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Introduction

Traumatic brain injury (TBI) entails brain damage result-
ing from external mechanical forces, including rapid 
acceleration or deceleration, blast waves, crush injuries, 
impact, or penetration by a projectile. It can lead to tempo-
rary or permanent impairments in cognitive, physical, and 
psychosocial functions.1 TBI is a leading cause of mortal-
ity and disability among individuals under 45 years old, 
with approximately 10 million deaths and/or hospitaliza-
tions attributed directly to TBI annually, affecting an esti-
mated 57 million individuals globally.2

TBI manifests as a complex disease process rather than 
a single pathophysiological event involving primary and 
secondary injury processes.3 Primary injury, occurring 
immediately upon exposure to external forces, results in 
structural damage and dysfunction, such as axonal shear-
ing, contusion, blood vessel destruction, and hemorrhage.4 
Following a primary injury, secondary injury ensues over 
minutes to months due to metabolic, cellular, and molecu-
lar cascades, culminating in brain cell death, tissue dam-
age, and atrophy.5
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Secondary damage often arises from metabolic imbal-
ances, including disruption in cellular calcium homeosta-
sis, increased free radical production, lipid peroxidation, 
mitochondrial dysfunction, inflammation, apoptosis, and 
diffuse axonal damage.6 These events lead to the loss of 
neurons, endothelial cells, glial cells, as well as degenera-
tion of brain white matter, with cell death occurring min-
utes to months after injury, particularly in contused areas 
and subcortical regions.7 Apoptosis also coexists with the 
gradual shrinkage of gray and white matter after TBI.8

The extent to which cell death and sublethal neurobio-
logical disturbances contribute to post-traumatic morbidi-
ties remains unclear. Sublethal cellular processes and 
systemic insults, such as hypoxia and hypotension, may 
eventually lead to cell death. Functional abnormalities fol-
lowing TBI result from both acute cell death and delayed 
apoptosis. Studies on humans and animals have indicated 
that even mild TBI, without obvious cell death, can lead to 
cognitive abnormalities likely associated with diffuse 
axonal damage.9–11 These findings suggest that post-trau-
matic cognitive deficits may arise from multifocal axonal 
and myelin abnormalities.

While primary injury prevention is limited to immediate 
trauma management, the prolonged nature of secondary 
injury development offers a therapeutic window for inter-
vention to mitigate brain damage and improve long-term 
outcomes. However, despite promising preclinical results, 
translating prospective TBI treatments into successful clini-
cal trials has been challenging. Pathophysiological heteroge-
neity among patients with TBI, inadequate pharmacokinetic 
analysis for determining optimal dosages, and drug delivery 
outside the therapeutic window may contribute to the failure 
of clinical trials.12

Intranasal drug delivery presents a promising approach 
for administering medications in TBI and other neurologi-
cal disorders, offering several potential advantages. This 
review explores recent advancements in intranasal TBI 
therapy delivery technologies, beginning with an overview 
of TBI and available clinical treatments. We then highlight 
the effectiveness of these systems in animal models and 
discuss recent advancements in intranasal delivery sys-
tems for molecules and cells. Finally, we offer insights into 
utilizing intranasal delivery for efficient TBI therapies, 
providing forward-looking clinical perspectives on devel-
oping advancements.

TBI and current medication:  
An overview

TBI pathology and key biological events

TBI is defined as a disruption in brain function or other 
evidence of brain pathology, caused by an external physi-
cal force.13 According to estimates, there are 50 million 
cases of TBI worldwide each year, indicating that over half 

of the global population will experience a TBI at some 
point in their lives.14 The annual cost of TBI to the global 
economy is estimated at 400 billion US dollars, equivalent 
to 0.5% of the gross world product.14 TBI is a heterogene-
ous condition that reflects multiple underlying macro-
scopic modes of injury (e.g. diffuse axonal injury (DAI), 
contusion, and extrinsic compression from mass lesion), as 
well as various mechanisms that can cause neuronal injury 
in differing degrees and clinical patterns (e.g. apoptosis, 
mitochondrial dysfunction, cortical spreading depression 
(CSD), and microvascular thrombosis; Figure 1).15 In up to 
60% of cases, severe TBI results in major physical, neuro-
logical, psychological, and social impairments. The fatal-
ity rate of severe TBI ranges between 30% and 40%.16

Given the complex and progressive nature of TBI, effec-
tive treatment strategies must address both acute neuropro-
tection and long-term neurorestoration. Understanding the 
underlying biological events informs potential therapeutic 
interventions. One crucial approach focuses on promoting 
cell survival by preventing apoptosis and necrosis, which 
can be achieved using calcium channel blockers, anti-exci-
totoxic agents, and metabolic support therapies.17–19 These 
interventions aim to stabilize neuronal function, mitigate 
further cellular damage, and enhance the brain’s capacity 
to recover. Another key strategy involves modulating neu-
roinflammation, which plays a pivotal role in secondary 
injury progression. Anti-inflammatory cytokines, immu-
nosuppressants, and nanoparticle-based targeted drug 
delivery methods can help control the immune response 
and minimize the extent of inflammation-induced neu-
ronal damage.20,21 By regulating inflammatory cascades, 
these therapies may help preserve brain tissue and promote 
functional recovery.

Beyond immediate neuroprotection, neurorestorative 
therapies are being explored to enhance neurogenesis and 
angiogenesis, which are essential for brain repair. Stem cell-
based interventions, growth factor administration, and neu-
rotrophic support are promising strategies for fostering 
neural regeneration and synaptic plasticity.22–24 These 
approaches aim to stimulate the brain’s inherent repair mech-
anisms, facilitating the replacement of damaged neurons and 
improving functional recovery in patients with TBI.

Importantly, the success of these pharmacological and 
biological interventions depends heavily on efficient drug 
delivery to the central nervous system (CNS). In this con-
text, intranasal administration has emerged as a promising, 
non-invasive route that bypasses the blood–brain barrier 
(BBB) and enhances drug bioavailability in the brain. 
Innovative delivery platforms, such as nanoparticles, 
hydrogels, and ligand-targeted systems, enable precise, 
sustained, and localized release of therapeutic compounds, 
thereby maximizing therapeutic efficacy while minimizing 
systemic exposure. These advances represent a significant 
shift toward optimizing drug efficacy and improving out-
comes across both acute and chronic phases of TBI.
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Current pharmacological therapies for TBI

Despite decades of promising preclinical research, no neu-
roprotective treatment has yet been successfully translated 
into routine clinical use for TBI. The translational gap 
reflects several challenges, including fundamental biologi-
cal differences between human and rodent TBI models, 
limited funding for mechanistic human studies, the need 
for precise patient stratification, and a lack of robust phar-
macokinetic data in humans. Nevertheless, several phar-
macological agents previously investigated for TBI are 
discussed below.

One of the earliest large-scale pharmacological trials in 
TBI was the Corticosteroid Randomization After 
Significant Head Injury (CRASH) study, conducted 
between 1999 and 2004.25 This international, multi-center 
randomized controlled trial (RCT) enrolled 10,008 patients 
with moderate-to-severe TBI to receive either high-dose 
methylprednisolone or placebo for 48 h. The primary end-
point—2-week mortality—was higher in the treatment 
group (21.1%) compared to placebo (17.9%), with 173 
additional deaths in the corticosteroid arm at 6 months 
(1248 vs 1075). The study did not systematically assess 
known corticosteroid-related complications such as immu-
nosuppression and hyperglycemia.25

Following the failure of corticosteroids, progesterone, a 
potent neurosteroid synthesized in the CNS, was evaluated 
due to its preclinical efficacy in reducing neuronal loss, 
cerebral edema, and behavioral deficits after experimental 
TBI. However, subsequent large-scale, phase III, double-
blind, placebo-controlled RCTs (SYNAPSE and 
PROTECT III, both published in 2014) failed to demon-
strate improvements in mortality or functional outcomes, 

dampening early enthusiasm.26–28 These trials did not show 
clinical benefit, due to in part to the heterogeneity of the 
patient population.

Another candidate, erythropoietin (EPO), a glycopro-
tein hormone primarily produced in the kidneys in response 
to hypoxia, has demonstrated neuroprotective effects in 
preclinical models via anti-inflammatory, anti-apoptotic, 
and neurotrophic mechanisms. However, clinical data 
remain mixed. A 2017 meta-analysis of six RCTs involv-
ing 1041 patients with moderate-to-severe TBI found that 
EPO significantly reduced mortality but did not improve 
functional outcomes. Rates of complications, including 
deep vein thrombosis, were not significantly different 
between groups.29–32 These findings underscore the need 
for further well-designed trials to determine optimal dos-
ing strategies and identify suitable patient populations.

Amantadine hydrochloride, which acts as both an indi-
rect dopamine agonist and NMDA receptor antagonist, has 
also been evaluated. In a multi-center, double-blind RCT 
involving 184 patients with post-traumatic disorders of 
consciousness (4–16 weeks post-injury), amantadine 
accelerated functional recovery during a 4-week treatment 
phase, as measured by the Disability Rating Scale, without 
increasing serious adverse events.33,34 However, smaller 
studies have yielded inconsistent results. One single-center 
RCT with 40 patients with severe TBI showed no mortal-
ity or functional benefit at 6 months, while another trial in 
119 patients with chronic TBI (>6 months post-injury) 
suggested potential cognitive impairment with amantadine 
during the first 28 days of use.35,36 These discrepancies 
highlight the complexity of evaluating amantadine’s effi-
cacy across different stages of TBI recovery.

