negative x) feels downhill, as if the slope were − 2, even though the function’s tan-
gent never changes. This direction-dependent sensation reveals a subtle constraint of 
mathematical convention: a positive slope looks the same whether you trace it left-
to-right or right-to-left, yet it only feels positive in one direction. Without explicit 
instructional guidance to only move from left to right, Karim—who has no prior 
knowledge of derivatives—might fail to distinguish between the invariant analytic 
slope and the variable embodied experience.

Cognitive: The tasks require Karim to connect the abstract notion of the deriva-
tive (rate of change) with the tangible experience of moving along functions from 
negative to positive x. While individuals may explore curves in both directions, 
in this learning task, movement from left to right aligns with a common peda-
gogical convention: presenting rate of change with respect to increasing x. How-
ever, in many real-world scenarios, the choice of reference axis is more adapta-
ble. Physics offers a clear example: when exploring electric fields or gravitational 
fields, students learn how and why positive charges and masses “move downhill” 
to regions of lower potential. These directions of movement are not necessarily 
aligned with increasing x. Touch the Derivative may benefit from signposting to 
help unveil the implicit “move from left to right” rule underpinning derivatives 
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and thus reduce students’ cognitive load. When exploring the linear functions, 
Karim’s hand remains in the x–y plane (see Fig. 4a). In contrast, when the deriva-
tive function is changing (as is the case for the parabolic, exponential and trigo-
nometric functions), Karim adjusts the orientation of his hand. It seems he finds it 
easier to “feel” the function beneath the palm of his hand (see Fig. 4b).

As a thought experiment, consider the diagrams in Fig. 5a and b. Take your left 
hand and try to trace out the parabola as in Fig. 5a, where your hand is restricted 
to the x–y plane. Imagine your middle finger is the tangent as you move around 
the parabola. It may help to envisage doing this against a wall, to constrain your 
hand to 2DoF. Now change the orientation of your hand to mirror Fig. 5b, where 
you imagine you are “touching” the parabola with the palm of your hand. Does 
one feel more natural or instinctive?

To unpick this, we need to consider the wrist mobility and what parts of the 
hand we use to touch. Most wrists have a greater forward-back range (Fig.  5b) 
than left–right (Fig.  5a), which may make the motion depicted in Fig.  5a feel 
more awkward. Furthermore, Fig.  5a is using a finger to represent a tangent 
line, whereas Fig.  5b uses palm which is essentially mimicking a surface (add-
ing an additional degree of freedom), rather than a line. A final point is that the 

Fig. 4   a Feeling a linear function with finger. b Feeling a linear function with palm

Fig. 5    a Feeling a parabola with finger. b Feeling a parabola with palm (in 3DoF)
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inclination of Karim’s hand does not always reflect the green tangent (see Fig. 6). 
This mismatching of representations between the visual (green tangent) and con-
crete (inclination of Karim’s hand) may lead to cognitive dissonance.

Contextual: The shared physical space in this AR environment allows for col-
laboration between Karim and the researcher. This shared reality is further sup-
ported by the presence of a screen that streams Karim’s view enabling the researcher 
to observe and respond to Karim’s interactions, in real-time. Exactly how the 
researcher responds will be elaborated on in the subsequent feedback analysis sec-
tion. However, it is not clear as to what role (if at all) the rest of the physical environ-
ment plays. Karim can clearly see a wealth of objects in the background (wardrobe, 
desk, posters), but these could be classified as mathematically redundant informa-
tion, or background visual “noise”. The broader impact of this physical environment 
on learning remains unclear.

Constructing an AR Task for a Parabolic Function

Our epistemological and ontological approaches resonate with Touch the Derivative 
intervention: we are viewing mathematical learning as experiential, inquiry based. 
As such, we have taken the same digital information from task D (the parabola), 
but in our task, we have included purposeful physical artefacts. We propose that the 
physical artefacts may foster different cognitive and affective outcomes. Figure 7a 
and b presents two examples of a digital parabola being superimposed over two dif-
ferent artefacts: a helical spring toy (commonly known as a “slinky”) and a banana. 
While these objects are not perfectly parabolic, they can serve as close approxima-
tions under certain conditions—for example, when a slinky exhibits shallow curva-
ture (Cumber, 2024).

