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Abstract

Chapter 1 of this thesis introduces how various genomic approaches can help identify
potential biomarkers to enable future personalized treatments for mental illnesses. In
Chapter 2, I examined how psychiatric polygenic risk scores (PRS), as an indication of
genetic liabilities to different psychiatric disorders, interact with environmental factors,
adverse childhood experiences (ACE) for different bipolar disorder (BD) phenotype
presentations. Although no significant interaction effects were found, higher ADHD
PRS correlated with increased number of ACEs and increased the likelihood of rapid
cycling. Elevated BD PRS was associated with the presence of psychotic symptoms.
Lithium is the gold standard for treating BD however, only about 30% of patients are
excellent responders while others could experience side effects. Chapter 3 employed
genome-wide association studies (GWAS) to identify good lithium response biomarkers.
SNP rs116927879 (A/G) was found to be genome-wide significantly associated with
good lithium response, with splicing QTL analysis suggesting that it affects ADCY1
splicing across brain regions. Antipsychotics are widely prescribed for schizophrenia,
but about 40% of patients develop extrapyramidal side effects (EPSE) such as
dyskinesias, Parkinsonism, akathisia, and dystonia. Chapter 4 integrated epigenome-
wide association studies (EWAS) on GWAS to identify EPSE biomarkers resulted from
long-term antipsychotic use. Notably, cg12044923, which mapped to the STK32B gene,
showed enrichment for EPSE and has been associated with movement disorders such
as tremors. In Chapter 5, I explored how interventions could impact PRS predictions of
cardiovascular risks in patients with severe mental illness. The findings highlighted that

treatments can attenuate cardiovascular PRS predictions and warrant careful PRS
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assessment timing. The results also underscored the complex interplay between BD
genetic risks and cardiovascular treatment response. This thesis concludes by reflecting
on the employed methods’ limitations, the potential challenges with pharmacogenetic
testing implementation, and how future research could address these to advance the

field.
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Impact Statement

While pharmacogenomic testing (PGx) is increasingly recognized as important for
its potential to personalize mental illness treatments. Comprehensive genomic profiles
associated with different treatments must be systematically documented and analysed
to realize their potential. This thesis applies various genomic analysis methods to
identify potential genetic biomarkers that can differentiate psychiatric treatment
responses.

This thesis starts in Chapter 1 where I discussed how changes in views regarding
mental illness have shaped the associated treatments today. Modern mental health care
can benefit from PGx to provide more precise, biologically informed, and personalized
treatment guidance. Thus, the field must continue refining its understanding of genetic
influences on psychiatric disorders and associated treatment responses.

In Chapter 2, I employed multiple psychiatric polygenic risk scores to investigate
their interactions with environmental factors like adverse childhood experiences (ACE)
on the development of different BD phenotypes. The analyses used robust PRS
calculation methods and the latest reference GWAS. We also made clear separation on
ACE definitions. The findings provide evidence for the utility of psychiatric PRS in
phenotype predictions, which can enable early risk identification.

In Chapter 3, I conducted genome-wide association study (GWAS) meta-analyses
to identify lithium response genetic biomarkers. This GWAS is currently the largest to
date in terms of size for lithium. We used genomic data to predict the heritability of
good lithium response for the first time. The study identified ADCY1 as a gene that may
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influence the brain regions for producing different lithium response. These results
pinpoint the importance of examining ADCY1 for patients with BD in future lithium
response research. Future research into its role could help optimize treatment decisions
and improve outcomes for individuals with BD.

In Chapter 4, I integrated epigenome-wide association studies (EWAS) on GWAS
results to identify biomarkers that can differentiate extrapyramidal side-effects (EPSE)
from antipsychotic treatments. We had the largest sample size for EPSE to date in both
analyses, revealing that the STK32B gene showed significant enrichment for EPSE.
Notably, STK32B has been previously linked to movement disorders, such as tremors.
These findings underscore the importance of examining STK32B in patients with
schizophrenia in future antipsychotic treatment research. This may help predict and
mitigate the risk of EPSE, improving treatment safety and efficacy.

Cardiovascular PRS is increasingly used in risk prediction models and has been
shown to add information. However, there were very few papers examining how PRS
predictions can change after interventions. In Chapter 5, I explored PRS-based
predictions of 12-month cardiovascular treatment responses in patients with severe
mental illness. To our knowledge, this analysis represents the first of its kind in
psychiatry. The findings highlighted the instability of cardiovascular PRS predictions
and warrant careful PRS assessment timing in clinical settings.

This thesis concludes in Chapter 6 where I discussed the limitations of the methods
used in relation to the results from each chapter and how future research can improve
on these.
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1. General Introduction

Mental illnesses are recognized as complex disorders that affect the mood, thought,
and behaviour. Mental illnesses can be distinct from other medical conditions by their
impact on cognition, particularly memory, self-awareness, and consciousness, while
also being shaped by the unique life experiences and complexities that each individual
carries (Malla et al., 2015).

Mental illnesses can be distinguished by their diverse forms. Varying disorders have
different prevalence and impact. For instance, schizophrenia (SCZ) affects nearly 1%
of the global population and is characterized by a combination of both positive
symptoms such as psychotic symptoms and cognitive dysfunctions, and negative
symptoms such as depressive moods and lack of motivations (Charlson et al., 2018).
People diagnosed with the disorder can have a 15 year reduction in life expectancy
compared with the general population (Hjorthegj et al., 2017). Meanwhile, Major
Depressive Disorder (MDD) is characterized by a persistently low mood, diminished
interest or pleasure in previously enjoyable activities, and recurrent thoughts of death.
MDD aftects about 185 million people, approximately 2.4% of the global population
according to an estimate in 2019 (Marx et al., 2023). In addition, Bipolar Disorder (BD)
is characterized by mood swinging between euthymia, (hypo-)mania and depressive
episodes. BD has an estimated lifetime prevalence from 0.6% to 2.4% worldwide
(Merikangas et al., 2011).

Mental illnesses are sometimes considered together because of overlapping

symptoms. Distinguishing between SCZ and BD phenomenologically remain
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challenging as they share symptoms, such as hallucinations, delusions, and mood
symptoms (Yamada et al., 2020). According to a recent study, more than a third of
patients with these disorders could face misdiagnosis (Ayano et al., 2021). Patients with
SCZ were likely to be misdiagnosed as having BD, while patients with BD were also
more likely to be misdiagnosed as having SCZ. The similar presentations of SCZ and
BD might reflect the overlapping biological underpinnings. For instance, genetic
findings suggest that these disorders might share a neurodevelopmental gradient of
psychopathology, accompanied by shared patterns of cognitive impairments (Doherty
& Owen, 2014). Meanwhile, SCZ and BD also exhibit considerable overlaps in terms
of morphological brain volume changes and functional connectivity
changes (O’Donoghue et al., 2017). Psychosis serves as an intermediate syndrome,
bridging SCZ and BD through shared symptomatology and neurological features. Thus,
SCZ, psychosis, and BD are often grouped together as severe mental illness (SMI) for
their shared functional impairments, treatment needs, and biological underpinnings.
Mental illnesses together account for a growing proportion of the global health
burden (Patel et al., 2018). Between 1990 and 2019, the proportion of global disability-
adjusted life years (DALY's) attributed to mental disorders, which quantify the burden
of a disease in terms of both premature death and disability, increased from 3.1% to 4.9%
(GBD Mental Disorders Collaborators, 2022). The rise reflects population growth,
aging, and improved reporting and recognition of mental illnesses globally. Such
findings also highlight the chronic nature of many mental disorders, which lead to

significant disability over time rather than early death and long-term treatments for
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mental health are in need.

Views on mental illnesses and associated treatments have evolved significantly
throughout history (George et al., 2023). In earlier stages, mental disorders were often
attributed to supernatural forces, such as the Devil, with treatments like exorcisms,
prayer, and physical punishment (Porter, 2003). In the 1950s, breakthroughs in
psychiatric medications revolutionized mental health care and transformed treatments
by targeting the biological underpinnings (Duvall & Gallicchio, 2017; Pereira &
Hiroaki-Sato, 2018). In recent decades, advancements in neuroscience, genetics, and
personalized medicine have further refined treatments, with a focus on tailoring
interventions to an individual’s psychological and biological profiles (Insel & Cuthbert,
2015). Modern mental health care prioritizes an integrative and holistic approach,
combining medication, psychotherapy, community-based support, and stigma reduction
efforts (George et al., 2023). However, a key challenge lies in determining the most
appropriate treatment plans tailored to everyone’s unique needs. The following
introduction will outline key time points in the evolution of mental illness treatments
and explain how genomic methods can guide future mental health care, enabling more

personalized treatment planning.

1.1 A brief history of mental illness treatments
Throughout history, treatments for mental illnesses have undergone significant
transformations (Farreras, 2025). During the Middle Ages, explanations of mental

illnesses are dominated by the Church, attributing it to supernatural forces such as

Page 28 / 258



10

11

12

13

14

15

16

17

18

19

20

21

22

possession by the Devil or evil spirits (Porter, 2003). Treatments were religious in
nature, involving exorcisms, prayer, and rituals like chanting or using holy water.
Severe cases often faced confinement, physical abuse, or execution. Medical theories,
such as Hippocrates’ views on the biological basis of illness, were largely dismissed.
However, toward the end of the Middle Ages, the dominance of mystical explanations
began to wane, giving way to a gradual reemergence of scientific and medical
approaches to mental illness (Cantor, 2014).

The rise of humanism during the Renaissance further changed the situation by
emphasizing human welfare and individual uniqueness. In the mid to late 1500s,
physicians like Johann Weyer challenged Church dogma, arguing that many accused
“witches” were mentally ill rather than demonically possessed. This shift led to the
establishment of asylums where the mentally ill could be confined, as families struggled
to take care of their afflicted relatives (Laffey, 2003). During the 16th century, the
number of asylums increased as governments recognized that the growing population
of individuals with mental illnesses could no longer be managed in private homes.
However, these institutions, such as London’s Bethlem Hospital, quickly became
overcrowded and notorious for inhumane treatment, where patients were chained,
exhibited for public entertainment, and subjected to harsh conditions (Walsh, 1907).

By the end of the 17th century and into the Age of Enlightenment, views on mental
illnesses shifted further, with an increasing focus on physical causes rather than moral
or spiritual ones. Harsh treatments including restraints and somatic methods persisted

but, there was also an emphasis on environmental management in asylums, such as
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regulating diet and exercise (Laffey, 2003). The late 18th century saw the emergence of
the moral treatment movement, spearheaded by figures like Philippe Pinel in France
and William Tuke in England. This approach prioritized humane and respectful
treatment, emphasizing individual care, social support, and rehabilitation through
structured activities. Patients were unchained, given outdoor access, and treated with
kindness, leading to notable improvements in their conditions.

The success of moral treatment in the early 19th century fuelled the rapid expansion
of asylums across Europe and the United States. However, overpopulation, limited
resources, and discriminatory practices against immigrants led to overcrowding and a
decline in care quality (Scull, 2015). By the mid-19th century, asylums had evolved into
large and impersonal institutions, often prioritizing containment over therapeutic
intervention. While moral treatments highlighted the importance of humane care, it
became clear that additional medical advancements were needed to address more severe
cases effectively (Crossley, 2006).

The turn of the 20th century marked significant developments in understanding and
treating mental illnesses. Emil Kraepelin's classification system gained traction, notably
distinguishing mood disorders from what would later be termed schizophrenia. This era
also saw the rise of psychoanalysis, pioneered by Sigmund Freud, who emphasized the
role of unconscious motives and dialogue-based therapy in mental illness (Freud, 2009).
Alongside, behaviourism, introduced by John B. Watson and influenced by Ivan
Pavlov’s conditioning principles, offered an alternative view, focusing on

reconditioning maladaptive behaviours (Chand et al., 2023; Malone, 2014). These
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theoretical frameworks laid the foundation for modern psychopathology and treatment
approaches.

Institutions for mental healthcare underwent changes in both terminology and
function. Asylums were rebranded as hospitals, and patients replaced the stigmatizing
term "inmates." The mental hygiene movement gained momentum, advocating for
preventive approaches to mental illnesses and the establishment of public health clinics.
However, alongside these advances, troubling practices arose, including eugenics-
driven sterilization programs targeting institutionalized patients (P. A. Lombardo &
Dorr, 2006). Innovative yet controversial treatments emerged during this period. Insulin
coma therapy was introduced in 1927 but later abandoned due to its risks (Wellington,
2022), while electroconvulsive therapy (ECT) became a common substitute (Suleman,
2020). Lobotomy, a drastic psychosurgical procedure, was widely performed during the
mid-20th century, reflecting a lack of effective alternatives (Faria, 2013). Post-World
War I1, the need for standardized mental health care for veterans led to the publication
of the first Diagnostic and Statistical Manual of Mental Disorders (DSM) in 1952. This
framework evolved over time, with the DSM-III (1980) marking a shift toward
diagnostic neutrality regarding the causes of mental illnesses, a position maintained in
subsequent editions (Pichot, 1986). Nowadays, diagnoses tools like DSM-V and ICD-
10 are still widely used although challenges in diagnoses and classifications persisted

(Hirsch et al., 2016; Kawa & Giordano, 2012).
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1.2 A brief history of mental illness medications

Starting in the 1950s, medications were introduced for the treatment of mental
illnesses, bringing an immediate and significant impact (Braslow & Marder, 2019). The
first noticeable psychiatric medication, lithium, could date back to 1949 when John
Cade first used it to treat maniac patients (Duvall & Gallicchio, 2017). Lithium then
became a foundational treatment for bipolar disorder, though its efficacy varies among
patients. Two revolutionary drugs reserpine and chlorpromazine, were introduced into
psychiatry in the early 1950s (Baumeister, 2013; Braslow & Marder, 2019). Reserpine
depletes monoamines in the brain, while chlorpromazine blocks dopamine receptors, a
discovery that transformed the understanding of chemical communication in the brain.
Early antidepressants, such as monoamine oxidase inhibitors (MAOIs) and tricyclic
antidepressants (TCAs) were also introduced in the 1950s then dominated the field until
the 1980s (Chockalingam et al., 2019).

The growing range of available drugs led to 47.2 million psychotropic drug
prescriptions being dispensed under the National Health Service (NHS) between 1965
and 1970 (Haggett, 2015). However, concerns quickly arose due to inadequate training,
aggressive advertising, and the simultaneous rise in prescribing, drawing significant
criticism from the medical press. Meanwhile, clinicians started to notice that psychiatric
medications could have significant side-effects (Evarts & Butler, 1959). Concerns about
side effects have shaped the use of psychiatric medications today. Atypical
antipsychotics, introduced as alternatives to typical antipsychotics, offered fewer

extrapyramidal side-effects (EPSE) but introduced metabolic issues like weight gain
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and glucose dysregulation (Nasrallah, 2008). Drugs like clozapine, though highly
effective for treatment-resistant SCZ, remain underutilized due to concerns about
agranulocytosis and other safety risks (Kendall, 2011). Over the past 70 years,
antipsychotic drugs have evolved through first- (e.g., chlorpromazine and fluphenazine)
and second-generation medications (e.g., olanzapine and clozapine), with a potential
third generation (e.g., aripiprazole). However, there remains a critical need for the
development of more effective treatments with a lower side-effect profile than existing
ones (Weston-Green, 2022).

Nowadays, the use of antipsychotics and antidepressants is widespread, with up to
17% of adults being prescribed antidepressants in high-income countries (Pillinger et
al., 2023). The prevalence of antipsychotic prescriptions doubled in England increased
from 0.6% in 2000 to 1.2% in 2014 and continues to grow (Shoham et al., 2021). While
these drugs offer relief for many individuals, around 74% of patients with chronic
schizophrenia could discontinue their assigned treatment before 18 months owing to
inefficacy or intolerable side effects (Lieberman et al., 2005). Around 75% of patients
report experiencing side effects, which range from mild to severe (Iversen et al., 2018).
Non-adherence to psychotropic medication due to concerns of inefficacy and side-
effects is widespread, with an estimated overall prevalence of 49% (Semahegn et al.,
2020). Non-adherence occurs in approximately 56% of individuals with SCZ, 50% with
MDD, and 44% with BD. These statistics nevertheless underscore the variability in
treatment response and highlight the pressing need for more robust predictive

approaches to guide and improve treatment planning.
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Adverse side effects can diminish quality of life, hinder daily functioning,
contribute to morbidity and mortality, and foster stigma surrounding mental illness
(Tandon et al., 2020). Additionally, concerns about inefficacy and side effects often lead
to poor adherence, increasing the likelihood of relapse (Haddad et al., 2014). For
individuals with depression and schizophrenia, the impact of side effects plays a
significant role in medication decisions, often becoming a primary concern when
evaluating treatment options (Hopwood, 2020; Kaar et al., 2019).

The psychiatric medication advancements provided effective treatment options for
individuals with mental illnesses. However, treatment response is influenced by
multiple factors (McCutcheon et al., 2015). In addition, different psychiatric
medications vary widely in their side effect profiles, further complicating treatment
decisions (Pillinger et al., 2023). To optimize psychiatric treatment, it is crucial to
identify characteristics that distinguish patients who respond best to specific

medications, allowing for more personalized and effective therapeutic strategies.

1.3 Predictions of treatment response

To increase the success of treatments, specific clinical characteristics have been
identified as potential indicators of treatment response. Factors such as medication
plasma levels, adherence, metabolic differences, co-prescriptions, lifestyle habits, sex,
and the possibility of alternative diagnoses could all influence treatment responses
(McCutcheon et al., 2015). For depression, factors such as depression subtype,

symptom history, age of onset, episode duration, and recurrence all play roles in
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determining treatment effectiveness. For instance, early-onset depression is linked to
increased resistance to certain antidepressants, while recurrent and prolonged
depressive episodes also correlate with poorer outcomes (Perlman et al., 2019). In
addition, patients with severe baseline symptoms, histories of trauma, cognitive
impairments, or anxious symptomatology tend to exhibit reduced antidepressant
efficacy. In BD, factors predicting lithium response include the sequence of manic and
depressive episodes, the absence of rapid cycling or psychotic symptoms, a family
history of BD, and a shorter duration of illness before lithium treatment begins (Hui et
al., 2019). Conversely, higher body mass index and a greater number of prior episodes
or hospitalizations have been associated with poorer lithium response. In schizophrenia,
a higher severity of positive symptoms and the use of atypical antipsychotics,
particularly clozapine, are associated with the greatest likelihood of treatment response
(Seppéléd et al., 2021). Risk factors for extrapyramidal side-effects (EPSE) from
antipsychotics include a history of prior episode and high medication dose (Hedenmalm
et al., 2006) and older age (Jeste, 2004).

Given the substantial variability in individual responses to psychiatric medications,
careful monitoring of physical health parameters has been recommended to optimize
treatment (Hiemke et al., 2018). Taking lithium as an example, clinical guidelines
emphasize the importance of tracking body mass index, kidney function, body lithium
levels and thyroid activity in patients with bipolar disorder receiving lithium treatment,
with ongoing dose adjustments to ensure therapeutic efficacy (Godden, 2024; NICE,

2014a). However, this process can be time-consuming, requiring extensive trial and
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producing error before an optimal plan is tailored to everyone’s needs. One promising
alternative approach to improve this process is the integration of pharmacogenomic
(PGx) testing, which examines genetic variations that affect drug metabolism and
response. By guiding medication selection and dosing decisions, PGx testing can help
personalize treatment, reduce adverse effects, and enhance therapeutic outcomes from
the onset. The following sections will introduce how PGx testing could guide future
treatments and showcase several relevant genomic methods which could enrich PGx

testing.

1.4 Psychiatric genetics and application in psychiatric treatment

For centuries, observations have indicated that mental illnesses tend to run in
families, a pattern that has also been confirmed by large-scale population studies
(Arribas-Ayllon et al., 2019). Individuals with a first-degree relative affected by BD or
schizophrenia face a significantly higher risk of developing these conditions themselves,
approximately six to ten times greater (Andreassen et al., 2023; Lichtenstein et al.,
2009). Furthermore, familial risk is not limited to a single disorder; relatives of
individuals with psychiatric illnesses also have an increased likelihood of developing
other mental health conditions, suggesting a shared underlying aetiology (Cardno &
Owen, 2014). Additional complexity arises from non-inherited genetic variations that
accumulate in brain tissue over time, as well as random biological processes that further
shape individual risk profiles (Andreassen et al., 2023). Nevertheless, genetic variations

in parents could also influence the environments they create for their offspring, adding
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further complexity (Kong et al., 2018).

With the advent of molecular genetics in the 1980s and 1990s, researchers began
using linkage and candidate gene studies to identify genetic variants associated with
mental disorders (Owen et al., 2000). However, many early findings failed to replicate
due to small sample sizes and the complex polygenic nature of psychiatric genetics
(Sullivan et al., 2012). It became increasingly evident that most psychiatric conditions
result from the combined effects of multiple genes, each contributing only a small
increase or decrease in liability, along with environmental influences, a concept known
as polygenic multifactorial causation (Owen & Cardno, 1999). The field advanced
significantly in the 2000s with the introduction of genome-wide association studies
(GWAS) and large-scale collaborative efforts, particularly from the Psychiatric
Genomics Consortium (PGC; Sullivan et al., 2018). The PGC has played a crucial role
in systematically evaluating common single-nucleotide polymorphisms (SNPs), rare
variants, gene sets, and pathways, shedding light on the genetic and biological
foundations of mental illnesses (Watson et al., 2020). More recently, approaches such
as polygenic risk scores (PRS), whole-genome sequencing (WGS), and multi-omics
integration have provided deeper insights into the genetic architecture of mental
illnesses and their interactions with environmental factors (Mullins et al., 2021, 2022;
O’Connell et al., 2025). These advancements continue to pave the way for a more
comprehensive understanding of mental disorders and become the foundation for
potential precision medicine approaches in psychiatry, guiding future psychiatric

treatment medication development.
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Meanwhile, the importance of applying genomic methods to predict current
psychiatric medication efficacy and side effect profiles is increasingly recognized,
offering new insights into personalized treatment strategies (Goetz & Schork, 2018).
For instance, the cytochrome P450 (CYP) enzymes, CYP2CI19 and CYP2D6, hold
significant clinical relevance for antidepressants (Carvalho Henriques et al., 2020).
Research indicates that genetic variants in CYP2C19 and CYP2D6 affect antidepressant
blood concentrations, adverse drug reactions, and, to an extent, clinical outcomes such
as treatment discontinuation and symptom response (Bréten et al., 2020; Juki¢ et al.,
2018). However, it is important to note that not all psychiatric medications’ genetic
profiles are fully documented yet, and additional investigations are needed for other
components of the medication response such as side-effects (Bousman et al., 2021).

As psychiatric genetics continues to evolve, it holds the promise of transforming
mental health treatments by providing more precise and biologically informed
approaches. Genetic research has already shed light on the heritability and familial
patterns of psychiatric disorders, and its integration with pharmacogenomics may soon
truly enable personalized medication strategies. Moving forward, the field must
continue refining its understanding of genetic influences on psychiatric conditions and
their treatment responses, paving the way for more effective and individualized
therapeutic interventions. The following sections will introduce several genomic

methods that could be applied to study psychiatric medication responses.
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1.4.1 Genome-wide Association Analyses

GWAS on psychiatric treatment responses stands out as a promising approach for
pinpointing potential genes linked to medication response and side effects. GWAS
analyses genome-wide SNP data to detect associations between genetic variants and
specific phenotypes. While whole-genome and exome sequencing provide alternative
approaches, most GWAS rely on genotyped SNP arrays combined with imputed
variants to enhance genomic coverage (Tam et al., 2019). Imputation, based on
reference haplotypes, enables researchers to infer untyped variants, reducing the need
for direct genotyping while increasing cost efficiency and sample sizes (Das et al.,
2016). Given that GWAS tests millions of SNPs across the genome, stringent multiple-
testing correction is required. The widely accepted genome-wide significance threshold
1s p<5x107%, accounting for approximately one to two million independent statistical
tests (M. 1. McCarthy et al., 2008).

With the increasing number of GWAS, researchers have realized that most
psychiatric disorders could be polygenic which each SNP may only carry small to
modest phenotypic effects (de Bakker et al., 2008). Meta-analysis of GWAS, which
enhance detection of SNP with modest effect size through increased sample size and
power from collaborative efforts, is increasingly recognized as important. Tools like
METAL has been developed to efficiently meta-analyse GWAS summary statistics
while using Inverse-Variance Weighted (IVW) or Sample Size Weighted (SSW)
methods considering either the standard error or sample size to generate combined

outputs (Willer et al., 2010).
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Psychiatric genetics benefited hugely with PGC’s collaborative efforts worldwide
on GWAS meta-analyses. Taking BD genetics as an example, one of the first PGC BD
GWAS identified 34 independent SNPs with strong evidence for replication in 4,493
independent BD cases and 42,542 independent controls (Sklar et al., 2011). Then, with
an increased sample size 0f 41,917 BD cases and 371,549 controls of European ancestry,
64 associated genomic loci were identified (Mullins et al., 2021). More recently, by
combining participants of European, East Asian, African American and Latino
ancestries covering 158,036 cases with BD and 2.8 million controls, PGC reported 298
genome-wide significant loci which mapped to 36 credible genes in the aetiology of
BD (O’Connell et al., 2025). Notably, one of the top SNP from the meta-analysis,
rs6693503, had an odds ratio of 1.048 with a standard error of 0.007, while most other
reported significant SNPs had odds ratios ranging from 0.9 to 1.1 (O’Connell et al.,
2025). Such findings again highlight the polygenic nature of psychiatric disorders and
emphasize the importance of larger sample size from collaborations for detecting true
genetic effects.

More and more researchers have started to apply similar GWAS methods to
investigate psychiatric medication responses (Li et al., 2020; Zai et al., 2023). The genes
identified through GWAS provide insights into the underlying mechanisms of these
medications which could be used as targets to monitor in the clinic. With clearer
understanding of each psychiatric medication’s metabolism and effectiveness profiles,
more effective drugs could also be developed. However, most of current psychiatric

medication response GWAS had limited sample size and restricted population groups.
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Collaborative efforts are needed to further advance our understanding and guide future

discoveries.

1.4.2 Polygenetic Risk Scores

Although GWAS could be used to investigate common SNPs, each SNP’s
influence is often modest with an odds ratio typically ranging from 0.7 to 1.3 (Mullins
et al., 2021; Trubetskoy et al., 2022). Polygenic risk scores (PRS), could summarize the
potential risk alleles from the GWAS, weighted by their respective effect sizes to
produce a summary score which indicate an individual’s genetic liability to the
phenotype (Dudbridge, 2013). Before computing PRS, a pruning and thresholding (P +
T) approach is typically applied (Purcell et al., 2007). Pruning (or clumping) removes
highly correlated SNPs based on linkage disequilibrium (LD), ensuring that only
independent SNPs are retained. Thresholding involves applying different p-value
cutoffs to exclude SNPs with weak associations with the trait, optimizing PRS
predictive power. Advanced methods for PRS computation have been developed to
capture complex genetic architectures, such as those using a Bayesian framework (Ge
etal., 2019; Lloyd-Jones et al., 2019).

Researchers also discovered psychiatric PRS’ effectiveness in the prediction of
medication responses. For instance, studies by ConLi+Gen, (2018) and Amare et al.
(2021) have demonstrated that PRS for SCZ and MDD among patients with BD are
negatively associated with their response to lithium. However, PRS could only explain

less variance than the total genetic variance identified in GWAS, as they are constrained
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by the limitations of current GWAS methodologies. Thus, more advanced GWAS may

also further enhance findings from psychiatric medication response PRS.

1.4.3 Epigenome-wide Association Analyses

Epigenome-Wide Association Studies (EWAS) investigate the relationship
between epigenetic modifications, primarily DNA methylation and complex disease
phenotypes. Unlike GWAS, which focus on inherited genetic variants, EWAS assess
modifications that are heritable and/or environmentally modifiable, providing insights
into gene regulation mechanisms beyond DNA sequence variation (Campagna et al.,
2021; Villicana & Bell, 2021). The most widely studied epigenetic mechanism is DNA
methylation, where methyl groups are added to cytosine-phosphate-guanine (CpG)
dinucleotides, influencing gene expression. The typical significance threshold for
EWAS is p <1 x 1077. This threshold accounts for the large number of CpG sites tested
(~450,000 on Illumina arrays) and is similar to the multiple testing correction used in
GWAS (Liu et al., 2013).

EWAS can capture dynamic, environmentally influenced epigenetic modifications,
such as DNA methylation changes induced by long-term medication use, stress, or
lifestyle factors. EWAS have also been applied to investigate psychiatric medication
responses, offering a promising approach to understand gene-environment interactions
in treatment outcomes (Engelmann et al., 2022). Despite the potential, EWAS of
psychiatric medication response are often limited by smaller sample sizes, as large,

well-characterized cohorts with both methylation data and detailed medication response
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phenotypes remain scarce.

1.5 PhD Overview

This PhD aimed to explore the genome to identify potential biomarkers that
differentiate psychiatric phenotype development and treatment responses. The findings
emphasized the importance of personalized treatment approaches, which could
significantly improve patient outcomes. To achieve this, the research incorporated
large-scale genetic analyses, including GWAS, EWAS, and PRS predictions, while
integrating significant discoveries to better understand the complex biological effects.