Figure 1.  Overview of the pathophysiology, clinical outcomes, and therapeutic strategies in traumatic brain injury (TBI).
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In contrast, tranexamic acid (TXA), a synthetic antifi-
brinolytic agent derived from lysine, functions by inhibit-
ing plasminogen activation and reducing active bleeding. 
Approximately 30% of patients with TBI exhibit coagu-
lopathy, which contributes to cerebral edema and peri-
hemorrhagic damage.37–40 In the CRASH-2 trial, involving 
20,211 patients with trauma (excluding isolated intracra-
nial injuries), early TXA administration reduced mortality, 
particularly when given promptly. These findings led to its 
inclusion in the WHO List of Essential Medicines.37,41 A 
nested analysis in CRASH-2 indicated a non-significant 
trend toward reduced hemorrhage progression and mortal-
ity among patients with TBI with abnormal CT findings.42 
These results underpin the ongoing CRASH-3 trial, which 
aims to evaluate the efficacy of TXA in patients with trau-
matic intracranial hemorrhage.37

Citicoline, a cholinergic agent believed to enhance ATP 
production and stabilize cell membranes by supporting 
ATP-dependent ion pumps, was explored for its potential 
to attenuate secondary brain injury. However, the phase III 
COBRIT trial, a multi-center, double-blind RCT, failed to 
demonstrate any significant improvement in functional or 
cognitive outcomes at 90 days in patients with moderate-
to-severe or complicated mild TBI.43,44 As such, citicoline 
is not currently recommended as a standard treatment.

Finally, recombinant interleukin-1 receptor antagonist 
(rIL-1ra), which blocks IL-1 receptor-mediated neuroin-
flammation, has shown neuroprotective potential across 
several neurological disorders. A phase II, single-center 
RCT demonstrated its safety and ability to modulate acute 
neuroinflammatory responses in TBI.45–47 Ongoing dose-
ranging trials aim to optimize the timing and dosage for 
future clinical application.48

Efficacy models to evaluate TBI 
therapeutics
The development of effective therapeutics for TBI relies 
heavily on model systems that accurately recapitulate the 
complex pathophysiology of injuries. While both in vivo 
and in vitro models are available across various species, in 
vitro systems offer superior experimental control, repro-
ducibility, and ease of manipulation, making them the pre-
ferred platform for investigating cellular mechanisms and 
evaluating candidate treatments.49 In addition to their 
mechanistic value, robust in vitro TBI models also play a 
crucial role in translational research by enabling early-
stage screening of candidate therapeutics and toxicity pro-
files before proceeding to animal studies. This approach 
aligns with the 3Rs (Replacement, Reduction, and 
Refinement) in animal research, as it helps to minimize 
unnecessary animal use by filtering out ineffective or 
harmful agents early in the pipeline. Thus, in vitro models 
serve not only as mechanistic tools but also as ethically 
and scientifically advantageous platforms in the 

preclinical development of TBI therapies. Among in vitro 
models, mechanical injury paradigms, particularly those 
involving cellular stretch, are widely used to simulate the 
physical forces experienced during TBI.50 One of the earli-
est and most influential models was developed by Ellis 
et  al., who introduced the cell-injury controller (CIC) to 
deliver precise stretch-induced injury to cultured cells.51 
Since then, stretch-based injury has been extensively 
applied to various cell types, including neurons, astro-
cytes, and endothelial cells, to study cellular damage, 
inflammation, and repair pathways.52–54 Notably, the use of 
stretch injury cultured mouse brain endothelial cells has 
been instrumental in elucidating cellular and molecular 
mechanisms underlying TBI-induced BBB dysfunction.55 
This approach is based on the hypothesis that primary TBI 
damage arises from mechanical strain and strain rate expe-
rienced by the CNS during traumatic insult.

In addition to mechanical stretch models, oxygen-glu-
cose deprivation (OGD) is commonly employed to mimic 
ischemic conditions, which frequently accompany TBI 
due to impaired cerebral perfusion. OGD replicates the 
metabolic crisis that occurs when blood flow to the brain is 
disrupted, resulting in reduced oxygen and glucose avail-
ability. Given that ischemia is a secondary yet prevalent 
component of TBI, combining stretch injury with OGD 
can more faithfully recapitulate the multifaceted patho-
physiology observed in clinical settings. The choice of cell 
type is another critical factor in developing a physiologi-
cally relevant in vitro TBI model. Although astrocytes, 
neurons, and endothelial cells derived from murine, 
bovine, and human sources have all been utilized, brain 
microvascular endothelial cells are particularly valuable 
for studying alterations in the BBB following trauma.51,53,54

Disruption of the BBB is a hallmark of TBI, leading to 
increased cerebrovascular permeability, vasogenic brain 
edema, and neuroinflammation. These secondary events 
can significantly influence patient outcomes. Therefore, in 
vitro models incorporating brain endothelial cells provide 
a powerful platform to study BBB dysfunction and to 
screen therapeutic agents targeting both primary and sec-
ondary injury mechanisms.56,57

Given the wide clinical variability in TBI presenta-
tion, numerous animal models have been developed to 
replicate different aspects of human brain injury. Rodents 
remain the most commonly used species due to their 
small size, affordability, and the availability of standard-
ized outcome measures. Although larger animals offer 
anatomical and physiological similarities to humans, 
rodent models provide logistical advantages and are suit-
able for high-throughput experimental studies. 
Importantly, while early TBI models primarily addressed 
the biomechanical mechanisms of injury, recent models 
have shifted toward understanding the complex biochem-
ical and molecular cascades activated following trau-
matic brain insults.58–60 Among the most widely utilized 
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modern TBI models are the weight drop injury (WDI),61 
fluid percussion injury (FPI),62 controlled cortical impact 
(CCI) injury,63,64 and blast-like injury.65,66 Each provides 
unique advantages and limitations in replicating human 
TBI (as summarized in Figure 2).

The WDI model is valued for its simplicity, reproduci-
bility, and cost-effectiveness, making it accessible to a 
wide range of laboratories. It involves dropping a cali-
brated weight from a defined height onto the animal’s 
skull, thereby simulating impact injuries such as those 
resulting from falls or blunt trauma.67 However, inconsist-
encies in the angle and distribution of force can lead to 
variable injury patterns, and this model offers limited con-
trol over key parameters such as impact depth or velocity, 
restricting its use in studying region-specific injuries.68

In contrast, the FPI model allows for more controlled 
injury induction, using a burst of fluid pressure applied to 
the intact dura to simulate TBI. It effectively reproduces 
several pathological features seen in human injury, includ-
ing subarachnoid hemorrhage, intraparenchymal bleeding, 
and necrosis.69 Importantly, injury severity can be finely 
tuned, allowing researchers to correlate trauma intensity 
with physiological and behavioral outcomes. However, 
this method requires specialized equipment and consider-
able technical expertise, and its ability to mimic chronic 
sequelae is still under investigation. Additionally, anatomi-
cal differences between rodent and human brains may 
limit translational validity.67,70

The CCI model is particularly valued for its precision 
and reproducibility. Utilizing a pneumatic or electromag-
netic piston, researchers can control the depth, velocity, 

and dwell time of cortical impact, generating focal injuries 
that closely resemble human brain contusions, axonal 
injury, and neuronal loss.68,71 This versatility enables mod-
eling of a range of TBI severities in various species. 
Nevertheless, the CCI setup is technically demanding, 
costly, and may not be accessible in all laboratories. 
Furthermore, while excellent for focal injuries, it may fall 
short of replicating the diffuse axonal damage common in 
human cases.68,72

The blast-like injury model has emerged in response to 
increasing military-related TBIs, simulating injuries from 
explosive blasts. It captures the complex overpressure 
dynamics and rapid acceleration-deceleration forces 
involved in such scenarios.65,66 This model is particularly 
useful for studying cognitive, behavioral, and emotional 
consequences of blast exposure. However, it poses signifi-
cant technical and safety challenges, often requiring 
sophisticated instrumentation and rigorous protocols to 
ensure reproducibility. Injury severity can vary due to the 
intricate physics of blast waves, further complicating 
experimental outcomes.73

TBI frequently impairs motor and cognitive functions 
due to disruptions in the complex neural circuitry connect-
ing the cortex, spinal cord, and peripheral musculature.74 
Accordingly, sensorimotor and behavioral tests are com-
monly used to assess functional outcomes in animal mod-
els. These include the cylinder test, rotarod, grip strength 
assessment, staircase test, and skilled forelimb reaching, 
providing valuable insight into post-injury motor coordi-
nation and strength.74 For closed-head injuries in rodents, 
the neurological severity score (NSS) and its modified 

Figure 2.  Rodent TBI models and their strengths and limitations.
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version for unilateral injuries are widely used to evaluate 
motor and behavioral deficits.75–78 Since cognitive dys-
function is a hallmark of human TBI, numerous models 
have also demonstrated post-injury cognitive deficits, par-
ticularly after CCI, FPI, blast, and impact-acceleration 
injuries.10,76,79–83 Common cognitive assessment tools 
include the Morris water maze, object recognition tests, 
fear-conditioning paradigms, and memory tasks.74 Beyond 
cognitive and motor domains, TBI is often accompanied 
by psychological and emotional disturbances such as anxi-
ety and mood dysregulation. Consequently, advanced 
behavioral paradigms such as the elevated plus maze, open 
field tests, and exploratory behavior assays have been 
adopted to mirror the neuropsychiatric symptoms observed 
in clinical TBI populations.2,84–87

Despite their value, current animal models also have 
limitations. Key structural and functional differences 
between rodents and humans, such as brain geometry, 
craniospinal angle, cortical gyrification, and the white-to-
gray matter ratio, introduce challenges in translating find-
ings.88,89 Furthermore, even within rodent species, there 
are notable inter-strain differences in histological responses 
and behavioral outcomes following TBI.90–93 These bio-
logical variations underscore the need for caution in 
extrapolating preclinical findings and highlight the impor-
tance of complementary clinical and translational research.