We have discussed the role of the physical environment—both implicit and 
explicit. As such, we start by examining the explicit impact physical artefacts may 
have, then move on to more implicit roles these physical artefacts may play. When a 
young child is learning to ride a bike, an adult or older child can reduce the degrees 
of freedom by adding stabilisers or starting with a balance bike (Shvarts et al., 2021). 
Physical objects could play a similar role when learning about 2D parabolas—
reducing unnecessary degrees of freedom to scaffold understanding. Furthermore, 

Fig. 6   Inclination of hand not 
aligned with the tangent
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students can tangibly feel the changing slope of a slinky or banana. Supplementing 
the visual feedback with tactile reinforcement may encourage learners to form sen-
sory-motor associations (Bos et al., 2022). We now turn to the implicit role tactile 
objects may play. If designed appropriately, so the digital and physical representa-
tions are correctly aligned, these “combined artefacts” could serve as fruitful media-
tors in the cognitive process. Suspended slinkies or bananas could potentially create 
points of engagement that ground abstract concepts in the physical world.

From a contextual standpoint, the physical artefacts may invite learners to form 
affective relationships with the material. We have chosen parabolic representa-
tions of natural phenomena: the curvature of the slinky and banana is wrapped up 
in respective gravitational and biological constraints (Powell, 2009), but man-made 
phenomena could also be used (Haas, 2021; Paul et  al., 2024). Furthermore, our 
examples in Fig. 7a and b specifically opt for uncluttered physical backgrounds—a 
design decision that may reduce distraction and support focus. The hybrid nature of 
AR allows the abstract digital functions to be intertwined with artefacts which may 
hold personal meaning for each and every learner—perhaps the golden arches of 
the infamous McDonald’s may resonate with some learners. This approach could 
see learners choosing to model non-parabolic objects, which some educators might 
find challenging. However, these instances can be harnessed as an opportunity to 
guide students to discover why their chosen object does not fit the parabolic model, 
thus deepening their understanding of mathematical concepts. The inquiry-based 
approach is most powerful when it straddles these dual aspects: providing both tac-
tile anchors to simplify and scaffold cognitive load, while simultaneously allowing 
learners the freedom to imbue the learning context with personal meaning.

Critique Karim’s Learning Through the Lens of Feedback

Focusing on Karim’s learning process through the lens of feedback, we analyse the 
feedback he receives from the AR system and his conversations with the researcher 
separately and critically assess the role of this feedback to draw implications. As 

Fig. 7   a AR slinky (AR helical spring toy). b AR banana
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mentioned in Sect.  2.5 of the literature review, an influential typology categorises 
feedback into four levels—task, process, self-regulation, and self (Hattie & Timper-
ley, 2007; Lipnevich & Panadero, 2021)—which will guide our analysis.

Feedback in the AR System

According to the design of the AR software, the programme consists of two scenes: 
graph selection and graph exploration. In each scene, visual interactive feedback is 
provided in response to the user’s actions, functioning as task-level feedback when 
correct interactions occur. The feedback provided in each scene is analysed below.

In the graph selection scene, an orange dot is used to indicate the position of the 
user’s hand. This dot accurately reflects which function image (A-G) corresponds 
to the user’s hand position on the plane, serving as process-level feedback that 
guides the user in making their next step for the selection. As illustrated in Fig. 1, 
the orange dot appears on the A image, showing Karim’s hand position in space. 
However, Karim could not enter the exploration by just putting the orange dot on 
the graph, as the dot did not reach the depth to trigger the change. As the dot did 
not indicate the distance between the user’s hand and the trigger point for image 
selection, he continued to adjust his gestures, making small movements and reaching 
forward, until the scene finally changes.

After entering the graph exploration scene, the orange dot continues to appear 
when the user’s hand is detected, adjusting its position in real time according to 
hand movements. However, it still does not indicate the distance between Karim’s 
hand and the function graph. As shown in Fig. 8, Karim moved and adjusted his ges-
tures but did not reach the blue line.

