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Abstract 

Chapter 1 of this thesis introduces how various genomic approaches can help identify 

potential biomarkers to enable future personalized treatments for mental illnesses. In 

Chapter 2, I examined how psychiatric polygenic risk scores (PRS), as an indication of 

genetic liabilities to different psychiatric disorders, interact with environmental factors, 

adverse childhood experiences (ACE) for different bipolar disorder (BD) phenotype 

presentations. Although no significant interaction effects were found, higher ADHD 

PRS correlated with increased number of ACEs and increased the likelihood of rapid 

cycling. Elevated BD PRS was associated with the presence of psychotic symptoms. 

Lithium is the gold standard for treating BD however, only about 30% of patients are 

excellent responders while others could experience side effects. Chapter 3 employed 

genome-wide association studies (GWAS) to identify good lithium response biomarkers. 

SNP rs116927879 (A/G) was found to be genome-wide significantly associated with 

good lithium response, with splicing QTL analysis suggesting that it affects ADCY1 

splicing across brain regions. Antipsychotics are widely prescribed for schizophrenia, 

but about 40% of patients develop extrapyramidal side effects (EPSE) such as 

dyskinesias, Parkinsonism, akathisia, and dystonia. Chapter 4 integrated epigenome-

wide association studies (EWAS) on GWAS to identify EPSE biomarkers resulted from 

long-term antipsychotic use. Notably, cg12044923, which mapped to the STK32B gene, 

showed enrichment for EPSE and has been associated with movement disorders such 

as tremors. In Chapter 5, I explored how interventions could impact PRS predictions of 

cardiovascular risks in patients with severe mental illness. The findings highlighted that 

treatments can attenuate cardiovascular PRS predictions and warrant careful PRS 
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assessment timing. The results also underscored the complex interplay between BD 

genetic risks and cardiovascular treatment response. This thesis concludes by reflecting 

on the employed methods’ limitations, the potential challenges with pharmacogenetic 

testing implementation, and how future research could address these to advance the 

field. 
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Impact Statement 

While pharmacogenomic testing (PGx) is increasingly recognized as important for 

its potential to personalize mental illness treatments. Comprehensive genomic profiles 

associated with different treatments must be systematically documented and analysed 

to realize their potential. This thesis applies various genomic analysis methods to 

identify potential genetic biomarkers that can differentiate psychiatric treatment 

responses.  

This thesis starts in Chapter 1 where I discussed how changes in views regarding 

mental illness have shaped the associated treatments today. Modern mental health care 

can benefit from PGx to provide more precise, biologically informed, and personalized 

treatment guidance. Thus, the field must continue refining its understanding of genetic 

influences on psychiatric disorders and associated treatment responses.  

In Chapter 2, I employed multiple psychiatric polygenic risk scores to investigate 

their interactions with environmental factors like adverse childhood experiences (ACE) 

on the development of different BD phenotypes. The analyses used robust PRS 

calculation methods and the latest reference GWAS. We also made clear separation on 

ACE definitions. The findings provide evidence for the utility of psychiatric PRS in 

phenotype predictions, which can enable early risk identification.  

In Chapter 3, I conducted genome-wide association study (GWAS) meta-analyses 

to identify lithium response genetic biomarkers. This GWAS is currently the largest to 

date in terms of size for lithium. We used genomic data to predict the heritability of 

good lithium response for the first time. The study identified ADCY1 as a gene that may 
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influence the brain regions for producing different lithium response. These results 

pinpoint the importance of examining ADCY1 for patients with BD in future lithium 

response research. Future research into its role could help optimize treatment decisions 

and improve outcomes for individuals with BD. 

In Chapter 4, I integrated epigenome-wide association studies (EWAS) on GWAS 

results to identify biomarkers that can differentiate extrapyramidal side-effects (EPSE) 

from antipsychotic treatments. We had the largest sample size for EPSE to date in both 

analyses, revealing that the STK32B gene showed significant enrichment for EPSE. 

Notably, STK32B has been previously linked to movement disorders, such as tremors. 

These findings underscore the importance of examining STK32B in patients with 

schizophrenia in future antipsychotic treatment research. This may help predict and 

mitigate the risk of EPSE, improving treatment safety and efficacy. 

Cardiovascular PRS is increasingly used in risk prediction models and has been 

shown to add information. However, there were very few papers examining how PRS 

predictions can change after interventions. In Chapter 5, I explored PRS-based 

predictions of 12-month cardiovascular treatment responses in patients with severe 

mental illness. To our knowledge, this analysis represents the first of its kind in 

psychiatry. The findings highlighted the instability of cardiovascular PRS predictions 

and warrant careful PRS assessment timing in clinical settings. 

This thesis concludes in Chapter 6 where I discussed the limitations of the methods 

used in relation to the results from each chapter and how future research can improve 

on these.  
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1. General Introduction 1 

Mental illnesses are recognized as complex disorders that affect the mood, thought, 2 

and behaviour. Mental illnesses can be distinct from other medical conditions by their 3 

impact on cognition, particularly memory, self-awareness, and consciousness, while 4 

also being shaped by the unique life experiences and complexities that each individual 5 

carries (Malla et al., 2015).  6 

Mental illnesses can be distinguished by their diverse forms. Varying disorders have 7 

different prevalence and impact. For instance, schizophrenia (SCZ) affects nearly 1% 8 

of the global population and is characterized by a combination of both positive 9 

symptoms such as psychotic symptoms and cognitive dysfunctions, and negative 10 

symptoms such as depressive moods and lack of motivations (Charlson et al., 2018). 11 

People diagnosed with the disorder can have a 15 year reduction in life expectancy 12 

compared with the general population (Hjorthøj et al., 2017). Meanwhile, Major 13 

Depressive Disorder (MDD) is characterized by a persistently low mood, diminished 14 

interest or pleasure in previously enjoyable activities, and recurrent thoughts of death. 15 

MDD affects about 185 million people, approximately 2.4% of the global population 16 

according to an estimate in 2019 (Marx et al., 2023). In addition, Bipolar Disorder (BD) 17 

is characterized by mood swinging between euthymia, (hypo-)mania and depressive 18 

episodes. BD has an estimated lifetime prevalence from 0.6% to 2.4% worldwide 19 

(Merikangas et al., 2011).  20 

Mental illnesses are sometimes considered together because of overlapping 21 

symptoms. Distinguishing between SCZ and BD phenomenologically remain 22 
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challenging as they share symptoms, such as hallucinations, delusions, and mood 1 

symptoms (Yamada et al., 2020). According to a recent study, more than a third of 2 

patients with these disorders could face misdiagnosis (Ayano et al., 2021). Patients with 3 

SCZ were likely to be misdiagnosed as having BD, while patients with BD were also 4 

more likely to be misdiagnosed as having SCZ. The similar presentations of SCZ and 5 

BD might reflect the overlapping biological underpinnings. For instance, genetic 6 

findings suggest that these disorders might share a neurodevelopmental gradient of 7 

psychopathology, accompanied by shared patterns of cognitive impairments (Doherty 8 

& Owen, 2014). Meanwhile, SCZ and BD also exhibit considerable overlaps in terms 9 

of morphological brain volume changes and functional connectivity 10 

changes (O’Donoghue et al., 2017). Psychosis serves as an intermediate syndrome, 11 

bridging SCZ and BD through shared symptomatology and neurological features. Thus, 12 

SCZ, psychosis, and BD are often grouped together as severe mental illness (SMI) for 13 

their shared functional impairments, treatment needs, and biological underpinnings.  14 

Mental illnesses together account for a growing proportion of the global health 15 

burden (Patel et al., 2018). Between 1990 and 2019, the proportion of global disability-16 

adjusted life years (DALYs) attributed to mental disorders, which quantify the burden 17 

of a disease in terms of both premature death and disability, increased from 3.1% to 4.9% 18 

(GBD Mental Disorders Collaborators, 2022). The rise reflects population growth, 19 

aging, and improved reporting and recognition of mental illnesses globally. Such 20 

findings also highlight the chronic nature of many mental disorders, which lead to 21 

significant disability over time rather than early death and long-term treatments for 22 
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mental health are in need. 1 

Views on mental illnesses and associated treatments have evolved significantly 2 

throughout history (George et al., 2023). In earlier stages, mental disorders were often 3 

attributed to supernatural forces, such as the Devil, with treatments like exorcisms, 4 

prayer, and physical punishment (Porter, 2003). In the 1950s, breakthroughs in 5 

psychiatric medications revolutionized mental health care and transformed treatments 6 

by targeting the biological underpinnings (Duvall & Gallicchio, 2017; Pereira & 7 

Hiroaki-Sato, 2018). In recent decades, advancements in neuroscience, genetics, and 8 

personalized medicine have further refined treatments, with a focus on tailoring 9 

interventions to an individual’s psychological and biological profiles (Insel & Cuthbert, 10 

2015). Modern mental health care prioritizes an integrative and holistic approach, 11 

combining medication, psychotherapy, community-based support, and stigma reduction 12 

efforts (George et al., 2023). However, a key challenge lies in determining the most 13 

appropriate treatment plans tailored to everyone’s unique needs. The following 14 

introduction will outline key time points in the evolution of mental illness treatments 15 

and explain how genomic methods can guide future mental health care, enabling more 16 

personalized treatment planning. 17 

 18 

1.1 A brief history of mental illness treatments 19 

Throughout history, treatments for mental illnesses have undergone significant 20 

transformations (Farreras, 2025). During the Middle Ages, explanations of mental 21 

illnesses are dominated by the Church, attributing it to supernatural forces such as 22 
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possession by the Devil or evil spirits (Porter, 2003). Treatments were religious in 1 

nature, involving exorcisms, prayer, and rituals like chanting or using holy water. 2 

Severe cases often faced confinement, physical abuse, or execution. Medical theories, 3 

such as Hippocrates’ views on the biological basis of illness, were largely dismissed. 4 

However, toward the end of the Middle Ages, the dominance of mystical explanations 5 

began to wane, giving way to a gradual reemergence of scientific and medical 6 

approaches to mental illness (Cantor, 2014). 7 

The rise of humanism during the Renaissance further changed the situation by 8 

emphasizing human welfare and individual uniqueness. In the mid to late 1500s, 9 

physicians like Johann Weyer challenged Church dogma, arguing that many accused 10 

“witches” were mentally ill rather than demonically possessed. This shift led to the 11 

establishment of asylums where the mentally ill could be confined, as families struggled 12 

to take care of their afflicted relatives (Laffey, 2003). During the 16th century, the 13 

number of asylums increased as governments recognized that the growing population 14 

of individuals with mental illnesses could no longer be managed in private homes. 15 

However, these institutions, such as London’s Bethlem Hospital, quickly became 16 

overcrowded and notorious for inhumane treatment, where patients were chained, 17 

exhibited for public entertainment, and subjected to harsh conditions (Walsh, 1907). 18 

By the end of the 17th century and into the Age of Enlightenment, views on mental 19 

illnesses shifted further, with an increasing focus on physical causes rather than moral 20 

or spiritual ones. Harsh treatments including restraints and somatic methods persisted 21 

but, there was also an emphasis on environmental management in asylums, such as 22 
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regulating diet and exercise (Laffey, 2003). The late 18th century saw the emergence of 1 

the moral treatment movement, spearheaded by figures like Philippe Pinel in France 2 

and William Tuke in England. This approach prioritized humane and respectful 3 

treatment, emphasizing individual care, social support, and rehabilitation through 4 

structured activities. Patients were unchained, given outdoor access, and treated with 5 

kindness, leading to notable improvements in their conditions. 6 

The success of moral treatment in the early 19th century fuelled the rapid expansion 7 

of asylums across Europe and the United States. However, overpopulation, limited 8 

resources, and discriminatory practices against immigrants led to overcrowding and a 9 

decline in care quality (Scull, 2015). By the mid-19th century, asylums had evolved into 10 

large and impersonal institutions, often prioritizing containment over therapeutic 11 

intervention. While moral treatments highlighted the importance of humane care, it 12 

became clear that additional medical advancements were needed to address more severe 13 

cases effectively (Crossley, 2006). 14 

The turn of the 20th century marked significant developments in understanding and 15 

treating mental illnesses. Emil Kraepelin's classification system gained traction, notably 16 

distinguishing mood disorders from what would later be termed schizophrenia. This era 17 

also saw the rise of psychoanalysis, pioneered by Sigmund Freud, who emphasized the 18 

role of unconscious motives and dialogue-based therapy in mental illness (Freud, 2009). 19 

Alongside, behaviourism, introduced by John B. Watson and influenced by Ivan 20 

Pavlov’s conditioning principles, offered an alternative view, focusing on 21 

reconditioning maladaptive behaviours (Chand et al., 2023; Malone, 2014). These 22 
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theoretical frameworks laid the foundation for modern psychopathology and treatment 1 

approaches. 2 

Institutions for mental healthcare underwent changes in both terminology and 3 

function. Asylums were rebranded as hospitals, and patients replaced the stigmatizing 4 

term "inmates." The mental hygiene movement gained momentum, advocating for 5 

preventive approaches to mental illnesses and the establishment of public health clinics. 6 

However, alongside these advances, troubling practices arose, including eugenics-7 

driven sterilization programs targeting institutionalized patients (P. A. Lombardo & 8 

Dorr, 2006). Innovative yet controversial treatments emerged during this period. Insulin 9 

coma therapy was introduced in 1927 but later abandoned due to its risks (Wellington, 10 

2022), while electroconvulsive therapy (ECT) became a common substitute (Suleman, 11 

2020). Lobotomy, a drastic psychosurgical procedure, was widely performed during the 12 

mid-20th century, reflecting a lack of effective alternatives (Faria, 2013). Post-World 13 

War II, the need for standardized mental health care for veterans led to the publication 14 

of the first Diagnostic and Statistical Manual of Mental Disorders (DSM) in 1952. This 15 

framework evolved over time, with the DSM-III (1980) marking a shift toward 16 

diagnostic neutrality regarding the causes of mental illnesses, a position maintained in 17 

subsequent editions (Pichot, 1986). Nowadays, diagnoses tools like DSM-V and ICD-18 

10 are still widely used although challenges in diagnoses and classifications persisted 19 

(Hirsch et al., 2016; Kawa & Giordano, 2012).  20 
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1.2 A brief history of mental illness medications 1 

Starting in the 1950s, medications were introduced for the treatment of mental 2 

illnesses, bringing an immediate and significant impact (Braslow & Marder, 2019). The 3 

first noticeable psychiatric medication, lithium, could date back to 1949 when John 4 