Therapeutic approaches for TBI 
recovery

TBI initiates a complex cascade of pathological processes, 
beginning with the primary mechanical insult and progressing 

to secondary injury mechanisms such as oxidative stress, 
inflammation, excitotoxicity, vascular dysfunction, and 
apoptotic cell death.94 Consequently, effective therapeutic 
strategies must be designed to intervene at various stages of 
injury progression, ideally mitigating immediate damage and 
delayed cellular and molecular deterioration. In this context, 
pharmacological and biological interventions have been 
developed to target specific components of TBI pathophysi-
ology (Figure 3).95,96

Neuroprotective approaches

Despite extensive research, many clinical trials investigat-
ing neuroprotective therapies in TBI have yielded disap-
pointing results, prompting renewed scrutiny of their 
therapeutic potential. A key pathological mechanism fol-
lowing TBI involves the dysregulation of intracellular cal-
cium homeostasis. Elevated levels of intracellular calcium 
contribute significantly to a cascade of deleterious events, 
including mitochondrial dysfunction, activation of pro-
teases, and eventual cell death. Thus, modulation of cal-
cium influx has emerged as a promising neuroprotective 
strategy.17–19

Among the pharmacological agents explored, L-type and 
N-type calcium channel blockers have shown potential in 
mitigating TBI-induced neuronal injury by limiting calcium 
accumulation within cells. For instance, nimodipine, an 
L-type calcium channel blocker, has demonstrated improved 
outcomes in patients with spontaneous subarachnoid hem-
orrhage.17 However, a systematic review later challenged 
these findings, revealing no significant difference in mortal-
ity or morbidity between nimodipine-treated patients with 

Figure 3.  Overview of therapeutic strategies for TBI. TBI induces neuronal loss, inflammation, vascular dysfunction, and impaired 
regeneration. Four major approaches—neuroprotective, anti-inflammatory, neurovascular, and neuroregenerative—target these 
pathological processes using distinct mechanisms and agents.
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TBI and those receiving a placebo.18 In contrast, zicono-
tide (SNX-111), an N-type calcium channel inhibitor, has 
been evaluated for its efficacy in improving mitochondrial 
function when administered within a therapeutic window 
of 15 min to 6 h post-TBI.19 While promising neuroprotec-
tive effects were observed, its use was also associated with 
notable side effects, including hypotension, which could 
limit its clinical applicability.

Amantadine, a dopamine agonist originally developed 
for Parkinson’s disease, has emerged as a therapeutic can-
didate for TBI. Functioning as an N-methyl-D-aspartate 
(NMDA) receptor antagonist, amantadine is capable of 
crossing into the frontal lobes, where it may counteract 
glutamate-mediated excitotoxicity in the acute phase of 
TBI. Several studies have demonstrated that administra-
tion of amantadine at doses ranging from 100 to 400 mg/
day within 12 weeks post-injury can enhance arousal and 
cognitive function in patients with TBI.96,97

Another promising agent is EPO. Despite its high 
molecular weight, which exceeds the typical threshold for 
BBB permeability, exogenous EPO has been detected in the 
brain parenchyma, suggesting a potential for neuroprotec-
tive activity following brain injury.98 EPO has been shown 
to possess anti-inflammatory, anti-excitotoxic, antioxidant, 
and antiedematous properties in TBI models.99–102 Notably, 
expression of the EPO receptor (EpoR) is significantly 
upregulated in neurons, glial cells, and endothelial cells 
after TBI.103 Knockout studies in mice have revealed that 
the absence of EpoR leads to increased apoptosis and a 
reduced population of neural progenitor cells (NPCs), indi-
cating the receptor’s importance in neuronal survival.104

It has been demonstrated that the EPO/EpoR signal 
pathway contributes to neuroprotection in pathological 
settings.102,105 Following TBI, there is a marked upregula-
tion of EPO receptor expression in neurons, glia, and 
endothelial cells, indicating a potential role in the endoge-
nous repair response.19 Upon binding to EpoR, EPO acti-
vates key intracellular cascades, notably the Janus kinase 2 
(JAK-2)/nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) and phosphoinositide 3-kinase 
(PI3K) signaling pathways, which are implicated in cell 
survival and anti-inflammatory responses.19,106 In particu-
lar, phosphorylation of JAK-2 leads to the homodimeriza-
tion of signal transducer and activator of transcription-5 
(STAT-5), a process associated with anti-apoptotic and 
neurotrophic effects. This, in turn, further activates down-
stream signaling through the PI3K/AKT and Ras/mitogen-
activated protein kinase (MAPK) pathways, enhancing 
cell survival and neurogenesis.30,107,108 Despite these prom-
ising molecular mechanisms, clinical translation has been 
challenging. A recent double-blind randomized controlled 
trial found that EPO administration did not significantly 
affect the proportion of patients experiencing severe neu-
rological dysfunction, and its influence on mortality out-
comes in moderate to severe TBI remains inconclusive.106

Glial cells are the primary source of the calcium-bind-
ing protein S100B, which becomes detectable in the serum 
following TBI, particularly when BBB integrity is com-
promised. S100B exerts a dose-dependent dual effect on 
neurons: at low concentrations, it acts as a neurotrophic 
factor, supporting neuronal survival and repair. In contrast, 
at high levels, it promotes neuroinflammation and can 
impair neural viability, thereby exacerbating brain injury.19

Mesenchymal stem cells (MSCs) have also emerged as 
promising candidates for neuroprotective therapy. 
Although the precise mechanisms by which MSC trans-
plantation facilitates recovery after TBI are not yet fully 
elucidated, current evidence suggests that neurorestora-
tion, rather than direct neuroreplacement, is the principal 
mechanism. This is supported by findings that MSCs 
secrete a variety of neurotrophic factors, such as brain-
derived neurotrophic factor (BDNF), vascular endothelial 
growth factor (VEGF), and fibroblast growth factor 2 
(FGF-2).109 These factors play critical roles in synaptogen-
esis, angiogenesis, and neurogenesis, collectively enhanc-
ing functional recovery following TBI.19,110

Anti-inflammatory approaches

Following TBI, secondary injury is characterized by a 
robust neuroinflammatory response, which is driven by the 
activation of microglia and astrocytes, infiltration of 
peripheral immune cells, and the release of pro-inflamma-
tory cytokines, including IL-1β, tumor necrosis factor-
alpha (TNF-α), and IL-6.111 Collectively, these events 
contribute to BBB disruption, exacerbation of neuronal 
injury, and the development of chronic neurological 
impairments. Accordingly, anti-inflammatory strategies 
are designed to dampen this cascade, ideally during the 
acute to subacute phases of TBI.

Among such strategies, melatonin, a neurohormone 
with potent antioxidant and anti-inflammatory properties, 
has shown promise in preclinical models. It exerts its 
effects by reducing reactive oxygen species (ROS) and 
inhibiting NF-κB activation, thereby attenuating neuroin-
flammation.112,113 Animal studies have demonstrated that 
melatonin administration results in decreased activation of 
microglia and astrocytes, reduced cerebral edema, and 
enhanced neurological recovery. Additionally, melatonin 
has been shown to alleviate cognitive deficits induced by 
repeated mild TBI by inhibiting astrocyte reactivation. 
However, translation into clinical practice has been chal-
lenging, as clinical trials in adults have yielded mixed 
results regarding its efficacy.

Another notable approach involves using IL-1Ra, such 
as anakinra, to block IL-1β-mediated inflammatory signal-
ing. In preclinical models, IL-1Ra treatment has been asso-
ciated with reduced microglial activation, preservation of 
white matter integrity, and improved functional recov-
ery.114 Early-phase clinical trials suggest that IL-1Ra is 
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safe and potentially effective, though larger, well-powered 
studies are required to confirm its therapeutic benefit in 
patients with TBI.

Anti-TNF agents, such as etanercept, have also demon-
strated promising effects in reducing glial activation and 
promoting neurogenesis in animal models. In rodent mod-
els of TBI, etanercept treatment has been associated with 
significant improvements in cognitive and motor func-
tions, as well as a reduction in pro-inflammatory markers 
in the brain.115 While preliminary human data suggest 
potential benefits for post-TBI recovery, the evidence 
remains limited, with controlled clinical studies still being 
relatively scarce.116

Neurovascular approaches

TBI disrupts the neurovascular unit, impairing blood flow, 
damaging the BBB, and limiting the delivery of oxygen 
and nutrients to injured tissue. These changes contribute to 
secondary injury cascades and hinder recovery. Therefore, 
therapeutic strategies that restore vascular function and 
support angiogenesis are essential for neuroprotection and 
regeneration.

Intriguingly, statins, primarily known for their ability 
to reduce cholesterol by inhibiting its production, have 
shown promising effects in promoting angiogenesis, neu-
rogenesis, and synaptogenesis, as well as improving 
functional recovery after TBI in various animal stud-
ies.117–119 Importantly, these positive effects are not 
directly related to their cholesterol-lowering properties. 
Instead, the beneficial actions of simvastatin may be 
mediated through the activation of key signaling path-
ways, including nuclear factor-κB, Forkhead transcrip-
tion factor 1, and Akt. These pathways contribute to the 
prevention of caspase-3 activation and apoptotic cell 
death, ultimately supporting the restoration of neuronal 
function following TBI.120 In rat models of TBI, simvas-
tatin treatment resulted in sustained functional improve-
ments for up to 3 months post-injury.121

Moreover, statins may enhance the effectiveness of 
stem cell transplantation in TBI recovery. For example, 
atorvastatin has been shown to increase MSC access and 
survival within the injured brain, leading to greater func-
tional recovery when combined with MSC therapy, com-
pared to either treatment alone.122 Given their widespread 
use, favorable safety profile, and positive preclinical and 
clinical data, further clinical trials are necessary to fully 
evaluate the neuroprotective and neurorestorative proper-
ties of statins in the context of TBI.123

Neuroregenerative approaches

Neuroregeneration refers to the process of replacing or 
repairing neurons, oligodendrocytes, and other neural cells 
lost or damaged following TBI. While endogenous 

neurogenesis occurs to a limited extent in adult mammals, 
primarily in the subventricular zone (SVZ) and the hip-
pocampal dentate gyrus, this process is often insufficient 
to compensate for widespread injury. To address this gap, 
therapeutic strategies have been developed to enhance the 
regenerative capacity of the brain through exogenous stim-
ulation and transplantation approaches.