In my first research paper (Chapter 2), I examined how multiple psychiatric PRS
interact with environmental factors, adverse childhood experiences (ACE), to influence
the development of various BD phenotypes. This included age of onset, the presence of
psychotic symptoms, suicide ideation, and rapid cycling. The analyses aimed to shed
light on how genetic and environmental factors combine to shape the clinical
presentation of BD. In Chapter 3, I used a GWAS meta-analysis approach to identify
SNP associated with a positive lithium response among BD patients. I also examined if
psychiatric PRS could predict positive lithium response. This investigation sought to
pinpoint genetic markers that could predict which individuals are more likely to benefit
from lithium treatment. In Chapter 4, 1 integrated an EWAS meta-analysis with
associated GWAS findings to uncover biomarkers linked to extrapyramidal side effects
(EPSE) in individuals with long-term exposure to antipsychotic medications. This

chapter provided insights into the influence from both genetic and epigenetic factors
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resulting from environmental treatment factors. In Chapter 5, I explored how genetic
risk factors, assessed through PRS, could predict cardiovascular treatment responses in
patients with severe mental illness (SMI). This research aimed to understand the role of
genetics in shaping the effectiveness of cardiovascular treatments. These results could
help patients in panning more personalized and effective health treatment. This thesis
concluded in chapter 6 where I discussed the potential implications and limitations from
current findings on using genomic analyses to guide PGx testing and support

personalized treatment planning.
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2. Multiple Psychiatric Polygenic Risk Scores Predict Associations between
Childhood Adversity and Bipolar Disorder
This paper has been expanded from my previous MSc project and a version of this paper
has been published at Journal of Affective Disorder (Yao et al., 2023).
2.1 Abstract
Background: 1t remains unclear how adverse childhood experiences (ACE) and
increased genetic risk for bipolar disorder (BD) interact to influence BD symptom
outcomes. Here we calculated multiple psychiatric polygenic risk scores (PRS) and
used the measures of ACE to understand these gene-environment interactions.
Method: 885 BD subjects were included for analyses. BD, ADHD, MDD and SCZ
PRSs were calculated using the PRS-CS-auto method. ACEs were evaluated using the
Children Life Event Questionnaire (CLEQ). Participants were divided into groups
based on the presence of ACE and the total number of ACEs. The associations between
total ACE number, PRSs and their interactions were evaluated using multiple linear and
logistic regressions. Secondary analyses were performed to evaluate the influence of
ACE and PRS on sub-phenotypes of BD.
Results:  The number of ACEs increased with the ADHD PRS. BD participants who
had experienced ACE showed an earlier age of BD onset and higher odds of having
rapid cycling. Increased BD PRS was associated with increased odds of developing
psychotic symptoms. Higher ADHD PRS was associated with increased odds of having
rapid cycling. No prediction effect was observed from MDD and SCZ PRS. And, we

found no significant interaction between ACE numbers and any of the PRSs in
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predicting any selected BD sub-phenotypes. The study was limited by sample size, ACE
definition, and cross-sectional data collection method.
Conclusions: The findings consolidate the importance of considering multiple

psychiatric PRSs in predicting symptom outcomes among BD patients.

2.2 Introduction

BD is recognised as a complex psychiatric disorder because of its variable clinical
presentation. The first episode of mania or depression of BD commonly occurs between
the ages of 18 and 24 (McMahon et al., 1994). However, early onset before age 18 is
not rare and such cases are often associated with more severe or complex BD
phenotypes, such as increased comorbidity and delayed treatment response (Joslyn et
al., 2016). While some BD patients may experience rapid cycling of episodes within
hours or days, in others, episodes are separated by months or years (Carvalho et al.,
2014). BD patients may also have common comorbidities such as anxiety (Spoorthy et
al., 2019), substance abuse (Jawad et al., 2018), and psychotic features (Maggioni et al.,
2017). In addition, BD patients are at a higher risk of performing suicidal behaviour
compared to other psychiatric patients (Jamison, 2001).

Both genetic and environmental factors are recognised to be important in the
development of BD phenotypes. Environmental risk factors such as adverse childhood
experiences (ACE) and childhood maltreatment (CM) have been closely associated
with BD phenotype development. ACEs describe adverse events, such as the death or

divorce of a caregiver, serious illness, or hospitalisation. According to the past meta-
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analysis by Palmier-Claus et al., (2016), BD patients were 2.63 times more likely to
have experienced ACE. ACE has also been found to play a significant role in the risk
of relapse in BD patients (Hosang et al., 2010). Meanwhile, CM describes traumatic
abusive events. CM is separated into emotional abuse (EA), physical abuse (PA), and
sexual abuse (SA), as well as emotional neglect (EN) and physical neglect (PN) (Gilbert
et al., 2009). CM is commonly recognised as a more severe form of ACE. CM has also
been associated with more severe and complex BD phenotypes (Agnew-Blais & Danese,
2016). These include earlier age of onset and a higher risk of comorbidities such as
anxiety disorder, substance misuse disorder, suicide attempts, and increased mood
episodes.

Examining the influence of both genes and the environment is essential for
understanding BD symptom outcomes (Quidé¢ et al., 2020). It is commonly believed
that existing biological vulnerabilities interact with the later experiences such ACE and
lead to more complex mental health conditions. Thus, individuals who already carry a
high genetic risk for BD are at even higher risk of developing BD if they have
experienced ACE (Dulffy et al., 2020). Recently, researchers have begun exploring such
gene and environment interaction effects in predicting the development of BD sub-
phenotypes (Aas et al., 2020; Anand et al., 2015; Park et al., 2020). These studies were
based on the development of genome-wide association studies (GWAS) and polygenic
risk score (PRS) calculations (see sections 1.4.1 and 1.4.2 for details). The calculation
of polygenic risk scores generally has two primary purposes (1) to predict the likelihood

of developing the outcome of interest by synthesizing existing GWAS information into
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a single measure; (2) to estimate the predictive ability of known effects. Therefore,
PRSs can classify the relative risk of a specific outcome for an individual within a
population and have been applied in different gene-environment interaction studies.

The gene-environment interaction can be additive that the effects of genes and
environment both independently contribute to the risk thus, the effects simply sum
together (Rami et al., 2025). In contrast, the interaction effects can also be multiplicative
that the effects of genes and environment amplify one another beyond a simple sum.
Thus, the presence of both risk factors together may result in a higher risk than would
be expected if their effects were additive (Lin et al., 2025).

However, there have been recent conflicts regarding how BD PRS is associated
with the number of ACEs and how BD PRS interacts with ACE in the predictions of
various BD sub-phenotypes (Aas et al., 2020; Park et al., 2020). For example, Aas et al.
(2020) showed that BD PRS might only interact with childhood maltreatment in
predicting the risk of rapid cycling. In comparison, Park et al. (2020) observed another
interaction effect in predicting the age at onset (AAQO) of BD. These differences
between results may be due to different ACE definitions or clinical heterogeneity
between sample cohorts. For instance, Aas et al.'s (2020) measures of ACE were mainly
CM, while Park et al.'s (2020) measures were mainly ACE, with an additional CM item
on physical abuse.

There has been ongoing debate regarding how ACEs should be defined. The
original ACE framework proposed by Felitti et al. (1998) encompassed three domains:

abuse, neglect, and household dysfunction (e.g. domestic violence, and parental
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separation/divorce). However, following scholars have broadened the ACEs definitions
to include other adversities, including discrimination, peer victimization, unsafe
neighbourhoods, and socioeconomic problems further increasing conceptual
inconsistency (Karatekin & Hill, 2019). It is important to distinguish between
independent events (e.g. parental death, financial hardship, or divorce) and
victimization experiences (e.g. neglect and abuse), as they may differ in developmental
impact and intervention implications (Fitzgerald & Gallus, 2025; McLaughlin, 2017).
The lack of a clear and consistent definition in past studies obscures the distinct effects
of different adverse experiences.

Another major limitation of both these past studies is that they did not consider an
individual's genetic liability to other psychiatric disorders (Grigoroiu-Serbanescu et al.,
2020). Given that BD has a high level of overlapping clinical heterogeneity and shared
genetic risk with other psychiatric disorders, it seems necessary to include multiple
psychiatric PRSs and their interactions with ACE to predict phenotype development
(Baldwin et al., 2022; Coombes et al., 2020).

Differentiating between attention-deficit/hyperactivity disorder (ADHD) and BD
remains as a challenge for clinicians, as these two disorders have extensive symptom
overlap, reciprocal comorbidity, and overlapping age of onset periods (Brus et al., 2014;
Marangoni et al., 2015). ADHD and BD were proven to be genetically correlated
(r¢ 0.121) and share common risk variants (O’Connell et al., 2021). Children with
ADHD were more likely to have higher ACE exposure than children without ADHD

(Brown et al., 2017). And the higher exposure to ACE may also increase their risks to
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develop ADHD (Crouch et al., 2021). The presence of ADHD symptoms can be an
indication of worse depression presentation (Powell et al., 2021) and is linked to rapid
cycling between BD episodes (Aedo et al., 2018).

In addition, genetic predisposition to MDD can be predictive of specific patterns
of depression symptoms (Martinez-Levy et al., 2021). An additive interaction effect
between genetic predisposition to depression and trauma exposure has been observed
on depressive symptoms among MDD patients (Thorp et al., 2023). Meanwhile, SCZ
PRS can also be predictive of schizophrenia patients’ psychotic symptoms, cognition,
illness severity, and diagnostic changes (K. G. Jonas et al., 2019). However, no previous
study specifically examined how these different psychiatric genetic liabilities interact
with environment risk factors such as ACE in predicting the development of BD sub-
phenotypes.

To address these research gaps, we wanted to replicate past gene x environment
(GxE) findings on ACE and BD PRS. We also wanted to explore these multiple PRSs’
prediction effects of BD sub-phenotype development. Thus, our research had three main
aims:

(1) to clarify the association between BD PRS and ACE;

(2) to investigate how the number of ACEs interacts with multi-PRSs in the
predictions of distinct BD sub-phenotypes;

(3) to understand whether ACE could predict BD sub-phenotype development

and change the interaction effect when CM items are absent.
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Our objective was to use multiple linear and logistic regressions to explore the
association between the PRSs and the ACE numbers, including their interaction effect
in predicting the associated sub-phenotypes. We hypothesized that the multi-PRSs
would interact with ACEs in predicting the sub-phenotype development. People with
higher PRSs (BD/ADHD/MDD/SCZ) and more ACEs were predicted to have
developed BD at a younger age and developed more severe or complex sub-phenotypes,

such as psychosis symptoms, suicide ideation, and rapid cycling.

2.3 Methods
2.3.1 Participants

All BD cases received an ICD10 diagnosis of BD from a UK National Health
Service (NHS) psychiatrist (World Health Organization, 1992). Ancestrally matched
healthy controls (n = 1818) were recruited from the NHS blood transfusion service and
from study sites where case participants were also being recruited. The controls were
screened for an absence of a lifetime history of the following disorders: schizophrenia
and any other psychosis, major affective or schizoaffective disorders, eating disorders,
alcohol/drug addiction, and obsessive-compulsive disorders. All participants were of
English, Scottish, Welsh, or Irish descent and had at least three out of four grandparents
of the same descent. The study was approved by the NHS Metropolitan Multi-centre
Research Ethics Committee (MREC/03/11/090). All participants read an approved

information sheet and signed a physical informed consent form.
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2.3.2 Study measures

Semi-structured interviews were performed with BD participants using the lifetime
version of the Schizophrenia and Affective Disorder Schedule (SADS-L; Spitzer et al.,
1978), the 90-item Operational Criteria Checklist (OPCRIT; McGuffin et al., 1991) and
the Children Life Event Questionnaire (CLEQ; Monaghan et al., 1979). In a subset of
participants, the 25-item version of the Wender Utah Rating Scale (WURS) was used
to measure childhood ADHD symptoms (Grigoroiu-Serbanescu et al., 2020; M. F. Ward
et al., 1993). A subset of the participants received lithium treatment prior to the
assessment and their response to lithium was scored using data from clinicians and the
research participant. Where these scores differed the clinician’s rating was used. The
data was coded in a binary format to differentiate between responders and non-
responders. Participants’ premorbid personality disorder (PPD) diagnosis was assessed
with OPCRIT item 11. BD age of onset, presence of psychosis symptoms, presence of
suicide ideation, and presence of rapid cycling were selected for analyses in the current
study. These variables were chosen because of their relevance to BD according to past
reviews (Escamilla & Zavala, 2008; Palmier-Claus et al., 2016). We also sought to
replicate previous findings from Park et al. and Aas et al. (Aas et al., 2020; Park et al.,
2020).

In this research, BD age of onset was defined as the earliest age at which symptoms
began to cause subjective distress or impair functioning or at which medical advice was
sought for psychiatric reasons. Age at onset was stored as a continuous variable

(OPCRIT item 4). The presence of psychotic symptoms was defined as whether the
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participants disclosed any symptoms of impaired reality testing (any presence of
OPCRIT items 54-77; see Appendix 2.1). The presence of suicide ideation was defined
as whether the participants with BD reported thoughts of death (not necessarily their
own), thinking of suicide, wishing to be dead, or attempting to kill themselves (OPCRIT
item 43). The presence of rapid cycling was defined as whether the patient ever had
four or more mood disturbances in one year. These latter three variables were stored in
binary format.

ACEs were measured separately using the CLEQ, an adaption of the children's life
events inventory, which records the ACE experienced before the age of 16 (Monaghan
et al., 1979). The CLEQ included 13 binary "YES" or "No" questions. The first 12
questions had content such as the death of a parent; the death of a brother or sister;
serious illness; hospitalisation of a parent; teenage pregnancy; suspension from school
(see CLEQ in Appendix 2.2). The last question required the participants to specify other
significant adverse life events experienced as a child if they answered "YES." Due to
the variability of events recorded with question 13, we only focused on the first 12
CLEQ questions. If the participant answered "Yes" to any of the first 12 questions, this
indicated the experience of ACE. The number of "YES" answers to all 12 questions

indicated how many ACEs each participant had been through.

2.3.3 Genotyping, imputation, and quality control
Genome-wide single nucleotide polymorphism data was available for the BD and

healthy control subjects. The data was generated in two waves at the Broad Institute,
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Boston, MA, US, using the Illumina PsychArray and Illumina Global Screening Array
(GSA). The quality control and imputation methods used for the PsychArray had been
described elsewhere (Grigoroiu-Serbanescu et al., 2020). The genotype data from the
GSA underwent equivalent quality control and imputation procedures as for the

PsychArray.

2.3.4 Calculation of the polygenic risk score (PRS)

Patients’ multi-PRSs (BD/ADHD/MDD/SCZ) were computed using imputed data
from the PsychArray and GSA with the PRS-CS-auto method which provides a single
score for each sample without any thresholds (Ge et al., 2019). The PRS-CS-auto
method was chosen over other methods since it outperformed other existing methods
according to the simulation studies by Ge et al. (2019). Pain et al. (2021) also found
PRS-CS-auto to be the best of the pseudo-validation PRS methods. PRS-CS is distinct
as it utilises a high-dimensional Bayesian regression framework and places a
continuous shrinkage (CS) before SNP effect size calculations. Such procedures result
in substantial computational advantages and enable multivariate modelling of local LD
patterns, which makes PRS-CS robust to varying genetic architectures.

The application of the PRS-CS method required an LD reference panel and
reference GWAS summary statistic, which help infer the posterior effect sizes of SNPs.
We chose the European sample from The 1000 Genomes Project Consortium (2010) as
our LD reference panel. The BD reference GWAS came from Mullins et al. (2021)

which included the PsychArray samples used in the current study. We therefore used
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summary statistics generated without the overlapping samples to avoid confounding.
Our ADHD reference GWAS came from the Psychiatric Genomics Consortium, a meta-
analysis including 38,691 ADHD cases (Demontis et al., 2022). We used data from
Howard et al. (2019) for MDD GWAS which excluded UK Biobank and 23andMe data
covering 170,756 cases and 329,443 controls. The SCZ GWAS came from Trubetskoy
et al. (2022) which covered 68,676 cases and 96,079 controls. We adapted all GWAS
samples to be based on subjects of European ancestry and data from the samples that
we had contributed to the PGC schizophrenia analyses excluded our own lab’s data.
The new GWAS generation followed the same procedures as described by each GWAS
paper. The reference GWAS sample sizes were calculated using the effective sample
size method (Neff) as 4/(1/N_cases + 1/N_controls), where N_cases is the number of
cases and N_controls is the number of controls.

We used the mean and standard deviation of the PRS from the healthy controls to
standardise the PRS data of the BD cases. This was performed separately for the
PsychArray and the GSA data. By standardising the PRSs to a normal distribution with
mean = 0 and SD = 1, the PRSs from the PsychArray and GSA could be combined
directly and applied easily into regression models as continuous variables. Also, the
standardisation of the PRS allowed the conversion of an individual’s PRS to quantiles

for risk comparison across individuals.

2.3.5 Statistical analysis

CLEQ and PRS data was available for 885 BD subjects, 640 from the PsychArray
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and 245 from the GSA. The participants were first divided into two groups based on the
presence of ACE and then compared for the difference in characteristics. Wilcoxon rank
sum tests, chi-squared tests and independent t-tests were applied according to the
variable type and distribution. To illustrate the association between ACEs and multi-
PRSs, we first conducted pairwise comparisons using simple t-tests taking ACE as a
categorical variable. Then we conducted linear regressions using ACE total number and
multi-PRSs taking appropriate adjustments.

Next, we performed multiple linear and logistic regression analyses to assess how
ACE, multi-PRSs and their interactions predict the development of selected BD sub-
phenotypes. The assumptions for linear and logistic regressions were pre-checked and
found to be satisfactory for each regression. Then the CLEQ total score, one PRS, or
their interaction term, was each added into the model by sequence. Finally, we divided
the samples into four quantile groups based on their BD/ADHD PRS values respectively.
We conducted additional logistic regressions taking the lowest PRS group as reference
to test if people with higher BD/ADHD PRSs would have higher odds of experiencing
ACE or developing the selected sub-phenotypes. The presence of ACE was added as a
moderator. We carried out additional interaction analyses to examine if there were
significant differences between each PRS quantile group and the presence of ACE, and
the interactions between ADHD and BD PRS were also examined.

The participants’ BD age of onset and sex were included as covariates in all
analyses except for age of onset where only sex was included. The genotyping chip type

and the first three principal components from GWAS population stratification were
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included in addition for all regression analyses involving PRS to account for chip and
ancestry confounding. To further account for genotyping difference, we conducted
additional sensitivity analyses using PRSs generated from only overlapping risk
variants from both chips (Appendix 2.3 and 2.4). All these described analyses were
done using RStudio with R version 4.1.3 (R Core Team, 2021).

To account for multiple testing, we applied False Discovery Rate (FDR) correction
method (Benjamini & Hochberg, 1995) to the results obtained using the p.adjust
function in R for each set of analyses. The FDR method was chosen over the others as
it gives a good illustration of results and has been applied in previous studies involving

PRS (Grigoroiu-Serbanescu et al., 2020).

2.4 Results
2.4.1 Sample demographics

Overall, the participants had a median age of 49 when they received the assessment.
62% of the participants experienced at least one ACE before the age of 16 (see Table
2.1). The samples contained a high proportion of females (60%) and type 1 BD patients
(65%). The two groups did not differ in sex or BD type ratios. The participants also did
not differ in childhood ADHD (defined using the WURS) and responses to lithium.
However, the participants with any presence of ACE were more likely to have PPD
(»=0.029). The participants had a median BD onset age of 19. The participants’ age at
interview and BD onset age was earlier in subjects who had experienced at least one

ACE (See Table 2.1). The participants also differed in the presence of suicide ideation

Page 57 / 258



1 (p=0.017) and rapid cycling (p=0.016). We found strong evidence to suggest that the

2 presence of ACE was associated with an increase in ADHD PRS (p=0.005).
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Table 2.1 Participants’ Demographics and Clinical Characteristics concerning

ACE Presence
Variables N Overall Group without ACE  Group with ACE p-values
N =885 N =338 (38%) N =547 (62%)

Age at interview 728 49 (39, 59) 50 (42, 60) 48 (38, 57) 0.003®
Sex (Females) 885 532 (60%) 199 (59%) 333 (61%) 0.600°
BD type 885 0.400°

BD type 1 572 (65%) 224 (66%) 348 (64%)

BD type 2 141 (16%) 56 (17%) 85 (16%)

Schizoaffective BD 172 (19%) 58 (17%) 114 (20%)
Childhood ADHD 191 37.07 (22.58) 39.00 (21.03) 35.83 (23.54) 0.333¢
Lithium responders 418 152 (36%) 65 (38%) 87 (35%) 0.612°
PPD diagnosis 824 74 (9%) 19 2%) 55 (7%) 0.029°
Age of BD onset 746 19 (16, 29) 22 (17,29) 18 (15, 28) 0.009:
Psychotic symptoms 844 598 (71%) 222 (69%) 376 (72%) 0.400°
Suicide ideation 814 613 (75%) 217 (71%) 396 (78%) 0.017°
Rapid cycling 499 215 (43%) 61 (36%) 154 (47%) 0.016°
BD PRS 885 0.71 (1.05) 0.72 (1.01) 0.70 (1.08) 0.819¢
ADHD PRS 885 0.02 (1.03) -0.10 (1.05) 0.10 (1.01) 0.005¢
MDD PRS 885 0.26 (1.00) 0.19 (0.99) 0.30 (1.00) 0.113¢
SCZ PRS 885 0.52 (0.97) 0.59 (0.96) 0.48 (0.97) 0.101¢

Notes. ACE, adverse childhood experience; childhood ADHD (scores from the Wender Utah rating scale); PPD, premorbid
personality disorder; BD, bipolar disorder; ADHD, attention deficit hyperactivity disorder; MDD, major depressive

disorder; SCZ, schizophrenia disorder; IQR, interquartile range; SD, standard deviation; PRS, polygenic risk score.
2 Wilcoxon rank sum test; median (IQR)
b Pearson's Chi-squared test of independence; n (%)

¢ Independent t-test; mean (SD)

In bold p values are below 0.05 threshold.
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2.4.2 Correlations between multi-PRSs and the CLEQ scores

We found no evidence supporting any associations between BD PRS and ACE
scores using pairwise comparisons (see Figure 2.1) or linear regressions with
(coefficient=-0.037; 95% CI: -0.146 to 0.073, p=0.511) or without any adjustments
(coefficient=-0.051; 95% CI: -0.149 to 0.046, p=0.300). However, we found strong
evidence suggesting that the participants with none and three or more ACE differed in
ADHD PRS (see Figure 2.1). The unadjusted linear regression results also indicated
that higher ADHD PRS increased the susceptibility to ACE reporting
(coefficient=0.198, 95% CI: 0.099 to 0.296, p<0.001). The association was even
stronger after adding in adjustments (coefficient=0.231, 95% CI: 0.118 to
0.345, p<0.001). Weak evidence was found to suggest the association between MDD
PRS and ACE scores (coefficient=0.103, 95% CI: <0.001 to 0.205, p=0.049) the
evidence remained after adding in adjustments (coefficient=0.127; 95% CI: 0.012 to
0.243, p=0.031). No evidence could be found for SCZ PRS before (coefficient=-0.099,
95% CI: -0.204 to 0.006, p=0.066) or after adjustment (coefficient=-0.043, 95% CI: -
0.161 to 0.074,p=0.470). And no other pair-wise comparison results survived

correction for multiple testing (see Figure 2.1).
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Figure 2.1 Mean Polygenic Risk Scores for ADHD, BD, MDD, and SCZ across

ACE Groups

BD ADHD

24

MDD

ZSCORE

2

None One Two Three & mare None One Two Three & more
ACE number (Categorical)
Notes. ACE, adverse childhood experience; BD, bipolar disorder; ADHD, attention deficit
hyperactivity disorder; MDD, major depressive disorder; SCZ, schizophrenia disorder.
The above numbers corresponded to PRS means for each ACE group.
* in the current plot, p values survived FDR multiple testing correction for simple t-tests for pair-
wise comparison.
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2.4.3 ACE/BD PRS associations & interaction with phenotypes

We found substantial evidence to suggest that each unit increase in BD PRS would
increase the odds of having psychotic symptoms by exp(0.258) = 1.294 (95% CI 1.093
to 1.538; FDR_p=0.035; See Table 2.2). We also found strong evidence that each unit
increase in ACE number would increase the odds of having rapid cycling by exp(0.228)
=1.256 (95% CI 1.084 to 1.463; FDR p=0.035). We found some tendency that ACE
might be associated with an earlier age of onset. We carried out additional subgroup
analyses to clarify the effect. We found strong evidence to suggest that only males who
experienced ACE would have earlier age of onset (coefficient -1.568, 95% CI: -2.568
to -0.567, p=0.002).

Overall, we did not observe any interaction effect between ACE number and BD

PRS in predicting any of the sub-phenotypes examined. (See Table 2.2).

2.44 ADHD/MDD/SCZ PRS associations & interaction with phenotypes

We found strong evidence to suggest that each unit increase in ADHD PRS led to
an increase in the odds of developing rapid cycling BD by exp(0.369) = 1.45 (95% CI
1.20-1.75; FDR _p=0.002). No other symptoms were associated with the ADHD PRS
and no significant interaction effect between ACE number and ADHD PRS in
predicting these sub-phenotypes was observed (see Table 2.2).

We could not find any evidence to suggest MDD and SCZ PRS would predict any

of these selected sub-phenotypes (see Table 2.3). And we observed no interaction effect.
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Table 2.2 Results of Multiple Regression Analyses with Adjustments based on
ACE (total score) and BD/ADHD PRS

Variables Estimated Standard Confidence Reference p FDR p
Coefficient Error Intervals (95%) Values
Age at onset®
ACE -0.835 0.330 -1.482,-0.188 -2.543 0.012 0.104
BD PRS -0.315 0.466 -1.230, 0.600 -0.677 0.499 0.877
BD Interaction -0.316 0.328 -0.960, 0.328 -0.963 0.336 0.765
ADHD PRS -0.624 0.491 -1.588, 0.339 -1.273 0.204 0.717
ADHD Interaction -0.421 0.341 -1.090, 0.248 -1.236 0.217 0.717
Presence of psychotic symptoms®
ACE 0.069 0.063 -0.052, 0.195 1.091 0.275 0.761
BD PRS 0.258 0.087 0.089, 0.430 2.974 0.003 0.035
BD Interaction -0.074 0.063 -0.197, 0.051 -1.177 0.239 0.718
ADHD PRS -0.043 0.090 -0.221,0.134 -0.478 0.633 0.878
ADHD Interaction 0.005 0.065 -0.122, 0.133 0.074 0.941 0.991
Presence of suicide ideation®
ACE 0.178 0.074 0.037,0.328 2.398 0.016 0.119
BD PRS -0.048 0.093 -0.231,0.134 -0.514 0.607 0.878
BD Interaction -0.088 0.072 -0.229, 0.053 -1.229 0.219 0.717
ADHD PRS 0.055 0.098 -0.137,0.248 0.562 0.574 0.878
ADHD Interaction -0.007 0.077 -0.156, 0.146 -0.095 0.924 0.991
Presence of rapid cycling®
ACE 0.228 0.076 0.081, 0.381 2.992 0.003 0.035
BD PRS -0.106 0.103 -0.310, 0.095 -1.032 0.302 0.765
BD Interaction -0.041 0.085 -0.209, 0.125 -0.479 0.632 0.878
ADHD PRS 0.495 0.121 0.262,0.738 4.080 <0.001 0.002
ADHD Interaction 0.144 0.090 -0.30, 0.324 1.600 0.109 0.563

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention deficit
hyperactivity disorder.

aMultiple linear regression analyses, reference value t.

> Multiple logistic regression analyses, reference value z.

FDR_p = false discovery rate corrected p values for multiple testing.

In bold p values were significant before correction or survived FDR correction for multiple testing.

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was included).
PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population
stratification in addition to sex and age of onset.
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Table 2.3 Results of Multiple Regression Analyses with Adjustments based on
Total ACE Number and MDD/SCZ PRS

Variables Estimated  Standard Confidence Reference p FDR p
Coefficient Error Intervals (95%) Values
Age at onset®
MDD PRS -0.472 0.494 -1.442, 0.498 -0.956 0.340 0.765
MDD Interaction -0.070 0.331 -0.719, 0.579 -0.212 0.832 0.991
SCZ PRS 0.021 0.501 -0.961, 1.004 0.043 0.966 0.991
SCZ Interaction -0.299 0.358 -1.001, 0.403 -0.837 0.403 0.853
Presence of psychotic symptoms®
MDD PRS -0.052 0.091 -0.232, 0.127 -0.574 0.566 0.878
MDD Interaction -0.001 0.064 -0.128,0.123 -0.017 0.987 0.991
SCZ PRS 0.118 0.092 -0.063, 0.299 1.280 0.201 0.717
SCZ Interaction -0.134 0.069 -0.251, 0.021 -1.643 0.100 0.563
Presence of suicide ideation®
MDD PRS -0.041 0.098 -0.233, 0.151 -0.418 0.676 0.888
MDD Interaction -0.002 0.074 -0.149, 0.143 -0.028 0.978 0.991
SCZ PRS -0.001 0.100 -0.199, 0.195 -0.011 0.991 0.991
SCZ Interaction 0.021 0.086 -0.148, 0.190 0.241 0.810 0.991
Presence of rapid cycling®
MDD PRS 0.086 0.111 -0.131, 0.304 0.776 0.438 0.876
MDD Interaction 0.032 0.081 -0.128,0.193 0.397 0.691 0.888
SCZ PRS 0.052 0.109 -0.161, 0.267 0.477 0.634 0.878
SCZ Interaction 0.052 0.080 -0.105, 0.212 0.641 0.521 0.878

Notes. ACE, adverse childhood experience; MDD, major depressive disorder; SCZ, schizophrenia disorder

@ Multiple linear regression analysis, reference value t.

b Multiple logistic regression analysis, reference value z.

FDR_p = false discovery rate corrected p values for multiple testing.