When Karim’s hand touches the blue function graph, three task-level feedback 
elements are triggered: (a) a green line representing the tangent, (b) an orange num-
ber showing the derivative value, and (c) a green dot marking the derivative point. 
As Karim moves his hand along the function graph, the tangent line and derivative 
value continuously update, as new green derivative points are also generated. These 
green points do not disappear after triggering, allowing the user to observe the trend 
of the derivative graph, as depicted in Fig. 9. When the user’s hand leaves the origi-
nal function graph, the last green line will turn red, while the orange number and 
green points keep them the same.

Fig. 8   Karim did not reach the blue line even though the orange dot is on the graph
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Despite the immediate responsiveness of these three feedback elements, there 
are some design limitations. First, none of the feedback elements is labelled, which 
could lead to user confusion about their meaning. For example, when Karim ini-
tially chose the image of a linear function, the tangent overlapped with the function 
itself, leading him to mistakenly believe that touching the graph would change the 
colour of the original function. He only realised that the green line represented the 
tangent after exploring other function graphs and then returned to re-examine the 
first one. Another issue affecting the exploration process was the limited field of 
view. At times, Karim was unable to see all the feedback elements as he moved his 
hand. As shown in Fig. 10, the derivative point and even the derivative value at the 
touch point sometimes fell outside his field of view. This made it difficult for Karim 
to verify the graph and value of the derivative simultaneously, limiting his ability to 
analyse the relationship between the derivative and the original function. He needed 
to step backward or turn his head to have an overview of the graphs.

Several additional interface details also deserve attention. First, the tangent is 
displayed as a finite-length line segment rather than an infinite line. In Fig.  11a, 
one endpoint of the segment is visible on the green tangent line, although math-
ematically, a tangent extends infinitely in both directions. Another issue concerns 
the incomplete display of numerical values. For example, in Fig. 11b, the derivative 
value is shown as “.00” instead of the full “0.00”. Finally, Fig. 11c and d illustrates 
an unexpected disappearance of green derivative points: at 11:44 (Fig. 11c), multi-
ple green points are visible, but at 11:45 (Fig.  11d), after Karim touches the func-
tion again and a new green tangent and point appear, the previously visible points 

Fig. 9   The blue original function graph and three task-level feedback in the graph exploration scene

Fig. 10   Limited view of the graph exploration scene
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have disappeared. While these issues did not hinder Karim’s exploration of the rela-
tionship between the derivative and the original function, they prompted questions 
during the process, which required clarification from the researcher.

Another instance where the researcher had to provide feedback as the supplement 
of the system occurred when entering the graph exploration scene. When Karim 
first selected a function graph to explore, no information was displayed, as shown 
in Fig. 12. Each time he entered the scene, only the function graph appeared, with 
no prompts guiding the user on possible actions. He stood still until the researcher 
explained how to position the function graph and interact with it by moving his hand 
from left to right. This absence of task-level and process-level feedback highlights 
the system’s reliance on external feedback to support user interaction.

Fig. 11   a A finite-length tangent segment is displayed at the point of contact. b An example of an incom-
plete display of the derivative value. c At 11:44, multiple green derivative points are visible on the graph. 
d At 11:45, after a new touch, the previously visible green points disappeared

Fig. 12   The vacant scene after 
the first selection of the graph
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Feedback from the Researcher

According to the statistics on the feedback provided by the researcher, a total of 
49 feedback events occurred throughout the process, including 13 instances of self-
feedback, 18 of task-level feedback, and 18 of process-level feedback. Some exam-
ples of the feedback from the researcher are illustrated in Table 1. Figure 13 pre-
sents the distribution of the three types of feedback in the sessions. These feedback 
instances were not distributed evenly across the activities. The majority occurred 
during the guidance phase and in the initial sessions of the exploration. After the 
earlier phases, feedback was rarely provided. The figure also reveals that process-
level feedback (how to use the AR system and what to do next) ceased after the 
tenth activity, indicating that Karim can operate the system and explore the graphs 
independently. In addition, some task-level feedback was given near the end of the 
exploration to support Karim’s summary of what he learned in the activities.

Table 1   Examples of the three 
types of feedback from the 
researcher

Self-level “I saw you doing a nice movement.”
“Ah ha.”
“Okay.”