Cade first used it to treat maniac patients (Duvall & Gallicchio, 2017). Lithium then 5 

became a foundational treatment for bipolar disorder, though its efficacy varies among 6 

patients. Two revolutionary drugs reserpine and chlorpromazine, were introduced into 7 

psychiatry in the early 1950s (Baumeister, 2013; Braslow & Marder, 2019). Reserpine 8 

depletes monoamines in the brain, while chlorpromazine blocks dopamine receptors, a 9 

discovery that transformed the understanding of chemical communication in the brain. 10 

Early antidepressants, such as monoamine oxidase inhibitors (MAOIs) and tricyclic 11 

antidepressants (TCAs) were also introduced in the 1950s then dominated the field until 12 

the 1980s (Chockalingam et al., 2019). 13 

The growing range of available drugs led to 47.2 million psychotropic drug 14 

prescriptions being dispensed under the National Health Service (NHS) between 1965 15 

and 1970 (Haggett, 2015). However, concerns quickly arose due to inadequate training, 16 

aggressive advertising, and the simultaneous rise in prescribing, drawing significant 17 

criticism from the medical press. Meanwhile, clinicians started to notice that psychiatric 18 

medications could have significant side-effects (Evarts & Butler, 1959). Concerns about 19 

side effects have shaped the use of psychiatric medications today. Atypical 20 

antipsychotics, introduced as alternatives to typical antipsychotics, offered fewer 21 

extrapyramidal side-effects (EPSE) but introduced metabolic issues like weight gain 22 
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and glucose dysregulation (Nasrallah, 2008). Drugs like clozapine, though highly 1 

effective for treatment-resistant SCZ, remain underutilized due to concerns about 2 

agranulocytosis and other safety risks (Kendall, 2011). Over the past 70 years, 3 

antipsychotic drugs have evolved through first- (e.g., chlorpromazine and fluphenazine) 4 

and second-generation medications (e.g., olanzapine and clozapine), with a potential 5 

third generation (e.g., aripiprazole). However, there remains a critical need for the 6 

development of more effective treatments with a lower side-effect profile than existing 7 

ones (Weston-Green, 2022).  8 

Nowadays, the use of antipsychotics and antidepressants is widespread, with up to 9 

17% of adults being prescribed antidepressants in high-income countries (Pillinger et 10 

al., 2023). The prevalence of antipsychotic prescriptions doubled in England increased 11 

from 0.6% in 2000 to 1.2% in 2014 and continues to grow (Shoham et al., 2021). While 12 

these drugs offer relief for many individuals, around 74% of patients with chronic 13 

schizophrenia could discontinue their assigned treatment before 18 months owing to 14 

inefficacy or intolerable side effects (Lieberman et al., 2005). Around 75% of patients 15 

report experiencing side effects, which range from mild to severe (Iversen et al., 2018). 16 

Non-adherence to psychotropic medication due to concerns of inefficacy and side-17 

effects is widespread, with an estimated overall prevalence of 49% (Semahegn et al., 18 

2020). Non-adherence occurs in approximately 56% of individuals with SCZ, 50% with 19 

MDD, and 44% with BD. These statistics nevertheless underscore the variability in 20 

treatment response and highlight the pressing need for more robust predictive 21 

approaches to guide and improve treatment planning.  22 
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Adverse side effects can diminish quality of life, hinder daily functioning, 1 

contribute to morbidity and mortality, and foster stigma surrounding mental illness 2 

(Tandon et al., 2020). Additionally, concerns about inefficacy and side effects often lead 3 

to poor adherence, increasing the likelihood of relapse (Haddad et al., 2014). For 4 

individuals with depression and schizophrenia, the impact of side effects plays a 5 

significant role in medication decisions, often becoming a primary concern when 6 

evaluating treatment options (Hopwood, 2020; Kaar et al., 2019). 7 

The psychiatric medication advancements provided effective treatment options for 8 

individuals with mental illnesses. However, treatment response is influenced by 9 

multiple factors (McCutcheon et al., 2015). In addition, different psychiatric 10 

medications vary widely in their side effect profiles, further complicating treatment 11 

decisions (Pillinger et al., 2023). To optimize psychiatric treatment, it is crucial to 12 

identify characteristics that distinguish patients who respond best to specific 13 

medications, allowing for more personalized and effective therapeutic strategies. 14 

 15 

1.3 Predictions of treatment response 16 

To increase the success of treatments, specific clinical characteristics have been 17 

identified as potential indicators of treatment response. Factors such as medication 18 

plasma levels, adherence, metabolic differences, co-prescriptions, lifestyle habits, sex, 19 

and the possibility of alternative diagnoses could all influence treatment responses 20 

(McCutcheon et al., 2015). For depression, factors such as depression subtype, 21 

symptom history, age of onset, episode duration, and recurrence all play roles in 22 
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determining treatment effectiveness. For instance, early-onset depression is linked to 1 

increased resistance to certain antidepressants, while recurrent and prolonged 2 

depressive episodes also correlate with poorer outcomes (Perlman et al., 2019). In 3 

addition, patients with severe baseline symptoms, histories of trauma, cognitive 4 

impairments, or anxious symptomatology tend to exhibit reduced antidepressant 5 

efficacy. In BD, factors predicting lithium response include the sequence of manic and 6 

depressive episodes, the absence of rapid cycling or psychotic symptoms, a family 7 

history of BD, and a shorter duration of illness before lithium treatment begins (Hui et 8 

al., 2019). Conversely, higher body mass index and a greater number of prior episodes 9 

or hospitalizations have been associated with poorer lithium response. In schizophrenia, 10 

a higher severity of positive symptoms and the use of atypical antipsychotics, 11 

particularly clozapine, are associated with the greatest likelihood of treatment response 12 

(Seppälä et al., 2021). Risk factors for extrapyramidal side-effects (EPSE) from 13 

antipsychotics include a history of prior episode and high medication dose (Hedenmalm 14 

et al., 2006) and older age (Jeste, 2004). 15 

Given the substantial variability in individual responses to psychiatric medications, 16 

careful monitoring of physical health parameters has been recommended to optimize 17 

treatment (Hiemke et al., 2018). Taking lithium as an example, clinical guidelines 18 

emphasize the importance of tracking body mass index, kidney function, body lithium 19 

levels and thyroid activity in patients with bipolar disorder receiving lithium treatment, 20 

with ongoing dose adjustments to ensure therapeutic efficacy (Godden, 2024; NICE, 21 

2014a). However, this process can be time-consuming, requiring extensive trial and 22 
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producing error before an optimal plan is tailored to everyone’s needs. One promising 1 

alternative approach to improve this process is the integration of pharmacogenomic 2 

(PGx) testing, which examines genetic variations that affect drug metabolism and 3 

response. By guiding medication selection and dosing decisions, PGx testing can help 4 

personalize treatment, reduce adverse effects, and enhance therapeutic outcomes from 5 

the onset. The following sections will introduce how PGx testing could guide future 6 

treatments and showcase several relevant genomic methods which could enrich PGx 7 

testing. 8 

 9 

1.4 Psychiatric genetics and application in psychiatric treatment 10 

For centuries, observations have indicated that mental illnesses tend to run in 11 

families, a pattern that has also been confirmed by large-scale population studies 12 

(Arribas-Ayllon et al., 2019). Individuals with a first-degree relative affected by BD or 13 

schizophrenia face a significantly higher risk of developing these conditions themselves, 14 

approximately six to ten times greater (Andreassen et al., 2023; Lichtenstein et al., 15 

2009). Furthermore, familial risk is not limited to a single disorder; relatives of 16 

individuals with psychiatric illnesses also have an increased likelihood of developing 17 

other mental health conditions, suggesting a shared underlying aetiology (Cardno & 18 

Owen, 2014). Additional complexity arises from non-inherited genetic variations that 19 

accumulate in brain tissue over time, as well as random biological processes that further 20 

shape individual risk profiles (Andreassen et al., 2023). Nevertheless, genetic variations 21 

in parents could also influence the environments they create for their offspring, adding 22 
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further complexity (Kong et al., 2018).  1 

With the advent of molecular genetics in the 1980s and 1990s, researchers began 2 

using linkage and candidate gene studies to identify genetic variants associated with 3 

mental disorders (Owen et al., 2000). However, many early findings failed to replicate 4 

due to small sample sizes and the complex polygenic nature of psychiatric genetics 5 

(Sullivan et al., 2012). It became increasingly evident that most psychiatric conditions 6 

result from the combined effects of multiple genes, each contributing only a small 7 

increase or decrease in liability, along with environmental influences, a concept known 8 

as polygenic multifactorial causation (Owen & Cardno, 1999). The field advanced 9 

significantly in the 2000s with the introduction of genome-wide association studies 10 

(GWAS) and large-scale collaborative efforts, particularly from the Psychiatric 11 

Genomics Consortium (PGC; Sullivan et al., 2018). The PGC has played a crucial role 12 

in systematically evaluating common single-nucleotide polymorphisms (SNPs), rare 13 

variants, gene sets, and pathways, shedding light on the genetic and biological 14 

foundations of mental illnesses (Watson et al., 2020). More recently, approaches such 15 

as polygenic risk scores (PRS), whole-genome sequencing (WGS), and multi-omics 16 

integration have provided deeper insights into the genetic architecture of mental 17 

illnesses and their interactions with environmental factors (Mullins et al., 2021, 2022; 18 

O’Connell et al., 2025). These advancements continue to pave the way for a more 19 

comprehensive understanding of mental disorders and become the foundation for 20 

potential precision medicine approaches in psychiatry, guiding future psychiatric 21 

treatment medication development. 22 
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Meanwhile, the importance of applying genomic methods to predict current 1 

psychiatric medication efficacy and side effect profiles is increasingly recognized, 2 

offering new insights into personalized treatment strategies (Goetz & Schork, 2018). 3 

For instance, the cytochrome P450 (CYP) enzymes, CYP2C19 and CYP2D6, hold 4 

significant clinical relevance for antidepressants (Carvalho Henriques et al., 2020). 5 

Research indicates that genetic variants in CYP2C19 and CYP2D6 affect antidepressant 6 

blood concentrations, adverse drug reactions, and, to an extent, clinical outcomes such 7 

as treatment discontinuation and symptom response (Bråten et al., 2020; Jukić et al., 8 

2018). However, it is important to note that not all psychiatric medications’ genetic 9 

profiles are fully documented yet, and additional investigations are needed for other 10 

components of the medication response such as side-effects (Bousman et al., 2021). 11 

As psychiatric genetics continues to evolve, it holds the promise of transforming 12 

mental health treatments by providing more precise and biologically informed 13 

approaches. Genetic research has already shed light on the heritability and familial 14 

patterns of psychiatric disorders, and its integration with pharmacogenomics may soon 15 

truly enable personalized medication strategies. Moving forward, the field must 16 

continue refining its understanding of genetic influences on psychiatric conditions and 17 

their treatment responses, paving the way for more effective and individualized 18 

therapeutic interventions. The following sections will introduce several genomic 19 

methods that could be applied to study psychiatric medication responses.  20 
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1.4.1 Genome-wide Association Analyses 1 

GWAS on psychiatric treatment responses stands out as a promising approach for 2 

pinpointing potential genes linked to medication response and side effects. GWAS 3 

analyses genome-wide SNP data to detect associations between genetic variants and 4 

specific phenotypes. While whole-genome and exome sequencing provide alternative 5 

approaches, most GWAS rely on genotyped SNP arrays combined with imputed 6 

variants to enhance genomic coverage (Tam et al., 2019). Imputation, based on 7 

reference haplotypes, enables researchers to infer untyped variants, reducing the need 8 

for direct genotyping while increasing cost efficiency and sample sizes (Das et al., 9 

2016). Given that GWAS tests millions of SNPs across the genome, stringent multiple-10 

testing correction is required. The widely accepted genome-wide significance threshold 11 

is p<5×10⁻⁸, accounting for approximately one to two million independent statistical 12 

tests (M. I. McCarthy et al., 2008). 13 

With the increasing number of GWAS, researchers have realized that most 14 

psychiatric disorders could be polygenic which each SNP may only carry small to 15 

modest phenotypic effects (de Bakker et al., 2008). Meta-analysis of GWAS, which 16 

enhance detection of SNP with modest effect size through increased sample size and 17 

power from collaborative efforts, is increasingly recognized as important. Tools like 18 

METAL has been developed to efficiently meta-analyse GWAS summary statistics 19 

while using Inverse-Variance Weighted (IVW) or Sample Size Weighted (SSW) 20 

methods considering either the standard error or sample size to generate combined 21 

outputs (Willer et al., 2010).  22 
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Psychiatric genetics benefited hugely with PGC’s collaborative efforts worldwide 1 

on GWAS meta-analyses. Taking BD genetics as an example, one of the first PGC BD 2 

GWAS identified 34 independent SNPs with strong evidence for replication in 4,493 3 

independent BD cases and 42,542 independent controls (Sklar et al., 2011). Then, with 4 

an increased sample size of 41,917 BD cases and 371,549 controls of European ancestry, 5 

64 associated genomic loci were identified (Mullins et al., 2021). More recently, by 6 

combining participants of European, East Asian, African American and Latino 7 

ancestries covering 158,036 cases with BD and 2.8 million controls, PGC reported 298 8 

genome-wide significant loci which mapped to 36 credible genes in the aetiology of 9 

BD (O’Connell et al., 2025). Notably, one of the top SNP from the meta-analysis, 10 

rs6693503, had an odds ratio of 1.048 with a standard error of 0.007, while most other 11 

reported significant SNPs had odds ratios ranging from 0.9 to 1.1 (O’Connell et al., 12 

2025). Such findings again highlight the polygenic nature of psychiatric disorders and 13 

emphasize the importance of larger sample size from collaborations for detecting true 14 

genetic effects. 15 

More and more researchers have started to apply similar GWAS methods to 16 

investigate psychiatric medication responses (Li et al., 2020; Zai et al., 2023). The genes 17 

identified through GWAS provide insights into the underlying mechanisms of these 18 

medications which could be used as targets to monitor in the clinic. With clearer 19 

understanding of each psychiatric medication’s metabolism and effectiveness profiles, 20 

more effective drugs could also be developed. However, most of current psychiatric 21 

medication response GWAS had limited sample size and restricted population groups. 22 
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Collaborative efforts are needed to further advance our understanding and guide future 1 

discoveries. 2 

 3 

1.4.2 Polygenetic Risk Scores 4 

Although GWAS could be used to investigate common SNPs, each SNP’s 5 

influence is often modest with an odds ratio typically ranging from 0.7 to 1.3 (Mullins 6 

et al., 2021; Trubetskoy et al., 2022). Polygenic risk scores (PRS), could summarize the 7 

potential risk alleles from the GWAS, weighted by their respective effect sizes to 8 

produce a summary score which indicate an individual’s genetic liability to the 9 

phenotype (Dudbridge, 2013). Before computing PRS, a pruning and thresholding (P + 10 