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was adjusted).
PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population

stratification in addition to sex and age of onset.
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2.4.5 PRS quantile analyses

Given that no effect could be observed from MDD/SCZ PRS, participants were
only divided into quantile groups based on their BD/ADHD PRSs for ACE influence
(see Table 2.4). Overall, we found strong evidence to suggest that BD patients in the
highest ADHD PRS quantile group had 2.009 higher odds of having experienced ACE
than those in the lowest ADHD PRS quantile group (95% CI 1.230 to 3.313, p=0.006
FDR p=0.046; Figure 2.2A).

BD patients in the highest BD PRS quantile group had 1.917 higher odds of
developing psychotic symptoms than those in the lowest BD PRS quantile group (95%
CI 1.166 to 3.182, p=0.011, FDR_p=0.234; Figure 2.2B). Meanwhile, BD patients in
the highest ADHD PRS quantile group had 2.642 higher odds of developing rapid
cycling than those in the lowest ADHD PRS quantile group (95% CI 1.393 to 5.097,

p=0.003, FDR_p=0.026; Figure 2D).
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Table 2.4 Results of PRS Quantile Group Comparisons for the Odds Plot

Variables Odds Confidence Reference p FDR p
Intervals (95%) Values
Presence of ACE
BD Q1 vs Q2 0.889 0.558, 1.416 -0.495 0.621 1.000
BD Q1 vs Q3 1.106 0.696, 1.758 0.425 0.671 1.000
BD Q1 vs Q4 1.140 0.714, 1.821 0.548 0.584 1.000
ADHD Q1 vs Q2 0.983 0.627, 1.540 -0.073 0.942 1.000
ADHD Q1 vs Q3 1.365 0.854, 2.186 1.299 0.194 0.775
ADHD Q1 vs Q4 2.009 1.230, 3.313 2.764 0.006 0.046
Presence Psychotic Symptoms
BD Q1 vs Q2 1.567 0.964, 2.562 1.803 0.071 0.209
BD Q1 vs Q3 1.546 0.953,2.519 1.759 0.079 0.209
BD Q1 vs Q4 1.917 1.166, 3.182 2.547 0.011 0.087
ADHD Q1 vs Q2 0.922 0.560, 1.513 -0.321 0.748 1.000
ADHD Q1 vs Q3 0.696 0.421, 1.143 -1.428 0.153 0.307
ADHD Q1 vs Q4 0.925 0.547, 1.568 -0.289 0.772 1.000
Presence of suicide ideation
BD Q1 vs Q2 0.949 0.548, 1.642 -0.187 0.852 1.000
BD Q1 vs Q3 1.008 0.583,1.743 0.029 0.977 1.000
BD Q1 vs Q4 0.800 0.467, 1.366 -0.815 0.415 1.000
ADHD Q1 vs Q2 1.141 0.683, 1.906 0.504 0.615 1.000
ADHD Q1 vs Q3 1.054 0.618, 1.800 0.194 0.846 1.000
ADHD Q1 vs Q4 1.356 0.772,2.409 1.052 0.293 1.000
Presence of rapid cycling
BD Q1 vs Q2 0.785 0.427,1.434 -0.787 0.431 0.575
BD Q1 vs Q3 0.576 0.313, 1.051 -1.789 0.074 0.196
BD Q1 vs Q4 0.727 0.397, 1.323 -1.042 0.297 0.476
ADHD Q1 vs Q2 1.702 0.901, 3.252 1.629 0.103 0.207
ADHD Q1 vs Q3 2.059 1.105, 3.893 2.254 0.024 0.097
ADHD Q1 vs Q4 2.642 1.393,5.097 2.943 0.003 0.026

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention
deficit hyperactivity disorder.

Results came from multiple logistic regression analysis, reference value z.

FDR p = false discovery rate corrected p values for multiple testing.

All results were adjusted for participants’ BD age of onset and sex, chip type and the first three principal
components from GWAS population stratification.

The presence of ACE was included as a moderator in the PRS models for the three sub-phenotypes.

In bold p values were significant before correction or survived FDR correction for multiple testing.
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Figure 2.2 The Odds Ratios of having ACE and Developing the Three Selected Sub-phenotypes with Reference to PRS Quantile Levels
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The participants’ sex, age of onset, the genotyping chip type and the first three principal components from GWAS population stratification were included as

covariates in all analyses.

The presence of ACE was included as a moderator in the PRS models for the three sub-phenotypes.

* in the current plot, p values survived FDR multiple testing correctio
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2.4.6 PRS quantile interaction analyses results

To further dissect how the presence of ACE can influence the genetic impact and
if the two PRSs’ associations depend on each other, we carried out additional interaction
analyses (see Table 2.5). We only found weak evidence to suggest a positive interaction
effect between BD and ADHD PRSs on the presence of ACE (estimated coefficient:
0.158, 95% CI: 0.018, 0.301, p=0.028, FDR _p=0.278). The positive result suggested
that participant who had both high BD and ADHD PRSs are more likely to have
experienced ACE than those who had both low BD and ADHD PRSs. We found no
other tendency for an interaction between the two PRSs. However, such results should
be interpretated with cautions because the participants’ ADHD and BD PRS are highly
correlated (estimated coefficient: 0.113, 95% CI: 0.047 to 0.178, p<0.001). The
Variance Inflation Factor (VIF) values for the two PRS interaction variables in the
models ranged from around 12 to 13 indicating potential collinearity. Further
examinations in future studies are required. The other interaction analyses taking PRS
quantile groups and ACE presence showed consistent results to the main analyses as no

significant interaction effects could be detected.
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Table 2.5 Results of Additional Interaction Analyses based on ACE Presence and
BD/ADHD PRS Quantile Groups

Variables Estimated  Standard Confidence Reference p FDR p
Coefficient Error Intervals (95%) Values

Presence of ACE

BD ADHD interaction 0.158 0.072 0.018, 0.301 2.200 0.028 0.278

Presence Psychotic Symptoms

BD ACE interaction -0.185 0.169 -0.519, 0.144 -1.099 0.272 0.679

ADHD ACE interaction 0.059 0.171 -0.277,0.395 0.346 0.729 0.886

BD ADHD interaction 0.011 0.076 -0.138, 0.160 0.144 0.886 0.886

Presence of suicide ideation

BD ACE interaction -0.296 0.180 -0.651, 0.056 -1.643 0.100 0.335

ADHD ACE interaction -0.110 0.186 -0.478, 0.253 -0.589 0.556 0.794

BD ADHD interaction 0.020 0.082 -0.141, 0.181 0.243 0.808 0.886

Presence of rapid cycling

BD ACE interaction 0.178 0.211 -0.234, 0.595 0.843 0.399 0.736

ADHD ACE interaction 0.384 0.220 -0.047, 0.818 1.745 0.081 0.335

BD ADHD interaction 0.072 0.094 -0.111, 0.257 0.769 0.442 0.736

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention deficit
hyperactivity disorder.

Results came from multiple logistic regression analysis, reference value z.

FDR_p = false discovery rate corrected p values for multiple testing.

All results were adjusted for participants’ BD age of onset and sex, chip type and the first three principal components from
GWAS population stratification.

The presence of ACE was included as a moderator in the two PRS interaction models for the three sub-phenotypes.

In bold p values were significant before correction.
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2.5 Discussion

This study used multiple PRSs to dissect their association and interaction with ACE
for predicting BD sub-phenotypes. Our study demonstrated that BD participants with
higher ADHD PRS tended to report more ACEs, whereas BD PRS was not associated
with ACEs reporting. We also found some weak evidence to suggest that BD patients
with higher MDD may experience more ACE. In addition, our results suggested that
the BD patients with higher BD PRS would have increased odds of developing
psychotic symptoms. Although both increased ACE number and ADHD PRS were
associated with increased odds of developing rapid cycling among BD patients, no
additive interaction effect could be observed.

Past studies had conflicts regarding whether the increase in ACE numbers is
associated with BD PRS positively (Park et al., 2020) or negatively (Aas et al., 2020).
Our results still could not provide a specific answer since we could not identify any
significant results between BD PRS and the reported number of ACE across multiple
analyses. However, our results suggested that increased ADHD PRS was associated
with more ACE reporting. These results are consistent with National Survey of
Children's Health studies which observed that children with ADHD symptoms may
more likely experience ACE (Brown et al., 2017; Crouch et al., 2021). We also found
weak evidence for the positive association between MDD PRS and ACE. Thus, it seems
more likely that BD patients’ genetic liability to other psychiatric disorders together
accounted for the presence of ACE. However, it should not be assumed that the

exposure to ACE is entirely determined by genetic risk, given that most recorded ACE
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were passive. In this case, a possible explanation could be that these participants’
parents not only transmitted genetic risk variants linked to psychiatric disorders to their
child but also provided adverse environments (Baldwin et al., 2022). In addition,
genetically influenced behaviours in children (e.g., impulsivity, emotional
dysregulation) may also evoke harsher parenting or peer rejection (Reiss et al., 2022).
Most previous research has shown that an increasing number of ACEs is associated
with a lower age of BD onset (Aas et al., 2020; Anand et al., 2015; Park et al., 2020).
Our study also identified the same pattern in results for ACE presence. Only the study
by Park et al. (2020) found an additive interaction effect between BD PRS and ACE for
predicting earlier BD age of onset. Our results and the other research did not identify
such an interaction pattern (Aas et al., 2020). It should be noted that the study by Park
et al. (2020) was purely based on BD type 1 patients. Our samples contained 65% BD
type 1 patients, and the study by Aas et al. (2020) contained 74% BD type 1 patients.
Thus, differences between study samples in the genetic liability to other psychiatric
disorders may have influenced these results (Guzman-Parra et al., 2021). In addition,
although another study by Anand et al. (2015) included 1995 BD type 1 patients, they
still could not identify significant interaction between any single SNP and the presence
of childhood traumatic events on the prediction of BD age at onset. However, they
found that only SNPs in or near genes coding for calcium channel activity-related
proteins (Gene Ontology: 0005262) were more likely to show an interaction effect.
Thus, if the gene x environment interaction exists in predicting BD age of onset, it might

be small and require large sample sizes to detect. Given that the study by Park et al.
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(2020) contained 1615 BD cases, much larger than our sample size of 885 and Aas et
al.'s (2020) sample size of 402. The sample sizes might explain the difference in the
results. Another possible explanation for the difference on age of onset could be sex
differences. Our additional sub-group analyses found that only males who experienced
ACE would have earlier age of onset.

Our results on psychosis symptoms were consistent with Aas et al. (2020), which
similarly recorded the psychosis variable in terms of the episode. Our results showed
that people with a higher BD PRS may be more likely to show psychotic symptoms.
One recent study also found that BD PRS might relate to the manic symptoms in
participants with a history of psychotic episodes (Ahangari et al., 2022). However, we
could not identify any significant association between ACE and psychosis symptoms
or evidence for an interaction effect. Upthegrove et al. (2015) argued that the different
ACE types might influence the development of psychosis symptoms differently.
Childhood abuse had the strongest associations. Although Aas et al.'s (2020) study
focused on CM, covering all abuse items, the associations and interaction effects were
still insignificant. Thus, it seemed likely that these psychotic symptoms in BD subjects
might be more genetically predetermined.

We found that the ADHD PRS in BD subjects may be highly associated with the
presence rapid cycling. However, we should be careful when interpreting the findings
on rapid cycling. In contrast to Aas et al. (2020), we could not find an interaction
between BD PRS and ACE or between ADHD PRS and ACE on rapid cycling. Our

results showed that the increase in ACE number and ADHD PRS might independently
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increase the odds of rapid cycling. And they also positively associated with each other.
Such results may indicate the presence of mediation effects which requires further
examination.

In addition, we could not find any prediction effects from MDD or SCZ PRS. The
previous studies which found these two PRSs’ prediction effects were based on samples
which were of the same category MDD and SCZ patients (K. G. Jonas et al., 2019;
Thorp et al., 2023). Although these two disorders were also genetically correlated with
BD, the current results suggest that they are underpowered to predict the development
of any BD sub-phenotype symptoms.

Overall, we could not identify any significant interaction effect in any models. We
anticipated that cases with more ACE and higher PRSs would develop more severe
phenotypes. However, our results suggested that different levels of PRS might not
significantly influence the relationship between ACE and other BD phenotypes.
Meanwhile, the association between the PRS and sub-phenotypes did not significantly
differ according to the number of ACE participants experienced. Such conflicts might
be because past studies that found the interaction effects included more severe forms of
ACE, such as CM, covering abuse and trauma (Aas et al., 2020; Park et al., 2020).
However, the ACE measurement in our study only included ACE without any traumatic
events such as abuse and neglect. Thus, the interaction effects may have been attenuated
in our study. However, our results also showed evidence that even ACE without any

CM items could be significant predictors for predicting different sub-phenotypes.
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Overall, such results highlight the importance of considering different ACE definitions
for future interaction studies.

Our study first used the more advanced PRS-CS-auto method and the latest
reference GWAS to calculate multi-PRSs. Thus, a straightforward explanation for the
difference between our results and those from past studies might be that the multi-PRSs
used here were more powerful predictors of a subject's genetic liability to psychiatric
disorders. We also used robust correction method for selecting results from the
statistical analyses. Concerning the link between multi-PRSs and ACEs, we replicated
past studies' analyses and ran additional tests. By focusing on ACE items without any
CM items, our results consolidated ACE's potential in predicting different phenotype
developments. Such results also highlighted that future studies should consider the ACE
definition when conducting gene-environment interaction studies. In addition, our
findings confirmed the importance of considering multiple psychiatric PRSs in BD
subjects and their interactions with ACE for improving phenotype predictions. Future
larger-scale studies with more precise separation of ACE types, more psychiatric PRSs
and more of their interactions are encouraged.

This study's findings could be limited by its case-control recruitment and cross-
sectional data collection methods. Retrospective data such as analysed in this study is
always subject to potential recall bias. The participants had a median age of 49 at the
interview assessment, but the CLEQ required them to recall life events before age 16.
All data was collected directly from the participants. If the BD patients developed

delusions or hallucinations regarding their childhood experiences, it would be
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impossible for us to tell. Also, our study did not separate ACE severity or phenotype
severity. We focused on only the ACE without any CM items. Thus, we could only
make inferences but not compare ACE and CM items' different effectiveness. In
addition, our findings were limited by our sample size and sample characteristics
(mixed BD types). Future studies can use mixed models that deal better with missing
data, characteristic differences, unequal sample sizes, and non-independence of samples.
Given that all samples are Europeans, our findings might also have limited
transferability. Finally, neither the PRS nor ACEs could explain a large amount of
individual variation. Even though we found some links between PRS and phenotypes
that might be important in the clinic, these results were still a long way from letting us
predict how an individual's phenotype will develop.

BD is a complex and heterogeneous disorder. Both genetic and environmental risk
factors influence its phenotypic development. In this context, future larger-scale studies
with more precise separation of ACE types, more psychiatric PRSs, and more of their
interactions can better illustrate the phenotype development predictions among BD
patients. Together, these efforts will support better BD prognosis, risk prediction,

treatment allocation, and harm prevention.
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3. Implication of the ADCY1 Gene in Lithium Response in Bipolar Disorder by
Genome-wide Association Meta-analysis
A version of this paper has been submitted as preprint at Research Square.
3.1 Abstract
Background: Efforts to examine the influence of genetics in the efficacy of lithium
using GWAS have identified several loci. Here, we report new cases and meta-analyses
to combine previous efforts.
Method: We report data from 1259 participants with BD recruited at University College
London who had been treated with lithium. The data comes from three waves of
genotyping on different arrays. The GWAS data from each array was analysed
separately and then meta-analysed with two published lithium response GWAS datasets.
Post-GWAS analyses were conducted to examine lithium response heritability and its
genetic correlations with other traits. We also attempted to replicate past polygenic risk
scores (PRS) results.
Results: SNP rs116927879 (A/G) was associated with lithium response at a genome-
wide significance level (p=4.509%x10%) with a consistent effect across all cohorts.
rs116927879 is located on chromosome 7 and maps to the protein-coding gene ADCY
and two pseudo-genes, GTF2IP13 and SEPT7P2. The sQTL results suggested that
rs116927879 genotypes may influence the splicing of ADCY1 across different brain
regions. We estimated the SNP heritability (h?) for good lithium response as 20.3% and
15.6% for subjective/objective response definitions, respectively. We did not observe

any genetic correlation or PRS association between the lithium response and
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schizophrenia or major depression disorder. However, we found weak evidence to
suggest that males were more likely to be good responders.
Conclusions: Our GWAS identifies a genome wide significant finding, and provides

updated heritability estimates for lithium efficacy.

3.2 Introduction

Lithium is a first-line treatment option for BD and has been recommended by
multiple clinical guidelines (UK (NICE, 2014a); Australia & New Zealand (Malhi et
al., 2015); Canada (Yatham et al., 2018)). Lithium has been found to be the most
effective mood stabilizer (Joas et al., 2017), not only in controlling mania and
hypomania symptoms (Cipriani et al., 2011; Yildiz et al., 2011) and reducing depression
severity (J. C. Nelson et al., 2014), but also in preventing suicides and suicide attempts
among BD patients (Baldessarini & Tondo, 2022; Song, Sjolander, et al., 2017).
However, it has been estimated that only around 30% of patients are excellent
responders while around 40% of patients do not receive any benefits (Rybakowski et
al., 2001). Meanwhile, lithium can cause adverse effects on the kidneys, thyroid, and
parathyroid glands (Gitlin, 2016). Exploring the genetic variability underlying
heterogenous lithium response may help clinicians improve future treatment plans.

To date, GWAS of lithium response have identified several different loci. The
earliest lithium response GWAS was reported in 2009 (Perlis et al., 2009). The study
included samples from the US Systematic Treatment Enhancement Program for Bipolar

Disorder (STEP-BD) cohort and a subset of the University College London (UCL)
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samples. Although no SNPs reached genome-wide significance, the findings suggested
that good lithium response was associated with the GRIA2 gene which encodes
glutamate ionotropic receptor AMPA type subunit 2(Perlis et al., 2009). Subsequently,
a GWAS performed in a Han Chinese sample found that another protein-coding gene
GADLI (glutamate decarboxylase-like protein 1) was highly associated with lithium
response (C.-H. Chen et al., 2014). The top two SNPs (rs17026688 and rs17026651) in
their combined series, had p values of 1.66x10™% and 7.07x107°° respectively.
However, these findings could not be replicated in subjects of European ancestry
(Cruceanu et al., 2015), or in other Asian samples (Birnbaum, 2014; Kotambail et al.,
2015).

In 2016, Song and colleagues (Song, Bergen, et al., 2017; Song et al., 2016) reported
a GWAS meta-analysis of 3874 BD lithium users from Sweden and the UK. The
researchers analysed the lithium response separately according to objective and
subjective definitions. While 323 participants were objectively good responders using
the clinical definition, 1639 were self-reported good lithium responders. The
researchers conducted four sets of GWAS: lithium responders compared with non-
responders and lithium responders compared with healthy controls using both objective
and subjective measures. Overall, one SNP (rs146727601) reached genome-wide
significance from the GWAS of objective measured responders versus controls (Song,
Bergen, et al., 2017). rs146727601 is a two-base deletion on chromosome 11q22.4 in
the gene PTS (6-pyruvoyltetrahydropterin synthase) which is a catalyst involved in the

regulation of serotonin biosynthesis and nitric oxide synthase activity.
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In 2016, Hou et al. (2016) also reported a GWAS for lithium response among BD-I
and II participants. The data included 2343 European BD participants treated with
lithium. The data was collected from 22 sites as part of the International Consortium on
Lithium Genetics (ConLi*Gen). Lithium response was rated on the Retrospective
Assessment of the Lithium Response Phenotype Scale (Alda scale) which is a well-
established measurement scale for lithium response (Scott et al., 2020). In the
consortium study, the researchers reported that four linked SNPs on chromosome 21
were associated with good lithium response (rs79663003; rs78015114; rs74795342;
and rs75222709) at a genome-wide level of significance. The chromosomal locus of the
four SNPs contains genes for two long, non-coding RNAs (IncRNA), AL157359.3 and
AL157359.4. Subsequent analyses of the ConLi"Gen data provided insights into the
potential genetic architecture of good lithium response. ConLi+Gen (2018) and Amare
et al. (2021) reported that higher schizophrenia (SCZ) and major depression disorder
(MDD) polygenic risk scores (PRS) were both associated with reduced lithium response
in BD participants. These findings were further consolidated by Schubert et al. (2021),
who demonstrated that a combination of the SCZ and the MDD PRSs provided
improved prediction of lithium treatment response, whereas BD PRS had no impact on
the prediction.

Overall, prior findings from GWAS have highlighted different loci for the
mechanistic action of lithium. This may in part be due to different measures of lithium
response and small sample sizes. In addition, past PRS analyses were only calculated

using samples from ConLi‘Gen. The aim of the present study is to report a much-
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enlarged University College London (UCL) sample of participants with BD taking
lithium and conduct GWAS meta-analyses with other compatible European samples.
We meta-analysed our GWAS results with the summary statistics from Song et al. (Song,
Bergen, et al., 2017; Song et al., 2016) and Hou et al. (2016), the two largest sets of
GWAS on the European population to date. We estimated SNP heritability for good
lithium response and we conducted exploratory analyses based on the GWAS meta-
analysis outputs as follow-up. Finally, SCZ and MDD PRSs were calculated in the

samples to replicate past findings.

3.3 Methods
3.3.1 Participants

All UCL participants had received an ICD10 diagnosis of BD (World Health
Organization, 1992) from a UK National Health Service (NHS) psychiatrist. A total of
1259 BD participants had a recorded lithium response. Ancestrally matched healthy
control subjects (n=1782) were recruited from the NHS blood transfusion service and
from study sites where case participants were also being recruited. 1323 controls were
screened for an absence of a lifetime history of the following disorders: schizophrenia
and any other psychosis, major affective or schizoaffective disorders, eating disorders,
alcohol/drug addiction, and obsessive-compulsive disorders. 459 unscreened controls
were recruited from the same sites. All participants were of English, Scottish, Welsh, or
Irish descent and had at least three out of four grandparents of the same descent. The

study was approved by the NHS Metropolitan Multi-centre Research Ethics Committee
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(MREC/03/11/090). All participants read an approved information sheet and signed a

physical informed consent form.

3.3.2 Study measures

The SADS-L (Spitzer et al., 1978) and the 90-item OPCRIT (McGuffin et al., 1991)
were administered to all participants with BD by a psychiatrist or trained researcher.
The participants’ diagnosis with PPD was assessed with OPCRIT item 11. The
assessment of lithium treatment response was determined by the interviewer based on
the rate and severity of BD episodes before and after the treatment using both face-to-
face and case note-derived information. Researchers were trained in the application of
all the assessment measures. The rating contained a mixture of the interviewer’s
judgements and the participants’ self-report. The lithium response was first rated on a
5-point Likert scale ranging from very good to very poor response (see Appendix 3.1).
Then only subjects reporting a “very good” or “good response” were coded as “good
responders” while subjects reporting “moderate response”, “poor response”, or “very
poor response” were coded as non-responders. We chose the dichotomous conversion
to differentiate excellent responders and to be consistent with the definitions used in
previous GWAS of lithium response. For instance, ConLi'Gen participants were
classified as “responders” if had Part A score of 7 or higher (total score 10), with

moderate responders excluded. These data were reviewed by a research psychiatrist

(N.B.).
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3.3.3 Genotyping, imputation, quality control and meta-analyses

Genome-wide single nucleotide polymorphism data was generated in three waves
at the Broad Institute, Boston, MA, USA, using the Affymetrix 500K Array (Affymetrix
Inc., Santa Clara, CA, US), the Illumina PsychArray (Illumina Inc., San Diego, CA,
US), and the Illumina Global Screening Array (GSA; Illumina Inc.). The three waves
of data underwent equivalent quality control and imputation methods which, have been
described in detail elsewhere (Grigoroiu-Serbanescu et al., 2020).

We first performed three separate GWAS with imputed SNP genotypes, from each
wave of genotyping using PLINK v2.00a2LM (Chang et al., 2015), with the
dichotomous lithium response (responders vs non-responders) as the case-control
phenotype. The first three principal components of population structure were included
as covariates to control for population stratification. Sensitivity analysis including sex
as a covariate was conducted, we only observed slight attenuation towards the null.
Thus, to be consistent with previous studies and to avoid potential heterogeneity
between studies that were to be meta-analysed, age and sex were not included as

covariates in the primary analyses.

3.3.4 Lithium definition heterogeneity testing

Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) reported GWAS results
from their objective and subjective binary lithium response definitions. We chose to use
data from Song et al.’s subjective definition GWAS because this most closely matched

the definition used in the UCL sample and because this measure had the largest overall
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sample size.

Data from a dichotomous coded lithium response ConLi*Gen European GWAS
(GCSTO012486) published by Hou et al. (2016) was downloaded from the NHGRI-EBI
GWAS Catalog (Sollis et al., 2023) on 24/10/2023. Hou et al.’s lithium definition came
from the Alda scale for the long-term treatment response to lithium (Hou et al., 2016).
Thus, potential heterogeneity within the response definition existed.

We conducted binomial sign tests to compare the direction of SNP associations at
three different p-value thresholds (Pr; 1x107, 1x10#; and 1x107°) with GWAS summary
statistics from the Hou et al. study and from the UCL data using the Song et al.’s
subjective definition GWAS as the reference study. We expected that there would be
strong convergence of SNP associations between the datasets.

LD Score Regression (LDSC; Bulik-Sullivan et al., 2015) was used to further
explore the genetic architecture of lithium response and to investigate the effect of
differences in lithium response definition. The LDSC method requires large sample
sizes, and the algorithm did not converge when all three data sets were analysed
separately. We therefore performed LDSC analyses comparing data from Hou et al.,
with the data from a meta-analysis of data from the UCL study and the data from Song
et al.’s subjective GWAS (UCL+Song®®). The meta-analysis was performed using
METAL (Willer et al., 2010). We also examined genetic correlation between the
UCL+Song®™® and the Hou et al data with BD GWAS summary statistics from the PGC
BD working group (Mullins et al., 2021). Next, we used Genomic Structural equation

modelling (GSEM; Grotzinger et al., 2019) to fit a one-factor model to investigate
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factor loadings for the UCL+Song®® data and the Hou et al data on the PGC BD
summary statistics.
3.3.5 GWAS meta-analysis & follow-on analyses

After we found no evidence for definition heterogeneity, the GWAS results were
together meta-analysed separately with subjective and objective lithium response
GWAS results from Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) and with
the ConLi"Gen GWAS results from Hou et al. (Hou et al., 2016). We conducted fixed-
effect meta-analyses with METAL (Willer et al., 2010) using each GWAS’s Neff
number as weights (see Table 3.1). The two sets of GWAS meta-analyses were labelled
as UCL+Song>"*+ConLi*Gen and UCL+Song®+ConLi*Gen with corresponding data
input order. The UCL+Song®"®>+ConLi*Gen meta-analysis was used as the primary
analysis, given that Song et al.’s subjective definition mostly aligns with the UCL
definition, and that we found good evidence of overlap genetic association in these three
datasets. Correction for multiple testing was not attempted as Song et al.’s two sets of
GWAS results had highly overlapping samples. The genome-wide significance
threshold was set at P<5x107%,

The meta-analysis results were uploaded to Functional Mapping and Annotation of
Genome-Wide Association Studies (FUMA) for data interpretation(Watanabe et al.,
2017). Single tissue Expression QTL (eQTL) and single tissue splicing QTL (sQTL)
data for the top SNP was extracted from the GTEx project data V8 (dbGaP Accession
phs000424.v8.p2; GTEx Consortium, 2020) on 14/12/2023 focusing on brain regions.

We conducted functional fine-mapping using Polyfun+SuSiE (Weissbrod et al., 2020)
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with the set number of causal variants as five per locus to identify potential causal SNPs.
We took the pre-computed summary LD information from the UK Biobank as the
reference and set the range to cover the start and end positions of the target locus. We
estimated the heritability of good lithium response in BD cases using LDSC taking the
GWAS meta-analysis results (Bulik-Sullivan et al., 2015). We examined the genetic
correlation between lithium responsive BD and SCZ (Trubetskoy et al., 2022) and
MDD (Howard et al., 2019). The top tissue from the MAGMA tissue expression
analysis was testis. We therefore examined the genetic correlation using summary
statistics of testosterone levels from Ruth et al. (2020).

Given that the lithium response phenotype was conditional on BD status, there was
potential collider bias. We applied the Slope-Hunter method (Mahmoud et al., 2022) to
examine if the results would be strongly influenced by the use of the PGC BD GWAS
summary statistics (Mullins et al., 2021). The summary statistics that we used excluded
data that the UCL group had contributed to the PGC and followed the same procedures
described in the original paper. However, some additional sample overlap remained for
the data from Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) and ConLi"Gen
(Hou et al., 2016). This overlap meant that some of the statistical assumptions of the
Slope-Hunter method were broken. Thus, the Slope-Hunter method was only applied
to see if there would be major change in the results patterns, rather than producing
adjusted results.