Task-level “What do you see?”
“What did you explore?”
“Did you find the relationship between the blue 

and green lines?”
Process-level “Try to do, bring it in front of you.”

“With your finger, do like this.”
“You can examine another function if you want.”

Fig. 13   The statistics on the feedback provided by the researcher
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Implication on Feedback

In Karim’s case, the AR system primarily provides task-level feedback, designed to 
support his exploration of the relationship between the derivative and the original 
function. The feedback is triggered in response to Karim’s correct actions, such as 
touching the original function, helping him understand the steps to take in the explo-
ration. However, this type of feedback was not sufficient for him to ensure his perfor-
mance, confirm his understanding of the knowledge content, or determine whether 
he was on the right path in his exploration. As a supplement, the researcher provided 
self-feedback, task-level feedback, and process-level feedback, helping Karim inter-
act with the AR system, plan his exploration, and achieve the learning objectives. 
Notably, neither the AR system nor the researcher offered self-regulation feedback, 
aligning with findings by Lipnevich and Panadero (2021), who observed that most 
feedback in instructional settings tends to focus on task- and self-levels, despite the 
greater impact of process and self-regulation feedback. Thus, coordination of the 
AR system and the role of the researcher as a tutor are needed in the iteration to 
improve the feedback.

Prior work in exploratory environments highlights the importance of supporting 
students’ exploratory processes in microworlds (Mavrikis et al., 2008)—insights that 
can inform AR designs aiming to foster rich mathematical inquiry. An AR system 
could shoulder some of the tutor’s responsibilities by providing more context-aware 
feedback and support the tutor in achieving the role of the facilitator. Specifically, 
more feedback can be embedded in the system to direct students’ attention explicitly 
on aspects of the environment, or even help them to set and work towards explicit 
goals. As the system supports the guide of the exploration, the tutor could turn out 
to be an “intelligent computer-based facilitator”, prompting students to reflect on 
their actions, interpret visual feedback, and consider alternative solutions.

Back to Karim’s case, integrating automated feedback combined with data-driven 
analysis into the AR system can be a potential solution to provide students with 
timely and personalised support, while strengthening the teacher’s role as a facilita-
tor (Mavrikis et al., 2010). For example, to create a more guided learning environ-
ment, the AR system can incorporate clear operational feedback, such as the step-
by-step instructions outlined by de Ravé et al. (2016). These prompts can be used to 
help students place and interact with functions in an expected manner, ensuring they 
follow structured exploration pathways. At the task level, the system can introduce 
question scaffolding to remind students that the primary goal is to uncover the rela-
tionship between functions and their derivatives (Huang et al., 2015). This scaffold-
ing can also record and update students’ insights, providing personalised suggestions 
for the next function to explore through an automatic recommendation programme 
(Ley et al., 2010). Additionally, a point system can be implemented to automatically 
track students’ correct actions and responses and offer self-feedback. By replying 
to correct responses, this feedback mechanism enhances students’ self-efficacy and 
encourages sustained engagement in the learning process (Ortiz-Rojas et al., 2017).

Beyond supporting students directly, the system can capture and analyse data on 
students’ interactions, including correct operations and conceptual responses. This 
data-driven approach allows teachers to gain deeper insights into students’ progress 
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and understanding (Mavrikis et al., 2019). Equipped with this information, teachers 
can offer self-regulation feedback, guiding students to reflect on their exploration 
process and fostering more meaningful engagement with the material. Compared to 
existing feedback in Touch the Derivative system, this automated, data-driven sys-
tem could provide real-time, personalised guidance rather than simply confirming 
correct operations. It adapts dynamically to students’ learning needs, helping them 
navigate learning challenges while allowing teachers to focus on high-level cogni-
tion rather than technology usage. By shifting from direct instruction to facilitation, 
teachers could better support students in developing self-regulation skills and deeper 
conceptual understanding.