One such strategy involves the 43-amino acid polypep-
tide thymosin beta 4 (Tβ4), which was initially discovered 
in thymus tissue and later identified in all mammals. The 
primary intracellular role of Tβ4 is the sequestration of 
G-actin, an essential component for organogenesis and cell 
motility.124 Beyond this, Tβ4 has shown promise in 
enhancing tissue healing in various organs, including the 
skin, cornea, and heart, while simultaneously preventing 
inflammation and apoptosis.125 Additionally, Tβ4 acts as a 
paracrine factor, critical for epicardial progenitor cells in 
promoting angiogenesis after ischemic injury.126 Tβ4 sup-
ports several key cellular functions, including motility, 
axonal pathfinding, neurite outgrowth, proliferation, and 
neuronal survival.125,127 For example, Tβ4 has demon-
strated positive outcomes in rats with embolic stroke,128 
mice with experimental autoimmune encephalomyelitis,129 
and TBI models. In one study, delayed Tβ4 treatment sig-
nificantly improved sensorimotor recovery, spatial learn-
ing, angiogenesis, and neurogenesis while reducing 
hippocampal cell loss in rats with TBI.130 Compared to 
saline treatment, delayed Tβ4 administration showed 
enhanced sensorimotor function, neurogenesis in the 
injured cortex and hippocampus, and increased oligoden-
drogenesis in the CA3 region, ultimately improving histo-
logical and functional outcomes. These findings suggest 
that Tβ4 holds significant therapeutic promise for improv-
ing recovery in patients with TBI.

Endogenous neurogenesis can also be pharmacologi-
cally enhanced through the administration of specific 
growth factors. Molecules such as BDNF, FGF-2, and 
insulin-like growth factor 1 (IGF-1) play central roles in 
promoting neuronal survival, differentiation, and plastic-
ity.131 In experimental TBI models, these agents have been 
shown to increase the proliferation of neural progenitor 
cells, enhance synaptogenesis, and contribute to cognitive 
recovery.

Neural stem/progenitor cells (NS/PCs) reside in neu-
rogenic niches such as the hippocampus, subventricular 
zone (SVZ), and the ependymal lining of the mammalian 
brain.132 Recent studies have demonstrated that stimulat-
ing the growth and differentiation of these endogenous 
NS/PCs can stabilize the cortical microenvironment and 
improve functional recovery after TBI.133,134 Moreover, 
exogenous NSC transplantation has been found to 
improve functional outcomes, increase hippocampal 
neurogenesis, and provide neuroprotective effects.135 
Emerging research has also shed light on the interplay 
between NSCs/NPCs and the immune system. 
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Transplanted NS/PCs interact with resident and periph-
eral immune cells, promoting the functional integration 
of the grafted cells and enhancing endogenous regenera-
tive responses.136 This cross-talk underscores the thera-
peutic potential of NSC-based strategies for restoring 
neural integrity and function following TBI.

Oligodendrocyte regeneration is essential for restoring 
myelin integrity and white matter connectivity following 
TBI.137 Multiple studies have demonstrated that NS/PCs 
and oligodendrocyte progenitor cells (OPCs) can differen-
tiate into mature oligodendrocytes in vivo, contributing to 
remyelination and the restoration of axonal conduction.138 
Therapies such as Tβ4 and MSC-derived exosomes appear 
to potentiate this regenerative process by modulating the 
injury microenvironment, promoting oligodendrogenesis, 
and reducing inflammation.

Embryonic stem cells (ESCs) have also been 
explored as a potential therapeutic platform in TBI 
models.139,140 While preclinical studies have indicated 
neuroprotective and regenerative effects, the long-term 
safety, tumorigenicity risk, and ethical concerns sur-
rounding ESC use necessitate further investigation 
before clinical translation.

In summary, neuroregenerative strategies offer signifi-
cant promise for long-term functional recovery by reestab-
lishing neuronal circuitry, promoting axonal integrity, and 
facilitating white matter repair. Future research should pri-
oritize enhancing the survival, targeted differentiation, and 
functional integration of transplanted or reprogramed 
cells. Additionally, optimizing the timing, delivery route, 

and microenvironmental cues will be critical to maximiz-
ing therapeutic efficacy in patients with TBI.

Intranasal delivery: Alternative route 
to bypass the BBB

Intranasal administration offers a promising route for 
delivering therapeutic agents directly to the CNS by 
bypassing the BBB. This method enables substances to 
enter the brain through olfactory and trigeminal neural 
pathways (as illustrated in Figure 4), making it an attrac-
tive alternative to systemic or intracerebroventricular 
(ICV) routes.

Intranasal delivery has several advantages. It enables 
targeted CNS access while minimizing systemic expo-
sure and potential side effects, as only a small fraction of 
the administered dose typically enters the bloodstream. 
Additionally, intranasal administration can avoid enzy-
matic degradation by serum proteases and is relatively 
non-invasive, making it particularly suited for repeated 
or chronic therapeutic regimens. Compared to intrave-
nous (IV) or peripheral routes, intranasal delivery often 
achieves higher CNS bioavailability without the need for 
surgical intervention. While many treatments have 
shown promising preclinical efficacy via ICV or sys-
temic routes, intranasal administration combines the key 
advantages of non-invasiveness, selectivity for the CNS, 
and reduced systemic toxicity.141 The cribriform plate 
serves as the primary anatomical target for CNS-directed 
intranasal delivery.

Figure 4.  Mechanism of intranasal delivery. Schematic illustration of nose-to-brain transport following intranasal administration of 
biomolecules or nanoparticles. Upon delivery into the nasal cavity as a spray or drop, therapeutic agents interact with the olfactory 
mucosa and reach the brain through paracellular, transcellular, and intracellular (axonal) pathways. The paracellular pathway enables 
passive diffusion of small molecules or nanoparticles through tight junctions between epithelial cells. The transcellular pathway 
involves endocytic uptake and vesicular transport across epithelial cells, allowing receptor-mediated or adsorptive delivery of 
macromolecules. In the intracellular pathway, substances are internalized by olfactory sensory neurons and transported via axonal 
projections into the olfactory bulb and brainstem. These pathways enable direct access to the central nervous system while 
bypassing the blood-brain barrier, supporting efficient delivery of therapeutics to target brain regions.
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However, variations in nasal cavity anatomy between 
species influence administration protocols. In rodents, two 
common methods are employed: The first and most popu-
lar administration method involves using a pipette tip to 
place the substrate (⩽20 μL for mice and up to 50 μL for 
rats) on the edge of the nares, which is subsequently 
inhaled.142,143 To optimize CNS exposure without exceed-
ing safe volume limits, dosing is typically repeated alter-
nately between nostrils. Modifications to this technique, 
such as gently sealing the mouth and contralateral nostril, 
can further improve deep nasal penetration and delivery 
efficiency.144 In non-human primates, larger volumes (0.1–
0.5 mL per nostril) can be delivered using flexible tubing 
positioned approximately 25–30 mm from the cribriform 
plate.145,146 This method provides more consistent and 
localized deposition of therapeutics near olfactory struc-
tures. An alternative delivery strategy involves misting the 
target substrate in front of the animal’s nostril with a con-
trolled, pulsed, pressurized atomizer—a technique akin to 
that employed in human clinical trials.147,148 Nebulizers, 
also known as atomizers, are frequently used for intranasal 
drug delivery to humans. These devices generate pressur-
ized air that transforms liquid formulations into a fine 
aerosol spray, which can enhance drug deposition in the 
narrow, upper regions of the nasal cavity. Compared to 
conventional spray pumps, atomizers improve the penetra-
tion and dispersion of drugs in regions more closely con-
nected to the olfactory and trigeminal pathways. To 
optimize absorption, dosing is typically alternated between 
nostrils, allowing for consistent drug uptake while avoid-
ing mucosal saturation.32,149 However, aerosolization 
introduces shear stress that may affect the structural integ-
rity of sensitive biologics.150 While small-molecule drugs 
generally remain stable during nebulization, macromole-
cules such as peptides and proteins may undergo partial 
denaturation or aggregation under high-pressure atomiza-
tion. To address this, formulations often incorporate stabi-
lizing excipients (e.g. sugars, surfactants), and device 
designs have been optimized to minimize mechanical 
stress.151 For cell-based products, direct aerosolization is 
not feasible due to the high risk of mechanical damage; 
therefore, therapeutic strategies typically rely on deliver-
ing stem cell-derived secretomes or extracellular vesicles 
encapsulated in protective carriers such as nanoparticles or 
hydrogels to maintain stability during administration

After intranasal administration, drugs are believed to 
primarily enter the brain via retrograde axonal transport 
along olfactory and trigeminal neurons, and direct passage 
into the CSF through the cribriform plate.152 Early studies 
highlighted the olfactory bulb as the primary site of deposi-
tion. However, more recent investigations have demon-
strated widespread CNS distribution, with certain 
compounds preferentially accumulating in regions such as 
the hippocampus or hypothalamus, depending on their 
physicochemical and pharmacokinetic properties.153,154 For 

example, insulin, a water-soluble peptide that is rapidly 
degraded in circulation, shows preferential CNS uptake 
with minimal systemic exposure when administered intra-
nasally. In contrast, progesterone, a small lipophilic mole-
cule, exhibits more diffuse systemic distribution, with 
tissue-specific concentrations influenced by local metabo-
lism, sequestration, and tissue affinity.

Given the promising potential of intranasal delivery to 
target the brain efficiently and non-invasively, our analysis 
focuses on therapeutic compounds delivered intranasally 
for the treatment of TBI. These agents fall into six major 
categories: immunosuppressants, cytokines, growth fac-
tors, vitamins and metabolites, exosomes, and stem cell 
therapy. In the following sections, we discuss both preclin-
ical studies and clinical case reports, with a focus on the 
behavioral, biochemical, and histological outcomes asso-
ciated with these intranasal therapies for TBI.