The meta-analysis results were uploaded to FUMA for data interpretation

(Watanabe et al., 2017). Single tissue Expression QTL (eQTL) and single tissue splicing
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QTL (sQTL) data for the top SNP was extracted from the GTEx project data V8 (dbGaP
Accession phs000424.v8.p2) on 12/14/2023 focusing on brain regions. We conducted
functional fine-mapping using Polyfun+SuSiE (Weissbrod et al., 2020) with the set
number of causal variants as five per locus to identify potential causal SNPs. We took
the pre-computed summary LD information from the UK Biobank as the reference and
set the range to cover the start and end positions of the target locus. We also estimated
the heritability of good lithium response BD cases using LDSC taking the GWAS meta-
analysis results (Bulik-Sullivan et al., 2015). And we examined the genetic correlation
between lithium responsive BD and the other two relevant disorders SCZ (Howard et
al., 2019), MDD (Trubetskoy et al., 2022) and the top trait from the MAGMA tissue
expression analysis which is testosterone using summary statistics from (Ruth et al.,

2020).
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Table 3.1 The Summary of Study Sample Sizes

Sources UCL UCL UCL Songetal’s Song et al’s Houetal’s UCL+Song®"+ConLi'Gen UCL+Song®+ConLi*Gen
Affy Psych GSA (Subjective) (Objective) (ConLi*Gen)
Responders 164 247 29 1639 387 659 2738 1486
Non-responders 202 503 114 1059 792 1684 3562 3295
Total RvsN) 366 750 143 2698 1179 2343 6300 4781
Neff (RvsN) 362 663 92 2573 1040 1895 5585 4052

Affy, Affymetrix 500K Array; Psych, Illumina PsychArray; GSA, Illumina Global Screening Array; UCL+Song3**+ConLi*Gen, the meta-analysis taking Song

et al.’s subjective measures with the corresponding input order; UCL+Song®+ConLi*Gen, the meta-analysis taking Song et al.’s objective measures with the
corresponding input order.

Neff, the effective sample size used for METAL; R vs N, responders versus non-responders. The Neff numbers were calculated using the recommended methods
as 4/(1/N cases+1/N controls), where N cases is the number of cases and N controls is the number of controls. The Neff numbers for UCL+SongS**+ConLi*Gen

and UCL+Song®*+ConLi*Gen were calculated as the sum of corresponding samples’ Neff numbers for each meta-analysis given that these were put as weights.
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3.3.6 PRS calculation and analyses

PRSs for MDD and SCZ were computed using the PRS-CS-auto method (Ge et al.,
2019). We chose the European samples from The 1000 Genomes Project Consortium
(2010) as our LD reference panel. Once weights were produced, individual PRSs were
calculated using PLINK v2.00a2LM (Chang et al., 2015). We then used the mean and
standard deviation of the PRSs from the healthy controls to standardize the PRSs for
the BD subjects.

We used data from Howard et al. (2019) for MDD GWAS which excluded the UK
Biobank and 23andMe data. The SCZ GWAS was from Trubetskoy et al. (2022). We
adapted all GWAS samples to be based on subjects of European ancestry. The summary
statistics that were used excluded the data that the UCL group had contributed to the
PGC SCZ analyses, but followed the same procedures as described by each GWAS
paper. The effective GWAS sample sizes were calculated using the Neff equation
(Willer et al., 2010). Thus, the reference GWAS sample sizes were 449,856 for MDD
and 160,197 for SCZ. We performed multiple logistic regression analyses to assess how
these PRSs predict lithium response in our own samples. The participants’ age of BD
onset, sex, genotyping chip, and first three principal components from population
stratification were included as covariates in all regressions. The statistical assumptions

were pre-checked and found to be satisfactory for each regression.
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3.4 Results
3.4.1 Sample demographics

A total of 6300 and 4781 participants were included in the two sets of GWAS meta-
analyses UCL+Song>"*+ConLi"Gen and UCL+Song®*+ConLi*Gen respectively (see
Table 3.1). Sample demographics were first combined to examine differences between
lithium responders and non-responders (see Table 3.2). Overall, the participants had
mean ages of 48.82 (SD 13.34) and 48.47 (SD 12.67) years. In the two meta-analyses,
43% and 31% of the participants responded well to lithium. The overall samples for the
meta-analyses contained a high proportion of females (62% vs 59%) and type 1 BD
patients (66% vs 68%). Responders were slightly older at the assessments (50.34 vs
47.64 & 50.60 vs 47.42; p<0.001 in both datasets). Males were overrepresented as good
responders to lithium (40% vs 37%, p=0.007; 44% vs 40% p=0.005) in both meta-
analyses. In the UCL+Song>"*+ConLi*Gen meta-analysis, there was an increased
proportion of BD I participants coded as good lithium responders (68% vs 64%;
p=0.016). In the UCL samples, we observed the same pattern of sex differences in
lithium response (p=0.039) but not the bipolar subtype difference (p=0.189, See Table
S2). The UCL non-responders more likely had diagnosis of PPD (3% vs 1%, p=0.027).
To further validate the evidence for sex difference, we examined the heterogeneity
across the samples. We did not observe any evidence for heterogeneity in the sex
difference for the UCL+Song3**+ConLi*Gen meta-analysis (Q=0.31, d.f.=2, p=0.859,
I1>’=0%) or the UCL+Song®+ConLi*Gen meta-analysis (Q=2.04, d.f=2, p=0.361,

’=1.9%). Participants who were lithium responders had risk ratios of 1.14
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1 (UCL+Song5"+ConLi*Gen, 95%CI: 1.07 to 1.22) and 1.15 (UCL+Song®*+ConLi*Gen,

2 95%CI: 1.06 to 1.25) for being male according to the common effect model.
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Table 3.2 GWAS Meta-analyses Participants’ Demographics and Clinical

Characteristics concerning Lithium Response

UCL+Song*"*+ConLi*Gen N Overall Lithium Responders  Lithium Non-responders p-values
N=6300 N =2738 (43%) N =3562 (57%)
Age at interview 6194 48.82(13.34)  50.34 (14.05) 47.64 (12.77) <0.001'
Sex 6300 0.0072
Male 2408 (38%) 1082 (40%) 1326 (37%)
Female 3892 (62%) 1656 (60%) 2236 (63%)
BD types 3957 0.0162
Type 1 2607 (66%) 1406 (68%) 1201 (64%)
Others 1350 (34%) 673 (32%) 677 (36%)
UCL+Song®+ConLi'Gen N Overall Lithium Responders  Lithium Non-responders p-values
N=4781 N=1486 (31%) N = 3295 (69%)
Age at interview 3733 48.47(12.67)  50.60 (13.09) 47.42 (12.46) <0.001'
Sex 3839 0.005°
Male 1586 (41%) 556 (44%) 1020 (40%)
Female 2253 (59%) 697 (56%) 1556 (60%)
BD types 1496 0.0592
Type 1 1020 (68%) 429 (71%) 591 (66%)
Others 476 (32%) 175 (29%) 301 (34%)

UCL+Song®*+ConLi*Gen, the meta-analysis taking Song et al.’s subjective measures with the corresponding input order.
UCL+Song®+ConLi*Gen, the meta-analysis taking Song et al.’s objective measures with the corresponding input order.

BD, bipolar disorder; SD, standard deviation.

I'Two Sample t-test; mean (pooled SD)

2 Pearson's Chi-squared test of independence; n (%)

Bold in current table for p<0.05.

Demographics for the ConLi*Gen EUR samples were estimated from their overall samples’ demographics which included 220
East Asians. And Hou et al. did not report ConLi*Gen samples’ BD types with the split of lithium response. The demographic
information of the Swedish samples for Song et al.’s objective measures is not included because Song et al. reported a
correction for the Swedish sample but did not report the updated demographics for the sample.
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3.4.2 Lithium definition heterogeneity testing

Binomial sign-tests provided strong evidence for non-random convergence of SNP
associations between the lithium response GWAS datasets. These findings became
stronger at more stringent p-value thresholds (Pt: 1x1073, 1x10™, and 1x10°; see Table
3.3). For the comparison of the Song>"* data with the Hou et al., ConLi*Gen GWAS,
58% (p=5.58x10"%), 66% (p=6.36x102?), and 83% of SNPs (p=3.30x107°) had the
same direction of effect at p-value thresholds of 1x107, 1x10#, and 1x107 respectively.
For the UCL meta-analysis, the percentages of SNPs with the same direction of effect
as the Song>"® data were similar with 52% (p=2.17x10%), 70% (p=1.51x107?7), and 86%
(p=3.04x10"*) at p-value thresholds of 1x1073, 1x10™, and 1x107 respectively.

LDSC analysis demonstrated a genetic correlation of 0.904 (SE 0.500) between
UCL+Song>® and ConLi'Gen. There was low genetic correlation with BD
(UCL+Song5*™ r? = 0.143, SE 0.093; ConLi*Gen r* = -0.045, SE 0.139). Additionally,
according to the GSEM one-factor model, the UCL+Song®"® and ConLi*"Gen GWAS
had high factor loadings of 0.997 and 0.907, respectively, indicating they load strongly
onto the same factor, whereas BD had a low factor loading of 0.139 to that factor. These
results indicated low genetic heterogeneity between lithium response GWAS datasets
using clinical assessments or the Alda scale and indicate that these results were not

highly related to genetic risk for BD.
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Table 3.3 Binomial Sign Test Results for Response Heterogeneity

N total N SNPsame direction N SNP opposite direction P

SongS'" 103 7604
ConLi"Gen 5635 3278 (58%) 2348 (42%) 5.583x1053
UCL 5674 2970 (52%) 2704 (48%) 2.169x10*
Song5'? 10+ 983
ConLi*Gen 832 553 (66%) 279 (34%) 6.362x1022
UCL 734 512 (70%) 222 (30%) 1.509x1027
SongS" 105 318
ConLi*Gen 276 229 (83%) 47 (17%) 3.303x103
UCL 244 211 (86%) 33 (14%) 3.036x103

Song>"™, Song et al.’s subjective definition of lithium response GWAS
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3.4.3 GWAS results for lithium responders vs non-responders

For the UCL+Song®"*+ConLi’Gen meta-analysis, we observed little evidence for
genomic inflation (A=1.01, See Appendix 3.3). We found one SNP rs116927879 (A/G)
reaching the genome-wide significance (p=4.509x10%) on chromosome 7 with
agreement for the direction of effect in all constituent samples (see Figure 3.1 & Table
3.4). The clumping from FUMA indicated that 196 GWAS-tagged candidate SNPs fell
within the genomic locus from position chr7:45697297-45869101 (hg19, see Appendix
3.5). We conducted follow-up fine mapping with Polyfun+SuSiE to identify potential
causal SNPs within the region. We observed no SNP with posterior causal probability
(PIP) higher than 0.10. The three SNPs with the highest PIP were rs77411260,
rs1128602, and rs116927879. The SNPs rs77411260 (chr7:45823152-45823652) and
rs1128602 (chr7:45762446-45762946) were close to the top SNP rs116927879
(chr7:45864477-45864977) and did not map to any additional genes.

Genotype-Tissue Expression (GTEx) data (Release V8; dbGaP Accession
phs000424.v8.p2) were analysed using the SNP rs116927879 (G/A) and the genes
implicated by FUMA analyses focusing on brain areas (see details in Tables S4 & S5).
Single-tissue eQTL suggested that rs116927879 genotypes influence expression of
GTF2IP13 in the cortex (Normalized effect size (NES)=-0.66, p=1.4 X 10"), caudate
(NES=-0.66, p=1.8 X 10"'7), hippocampus (NES=-0.63, p=7.5X 107%), and other brain
areas. The single-tissue sQTL analyses suggested that rs116927879 genotypes
influence splicing of SEPT7P2 in the cerebellum (NES=-1.3, p=3.4X102%), nucleus

accumbens (NES=-1.4, p=1.1 X 10%), cortex (NES=-1.1, p=2.3 X 102°), and other
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brain areas. sQTL analyses also suggested that rs116927879 genotypes influenced
splicing of ADCY] in the cortex (NES=-0.66, p=1.4 X 107'%), and the frontal cortex
(BA9) (NES=-0.66, p=2.9X10”) at junction 10 (chr7:45662214:45677869, hg38) of
ADCYI.

For the UCL+Song®+ConLi*Gen meta-analysis, we found little evidence for
inflation (A=1.03, see Appendix 3.4) but we observed no SNP reaching the genome-
wide significance. We conducted the same eQTL and sQTL analyses for the top SNPs
from this meta-analysis however, no significant outputs could be observed. The top four
lead SNPs from the UCL+Song®*®+ConLi"Gen meta-analysis, rs116927879, 1s4761584,
rs12296932 and rs28728196 were tested for the directions of effect in the
UCL+Song®*+ConLi*Gen meta-analysis. The directions for all remained unchanged,
suggesting consistent effect direction.

With the application of the Slope-Hunter method, the adjustment factors obtained
for the two sets of meta-analyses were negative implying that variants of BD and good
lithium response were of concordant net directions of effect. We observed no major
change in the result patterns from the adjusted outputs but only slight attenuation
towards the null. These results suggested that the identified top SNPs from the meta-

analyses were distinct from BD risks.
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Figure 3.1 The Manhattan Plots for Two Sets of GWAS Meta-analyses

A. Manhattan Plot using Song et al.'s Subjective Measurements
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B. Manhattan Plot using Song et al.'s Objective Measurements
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Table 3.4 Regions of the Genome showing the Strongest Association Signals with the Binary Trait

Index SNP Chr  Position Al/A2 EAF Z Score P-values Match  Weight Mapped Genes

(Neff)
Responders vs non-responders (using Song et al.’s subjective measurements, UCL+Song™"+ConLi"Gen, 2738 cases 3562 controls, max Neff 5585)
rs116927879 7 45697297-45869101 A/G 0.152 -5.470 4.509X10% - 5585 ADCYI1, SEPT7P2, GTF2IP13,

CICP20

rs4761584 12 94518829-94527590 T/C 0.250  4.953 7.302X 109  +++++ 5585 RPI11-1105G2.3, CCDC41, TMCC3
rs12296932 12 76062748-76111969 T/G 0352  -4.703 2.569X10% - 5585 KRRI, PHLDAI, NAPILI
rs28728196 15 39533087-39562972 A/G 0.827  -4.645 3.401 X100 5585 ClSorf53, Cl5orf54, THBSI, FSIP1
Responders vs non-responders (using Song et al.’s objective measurements, UCL+S0ng0b +ConLi*Gen, 1486 cases 3295 controls, max Neff 4052)
rs78026375 11 121673147-121768986  T/G 0.082  4.879 1.066X10%  +++++ 4052 SC5D, CRTAM, ARHGEF'12, BLID
rs9933339 16 23756216-23865532 A/C 0.816  -4.758 1.957X10°%  277-- 2935 PALB2, ERN2, PLKI1, CHP2
rs2913631 5 5234709-5234709 A/G 0.260  4.729 2.254X10%  4+++ 3690 ADAMTSI16
rs709122 3 191425855-191549043  T/C 0375 4.728 2273X10% 4+ 3690 PYDC2, FGFI2

Index SNP, the single-nucleotide polymorphism with the strongest association in the genomic region and each is independent at r><0.1; Chr, chromosome; Position, the
start and end position (UCSC hg19) of the SNP locus where near-by SNPs were clumped to with nominal associations (p<0.05) and LD (r?><0.1) within 250-kb windows
taking the 1000 genomes project phase 3 EUR as LD reference; A1/A2, effect and alternate allele; EAF, the effect allele frequency based on 1000 genomes EUR; Z-score,
the meta-analysis output reference score for the SNP; P-values, the corresponding p-values to the candidate SNP; Match, the agreement across the five datasets, + means
individuals who carry the Al allele have better lithium response, - means negative, ? means missing, the orders are: three sets of GWAS from our own samples (1)
Affymetrix Array, (2) Illumina PsychArray, (3) GSA, Illumina Global Screening Array, (4) Song et al.’s samples using subjective/objective measures, and (5) Hou et al.’s
EUR samples (ConLi*Gen) ; Weight, the overall Neff of the sample for the SNP; Mapped genes, top 4 genes mapped by positional mapping criterion with maximum
distance 10 kb. In bold SNP passed genome-wide significant threshold.
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3.4.4 SNP-heritability estimation & genetic correlations

SNP heritability (h?) for good lithium response was 20.3% (SE 8.4%) for the
UCL+Song>"*+ConLi"Gen meta-analysis and 15.6% (SE 9.1%) for the
UCL+Song®*+ConLi*Gen meta-analysis. We observed no genetic correlation between
good lithium response and SCZ for the two sets of GWAS meta-analyses (subjective:
7=-0.625, p=0.532; objective: Z=-1.239, p=0.215). Nor did we observe any genetic
correlation between good lithium response and MDD for the two sets of GWAS meta-
analyses (subjective: Z=-1.753, p=0.080; objective: Z=-1.336, p=0.182). However, we
found weak evidence to suggest the genetic correlation between good lithium response
and total testosterone levels for both sets (subjective: 0.231 (SE 0.112); Z=2.064,
p=0.039; objective: 0.347 (SE 0.161), Z=2.158, p=0.031). Importantly, there was no
genetic correlation between BD and total testosterone levels (Z=0.505, p=0.614)

suggesting the association was more relevant to lithium response.

3.4.5 PRS analyses results

We attempted to replicate previous studies, which reported that lithium response
could be predicted using PRS for SCZ and MDD. We found no evidence to suggest that
SCZ PRS was predictive of lithium response in the UCL sample (OR 1.040, 95%CTI:
0.916 to 1.182, p=0.542). We also found no association between MDD PRS and lithium

response (OR 0.985, 95%CI: 0.868 to 1.119, p=0.818).
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3.5 Discussion

Here we present the largest GWAS meta-analyses of lithium response on European
samples to date. By including data from the UCL study, together with Song et al.’s
subjective and objective measures and ConLi'Gen’s European samples, our GWAS
meta-analyses included 6,300 and 4,781 participants respectively. We identified one
SNP, rs116927879, that reached the genome-wide significance level. The genomic
interval implicated by this finding included the ADCY1 (Adenylate Cyclase 1) gene and
two pseudo-genes, GTF2IP13 and SEPT7P2. While the function of GTF2IP13 and
SEPT7P2 remain poorly understood, ADCYI plays roles in mediating responses to
increased cellular Ca?*/calmodulin levels which is relevant to regulatory processes in
the central nervous system, as well as memory and learning.

Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) also reported association
between rs116927879 and subjective lithium response, but this finding did not achieve
genome-wide significance in their original study (p=4.99x1077). With additional
samples from the current UCL study and from ConLi‘Gen, rs116927879 became
genome-wide significant with agreement for the direction of effect from all sources.
Potential association with ADCYI and SCZ has been reported previously(Goes et al.,
2015; Sundararajan et al., 2018) and it was also the only gene identified in a cross-trait
GWAS meta-analysis of SCZ and lithium response (ConLi+Gen, 2018).

ADCYI plays essential roles in the regulatory processes in the central nervous
system that are critical for neurodevelopment and neuroplasticity (J. Chen et al., 2022).

It has been suggested that the circadian modulation of contrast sensitivity is associated
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with Dopamine D4 Receptors (D4Rs) primarily through the ADCY1 signalling pathway
(Hwang et al., 2013). Sleep disturbances and circadian rhythm dysfunction have been
commonly noted among patients with BD (Takaesu, 2018). In addition, the sQTL data
suggested that rs116927879 genotypes may influence expression and splicing of
ADCYI across different brain regions.

Three main isoforms of ADCYI have been reported, these include the canonical
longer  isoform  (ENST00000297323.12) and two  shorter  isoforms
(ENST00000432715.5 and ENST00000621543.1). The sQTL data from GTEx
suggests that SNP alleles associated with poor lithium led to increased splicing at
junction 10 (chr7:45662214:45677869, hg38) that in turn is likely to result in the
production of the shorter isoforms of ADCY 1. The peptide encoded by the long isoform
of ADCY]I contains two adenylate cyclase domains, twelve transmembrane domains
and two calmodulin interaction domains. The shorter isoforms contain the first
adenylate cyclase domain and is therefore likely to have reduced activity. Further
research is needed to fully elucidate the specific functions of these isoform types and
their associations with response to lithium.

We estimated the SNP heritability (h?) for good lithium response to be 20.3%
(subjective meta-analysis) and 15.6% (objective meta-analysis). Inverse correlations
between lithium response and PRS for SCZ and MDD have been reported for the
ConLi"Gen data (Amare et al., 2021; ConLi+Gen, 2018; Schubert et al., 2021). In our
own subject level data, we were not able to replicate these findings. Additionally, we

did not observe genetic correlation between lithium response and SCZ/MDD.
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We found weak evidence to suggest a genetic correlation between lithium response
and genetically predicted testosterone levels which was consistent with our finding of
a sex difference in lithium response. Testosterone, together with other sex hormones
have been suggested to influence the development of mood disorders (G. Lombardo et
al., 2021). Lithium administration in rats has been reported to reduce male fertility
parameters such as testosterone and gonadosomatic index (Abdelwahab et al., 2022).
Data on the effect of sex on lithium response have been contradictory. Two large-scale
meta-analytical studies did not observe sex differences in terms of lithium response
(Hui et al., 2019; Rybakowski, 2014). However, a nationwide study conducted in
Denmark (N=3762) found that females were more likely to be lithium non-responders
(Kessing et al., 2011). Although we observed sex differences in the overall samples, the
ratio differences were still quite small.

The primary limitation to the study is that we used a cross-sectional study design
to collect lithium response data for our own samples which may be hampered by recall
bias. Another concern could be whether to treat lithium response as binary or
continuous due to potential differences in results. In addition, the lithium response
coding in our and Song et al.’s samples were essentially based on clinical impression
whilst the ConLi*Gen group used criteria-based Alda scale. Even though we found no
evidence for definition heterogeneity and a strong genetic correlation between GWAS
summary statistics generated using these different approaches, differences in recording
lithium response may have impacted the results. The findings from the current study

suggest that sex may slightly influence lithium response and future analyses should
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consider formally adjusting for it. Finally, we only included European samples in the
analyses, and therefore the results presented may have limited transferability to people
from different ancestries.

Overall, our GWAS meta-analyses provided new insights for lithium response
among BD patients. We identified one SNP rs116927879 (A/G) reaching genome-wide
significance on chromosome 7 in a region that included the genes ADCY1, SEPT7P2,
and GTF2IP13, which could further explain lithium’s bio-mechanisms. Furthermore,
we first identified sex differences between lithium responders and non-responders on a
genetic level. Future large-scale studies exploring lithium response among BD subjects

that properly account for potential sex differences are encouraged.
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4. Integrating Genome-wide and Epigenome-wide Associations for Antipsychotic
Induced Extrapyramidal Side Effects
A version of this paper has been submitted as a preprint at medRxiv.
4.1 Abstract
Background: Antipsychotic medications are the first-line treatment for schizophrenia.
However, around 40% of people with schizophrenia who are treated with antipsychotics
could develop extrapyramidal side-effects (EPSE) including: 1) Dyskinesias, 2)
Parkinsonism, 3) Akathisia, and 4) Dystonia. This study aimed to identify genetic risk
factors for EPSE presence following antipsychotic treatment.
Method: We conducted Genome-wide association (GWAS) and Epigenome-wide
association (EWAS) meta-analyses of EPSE, with subset analyses separating first and
second generation antipsychotic (FGA/SGA) exposure. We integrated significant
EWAS findings from a between-case design to a comparable GWAS for association
enrichment. We investigated whether polygenic risk scores (PRS) for schizophrenia,
Parkinson’s disease, and Lewy-body dementia could predict EPSE.
Results: The primary GWAS top SNP rs2709733 (A/G) (p=5.755x107") mapped to a
long intergenic non-protein coding RNA, LINC01 162 with consistent effects across all
cohorts. Subset analyses with distinct FGA exposure indicated suggestive genes such
as NAV2, NRG3, LSAMP and SGA exposure indicated SHISA9 and CNBD1 which are
relevant for schizophrenia, autism, and epilepsy. In our primary EWAS, the most
significant differentially methylated position (DMP) was ¢g05599348 (3.181x1077),

located at chrX:103174718 (hg19) mapping to TMSB15B. Comparing EPSE cases to
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healthy controls, we identified nine DMPs associated with EPSE. The DMP
cgl12044923 (chr2:241453995, hgl9), located within the STK32B gene, showed
significant enrichment for EPSE association (permutation p=0.010). STK32B is relevant
to both psychiatric and movement disorders, suggesting potential shared mechanisms.
Conclusion: Our study sheds new light on the potential biological mechanisms
underlying EPSE development in schizophrenia, highlighting the importance of
exploring both methylation shifts and common SNP associations. Further research with

larger samples sizes and a focus on the role of STK32B are encouraged.

4.2 Introduction

Antipsychotic medications are the first-line treatment for schizophrenia (Sabe et al.,
2022). Although many people benefit, around 70% may experience treatment failure
such as psychiatric rehospitalization, suicide attempt, discontinuation or switch to other
medication (Tithonen et al., 2017). Extrapyramidal side-effects (EPSE) are common
with antipsychotic treatment (Carbon et al., 2018; Huhn et al., 2019), with
approximately 40% of patients treated with first-generation antipsychotics (FGA)
experiencing EPSEs (Wubeshet et al., 2019). EPSEs still occur with second-generation
antipsychotics (SGA), although at lower rates in comparison with FGA (Divac et al.,
2014). FGAs are primarily dopamine D2 receptor antagonists, which reduce
dopaminergic activity to alleviate positive symptoms of psychosis. This, however, often
leads to motor side effects such as EPSE (Kapur & Remington, 2001). Meanwhile, SGA

targets both dopamine D2 and other receptors such as serotonin 5-H72A receptors.
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Serotonin modulation offsets some dopamine blockade effects thus reducing EPSE
(Leucht et al., 2009; Zhang et al., 2013). EPSEs describe the movement abnormalities
induced by antipsychotics including:

1) Dpyskinesia, hyperkinetic choreiform involuntary movements of the face,
extremities, and the trunk (Lim et al., 2021a). When dyskinesia persists for more than
one month it is termed tardive dyskinesia which can sometimes become chronic.

2) Parkinsonism, symptoms of rigidity, tremor and impaired or slow movement
(bradykinesia) (Keener & Bordelon, 2016).

3) Akathisia, characterised by subjective inner restlessness and objective increase
in motor activity such as pacing (Factor et al., 2008).

4) Dystonia, characterised by sustained and abnormal contractions, that can result
in abnormal movements and postures (van Harten & Kahn, 1999).

These movement abnormalities can lead to severe impairment and reduction in the
quality of life of individuals with schizophrenia (D’Souza & Hooten, 2023), by
interfering with daily living activities and social functioning (Fujimaki et al., 2012;
Schouten et al., 2012). In a meta-analysis, the prevalence of spontaneous dyskinesias
and parkinsonism was found to be higher in antipsychotic-naive patients with
schizophrenia and in first-degree relatives of patients with schizophrenia as compared
to healthy controls, indicating a heritable, non-drug induced component to these
abnormalities (Koning et al., 2010).

Parkinsonism seen in EPSE can be clinically indistinguishable from the movement

abnormalities seen in the neurological disorders like Parkinson’s disease (PD) and
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Lewy Body Dementia (LBD). Previous studies have identified shared significant loci
between schizophrenia and PD (Nalls et al., 2019; Smeland et al., 2021). For example,
schizophrenia and PD are both associated with the 22q11.2 deletion syndrome (R. K.
Jonas et al., 2014). A duplication of the SNCA gene, for which pathogenic variants are
associated with autosomal dominant Parkinson’s and encodes a-synuclein, a major
constituent of LBD, was reported in an individual diagnosed with schizophrenia nine
years prior to the development of mild Parkinsonism (Takamura et al., 2016). A recent
neuroimaging study on individuals with first episode psychosis found that higher iron
loading in the basal ganglia correlated with greater motor abnormalities including EPSE
(Cuesta et al., 2021). Similar associations were found with motor abnormalities in PD
(Kim & Wessling-Resnick, 2014; R. J. Ward et al., 2014). In view of this, it is plausible
that there are shared genetic features between these disorders which also contribute to
the shared phenotypical features including movement abnormalities like EPSE in
schizophrenia.

Genome-wide Association Studies (GWAS) are a promising approach to identify
potential genes associated with development of EPSE given the often-complex
biological pathways implicated in psychiatric traits (Duncan et al., 2019). However, to
our knowledge, only one past study investigated antipsychotic induced EPSE using
GWAS comparing EPSE cases versus EPSE controls among European schizophrenia
samples (Aberg et al., 2010). The genotype data in that study had somewhat limited
genomic coverage compared to contemporary studies and furthermore there was no

imputation of genotypes not captured on the genotyping array. Other studies have
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examined EPSE presence by comparing EPSE cases with healthy controls (Levchenko
et al., 2021) and by analysing mixed ancestry cohorts (Lim et al., 2021b). Epigenome-
wide Association Study (EWAS) allows for the examination of environmentally
induced methylome variation which could directly result from chronic antipsychotic
exposure (Murphy & Mill, 2014; Wagner et al., 2014). To date, there has been no EWAS
on EPSE to examine the influence from antipsychotics.

Our understanding of the molecular mechanisms underlying EPSE may be
improved using an integrated functional genomics strategy. The overall aim of this
study was to conduct an integrated GWAS and EWAS meta-analysis of EPSE data from
existing schizophrenia studies. We also investigated whether Polygenic Risk Scores
(PRS) for schizophrenia, PD and LBD could be used to predict the risk of the
development of EPSEs. The findings could provide a better understanding of the
genetic underpinnings of EPSE and pave the way for the identification of informative

genetic biomarkers that could allow for specific tailoring of treatments in the future.