T) approach is typically applied (Purcell et al., 2007). Pruning (or clumping) removes 11 

highly correlated SNPs based on linkage disequilibrium (LD), ensuring that only 12 

independent SNPs are retained. Thresholding involves applying different p-value 13 

cutoffs to exclude SNPs with weak associations with the trait, optimizing PRS 14 

predictive power. Advanced methods for PRS computation have been developed to 15 

capture complex genetic architectures, such as those using a Bayesian framework (Ge 16 

et al., 2019; Lloyd-Jones et al., 2019).  17 

Researchers also discovered psychiatric PRS’ effectiveness in the prediction of 18 

medication responses. For instance, studies by ConLi+Gen, (2018) and Amare et al. 19 

(2021) have demonstrated that PRS for SCZ and MDD among patients with BD are 20 

negatively associated with their response to lithium. However, PRS could only explain 21 

less variance than the total genetic variance identified in GWAS, as they are constrained 22 
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by the limitations of current GWAS methodologies. Thus, more advanced GWAS may 1 

also further enhance findings from psychiatric medication response PRS.  2 

 3 

1.4.3 Epigenome-wide Association Analyses 4 

Epigenome-Wide Association Studies (EWAS) investigate the relationship 5 

between epigenetic modifications, primarily DNA methylation and complex disease 6 

phenotypes. Unlike GWAS, which focus on inherited genetic variants, EWAS assess 7 

modifications that are heritable and/or environmentally modifiable, providing insights 8 

into gene regulation mechanisms beyond DNA sequence variation (Campagna et al., 9 

2021; Villicaña & Bell, 2021). The most widely studied epigenetic mechanism is DNA 10 

methylation, where methyl groups are added to cytosine-phosphate-guanine (CpG) 11 

dinucleotides, influencing gene expression. The typical significance threshold for 12 

EWAS is p < 1 × 10⁻⁷. This threshold accounts for the large number of CpG sites tested 13 

(~450,000 on Illumina arrays) and is similar to the multiple testing correction used in 14 

GWAS (Liu et al., 2013). 15 

EWAS can capture dynamic, environmentally influenced epigenetic modifications, 16 

such as DNA methylation changes induced by long-term medication use, stress, or 17 

lifestyle factors. EWAS have also been applied to investigate psychiatric medication 18 

responses, offering a promising approach to understand gene-environment interactions 19 

in treatment outcomes (Engelmann et al., 2022). Despite the potential, EWAS of 20 

psychiatric medication response are often limited by smaller sample sizes, as large, 21 

well-characterized cohorts with both methylation data and detailed medication response 22 
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phenotypes remain scarce.  1 

 2 

1.5 PhD Overview 3 

This PhD aimed to explore the genome to identify potential biomarkers that 4 

differentiate psychiatric phenotype development and treatment responses. The findings 5 

emphasized the importance of personalized treatment approaches, which could 6 

significantly improve patient outcomes. To achieve this, the research incorporated 7 

large-scale genetic analyses, including GWAS, EWAS, and PRS predictions, while 8 

integrating significant discoveries to better understand the complex biological effects. 9 

In my first research paper (Chapter 2), I examined how multiple psychiatric PRS 10 

interact with environmental factors, adverse childhood experiences (ACE), to influence 11 

the development of various BD phenotypes. This included age of onset, the presence of 12 

psychotic symptoms, suicide ideation, and rapid cycling. The analyses aimed to shed 13 

light on how genetic and environmental factors combine to shape the clinical 14 

presentation of BD. In Chapter 3, I used a GWAS meta-analysis approach to identify 15 

SNP associated with a positive lithium response among BD patients. I also examined if 16 

psychiatric PRS could predict positive lithium response. This investigation sought to 17 

pinpoint genetic markers that could predict which individuals are more likely to benefit 18 

from lithium treatment. In Chapter 4, I integrated an EWAS meta-analysis with 19 

associated GWAS findings to uncover biomarkers linked to extrapyramidal side effects 20 

(EPSE) in individuals with long-term exposure to antipsychotic medications. This 21 

chapter provided insights into the influence from both genetic and epigenetic factors 22 
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resulting from environmental treatment factors. In Chapter 5, I explored how genetic 1 

risk factors, assessed through PRS, could predict cardiovascular treatment responses in 2 

patients with severe mental illness (SMI). This research aimed to understand the role of 3 

genetics in shaping the effectiveness of cardiovascular treatments. These results could 4 

help patients in panning more personalized and effective health treatment. This thesis 5 

concluded in chapter 6 where I discussed the potential implications and limitations from 6 

current findings on using genomic analyses to guide PGx testing and support 7 

personalized treatment planning.8 
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2. Multiple Psychiatric Polygenic Risk Scores Predict Associations between 1 

Childhood Adversity and Bipolar Disorder 2 

This paper has been expanded from my previous MSc project and a version of this paper 3 

has been published at Journal of Affective Disorder (Yao et al., 2023). 4 

2.1 Abstract 5 

Background: It remains unclear how adverse childhood experiences (ACE) and 6 

increased genetic risk for bipolar disorder (BD) interact to influence BD symptom 7 

outcomes. Here we calculated multiple psychiatric polygenic risk scores (PRS) and 8 

used the measures of ACE to understand these gene-environment interactions.   9 

Method: 885 BD subjects were included for analyses. BD, ADHD, MDD and SCZ 10 

PRSs were calculated using the PRS-CS-auto method. ACEs were evaluated using the 11 

Children Life Event Questionnaire (CLEQ). Participants were divided into groups 12 

based on the presence of ACE and the total number of ACEs. The associations between 13 

total ACE number, PRSs and their interactions were evaluated using multiple linear and 14 

logistic regressions. Secondary analyses were performed to evaluate the influence of 15 

ACE and PRS on sub-phenotypes of BD.   16 

Results:  The number of ACEs increased with the ADHD PRS. BD participants who 17 

had experienced ACE showed an earlier age of BD onset and higher odds of having 18 

rapid cycling. Increased BD PRS was associated with increased odds of developing 19 

psychotic symptoms. Higher ADHD PRS was associated with increased odds of having 20 

rapid cycling. No prediction effect was observed from MDD and SCZ PRS. And, we 21 

found no significant interaction between ACE numbers and any of the PRSs in 22 
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predicting any selected BD sub-phenotypes. The study was limited by sample size, ACE 1 

definition, and cross-sectional data collection method.  2 

Conclusions: The findings consolidate the importance of considering multiple 3 

psychiatric PRSs in predicting symptom outcomes among BD patients.   4 

 5 

2.2 Introduction 6 

BD is recognised as a complex psychiatric disorder because of its variable clinical 7 

presentation. The first episode of mania or depression of BD commonly occurs between 8 

the ages of 18 and 24 (McMahon et al., 1994). However, early onset before age 18 is 9 

not rare and such cases are often associated with more severe or complex BD 10 

phenotypes, such as increased comorbidity and delayed treatment response (Joslyn et 11 

al., 2016). While some BD patients may experience rapid cycling of episodes within 12 

hours or days, in others, episodes are separated by months or years (Carvalho et al., 13 

2014). BD patients may also have common comorbidities such as anxiety (Spoorthy et 14 

al., 2019), substance abuse (Jawad et al., 2018), and psychotic features (Maggioni et al., 15 

2017). In addition, BD patients are at a higher risk of performing suicidal behaviour 16 

compared to other psychiatric patients (Jamison, 2001).   17 

Both genetic and environmental factors are recognised to be important in the 18 

development of BD phenotypes. Environmental risk factors such as adverse childhood 19 

experiences (ACE) and childhood maltreatment (CM) have been closely associated 20 

with BD phenotype development. ACEs describe adverse events, such as the death or 21 

divorce of a caregiver, serious illness, or hospitalisation. According to the past meta-22 
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analysis by Palmier-Claus et al., (2016), BD patients were 2.63 times more likely to 1 

have experienced ACE. ACE has also been found to play a significant role in the risk 2 

of relapse in BD patients (Hosang et al., 2010). Meanwhile, CM describes traumatic 3 

abusive events. CM is separated into emotional abuse (EA), physical abuse (PA), and 4 

sexual abuse (SA), as well as emotional neglect (EN) and physical neglect (PN) (Gilbert 5 

et al., 2009). CM is commonly recognised as a more severe form of ACE. CM has also 6 

been associated with more severe and complex BD phenotypes (Agnew-Blais & Danese, 7 

2016). These include earlier age of onset and a higher risk of comorbidities such as 8 

anxiety disorder, substance misuse disorder, suicide attempts, and increased mood 9 

episodes.   10 

Examining the influence of both genes and the environment is essential for 11 

understanding BD symptom outcomes (Quidé et al., 2020). It is commonly believed 12 

that existing biological vulnerabilities interact with the later experiences such ACE and 13 

lead to more complex mental health conditions. Thus, individuals who already carry a 14 

high genetic risk for BD are at even higher risk of developing BD if they have 15 

experienced ACE (Duffy et al., 2020). Recently, researchers have begun exploring such 16 

gene and environment interaction effects in predicting the development of BD sub-17 

phenotypes (Aas et al., 2020; Anand et al., 2015; Park et al., 2020). These studies were 18 

based on the development of genome-wide association studies (GWAS) and polygenic 19 

risk score (PRS) calculations (see sections 1.4.1 and 1.4.2 for details). The calculation 20 

of polygenic risk scores generally has two primary purposes (1) to predict the likelihood 21 

of developing the outcome of interest by synthesizing existing GWAS information into 22 
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a single measure; (2) to estimate the predictive ability of known effects. Therefore, 1 

PRSs can classify the relative risk of a specific outcome for an individual within a 2 

population and have been applied in different gene-environment interaction studies.  3 

The gene-environment interaction can be additive that the effects of genes and 4 

environment both independently contribute to the risk thus, the effects simply sum 5 

together (Rami et al., 2025). In contrast, the interaction effects can also be multiplicative 6 

that the effects of genes and environment amplify one another beyond a simple sum. 7 

Thus, the presence of both risk factors together may result in a higher risk than would 8 

be expected if their effects were additive (Lin et al., 2025). 9 

However, there have been recent conflicts regarding how BD PRS is associated 10 

with the number of ACEs and how BD PRS interacts with ACE in the predictions of 11 

various BD sub-phenotypes (Aas et al., 2020; Park et al., 2020). For example, Aas et al. 12 

(2020) showed that BD PRS might only interact with childhood maltreatment in 13 

predicting the risk of rapid cycling. In comparison, Park et al. (2020) observed another 14 

interaction effect in predicting the age at onset (AAO) of BD. These differences 15 

between results may be due to different ACE definitions or clinical heterogeneity 16 

between sample cohorts. For instance, Aas et al.'s (2020) measures of ACE were mainly 17 

CM, while Park et al.'s (2020) measures were mainly ACE, with an additional CM item 18 

on physical abuse.  19 

There has been ongoing debate regarding how ACEs should be defined. The 20 

original ACE framework proposed by Felitti et al. (1998) encompassed three domains: 21 

abuse, neglect, and household dysfunction (e.g. domestic violence, and parental 22 
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separation/divorce). However, following scholars have broadened the ACEs definitions 1 

to include other adversities, including discrimination, peer victimization, unsafe 2 

neighbourhoods, and socioeconomic problems further increasing conceptual 3 

inconsistency (Karatekin & Hill, 2019). It is important to distinguish between  4 

independent events (e.g. parental death, financial hardship, or divorce) and 5 

victimization experiences (e.g. neglect and abuse), as they may differ in developmental 6 

impact and intervention implications (Fitzgerald & Gallus, 2025; McLaughlin, 2017). 7 

The lack of a clear and consistent definition in past studies obscures the distinct effects 8 

of different adverse experiences. 9 

Another major limitation of both these past studies is that they did not consider an 10 

individual's genetic liability to other psychiatric disorders (Grigoroiu-Serbanescu et al., 11 

2020). Given that BD has a high level of overlapping clinical heterogeneity and shared 12 

genetic risk with other psychiatric disorders, it seems necessary to include multiple 13 

psychiatric PRSs and their interactions with ACE to predict phenotype development 14 

(Baldwin et al., 2022; Coombes et al., 2020). 15 

Differentiating between attention-deficit/hyperactivity disorder (ADHD) and BD 16 

remains as a challenge for clinicians, as these two disorders have extensive symptom 17 

overlap, reciprocal comorbidity, and overlapping age of onset periods (Brus et al., 2014; 18 

Marangoni et al., 2015). ADHD and BD were proven to be genetically correlated 19 

(rg 0.121) and share common risk variants (O’Connell et al., 2021). Children with 20 

ADHD were more likely to have higher ACE exposure than children without ADHD 21 

(Brown et al., 2017). And the higher exposure to ACE may also increase their risks to 22 
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develop ADHD (Crouch et al., 2021). The presence of ADHD symptoms can be an 1 

indication of worse depression presentation (Powell et al., 2021) and is linked to rapid 2 

cycling between BD episodes (Aedo et al., 2018). 3 

In addition, genetic predisposition to MDD can be predictive of specific patterns 4 

of depression symptoms (Martínez-Levy et al., 2021). An additive interaction effect 5 

between genetic predisposition to depression and trauma exposure has been observed 6 

on depressive symptoms among MDD patients (Thorp et al., 2023). Meanwhile, SCZ 7 

PRS can also be predictive of schizophrenia patients’ psychotic symptoms, cognition, 8 

illness severity, and diagnostic changes (K. G. Jonas et al., 2019). However, no previous 9 

study specifically examined how these different psychiatric genetic liabilities interact 10 

with environment risk factors such as ACE in predicting the development of BD sub-11 

phenotypes.  12 

To address these research gaps, we wanted to replicate past gene x environment 13 