Candidate therapeutic molecules for 
intranasal delivery

Growth factors and cytokines

In most preclinical studies cited in this section, intranasal 
administration was performed by delivering a small vol-
ume of the therapeutic agent (typically 10–20 µL per nos-
tril for mice or 20–50 µL for rats) using a micropipette or 
syringe while the animal was placed in a supine position. 
This method ensures direct deposition onto the nasal 
mucosa and facilitates uptake through the olfactory and 
trigeminal pathways. In contrast, in studies involving 
human subjects, intranasal administration was performed 
using spray-based devices (e.g. nasal sprays or atomizers), 
which enable non-invasive and controlled delivery to the 
upper nasal regions. IGF-1 plays a central role in support-
ing neuronal survival and reducing injury in the hippocam-
pus following cerebral ischemia (Figure 5(a)). Upon 
intranasal administration, IGF-1 becomes detectable in the 
CNS within approximately 20 min, with its highest con-
centration observed in the olfactory bulb.144 Several ani-
mal studies have demonstrated that intranasal IGF-1 
delivery attenuates neuroinflammation and enhances 
motor function after stroke.144,155 Given its well-estab-
lished neuroprotective and regenerative effects in TBI ani-
mal models, the intranasal administration of IGF-1 
represents a promising, non-invasive strategy for treating 
TBI-related pathology.156,157

Recent work has investigated the CNS impact of insu-
lin administered through various delivery routes.158 
Initially, insulin was shown to dampen peripheral inflam-
mation by reducing TNF-α and IL-1β.159 More recent 
findings indicate that insulin also modifies CNS inflam-
mation.160,161 Specifically, intranasal insulin can modulate 
inflammatory signaling in the hippocampus of Alzheimer’s 
disease mouse models, influencing processes such as T 



Yoo et al.	 11

cell receptor signaling, cytokine–cytokine receptor inter-
actions, and cell adhesion pathways.162 In one in vivo 
study, intranasal insulin therapy reduced lesion volume 
and enhanced glucose uptake and memory function in the 

ipsilateral hippocampus.163 Using a pipette-based 
approach, intranasal insulin effectively reached the cor-
tex, hippocampus, brainstem, and cerebellum following a 
CCI. Notably, it significantly reduced microglial 

Figure 5.  Mechanisms of therapeutic molecules and candidates in TBI. Schematic overview of representative molecular and cellular 
mechanisms underlying therapeutic strategies for TBI. (a) IGF-1 exerts neuroprotective effects by engaging IGF1R and activating 
multiple signaling pathways. The RAS–ERK–Akt axis suppresses neuronal apoptosis, while the PI3K–Akt–HO-1 pathway attenuates 
oxidative stress and inflammation. Concurrently, PI3K–Akt–GLUT signaling enhances glucose uptake and metabolic homeostasis. 
IGF1R also modulates ion channel activity and neurotransmission through ionic current regulation. (b) BDNF binds to TrkB and 
initiates downstream cascades that support neuronal growth and plasticity. The PI3K–Akt–mTOR pathway promotes dendritic 
development and cell survival, whereas the Ras–MEK–ERK and PLC–CaMKII pathways converge on CREB to induce transcriptional 
programs involved in synaptic remodeling, differentiation, neurotransmitter regulation, and myelination. (c) Exosomes and 
extracellular vesicles (EVs) deliver bioactive cargos such as miRNAs, lncRNAs, growth factors, and cytokines to injured neural 
tissue. These components promote neuroregeneration, suppress neuroinflammation (e.g. via IL-4, IL-10), reduce apoptosis through 
autophagy regulators (LC3B, Beclin-1), and enhance angiogenesis via VEGF-mediated signaling. (d) Stem cells modulate the post-
injury brain microenvironment primarily through paracrine mechanisms. They release EVs, trophic factors, and cytokines that 
collectively support vascular, neuronal, and immune recovery. EV-associated IGF-1, VEGF, ANG-1, and HGF promote angiogenesis; 
neurotrophic factors (BDNF, NGF, GDNF) facilitate axon growth and myelination; and immunomodulatory cytokines (IL-4, IL-10, 
IL-13) contribute to neuroprotection, neurite outgrowth, and neurogenesis.
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activation, as indicated by diminished Iba1 staining in the 
CA1 region of the hippocampus. This evidence highlights 
the promise of intranasal insulin for treating TBI-related 
metabolic dysfunctions, mitigating microglial-driven 
inflammation, and improving memory outcomes.

Decreases in blood and brain levels of BDNF have been 
associated with inflammatory injuries, including stroke 
and TBI, suggesting a correlation with injury severity in 
animal and human studies.164,165 Jiang et al. reported that 
intranasal delivery of BDNF, although not altering lesion 
volume post-stroke, shifted the neuroinflammatory land-
scape and protected neurons.166 Such findings indicate that 
BDNF may exert a protective effect partly through immu-
nomodulatory pathways, supporting the idea that intrana-
sal administration of BDNF could be beneficial in brain 
injury management (Figure 5(b)).

Nerve growth factor (NGF) is another neurotrophin that 
fosters neuronal growth, differentiation, survival, and 
repair after neuronal insult.167 In rat TBI models, intranasal 
NGF notably curbed edema and reduced cell death.168 
Similarly, a case study illustrated that intranasal NGF 
administration improved neurological function in a 4-year-
old boy with TBI.169 This improvement was accompanied 
by an increase in both doublecortin protein (a neurogenesis 
marker) and NGF levels in the CSF.

Toll-like receptors (TLRs) can be activated by CNS 
traumas such as stroke and TBI, subsequently inducing 
pro-inflammatory signaling cascades, such as NF-κB-
mediated cytokine production. In a rat stroke model, intra-
nasal delivery of a TLR/NF-κB pathway inhibitor 
effectively reduced infarct volume and improved neuro-
logical function.170 Transforming growth factor beta (TGF-
β) is an anti-inflammatory cytokine capable of mitigating 
NF-κB signaling.20,21 Administration of TGF-β has been 
shown to promote neurogenesis and aid in functional 
recovery in a mouse model prone to stroke.171 TLR activa-
tion also elevates granulocyte-colony stimulating factor 
(G-CSF), a cytokine that stimulates the innate immune 
response and cell division.172 G-CSF is regarded as neuro-
protective and is significantly increased in various inflam-
matory conditions and diseases.173 Interestingly, its plasma 
levels peak around 12 h following TBI, suggesting poten-
tial diagnostic utility.174 These observations support the 
idea that intranasal administration of cytokines modulating 
immunity and cell proliferation may offer an effective 
approach to TBI therapy.

Endogenous cytokines can impact both innate and 
adaptive immune processes. The anti-inflammatory 
cytokine interleukin 13 (IL-13) is secreted by T helper 2 
(Th2) cells.175 IL-13 can stimulate neurons and endothelial 
cells through IL-13 receptor α1-dependent signaling.176,177 
Studies have found that Th2-derived IL-13 levels are 
increased in the CSF of patients with relapsing multiple 
sclerosis, implying a major role for IL-13 in immune-cell 
recruitment under inflammatory stress.178,179 Growth fac-
tors such as BDNF are linked to IL-13 and may have their 

expression upregulated by it.180 As noted earlier, neuro-
trophic factors like BDNF can be delivered intranasally in 
models of CNS disease; however, delivering cytokines 
that boost endogenous neurotrophic factor production in 
the CNS is another viable strategy. Indeed, recent work 
demonstrated that intranasal IL-13 reduces neuroinflam-
mation and improves recovery in a rat TBI model.181 
Therefore, intranasal administration of anti-inflammatory 
cytokines might enhance neurotrophic factor activity and 
alleviate various CNS disorders.

Another key anti-inflammatory cytokine, interleukin 10 
(IL-10), is secreted in response to brain injury to moderate 
inflammatory cascades that might otherwise exacerbate 
tissue damage. Although preclinical TBI models suggest a 
neuroprotective role for IL-10, clinical trials have shown 
divergent outcomes. One study in Sprague-Dawley rats 
found that IL-10 mRNA levels in the brain rise immedi-
ately after TBI, whereas IL-10 protein remains stable until 
a sharp increase occurs 2 h post-injury.182 These data indi-
cate that local IL-10 synthesis, rather than leakage of IL-10 
from systemic circulation, is primarily responsible for the 
early rise in IL-10. Research on IL-10−/− mice confirms the 
benefits of IL-10 following TBI, though the therapeutic 
outcomes of exogenous IL-10 administration can vary 
based on experimental protocols and delivery routes. After 
CCI-induced TBI, IL-10−/− mice displayed elevated BBB 
disruption, enhanced apoptosis, greater lesion size, more 
pronounced edema and inflammation, and worsened motor 
and cognitive outcomes at 4 weeks.183 Subcutaneous and 
intracerebroventricular IL-10 injections have yielded posi-
tive effects in TBI animal models,183,184 and intranasal 
delivery may similarly facilitate direct CNS access with-
out crossing the BBB.

TNF-α is a pro-inflammatory cytokine that signals 
through TNFR1 or TNFR2. It exists in two bioactive 
forms: a soluble form generated by proteolytic cleavage of 
its membrane-bound counterpart and a membrane-bound 
form involved in cell–cell interactions.185 Inhibiting TNF-
α has shown therapeutic benefits for TBI in animal stud-
ies,186,187 and there are several FDA-approved biologics 
targeting TNF-α include recombinant fusion proteins 
(entanercept) and monoclonal antibodies (adalimumab, 
certolizumab, golimumab, and infliximab).188 One exam-
ple investigated intranasal administration of a TNF-α-
inhibitory single-chain variable fragment (ESBA105). 
Even at a tenfold higher intranasal dose, systemic expo-
sure remained about 33-fold lower than that of systemic 
injection. Incorporating a penetration-enhancing peptide 
further improved ESBA105 transport to the cerebrum and 
olfactory bulb without raising systemic levels.189

Extracellular vesicles (EVs)

Extracellular vesicles (EVs), including exosomes measur-
ing approximately 50–200 nm, are formed from endosomes 
and play pivotal roles in regulating immune responses, 
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among other functions.190,191 Cell-derived exosomes have 
recently emerged as an innovative treatment option for 
post-TBI neural injury.192 Intranasal delivery of exosomes 
derived from birth-associated MSCs attenuated neuronal 
death and promoted neurological healing in preclinical 
studies.193,194 Moss et al. found that MALAT1, a long non-
coding RNA abundant in MSC-derived exosomes, sup-
pressed microglial activation through TrkC signaling. 
Furthermore, in a spinal cord injury animal model, intrana-
sal administration of MSC-derived exosomes loaded with 
phosphatase and tensin homolog siRNA (ExoPTEN) 
effectively eased neurological deficits.195 Exosomes can 
cross the BBB and are extensively used as drug carri-
ers,196–198 suggesting that intranasal exosome therapy 
might mitigate harmful neuroinflammatory processes. 
However, their systemic distribution after intranasal appli-
cation is not yet fully elucidated. Some CNS-derived 
exosomes reportedly contain efflux-related proteins, such 
as tau and α-synuclein, which implies that brain-to-blood 
clearance could shape their biodistribution.199 More 
research into how donor cell characteristics and exosome 
composition affect their biodistribution and function will 
help harness exosomes as an intranasal delivery method 
for CNS repair (Figure 5(c)).