4.3 Methods

4.3.1 Participants selection and genotyping

UCL Participants All UCL participants received an ICD10 diagnosis of schizophrenia
from a UK National Health Service (NHS) psychiatrist. Details have been reported
elsewhere (Trubetskoy et al., 2022; World Health Organization, 1992). The participants’
PPD diagnosis was assessed with OPCRIT item 11. Ancestrally matched healthy
controls were recruited from the National Health Service (NHS) blood transfusion

service and from study sites where case participants were also being recruited. The
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healthy controls were screened for an absence of a lifetime history of the following
disorders: schizophrenia and any other psychosis, major affective or schizoaffective
disorders, eating disorders, alcohol/drug addiction, and obsessive-compulsive disorders.
All participants read an approved information sheet and signed a physical informed
consent form. The study was approved by the NHS Metropolitan Multi-centre Research
Ethics Committee (MREC/03/11/090). Genome-wide single nucleotide polymorphism
data were generated in three waves at the Broad Institute, Boston, MA, US, using the,
Affymetrix Array, [llumina PsychArray, and [llumina Global Screening Array (GSA).
The three waves of data underwent equivalent quality control and imputation methods
which had been described in details elsewhere (Grigoroiu-Serbanescu et al., 2020).
Aberdeen Participants The Aberdeen case—control sample has been described
elsewhere.(Stone et al., 2008) Briefly, the cohort contains participants with
schizophrenia and healthy controls who have self-identified as born in the British Isles
(95% in Scotland). All participants with schizophrenia met the Diagnostic and
Statistical Manual for Mental Disorders fourth edition (DSM-IV; American Psychiatric
Association, 1994) and ICD-10 criteria for schizophrenia (World Health Organization,
1992). Controls were volunteers recruited through general practices in Scotland.
Volunteers who replied to a written invitation were interviewed using a short
questionnaire to exclude major mental illness in the individual themselves and their
first-degree relatives. The study was approved by both local and multiregional academic
ethical committees and all cases and controls gave informed consent. The samples were

genotyped at the Broad Institute, as described for the UCL participants.
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Cardiff Participants Participants were recruited from community mental health
teams in Wales and England on the basis of a clinical diagnosis of schizophrenia or
schizoaffective disorder (depressed sub-type) as described previously (Carroll et al.,
2011). Diagnosis was confirmed following a SCAN interview (Wing et al., 1990) and
review of case notes followed by consensus diagnosis according to DSM-IV criteria
(American Psychiatric Association, 1994). The UK Multicentre Research Ethics
Committee (MREC) approved the study and all participants provided informed consent.
The samples were genotyped at the Broad Institute, as described for the UCL
participants.

UK Biobank (UKB) Participants UKB is a biomedical database and research
resource of approximately 500,000 individuals from across the UK aged 40 to 69 years
at recruitment between 2006 and 2010 (Sudlow et al., 2015). Potential participants in
UKB were selected using diagnosis of schizophrenia from ICD10, including codes from
F20.0 to F20.9 and excluding participants with any primary Parkinson disorder with

G20.

4.3.2 Coding of EPSE data

Participant EPSE status was derived from the data described above following: (1)
prescription of antipsychotic medications (FGA or SGA); (2) recorded clinical features
of EPSE side-effects; and/or recorded medications prescribed to alleviate EPSE side-
effects. Medication dose information was unavailable for most participants thus, not

analysed. We used key terms to classify participants with schizophrenia as cases
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(having life-time EPSE) or controls (not having life-time EPSE) from all available data
sources including interviews, medication, and health records. These key words covered
two main areas: behavioural and pharmacological:

1) Behavioural features of the four types of EPSE, (dystonia, akathisia,
parkinsonism, and dyskinesia). To compile a list of keywords for each of these EPSE
types, we consulted several rating scales that are frequently employed to measure
EPSE including: The Abnormal Involuntary Movement Scale (AIMS; Munetz &
Benjamin, 1988) the Extrapyramidal Symptom Rating Scale (ESRS; Chouinard &
Margolese, 2005), The Simpson Angus Scale (Hawley et al., 2003) and the Barnes
Akathisia Rating Scale (BARS; Barnes, 1989). In addition, we searched reliable sources
of clinical information for each of these abnormalities including the National Institute
for Health and Care Excellence (NICE) guidelines (NICE, 2014b) and the BMJ Best
Practice (BMJ Best Practice, 2021).

2) Pharmacological treatments for EPSE. To generate key words for
pharmacological treatments for EPSE, we searched The NICE guidelines(NICE, 2014b)
and The Maudsley Prescribing Guidelines in Psychiatry(Taylor et al., 2021) for the most
recent recommendations on managing EPSE to identify a list of medications.

The UCL and Aberdeen participants’ EPSE status was derived using the same list
of key words described in Appendices 4.1 and 4.2. The Cardiff participants’ EPSE
status coding had a few minor adaptions. The keywords “dribbling” was added as it
better captured other saliva-related key-words; ‘shakes’ was removed as it was

described in the context of anxiety; “still” was removed as it referred to still doing
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something not being physically still; “tap” was removed as it was in the context of
‘tapered’; “march” was removed as it referenced the month of March; “irritable” was
removed as it was in the context of IBS/irritable bowel syndrome; “parkin” was
removed as it referred to Parkinson’s disease not parkinsonism; ‘tropin’ was excluded
as it captured atropine as opposed to benzatropine. The UKB participants were retained
if they received any first or second generation of antipsychotics (See medication codes
in Appendices 4.3 and 4.4), then stratified by whether participants received any
medication to treat EPSE (See EPSE medication codes in Appendix 4.5); diagnosis of
other drug-induced secondary Parkinsonism in G21.1; Drug-induced dystonia in G24.0

or Drug-induced tremor in G25.1 were selected as cases.

4.3.3 GWAS meta-analyses & follow-up analyses
For the main analysis, we took a within case design comparing participants with
exposure to FGA or SGA with EPSE vs not having EPSE. We also conducted subset
analyses separating participants who had any exposure to FGA (including those also
exposed to a SGA) and participants only exposed to SGA. The Cardiff samples were
only included in the SGA subset given most participants only had SGA exposure. We
stratified the antipsychotic exposure into separate groups to compare their differential
effects, given FGAs' higher EPSE prevalence and distinct mechanistic profiles.

We applied logistic regressions taking the participants’ EPSE status to evaluate the
association between imputed SNP dosages. For UCL participants, we performed

separate GWAS for data from each wave using PLINK v2.00a2L.M (Purcell et al., 2007).
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We conducted the same sets of analyses for Aberdeen, Cardiff, and UKB samples
separately. The participants’ age, sex and the first ten principal components of
population structure were included as covariates to control for population stratification.

We conducted fixed-effect meta-analysis taking each GWAS’s effective sample
sizes (Neff) as weights using METAL (See calculation of Neff in Supplementary Table
6) (Willer et al., 2010). The genome-wide significance threshold was set at P<5x107%,
The output results were uploaded to FUMA for interpretation (Watanabe et al., 2017).
We also conducted a binomial sign test to evaluate the SNP associations between the
FGA and SGA subsets at 10 level. If there were no SNPs associations between the
FGA and SGA subsets, the expectation is that 50% of the Z scores from the meta-

analyses would be in the same direction.

4.3.4 EWAS methylation data

Methylation data was only available for a proportion of the UCL and Aberdeen
samples. The EZ-96 DNA Methylation kit (Zymo Research, CA, USA) was used to
treat 500ng of DNA from each sample with sodium bisulfite in duplicate. DNA
methylation was quantified using the Illumina Infinium HumanMethylation450
BeadChip (Illumina Inc.) run on an Illumina iScan System (Illumina) using the
manufacturers’ standard protocol. Detailed data collection and imputation process has
been described elsewhere (Hannon et al., 2016). As smoking status information was not
present for all samples, we estimated a proxy based on the DNA methylation profile at

sites known to be associated with smoking status following a previously described
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approach (Elliott et al., 2014). Cell composition data were not available for these DNA
samples, therefore these were estimated Houseman algorithm (Houseman et al., 2012;
Koestler et al., 2013) for seven variables recommended in the documentation. We also
estimated the participants’ methylation age using the Epigenetic Clock software

(Horvath, 2013).

4.3.5 EWAS analysis and meta-analyses

We employed the same design as in the GWAS to analyse the association of EPSE
status on DNA methylation profiles. This included comparisons of EPSE presence
among participants with any FGA/SGA exposure (111 EPSE cases, 203 EPSE controls),
any FGA exposure (87 EPSE cases, 87 EPSE controls), and only SGA exposure (17
EPSE cases, 106 EPSE controls). DNA methylation values for each probe were
regressed with covariates for methylation age, gender, seven cell composition scores,
and smoking score. Then the results from UCL and Aberdeen were combined with
fixed-effect meta- analyses.

These within-case analyses may be limited by sample size constraints, potentially
reducing statistical power to detect subtle methylation changes. We also performed
EPSE case with any antipsychotic exposure vs healthy control analyses to boost
statistical power (111 EPSE cases, 748 healthy controls). To eliminate the influence of
schizophrenia from the case control study design we included participants
schizophrenia PRS as an additional covariate. Thus, the EPSE case control design may

help reveal EPSE-associated methylation changes attributable to long-term
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antipsychotic exposure after accounting for potential schizophrenia risks. The EWAS

meta-analysis significance threshold was set at 1x10’.

4.3.6 EWAS findings integration and permutation test

We performed separate GWAS on the same participants used in the between-case
design EWAS following the same procedure described. The results were combined
using METAL and clumped to represent LD independent loci in lead using the 1000
genome European samples as a reference (1000 Genomes Project Consortium et al.,
2015). Any significant CpG sites from the EWAS were mapped to within 250 kb of
each in the associated GWAS results to identify an enrichment in the region. To quantify
significance, 5000 random permutations were generated. Empirical P values for each
region were calculated by counting how many of the permutations had more significant
P values than the mapped P value from GWAS and dividing by the total number of
permutations performed. The CpG sites’ locations were also mapped to clumped
schizophrenia GWAS results within 250 kb for comparisons (Trubetskoy et al., 2022).

Regional plots were produced using GWASLab (He et al., 2023).

4.3.7 PRS calculation and analyses

We calculated the participants’ PRSs for schizophrenia, Lewy body dementia and
Parkinson’s disease using the PRS-CS method with the latest available reference
GWAS (Ge et al., 2019). We chose the European samples from the 1000 Genomes

Project Consortium as our LD reference panel given all samples included were of
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European Ancestry (1000 Genomes Project Consortium et al., 2015). Once weights
were produced, individual PRSs were calculated using PLINK v2.00a2LM.(Chang et
al., 2015) We then used the mean and standard deviation of the healthy controls’ PRSs
from each sample to standardize their cases’ PRSs. The SCZ GWAS came from
Trubetskoy et al. (PGC wave 3), which were derived exclusively from European
samples (Trubetskoy et al., 2022). The GWAS statistics for Parkinson’s disease came
from European samples of Nalls et al. excluding 23andMe data (Nalls et al., 2019). The
GWAS statistics for Lewybody dementia came from Chia et al., only including
European samples (Chia et al., 2021). We adapted the schizophrenia GWAS to exclude
each sample’s participants used in the current study to avoid sample overlap. The new
GWAS generation followed the same procedures as previously described (Trubetskoy
et al., 2022).

We performed multiple logistic regression analyses to assess how these various
PRSs predict the presence of EPSE in each sample. Then the results were meta-analysed
using a fixed effect model. The assumptions for logistic regressions were pre-checked
and found to be satisfactory for each regression. The significant threshold was kept as

0.0167 (i.e. 0.05/3), for multiple testing correction.

4.4 Results
4.4.1 GWAS sample demographics
Overall, the GWAS meta-analysis included 2471 participants with schizophrenia,

of whom 1178 (48%) had EPSE. The participants had a mean age of 46.57 (SD 12.22)
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years old and were mostly males (70%; Table 1) as is typical of genomic studies of
schizophrenia. All participants had antipsychotic exposure and most of the participants
had taken at least one type of SGA (78%). The participants with and without EPSE did
not differ in terms of age at assessment (46.53 vs 46.62, p=0.855) nor sex (males 71%
vs 69%, p=0.213). EPSE was more prevalent in those who had taken FGA or were on
both (FGA 51%, SGA 41%, both 61%; p<0.001). The participants’ characteristics
differed between sample sets (see Table 4.2). The participants who developed EPSE
were at an older age at assessment than those who did not in the UCL (46.33 vs 42.72,
2<0.001) and UKB samples (56.06 vs 53.94, p=0.020; Table 4.2). In the Cardiff sample,
participants who developed EPSE had an earlier age of schizophrenia onset (24.30 vs
27.50, p=0.006). The pattern of EPSE being more prevalent in those who have taken
the first generation of antipsychotics were consistent across most cohorts (UCL 60% vs
40% p<0.001; Aberdeen 64% vs 39% p<0.001; UKB 69% vs 30% p<0.001) except for
the Cardiff samples where most participants only had exposure to SGA (first 18% vs
second 82%). From the UCL sample, there was no evidence to suggest any association
between PPD and EPSE (p=0.999) nor association between EPSE and prescriptions of

any antidepressants (p=0.276).
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Table 4.1 GWAS Meta-analysis Participants’ Demographics and Clinical

Characteristics concerning EPSE Presence

N Overall EPSE Presence EPSE Absence p-values

Meta-Analyses 2471 n=1178 (48%) n = 1293 (52%)
Age at assessment 2471 46.57 (12.22) 46.53 (11.82)  46.62(12.59)  0.855
Sex 2471

Male 1727 (70%) 838 (71%) 889 (69%) 0.213°

Female 744 (30%) 340 (29%) 404 (31%)
Antipsychotics 2425

First Generation 488 (20%) 249 (22%) 239 (19%) <0.001°

Second Generation 1436 (59%) 595 (52%) 841 (66%)

Both Generations 501 (21%) 305 (26%) 196 (15%)

Notes. EPSE, extrapyramidal side effects; SD, standard deviation
Two Simple t-test; mean (SD)

®Pearson's Chi-squared test of independence; n (%)

In bold p passed significance threshold
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Table 4.2 GWAS Participants’ Demographics concerning EPSE Presence

N Overall EPSE Presence EPSE Absence Neff p-values
UCL 1017 n=>587(58%) n=430(42%) 983
Age at assessment 1017 44.80 (12.24) 46.33 (12.10) 42.72 (12.14) <0.001°
Age of onset 761 23.34(8.18) 23.28(8.07) 23.44 (8.34) 0.795%
Sex 1017 0.145°
Male 735(72%) 435 (74%) 300 (70%)
Female 282 (28%) 152 (26%) 130 (30%)
Antipsychotics 973 <0.001°
First generation 102 (10%) 77 (14%) 25 (6%)
Second generation 452 (47%) 208 (37%) 244 (59%)
Both generations 419 (43%) 274 (49%) 145 (35%)
Antidepressants 1020 45 (4%) 22 (2%) 23 (2%) 0.276°
PPD diagnosis 742 105 (14%) 60 (8%) 45 (6%) 0.999°
Aberdeen 414 n=9022%) n=324(78%) 282
Age at assessment 414  44.40 (13.20) 45.70 (13.12)  44.03 (13.21) 0.292%
Age of onset 401 24.08 (8.05) 23.27(7.76) 24.29 (8.13) 0.293?
Sex 414 0.426"
Male 311 (75%) 71 (79%) 240 (74%)
Female 103 (25%) 19 (21%) 84 (26%)
Antipsychotics 414 <0.001°
First generation 135 (33%) 42 (47%) 93 (29%)
Second generation 231 (56%) 32 (35%) 199 (61%)
Both generations 48 (11%) 16 (18%) 32 (10%)
UKB 507 n=90(18%) n=417(82%) 296
Age at assessment 507 54.32 (8.08) 56.06(7.61) 53.94 (8.14) 0.020*
Sex 507 0.322°
Male 335 (66%) 64 (71%) 271 (65%)
Female 172 (34%) 26 (29%) 146 (35%)
Antipsychotics 507 <0.001°
First generation 158 31%) 52 (58%) 106 (25%)
Second generation 320 (63%) 28 (31%) 292 (70%)
Both generations 29 (6%) 10 (11%) 19 (5%)
Cardiff 533 n=411(77%) n=122(12%) 376
Age at assessment 533 44.30 (11.70) 44.90 (10.90) 42.20 (14.10) 0.057°
Age of onset 508 25.00 (8.80) 24.30(7.60) 27.50 (11.60) 0.006*
Sex 533 0.900°
Male 346 (65%) 268 (65%) 78 (64%)
Female 187 (35%) 143 (35%) 44 (36%)
Antipsychotics 531 0.100°
First generation 93 (17%) 78 (19%) 15 (12%)
Second generation 433 (82%) 327 (80%) 106 (88%)
Both generations 5 (1%) 5 (1%) 0 (0%)

Notes. EPSE, extrapyramidal side effects; PPD, premorbid personality disorder; SD, standard deviation.
In bold p passed significance threshold
2 Two Simple t-test; mean (SD); ° Pearson's Chi-squared test of independence; n (%)
Neft, effective sample sizes, calculated as 4/(1/n_cases + n_controls)
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4.4.2 GWAS results

For the main meta-analysis including all participants, we did not observe any SNP
passing the genome-wide significance threshold at 5x10°% (Table 4.3 and Appendix
4.6). We found no evidence for population inflation across the samples given the
lambda value of 1, suggesting the test statistics are not inflated by population
stratification or cryptic relatedness (see Appendix 4.7). We observed no evidence for
excessive heterogeneity across the samples. The top index SNP rs2709733 (A/G;
7=4.999; p=5.755x10""") mapped to a long intergenic non-protein coding RNA,
LINCO01162 and its effect was consistent across all cohorts (Table 4.3). The other
affiliated protein-coding genes from the suggestive SNP rs11077391 (p=3.765x107)
included USP36 and CYTH].

For the subset analyses separating FGA and SGA exposures, we did not observe
any SNP passing the genome-wide significance threshold (Table 4.3; Appendices 4.8
& 4.10). There was also no evidence for population inflation for these two subsets with
lambda values of 1.030 and 0.992 (Appendices 4.9 & 4.11). The top suggestive SNPs
from both subsets showed no excessive heterogeneity. The top affiliated genes from the
FGA subset such as NAV2, NRG3, and LSAMP have been associated with autism and
schizophrenia disorders (Kao et al., 2010; Must et al., 2008; Pretzsch & Ecker, 2023).
In addition, one of the top affiliated protein coding genes, SHISA9 from the SGA subset
has shown associations with epilepsy and autism disorder (Pfisterer et al., 2020; Woolf

etal., 2023).
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Among overlapping SNPs at the 10" level, 1,463 (53%) SNPs in the SGA subset
showed concordant effect directions with the FGA subset’s (p=0.004), whereas 1,345
(48%) SNPs in the FGA subset aligned with the SGA subset’s SNPs (p=0.995). The
stronger directional agreement from SGA to FGA may reflect the broader
pharmacological coverage of the FGA subset (which included mixed exposures). In
contrast, the weaker concordance from FGA to SGA subset may suggest that top-
associated SNP effects within the SGA subset may be more distinct given this subset

included only exposure to SGA.
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Table 4.3 Regions of the Genome showing the Strongest Association Signals with EPSE Presence

Index SNP Chr Position A1/A2 EAF  ZScore P-values P-values Match Weight  Mapped Genes
Het (Neff)

EPSEs with exposure to any antipsychotic

1s2709733 7 20878995-20955370 A/G 0.452 4.999 5.755x1077 0.268 -+ 1937 LINC01162

rs12662039 6 99546454-99598593 C/G 0.057 4.948 7.492x107 0.461 2 1561

rs11077391 17 76661207-76789754 A/G 0.311 4.624 3.765x107 0.952 -2 1561 USP36, CYTHI

rs62530097 9 7590958-7667847 T/G 0.090 4.494 6.978x107 0.560 -+ 1937

EPSEs with exposure to any type of FGA*

52028609 11 19918741-19933123 T/C 0.494 -5.144 2.693x1077 0.955 --7-- 660 NAV2

rs1416851 10 84329093-84380431 T/C 0.233 -4.927 8.365x10°7 0290 - 780 NRG3

rs17723244 3 117509984-117822025 A/G 0.721 -4.751 2.022x10% 0595 - 780 LSAMP, LINC03051

rs2840001 3 168714097-168862366 A/G 0.275 4.725 2.306x107 0.563 4+ 780

EPSEs with exposure to SGA only

rs72800384 10 54799931-54839608 T/C 0.244 4.567 4.937x1079 0.179 s 1063

rs117545352 8 87786629-87894786 A/G 0.933 -4.522 6.117x107 0.272 ———t- 1063 CNBDI

rs4781355 16 13021889-13101555 A/G 0.637 4.509 6.524x10°6 0.776 -+ 1063 SHISA9

Notes. Index SNP, the single-nucleotide polymorphism with the strongest association in the genomic region and each is independent at r><0.1; Chr, chromosome; Position, the start and

end position (UCSC hgl19) of the SNP locus where near-by SNPs were clumped to with nominal associations (p<0.05) and LD (r?<0.1) within 250-kb windows taking the 1000 genomes

project phase 3 EUR as LD reference; A1/A2, effect and alternate allele; EAF, the effect allele frequency based on 1000 genomes EUR; Z-score, the meta-analysis output reference score

for the SNP; P-values, the corresponding p-values to the candidate SNP; P-values Het, corresponding p-values to the degree of variability in effect sizes from METAL analysis; Match,

the agreement across the six datasets, + means individuals who carry the A1 allele have positive EPSE association, - means negative, ? means missing, the orders are: three sets of GWAS
from UCL samples (1) Affymetrix Array, (2) Illumina PsychArray, (3) GSA, Illumina Global Screening Array, (4) Aberdeen samples, (5) UKB samples, and (6) Cardiff samples; Weight,
the overall Neff of the sample for the SNP; Mapped genes, the top genes mapped by positional mapping criterion with maximum distance 10kb to the locus position. No SNP passed

genome-wide significant threshold. * Includes participants who had also been exposed to SGAs.
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4.4.3 EWAS sample demographics

The UCL participants who developed EPSE were younger than the healthy controls
in terms of age at assessment (36.90 vs 44.48, p<0.001; see Appendix 4.12) and
methylation age (39.54 vs 44.08, p=0.008). The UCL EPSE cases also had higher ratios
of males (81% vs 44%, p<0.001). The Aberdeen participants’ methylation age (54.29
vs 53.04, p=0.473), and males’ ratio (70% vs 74%, p=0.737) were balanced between

the EPSE and the control group.

4.44 EWAS meta-analysis results and permutation testing

In our primary within-case analysis including all EPSE samples, the most
significant methylated position (DMP) associated with EPSE presence was cg05599348
(3.181x1077), mapping to TMSB15B on chromosome X (hgl9 position 103174718).
This DMP was also one of the top identified DMPs in the FGA exposure subset (Table
4.4). However, this DMP was only present in the UCL samples while all other top
identified DMPs were present in both samples. Thus, its overall signal may have been
influenced by the relatively small sample size of the UCL samples. From the FGA/SGA
exposure EWAS subsets, we also did not identify any DMP passing the threshold at
1x10°7 (Table 4.4).

Comparing EPSE cases with healthy controls, we identified 9 DMPs associated
with EPSE presence after controlling for schizophrenia PRS in addition (Table 4.4).
Five of these identified DMPs have been implicated by past schizophrenia EWAS meta-

analysis, cgl2524168, p=7.61x102%; cg05419385, p=3.08x10'3; ¢g22583147,
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Pp=5.66x1072; cg12044923, p=1.32x10""; and cg20730966, p=4.90x102* (Hannon et
al., 2016). The other four DMPs cg14531564, cg20647656, cg12004641, cg22845912,
and their affiliated genes SDF4, ANKMYI1, TNSI, SLA were not identified in past
schizophrenia or smoking EWAS (Elliott et al., 2014; Zeilinger et al., 2013).

We next examined whether the locations of theses 9 DMPs could map to the
corresponding GWAS of the same samples or to previously published schizophrenia
GWAS. The GWAS summary statistics were first clumped so that multiple non-
independent associations were collapsed into single associated loci. None of the
identified DMPs were found to be associated with any genome-wide significant loci
from past schizophrenia GWAS according to our regional mapping (Appendix 4.13)
(Trubetskoy et al., 2022). The SNP rs7622757 within a 250kb window with
cg22583147 was closest to genome-wide significance at p=4.44x10°7 (Appendix 13).

Our mapping of the DMPs to the GWAS of associated samples found that
cgl12044923 was significantly associated (permutation p=0.010) with index SNP
rs13108591 which had a GWAS p value of 7.482x10°%. cg20647656 was associated
(permutation p=0.030) with index SNP rs75037293 which had a GWAS p value of
2.73x10°%*, According to the past schizophrenia GWAS (Trubetskoy et al., 2022), the
SNPs rs13108591 (T/C) had p value of 0.761 and rs75037293 (G/C) had p value of
0.117 indicating minor relevance to schizophrenia (Trubetskoy et al., 2022). The SNP
rs13108591 is located on chr4:5162317 (hg19), mapping to the intron of STK32B. SNP

rs75037293 is located on chr2:241453995 (hg19) mapping to the intron of ANKMY 1.
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Table 4.4 EPSE-associated differentially Methylated Positions

Probe ID CHR Position Methylation SE (%) P Value Gene
difference (%) Annotation

EPSEs with exposure to any antipsychotic

cg05599348 X 103174718 -5.439 0.980 3.181x10"7 TMSBI15B

cg07679219 12 77417738 6.742 1.462 3.998x10%  E2F7

cg06484572 6 41605494 1.686 0.369 4.769x10°  MDFI

cg25194055 17 8125180 0.527 0.116 5.690%x107°

cg00145438 13 113105097 -0.991 0.220 6.620x107°

cg26912312 20 61274254 -0.452 0.101 6.971x10%  SLCO4Al

EPSEs with exposure to any type of FGA*

cg00500167 6 100841663 0.464 0.098 2.093x10%  SIM1

cgl9185544 8 22595422 -1.748 0.371 2.418x10%  PEBP4

cg05599348 X 103174718 -5.340 1.156 3.854x107° TMSBI5B

cg05450477 6 20426845 1.654 0.369 7.293x10%  E2F3

cg26875877 2 133346858 -0.040 0.886 7.742x107 GPR39

cg25030888 1 67156909 -3.013 0.692 1.327x10°% SGIPI

EPSEs with exposure to SGA only

cgl1411904 1 153935719 1.051 0.215 3.341x10%  SLC39A41

cg02388709 3 4910253 0.959 0.196 3.563x107

cg21130374 21 42734266 -1.636 0.344 5.928x10%  Mx2

cg15977096 8 34857831 -4.410 0.965 1.268x10%

cg09583379 16 19133877 -6.745 1.479 1.316x10%

cg23814365 13 36429936 1.979 0.436 1.419x10%°  DCLKI

EPSEs with exposure to any antipsychotic compared to healthy controls

cgl4531564 1 1154853 2.949 0.423 3.073x10'2  SDF4

cg20647656 2 241439612 -1.413 0.236 2.098x10  ANKMYI

cgl12524168 5 76028910 1.931 0.326 3.207x10%  F2R

cgl12004641 2 218750749 1.784 0.320 2.377x10% TNS1

cg05419385 12 27352945 1.565 0.281 2.549x108

cg22583147 3 44331824 2.055 0.374 3.828x10 TOPAZI

cg22845912 8 134059874 1.861 0.341 4.858x10%  SLA

cg20730966 3 33095886 1.736 0.323 7.442x1078 GLBI1

cg12044923 4 5207312 1.695 0.316 8.414x10%  STK32B

Notes. Listed are all differentially methylated positions (DMPs) associated with different sets of EPSE samples. Sample
sizes were: (1) 314 (UCL 64 EPSE cases, 33 EPSE controls; Aberdeen 47 EPSE cases, 170 EPSE controls); (2) 174
(UCL EPSE 57 cases, 23 EPSE controls; Aberdeen EPSE 30 cases, 64 controls); (3) 123 (UCL only 17 samples in
total thus excluded; Aberdeen 17 EPSE cases, 106 EPSE controls); and (4) 859 (UCL 64 EPSE cases, 315 healthy
controls; Aberdeen 47 cases, 433 healthy controls). Results came from fixed model meta-analysis adjusted for
participants’ methylation age, sex, and cell compositions. The comparison between EPSE cases and healthy controls
adjusted for schizophrenia polygenic risk scores in addition to alleviate schizophrenia genetic risks. Positions are in

hg19. Genes in bold had p meeting threshold at 1x107. * Includes participants who had also been exposed to SGAs.
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4.4.5 PRS results

We found no evidence to suggest any of the selected PRS could predict the
development of EPSE (Table 4.5). According to the fixed model meta-analysis, the
participants’ genetic predisposition to Schizophrenia (p=0.566), Parkinson’s disease
(p=0.492), and Lewy-body dementia (p=0.765) were not associated with the presence

of EPSE.
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Table 4.5 Results of Multiple Regression Analyses

Variables Estimated  Standard Confidence Reference p
Coefficient Error Intervals (95%) Values
Schizophrenia PRS
UCL 0.013 0.017 -0.020, 0.047 0.780 0.436
Aberdeen 0.006 0.020 -0.033, 0.046 0.321 0.749
UKB 0.032 0.017 -0.036, 0.032 1.941 0.053
Fixed-effect model 0.019 0.010 -0.001, 0.039 1.828 0.566
Parkinson’s disease PRS
UCL 0.015 0.017 -0.018, 0.049 0.892 0.373
Aberdeen 0.025 0.022 -0.017, 0.068 1.162 0.246
UKB -0.010 0.016 -0.042, 0.022 -0.637 0.525
Fixed-effect model 0.007 0.010 -0.013, 0.027 0.687 0.492
Lewy-body dementia PRS
UCL -0.022 0.016 -0.053, 0.009 -1.390 0.165
Aberdeen 0.017 0.023 -0.029, 0.062 0.718 0.473
UKB 0.026 0.017 -0.008, 0.060 1.481 0.139
Fixed-effect model 0.003 0.011 -0.017, 0.024 0.299 0.765

Notes. PRS, polygenic risk scores

All results were adjusted for participants’ age, sex, genotyping chip-type, and the first three
principal components from GWAS population stratification. UKB results were adjusted for 3
additional principal components. Reference values were t values for individual models and z values
for the fixed effect model.
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4.5 Discussion

In the present study, we report the largest GWAS meta-analysis of EPSE and the
first EWAS meta-analysis of EPSE in European populations to date with exploration on
the effects of FGA and SGA exposure. The prevalence of any type of EPSE was found
to be 48% among participants who have taken either FGA or SGA. EPSEs were found
to be more prevalent among those who had taken FGA or both. No SNP passed the
genome-wide threshold of significance. The top index SNP 152709733 from the GWAS
of all antipsychotic exposure mapped to a long intergenic non-protein coding RNA,
LINCO01162 with consistent effect across all cohorts. SNPs associated with EPSEs from
exposure to FGAs at the suggestive level mapped to NAV2, NRG3, and LSAMP. SNPs
associated with EPSEs from exposure to SGA mapped to SHISA9 and CNBDI. The
primary EWAS meta-analysis indicated suggestive gene TMSBI5B, located on
chromosome X. In addition, we identified multiple DMPs associated with EPSE
passing the significance threshold comparing EPSE cases to healthy controls. The
STK32B gene which was implicated by methylation probe cgl12044923 has been
associated with psychiatric and movement disorders. We found no evidence that PRSs
for schizophrenia, Parkinson’s, and Lewy-body dementia predict EPSE development.