Discussion

The visualisation power of AR is widely acknowledged in the literature (Orozco 
et al., 2006), particularly in relation to 3D functions, which are difficult to depict 
on paper and often more taxing to mentally visualise. Other studies highlight 
how AR enables learners not only to see mathematics but also to uncover its 
underlying structures (Kaufmann, 2004; Monteiro Paulo et al., 2021). However, 
Touch the Derivative presented 2D functions in an AR environment, which chal-
lenges the typical arguments used for AR in 3D spaces. Since 2D functions are 
easily represented on paper or computer screens, AR does not provide the same 
distinct advantage for such tasks. Nonetheless, under appropriate guidance, 
Karim successfully interpreted the green points as markers of the inclination of 
his hand, suggesting a meaningful interaction between human movement and the 
mathematical concept of gradient.

The Touch the Derivative prototype “floats” 2D graphs in free space, without 
anchoring to any physical counterparts in the “real world”. In the “Design Affor-
dances” section, we discussed how physical artefacts may support 2D mathemat-
ical explorations in 3D environments by reducing the degrees of freedom and 
providing tactile feedback. However, there are still issues around how to embody 
“local straightness” (Tall, 2019) when hands are representing tangents. Careful 
design considerations must be made; for example, strapping a pen-like object 
to a finger could reinforce the concept of a tangent, thereby aligning the sen-
sory-motor action with the mathematical abstraction. Another potential solution 
could be to “pin” the function to a wall, providing a stable, clutter-free physical 
reference point. This example further demonstrates the cognitive scaffolding that 
physical objects may offer—again, reducing the degrees of freedom when neces-
sary. Our analysis of physical artefacts within AR environments suggested how 
they may support the sense-making process by blending tangible objects with 
digital representations. This fusion creates opportunities for learners to both vis-
ualise and feel mathematical concepts. In this way, AR technology may provide 
environments for these approaches to co-exist, offering learners both concrete 
experiences and conceptual insights.
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As this is not an experimental study, we cannot comment on the outcomes of 
affording learners’ agency in choosing their own physical artefacts. Instead, we have 
presented how AR environments may be uniquely placed to blend affective (Papert, 
1980), psychomotor (Bos et  al., 2022; Shvarts et  al., 2021), and cognitive learning 
experiences. Historically, affective and psychomotor dimensions of learning have been 
overshadowed by a focus on cognitive aspects (Helmer, 2023), but AR presents an 
opportunity to bring these dimensions into balance.

The feedback analysis underscores the critical importance of guided instruction, 
especially when engaging with new technologies. We explored various types of feed-
back, including task-level, process-level, and self-level feedback, and discussed also 
how to coordinate the system and the tutors on offering feedback to support student 
understanding and engagement based on previous work, as suggested by research 
in other exploratory learning contexts and adapted to the unique affordances of AR 
technology.

First, the results highlight the central role of task-level feedback in guiding learn-
ers through specific actions in the AR environment. As evidenced in Karim’s case, 
the AR system was effective in providing immediate, task-oriented feedback related to 
his manipulation of the derivative and the original function. This real-time feedback 
allowed Karim to adjust his actions accordingly, reinforcing prior research empha-
sising the importance of responsive feedback in exploratory environments (Kotranza 
et al., 2009). However, while task-level feedback was well integrated into the AR sys-
tem, the absence of process-level and self-regulation feedback limited deeper cogni-
tive engagement. Literature suggests that while task feedback is crucial for guiding 
immediate actions, process-level feedback plays an important role in helping learners 
understand the strategies behind their actions, encouraging them to think more broadly 
about their problem-solving processes (Hattie & Timperley, 2007). This finding sug-
gests that AR systems, like the one in Karim’s case, would benefit from the incorpora-
tion of more process-level feedback to support strategic exploration and to scaffold 
learner reflection.

Moreover, the lack of self-regulation feedback in the AR system, which would have 
encouraged Karim to reflect on his learning process, is a notable gap. Self-regulation 
feedback is essential for fostering independence in learners, prompting them to moni-
tor and assess their own progress and make adjustments where necessary (Lipnevich 
& Panadero, 2021). In this case, the researcher can play the role of a facilitator to help 
compensate for the system’s shortcomings, inspiring Karim’s reflections and aiding 
his adjustments (Mavrikis et al., 2008).