(GxE) findings on ACE and BD PRS. We also wanted to explore these multiple PRSs’ 14 

prediction effects of BD sub-phenotype development. Thus, our research had three main 15 

aims: 16 

(1) to clarify the association between BD PRS and ACE;   17 

(2) to investigate how the number of ACEs interacts with multi-PRSs in the 18 

predictions of distinct BD sub-phenotypes;   19 

(3) to understand whether ACE could predict BD sub-phenotype development 20 

and change the interaction effect when CM items are absent.   21 

https://www.sciencedirect.com/topics/medicine-and-dentistry/genetic-predisposition
https://www.sciencedirect.com/topics/medicine-and-dentistry/genetic-predisposition
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Our objective was to use multiple linear and logistic regressions to explore the 1 

association between the PRSs and the ACE numbers, including their interaction effect 2 

in predicting the associated sub-phenotypes. We hypothesized that the multi-PRSs 3 

would interact with ACEs in predicting the sub-phenotype development. People with 4 

higher PRSs (BD/ADHD/MDD/SCZ) and more ACEs were predicted to have 5 

developed BD at a younger age and developed more severe or complex sub-phenotypes, 6 

such as psychosis symptoms, suicide ideation, and rapid cycling.  7 

 8 

2.3 Methods 9 

2.3.1 Participants 10 

All BD cases received an ICD10 diagnosis of BD from a UK National Health 11 

Service (NHS) psychiatrist (World Health Organization, 1992). Ancestrally matched 12 

healthy controls (n = 1818) were recruited from the NHS blood transfusion service and 13 

from study sites where case participants were also being recruited. The controls were 14 

screened for an absence of a lifetime history of the following disorders: schizophrenia 15 

and any other psychosis, major affective or schizoaffective disorders, eating disorders, 16 

alcohol/drug addiction, and obsessive-compulsive disorders. All participants were of 17 

English, Scottish, Welsh, or Irish descent and had at least three out of four grandparents 18 

of the same descent. The study was approved by the NHS Metropolitan Multi-centre 19 

Research Ethics Committee (MREC/03/11/090). All participants read an approved 20 

information sheet and signed a physical informed consent form. 21 

 22 
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2.3.2 Study measures 1 

Semi-structured interviews were performed with BD participants using the lifetime 2 

version of the Schizophrenia and Affective Disorder Schedule (SADS-L; Spitzer et al., 3 

1978), the 90-item Operational Criteria Checklist (OPCRIT; McGuffin et al., 1991) and 4 

the Children Life Event Questionnaire (CLEQ; Monaghan et al., 1979). In a subset of 5 

participants, the 25-item version of the Wender Utah Rating Scale (WURS) was used 6 

to measure childhood ADHD symptoms (Grigoroiu-Serbanescu et al., 2020; M. F. Ward 7 

et al., 1993). A subset of the participants received lithium treatment prior to the 8 

assessment and their response to lithium was scored using data from clinicians and the 9 

research participant. Where these scores differed the clinician’s rating was used. The 10 

data was coded in a binary format to differentiate between responders and non-11 

responders. Participants’ premorbid personality disorder (PPD) diagnosis was assessed 12 

with OPCRIT item 11. BD age of onset, presence of psychosis symptoms, presence of 13 

suicide ideation, and presence of rapid cycling were selected for analyses in the current 14 

study. These variables were chosen because of their relevance to BD according to past 15 

reviews (Escamilla & Zavala, 2008; Palmier-Claus et al., 2016). We also sought to 16 

replicate previous findings from Park et al. and Aas et al. (Aas et al., 2020; Park et al., 17 

2020).  18 

In this research, BD age of onset was defined as the earliest age at which symptoms 19 

began to cause subjective distress or impair functioning or at which medical advice was 20 

sought for psychiatric reasons. Age at onset was stored as a continuous variable 21 

(OPCRIT item 4). The presence of psychotic symptoms was defined as whether the 22 
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participants disclosed any symptoms of impaired reality testing (any presence of 1 

OPCRIT items 54-77; see Appendix 2.1). The presence of suicide ideation was defined 2 

as whether the participants with BD reported thoughts of death (not necessarily their 3 

own), thinking of suicide, wishing to be dead, or attempting to kill themselves (OPCRIT 4 

item 43). The presence of rapid cycling was defined as whether the patient ever had 5 

four or more mood disturbances in one year. These latter three variables were stored in 6 

binary format. 7 

ACEs were measured separately using the CLEQ, an adaption of the children's life 8 

events inventory, which records the ACE experienced before the age of 16 (Monaghan 9 

et al., 1979). The CLEQ included 13 binary "YES" or "No" questions. The first 12 10 

questions had content such as the death of a parent; the death of a brother or sister; 11 

serious illness; hospitalisation of a parent; teenage pregnancy; suspension from school 12 

(see CLEQ in Appendix 2.2). The last question required the participants to specify other 13 

significant adverse life events experienced as a child if they answered "YES." Due to 14 

the variability of events recorded with question 13, we only focused on the first 12 15 

CLEQ questions. If the participant answered "Yes" to any of the first 12 questions, this 16 

indicated the experience of ACE. The number of "YES" answers to all 12 questions 17 

indicated how many ACEs each participant had been through. 18 

 19 

2.3.3 Genotyping, imputation, and quality control 20 

Genome-wide single nucleotide polymorphism data was available for the BD and 21 

healthy control subjects. The data was generated in two waves at the Broad Institute, 22 
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Boston, MA, US, using the Illumina PsychArray and Illumina Global Screening Array 1 

(GSA). The quality control and imputation methods used for the PsychArray had been 2 

described elsewhere (Grigoroiu-Serbanescu et al., 2020). The genotype data from the 3 

GSA underwent equivalent quality control and imputation procedures as for the 4 

PsychArray. 5 

 6 

2.3.4 Calculation of the polygenic risk score (PRS) 7 

Patients’ multi-PRSs (BD/ADHD/MDD/SCZ) were computed using imputed data 8 

from the PsychArray and GSA with the PRS-CS-auto method which provides a single 9 

score for each sample without any thresholds (Ge et al., 2019). The PRS-CS-auto 10 

method was chosen over other methods since it outperformed other existing methods 11 

according to the simulation studies by Ge et al. (2019). Pain et al. (2021) also found 12 

PRS-CS-auto to be the best of the pseudo-validation PRS methods. PRS-CS is distinct 13 

as it utilises a high-dimensional Bayesian regression framework and places a 14 

continuous shrinkage (CS) before SNP effect size calculations. Such procedures result 15 

in substantial computational advantages and enable multivariate modelling of local LD 16 

patterns, which makes PRS-CS robust to varying genetic architectures.  17 

The application of the PRS-CS method required an LD reference panel and 18 

reference GWAS summary statistic, which help infer the posterior effect sizes of SNPs. 19 

We chose the European sample from The 1000 Genomes Project Consortium (2010) as 20 

our LD reference panel. The BD reference GWAS came from Mullins et al. (2021) 21 

which included the PsychArray samples used in the current study. We therefore used 22 
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summary statistics generated without the overlapping samples to avoid confounding. 1 

Our ADHD reference GWAS came from the Psychiatric Genomics Consortium, a meta-2 

analysis including 38,691 ADHD cases (Demontis et al., 2022). We used data from 3 

Howard et al. (2019) for MDD GWAS which excluded UK Biobank and 23andMe data 4 

covering 170,756 cases and 329,443 controls. The SCZ GWAS came from Trubetskoy 5 

et al. (2022) which covered 68,676 cases and 96,079 controls. We adapted all GWAS 6 

samples to be based on subjects of European ancestry and data from the samples that 7 

we had contributed to the PGC schizophrenia analyses excluded our own lab’s data. 8 

The new GWAS generation followed the same procedures as described by each GWAS 9 

paper. The reference GWAS sample sizes were calculated using the effective sample 10 

size method (Neff) as 4/(1/N_cases + 1/N_controls), where N_cases is the number of 11 

cases and N_controls is the number of controls.  12 

We used the mean and standard deviation of the PRS from the healthy controls to 13 

standardise the PRS data of the BD cases. This was performed separately for the 14 

PsychArray and the GSA data. By standardising the PRSs to a normal distribution with 15 

mean = 0 and SD = 1, the PRSs from the PsychArray and GSA could be combined 16 

directly and applied easily into regression models as continuous variables. Also, the 17 

standardisation of the PRS allowed the conversion of an individual’s PRS to quantiles 18 

for risk comparison across individuals.  19 

 20 

2.3.5 Statistical analysis 21 

CLEQ and PRS data was available for 885 BD subjects, 640 from the PsychArray 22 
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and 245 from the GSA. The participants were first divided into two groups based on the 1 

presence of ACE and then compared for the difference in characteristics. Wilcoxon rank 2 

sum tests, chi-squared tests and independent t-tests were applied according to the 3 

variable type and distribution. To illustrate the association between ACEs and multi-4 

PRSs, we first conducted pairwise comparisons using simple t-tests taking ACE as a 5 

categorical variable. Then we conducted linear regressions using ACE total number and 6 

multi-PRSs taking appropriate adjustments. 7 

Next, we performed multiple linear and logistic regression analyses to assess how 8 

ACE, multi-PRSs and their interactions predict the development of selected BD sub-9 

phenotypes. The assumptions for linear and logistic regressions were pre-checked and 10 

found to be satisfactory for each regression. Then the CLEQ total score, one PRS, or 11 

their interaction term, was each added into the model by sequence. Finally, we divided 12 

the samples into four quantile groups based on their BD/ADHD PRS values respectively. 13 

We conducted additional logistic regressions taking the lowest PRS group as reference 14 

to test if people with higher BD/ADHD PRSs would have higher odds of experiencing 15 

ACE or developing the selected sub-phenotypes. The presence of ACE was added as a 16 

moderator. We carried out additional interaction analyses to examine if there were 17 

significant differences between each PRS quantile group and the presence of ACE, and 18 

the interactions between ADHD and BD PRS were also examined.  19 

The participants’ BD age of onset and sex were included as covariates in all 20 

analyses except for age of onset where only sex was included. The genotyping chip type 21 

and the first three principal components from GWAS population stratification were 22 
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included in addition for all regression analyses involving PRS to account for chip and 1 

ancestry confounding. To further account for genotyping difference, we conducted 2 

additional sensitivity analyses using PRSs generated from only overlapping risk 3 

variants from both chips (Appendix 2.3 and 2.4). All these described analyses were 4 

done using RStudio with R version 4.1.3 (R Core Team, 2021). 5 

To account for multiple testing, we applied False Discovery Rate (FDR) correction 6 

method (Benjamini & Hochberg, 1995) to the results obtained using the p.adjust 7 

function in R for each set of analyses. The FDR method was chosen over the others as 8 

it gives a good illustration of results and has been applied in previous studies involving 9 

PRS (Grigoroiu-Serbanescu et al., 2020). 10 

 11 

2.4 Results 12 

2.4.1 Sample demographics 13 

Overall, the participants had a median age of 49 when they received the assessment. 14 

62% of the participants experienced at least one ACE before the age of 16 (see Table 15 

2.1). The samples contained a high proportion of females (60%) and type 1 BD patients 16 

(65%). The two groups did not differ in sex or BD type ratios. The participants also did 17 

not differ in childhood ADHD (defined using the WURS) and responses to lithium. 18 

However, the participants with any presence of ACE were more likely to have PPD 19 

(p=0.029). The participants had a median BD onset age of 19. The participants’ age at 20 

interview and BD onset age was earlier in subjects who had experienced at least one 21 

ACE (See Table 2.1). The participants also differed in the presence of suicide ideation 22 
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(p=0.017) and rapid cycling (p=0.016). We found strong evidence to suggest that the 1 

presence of ACE was associated with an increase in ADHD PRS (p=0.005).  2 
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Table 2.1 Participants’ Demographics and Clinical Characteristics concerning 

ACE Presence 

Variables N Overall 

N = 885 

Group without ACE 

N = 338 (38%) 

Group with ACE 

N = 547 (62%) 

p-values 

Age at interview  728 49 (39, 59) 50 (42, 60) 48 (38, 57) 0.003a 

Sex (Females) 885 532 (60%) 199 (59%) 333 (61%) 0.600
b
 

BD type 885 

   

0.400b 

BD type 1  572 (65%) 224 (66%) 348 (64%)  

BD type 2  141 (16%) 56 (17%) 85 (16%)  

Schizoaffective BD  172 (19%) 58 (17%) 114 (20%)  

Childhood ADHD 191 37.07 (22.58) 39.00 (21.03) 35.83 (23.54) 0.333c 

Lithium responders 418 152 (36%) 65 (38%) 87 (35%) 0.612b 

PPD diagnosis 824 74 (9%) 19 (2%) 55 (7%) 0.029b 

Age of BD onset  746 19 (16, 29) 22 (17, 29) 18 (15, 28) 0.009a 

Psychotic symptoms  844 598 (71%) 222 (69%) 376 (72%) 0.400b 

Suicide ideation 814 613 (75%) 217 (71%) 396 (78%) 0.017b 

Rapid cycling 499 215 (43%) 61 (36%) 154 (47%) 0.016b 

BD PRS  885 0.71 (1.05) 0.72 (1.01) 0.70 (1.08) 0.819c 

ADHD PRS  885 0.02 (1.03) -0.10 (1.05) 0.10 (1.01) 0.005c 

MDD PRS 885 0.26 (1.00) 0.19 (0.99) 0.30 (1.00) 0.113c 

SCZ PRS 885 0.52 (0.97) 0.59 (0.96) 0.48 (0.97) 0.101c 

Notes. ACE, adverse childhood experience; childhood ADHD (scores from the Wender Utah rating scale); PPD, premorbid 

personality disorder; BD, bipolar disorder; ADHD, attention deficit hyperactivity disorder; MDD, major depressive 

disorder; SCZ, schizophrenia disorder; IQR, interquartile range; SD, standard deviation; PRS, polygenic risk score. 

a Wilcoxon rank sum test; median (IQR) 

b Pearson's Chi-squared test of independence; n (%) 

c Independent t-test; mean (SD) 

In bold p values are below 0.05 threshold. 
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2.4.2 Correlations between multi-PRSs and the CLEQ scores 1 

We found no evidence supporting any associations between BD PRS and ACE 2 

scores using pairwise comparisons (see Figure 2.1) or linear regressions with 3 

(coefficient=-0.037; 95% CI: -0.146 to 0.073, p=0.511) or without any adjustments 4 

(coefficient=-0.051; 95% CI: -0.149 to 0.046, p=0.300). However, we found strong 5 

evidence suggesting that the participants with none and three or more ACE differed in 6 

ADHD PRS (see Figure 2.1). The unadjusted linear regression results also indicated 7 

that higher ADHD PRS increased the susceptibility to ACE reporting 8 

(coefficient=0.198, 95% CI: 0.099 to 0.296, p<0.001).  The association was even 9 

stronger after adding in adjustments (coefficient=0.231, 95% CI: 0.118 to 10 

0.345, p<0.001). Weak evidence was found to suggest the association between MDD 11 

PRS and ACE scores (coefficient=0.103, 95% CI: <0.001 to 0.205, p=0.049) the 12 

evidence remained after adding in adjustments (coefficient=0.127; 95% CI: 0.012 to 13 

0.243, p=0.031). No evidence could be found for SCZ PRS before (coefficient=-0.099, 14 

95% CI: -0.204 to 0.006, p=0.066) or after adjustment (coefficient=-0.043, 95% CI: -15 

0.161 to 0.074, p=0.470). And no other pair-wise comparison results survived 16 

correction for multiple testing (see Figure 2.1). 17 
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Figure 2.1 Mean Polygenic Risk Scores for ADHD, BD, MDD, and SCZ across 

ACE Groups 

Notes. ACE, adverse childhood experience; BD, bipolar disorder; ADHD, attention deficit 

hyperactivity disorder; MDD, major depressive disorder; SCZ, schizophrenia disorder. 