The GWAS meta-analysis results may represent a false negative due to the limited
sample size and power. Other factors may also be relevant. For example, our sign tests
revealed weak SNP effect alignment between the FGA and the SGA GWAS results,
suggesting that there may be differences in the genetic architecture of these traits. Thus,

combining participants who have taken either FGA or SGA may have impacted our
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ability to identify drug-specific genetic risks. Conversely, stratifying the sample by
antipsychotic exposure (FGA vs SGA) substantially reduced sample sizes,
compromising statistical power. However, several of the implicated genes (NAV2,
NRG3, LSAMP and SHISAY) from the subset analyses were previously reported to be
associated with psychiatric disorders and were and with neuronal function. Thus, these
findings warrant cautious interpretation due to the suggestive nature of the associations.
The results produced here are the result of a concerted effort to increase sample size as
a starting point for future studies.

The limited GWAS and PRS findings lead us to speculate that EPSE may be more
strongly driven by epigenetic modifications over time. Studies have suggested that
methylation changes in dopaminergic or serotonergic pathway genes may impact motor
control pathways more dynamically than SNP-based variations (Loke et al., 2015). This
dynamic epigenetic regulation aligns with how EPSE can vary significantly among
patients and change with continued antipsychotic use, whereas GWAS-derived SNPs
only offer a static view of genetic risk. Therefore, integrating EWAS may provide
insights into the gene-environment interactions involved in EPSE development.

Our primary EWAS analysis of EPSE status may have been again limited by
modest sample size, potentially reducing statistical power to detect robust epigenetic
associations. However, permutation testing in our expanded EWAS comparing EPSE
cases with healthy controls identified two genes, ANKMYI and STK32B, showing
significant relevance to the presence of EPSE. ANKMY1 encodes the protein Ankyrin

Repeat and MYND Domain Containing 1, which has a role for protein-protein
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interactions and cellular signalling. This could indirectly influence pathways relevant
to neurodevelopment or dopamine signalling. However, we have found little additional
corroborating evidence directly linking ANKMY1 to schizophrenia or EPSE. The other
implicated gene STK32B encodes for a member of the human N-myristoylated proteins,
which are involved in various cellular signalling and transduction pathways, although
its exact biological function remains insufficiently defined (Takamitsu et al., 2015). A
520-kb homozygous deletion encompassing STK32B has been described in Ellis-Van-
Creveld syndrome, which is a rare genetic disorder that primarily affects the skeletal
system and other tissues (Temtamy et al., 2008).

Notably, changes in the methylation of the STK32B promoter region have been
previously linked to both schizophrenia and anxiety disorders. This protein may play a
role in executive functions such as working memory and selective attention (Ciuculete
et al., 2018; Hannon et al., 2016). Moreover, STK32B was implicated in a GWAS of
essential tremor (Miiller et al., 2016), and patients with essential tremor showed
increased expression of STK32B in the cerebellar cortex, highlighting a potential
relevance to movement abnormalities.

The current study has several limitations. First, the study’s EPSE classification was
based on cross-sectional data from existing studies. Individuals classified as not having
EPSE at the time of assessment may develop EPSE later in life with increasing exposure
to antipsychotics, introducing potential pseudo-negatives. In addition, we could not
differentiate between acute and chronic EPSE. Medication dose information was

unavailable for most participants thus, not analysed. We used a mixed definition of
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EPSE and mixed antipsychotic medications and EPSE medications, each of which may
have distinct profiles of EPSE risk. Other dynamic factors such as aging, comorbid
conditions and drug-drug interactions may influence the recognition of EPSE as well.
Differences in sample ascertainment may have contributed to variability in EPSE
detection sensitivity and the predominance of male participants could be another source
of bias. These variability and potential miss-classification could impact the consistency
of our findings and warrant careful consideration in future studies to clarify the effects
of specific antipsychotic medications on EPSE with increased sample size to do so.
Finaly, although we have implemented strategies to control for collider bias related to
schizophrenia, our results may still be influenced by genetic risk to schizophrenia.
Overall, our study provides new insights into the biological mechanisms underlying
EPSE development in patients with schizophrenia. Notably, our approach integrated
findings from EWAS with GWAS results, allowing us to explore EPSE-associated
methylation shifts using accessible SNP data. The findings of this study indicate that
further investigation of the epigenetics of EPSE and the role of STK32B in EPSE is

likely to enhance our understanding and inform future research and treatment directions.

Page 130 / 258



[N

10

11

12

13

14

15

16

17

18

19

20

21

22

5. Polygenic Risk and Cardiovascular Treatment Effects in Severe Mental Illness

5.1 Abstract

Background: Patients with severe mental illness (SMI) face increased cardiovascular
risks, leading to reduced life expectancy. Polygenic risk scores (PRS) prediction is a
promising method to assess cardiovascular risks in SMI. However, the PRS utility and
the impact from interventions on these predictions were underexplored.

Methods: Using samples from the PRIMROSE, which involved longitudinal
cardiovascular interventions within primary-care, we calculated 7 cardiovascular and 2
psychiatric PRS (bipolar/schizophrenia) to predict 7 corresponding cardiovascular
measures (total cholesterol/HDL/LDL/triglyceride/systolic blood pressure/diastolic
blood pressure/BMI) assessed at baseline and 12-month follow-up. We applied multiple
linear regression models and explored the interactions between cardiovascular and
psychiatric PRS on treatment outcomes.

Results: At baseline, most PRS were predictive of corresponding measures, indicating
strong genetic associations. However, these associations could attenuate if the treatment
effectively altered the measures, particularly for total cholesterol and systolic blood
pressure. LDL measures became negatively associated with bipolar PRS after treatment,
though no significant interaction effects were found. Participants in the highest bipolar
PRS quartile showed 0.58 mmol/L reduction in LDL measurement on average after
treatments suggesting a potential protective effect from higher bipolar genetic risks.

These results were robust to potential power reduction, participants’ age, sex,
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medication use, smoking habits, alcohol consumption, and physical activity levels.

Conclusions: Our findings underscored the dynamic interplay between genetic risks
and treatment effects and warrant careful PRS assessment timing. While the clinical
application of PRS has not yet been fully realized, further research with precise BD
subtype measurements is needed to clarify how BD genetic risks interact with

interventions.

5.2 Introduction

Patients diagnosed with bipolar disorder (BD), schizophrenia (SCZ), or psychosis
are often jointly referred to as patients with severe mental illness (SMI). Patients with
SMI have a higher mortality rate leading to a 15-20 years reduction in life expectancy
in comparison to the general population (Nordentoft et al., 2013). Cardiovascular
disease (CVD) contributes 17.4% and 22.0% of life years lost in males and females
with SMI, respectively (Jayatilleke et al., 2017; Nielsen et al., 2021). CVD was
recorded as the cause of death for approximately 24% of patients with SCZ and 38% of
patients with BD (Nielsen et al., 2013; Westman et al., 2013). The life expectancy gap
between the general population and patients with SMI appears to be widening due to
the lack of effective interventions (Hayes et al., 2017).

Multiple factors underlie the increased risks of cardiovascular events among
patients with SMI (Nielsen et al., 2021). Patients with SMI are more likely to have an
unhealthy lifestyle, increased sedentary time, lack of exercise, poor diet, and increased

rates of smoking and heavy alcohol use (Hartz et al., 2014; Vancampfort et al., 2015,
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2016, 2017). Treatments with antipsychotic drugs can lead to weight gain and higher
cardiovascular mortality (Rotella et al., 2020). In addition, antidepressants and mood
stabilizers can cause adverse metabolic effects (Correll et al., 2015; Pérez-Pinar et al.,
2016).

People with SMI may also have a higher genetic predisposition to CVD compared
with the general population (O’Sullivan et al., 2022). A meta-analysis of GWAS and
candidate gene studies identified 24 potential pleiotropic genes that are likely to be
shared between mood disorders and cardiometabolic disease risk (Amare et al., 2017).
So et al. (2019) calculated PRS for SCZ and BD in patients with SMI, summarizing
their genetic predispositions to these two disorders. These psychiatric PRS were
compared with 28 additional cardiometabolic traits. The results showed that SCZ was
genetically associated with several cardiometabolic abnormalities including glucose
metabolism abnormalities and adverse adipokine profiles independent of medication
use. In contrast, BD showed polygenic associations with an overall more favourable
cardiometabolic profile, suggesting potential protective metabolic traits linked to BD
genetic risks thus, cardiometabolic abnormalities in BD are more likely to be secondary.
In addition, Strawbridge et al. (2021) applied multidimensional scaling to shared
genetic variants between both psychiatric and cardiometabolic disorders. They found
that schizophrenia patients had distinct metabolic profiles.

Various behavioural interventions have been developed to control cardiovascular
risks for patients with SMI (Goldfarb et al., 2022). Most of these developed

interventions were found to be effective in controlling cardiovascular risks among
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people with SMI (Aschbrenner et al., 2022; Jakobsen et al., 2017). The added value
from incorporating cardiovascular PRS in risk predictions is increasingly recognized
(Samani et al., 2024; Sun et al., 2021). Individuals with higher cardiovascular genetic
risks were found to benefit more from satin and alirocumab treatment suggesting
different response profiles (Damask et al., 2020; Natarajan et al., 2017). However,
genomic and clinical risk factor predictions for CVD may vary over the life course
(Urbut et al., 2025). In addition, no previous studies have specifically examined how
interventions or treatments can influence PRS-based predictions of cardiovascular risks
in patients with SMI over time. Additionally, the impact of genetic risk for psychiatric
disorders on cardiovascular treatment effectiveness remains unclear.

The PRIMROSE group developed a pragmatic intervention aimed at reducing
cardiovascular disease risk factors among people with SMI in primary care in England
(Burton et al., 2015). The PRIMROSE intervention had a similar effect on total
cholesterol concentration reduction at 12 months as treatment-as-usual groups with
decreased costs through decreased psychiatric relapses and readmissions (Osborn et al.,
2018). A subset of participants provided consent for genetic data analysis to determine
whether their genetic profiles can predict variations in treatment response. We used the
data to explore longitudinal changes in PRS-based risk predictions.

The overall aim of this study was to use 7 -cardiovascular (total
cholesterol/HDL/LDL/triglyceride/systolic blood pressure/diastolic blood
pressure/BMI) and 2 psychiatric (bipolar/schizophrenia) PRS to understand how

genetic risks influence cardiovascular treatment effectiveness. Specifically, we wanted
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to explore if these PRS predictions would change after treatments and how psychiatric
genetic risks modify these predictions. We hypothesized that the cardiovascular PRS
would interact with psychiatric PRSs (BD/SCZ) in predicting treatment effectiveness.
People with higher genetic risks for both cardiovascular risks and psychiatric disorders
were expected to have reduced treatment response given this group of patients’ potential

adverse metabolic profiles.

5.3 Methods

5.3.1 Participants Selection and Genotyping

Participants were recruited from GP practices across both rural and urban areas of
England (see details for participant specification in Osborn et al., 2018). Participants
were defined as having increased cardiovascular risk if they were aged 30-75 years,
listed on the Quality and Outcomes Framework register for severe mental illness
(schizophrenia, bipolar disorder, or other non-organic psychosis), with elevated
cholesterol (total >5-0 mmol/L or total-to-HDL ratio >4-0) and at least one additional
risk factor (hypertension, diabetes, elevated HbAlc, obesity, or smoking). Ethics
approval was obtained from the City Road and Hampstead Research Ethics Committee
(Reference No: 12/L.0O/1934, approval granted 10 January 2013). Local NHS approvals
were obtained before the start of each recruitment wave. At baseline, the recruited
participants were randomized into a PRIMROSE intervention group or treatment as
usual group for improving cardiovascular risks. Each treatment lasted for 12 months
and there were no major difference found in terms of the participants’ treatment

response between the two groups (see details in Osborn et al., 2018). A subset of the
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participants (N=194/326) consented to provide a saliva sample for genotyping and the

conduct of genetic research. These participants were included in the present study.

5.3.2 Study Measures

The participants’ total cholesterol concentrations, high-density lipoprotein
cholesterol (HDL) and low-density lipoprotein cholesterol (LDL), lipid concentration
(triglyceride), two blood pressures (systolic and diastolic), and BMI were included for
analyses. These measures were collected at baseline using usual GP practice equipment
and procedures and repeatedly taken at 12-month follow-up following the same
procedure. Other health and lifestyle measures included medication use in the past 12-
month (antipsychotic/antidepressant/mood stabilizer/antihypertensive/other
medications); smoking habits (number of cigarettes per day); alcohol drinking habit
from Alcohol Use Disorders Identification Test Score (AUDIT-C); and physical activity
measures from International Physical Activity Questionnaire (IPAQ). These data were
collected either directly from participant interviews, clinical measures or from the GP

practice medical records (see details for all measures in Osborn et al., 2018).

5.3.3 Genetic Data Imputation and Quality Control

194 participants from the PRIMROSE gave consent for genetic analyses and
provided saliva sample for genotyping. The participants’ genetic data were genotyped
by UCL Genomics on the Global Screening Array then received stringent quality

control (QC; Anderson et al., 2010). The process focused on excluding samples with
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discordant sex, missing genotype data above 10%, excessive heterozygosity (more than
3 standard deviations above the mean) and evidence of relatedness (PIHAT of > 0.2).
SNPs which deviated substantially from the Hardy-Weinberg equilibrium (P<10) or
had a minor allele frequency < 0.5% were also excluded. All of these described quality
control steps were performed using PLINK 1.9 (Chang et al., 2015).

Imputation was performed using the Sanger Imputation server. Prior to the upload,
the data genotypes were prepared as instructed and checks were performed using the
HRC-1000G-check-bim tool Version 4.2.3 (Rayner, W., 2015). SNPs with an
MAF>0.01 were uploaded for imputation, applying the Haplotype Reference
Consortium reference panel (release 1.1; McCarthy et al., 2016). Pre-phasing was done
with EAGLE v.2.3.3 and imputation was done with PBWT (Durbin, 2014). Post-
imputation QC repeated the prior QC procedure and further excluded all SNPs with
info<0.9. A total of 188 participants’ genetic data survived quality control and had

complete datasets.

5.3.4 PRS Calculations

Patients’ cardiovascular and psychiatric PRS were computed from the imputed
genetic data with the PRS-CS-auto method which employs the Bayesian theorem to
provide a single score for each sample (Ge et al., 2019). The PRS-CS-auto method was
chosen over other methods since it outperformed other existing methods according to
the simulation studies (Ge et al., 2019; Pain et al., 2021).

The application of the PRS-CS method required a LD reference panel and reference
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GWAS summary statistic, which are used to infer the posterior effect sizes of SNPs. We
chose the European sample from The 1000 Genomes Project Consortium (2010) as our
LD reference panel. We used GWAS summary statistics on European samples from the
Global Lipids Genetics Consortium (GLGC) for cholesterol and triglyceride PRS
calculations (Graham et al., 2021). These included total cholesterol, HDL cholesterol,
LDL cholesterol, and triglycerides. The summary statistics for blood pressure
(diastolic/systolic) came from Keaton et al. (2024). BMI European GWAS summary
statistics came from Yengo et al. (2018). The GWAS summary statistics for BD came
from European samples of O’Connell et al. (2025). The summary statistics for
schizophrenia came from Trubetskoy et al. (2022). The calculated PRS were

standardized with healthy controls before analyses.

5.3.5 Statistical analysis

The participants’ demographic and summary statistics were first presented in
respect to their treatment group for all variables. We conducted t and chi-square tests
based on the variable type for both baseline and 12-month follow-up measures to test
for group differences. Given we found little evidence for group differences in these
measures, we then combined the two groups for the following analyses where the group
allocation was included as an additional covariate. Before conducting the analyses, we
systematically removed outliers using a 3 SD approach on the raw clinical values of the
7 selected measures at baseline and 12-month follow-up to minimize the impact of

extreme values.
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We conducted multiple linear regressions taking the 7 cardiovascular measures at
baseline as outcome measures and their associated PRS as predictor for associations
prior to any treatment. We conducted the same set of analyses on cardiovascular
measures at 12-month follow-up to explore how treatments can influence PRS
predictions. To address potential power reduction from participant dropout at follow-
up, we calculated and compared the power of each baseline and 12-month follow-up
regression model using Cohen’s 2 method at 0.05 significance level as a sensitivity
check (Cohen, 2013). We then explored the interactions between cardiovascular and
psychiatric PRS on the 12-month follow-up measures to test how psychiatric genetic
risks can interfere with cardiovascular treatment effectiveness. In addition, we split the
BD PRS into 4 quartiles for further analyses and conducted subgroup analyses for the
two treatment groups as sensitivity analyses.

Covariates in all analyses included the participants’ age, sex, treatment allocation,
diagnosis, smoking habits, alcohol consumption, and physical activity measures. Each
model was also adjusted for the corresponding medication presence recorded at baseline
or 12-month assessment including antipsychotic, antidepressant, antihypertensive,
mood stabilizers and other medications in binary format. Some of the 12-month
analyses also included the corresponding baseline measure as an additional covariate to
assess the independence of the genetic prediction. Hypotheses and assumptions for each
regression were pre-checked and found to be satisfactory. We conducted sensitivity
analyses including only European participants given the PRS were calculated based on

GWAS of European ancestry. No significant difference in results were observed given
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95% of the participants had the same ethnicity.

For multiple testing correction, we used the FDR correction methods (Benjamini &
Hochberg, 1995). The FDR method was chosen over the others as it gives a good
illustration of results and has been applied in previous studies involving PRS
(Grigoroiu-Serbanescu et al., 2020; Yao et al., 2023). The p value threshold was set at
0.05 for adjusted p values. All reported analyses were conducted using Rstudio with R

4.3.2 (R Core Team, 2021).

5.4 Results

5.4.1 Sample demographics

Overall, 188 participants’ genetic data passed quality control at baseline and had
complete datasets. 92 (49%) of them received the PRIMROSE intervention while the
rest received treatment as usual which was taken as the control group (See Table 5.1).
The whole sample was reasonably balanced in sex (47% males) while the control group
had slightly higher ratios of males (53% vs 40%), however, there was no evidence to
suggest the imbalance (p=0.104). The overall sample contained mostly European (95%)
participants and about half of them had diagnoses of bipolar disorder (52%) and were
non/ex-smokers (53%). The overall mean AUDIT-C score of 3.52 (SD 3.47) suggested
that the participants were generally at a low risk for hazardous drinking or alcohol use
disorder. The overall IPAQ total score at 2133 suggested that the participants on average
meet recommended activity levels for health. However, the high SD (2249) indicated
that the physical activity time varied largely between individuals. The two groups of

participants did not differ in ethnicity, diagnoses, smoking/drinking habits, physical
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activity time or medication uses (see details in Table 5.1). The PRIMROSE intervention
group’s systolic blood pressure was slightly lower than the control group at the baseline
(125.32 vs 130.81, p=0.027). The two groups of participants did not differ in other
clinical measures including total cholesterol, HDL, LDL, triglycerides, diastolic blood
pressure, and BMI.

At the 12-month follow-up, only 158 participants had complete dataset for analyses
and 77 (49%) of them had the PRIMROSE intervention. We did not observe any
significant difference in any of these selected measures between these two groups (See
results in Table 5.2). Overall, the interventions were effective in reducing total
cholesterol measures (1=2.277, p=0.024). Such results were consistent with the original
PRIMROSE study suggesting that the PRIMROSE intervention had the same level of
effect as the treatment as usual. Comparing these measures at the two time points, the
participants’ overall AUDIT-C score dropped from 3.52 to 3.04 and their [PAQ total
score increased from 2133 to 3711. These indicated that the participants had positive
changes in some of the life habits in general. The participants’ overall systolic blood
pressure dropped from 128.12 (SD 17.17) mmHg to 124.36 (SD 13.95) mmHg and their
diastolic blood pressure also dropped from 81.68 (SD 10.34) mmHg to 79.68 (9.90)
mmHg (see details in Table 5.1 & 5.2). These reductions were statistically significant
for systolic blood pressure (=2.243, p=0.026) and close for diastolic blood pressure
(=1.828, p=0.068). These changes further indicated the benefits from both
interventions. However, changes in all the other measures were small overall

considering both interventions.

Page 141 / 258



Table 5.1 Participant Demographics and Clinical Characteristics by Treatment

Groups at Baseline Assessment

N Overall PRIMROSE Control p-values

Overall Samples 188 n=292(49%) n=96(51%)

Age at assessment 188  50.21(10.22) 50.18 (10.31) 50.23 (10.19) 0.976?

Sex 188 0.104°

Male 88 (47%) 37 (40%) 51 (53%)
Female 100 (53%) 55 (60%) 45 (47%)

Ethnicity 188 0.693°
European (white) 178 (95%) 86 (93%) 92 (96%)

Other 10 (5%) 6 (7%) 4 (4%)

Diagnosis 188 0.263°
Bipolar 97 (52%) 46 (50%) 51 (53%)
Schizophrenia 44 (23%) 26 (28%) 18 (19%)

Other diagnoses 47 (25%) 20 (22%) 27 (28%)

Smoking 188 0.361°

Heavy (=20 a day) 42 (22%) 24 (26%) 18 (19%)
Moderate (10-19 a day) 28 (15%) 10 (11%) 18 (19%)
Light (<9 a day) 19 (10%) 10 (11%) 9 (9%)

Non/Ex-smoker 99 (53%) 48 (52%) 51 (53%)

AUDIT-C Score 188  3.52(3.47) 3.52(3.41) 3.51 (3.55) 0.982%

IPAQ Total Score 188  2133(2249) 2059 (2273) 2203 (2236)  0.663?

Medications 188
Antipsychotic 117 (62%) 54 (59%) 63 (66%) 0.407°
Antidepressant 90 (48%) 45 (49%) 45 (47%) 0.894°
Mood stabiliser 55 (29%) 25 (27%) 30 (31%) 0.650°
Antihypertensive 40 (21%) 17 (18%) 23 (24%) 0.460°
Other Medications 162 (86%) 77 (84%) 85 (89%) 0.453°

Clinical & Blood Tests
Total cholesterol 187  5.71(0.85) 5.73 (0.85) 5.68 (0.86) 0.685?
HDL 185 1.28 (0.40) 1.30 (0.38) 1.25(0.41) 0.405?
LDL 120 3.43(0.81) 3.49 (0.84) 3.37(0.77) 0.417%
Triglycerides 127 2.21(1.22) 2.27 (1.21) 2.14 (1.23) 0.537%

Systolic blood pressure 188  128.12 (17.16) 125.32 (14.74) 130.81 (18.88) 0.027%
Diastolic blood pressure 186  81.68 (10.34) 81.20 (10.26) 81.68 (10.34) 0.531°
Body mass index (BMI) 185  31.60 (5.35) 31.86(5.86) 31.34(4.82) 0.510?
Notes. AUDIT-C, Alcohol Use Disorders Identification Test Score; IPAQ, International Physical
Activity Questionnaire; HDL, high-density lipoprotein; LDL, low-density lipoprotein. In bold p met
significance threshold at 0.05
Other diagnoses included schizoaffective disorder, psychosis, and persistent delusional disorder.
2 Two Simple t-test; mean (SD); ° Pearson's Chi-squared test of independence; n (%)
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Table 5.2 Participant Demographics and Clinical Characteristics by Treatment

Groups at 12 Month Follow-up

N Overall PRIMROSE Control p-values

Overall Samples 158 n=77(49%) n=381(51%)

Age at assessment 158  51.30(9.97) 51.21(10.05) 51.40(9.95) 0.907*

Sex 158 0.321°
Male 71 (45%) 31 (40%) 40 (49%)

Female 87 (55%) 46 (60%) 41 (51%)

Ethnicity 158 0.999°
White 150 (95%) 73 (95%) 77 (95%)

Other 8 (5%) 4 (5%) 4 (5%)

Diagnosis 158 0.435°
Bipolar 85 (54%) 41 (53%) 44 (54%)
Schizophrenia 35 (22%) 20 (26%) 15 (19%)

Other diagnoses 38 (24%) 16 (21%) 22 (27%)

Smoking 158 0.688°

Heavy (=20 a day) 28 (18%) 16 (21%) 12 (15%)
Moderate (10-19 a day) 25 (16%) 11 (14%) 14 (17%)
Light (<9 a day) 15 (9%) 6 (8%) 9 (11%)

Non/Ex-smoker 90 (57%) 44 (57%) 46 (55%)

AUDIT-C Score 158  3.08 (3.34) 2.82 (3.28) 3.33(3.39) 0.333%

IPAQ Total Score 158 3694 (5218) 3620 (4515) 3764 (5836)  0.863%

Medications 158
Antipsychotic 94 (59%) 47 (61%) 47 (58%) 0.823°
Antidepressant 81 (51%) 40 (52%) 41 (51%) 0.994°
Mood stabiliser 40 (25%) 17 (22%) 23 (28%) 0.466°
Antihypertensive 48 (30%) 21 (27%) 27 (33%) 0.513°
Other 144 (91%) 67 (87%) 77 (95%) 0.134°

Clinical & Blood Tests
Total cholesterol 158 5.46(1.11) 547 (1.11) 5.45(1.13) 0.888*
HDL 156 1.28 (0.42) 1.28 (0.42) 1.29 (0.42) 0.919%
LDL 94 3.27 (0.98) 3.25(0.91) 3.29 (1.05) 0.840%
Triglycerides 102 2.20(1.26) 2.11(1.38) 2.28 (1.14) 0.502%

Systolic blood pressure 156  124.36 (13.95) 122.78 (13.52) 125.86 (14.28) 0.168*
Diastolic blood pressure 157  79.68 (9.90)  80.01 (9.42)  79.36 (10.39) 0.679*
Body mass index (BMI) 156  31.77(5.77)  31.94(6.26)  31.60(5.30)  0.709%
Notes. AUDIT-C, Alcohol Use Disorders Identification Test Score; IPAQ, International Physical
Activity Questionnaire; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Other diagnoses included schizoaffective disorder, psychosis, and persistent delusional disorder.
2 Two Simple t-test; mean (SD); ° Pearson's Chi-squared test of independence; n (%)
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5.4.2 Cardiovascular PRS Associations Results

The PRIMROSE and control groups were combined for the following analyses
with the group allocation as an additional covariate given that we did not find evidence
for significant differences in measures. According to our baseline models, most
cardiovascular PRSs were predictive of the actual cardiovascular measures among
participants with SMI prior to any treatments except for LDL (Table 5.3). Most of the
associations remained robust after interventions with only small attenuations in
association coefficients (Table 5.3). After adjustment of the corresponding baseline
measures, only HDL PRS remained predictive of the actual HDL measures regardless
of the treatment. This might suggest that the interventions had little impact on HDL
and/or HDL is more genetically modified among patients with SMI.

The interventions were most effective in reducing total cholesterol (=2.277,
p=0.024) and systolic blood pressure (=2.243, p=0.026) measures. The longitudinal
comparison revealed a clear attenuation of genetic associations after effective treatment,
with the predictive effects of total cholesterol and systolic blood pressure PRS
weakening towards the null at the 12-month follow-up. This trend was visually evident
in Figure 5.1 (Panels A & E), where the fitted regression lines became notably flatter
compared to the baseline. In contrast, measures with minimal changes maintained stable
associations, as demonstrated by overlapping or near-parallel fitted lines in Figure 5.1
(Panels B, C, D, F, & G).

The association coefficients for total cholesterol PRS dropped from 0.196 at

baseline to 0.155 at 12-month follow-up and the association coefficients for systolic
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blood pressure PRS dropped from 4.269 at baseline to 2.093 at 12-month follow-up
(Table 5.3). Formal comparison of the coefficients between the two time points using
Z-score tests revealed no statistically significant differences for total cholesterol
(A=0.041, SE=0.113, Z=0.362, p=0.717) or systolic blood pressure (A=2.176,
SE=1.788, Z=1.217, p=0.224). However, even these modest attenuations were
sufficient to substantially weaken PRS predictive accuracy following effective
treatment interventions (Table 5.3).

Our sensitivity analyses comparing the baseline and 12-month regression models
revealed no significant difference in model power. Therefore, the observed attenuations
were more likely due to changes in participants' actual measures. In addition, our
sensitivity analyses separating the PRIMROSE intervention and control group did not

produce any major change in the result patterns.

5.4.3 BD & SCZ PRS Interaction Results

We conducted multiple linear regressions taking interactions between the two
psychiatric PRS (bipolar/schizophrenia) and each cardiovascular PRS on the
corresponding 12-month follow-up measures to explore the impact from psychiatric
genetic risk. We first examined potential collinearity between the two psychiatric PRS
and each cardiovascular PRS. We only found weak associations between schizophrenia
PRS and BMI PRS (coefficient=-0.171; =-2.247, p=0.026). However, the model’s
variables only had the highest Variance Inflation Factor (VIF) number of 2.414

suggesting no exceptional collinearity.
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From the models, we did not find any evidence to suggest that there was any
significant interaction effect between BD or SCZ PRS and the corresponding
cardiovascular PRS on these clinical measures (See Table 5.4). At 12-month follow-up,
total cholesterol PRS was no longer predictive of the actual total cholesterol measure
(p.adj=0.166; Table 5.3). However, for each unit increase in BD PRS, there was a
decrease in total cholesterol of 0.276 mmol/L (p.adj=0.043). In addition, LDL PRS was
not predictive of the actual LDL levels at both time points. However, for each unit
increase in BD PRS, LDL decreased by 0.331 mmol/L (p.adj=0.043) at the 12-month
follow-up, suggesting a potential protective effect from higher BD genetic risks.