Stem cells

Stem cell-based approaches have been proposed as 
therapeutic interventions for neurological disorders 
(Figure 5(d)).152,200,201 Early efforts delivered stem cells 
directly to the CNS to trigger their neuroprotective effects. 
Several animal studies indicate that MSCs administered 
intranasally can benefit conditions including TBI, stroke, 
Parkinson’s disease, and brain cancer.202–204 While pre-
clinical models are encouraging, safety considerations 
warrant caution for eventual clinical applications.205–207 
To mitigate proliferative risks, researchers have explored 
capturing protective paracrine activities of stem cells 
without the uncontrolled cell growth traditionally associ-
ated with them.208,209

By administering the anti-inflammatory and neuro-
trophic molecules secreted by MSCs intranasally, these 
beneficial effects can be directed more safely and precisely 
to the CNS.210,211 Investigators are currently delineating 
which soluble mediators or vesicles underlie the positive 
outcomes of stem cell therapy.212 MSC-derived extracel-
lular vesicles (MSC-EVs), in particular, have garnered 
attention for immunomodulation in CNS diseases.208,210,213 
It has been shown that MSC-EVs integrate into neurons 
and microglia once they enter the brain intranasally in a in 
vitro study.214 Strategies such as preconditioning MSCs 
with inflammatory cytokines or hypoxic conditions can 
increase their EV production and therapeutic potency.215,216 
Other methods involve exposing MSCs to substances like 
the Rho-kinase inhibitor fasudil, which was found to 

reduce dopaminergic neuron loss in a Parkinson’s animal 
model.217 Genetically modifying MSCs to secrete various 
neuroprotective growth factors further broadens their clin-
ical promise.218 Additionally, guiding MSCs to differenti-
ate into cell types specifically compromised in a 
neurological disease may enhance treatment outcomes. 
For instance, in an experimental multiple sclerosis model, 
conditioned medium from MSC-derived oligodendrocytes 
promoted myelination and curbed inflammation.219 
Moving forward, it will be important to optimize incuba-
tion and differentiation protocols that maximize MSC-
based therapies’ delivery and benefits to the injured CNS. 
Carefully matching the diseased cell population with the 
appropriate preconditioning and differentiation strategy 
may yield safer, more targeted clinical outcomes.

Taken together, these findings underscore how intrana-
sal administration of diverse therapeutic agents, from 
cytokines and growth factors to exosomes and stem cells, 
can circumvent traditional delivery barriers and directly 
target injured neural tissue. It is important to acknowledge 
that the efficiency of intranasal delivery is highly depend-
ent on the physicochemical properties of the therapeutic 
agent. Small molecules and peptides (<1 kDa) generally 
traverse the nasal epithelium through paracellular or trans-
cellular pathways. In contrast, macromolecules such as 
cytokines and growth factors require receptor-mediated or 
adsorptive endocytosis, which limits bioavailability. For 
whole cells, such as mesenchymal stem cells (MSCs), 
direct penetration across the nasal epithelium into the cen-
tral nervous system is virtually impossible due to their 
large size (10–20 μm) and lack of motility across the olfac-
tory barrier. Therefore, the therapeutic effects observed in 
preclinical studies following intranasal MSC administra-
tion are believed to primarily result from their paracrine 
actions, including secretion of neurotrophic factors and 
extracellular vesicles, rather than direct engraftment within 
the brain parenchyma.152,204 These considerations under-
score the importance of alternative strategies, such as lev-
eraging MSC-derived secretomes or exosomes and 
incorporating them into advanced carriers like mucoadhe-
sive nanoparticles or thermoresponsive hydrogels, to 
achieve effective and sustained delivery.

Biomaterials-based intranasal drug 
delivery systems for TBI

Nanoparticle-based delivery: Rationale and 
strategies

Intranasal drug delivery has emerged as a promising non-
invasive strategy to bypass the BBB and directly target the 
CNS, offering therapeutic potential for neurological disor-
ders, including TBI. Among various delivery vehicles, 
biomaterials-based nanoparticles have gained attention 
due to their ability to enhance retention in nasal tissues, 
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penetrate biological barriers, and increase drug bioavaila-
bility even at low doses.220,221 These systems enable site-
specific delivery to injured brain regions, potentially 
improving therapeutic efficacy while minimizing systemic 
exposure.

The effectiveness of nanoparticle-mediated nose-to-
brain delivery depends largely on the design and interac-
tion of the nanocarriers with anatomical and biological 
barriers. Mucosal surfaces within the nasal cavity present 
the first major obstacle. Nanoparticles with mucoadhesive 
properties, particularly those carrying a positive surface 
charge, can adhere to the negatively charged mucus layer 
and resist mucociliary clearance.222 However, overly adhe-
sive particles may become entrapped. Inspired by viral 
surface characteristics, nanocarriers engineered with posi-
tive and negative charges or hydrophilic coatings can 
achieve balanced interactions, enhancing mucus penetra-
tion without excessive retention.223–225

Particle size also significantly influences transport effi-
ciency. Nanoparticles smaller than 200 nm generally show 
improved diffusion through the nasal mucosa and better 
access to neural pathways. For instance, size-dependent 
uptake has been observed in the trigeminal nerve, where 
smaller particles (~100 nm) showed higher transport effi-
ciency compared to larger counterparts.226,227 Additionally, 
surface charge affects the preferred neural transport route: 
negatively charged particles tend to favor the olfactory 
pathway, while neutral and positively charged particles 
more often utilize the trigeminal route.228,229

The performance and safety of nanoparticle-based 
delivery systems are strongly influenced by their physico-
chemical characteristics. For polymeric systems, factors 
such as molecular weight and degradation rate determine 
drug release kinetics and mucosal residence time.230 
Inorganic nanoparticles exhibit property-dependent behav-
ior: smaller metal particles and specific shapes (e.g. rods, 
plates) can enhance olfactory transport but may also 
increase surface reactivity and cytotoxicity.231,232 
Furthermore, the release of metal ions in contact with bio-
logical fluids raises concerns about oxidative stress and 
inflammatory responses.233,234 Prolonged accumulation of 
nanoparticles in neural tissues may further elevate toxicity 
risks, necessitating rigorous optimization of size, shape, 
and surface chemistry.235 To mitigate these challenges, 
strategies such as PEGylation, biodegradable polymers, 
and surface functionalization have been explored to 
improve biocompatibility while maintaining effective 
nose-to-brain transport.

To further improve brain targeting, various materials and 
surface modification strategies have been developed. 
Polymeric or lipid-based nanoparticles may be functional-
ized with surfactants, PEGylation, or targeting ligands to 
enhance mucus permeability and epithelial penetration.236,237 
Mucoadhesive or thermosensitive gels have also been com-
bined with nanoparticles to prolong nasal residence and 

facilitate sustained release, allowing more efficient drug 
transport to injured brain tissues.238–241

Another strategy involves engineering nanoparticles to 
exploit the olfactory and trigeminal nerve pathways for 
intracellular transport. The restricted size of olfactory neu-
rons (~100–700 nm) necessitates appropriately scaled nano-
particles to achieve efficient neuronal entry.242 Furthermore, 
some advanced biomaterial systems incorporate deformable 
or magnetically responsive components to enhance direc-
tional delivery across these pathways.243,244

At the epithelial level, transient modulation of tight 
junctions (TJs) offers a route for paracellular transport. 
Natural and synthetic agents, such as surfactants, bile salts, 
or cationic polymers, can reversibly open TJs and improve 
nanoparticle permeation without causing permanent dam-
age.245–248 However, safety concerns regarding cytotoxic-
ity and inflammatory responses remain.249

In addition to neuronal and paracellular transport, 
absorption via the lamina propria provides a supplemen-
tary mechanism for systemic and CNS access. This route, 
although less efficient due to BBB limitations, may still 
contribute to therapeutic effects, particularly for small 
lipophilic drugs.250 However, the presence of immune 
cells in this region necessitates careful assessment of 
nanoparticle biocompatibility to avoid adverse inflamma-
tory reactions.251

Collectively, studies highlight the importance of 
rational nanoparticle design, considering size, surface 
chemistry, deformability, and muco-interactive properties, 
to effectively engage with the nose-to-brain delivery route 
(Figure 6). For TBI treatment, where timely and localized 
intervention is crucial, biomaterial-based intranasal sys-
tems offer a multifaceted platform to deliver therapeutics, 
mitigate inflammation, and promote neural repair.252–254 
Continued exploration of nanoparticle-tissue interactions 
and biomimetic strategies inspired by natural intranasal 
transport processes may yield next-generation delivery 
systems with enhanced precision and safety. Despite 
encouraging results in preclinical models, no nanoparti-
cle-based intranasal formulations have yet been clinically 
tested or approved for TBI in humans. A few early-phase 
trials have explored intranasal nanoparticle or exosome-
based therapies for other CNS disorders, such as 
Alzheimer’s and Parkinson’s disease, but these remain 
limited and largely focus on safety assessment. Therefore, 
the clinical translation of intranasal nanoparticle delivery 
for TBI remains a significant unmet challenge requiring 
further investigation.