The above numbers corresponded to PRS means for each ACE group. 

* in the current plot, p values survived FDR multiple testing correction for simple t-tests for pair-

wise comparison. 



Page 62 / 258 

2.4.3 ACE/BD PRS associations & interaction with phenotypes 1 

We found substantial evidence to suggest that each unit increase in BD PRS would 2 

increase the odds of having psychotic symptoms by exp(0.258) = 1.294 (95% CI 1.093 3 

to 1.538; FDR_p=0.035; See Table 2.2).  We also found strong evidence that each unit 4 

increase in ACE number would increase the odds of having rapid cycling by exp(0.228) 5 

= 1.256 (95% CI 1.084 to 1.463; FDR_p=0.035). We found some tendency that ACE 6 

might be associated with an earlier age of onset. We carried out additional subgroup 7 

analyses to clarify the effect. We found strong evidence to suggest that only males who 8 

experienced ACE would have earlier age of onset (coefficient -1.568, 95% CI: -2.568 9 

to -0.567, p=0.002).  10 

Overall, we did not observe any interaction effect between ACE number and BD 11 

PRS in predicting any of the sub-phenotypes examined. (See Table 2.2).  12 

 13 

2.4.4 ADHD/MDD/SCZ PRS associations & interaction with phenotypes 14 

We found strong evidence to suggest that each unit increase in ADHD PRS led to 15 

an increase in the odds of developing rapid cycling BD by exp(0.369) = 1.45 (95% CI 16 

1.20–1.75; FDR_p=0.002). No other symptoms were associated with the ADHD PRS 17 

and no significant interaction effect between ACE number and ADHD PRS in 18 

predicting these sub-phenotypes was observed (see Table 2.2).   19 

We could not find any evidence to suggest MDD and SCZ PRS would predict any 20 

of these selected sub-phenotypes (see Table 2.3). And we observed no interaction effect. 21 
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Table 2.2 Results of Multiple Regression Analyses with Adjustments based on 

ACE (total score) and BD/ADHD PRS 

Variables Estimated 

Coefficient 

Standard 

Error 

Confidence 

Intervals (95%) 

Reference 

Values 

p FDR_p 

Age at onseta       

  ACE -0.835 0.330 -1.482, -0.188 -2.543 0.012 0.104 

  BD PRS -0.315 0.466 -1.230, 0.600 -0.677 0.499 0.877 

  BD Interaction -0.316 0.328 -0.960, 0.328 -0.963 0.336 0.765 

  ADHD PRS -0.624 0.491 -1.588, 0.339 -1.273 0.204 0.717 

  ADHD Interaction -0.421 0.341 -1.090, 0.248 -1.236 0.217 0.717 

Presence of psychotic symptomsb  

  ACE 0.069 0.063 -0.052, 0.195 1.091 0.275 0.761 

  BD PRS 0.258 0.087 0.089, 0.430 2.974 0.003 0.035 

  BD Interaction -0.074 0.063 -0.197, 0.051 -1.177 0.239 0.718 

  ADHD PRS -0.043 0.090 -0.221, 0.134 -0.478 0.633 0.878 

  ADHD Interaction 0.005 0.065 -0.122, 0.133 0.074 0.941 0.991 

Presence of suicide ideationb       

  ACE 0.178 0.074 0.037, 0.328 2.398 0.016 0.119 

  BD PRS -0.048 0.093 -0.231, 0.134 -0.514 0.607 0.878 

  BD Interaction -0.088 0.072 -0.229, 0.053 -1.229 0.219 0.717 

  ADHD PRS 0.055 0.098 -0.137, 0.248 0.562 0.574 0.878 

  ADHD Interaction -0.007 0.077 -0.156, 0.146 -0.095 0.924 0.991 

Presence of rapid cyclingb       

  ACE 0.228 0.076 0.081, 0.381 2.992 0.003 0.035 

  BD PRS -0.106 0.103 -0.310, 0.095 -1.032 0.302 0.765 

  BD Interaction -0.041 0.085 -0.209, 0.125 -0.479 0.632 0.878 

  ADHD PRS 0.495 0.121 0.262, 0.738 4.080 <0.001 0.002 

  ADHD Interaction 0.144 0.090 -0.30, 0.324 1.600 0.109 0.563 

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention deficit 

hyperactivity disorder. 

a Multiple linear regression analyses, reference value t. 

b Multiple logistic regression analyses, reference value z. 

FDR_p = false discovery rate corrected p values for multiple testing. 

In bold p values were significant before correction or survived FDR correction for multiple testing. 

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was included). 

PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population 

stratification in addition to sex and age of onset. 
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Table 2.3 Results of Multiple Regression Analyses with Adjustments based on 

Total ACE Number and MDD/SCZ PRS 

Variables Estimated 

Coefficient 

Standard 

Error 

Confidence 

Intervals (95%) 

Reference 

Values 

p FDR_p 

Age at onseta       

  MDD PRS -0.472 0.494 -1.442, 0.498 -0.956 0.340 0.765 

  MDD Interaction -0.070 0.331 -0.719, 0.579 -0.212 0.832 0.991 

  SCZ PRS 0.021 0.501 -0.961, 1.004 0.043 0.966 0.991 

  SCZ Interaction -0.299 0.358 -1.001, 0.403 -0.837 0.403 0.853 

Presence of psychotic symptomsb      

  MDD PRS -0.052 0.091 -0.232, 0.127 -0.574 0.566 0.878 

  MDD Interaction -0.001 0.064 -0.128, 0.123 -0.017 0.987 0.991 

  SCZ PRS 0.118 0.092 -0.063, 0.299 1.280 0.201 0.717 

  SCZ Interaction -0.134 0.069 -0.251, 0.021 -1.643 0.100 0.563 

Presence of suicide ideationb       

  MDD PRS -0.041 0.098 -0.233, 0.151 -0.418 0.676 0.888 

  MDD Interaction -0.002 0.074 -0.149, 0.143 -0.028 0.978 0.991 

  SCZ PRS -0.001 0.100 -0.199, 0.195 -0.011 0.991 0.991 

  SCZ Interaction 0.021 0.086 -0.148, 0.190 0.241 0.810 0.991 

Presence of rapid cyclingb       

  MDD PRS 0.086 0.111 -0.131, 0.304 0.776 0.438 0.876 

  MDD Interaction 0.032 0.081 -0.128, 0.193 0.397 0.691 0.888 

  SCZ PRS 0.052 0.109 -0.161, 0.267 0.477 0.634 0.878 

  SCZ Interaction 0.052 0.080 -0.105, 0.212 0.641 0.521 0.878 

Notes. ACE, adverse childhood experience; MDD, major depressive disorder; SCZ, schizophrenia disorder 

a Multiple linear regression analysis, reference value t. 

b Multiple logistic regression analysis, reference value z. 

FDR_p = false discovery rate corrected p values for multiple testing. 

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was adjusted). 

PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population 

stratification in addition to sex and age of onset. 
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2.4.5 PRS quantile analyses 1 

Given that no effect could be observed from MDD/SCZ PRS, participants were 2 

only divided into quantile groups based on their BD/ADHD PRSs for ACE influence 3 

(see Table 2.4). Overall, we found strong evidence to suggest that BD patients in the 4 

highest ADHD PRS quantile group had 2.009 higher odds of having experienced ACE 5 

than those in the lowest ADHD PRS quantile group (95% CI 1.230 to 3.313, p=0.006 6 

FDR_p=0.046; Figure 2.2A).  7 

BD patients in the highest BD PRS quantile group had 1.917 higher odds of 8 

developing psychotic symptoms than those in the lowest BD PRS quantile group (95% 9 

CI 1.166 to 3.182, p=0.011, FDR_p=0.234; Figure 2.2B). Meanwhile, BD patients in 10 

the highest ADHD PRS quantile group had 2.642 higher odds of developing rapid 11 

cycling than those in the lowest ADHD PRS quantile group (95% CI 1.393 to 5.097, 12 

p=0.003, FDR_p=0.026; Figure 2D). 13 
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Table 2.4 Results of PRS Quantile Group Comparisons for the Odds Plot 

Variables Odds Confidence 

Intervals (95%) 

Reference 

Values 

p FDR_p 

Presence of ACE      

BD Q1 vs Q2  0.889 0.558, 1.416 -0.495 0.621 1.000 

BD Q1 vs Q3 1.106 0.696, 1.758 0.425 0.671 1.000 

BD Q1 vs Q4 1.140 0.714, 1.821 0.548 0.584 1.000 

ADHD Q1 vs Q2 0.983 0.627, 1.540 -0.073 0.942 1.000 

ADHD Q1 vs Q3 1.365 0.854, 2.186 1.299 0.194 0.775 

ADHD Q1 vs Q4 2.009 1.230, 3.313 2.764 0.006 0.046 

Presence Psychotic Symptoms      

BD Q1 vs Q2  1.567 0.964, 2.562 1.803 0.071 0.209 

BD Q1 vs Q3 1.546 0.953, 2.519 1.759 0.079 0.209 

BD Q1 vs Q4 1.917 1.166, 3.182 2.547 0.011 0.087 

ADHD Q1 vs Q2 0.922 0.560, 1.513 -0.321 0.748 1.000 

ADHD Q1 vs Q3 0.696 0.421, 1.143 -1.428 0.153 0.307 

ADHD Q1 vs Q4 0.925 0.547, 1.568 -0.289 0.772 1.000 

Presence of suicide ideation      

BD Q1 vs Q2  0.949 0.548, 1.642 -0.187 0.852 1.000 

BD Q1 vs Q3 1.008 0.583, 1.743 0.029 0.977 1.000 

BD Q1 vs Q4 0.800 0.467, 1.366 -0.815 0.415 1.000 

ADHD Q1 vs Q2 1.141 0.683, 1.906 0.504 0.615 1.000 

ADHD Q1 vs Q3 1.054 0.618, 1.800 0.194 0.846 1.000 

ADHD Q1 vs Q4 1.356 0.772, 2.409 1.052 0.293 1.000 

Presence of rapid cycling      

BD Q1 vs Q2  0.785 0.427, 1.434 -0.787 0.431 0.575 

BD Q1 vs Q3 0.576 0.313, 1.051 -1.789 0.074 0.196 

BD Q1 vs Q4 0.727 0.397, 1.323 -1.042 0.297 0.476 

ADHD Q1 vs Q2 1.702 0.901, 3.252 1.629 0.103 0.207 

ADHD Q1 vs Q3 2.059 1.105, 3.893 2.254 0.024 0.097 

ADHD Q1 vs Q4 2.642 1.393, 5.097 2.943 0.003 0.026 

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention 

deficit hyperactivity disorder. 

Results came from multiple logistic regression analysis, reference value z. 

FDR_p = false discovery rate corrected p values for multiple testing. 

All results were adjusted for participants’ BD age of onset and sex, chip type and the first three principal 

components from GWAS population stratification. 

The presence of ACE was included as a moderator in the PRS models for the three sub-phenotypes.  

In bold p values were significant before correction or survived FDR correction for multiple testing.  
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Figure 2.2 The Odds Ratios of having ACE and Developing the Three Selected Sub-phenotypes with Reference to PRS Quantile Levels  

 

Notes. OR odds ratio, CI confidence intervals, PRS polygenic risk scores 

Q1, 0 - 25%; Q2, 25% - 50%; Q3, 50% - 75%; Q4 75% - 100% 

The participants’ sex, age of onset, the genotyping chip type and the first three principal components from GWAS population stratification were included as 

covariates in all analyses. 

The presence of ACE was included as a moderator in the PRS models for the three sub-phenotypes.  

* in the current plot, p values survived FDR multiple testing correctio
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2.4.6 PRS quantile interaction analyses results 1 

To further dissect how the presence of ACE can influence the genetic impact and 2 

if the two PRSs’ associations depend on each other, we carried out additional interaction 3 

analyses (see Table 2.5). We only found weak evidence to suggest a positive interaction 4 

effect between BD and ADHD PRSs on the presence of ACE (estimated coefficient: 5 

0.158, 95% CI: 0.018, 0.301, p=0.028, FDR_p=0.278). The positive result suggested 6 

that participant who had both high BD and ADHD PRSs are more likely to have 7 

experienced ACE than those who had both low BD and ADHD PRSs. We found no 8 

other tendency for an interaction between the two PRSs. However, such results should 9 

be interpretated with cautions because the participants’ ADHD and BD PRS are highly 10 

correlated (estimated coefficient: 0.113, 95% CI: 0.047 to 0.178, p<0.001). The 11 

Variance Inflation Factor (VIF) values for the two PRS interaction variables in the 12 

models ranged from around 12 to 13 indicating potential collinearity. Further 13 

examinations in future studies are required. The other interaction analyses taking PRS 14 

quantile groups and ACE presence showed consistent results to the main analyses as no 15 

significant interaction effects could be detected.16 
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Table 2.5 Results of Additional Interaction Analyses based on ACE Presence and 

BD/ADHD PRS Quantile Groups 

Variables Estimated 

Coefficient 

Standard 

Error 

Confidence 

Intervals (95%) 

Reference 

Values 

p FDR_p 

Presence of ACE       

BD ADHD interaction 0.158 0.072 0.018, 0.301 2.200 0.028 0.278 

Presence Psychotic Symptoms       

BD ACE interaction -0.185 0.169 -0.519, 0.144 -1.099 0.272 0.679 

ADHD ACE interaction 0.059 0.171 -0.277, 0.395 0.346 0.729 0.886 

BD ADHD interaction 0.011 0.076 -0.138, 0.160 0.144 0.886 0.886 

Presence of suicide ideation       

BD ACE interaction -0.296 0.180 -0.651, 0.056 -1.643 0.100 0.335 

ADHD ACE interaction -0.110 0.186 -0.478, 0.253 -0.589 0.556 0.794 

BD ADHD interaction 0.020 0.082 -0.141, 0.181 0.243 0.808 0.886 

Presence of rapid cycling       

BD ACE interaction 0.178 0.211 -0.234, 0.595 0.843 0.399 0.736 

ADHD ACE interaction 0.384 0.220 -0.047, 0.818 1.745 0.081 0.335 

BD ADHD interaction 0.072 0.094 -0.111, 0.257 0.769 0.442 0.736 

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention deficit 

hyperactivity disorder. 