To further explore BD PRS’s associations with different cholesterol levels, we split
BD PRS into 4 quartiles and compared its influence between baseline and 12-month
follow-up where the 12-month follow-up models included the corresponding baseline
measure as an additional covariate. At baseline, we found no association between BD
PRS and any of these cholesterol levels (Figure 5.2 A). However, at 12-month follow-
up, the associations became obvious even if controlled for the baseline measure’s
impact (Figure 5.2 B). If the participants were in the top BD PRS quartile group, they
had 0.58 mmol/L fewer LDL measures on average (=-0.860; 95% CI: -1.516, -0.204;
p-adj=0.039). The overall model including all covariates could explain 28% of total
variance in LDL measures at 12-month follow-up while BD PRS accounted for 7% of
these variations. These findings further indicated BD genetic risk’s potential impact on
LDL treatment responses. And the relationship between LDL and BD PRS was likely

to account for the association of total cholesterol levels and BD PRS.
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Figure 5.1 By-group Scatter Plots comparing Baseline and 12-Month Follow-up Cnical Values against Ascciated PRS
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Table 5.3 Results of Multiple Regression Analyses with corresponding

Cardiovascular PRS

Variables Coefficient SE t-statistics CI (95%) D p-adj
Total Cholesterol

Baseline 0.196 0.063 3.116 0.072,0.319  0.002 0.008

12 Month 0.155 0.094 1.643 -0.032,0.342 0.103 0.166

12 Month BA 0.001 0.091 0.011 -0.179,0.181 0.991 0.991
HDL

Baseline 0.166 0.024 6.822 0.118,0.214 <0.001 <0.001

12 Month 0.198 0.030 6.604 0.139,0.257 <0.001 <0.001

12 Month BA 0.056 0.025 2.257 0.007,0.105  0.026 0.049
LDL

Baseline 0.084 0.077 1.083 -0.07,0.237  0.281 0.367

12 Month 0.119 0.117 1.022 -0.114,0.352  0.311 0.367

12 Month BA 0.037 0.118 0.314 -0.199,0.273  0.754 0.792
Triglycerides

Baseline 0.440 0.139 3.171 0.165,0.715  0.002 0.008

12 Month 0.434 0.163  2.657 0.109, 0.759  0.010 0.025

12 Month BA 0.253 0.175 1.443 -0.098, 0.604 0.154 0.216
Systolic blood pressure

Baseline 4.269 1.339 3.187 1.624,6.914  0.002 0.008

12 Month 2.093 1.185 1.765 -0.252,4.438 0.080 0.140

12 Month BA 1.099 1.089 1.009 -1.055,3.253  0.315 0.367
Diastolic blood pressure

Baseline 1.924 0.811 2.373 0.322,3.525  0.019 0.044

12 Month 1.890 0.829  2.280 0.25,3.53 0.024 0.049

12 Month BA 1.126 0.745 1.513 -0.347,2.599 0.133 0.199
Body Mass Index

Baseline 1.451 0.416 3.486 0.629,2.273  0.001 0.004

12 Month 1.376 0.500 2.752 0.387,2.365  0.007 0.020

12 Month BA 0.092 0.243  0.379 -0.389,0.573  0.705 0.780

Notes. SE, standard errors; CI, confidence interval.

Presented results are outputs from linear regressions with corresponding cardiovascular polygenic risk
score regressed on each measure. Participants’ sex, age, treatment allocation, diagnosis, smoking
scores, alcohol scores, IPAQ scores and the first ten principal components from population
stratification were added as covariates to all models. Each model was also adjusted for the
corresponding medication recorded at baseline or 12-month assessment including antipsychotic,
antidepressant, antihypertensive, mood stabilizers and other medications. 12 Week BA (baseline
adjusted) models were further adjusted for the corresponding baseline measure.

P.adj are p values corrected using FDR method. P values in bold are smaller than the threshold at 0.05.
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Table 5.4 Adjusted Results of Cardiovascular and Psychiatric PRS Interactions

Variables Coefficient SE t-statistics CI (95%) ) p-adj
Total Cholesterol
BD PRS -0.276 0.091 -3.016 -0.457,-0.095  0.003 0.043
BD PRS Interaction 0.138 0.097 1.422 -0.054, 0.331 0.157 0.670
SCZ PRS -0.210 0.099 -2.117 -0.407,-0.014  0.036 0.254
SCZ PRS Interaction 0.068 0.098 0.693 -0.126, 0.262 0.490 0.940
HDL
BD PRS 0.004 0.030 0.139 -0.055, 0.063 0.889 0.940
BD PRS Interaction 0.012 0.035 -0.352 -0.082, 0.057 0.726 0.940
SCZ PRS -0.033 0.032 -1.028 -0.096, 0.03 0.306 0.804
SCZ PRS Interaction -0.003 0.036 -0.075 -0.074, 0.069 0.940 0.940
LDL
BD PRS -0.331 0.104 -3.195 -0.539,-0.124  0.002 0.043
BD PRS Interaction 0.106 0.105 1.011 -0.103, 0.315 0.316 0.804
SCZ PRS -0.212 0.122  -1.738 -0.456, 0.032 0.087 0.487
SCZ PRS Interaction 0.038 0.114  0.335 -0.189, 0.266 0.739 0.940
Triglycerides
BD PRS -0.190 0.136  -1.395 -0.461, 0.081 0.167 0.670
BD PRS Interaction -0.093 0.156  -0.597 -0.405, 0.218 0.553 0.940
SCZ PRS -0.161 0.149 -1.082 -0.457,0.135 0.283 0.804
SCZ PRS Interaction 0.032 0.161 0.199 -0.29, 0.354 0.842 0.940
Systolic blood pressure
BD PRS 1.189 1.086 1.094 -0.961, 3.338 0.276 0.804
BD PRS Interaction -2.306 1.065 -2.165 -4.414,-0.198  0.032 0.254
SCZ PRS -0.536 1.263 -0.424 -3.035, 1.963 0.672 0.940
SCZ PRS Interaction 0.164 0.979 0.168 -1.772,2.101 0.867 0.940
Diastolic blood pressure
BD PRS -0.327 0.830 -0.394 -1.969, 1.314 0.694 0.940
BD PRS Interaction -0.496 0.818 -0.607 -2.114,1.122 0.545 0.940
SCZ PRS -0.603 0.925 -0.651 -2.433,1.228 0.516 0.940
SCZ PRS Interaction -0.194 0.811 -0.239 -1.799, 1.411 0.812 0.940
Body Mass Index
BD PRS 0.319 0.466 0.684 -0.603, 1.241 0.495 0.940
BD PRS Interaction -0.049 0.505 -0.097 -1.048, 0.95 0.923 0.940
SCZ PRS -0.063 0.520 -0.121 -1.091, 0.965 0.904 0.940
SCZ PRS Interaction -0.057 0.460 -0.124 -0.968, 0.853 0.901 0.940

Notes. SE, standard errors; CI, confidence interval; SCZ, schizophrenia; BD, bipolar disorder
Presented results are outputs from linear regressions with corresponding cardiovascular polygenic risk
scores (PRS) and their interactions with BD or SCZ PRS regressed on each measure.

Adjustments are the same as regressions in Table 3.

P.adj are p values corrected using FDR method. P values in bold are smaller than threshold at 0.05.
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Figure 5.2 Comparison of Baseline and 12-Month Follow-up Cholesterol Levels Across BD PRS Quartiles
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Notes. A. cholesterol measures at baseline; B. cholesterol measures at 12-month Follow-up.
TC=total cholesterol; BD=bipolar; PRS=polygenic risk scores.

The plotted values represent the estimated changes relative to the lowest bipolar PRS quartile group with 95% confidence intervals. The 12-month
follow-up models were adjusted for the corresponding baseline measure in addition to all previously described covariates.
* in the current plot, p value survived FDR multiple testing correction
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5.5 Discussion

In summary, we used multiple cardiovascular and psychiatric PRS to investigate
how different genetic risks can impact cardiovascular behavioural treatment responses
in patients with SMI within primary care. Prior to treatment, most of these selected
PRSs were predictive of the actual cardiovascular measures. However, if the
interventions were effective in reducing the measures, significant attenuations in the
associations would be expected. For example, the total cholesterol and systolic blood
pressure PRS became non-predictive at the 12-month follow-up. The interventions had
little effect on HDL measures, suggesting that the HDL PRS may be independent of the
baseline measures. The LDL measures were not associated with LDL PRS at both time
points but became negatively associated with BD PRS after treatments even though we
found no significant interaction effects. These findings collectively suggest that PRS
predictions could be influenced by environmental interventions, such as treatment,
particularly if the treatment was effective.

The findings of the study may provide valuable insights into the potential
heterogeneity within PRS predictions when applied to variable health measures. Our
sensitivity analyses comparing baseline and 12-month regression models revealed no
significant difference in model power. This suggested that the attenuations in
associations were more likely driven by changes in participants' actual measures rather
than limitations due to sample drop at follow-up. Most of our selected cardiovascular
PRS showed significant association with the corresponding measures prior to the

treatments. The observed attenuations in these associations indicated that intervention
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could play a substantial role in influencing outcomes over time. While individuals’
genetic risks always stay stable, the changes in their prediction coefficients could reflect
the treatment effects as coefficients represent the strength of associations between
predictors and outcomes. For PRS coefficients which mostly remained stable or even
increased after treatment such as HDL, this may suggest that the overall treatment likely
had little impact. These findings underscored the importance of carefully considering
the timing of PRS assessments for accurate risk predictions. Such findings also
highlighted the need for more nuanced models that integrate both genetic and
environmental factors to better predict individual treatment responses for patients with
SMI.

For the participants’ psychiatric genetic impact on the treatment outcomes, we
initially hypothesized that the participants with higher both genetic risks might exhibit
reduced treatment effectiveness. However, the results at the 12-month follow-up were
in the opposite direction for BD PRS. While it is well-documented that patients with
BD can have altered lipid profiles, previous findings have been inconsistent (Hiller et
al., 2023). Notably, studies that did find associations often reported a directional trend:
depressive episodes tended to correlate with increased lipid levels, whereas manic
episodes were more frequently associated with decreased lipid levels (Fusar-Poli et al.,
2021; Hiller et al., 2023). Using total cholesterol, triglycerides, LDL, and HDL as
biomarkers is inherently complex due to numerous potential confounders, including
dietary intake, comorbid somatic conditions, and medication use (Katcher et al., 2009).

In this study, no prior association was observed between BD PRS and LDL levels at
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baseline; however, a negative association with BD PRS emerged after treatment. Again,
such findings highlighted the instability of PRS predictions.

Notably, BD does not seem to share any genetic correlation with LDL according to
the most recent and largest BD GWAS to date (O’Connell et al., 2025). However, a
recent comprehensive MR study covering 179 lipid species and 5 psychiatric
disorders provided evidence of a potential causal relationship specifically between
genetic susceptibility in the plasma lipidome and BD (Yu et al., 2025). The authors
identified a protective effect in BD patients, characterized by higher levels of two sterol
esters and eight phosphatidylcholines (PCs). These lipids may contribute to regulating
neuroinflammation and maintaining neuronal cell membrane stability, potentially
explaining their protective role (van der Veen et al., 2017). However, the role of their
PCs also appeared dualistic: while some PCs exhibit protective effects, others acted as
risk factors to promote the development of BD. Our findings also highlighted the
complex relationship between BD and LDL levels. The observed increase in association
at follow-up could be partially explained by reductions in other confounding variables,
as the participants indeed showed positive changes in some lifestyle and health
measures. However, environmental risk factors continue to play a role, and future
studies with increased sample size and specific split on BD subtypes may provide
further clarity.

The study’s strengths were evident as we firstly used longitudinal behavioural
treatment data to indicate how cardiovascular PRS predictions within patients with SMI

could change over time. We employed robust methodologies and utilized the latest
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GWAS for PRS calculations. The results presented here remained consistent and robust
after accounting for the participants’ age, sex, group allocation, diagnoses, medication
use, smoking habits, alcohol consumption, and physical activity levels. Additionally,
we conducted comprehensive sensitivity analyses to validate the results, further
reinforcing the credibility and generalizability of our findings. The findings we present
here may provide a solid foundation for future studies.

The study also had limitations which should be acknowledged. For instance, some
of our health measures such as medication use were purely extracted from clinical
records which may have been incomplete or inconsistent. The participants in the study
had mixed diagnoses and lacked specific symptom measurements thus could not allow
us for more in-depth investigations. It is also important to recognize that participants’
cardiovascular risk profiles may evolve over time due to a range of external life factors
that are independent of the intervention itself. In addition, our samples were
predominantly of European ancestry which may have limited generalizability and
transferability.

In summary, our findings highlighted the instability of PRS for cardiovascular risk
predictions within patients with SMI. Researchers should carefully consider the
measurement time points as these could produce diverse results. Future studies with
increased sample size and more precise symptom measurements on BD subtypes may

clarify the complex associations between BD and cardiovascular traits.
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6. General discussion
6.1 PhD summary

Overall, this thesis applied different genomic methods to identify potential genomic
biomarkers that could guide future mental illness treatments.

The first project (Chapter 2) investigated the interactions between environmental
risk factors, ACE and psychiatric genetic risk factors predicted by multiple PRS for
different BD phenotype developments. Although we could not find any significant
interaction effects, ACE numbers and the PRS were associated with different
phenotypes. Participants with ACEs had an earlier age of BD onset and higher odds of
having rapid cycling. Higher ADHD PRS correlated with increased ACEs and could
increase the likelihood of rapid cycling. Meanwhile, BD PRS was linked to psychotic
symptoms and higher ADHD PRS. Thus, the results provided evidence for potential
monitoring indexes which may improve phenotype management and guide treatment
decisions.

In Chapter 3, I have taken a GWAS meta-analysis approach to identify SNP
associated with a positive lithium response among BD patients. The SNP, rs116927879
reached the genome-wide significance level and had a consistent direction of effect
from all studies. rs116927879 is located on chromosome 7 and maps to two pseudo-
genes GTF2IP13, SEPT7P2, and the protein coding gene ADCYI. By integrating the
results with expression data, we found that ADCYI plays a role in the regulatory
processes in the central nervous system, memory, and learning. The alternative splicing

of ADCY1 could impact different brain regions. We also managed to estimate the SNP
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heritability (h?) for subjective lithium response as 20.3% for the first time using
genomic data. Thus, the results provided evidence for a potential monitoring gene,
ADCYI which may guide personalized medication allocation.

In Chapter 4, I integrated an EWAS meta-analysis with associated GWAS results to
uncover biomarkers linked to EPSE in individuals with long-term exposure to
antipsychotic medications. This chapter provided insights into the influence of both
genetic and epigenetic factors resulting from environmental treatment factors. Among
the 9 identified DMPs associated with EPSE, four of them cg14531564, cg20647656,
cgl12004641, cg22845912, and their affiliated genes (SDF4, ANKMYI1, TNSI, SLA)
were associated with the risk of developing EPSE and not with schizophrenia or
smoking risk. One DMP (cg12044923) which maps to the STK32B gene, showed
significant enrichment for association with the risk of EPSE and plays a role in tremor
development. The results highlighted the importance of exploring both methylation
shifts and common SNP associations for medication-induced side-effects.

In Chapter 5, I explored how cardiovascular and psychiatric PRS predictions can
reflect treatment response using samples from the PRIMROSE trial which included
participants with SMI receiving longitudinal cardiovascular treatments. At baseline,
most cardiovascular PRS were predictive of corresponding measures. At 12-month
follow-up, participants’ total cholesterol and systolic blood pressure measures
improved; however, the PRS associations weakened. LDL measures became negatively
associated with BD PRS after treatment, though no significant interaction effects were

found. Participants in the highest BD PRS quartile had 0.58 mmol/L lower LDL on
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average after treatments suggesting a potential protective effect from higher BD genetic
risks. The results showcased the insatiability of PRS predictions, underscored the
dynamic interplay between genetic risks and treatment effects, and warrant careful PRS
assessment timing for predictions in the future.

This thesis concludes in this chapter where I discuss potential limitations inherent
in the datasets and used methods, which may impact the accuracy and generalizability

of the results.

6.2 General limitations

6.2.1 Limitations in measurements

In the first three projects, the main measures were collected retrospectively through
self-reports and clinician interviews. In the reporting of ACE, it has been found that the
participants’ current mood can impact recall (Hosang et al., 2023). Specifically,
participants who reported abuse had higher depression and mania scores compared to
those without such reports. The report of ACE may also relate to how individuals
process and integrate adverse experiences across development (Baldwin et al., 2019).
For medication responses, patients may struggle to accurately remember past treatment
courses when doing the assessments. Patients with SCZ and BD can experience
episodic or fluctuating symptoms (Perlis et al., 2010). The participants’ subjective
perception of benefit or side effects may be distorted by current mood state or long-
term cognitive biases. For example, it has been shown that patients can possess a
“resilience”-like period before realizing the improvements from antidepressants

(Stassen et al., 2007). Thus, using retrospective recall for measurements is prone to
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recall biases and may introduce inaccuracies.

In addition, the way in which the measures were recorded may also introduce
inconsistencies. For instance, ACEs can be recorded in a binary format for simplicity.
However, past studies have found a graded, dose-response relationship between the
number of ACEs and risk for adverse mental and physical outcomes (Felitti et al., 1998).
This suggests ACEs should be measured in a total number which assumes equal
weighting of all adversities while neglect severity, chronicity, and timing. In contrast,
more recent studies showed that individuals with at least four ACEs were at increased
risks for all health outcomes compared to those with none, suggesting potential
categorical measurement methods (Hughes et al., 2017). Across past studies,
considerable heterogeneity (/7 of >75%) has been observed in past ACE studies,
particularly due to differences in how ACEs were defined and measured. Nowadays,
how to best define and measure ACEs is still under debate. Further research is needed
to quantify how each ACE should be weighted and how they cluster together (Lacey &
Minnis, 2020).

Similar heterogeneity exists in the measurement of medication response. Response
to medication can be treated as a binary variable for simplicity, yet it can be difficult to
determine the threshold at which a person is consider as a good responder. In contrast,
response can be measured as a continuous or categorical variable, ranging from
excellent responders, to medium responders and non-responders. Take lithium as an
example, the Alda scale i1s widely regarded as the gold standard for retrospective

assessment of lithium response in BD (Grof et al., 2002). It is a two-part scale for
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continuous response measurements. Part A (0-10) quantifies the degree of clinical
improvement during lithium treatment, and part B (0—10) adjusts for confounders (e.g.,
adherence, duration of treatment, use of concomitant medications, number of episodes
prior to lithium). Researchers have found divergent results when using a binary
calcification (a total score > 7 as “responders”) versus taking the Alda scale as a
measure (Hou et al., 2016). Such measurement differences can undermine the
consistency of study findings, as other past studies defined response in binary formats
and did not explore their continuous forms. However, no measure is without limitations,
especially for complex traits such as medication response. Another study on Alda scale
showed that the part B is vulnerable to error measurement, with some items contributing
little yet may impact the overall total score (Scott et al., 2020). Thus, further research

is needed to clarify how differences in measurement can impact findings.

6.2.2 Limitations in study design

The first three studies used cross-sectional collection methods, which can only
provide a partial view compared to cohort designs. Cross-sectional retrospective self-
report carries both advantages and limitations. Such measures are relatively
inexpensive, scalable, and allow data collection from large samples across the life
course (Teicher et al., 2016). However, this design assumes that retrospective reports
and prospective measures identify the same, or at least similar, groups of individuals.
In reality, taking ACE measurement as an example, the agreement between prospective

and retrospective measures of CM is generally low (k=~0.19), suggesting that these
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methods often capture different individuals. While prospective measures may capture
exposure more objectively, retrospective recall may index subjective appraisal and
perceived impact, both of which are relevant, but distinct dimensions of mental health
outcomes (Baldwin et al., 2019).

Using cross-sectional study designs to assess medication response also be more
problematic. Patients with mental illnesses often experience mood transitions from
depression to manic or mixed states, many of which are not specific to treatment effects
(Perlis et al., 2010). In addition, polypharmacy is common in psychiatric care (Wolff et
al., 2021). Patients may frequently switch between antipsychotics or undergo dose
titrations due to side effects, partial response, or non-adherence, increasing the risk for
adverse effects and drug—drug interactions (Mdller et al., 2014; Wolff et al., 2021).
Dose effects also accumulate with increasing exposure. Longer cumulative exposure
and higher lifetime dose of antipsychotics are associated with increased risk of tardive
dyskinesia and parkinsonism (Correll et al., 2017). Furthermore, the pharmacokinetic
and pharmacodynamic processes can change with age. Pharmacokinetic changes
include reduced renal and hepatic clearance and an increased volume of distribution of
lipid soluble drugs, leading to prolonged elimination half-life. Pharmacodynamic
changes typically involve increased sensitivity to several drugs classes such as
anticoagulants, cardiovascular and psychotropic drugs (Mangoni & Jackson, 2004). For
these reasons, many drugs are considered unsuitable for the elderly (Hefner et al., 2021;
Motter et al., 2018).

Given these complexities, cross-sectional designs may not be optimal. Time-
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varying models can capture dynamic treatment patterns more accurately than static
measures (Leucht et al., 2013). Nonetheless, cross-sectional and retrospective designs
continue to dominate large-scale psychiatric genetic research due to feasibility but,

findings must still be interpreted with caution.

6.2.3 Limitations in sample size

The power of GWAS to detect significant associations depends on multiple
parameters, including the minor allele frequency (MAF) of SNPs, the prevalence of the
trait, the effect size of genetic variants, and the sample size available (Visscher et al.,
2017a). Common variants with higher allele frequencies are generally easier to detect
than rare variants of similar effect size. Likewise, traits with higher prevalence provide
greater statistical power, as more cases are available for comparison, whereas rare
disorders often require very large sample sizes to achieve sufficient power. The increase
in sample size has been the foundation for continued and increased discoveries from
past GWAS as other factors are largely fixed (Abdellaoui et al., 2023). The conventional
GWAS significance threshold at 5x10°® was based on a minimum sample of roughly
5,000 cases and 5,000 controls, with SNPs having MAF of at least 5% in European
population (Hoggart et al., 2008). Now, take MDD as am example, if MDD has a
heritability of 0.3 with 3,000 independent significant SNPs, the sample size required to
detect at least 95% of them is estimated to be a minimum of 7.56 x 107 sample (Wu et
al., 2022). Comparing these numbers to our sample size of only a few thousands, it is

evident that the reported samples are only the starting point for future more powered
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and robust findings on the traits.

The limitations in sample also apply to PRS-based predictions. Typically, PRS
studies test the associations between PRS and different traits in the target data and
evaluate its potential effect. The association can be quantified using standard
association or goodness-of-fit metrics such as the proportion of phenotypic variance
explained (R?). For BD, the latest PRS calculated from PRS-CS was estimated to
explain a median of approximately 7.4% variance pooling from all European cohorts
(O’Connell et al., 2025). For SCZ, the authors conducted leave-one-sample out PRS
analyses using different p thresholds for PRS constructions (Trubetskoy et al., 2022).
At a 0.05 threshold, which maximises out-of-sample prediction, the median variance in
PRS liability explained was found to be 7.3%. If both testing and prediction are
conducted within a single sample, allocating approximately 2000 cases and 2000
controls to the replication set is recommended to achieve reliable predictive accuracy
(Dudbridge, 2013). Our PRS analyses did not achieve these sample sizes, limiting
predictive performance and the ability to fully capture the PRS’s potential. Moreover,
even if sufficient sample sizes were reached, the variance explained would remain
relatively low, particularly given that recent psychiatric GWAS with hundreds of

thousands of participants report modest R? estimates.

6.3 Genomic method limitations

6.3.1 GWAS limitations

GWAS is a powerful method in extend to family-based linkage studies which can

provide valuable genetic insights into complex psychiatric disorders. Findings from
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past psychiatric GWAS have advanced our understanding of the aetiology of many
different disorders and these findings continue to guide future research and medication
developments (O’Connell et al., 2025). However, due to the polygenic nature of
psychiatric disorders, GWAS often identify variants with small effect sizes. These
identified loci may only explain a tiny fraction of the heritability and a small minority
of the inferred genetic variance (Manolio et al., 2009). This is known as the "missing
heritability" problem. For instance, BD is commonly estimated to have a 60% to 80%
heritability from twin studies (Johansson et al., 2019; McGuffin et al., 2003). However,
the most recent PGC BD multi-ancestry GWAS (excluding self-reported data), which
explained the most genetic variance, could still only explain 9% of total genetic
variance while other meta-analyses only explain even less variance (O’Connell et al.,
2025). Such statistic is already coming from the largest study to date with 158,036
bipolar disorder cases and 2.8 million controls. Comparing these numbers with our
current lithium response and EPSE GWAS meta-analysis sample sizes, we could
already expect potential false positives, lack of power, and limited transferability (M. 1.
McCarthy et al., 2008). Thus, applying GWAS to study psychiatric medication response
is still in its early stages. The data we produced here could only act as a starting point
for future studies to increase the sample size for more meaningful and insightful
findings.

Part of the reason why GWAS findings often had modest effect sizes was because
GWAS intends to primarily focus on common genetic variants (with minor allele

frequency>5%). Rare variants, which may have larger effects, are often missing or
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intentionally removed (Gibson, 2012). In the two included GWAS meta-analyses, we
also removed rare variants during the genetic data quality control steps leaving effects
from these variants as unknown. In addition, our analyses also did not include the sex
chromosomes due to complexities (e.g., dosage compensation, and hemizygosity in
males, Lee et al., 2019). Although we observed potential sexual differences in lithium
response which may yield findings from these sex chromosomes, we could not
investigate these further.

The interpretations of GWAS findings could be another challenge. For instance, the
identified loci could fall outside protein coding regions. Meanwhile, the identified loci
may not provide direct information about the biological mechanisms underlying these
associations. Follow-up functional studies are required (Visscher et al., 2017b).
Because of LD between SNPs, identifying the most plausible causal SNP can be another
challenge. Fine-mapping is required to pinpoint causal variants (Schork et al., 2013).
However, as shown in our lithium response GWAS meta-analysis, even with one of the
most cutting-edge fine-mapping methods Polyfun+SuSiE, pinpointing the exact causal
SNP failed due to limited sample size and power (Weissbrod et al., 2020). Building on
the LD problem, different ancestry groups may also have ancestry-specific patterns
however, all samples reported in this thesis are of European ancestry with limited
generalizability to other populations (Price et al., 2006). This is also the scenario for

most reported GWAS to date (Martin et al., 2019; Sirugo et al., 2019).
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6.3.2 PRS limitations

In the past decade, the numbers of PRS studies increased substantially due to the
increasing number of available GWAS on different traits and diseases (Visscher et al.,
2017b). PRS which provides a summary of an individual’s genetic predisposition, is a
promising tool for risk predictions and have been found to be associated with many
heritable traits. Notably, all studies we presented here involved PRS predictions
including phenotype development and treatment responses predictions. However, as we
have also shown in the last project (Chapter 5), PRS predictions can be unstable.

In addition, the generation of PRS relies on the reference GWAS. As a result, the
power of PRS is largely influenced by the reference GWAS quality, sample size and
population structure (Choi et al., 2020). Most GWAS only focused on common variants,
excluding rare variants, and used imputed data which did not capture the dosage from
all SNPs for cost-effectiveness reasons. If genetic effects from GWAS could be
estimated without error, and these effects were accurately aggregated by PRS, the
variance in phenotype explained by PRS would be expected to equal to the SNP
heritability (h?) of the trait. However, this is often not the case is reality. With these
limitations in data, PRS often only account for only a small fraction of the heritability
of complex traits or diseases (Wray et al., 2013).

Although many PRS calculation methods now use Bayesian approaches to infer
genetic architecture, they still do not account for non-linear interactions between genes.
This limitation makes it challenging for PRS to explain more complex traits effectively

(Boyle et al., 2017; Ge et al., 2019). PRS also do not account for gene-environment
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interactions, which can significantly influence disease risk. For example, lifestyle
factors like diet or smoking may modify the effect of genetic risk. Additionally, PRS
are highly dependent on the ancestry of the training dataset. Scores derived from one
population (e.g., European ancestry) often perform poorly in other populations (e.g.,
African or Asian ancestry), exacerbating health disparities (Martin et al., 2019). Most
GWAS have been conducted in populations of European ancestry, the findings have
limited generalizability to other ethnic groups, which further widen health disparities

(Martin et al., 2019; Sirugo et al., 2019).

6.3.3 EWAS and integration limitations

Given the limitation that GWAS typically do not account for gene-environment
interactions, EWAS is a powerful approach to identify traits’ or diseases’ epigenetic
modifications which change over time in response to environmental exposures (Rakyan
et al., 2011). In our case, we were interested in side effects from antipsychotic
medication use which can accumulate epigenic changes over time. However, EWAS
has similar limitation profiles like GWAS as the associations identified may not directly
determine mechanisms and establish causality (Relton & Davey Smith, 2012). EWAS
results do not provide direct insights into the functional consequences of epigenetic
changes. Differences in ancestry or population structure can also confound EWAS
results, as epigenetic patterns vary between ethnic groups. The epigenome can also vary
across study populations. If any of these differences are linked to the disease of interest,

confounding may be introduced (Michels, 2010). Adequately large sample sizes are
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crucial for ensuring both the validity and reliability of study results. The EWAS we
reported here had participants of European ancestry only and may had limited samples
size and power (Michels et al., 2013). Meanwhile, the EWAS was cross-sectional which
may not capture dynamic changes over time (Jones et al., 2015).