In vivo findings: Nanoparticle-based intranasal 
delivery systems in TBI

Lipid-based nanoparticles.  Considering the safety and neu-
rotoxicity concerns associated with nanoparticle-based 
drug delivery, lipid-based nanocarriers offer significant 
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advantages for treating CNS diseases due to their low 
toxicity, high stability, and ability to cross the BBB.255 
Various formulations using physiological lipids, such as 
liposomes, nanoemulsions (NEs), nanostructured lipid 
carriers (NLCs), and solid lipid nanoparticles (SLNs), 
have been developed to encapsulate and protect lipo-
philic drugs, exhibiting high biocompatibility and 
biodegradability.226,256,257

In the context of TBI, where the BBB presents a 
major obstacle to therapeutic delivery, lipid-based nano-
particles provide a minimally invasive strategy for 
enhancing brain targeting. Additionally, surface modifi-
cations such as ligand conjugation or hydrophilic coat-
ings can further improve brain accumulation and reduce 
off-target effects.258,259

Liposomes, the first developed lipid-based nanocarri-
ers, consist of one or more phospholipid bilayers enclosing 
an aqueous core.260 Their ability to carry both hydrophilic 
and hydrophobic agents makes them versatile tools for 
drug delivery. In TBI models, liposomes have shown 
promise for localized delivery of neuroprotective agents, 
reducing systemic side effects and improving functional 
outcomes. For example, intranasal delivery of interleukin-
4-loaded liposomes in a murine TBI model promoted 
white matter repair and improved sensorimotor function 

(Figure 7(a)).261 Similarly, phosphatidylserine-enriched 
liposomes activated the CD36/TGF-β1 signaling pathway 
in a surgical brain injury model, attenuating neuroinflam-
mation and cerebral edema.262

Among newer delivery systems, oil-in-water (O/W) 
NEs are receiving attention due to their small droplet size, 
enhanced surface area, and ability to facilitate drug trans-
port across the nasal mucosa. These characteristics make 
them suitable for nose-to-brain delivery, particularly for 
poorly water-soluble drugs.263–265 Various studies have 
demonstrated the potential of intranasal NEs for targeting 
CNS conditions such as migraine, neuroinflammation, and 
depression. For instance, a mucoadhesive NE containing 
zolmitriptan and chitosan enhanced nasal retention and 
mucosal permeation, resulting in a faster onset and greater 
bioavailability than conventional formulations—features 
desirable for acute migraine treatment.266 Likewise, Pathak 
et al. developed an in situ gelling NE system for nimodi-
pine, achieving significantly increased drug permeation 
and higher brain concentrations, which may be relevant in 
treating neurovascular complications like senile dementia 
and cerebrovascular spasms, often associated with TBI.267 
Intranasal NEs have also been formulated for selective 
serotonin reuptake inhibitors (SSRIs) such as paroxetine 
and sertraline to overcome first-pass metabolism and low 

Figure 6.  Overview of biomaterial-based intranasal delivery systems for brain-targeted therapy. Schematic summary of nose-to-
brain delivery using biomaterial-based systems, outlining overall advantages and challenges of the approach, along with comparative 
features of representative nanocarrier platforms.
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oral bioavailability. Paroxetine-loaded NEs enhanced drug 
permeation and brain uptake in animal models, while ser-
traline NEs demonstrated significantly increased solubility 
and mucosal transport in ex vivo studies.268 Yadav et  al. 
reported that intranasal administration of cyclosporine-A-
loaded NEs significantly improved brain targeting and 
reduced systemic exposure compared to oral and IV 
routes.269 High drug accumulation in the olfactory bulb 
and midbrain supported effective nose-to-brain delivery, 
with a rostral-to-caudal transport gradient observed.269 In a 

related study, cationic NE-encapsulated TNF-α-targeting 
siRNA achieved greater delivery to the midbrain, indicat-
ing the potential of NE systems for anti-inflammatory 
RNA therapies in neurodegenerative conditions.270

To further address the limitations of conventional CNS 
therapeutics, SLNs and NLCs have emerged as stable and 
efficient nanocarrier systems. SLNs contain a solid lipid 
matrix, while NLCs combine solid and liquid lipids, 
improving drug loading and storage stability. Both systems 
offer enhanced brain penetration, sustained drug release, 

Figure 7.  Intranasal delivery of biomaterial-based therapeutics for targeted brain treatment after TBI. (a) Intranasally administered 
IL-4–loaded liposomes reach the injured brain via the olfactory pathway. The released IL-4 activates PPARγ signaling in damaged 
white matter, promoting oligodendrocyte differentiation and myelin regeneration, thereby improving sensorimotor function. 
(b) Intranasal delivery of cerebrolysin-loaded PLGA nanoparticles facilitates brain targeting through mucoadhesion and epithelial 
penetration, followed by transport via the olfactory and trigeminal pathways. Sustained cerebrolysin release within injured 
regions stabilizes the BBB, reduces neuroinflammation, enhances cognitive function, and protects neural tissue. (c) PEGylated 
gold nanoparticles (AuNPs) administered intranasally traverse the nasal epithelium via paracellular transport and distribute to 
multiple brain regions, including the olfactory bulb, hippocampus, brainstem, entorhinal cortex, and periaqueductal gray. In injured 
tissues, AuNPs downregulate NF-κB–mediated cytokine production and upregulate antioxidant enzymes, attenuating neuronal 
apoptosis and supporting neuroimmune stabilization, neuroprotection, and behavioral recovery. (d) A thermoresponsive hydrogel 
encapsulating neuroprotective agents is administered intranasally in liquid form. Upon contact with the nasal mucosa, it undergoes 
in situ gelation on the olfactory epithelium, forming a mucoadhesive layer that enables sustained drug release. The agents reach the 
brain via the olfactory nerve pathway, modulating neuroinflammatory responses, promoting neuronal resilience, enhancing cognitive 
performance, and stabilizing neurovascular function.
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and better biocompatibility compared to polymeric or 
inorganic nanoparticles.271–273 Recent studies demonstrate 
the neurotherapeutic promise of these systems. Sun et al. 
formulated an in situ gel incorporating paeonol-loaded 
SLNs, which showed low cytotoxicity and effective brain 
accumulation after intranasal administration.274 Abourehab 
et  al. reported that nicergoline-loaded NLCs, developed 
with sesame oil, achieved superior brain bioavailability 
and targeting efficiency.275 Abo El-Enin et al. developed a 
chitosan-coated berberine-loaded NLC that significantly 
increased brain accumulation and showed potential to mit-
igate TBI-associated neuroinflammation.276 Collectively, 
these findings highlight the potential of lipid-based nano-
carriers, especially liposomes, NEs, SLNs, and NLCs, for 
non-invasive, nose-to-brain delivery of neuroprotective 
agents in the treatment of TBI and related CNS disorders.

Polymeric-based nanoparticles.  Polymeric nanoparticles 
have been widely explored for intranasal drug delivery due 
to their ability to enhance drug absorption and facilitate 
brain targeting, making them particularly relevant for TBI 
therapy. These carriers adhere to the nasal mucosa, extend 
residence time, and protect therapeutic agents from enzy-
matic degradation and mucociliary clearance, ultimately 
improving uptake across the nasal epithelium.277–279 Their 
biocompatibility, modifiable surface properties, and abil-
ity to cross the BBB make them excellent candidates for 
therapeutic and diagnostic applications in neurotrauma.

One of the most widely studied polymeric systems is 
poly(butyl cyanoacrylate; PBCA). Particularly when 
coated with surfactants such as polysorbate 80, PBCA nan-
oparticles exhibit enhanced uptake by brain endothelial 
cells, facilitating effective drug transport across the BBB. 
This surface modification facilitates rapid uptake by 
endothelial cells, allowing timely delivery of neuroprotec-
tive and anti-inflammatory agents, which are critical in the 
acute phase of TBI. Surface properties were found to be 
more influential than particle size in determining brain 
uptake, with polysorbate 80-coated PBCA nanoparticles 
showing the highest efficacy.280–282 In parallel, poly(lactic-
co-glycolic acid; PLGA) has also been an attractive drug 
delivery vehicle due to its controlled biodegradation rate 
and safety profile. In preclinical models, PLGA nanoparti-
cles encapsulating cerebrolysin reduced BBB disruption 
and brain edema as early as 8 h post-injury, even when 
administration was delayed (Figure 7(b)).283 These sys-
tems are also being investigated for theranostic applica-
tions. For instance, PLGA nanoparticles labeled with 
near-infrared dyes demonstrated size-dependent diffusion 
into deeper brain structures, while PX-coated formulations 
improved cognitive outcomes and decreased systemic 
clearance.284,285 Modifications such as iRGD peptides and 
olfactory-targeted coatings have further enabled efficient 
nasal uptake and direct CNS delivery through olfactory 
ensheathing cells and lymphoid tissue.286,287

To achieve even greater precision in targeting injured 
brain regions, dendrimer-based nanoparticles have been 
explored for their architectural uniformity and customiza-
ble surface functionality. Among these, polyamidoamine 
(PAMAM) dendrimers are particularly well suited to TBI 
applications. Their small size (~4 nm), neutral charge, and 
responsiveness to pathological stimuli allow them to accu-
mulate in activated glial cells, a hallmark of TBI-induced 
neuroinflammation. Drug-loaded dendrimers have demon-
strated significantly higher CNS accumulation—up to 
100-fold compared to free drugs—and the ability to 
respond to injury-specific triggers such as pH changes and 
enzymatic activity supports their role in sustained, site-
specific drug release.288–290

Recent work has also focused on optimizing nose-to-
brain transport through the trigeminal nerve pathway. 
Polycaprolactone (PCL) nanoparticles, including 
PEGylated forms, have been employed for this purpose. 
For example, curcumin-loaded PCL systems (with PEG) 
reached the nasal mucosa and entered the trigeminal route, 
though initial olfactory delivery remained limited.291 The 
addition of cell-penetrating peptides enabled broader CNS 
access via olfactory and trigeminal pathways within 
15 min.292 Notably, PCL-based carriers loaded with ari-
piprazole delivered drug levels to the brain nearly twice as 
high as those achieved with IV administration,293 while 
surface modifications such as polysorbate 80 or sodium 
caproyl hyaluronate further enhanced permeability and 
bioavailability.294

Enhancing mucosal adhesion and epithelial permeabil-
ity has also been a focus of chitosan-based nanoparticle 
development. These mucoadhesive systems facilitate drug 
transport across the nasal epithelium while resisting muco-
ciliary clearance. In one study, a chitosan platform deliver-
ing Galectin-1 siRNA modulated epithelial tight junctions 
and successfully transported its payload to the brain via the 
olfactory route.295 Hybrid systems combining chitosan 
with lecithin have shown similarly improved mucosal 
retention and rapid CNS absorption.294

Inorganic-based nanoparticles.  Inorganic nanoparticles offer 
unique advantages for intranasal drug delivery in TBI, 
owing to their tunable size, surface properties, imaging 
functionality, and structural stability. Unlike many poly-
meric systems, these nanoparticles are inherently suitable 
for therapeutic and diagnostic applications, allowing for 
simultaneous drug delivery and real-time tracking. Their 
capacity to bypass the BBB via the olfactory and trigemi-
nal pathways further supports their growing use in TBI 
research, particularly for targeting neuroinflammation and 
focal injury sites.