The findings also suggest that AR systems should be designed to support the coor-
dination of the system and other elements (such as worksheets and tutors). As seen in 
Karim’s exploration, the tutor had to step in frequently to guide his interactions with 
the system, particularly in the absence of clear instructions or prompts. The combina-
tion of the system feedback with the tutor’s role has the potential to achieve the tutor’s 
role in facilitating students’ understanding and engagement (Mavrikis et al., 2008). In 
addition, offering some guidance through other materials, such as worksheets, might 
help bridge the interaction from AR to the curriculum (Geraniou & Mavrikis, 2015).
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Conclusion

At its core, this paper asks: how can we rethink the affordances and feedback in AR 
environments to foster richer mathematical inquiry? Feedback, affordances, and the 
physical-cognitive-contextual framing are not separate strands but interwoven design 
considerations that determine how inquiry unfolds—and how much guidance learners 
receive as they confront new mathematical ideas. On first viewing of the Karim case, 
we were drawn to the central role the physical environment played—unsurprisingly, 
given AR is part physical, part digital. Equally important was the guiding presence 
of the researcher, who shaped the learning process by directing Karim’s movements 
and attention. To deepen our understanding of Karim’s interactions within the physical 
space and with the researcher, we adopted specific theoretical tools to unravel the intri-
cate tapestry of threads that make up an AR learning experience—the digital interface, 
physical space, and human interaction.

In “Design Affordances” section, we used Bujak et al.’s (2013) framework to con-
struct a comparable line of AR inquiry for the parabolic AR task. This allowed us to 
consider how physical objects might enhance the learning of 2D derivative functions 
by providing tactile feedback on the gradient—an aspect notably absent in Karim’s 
AR tasks. By analysing the physical space using 6DoF, we identified challenges in 
exploring the gradients of 2D functions in 3D space—chiefly the moments of dis-
connect between Karim’s hand movements and the digital tangent lines his hand was 
meant to trace out. This revealed a deeper issue in how AR environments articulate 2D 
mathematical concepts within 3D spaces. Physical artefacts may reduce the degrees of 
freedom in Karim’s hand movements and provide a more grounded, intuitive explora-
tion of derivatives. Moreover, these artefacts may play an affective role, fostering per-
sonal engagement and making the symbolic side of derivatives more tangible. While 
the theoretical tools illuminated key aspects of the learning process, they also under-
scored the need for more refined design strategies to better integrate physical space, 
cognitive processes, and emotional engagement.

Through the lens of feedback, it became clear that while the task-level feedback 
provided by the AR system was effective in facilitating Karim’s understanding of spe-
cific actions, such as manipulating the derivative and the original function, the absence 
of process-level and self-regulation feedback limited deeper cognitive engagement. 
This finding highlights a key opportunity for AR system improvement. By incorporat-
ing more sophisticated feedback mechanisms, AR systems could prompt learners to 
reflect on their actions and think critically about the learning process, aligning with 
theories that emphasise the value of process and self-regulation feedback for fostering 
metacognitive skills and learner independence. Additionally, the coordinated role of 
the tutor emerged as essential, particularly when the system lacked clarity.

Taken together, the insights affirm AR’s promise for enhancing calculus edu-
cation, but also the challenges in designing environments that fully leverage the 
technology’s unique affordances to support deeper learning. Yet important ques-
tions remain. What was Karim’s experience like as he navigated the AR envi-
ronment? Was he confused by non-verbal feedback? How intuitive or natural did 
he find the technology, and how did his hand feel as he navigated the unspoken 
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“rules” underpinning the exploration? Future work could explore how feedback 
mechanisms might be enhanced or integrated to better support learners like 
Karim. For example, with the emergence of generative Artificial Intelligence, 
providing context-aware feedback and adapting to their interaction is increasingly 
feasible (Giannakos et al., 2024; Huang et al., 2021). Similarly, further research 
could explore how giving learners more agency in selecting their own physical 
artefacts influences both understanding and motivation. Moreover, AR presents 
an opportunity to balance affective, psychomotor, and cognitive dimensions of 
learning. Investigating how feedback in AR systems aligns with other instruc-
tional elements could reveal new strategies for AR environments like Touch the 
Derivative—ultimately helping to foster richer mathematical inquiry.
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