In addition to these, EWAS also suffer from its unique limitations. GWAS can use
DNA from most tissue types to identify germline genetic variation, typically extracted
from blood or blood-cell-derived cell lines. However, epigenetic changes can be tissue-
specific, meaning that findings in one tissue (e.g., blood) may not reflect changes in
other tissues (e.g., brain). As most EWAS are conducted with living individuals, DNA
is generaly limited to easily accessible sources such as blood or saliva. Given our
samples’ data only came from blood, this may limit the generalizability of our EWAS
results to understand mechanisms happening in the brain (Smith et al., 2015).

EWAS involve sensitive genetic and epigenetic data, which can also raise concerns
about privacy, data security, and potential misuse of information (Heyn & Esteller,
2012). Combinations of hypermethylated DNA biomarkers have indicated high
sensitivity in detecting cancer cells and predicting tumour progression (Heyn & Esteller,
2012). The key to success lies in combinatorial approaches. By integrating GWAS and
EWAS, researchers can uncover the functional mechanisms underlying genetic
associations and improve the translational potential of the findings. However, for
biomarkers to be clinically useful, their detection sensitivity and specificity in

biological fluids must be improved in the future.

Page 167 / 258



10

11

12

13

14

15

16

17

18

19

20

21

22

6.4 Clinical implications

Personalized medicine represents one of the most promising frontiers in
contemporary medicine, aiming to tailor therapies to individual patients by integrating
clinical, genetic, and other molecular predictions. A patient’s DNA only needs to be
collected once, but it can be reanalysed over time to identify newly discovered risk
genes and to calculate updated polygenic risk scores (PRS), making it a valuable and
enduring resource in precision care.

GWAS findings have multiple clinical implications to strengthen future treatments.
For instance, the genetic variants identified through medication response studies can
help guide personalized prescriptions (Giacomini et al., 2017). Treatments could be
prioritized for patients with high expression of genes associated with favourable
response and reconsidered for those at high risk of adverse effects. The findings may
also contribute to the development of risk prediction algorithms, enabling earlier
identification of individuals at heightened risk for poor treatment response or adverse
effects to facilitate more personalized intervention strategies in a timely manner. In
addition, insights into the underlying medication biological pathways for good response
can support the development of targeted medications to maximize treatment while
minimize potential side-effects. Drugs with supporting genetic evidence are more likely
to succeed in the development pipeline (M. R. Nelson et al., 2015).

PRS predictions also have multiple important clinical implications, especially for
risk predictions. They may be most useful in cohorts with a higher prior probability of

disease, where they can assist diagnosis or to inform treatment choices (C. M. Lewis &
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Vassos, 2020). Our findings from the last study further suggest that the timing of PRS
assessment is critical as predications may be more informative at specific stages of
disease progression. Determining the optimal time to collect or apply this genetic
information remains an important area for future research. Nevertheless, incorporating
PRS into clinical workflows could enhance early intervention strategies, support

personalized treatment planning, and ultimately improve patient outcomes.

6.5 Future directions

There are many ways future studies can improve on the current psychiatric
treatment response GWAS. One option is to promote global collaboration to increase
sample sizes and cover muti-ancestry groups. Psychiatric genetics benefited hugely
through global collaborations as also discussed in Chapter 1 (O’Connell et al., 2025).
Another option could be conducting a multi-trait analysis of GWAS (MTAG) which
combines GWAS summary statistics of related traits using multi-trait analysis tools. By
analysing schizophrenia and lithium response GWAS summary statistics together as a
cross-trait meta-GWAS, ConLi+Gen (2018) identified 15 genetic loci that may have
overlapping effects on lithium treatment response and susceptibility to SCZ. In addition,
future research could also update genotyping arrays to include rare and structural
variants and employ whole-genome/exome sequencing data for more comprehensive
analyses. Large samples can be linked with electronic health records to capture more
comprehensive treatment histories than using cross-sectional collection methods alone.

PRS predictions are not yet widely implemented in clinical settings due to several
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challenges, including risk prediction instability, limited actionable intervention plans,
and ethical concerns such as information privacy, discrimination, and stigmatization (A.
C. F. Lewis & Green, 2021; Torkamani et al., 2018). Looking ahead, as GWAS sample
sizes continue to grow and genotyping methods continue to advance, PRS are expected
to play an increasingly central role in biomedical research and personalized medicine.
However, their successful translation into clinical practice will depend on
advancements in methodological development, accurate analysis, appropriate
interpretation, and a thorough understanding of their strengths and limitations (Massi
et al., 2023).

Even if all risk DNA variants were identified with perfect accuracy, imperfect
predictions from genetics are expected. This is because genetic factors are not the only
risk factors for disorders (Wray et al., 2021). Predictions can only be improved if
combined with other clinical risk factors, such as sex, age, and medical histories
(Hippisley-Cox et al., 2017). While no single factor is a strong predictor on its own,
their combination can meaningfully guide clinical decision-making. Future progress
will require developing new approaches to conceptualising and quantifying
environmental risks, such as ACE, to enable more comprehensive models of risk
prediction. In addition, future studies should investigate the extent to which
environmental or cultural differences between populations influence specific traits

(Abdellaoui et al., 2023).
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6.6 Summary and conclusions

An individual’s response to treatment is diverse and influenced by multiple factors.
By incorporating various genomic research methods combined with environmental risk
factors, projects included in this thesis tried to identify potential biomarkers that
differentiate mental illness treatment responses. These findings highlight the need for
further investigations to validate and expand upon the results obtained. Future research
should involve larger sample sizes, meta-analyses with diverse ancestral groups, and
the integration of advanced methods and technologies. These efforts will help the field
move towards a more comprehensive understanding of the genetic underpinnings of
mental illness treatment response and pave the way for the development of more

effective prevention and more personalized treatment strategies.
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Appendices

2.1 OPCRIT Items 54 to 77
54. Persecutory delusions
Includes all delusions with persecutory ideation. (0, 1)
55. Well organised delusions
Illness is characterised by a series of well organised or well systematised delusions.
0, 1)
56. Increased self esteem
Patient believes that he is an exceptional person with special powers, plans, talents or
abilities. Rate positively here if overvalued idea but if delusional in quality also score
item 57 (grandiose delusions). Score '1' if duration one week and '2' if lasts two
weeks. (0, 1, 2)
57. Grandiose delusions
Patient has grossly exaggerated sense of own importance, has exceptional abilities or
believes that he is rich or famous, titled or related to Royalty. Also included are
delusions of identification with God, angels, the Messiah etc. (See also item 56). Any
duration score 'l', if symptom lasts at least 2 weeks score '2'. (0, 1, 2)
58. Delusions of influence
Events, objects or other people in patient's immediate surroundings have a special
significance, often of a persecutory nature. Include ideas of reference from the TV or
radio, or newspapers, where patient believes that these are providing instructions or

prescribing certain behaviour. (0, 1)
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59. Bizarre delusions

Strange, absurd or fantastic delusions whose content may have a mystical, magical or
'science fiction' quality.(0, 1)

60. Widespread delusions

Delusions which intrude into most aspects of the patient's life and/or preoccupy the
patient for most of his time. (0, 1)

61. Delusions of passivity

Include all 'made' sensations, emotions or actions. Score '1' for all experiences of
influence where patient knows that his own feelings, impulses, volitional acts or
somatic sensations are controlled or imposed by an external agency. (0, 1).

62. Primary delusional perception

Score '1' where the patient perceives something in the outside world which triggers a
special, significant relatively non understandable belief of which he is certain and
which is in some way loosely linked to the triggering perception (0, 1).

63. Other primary delusions

Includes delusional mood and delusional ideas. Delusional mood is a strange mood in
which the environment appears changed in a threatening way but the significance of
the change cannot be understood by the patient who is usually tense, anxious or
bewildered. Can lead to a delusional belief. A delusional idea appears abruptly in the

patient's mind fully developed and unheralded by any related thoughts. (0, 1)
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64. Delusions & hallucinations last for one week

Any type of delusion accompanied by hallucinations of any type lasting one week. (0,
1)

65. Persecutory/jealous delusions & hallucinations

This is self explanatory But note that abnormal beliefs are of delusional intensity and
quality and are accompanied by true hallucinations. (0, 1)

66. Thought insertion

Score 'l' when patient recognises that thoughts are being put into his head which are
not his own and which have probably or definitely been inserted by some external
agency. (0, 1)

67. Thought withdrawal

Score '1' when patient experiences thoughts ceasing in his head and may experience
'thought block' which is interpreted as thoughts being removed (or 'stolen') by some
external agency. (0, 1)

68. Thought broadcast

Score '1' when patient experiences thoughts diffusing out of his head so that they may
be shared by others or even heard by others. (0, 1)

69. Delusions of guilt

Firm belief held by subject that they have committed some sin, crime or have caused

harm to others despite absence of any evidence to support this. (0, 1)
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70. Delusions of poverty

Firm belief held by subject that they have lost all or much of their money or property
impoverished despite absence of any evidence to support this. (0, 1)

71. Nihilistic delusions

Firmly held belief that some part of patient's body has disappeared or is rotting away
or is affected by some devastating or malignant disorder despite a lack of any
objective supporting evidence. (0, 1)

72. Thought echo

Score '1' if patient experiences thoughts repeated or echoed in his or her head or by a
voice outside the head. (0, 1)

73. Third person auditory hallucinations

Two or more voices discussing the patient in the third person. Score 'l' if either 'true'
or 'pseudo’ hallucinations, i.e. differentiation of the source of the voices is
unimportant. (0, 1)

74. Running commentary voices

Patient hears voice(s) describing his actions, sensations or emotions as they occur.
Score '1"' whether these are possible 'pseudo’ hallucinations or definite (‘true')
hallucinations (0, 1)

75. Abusive/ accusatory/ persecutory voices

Voices talking to the patient in an accusatory, abusive or persecutory manner. (0, 1)
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76. Other (non affective) auditory hallucinations

Any other kind of auditory hallucination. Includes pleasant or neutral voices and non
verbal hallucinations. (0, 1)

77. Non-affective hallucination in any modality

Hallucinations in which the content has no apparent relationship to elation or

depression. Score '1" if present throughout the day for several days or intermittently

for One week. (0, 1)
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2.2 CLEQ QUESTIONNAIRE

Did you experience as a child (up to age 16 years) any of the following life events?

Please circle If yes, how old were
you?
1 Death of parent Yes No
2 Death of a brother/sister Yes No
3 Death of a close friend Yes No
4 Divorce of parents Yes No
5 Marital separation of parents Yes No
6 Marriage of parent to step parent Yes No
7 Serious illness needing hospitalisation Yes No
8 Hospitalisation of a parent Yes No
9 Acquiring a visible deformity Yes No
10  Prison sentence of a parent for a year or more Yes No
11 Teenage pregnancy/fatherhood Yes No
12 Suspension from school Yes No

13 Are there any other significant life events you experienced as a child that

are not mentioned above Yes No

Please provide brief details

Date of Completion: Completed by: Self Interviewer
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2.3 Supplementary Table 1 Results of Multiple Regression Analyses with
Adjustments based on ACE (total score) and BD/ADHD PRS

Variables Estimated Standard Confidence Reference p FDR p
Coefficient Error Intervals (95%) Values
Age at onset’
BD PRS -0.351 0.480 -1.294, 0.592 -0.731 0.465 0.709
BD Interaction -0.370 0.356 -1.070, 0.330 -1.037 0.300 0.706
ADHD PRS -0.328 0.506 -1.322, 0.665 -0.649 0.516 0.718
ADHD Interaction -0.295 0.356 -0.993, 0.404 -0.828 0.408 0.706
Presence of psychotic symptoms*
BD PRS 0.254 0.090 0.079, 0.430 2.833 0.005 0.074
BD Interaction -0.089 0.068 -0.223, 0.045 -1.300 0.194 0.706
ADHD PRS -0.080 0.093 -0.264, 0.102 -0.863 0.388 0.706
ADHD Interaction 0.033 0.068 -0.100, 0.168 0.481 0.631 0.807
Presence of suicide ideation*
BD PRS -0.029 0.096 -0.218, 0.157 -0.306 0.760 0.884
BD Interaction -0.097 0.078 -0.250, 0.055 -1.246 0.213 0.706
ADHD PRS 0.077 0.100 -0.119, 0.275 0.770 0.441 0.706
ADHD Interaction -0.022 0.079 -0.175, 0.135 -0.276 0.782 0.884
Presence of rapid cycling?
BD PRS -0.148 0.106 -0.357, 0.058 -1.406 0.160 0.706
BD Interaction -0.014 0.088 -0.187.0.158 -0.157 0.875 0.884
ADHD PRS 0.471 0.124 0.232,0.721 3.780 <0.001 0.005
ADHD Interaction 0.125 0.094 -0.056, 0.314 1.334 0.182 0.706

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention deficit
hyperactivity disorder.

T Multiple linear regression analyses, reference value t.

f Multiple logistic regression analyses, reference value z.

FDR_P = false discovery rate corrected p values for multiple testing.

In bold p values survived multiple testing correction in main analyses.

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was adjusted).
PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population
stratification in addition to sex and age of onset.
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2.4 Supplementary Table 2 Results of Multiple Regression Analyses with
Adjustments based on ACE (total score) and MDD/SCZ PRS

Variables Estimated  Standard Confidence Reference p FDR p
Coefficient Error Intervals (95%) Values
Age at onset’
MDD PRS -1.197 0.487 -2.154,-0.241 -2.458 0.014 0.153
MDD Interaction -0.052 0.355 -0.750, 0.646 -0.145 0.884 0.884
SCZ PRS -0.442 0.489 -1.403, 0.518 -0.905 0.366 0.706
SCZ Interaction -0.356 0.350 -1.043, 0.333 -1.015 0.311 0.706
Presence of psychotic symptoms*
MDD PRS 0.063 0.091 -0.115, 0.241 0.691 0.489 0.712
MDD Interaction -0.056 0.068 -0.191, 0.077 -0.830 0.406 0.706
SCZ PRS 0.185 0.090 0.009, 0.362 2.060 0.039 0.315
SCZ Interaction -0.072 0.068 -0.206, 0.061 -1.054 0.292 0.706
Presence of suicide ideation*
MDD PRS 0.079 0.098 -0.114, 0.272 0.802 0.422 0.706
MDD Interaction -0.021 0.080 -0.179, 0.137 -0.260 0.795 0.884
SCZ PRS -0.061 0.100 -0.260, 0.133 -0.610 0.542 0.722
SCZ Interaction -0.012 0.082 -0.174, 0.148 -0.149 0.881 0.884
Presence of rapid cycling*
MDD PRS 0.116 0.112 -0.102, 0.337 1.039 0.299 0.706
MDD Interaction 0.114 0.091 -0.064, 0.292 1.231 0.218 0.706
SCZ PRS -0.023 0.112 -0.242, 0.197 -0.203 0.839 0.884
SCZ Interaction 0.067 0.082 -0.094, 0.230 0.811 0.417 0.706

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; MDD, major depressive disorder; SCZ,
schizophrenia disorder.

T Multiple linear regression analysis, reference value t.

I Multiple logistic regression analysis, reference value z.

FDR_p = false discovery rate corrected p values for multiple testing.

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was adjusted).
PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population
stratification in addition to sex and age of onset.
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3.1 Supplementary Table 1 UCL Samples’ Lithium Response Assessment

Response to Lithium

Investigators Opinion

Participants Opinion

Very good - no episodes on lithium during long-term treatment Very good
Good - almost complete elimination of episodes, maintained well on

lithium alone, episodes are due to confounding factors e.g.non- Good
compliance

Medium - a significant reduction in episode frequency or severity Medium
and/or frequent use of additional psychotropic medication

Poor - little clinical improvement, often in the presence of therapeutic Poor
lithium levels

Very poor increase in number of episodes Very poor

Unknown/Unclassifiable

Unknown/Unclassifiable
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3.2 Supplementary Table 2 UCL samples’ demographics and clinical

characteristics concerning lithium response

Variables N Overall Lithium Responders Lithium Non-responders p-values
N=1259 N =440 (35%) N =819 (65%)
Age at interview 1153 50.39 (12.84) 50.34 (13.62) 50.42 (12.40) 0.9212
Age of BD onset 1198  24.66 (10.62) 24.33 (10.68) 24.82 (10.60) 0.453¢2
Sex 1259 0.039°
Male 499 (40%) 192 (44%) 307 (37%)
Female 760 (60%) 248 (56%) 512 (63%)
BD type 1259 0.189°
BD type 1 827 (66%) 297 (68%) 530 (65%)
BD type 2 169 (13%) 63 (14%) 106 (13%)
SABP 96 (8%) 34 (8%) 62 (7%)
No information 167 (13%) 46 (10%) 121 (15%)
PPD diagnosis 1181 41 (3%) 7 (1%) 34 (3%) 0.027°

BD, bipolar disorder; SABP, schizoaffective bipolar disorder; PPD, premorbid personality disorder; SD, standard
deviation

@Two Sample t-test; mean (SD)

b Pearson's Chi-squared test of independence; n (%)

In bold, p passed significance at 0.05.
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3.3 Supplementary Figure 1 The QQ plot for the UCL+SongS""+ConLi*Gen
GWAS meta-analysis
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3.4 Supplementary Figure 2 The QQ plot for the UCL+Song®"+ConLi*Gen GWAS

meta-analysis
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3.5 Supplementary Figure 3 Regional association plot on chromosome 7 in which

the Genome-wide significant SNP is located
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4.1 Supplementary Table 1 Behavioural Key Words used to Identify EPSE Cases

Symptoms

Keywords

General terms for EPSE
Parkinsonism (tremor)
Parkinsonism (rigidity)
Parkinsonism (Sialorrhea)
Parkinsonism (bradykinesia and
hypokinesia)

Parkinsonism (mask face)
Parkinsonism (stooped posture)
Parkinsonism (parkinsonian gait)
Parkinsonism (parkinsonian gait)
Dystonia (general)

Dystonia (opisthotonos)
Dystonia (torticollis)

Dystonia (oculogyric crisis)
Dystonia (trismus)

Dystonia (tortipelvic crisis)
Dystonia (buccolingual crisis)

Dystonia (laryngeal dystonia)

Tardive Dyskinesia (general)
Tardive Dyskinesia (orofacial
dyskinesia)

Tardive Dyskinesia (limb truncal
dyskinesia)

Akathisia

Extrapyramidal; extra pyramidal; epse; EPSE; movement disorder
Tremor; tremble; shake; quiver

Rigid; hypertonic; stiff; inflexible; tight; tense; muscle pain

Salivation; sialorrhea; drool

Hypokinesia; bradykinesia; freeze; froze; slow; motor block; stride;
reduced arm swing; blink; hypophonia; soft voice; voice volume;
slurred; micrographia; handwriting

Mask; hypomimia; expressionless

Stoop; hunch; posture

Shuffle; festinate; parkinsonian

Imbalance; fall

Dystonia; jerk; twist; twitch; spasm; lock

Opisthotonos; arch back; bend back; arch spine; bend spine

Torticollis; cervical dystonia; head deviation; head posturing; neck pain
Oculogyric; fix stare; fix eye; deviate eye

Trismus; lock jaw; lockjaw; jawlock; jaw deviation; jaw retraction;
clench; grind; mouth pain; restrict mouth; limit mouth

Tortipelivic; bend trunk; twist trunk

Buccolingual; dysphagia; difficult swallow; grimace; protrude;
protrusion; risus sardonicus; dysarthria; difficult speak; difficult speech;
pseudomacroglossia; swollen tounge; tounge swell

Laryngeal; stridor; strangled voice; breathy voice; quiet voice; whispery
voice; hoarse; shaky voice; aphonia; interrupt speech; lose voice; voice
loss

tardive dyskinesia; dyskinesia; TD

Involuntary; tongue twist; tongue protrusion; chew; biting; bite; suck;
clench; lateral jaw movement; sideway jaw movement; smack lip; lip
purse; pucker; puff cheek; frown; blink; grimace; blink

Choreiform; athetoid; choreoathetoid; purposeless; rock; twist; squirm;
gyrate; thrust; knee move; tap; heel drop; writhing; rotate; nod;
Inversion; eversion

Akathisia; akathisia; restless; pace; fidget; irritable; leg cross; leg swing;
foot shift; shuffle; tramp; still; march; shift weight; rock
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4.2 Supplementary Table 2 Pharmacological Keywords used to Identify EPSE

Cases
Medication Keywords
Trihexyphenidyl Trihex; benzh; artane; agitane; parkin
Benzatropine Benza;tropin; cogentin
Procyclidine Procy; lidin; kemad
Orphenadrine Orphan; drine
Biperiden Biper; akineton
Hyoscine Hyos; kwell
Tetrabenazine Tetrab; ranb; nitom; xenaz

Page 243 / 258



4.3 Supplementary Table 3 FGA Codes used to Select Participants

Medication Name

Medication Type

Medication Code

Benperidol
Chlorpromazine

Flupentixol

Fluphenazine

Haloperidol

Levomepromazine
Loxapine
Pericyazine
Perphenazine
Pimozide
Pipotiazine

Prochlorperazine

Promazine
Sulpiride

Thioridazine
Trifluoperazine

Zuclopenthixol

anquil 250micrograms tablet; benperidol
chlorpromazine; cpz - chlorpromazine;

largactil 10mg tablet; chloractil 25mg tablet

flupentixol; depixol 3mg tablet; fluanxol
500micrograms tablet; flupenthixol;
flupentixol

decazate 25mg/1ml oily injection;
fluphenazine; fluphenazine decanoate;
modecate 12.5mg/0.5ml oily injection;
moditen 1mg tablet; moditen enanthate
25mg/ml injection

haldol 5mg tablet; haloperidol; serenace
500micrograms capsule
levomepromazine; nozinan 25mg tablet
loxapine; loxapac 10mg capsule
neulactil 2.5mg tablet; pericyazine
fentazin 2mg tablet; perphenazine

orap 2mg tablet; pimozide

piportil depot 50mg/1ml oily injection;
pipotiazine

prochlorperazine; stemetil Smg tablet
promazine

dolmatil 200mg tablet; sulparex 200mg tablet

sulpiride; sulpitil 200mg tablet; sulpor
200mg/5ml oral solution

thioridazine; melleril 10mg tablet
stelazine 1mg tablet;

tranylcypromine+trifluoperazine 10mg/Img

tablet; trifluoperazine
clopixol 2mg tablet; zuclopenthixol

1140867080; 1140867078
1140879658; 1140910358;
1140863416; 1140863410
1140909800; 1140867152;
1140867952; 1140867150;
1140909800

1140867474, 1140882098;
1140867398; 1140867456;
1140867156; 1140856004

1140867184; 1140867168;
1140867092

1140909802; 1140867122
1140867406; 1140867414
1140867136; 1140867134
1140867210; 1140867208
1140867272; 1140867218
1140867572; 1140909804

1140868170; 1140868172
1140879746
1140867306; 1140917366;
1140867304; 1140882376;
1141185130
1140879750; 1140867312
1140867244; 1140867944;
1140868120

1140867342; 1140882100
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4.4 Supplementary Table 4. SGA Codes used to Select Participants

Medication Name

Medication Type

Medication Code

Amisulpride
Aripiprazole

Clozapine
Olanzapine
Oxypertine
Quetiapine
Remoxipride

Risperidone
Sertindole

amisulpride; solian 100mg/ml s/f oral solution

abilify Smg tablet; aripiprazole

clozapine; clozaril 25mg tablet; denzapine

25mg tablet

olanzapine; zyprexa 2.5mg tablet

oxypertine; integrin 10mg capsule

quetiapine; seroquel 25mg tablet

remoxipride; roxiam 150mg m/r capsule
dozic 1mg/ml oral liquid; risperdal 0.5mg
tablet; risperidone

serdolect 4mg tablet; sertindole

1141153490; 1141184742
1141202024; 1141195974
1140867420; 1140882320;
1141200458

1140928916; 1141167976
1140879754; 140855978
1141152848; 1141152860
1140879704; 1140867432
1140867180; 1141177762,
1140867444

1140927970; 1140927956
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4.5 Supplementary Table S EPSE Medications Codes used to Select Cases

Medication Name Medication Type Medication Code
Akineton akineton 1140872522
Artane artane 1140872378
Benzatropine benzatropine 1140909818
Benzhexol benzhexol 1140883510
Biperiden biperiden 1140872520
Cogentin cogentin 1140872460
Kemadrin kemadrin 1140872542
Orphenadrine orphenadrine 1140883560
Procyclidine procyclidine 1140883476
Tetrabenazine tetrabenazine 1140872556
Tetrabenazine Product tetrabenazine product 1141157336
Trihexyphenidyl trihexyphenidyl 1140909816
Xenazine xenazine 1141171726
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4.6 Supplementary Figure 1 The Manhattan Plot of EPSE GWAS Meta-analysis
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4.7 Supplementary Figure 2 The QQ Plot of EPSE GWAS Meta-analysis for FGA
and SGA Combined

8

lambda =1

Chserved —logqlp)

Expected —log,,(p)

Notes. X-axis (Expected -logl0(p-values)): Represents the theoretical quantiles under the null
hypothesis, where p-values are uniformly distributed on a logarithmic scale; Y-axis (Observed -

log10(p-values)): Shows the observed -log10(p-values) from the GWAS.
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4.8 Supplementary Figure 3 The Manhattan Plot of EPSE GWAS Meta-analysis for any Exposure to FGA
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4.9 Supplementary Figure 4 The QQ Plot of EPSE GWAS Meta-analysis for any
Exposure to FGA

8

lambda = 1.03

Chserved —logqlp)

Expected —log,,(p)

Notes. X-axis (Expected -log10(p-values)): Represents the theoretical quantiles under the null hypothesis,

where p-values are uniformly distributed on a logarithmic scale; Y-axis (Observed -logl10(p-values)):

Shows the observed -log10(p-values) from the GWAS.
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4.10 Supplementary Figure S. The Manhattan Plot of EPSE GWAS Meta-analysis for only Exposure to SGA
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4.11 Supplementary Figure 6 The QQ Plot of EPSE GWAS Meta-analysis for only

Exposure to SGA

8

lambda = 0.992

Chserved —loglp)

Expected —log,.(p)

Notes. X-axis (Expected -log10(p-values)): Represents the theoretical quantiles under the null hypothesis,
where p-values are uniformly distributed on a logarithmic scale; Y-axis (Observed -logl10(p-values)):

Shows the observed -log10(p-values) from the GWAS.
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4.12 Supplementary Table 6 EWAS Participants’ Demographics and Clinical

Characteristics concerning EPSE Presence

N Overall EPSE Presence Controls p-values
UCL 379 n=64(17%) n=315(83%)
Age at assessment 362  38.24 (14.81) 36.90 (14.74)  44.48 (13.58)  <0.001?
mAge (Horvath) 379  40.31(12.46) 39.54 (12.41)  44.08 (12.13)  0.008*
Sex <0.001°
Male 192 (51%) 52 (81%) 140 (44%)
Female 187 (49%) 12 (19%) 175 (56%)
Antipsychotics 64
First generation 57 (89%) /
Second generation 50 (78%) /
Aberdeen 480 n=47(10%) n=433(90%)
mAge (Horvath) 480 53.16 (9.88) 54.29(11.48) 53.04 (9.70) 0.473%
Sex 480
Male 352 (73%) 33 (70%) 319 (74%) 0.737°
Female 128 (27%) 14 (30%) 114 (36%)

Antipsychotics 47
First generation
Second generation

30 (64%)
23 (49%)

/
/

Notes. EPSE, extrapyramidal side effects; SD, standard deviation

Two Simple t-test; mean (SD)

®Pearson's Chi-squared test of independence; n (%)
In bold p passed significance threshold
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4.13 Supplementary Figures 7-15 The Mapping of CpG to the Schizophrenia

GWAS Region
The figures illustrate the mapping of significant CpG sites to Schizophrenia GWAS

within a 250kb window. Black line in the central mark the SNP closest to the CpG. Red
dotted line marked the SNP in lead within the region and other nearby SNPs in linkage

disequilibrium.

Supplementary Figure 7. The Mapping of CpG ¢cg14531564 to the Schizophrenia
GWAS Region
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Supplementary Figure 8. The Mapping of CpG ¢g20647656 to the Schizophrenia
GWAS Region
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Supplementary Figure 9. The Mapping of CpG ¢g12524168 to the Schizophrenia
GWAS Region
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Supplementary Figure 10. The Mapping of CpG cg12004641 to the Schizophrenia
GWAS Region

—1og1alP)

& 4
® )
< &
i 1
5 i LD 17 vty vevant
15744753
0 02 040608 1
[ ]
[ ]
*
S s
[ ]
| B

rateichihib)

<TNS?1 CXCR2-
> o o © o © > © > o > o o © > © > © > © >
PR C AR A P S . P G e I A A A v A
i > > 4 P ¥ i o > i [irg e e g P > W P ri‘ i i

Chromosome 2 (MB)

Supplementary Figure 11. The Mapping of CpG ¢g05419385 to the Schizophrenia
GWAS Region
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Supplementary Figure 12. The Mapping of CpG ¢g22583147 to the Schizophrenia

GWAS Region
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Supplementary Figure 13. The Mapping of CpG ¢g22845912 to the Schizophrenia

GWAS Region
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Supplementary Figure 14. The Mapping of CpG ¢g20730966 to the Schizophrenia
GWAS Region
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Supplementary Figure 15. The Mapping of CpG ¢g12044923to the Schizophrenia
GWAS Region
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