Results came from multiple logistic regression analysis, reference value z. 

FDR_p = false discovery rate corrected p values for multiple testing. 

All results were adjusted for participants’ BD age of onset and sex, chip type and the first three principal components from 

GWAS population stratification. 

The presence of ACE was included as a moderator in the two PRS interaction models for the three sub-phenotypes.  

In bold p values were significant before correction. 
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2.5 Discussion 1 

This study used multiple PRSs to dissect their association and interaction with ACE 2 

for predicting BD sub-phenotypes. Our study demonstrated that BD participants with 3 

higher ADHD PRS tended to report more ACEs, whereas BD PRS was not associated 4 

with ACEs reporting. We also found some weak evidence to suggest that BD patients 5 

with higher MDD may experience more ACE. In addition, our results suggested that 6 

the BD patients with higher BD PRS would have increased odds of developing 7 

psychotic symptoms. Although both increased ACE number and ADHD PRS were 8 

associated with increased odds of developing rapid cycling among BD patients, no 9 

additive interaction effect could be observed.  10 

Past studies had conflicts regarding whether the increase in ACE numbers is 11 

associated with BD PRS positively (Park et al., 2020) or negatively (Aas et al., 2020). 12 

Our results still could not provide a specific answer since we could not identify any 13 

significant results between BD PRS and the reported number of ACE across multiple 14 

analyses. However, our results suggested that increased ADHD PRS was associated 15 

with more ACE reporting. These results are consistent with National Survey of 16 

Children's Health studies which observed that children with ADHD symptoms may 17 

more likely experience ACE (Brown et al., 2017; Crouch et al., 2021). We also found 18 

weak evidence for the positive association between MDD PRS and ACE. Thus, it seems 19 

more likely that BD patients’ genetic liability to other psychiatric disorders together 20 

accounted for the presence of ACE. However, it should not be assumed that the 21 

exposure to ACE is entirely determined by genetic risk, given that most recorded ACE 22 
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were passive. In this case, a possible explanation could be that these participants’ 1 

parents not only transmitted genetic risk variants linked to psychiatric disorders to their 2 

child but also provided adverse environments (Baldwin et al., 2022). In addition, 3 

genetically influenced behaviours in children (e.g., impulsivity, emotional 4 

dysregulation) may also evoke harsher parenting or peer rejection (Reiss et al., 2022).  5 

Most previous research has shown that an increasing number of ACEs is associated 6 

with a lower age of BD onset (Aas et al., 2020; Anand et al., 2015; Park et al., 2020). 7 

Our study also identified the same pattern in results for ACE presence. Only the study 8 

by Park et al. (2020) found an additive interaction effect between BD PRS and ACE for 9 

predicting earlier BD age of onset. Our results and the other research did not identify 10 

such an interaction pattern (Aas et al., 2020). It should be noted that the study by Park 11 

et al. (2020) was purely based on BD type 1 patients. Our samples contained 65% BD 12 

type 1 patients, and the study by Aas et al. (2020) contained 74% BD type 1 patients. 13 

Thus, differences between study samples in the genetic liability to other psychiatric 14 

disorders may have influenced these results (Guzman-Parra et al., 2021). In addition, 15 

although another study by Anand et al. (2015) included 1995 BD type 1 patients, they 16 

still could not identify significant interaction between any single SNP and the presence 17 

of childhood traumatic events on the prediction of BD age at onset. However, they 18 

found that only SNPs in or near genes coding for calcium channel activity-related 19 

proteins (Gene Ontology: 0005262) were more likely to show an interaction effect. 20 

Thus, if the gene x environment interaction exists in predicting BD age of onset, it might 21 

be small and require large sample sizes to detect. Given that the study by Park et al. 22 
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(2020) contained 1615 BD cases, much larger than our sample size of 885 and Aas et 1 

al.'s (2020) sample size of 402. The sample sizes might explain the difference in the 2 

results. Another possible explanation for the difference on age of onset could be sex 3 

differences. Our additional sub-group analyses found that only males who experienced 4 

ACE would have earlier age of onset.  5 

Our results on psychosis symptoms were consistent with Aas et al. (2020), which 6 

similarly recorded the psychosis variable in terms of the episode. Our results showed 7 

that people with a higher BD PRS may be more likely to show psychotic symptoms. 8 

One recent study also found that BD PRS might relate to the manic symptoms in 9 

participants with a history of psychotic episodes (Ahangari et al., 2022). However, we 10 

could not identify any significant association between ACE and psychosis symptoms 11 

or evidence for an interaction effect. Upthegrove et al. (2015) argued that the different 12 

ACE types might influence the development of psychosis symptoms differently. 13 

Childhood abuse had the strongest associations. Although Aas et al.'s (2020) study 14 

focused on CM, covering all abuse items, the associations and interaction effects were 15 

still insignificant. Thus, it seemed likely that these psychotic symptoms in BD subjects 16 

might be more genetically predetermined.  17 

We found that the ADHD PRS in BD subjects may be highly associated with the 18 

presence rapid cycling. However, we should be careful when interpreting the findings 19 

on rapid cycling. In contrast to Aas et al. (2020), we could not find an interaction 20 

between BD PRS and ACE or between ADHD PRS and ACE on rapid cycling. Our 21 

results showed that the increase in ACE number and ADHD PRS might independently 22 
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increase the odds of rapid cycling. And they also positively associated with each other. 1 

Such results may indicate the presence of mediation effects which requires further 2 

examination.  3 

In addition, we could not find any prediction effects from MDD or SCZ PRS. The 4 

previous studies which found these two PRSs’ prediction effects were based on samples 5 

which were of the same category MDD and SCZ patients (K. G. Jonas et al., 2019; 6 

Thorp et al., 2023). Although these two disorders were also genetically correlated with 7 

BD, the current results suggest that they are underpowered to predict the development 8 

of any BD sub-phenotype symptoms.  9 

Overall, we could not identify any significant interaction effect in any models. We 10 

anticipated that cases with more ACE and higher PRSs would develop more severe 11 

phenotypes. However, our results suggested that different levels of PRS might not 12 

significantly influence the relationship between ACE and other BD phenotypes. 13 

Meanwhile, the association between the PRS and sub-phenotypes did not significantly 14 

differ according to the number of ACE participants experienced. Such conflicts might 15 

be because past studies that found the interaction effects included more severe forms of 16 

ACE, such as CM, covering abuse and trauma (Aas et al., 2020; Park et al., 2020). 17 

However, the ACE measurement in our study only included ACE without any traumatic 18 

events such as abuse and neglect. Thus, the interaction effects may have been attenuated 19 

in our study. However, our results also showed evidence that even ACE without any 20 

CM items could be significant predictors for predicting different sub-phenotypes. 21 



Page 74 / 258 

Overall, such results highlight the importance of considering different ACE definitions 1 

for future interaction studies. 2 

Our study first used the more advanced PRS-CS-auto method and the latest 3 

reference GWAS to calculate multi-PRSs. Thus, a straightforward explanation for the 4 

difference between our results and those from past studies might be that the multi-PRSs 5 

used here were more powerful predictors of a subject's genetic liability to psychiatric 6 

disorders. We also used robust correction method for selecting results from the 7 

statistical analyses. Concerning the link between multi-PRSs and ACEs, we replicated 8 

past studies' analyses and ran additional tests. By focusing on ACE items without any 9 

CM items, our results consolidated ACE's potential in predicting different phenotype 10 

developments. Such results also highlighted that future studies should consider the ACE 11 

definition when conducting gene-environment interaction studies. In addition, our 12 

findings confirmed the importance of considering multiple psychiatric PRSs in BD 13 

subjects and their interactions with ACE for improving phenotype predictions. Future 14 

larger-scale studies with more precise separation of ACE types, more psychiatric PRSs 15 

and more of their interactions are encouraged. 16 

This study's findings could be limited by its case-control recruitment and cross-17 

sectional data collection methods. Retrospective data such as analysed in this study is 18 

always subject to potential recall bias. The participants had a median age of 49 at the 19 

interview assessment, but the CLEQ required them to recall life events before age 16. 20 

All data was collected directly from the participants. If the BD patients developed 21 

delusions or hallucinations regarding their childhood experiences, it would be 22 
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impossible for us to tell. Also, our study did not separate ACE severity or phenotype 1 

severity. We focused on only the ACE without any CM items. Thus, we could only 2 

make inferences but not compare ACE and CM items' different effectiveness. In 3 

addition, our findings were limited by our sample size and sample characteristics 4 

(mixed BD types). Future studies can use mixed models that deal better with missing 5 

data, characteristic differences, unequal sample sizes, and non-independence of samples. 6 

Given that all samples are Europeans, our findings might also have limited 7 

transferability. Finally, neither the PRS nor ACEs could explain a large amount of 8 

individual variation. Even though we found some links between PRS and phenotypes 9 

that might be important in the clinic, these results were still a long way from letting us 10 

predict how an individual's phenotype will develop.  11 

BD is a complex and heterogeneous disorder. Both genetic and environmental risk 12 

factors influence its phenotypic development. In this context, future larger-scale studies 13 

with more precise separation of ACE types, more psychiatric PRSs, and more of their 14 

interactions can better illustrate the phenotype development predictions among BD 15 

patients. Together, these efforts will support better BD prognosis, risk prediction, 16 

treatment allocation, and harm prevention. 17 
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3. Implication of the ADCY1 Gene in Lithium Response in Bipolar Disorder by 1 

Genome-wide Association Meta-analysis 2 

A version of this paper has been submitted as preprint at Research Square. 3 

3.1 Abstract 4 

Background: Efforts to examine the influence of genetics in the efficacy of lithium 5 

using GWAS have identified several loci. Here, we report new cases and meta-analyses 6 

to combine previous efforts.  7 

Method: We report data from 1259 participants with BD recruited at University College 8 

London who had been treated with lithium. The data comes from three waves of 9 

genotyping on different arrays. The GWAS data from each array was analysed 10 

separately and then meta-analysed with two published lithium response GWAS datasets. 11 

Post-GWAS analyses were conducted to examine lithium response heritability and its 12 

genetic correlations with other traits. We also attempted to replicate past polygenic risk 13 

scores (PRS) results.  14 

Results: SNP rs116927879 (A/G) was associated with lithium response at a genome-15 

wide significance level (p=4.509×10-08) with a consistent effect across all cohorts. 16 

rs116927879 is located on chromosome 7 and maps to the protein-coding gene ADCY1 17 

and two pseudo-genes, GTF2IP13 and SEPT7P2. The sQTL results suggested that 18 

rs116927879 genotypes may influence the splicing of ADCY1 across different brain 19 

regions. We estimated the SNP heritability (h2) for good lithium response as 20.3% and 20 

15.6% for subjective/objective response definitions, respectively. We did not observe 21 

any genetic correlation or PRS association between the lithium response and 22 
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schizophrenia or major depression disorder. However, we found weak evidence to 1 

suggest that males were more likely to be good responders.  2 

Conclusions: Our GWAS identifies a genome wide significant finding, and provides 3 

updated heritability estimates for lithium efficacy. 4 

 5 

3.2 Introduction 6 

Lithium is a first-line treatment option for BD and has been recommended by 7 

multiple clinical guidelines (UK (NICE, 2014a); Australia & New Zealand (Malhi et 8 

al., 2015); Canada (Yatham et al., 2018)). Lithium has been found to be the most 9 

effective mood stabilizer (Joas et al., 2017), not only in controlling mania and 10 

hypomania symptoms (Cipriani et al., 2011; Yildiz et al., 2011) and reducing depression 11 

severity (J. C. Nelson et al., 2014), but also in preventing suicides and suicide attempts 12 

among BD patients (Baldessarini & Tondo, 2022; Song, Sjölander, et al., 2017). 13 

However, it has been estimated that only around 30% of patients are excellent 14 

responders while around 40% of patients do not receive any benefits (Rybakowski et 15 

al., 2001). Meanwhile, lithium can cause adverse effects on the kidneys, thyroid, and 16 

parathyroid glands (Gitlin, 2016). Exploring the genetic variability underlying 17 

heterogenous lithium response may help clinicians improve future treatment plans.  18 

To date, GWAS of lithium response have identified several different loci. The 19 

earliest lithium response GWAS was reported in 2009 (Perlis et al., 2009). The study 20 

included samples from the US Systematic Treatment Enhancement Program for Bipolar 21 

Disorder (STEP-BD) cohort and a subset of the University College London (UCL) 22 
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samples. Although no SNPs reached genome-wide significance, the findings suggested 1 

that good lithium response was associated with the GRIA2 gene which encodes 2 

glutamate ionotropic receptor AMPA type subunit 2(Perlis et al., 2009). Subsequently, 3 

a GWAS performed in a Han Chinese sample found that another protein-coding gene 4 

GADL1 (glutamate decarboxylase-like protein 1) was highly associated with lithium 5 

response (C.-H. Chen et al., 2014). The top two SNPs (rs17026688 and rs17026651) in 6 

their combined series, had p values of 1.66×10−49 and 7.07×10−50, respectively. 7 

However, these findings could not be replicated in subjects of European ancestry 8 

(Cruceanu et al., 2015), or in other Asian samples (Birnbaum, 2014; Kotambail et al., 9 