Among various inorganic systems, gold-based nanopar-
ticles have been extensively studied due to their inert 
nature and high surface-area-to-volume ratio (Figure 7(c)). 
In comparative experiments involving PEGylated 
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nanospheres and nanoprism structures functionalized with 
D1 peptides, nanospheres demonstrated superior brain 
translocation following intranasal administration, despite 
similar physicochemical characteristics. These particles 
reached diverse brain regions, including the olfactory bulb, 
hippocampus, and entorhinal cortex, suggesting effective 
neural tissue penetration. Studies combining focused ultra-
sound and microbubble-mediated delivery further 
enhanced the targeting of gold nanoparticles to the brain-
stem via the trigeminal nerve, highlighting their potential 
in localized delivery strategies.296

Iron oxide nanoparticles, particularly PEGylated forms, 
have also been utilized to map nose-to-brain transport 
routes. After administration, these particles cross the nasal 
epithelium and travel through the perineural spaces of the 
olfactory and trigeminal nerves. Once they reach the suba-
rachnoid space, CSF flow facilitates broad dispersion 
across cerebral cisterns and into parenchymal tissues.297 
This widespread distribution, combined with the magnetic 
properties of iron oxide, positions them as useful agents 
for both therapeutic and image-guided delivery.

Graphene oxide nanosheets have added further diver-
sity to the inorganic delivery toolkit. Owing to their high 
surface area and mechanical flexibility, ultrathin 
nanosheets show efficient CNS translocation when deliv-
ered intranasally. Notably, the smallest sheets achieved the 
highest regional distribution, particularly in the olfactory 
bulb, and were observed to accumulate within microglial 
cells.283 This suggests potential for modulating inflamma-
tion, a key component of secondary injury in TBI, using 
graphene oxide as a therapeutic platform.298,299

Quantum dots (QDs), such as CdSe/ZnS (with sizes of 
~15 nm), have shown rapid accumulation in the olfactory 
bulb and tract when administered as an aerosol. The intrin-
sic fluorescence of QDs allows for straightforward visuali-
zation via fluorescence microscopy and electron imaging, 
offering dual utility for cargo delivery and biodistribution 
analysis.300 However, concerns over heavy metal toxicity 
remain a significant barrier to broader applications of QDs, 
especially for chronic or repeated dosing in clinical 
settings.

To address safety concerns while retaining optical 
functionality, attention has turned to carbon dots (CDs). 
These sub-10 nm particles are known for their strong 
fluorescence, excellent water solubility, and biocompati-
bility. Functionalization with targeting moieties, such as 
transferrin, has enabled CDs to exploit receptor-mediated 
transcytosis at the BBB and deliver agents like doxoru-
bicin to brain tumor cells.301 Other studies report that 
CDs with a quantum yield of 51% and low cytotoxicity 
can effectively penetrate in vitro BBB models composed 
of endothelial and astrocyte co-cultures. Moreover, mod-
ifying CDs with cationic polymers such as polyethyle-
neimine further enhances brain penetration by promoting 
interactions with negatively charged cellular membranes. 

Their tunable fluorescence and ability to respond to envi-
ronmental cues make CDs especially well-suited for ther-
anostic approaches, combining imaging with site-specific 
therapy.302,303

Intranasal hydrogel delivery and therapeutic 
efficacy

While nanoparticle-based intranasal delivery systems offer 
significant advantages in enhancing drug transport to the 
brain, hydrogel-based approaches provide a complemen-
tary strategy with distinct benefits. Unlike nanoparticles, 
which primarily rely on cellular uptake and nerve pathway 
penetration, hydrogels can form localized drug reservoirs 
that offer sustained, controllable release profiles and mini-
mize systemic exposure.299,304 Their ability to conform to 
the architecture of the nasal cavity and maintain close con-
tact with the mucosa enhances residence time, drug stabil-
ity, and delivery precision—important factors for managing 
the complex pathology of TBI, including neuroinflamma-
tion, oxidative stress, and neuronal apoptosis.305,306

Although acute interventions may limit secondary dam-
age, long-term neuroprotection often requires continuous 
therapeutic support. Injectable hydrogels, especially those 
that are thermoresponsive or stimuli-sensitive, have 
emerged as ideal carriers in this context due to their ability 
to encapsulate diverse therapeutic agents, including small 
molecules, proteins, and biologics, while enabling 
extended-release kinetics (Figure 7(d)).307–309 These hydro-
gels remain in a liquid state at lower temperatures and 
undergo a sol-to-gel transition at body temperature, ensur-
ing close adherence to the administration site. Intranasal 
delivery, in particular, offers a direct route to the brain via 
the olfactory and trigeminal nerve pathways, thus avoiding 
systemic circulation and first-pass metabolism.310–312 Once 
in place, hydrogel scaffolds release drugs more steadily 
compared to simple solutions, while also reducing adverse 
systemic effects.

One illustrative study used a thermoresponsive polox-
amer (P407/P188) formulation that complexes tetrandrine 
with hydroxypropyl-β-cyclodextrin (HP-β-CD) to treat a 
microwave-induced brain injury model in Wistar rats.313 
Upon intranasal administration, the hydrogel formed a 
semi-solid gel in the nasal cavity and gradually released 
tetrandrine, thereby lowering inflammatory mediator lev-
els in the injured brain region. This strategy also yielded 
functional benefits, with improvements in neuronal viabil-
ity and spatial memory relative to control groups. The 
sustained-release profile is partly attributed to the mucoad-
hesive properties of the poloxamer hydrogel, which ena-
bles the formulation to remain at the nasal epithelium for a 
longer period.

Despite these advances, several challenges exist. The 
limited volume of the nasal cavity constrains the quantity 
of hydrogel and drug that can be administered at one 
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time.314 Meanwhile, normal mucociliary clearance in the 
nasal epithelium can reduce the contact time and the effec-
tive dose of encapsulated therapeutics.315,316 To address 
this, strategies such as incorporating strong mucoadhesive 
polymers and optimizing poloxamer ratios have been 
employed to improve retention and ensure ideal sol-gel 
transitions.317,318 Moreover, species-specific differences in 
nasal anatomy necessitate careful consideration when 
translating formulations from animal models to humans. 
The intranasal route may be particularly suitable for 
patients with mild to moderate TBI during the subacute or 
chronic stages, where self-administration is feasible and 
non-invasive delivery is preferred. In contrast, patients 
with severe TBI in the acute phase may have impaired con-
sciousness or require assisted ventilation, making nasal 
delivery impractical. From a compliance standpoint, intra-
nasal sprays and nebulizers offer potential advantages over 
injections or oral tablets in outpatient or long-term use. 
However, factors such as nasal irritation, mucosal variabil-
ity, and device handling difficulty may influence patient 
adherence and treatment acceptability.

Future directions in hydrogel development aim to 
incorporate responsiveness to temperature and pathophys-
iological cues such as pH shifts, enzyme activity (e.g. 
MMP upregulation), and ROS.319–321 These multifunc-
tional systems can co-deliver neuroprotective agents with 
growth factors, anti-inflammatory drugs, or genetic mate-
rial to enable synergistic effects. Concurrent advances in 
polymer chemistry and in vivo imaging are expected to 
support more precise control over drug release and dosing, 
enhancing therapeutic outcomes across both acute and 
chronic phases of TBI.

Additionally, recent studies have explored the integra-
tion of antioxidant enzymes, neurotrophic factors, and 
EVs (such as exosomes) into intranasal hydrogels to 
improve tissue regeneration and alleviate neuroinflamma-
tion.322–325 These advanced hydrogel systems leverage 
mucoadhesive and stimuli-responsive properties to (i) 
enhance payload stability, (ii) target therapeutic agents to 
the lesion site for extended durations, and (iii) enable con-
trolled, on-demand release in response to the dynamic 
changes in the TBI microenvironment. However, addi-
tional in vivo studies are necessary to fully understand the 
distribution of these nanocomposite- or biologics-loaded 
hydrogels within the nasal passages and their ability to 
effectively deliver therapies to the injured brain regions.

Concluding remarks

TBI often leads to long-term cognitive, physical, and 
psychosocial impairments, contributing to significant 
global morbidity and mortality. Effective therapies that 
reduce secondary brain damage and promote neuronal 

regeneration are thus crucial. In this context, intranasal 
administration, offering non-invasive, rapid delivery of 
therapeutics directly to the brain while bypassing the 
BBB, shows promise as a therapeutic approach for TBI. 
This review highlights recent advances in intranasal 
delivery as potential strategies for TBI. Preclinical stud-
ies have explored a variety of molecules, such as growth 
factors (BDNF, NGF, IGF-1), anti-inflammatory 
cytokines (IL-10, IL-13), stem cell-derived exosomes, 
and metabolites, demonstrating protective effects by 
reducing neuronal apoptosis, inflammation, and edema, 
while enhancing sensory and cognitive functions. 
Nanoparticle-based delivery systems are also being 
developed to improve drug absorption and controlled 
release.

Despite promising results in animal models, the clinical 
application of intranasal therapies for TBI faces several 
challenges. Key issues include determining the optimal 
therapeutic time window, assessing the long-term toxicity 
of high-dose treatments, and improving the diffusion of 
larger molecules or nanoparticles in the human nasal 
mucosa. Biodegradable and mucoadhesive nanoparticles 
may offer a better route for penetration. Furthermore, it 
remains unclear whether combination therapies or single 
treatments will yield the most effective outcomes against 
complex secondary cascades of TBI.

In summary, intranasal delivery offers great potential 
for improving TBI treatment by targeting molecular path-
ways involved in neuroinflammation and neurodegenera-
tion. As personalized medicine advances, intranasal 
therapies could be tailored to the specific injury character-
istics and genetic profiles of patients. However, more 
translational research is needed to support the clinical 
application of these therapies for better TBI management.
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