2015).  10 

In 2016, Song and colleagues (Song, Bergen, et al., 2017; Song et al., 2016) reported 11 

a GWAS meta-analysis of 3874 BD lithium users from Sweden and the UK. The 12 

researchers analysed the lithium response separately according to objective and 13 

subjective definitions. While 323 participants were objectively good responders using 14 

the clinical definition, 1639 were self-reported good lithium responders. The 15 

researchers conducted four sets of GWAS: lithium responders compared with non-16 

responders and lithium responders compared with healthy controls using both objective 17 

and subjective measures. Overall, one SNP (rs146727601) reached genome-wide 18 

significance from the GWAS of objective measured responders versus controls (Song, 19 

Bergen, et al., 2017). rs146727601 is a two-base deletion on chromosome 11q22.4 in 20 

the gene PTS (6-pyruvoyltetrahydropterin synthase) which is a catalyst involved in the 21 

regulation of serotonin biosynthesis and nitric oxide synthase activity.  22 
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In 2016, Hou et al. (2016) also reported a GWAS for lithium response among BD-I 1 

and II participants. The data included 2343 European BD participants treated with 2 

lithium. The data was collected from 22 sites as part of the International Consortium on 3 

Lithium Genetics (ConLi+Gen). Lithium response was rated on the Retrospective 4 

Assessment of the Lithium Response Phenotype Scale (Alda scale) which is a well-5 

established measurement scale for lithium response (Scott et al., 2020). In the 6 

consortium study, the researchers reported that four linked SNPs on chromosome 21 7 

were associated with good lithium response (rs79663003; rs78015114; rs74795342; 8 

and rs75222709) at a genome-wide level of significance. The chromosomal locus of the 9 

four SNPs contains genes for two long, non-coding RNAs (lncRNA), AL157359.3 and 10 

AL157359.4. Subsequent analyses of the ConLi+Gen data provided insights into the 11 

potential genetic architecture of good lithium response. ConLi+Gen (2018) and Amare 12 

et al. (2021) reported that higher schizophrenia (SCZ) and major depression disorder 13 

(MDD) polygenic risk scores (PRS) were both associated with reduced lithium response 14 

in BD participants. These findings were further consolidated by Schubert et al. (2021), 15 

who demonstrated that a combination of the SCZ and the MDD PRSs provided 16 

improved prediction of lithium treatment response, whereas BD PRS had no impact on 17 

the prediction. 18 

Overall, prior findings from GWAS have highlighted different loci for the 19 

mechanistic action of lithium. This may in part be due to different measures of lithium 20 

response and small sample sizes. In addition, past PRS analyses were only calculated 21 

using samples from ConLi+Gen. The aim of the present study is to report a much-22 
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enlarged University College London (UCL) sample of participants with BD taking 1 

lithium and conduct GWAS meta-analyses with other compatible European samples. 2 

We meta-analysed our GWAS results with the summary statistics from Song et al. (Song, 3 

Bergen, et al., 2017; Song et al., 2016) and Hou et al. (2016), the two largest sets of 4 

GWAS on the European population to date. We estimated SNP heritability for good 5 

lithium response and we conducted exploratory analyses based on the GWAS meta-6 

analysis outputs as follow-up. Finally, SCZ and MDD PRSs were calculated in the 7 

samples to replicate past findings.  8 

 9 

3.3 Methods 10 

3.3.1 Participants 11 

All UCL participants had received an ICD10 diagnosis of BD (World Health 12 

Organization, 1992) from a UK National Health Service (NHS) psychiatrist. A total of 13 

1259 BD participants had a recorded lithium response. Ancestrally matched healthy 14 

control subjects (n=1782) were recruited from the NHS blood transfusion service and 15 

from study sites where case participants were also being recruited. 1323 controls were 16 

screened for an absence of a lifetime history of the following disorders: schizophrenia 17 

and any other psychosis, major affective or schizoaffective disorders, eating disorders, 18 

alcohol/drug addiction, and obsessive-compulsive disorders. 459 unscreened controls 19 

were recruited from the same sites. All participants were of English, Scottish, Welsh, or 20 

Irish descent and had at least three out of four grandparents of the same descent. The 21 

study was approved by the NHS Metropolitan Multi-centre Research Ethics Committee 22 
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(MREC/03/11/090). All participants read an approved information sheet and signed a 1 

physical informed consent form.  2 

 3 

3.3.2 Study measures 4 

The SADS-L (Spitzer et al., 1978) and the 90-item OPCRIT (McGuffin et al., 1991) 5 

were administered to all participants with BD by a psychiatrist or trained researcher. 6 

The participants’ diagnosis with PPD was assessed with OPCRIT item 11. The 7 

assessment of lithium treatment response was determined by the interviewer based on 8 

the rate and severity of BD episodes before and after the treatment using both face-to-9 

face and case note-derived information. Researchers were trained in the application of 10 

all the assessment measures. The rating contained a mixture of the interviewer’s 11 

judgements and the participants’ self-report. The lithium response was first rated on a 12 

5-point Likert scale ranging from very good to very poor response (see Appendix 3.1). 13 

Then only subjects reporting a “very good” or “good response” were coded as “good 14 

responders” while subjects reporting “moderate response”, “poor response”, or “very 15 

poor response” were coded as non-responders. We chose the dichotomous conversion 16 

to differentiate excellent responders and to be consistent with the definitions used in 17 

previous GWAS of lithium response. For instance, ConLi+Gen participants were 18 

classified as “responders” if had Part A score of 7 or higher (total score 10), with 19 

moderate responders excluded. These data were reviewed by a research psychiatrist 20 

(N.B.).  21 

 22 
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3.3.3 Genotyping, imputation, quality control and meta-analyses 1 

Genome-wide single nucleotide polymorphism data was generated in three waves 2 

at the Broad Institute, Boston, MA, USA, using the Affymetrix 500K Array (Affymetrix 3 

Inc., Santa Clara, CA, US), the Illumina PsychArray (Illumina Inc., San Diego, CA, 4 

US), and the Illumina Global Screening Array (GSA; Illumina Inc.). The three waves 5 

of data underwent equivalent quality control and imputation methods which, have been 6 

described in detail elsewhere (Grigoroiu-Serbanescu et al., 2020). 7 

We first performed three separate GWAS with imputed SNP genotypes, from each 8 

wave of genotyping using PLINK v2.00a2LM (Chang et al., 2015), with the 9 

dichotomous lithium response (responders vs non-responders) as the case-control 10 

phenotype. The first three principal components of population structure were included 11 

as covariates to control for population stratification. Sensitivity analysis including sex 12 

as a covariate was conducted, we only observed slight attenuation towards the null. 13 

Thus, to be consistent with previous studies and to avoid potential heterogeneity 14 

between studies that were to be meta-analysed, age and sex were not included as 15 

covariates in the primary analyses.  16 

 17 

3.3.4 Lithium definition heterogeneity testing 18 

Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) reported GWAS results 19 

from their objective and subjective binary lithium response definitions. We chose to use 20 

data from Song et al.’s subjective definition GWAS because this most closely matched 21 

the definition used in the UCL sample and because this measure had the largest overall 22 
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sample size.  1 

Data from a dichotomous coded lithium response ConLi+Gen European GWAS 2 

(GCST012486) published by Hou et al. (2016) was downloaded from the NHGRI-EBI 3 

GWAS Catalog (Sollis et al., 2023) on 24/10/2023. Hou et al.’s lithium definition came 4 

from the Alda scale for the long-term treatment response to lithium (Hou et al., 2016). 5 

Thus, potential heterogeneity within the response definition existed.  6 

We conducted binomial sign tests to compare the direction of SNP associations at 7 

three different p-value thresholds (PT; 1x10-3, 1x10-4; and 1x10-5) with GWAS summary 8 

statistics from the Hou et al. study and from the UCL data using the Song et al.’s 9 

subjective definition GWAS as the reference study. We expected that there would be 10 

strong convergence of SNP associations between the datasets.  11 

LD Score Regression (LDSC; Bulik-Sullivan et al., 2015) was used to further 12 

explore the genetic architecture of lithium response and to investigate the effect of 13 

differences in lithium response definition. The LDSC method requires large sample 14 

sizes, and the algorithm did not converge when all three data sets were analysed 15 

separately. We therefore performed LDSC analyses comparing data from Hou et al., 16 

with the data from a meta-analysis of data from the UCL study and the data from Song 17 

et al.’s subjective GWAS (UCL+Songsub). The meta-analysis was performed using 18 

METAL (Willer et al., 2010). We also examined genetic correlation between the 19 

UCL+Songsub and the Hou et al data with BD GWAS summary statistics from the PGC 20 

BD working group (Mullins et al., 2021). Next, we used Genomic Structural equation 21 

modelling (GSEM; Grotzinger et al., 2019) to fit a one-factor model to investigate 22 
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factor loadings for the UCL+Songsub data and the Hou et al data on the PGC BD 1 

summary statistics.  2 

3.3.5 GWAS meta-analysis & follow-on analyses 3 

After we found no evidence for definition heterogeneity, the GWAS results were 4 

together meta-analysed separately with subjective and objective lithium response 5 

GWAS results from Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) and with 6 

the ConLi+Gen GWAS results from Hou et al. (Hou et al., 2016). We conducted fixed-7 

effect meta-analyses with METAL (Willer et al., 2010) using each GWAS’s Neff 8 

number as weights (see Table 3.1). The two sets of GWAS meta-analyses were labelled 9 

as UCL+SongSub+ConLi+Gen and UCL+SongOb+ConLi+Gen with corresponding data 10 

input order. The UCL+SongSub+ConLi+Gen meta-analysis was used as the primary 11 

analysis, given that Song et al.’s subjective definition mostly aligns with the UCL 12 

definition, and that we found good evidence of overlap genetic association in these three 13 

datasets. Correction for multiple testing was not attempted as Song et al.’s two sets of 14 

GWAS results had highly overlapping samples. The genome-wide significance 15 

threshold was set at P<5×10−08.  16 

The meta-analysis results were uploaded to Functional Mapping and Annotation of 17 

Genome-Wide Association Studies (FUMA) for data interpretation(Watanabe et al., 18 

2017). Single tissue Expression QTL (eQTL) and single tissue splicing QTL (sQTL) 19 

data for the top SNP was extracted from the GTEx project data V8 (dbGaP Accession 20 

phs000424.v8.p2; GTEx Consortium, 2020) on 14/12/2023 focusing on brain regions. 21 

We conducted functional fine-mapping using Polyfun+SuSiE (Weissbrod et al., 2020) 22 
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with the set number of causal variants as five per locus to identify potential causal SNPs. 1 

We took the pre-computed summary LD information from the UK Biobank as the 2 

reference and set the range to cover the start and end positions of the target locus. We 3 

estimated the heritability of good lithium response in BD cases using LDSC taking the 4 

GWAS meta-analysis results (Bulik-Sullivan et al., 2015). We examined the genetic 5 

correlation between lithium responsive BD and SCZ (Trubetskoy et al., 2022) and 6 

MDD (Howard et al., 2019). The top tissue from the MAGMA tissue expression 7 

analysis was testis. We therefore examined the genetic correlation using summary 8 

statistics of testosterone levels from Ruth et al. (2020).  9 

Given that the lithium response phenotype was conditional on BD status, there was 10 

potential collider bias. We applied the Slope-Hunter method (Mahmoud et al., 2022) to 11 

examine if the results would be strongly influenced by the use of the PGC BD GWAS 12 

summary statistics (Mullins et al., 2021). The summary statistics that we used excluded 13 

data that the UCL group had contributed to the PGC and followed the same procedures 14 

described in the original paper. However, some additional sample overlap remained for 15 

the data from Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) and ConLi+Gen 16 

(Hou et al., 2016). This overlap meant that some of the statistical assumptions of the 17 

Slope-Hunter method were broken. Thus, the Slope-Hunter method was only applied 18 

to see if there would be major change in the results patterns, rather than producing 19 

adjusted results. 20 

The meta-analysis results were uploaded to FUMA for data interpretation 21 

(Watanabe et al., 2017). Single tissue Expression QTL (eQTL) and single tissue splicing 22 
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QTL (sQTL) data for the top SNP was extracted from the GTEx project data V8 (dbGaP 1 

Accession phs000424.v8.p2) on 12/14/2023 focusing on brain regions. We conducted 2 

functional fine-mapping using Polyfun+SuSiE (Weissbrod et al., 2020) with the set 3 

number of causal variants as five per locus to identify potential causal SNPs. We took 4 

the pre-computed summary LD information from the UK Biobank as the reference and 5 

set the range to cover the start and end positions of the target locus. We also estimated 6 

the heritability of good lithium response BD cases using LDSC taking the GWAS meta-7 

analysis results (Bulik-Sullivan et al., 2015). And we examined the genetic correlation 8 

between lithium responsive BD and the other two relevant disorders SCZ (Howard et 9 

al., 2019), MDD (Trubetskoy et al., 2022) and the top trait from the MAGMA tissue 10 

expression analysis which is testosterone using summary statistics from (Ruth et al., 11 

2020). 12 
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Table 3.1 The Summary of Study Sample Sizes 

Sources UCL 

Affy 

UCL 

Psych 

UCL 

GSA 

Song et al.’s 

(Subjective) 

Song et al.’s 

(Objective) 

Hou et al.’s 

(ConLi+Gen) 

UCL+SongSub+ConLi+Gen UCL+SongOb+ConLi+Gen 

Responders 164 247 29 1639 387 659 2738 1486 

Non-responders 202 503 114 1059 792 1684 3562 3295 

Total (R vs N) 366 750 143 2698 1179 2343 6300 4781 

Neff (R vs N) 362 663 92 2573 1040 1895 5585 4052 

Affy, Affymetrix 500K Array; Psych, Illumina PsychArray; GSA, Illumina Global Screening Array; UCL+SongSub+ConLi+Gen, the meta-analysis taking Song 

et al.’s subjective measures with the corresponding input order; UCL+SongOb+ConLi+Gen, the meta-analysis taking Song et al.’s objective measures with the 

corresponding input order. 

Neff, the effective sample size used for METAL; R vs N, responders versus non-responders. The Neff numbers were calculated using the recommended methods 

as 4/(1/N cases+1/N controls), where N cases is the number of cases and N controls is the number of controls. The Neff numbers for UCL+SongSub+ConLi+Gen 

and UCL+SongOb+ConLi+Gen were calculated as the sum of corresponding samples’ Neff numbers for each meta-analysis given that these were put as weights.  
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3.3.6 PRS calculation and analyses 1 

PRSs for MDD and SCZ were computed using the PRS-CS-auto method (Ge et al., 2 

2019). We chose the European samples from The 1000 Genomes Project Consortium 3 

(2010) as our LD reference panel. Once weights were produced, individual PRSs were 4 

calculated using PLINK v2.00a2LM (Chang et al., 2015). We then used the mean and 5 

standard deviation of the PRSs from the healthy controls to standardize the PRSs for 6 

the BD subjects.  7 

We used data from Howard et al. (2019) for MDD GWAS which excluded the UK 8 

Biobank and 23andMe data. The SCZ GWAS was from Trubetskoy et al. (2022). We 9 

adapted all GWAS samples to be based on subjects of European ancestry. The summary 10 

statistics that were used excluded the data that the UCL group had contributed to the 11 

PGC SCZ analyses, but followed the same procedures as described by each GWAS 12 

paper. The effective GWAS sample sizes were calculated using the Neff equation 13 

(Willer et al., 2010). Thus, the reference GWAS sample sizes were 449,856 for MDD 14 

and 160,197 for SCZ. We performed multiple logistic regression analyses to assess how 15 

these PRSs predict lithium response in our own samples. The participants’ age of BD 16 

onset, sex, genotyping chip, and first three principal components from population 17 

stratification were included as covariates in all regressions. The statistical assumptions 18 

were pre-checked and found to be satisfactory for each regression.   19 
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3.4 Results 1 

3.4.1 Sample demographics 2 

A total of 6300 and 4781 participants were included in the two sets of GWAS meta-3 

analyses UCL+SongSub+ConLi+Gen and UCL+SongOb+ConLi+Gen respectively (see 4 

Table 3.1). Sample demographics were first combined to examine differences between 5 

lithium responders and non-responders (see Table 3.2). Overall, the participants had 6 

mean ages of 48.82 (SD 13.34) and 48.47 (SD 12.67) years. In the two meta-analyses, 7 

43% and 31% of the participants responded well to lithium. The overall samples for the 8 

meta-analyses contained a high proportion of females (62% vs 59%) and type 1 BD 9 

patients (66% vs 68%). Responders were slightly older at the assessments (50.34 vs 10 

47.64 & 50.60 vs 47.42; p<0.001 in both datasets). Males were overrepresented as good 11 

responders to lithium (40% vs 37%, p=0.007; 44% vs 40% p=0.005) in both meta-12 

analyses. In the UCL+SongSub+ConLi+Gen meta-analysis, there was an increased 13 

proportion of BD I participants coded as good lithium responders (68% vs 64%; 14 

p=0.016). In the UCL samples, we observed the same pattern of sex differences in 15 

lithium response (p=0.039) but not the bipolar subtype difference (p=0.189, See Table 16 

S2). The UCL non-responders more likely had diagnosis of PPD (3% vs 1%, p=0.027). 17 

To further validate the evidence for sex difference, we examined the heterogeneity 18 

across the samples. We did not observe any evidence for heterogeneity in the sex 19 

difference for the UCL+SongSub+ConLi+Gen meta-analysis (Q=0.31, d.f.=2, p=0.859, 20 

I2=0%) or the UCL+SongOb+ConLi+Gen meta-analysis (Q=2.04, d.f.=2, p=0.361, 21 

I2=1.9%). Participants who were lithium responders had risk ratios of 1.14 22 



Page 90 / 258 

(UCL+SongSub+ConLi+Gen, 95%CI: 1.07 to 1.22) and 1.15 (UCL+SongOb+ConLi+Gen, 1 

95%CI: 1.06 to 1.25) for being male according to the common effect model.       2 
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Table 3.2 GWAS Meta-analyses Participants’ Demographics and Clinical 

Characteristics concerning Lithium Response 

 

UCL+SongSub+ConLi+Gen N Overall 

N = 6300 

Lithium Responders 

N = 2738 (43%) 

Lithium Non-responders 

N = 3562 (57%) 

p-values 

Age at interview  6194 48.82 (13.34) 50.34 (14.05) 47.64 (12.77) <0.0011 

Sex  6300    0.007 2 

  Male  2408 (38%)  1082 (40%) 1326 (37%)  

  Female  3892 (62%) 1656 (60%) 2236 (63%)  

BD types 3957    0.016 2 

  Type 1  2607 (66%) 1406 (68%) 1201 (64%)  

  Others  1350 (34%) 673 (32%) 677 (36%)  

UCL+SongOb+ConLi+Gen N Overall 

N = 4781 

Lithium Responders 

N = 1486 (31%) 

Lithium Non-responders 

N = 3295 (69%) 

p-values 

Age at interview  3733 48.47 (12.67) 50.60 (13.09) 47.42 (12.46) <0.0011 

Sex  3839    0.0052 

  Male  1586 (41%) 556 (44%) 1020 (40%)  

  Female  2253 (59%) 697 (56%) 1556 (60%)  

BD types 1496    0.059 2 

  Type 1  1020 (68%) 429 (71%) 591 (66%)  

  Others  476 (32%) 175 (29%) 301 (34%)  

UCL+SongSub+ConLi+Gen, the meta-analysis taking Song et al.’s subjective measures with the corresponding input order. 

UCL+SongOb+ConLi+Gen, the meta-analysis taking Song et al.’s objective measures with the corresponding input order. 

BD, bipolar disorder; SD, standard deviation. 

1 Two Sample t-test; mean (pooled SD) 

2 Pearson's Chi-squared test of independence; n (%) 

Bold in current table for p<0.05. 

Demographics for the ConLi+Gen EUR samples were estimated from their overall samples’ demographics which included 220 

East Asians. And Hou et al. did not report ConLi+Gen samples’ BD types with the split of lithium response. The demographic 

information of the Swedish samples for Song et al.’s objective measures is not included because Song et al. reported a 

correction for the Swedish sample but did not report the updated demographics for the sample. 
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3.4.2 Lithium definition heterogeneity testing 1 

Binomial sign-tests provided strong evidence for non-random convergence of SNP 2 

associations between the lithium response GWAS datasets. These findings became 3 

stronger at more stringent p-value thresholds (PT: 1x10-3, 1x10-4, and 1x10-5; see Table 4 

3.3). For the comparison of the SongSub data with the Hou et al., ConLi+Gen GWAS, 5 

58% (p=5.58x10-53), 66% (p=6.36x10-22), and 83% of SNPs (p=3.30x10-30) had the 6 

same direction of effect at p-value thresholds of 1x10-3, 1x10-4, and 1x10-5 respectively. 7 

For the UCL meta-analysis, the percentages of SNPs with the same direction of effect 8 

as the SongSub data were similar with 52% (p=2.17x10-4), 70% (p=1.51x10-27), and 86% 9 

(p=3.04x10-33) at p-value thresholds of 1x10-3, 1x10-4, and 1x10-5 respectively.  10 

LDSC analysis demonstrated a genetic correlation of 0.904 (SE 0.500) between 11 

UCL+SongSub and ConLi+Gen. There was low genetic correlation with BD 12 

(UCL+SongSub r2 = 0.143, SE 0.093; ConLi+Gen r2 = -0.045, SE 0.139). Additionally, 13 

according to the GSEM one-factor model, the UCL+SongSub and ConLi+Gen GWAS 14 

had high factor loadings of 0.997 and 0.907, respectively, indicating they load strongly 15 

onto the same factor, whereas BD had a low factor loading of 0.139 to that factor. These 16 

results indicated low genetic heterogeneity between lithium response GWAS datasets 17 

using clinical assessments or the Alda scale and indicate that these results were not 18 

highly related to genetic risk for BD. 19 
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Table 3.3 Binomial Sign Test Results for Response Heterogeneity 

 N total N SNP same direction N SNP opposite direction P 

SongSub 10-3 7604    

ConLi+Gen 5635 3278 (58%) 2348 (42%) 5.583x10-53 

UCL 5674 2970 (52%) 2704 (48%) 2.169x10-4 

SongSub 10-4 983    

ConLi+Gen 832 553 (66%) 279 (34%) 6.362x10-22 

UCL 734 512 (70%) 222 (30%) 1.509x10-27 

SongSub 10-5 318    

ConLi+Gen 276 229 (83%) 47 (17%) 3.303x10-30 

UCL 244 211 (86%) 33 (14%) 3.036x10-33 

SongSub, Song et al.’s subjective definition of lithium response GWAS 
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3.4.3 GWAS results for lithium responders vs non-responders 1 

For the UCL+SongSub+ConLi+Gen meta-analysis, we observed little evidence for 2 

genomic inflation (λ=1.01, See Appendix 3.3). We found one SNP rs116927879 (A/G) 3 

reaching the genome-wide significance (p=4.509x10-08) on chromosome 7 with 4 

agreement for the direction of effect in all constituent samples (see Figure 3.1 & Table 5 

3.4). The clumping from FUMA indicated that 196 GWAS-tagged candidate SNPs fell 6 

within the genomic locus from position chr7:45697297-45869101 (hg19, see Appendix 7 

3.5). We conducted follow-up fine mapping with Polyfun+SuSiE to identify potential 8 

causal SNPs within the region. We observed no SNP with posterior causal probability 9 

(PIP) higher than 0.10. The three SNPs with the highest PIP were rs77411260, 10 

rs1128602, and rs116927879. The SNPs rs77411260 (chr7:45823152-45823652) and 11 

rs1128602 (chr7:45762446-45762946) were close to the top SNP rs116927879 12 

(chr7:45864477-45864977) and did not map to any additional genes. 13 

Genotype-Tissue Expression (GTEx) data (Release V8; dbGaP Accession 14 

phs000424.v8.p2) were analysed using the SNP rs116927879 (G/A) and the genes 15 

implicated by FUMA analyses focusing on brain areas (see details in Tables S4 & S5). 16 

Single-tissue eQTL suggested that rs116927879 genotypes influence expression of 17 

GTF2IP13 in the cortex (Normalized effect size (NES)=-0.66, p=1.4×10-20), caudate 18 

(NES=-0.66, p=1.8×10-17), hippocampus (NES=-0.63, p=7.5×10-16), and other brain 19 

areas. The single-tissue sQTL analyses suggested that rs116927879 genotypes 20 

influence splicing of SEPT7P2 in the cerebellum (NES=-1.3, p=3.4×10-25), nucleus 21 

accumbens (NES=-1.4, p=1.1×10-20), cortex (NES=-1.1, p=2.3×10-20), and other 22 
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brain areas. sQTL analyses also suggested that rs116927879 genotypes influenced 1 

splicing of ADCY1 in the cortex (NES=-0.66, p=1.4×10-10), and the frontal cortex 2 

(BA9) (NES=-0.66, p=2.9×10-9) at junction 10 (chr7:45662214:45677869, hg38) of 3 

ADCY1.  4 

For the UCL+SongOb+ConLi+Gen meta-analysis, we found little evidence for 5 

inflation (λ=1.03, see Appendix 3.4) but we observed no SNP reaching the genome-6 

wide significance. We conducted the same eQTL and sQTL analyses for the top SNPs 7 

from this meta-analysis however, no significant outputs could be observed. The top four 8 

lead SNPs from the UCL+SongSub+ConLi+Gen meta-analysis, rs116927879, rs4761584, 9 

rs12296932 and rs28728196 were tested for the directions of effect in the 10 

UCL+SongOb+ConLi+Gen meta-analysis. The directions for all remained unchanged, 11 

suggesting consistent effect direction.  12 

With the application of the Slope-Hunter method, the adjustment factors obtained 13 

for the two sets of meta-analyses were negative implying that variants of BD and good 14 

lithium response were of concordant net directions of effect. We observed no major 15 

change in the result patterns from the adjusted outputs but only slight attenuation 16 

towards the null. These results suggested that the identified top SNPs from the meta-17 

analyses were distinct from BD risks.   18 
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Figure 3.1 The Manhattan Plots for Two Sets of GWAS Meta-analyses  
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Table 3.4 Regions of the Genome showing the Strongest Association Signals with the Binary Trait 

Index SNP Chr Position A1/A2 EAF Z Score P-values Match Weight 

(Neff) 

Mapped Genes 

Responders vs non-responders (using Song et al.’s subjective measurements, UCL+SongSub+ConLi+Gen, 2738 cases 3562 controls, max Neff 5585) 

rs116927879 7 45697297-45869101 A/G 0.152 -5.470 4.509×10-08 ----- 5585 ADCY1, SEPT7P2, GTF2IP13, 

CICP20  

rs4761584 12 94518829-94527590 T/C 0.250 4.953 7.302×10-07 +++++ 5585 RP11-1105G2.3, CCDC41, TMCC3 

rs12296932 12 76062748-76111969 T/G 0.352 -4.703 2.569×10-06 ----- 5585 KRR1, PHLDA1, NAP1L1 

rs28728196 15 39533087-39562972 A/G 0.827 -4.645 3.401×10-06 ----- 5585 C15orf53, C15orf54, THBS1, FSIP1 

Responders vs non-responders (using Song et al.’s objective measurements, UCL+SongOb+ConLi+Gen, 1486 cases 3295 controls, max Neff 4052) 

rs78026375 11 121673147-121768986 T/G 0.082 4.879 1.066×10-06 +++++ 4052 SC5D, CRTAM, ARHGEF12, BLID 

rs9933339 16 23756216-23865532 A/C 0.816 -4.758 1.957×10-06 ???-- 2935 PALB2, ERN2, PLK1, CHP2 

rs2913631 5 5234709-5234709 A/G 0.260 4.729 2.254×10-06 ?++++ 3690 ADAMTS16 

rs709122 3 191425855-191549043 T/C 0.375 4.728 2.273×10-06 ?++++ 3690 PYDC2, FGF12 

Index SNP, the single-nucleotide polymorphism with the strongest association in the genomic region and each is independent at r2<0.1; Chr, chromosome; Position, the 

start and end position (UCSC hg19) of the SNP locus where near-by SNPs were clumped to with nominal associations (p<0.05) and LD (r2<0.1) within 250-kb windows 

taking the 1000 genomes project phase 3 EUR as LD reference; A1/A2, effect and alternate allele; EAF, the effect allele frequency based on 1000 genomes EUR; Z-score, 

the meta-analysis output reference score for the SNP; P-values, the corresponding p-values to the candidate SNP; Match, the agreement across the five datasets, + means 

individuals who carry the A1 allele have better lithium response, - means negative, ? means missing, the orders are: three sets of GWAS from our own samples (1) 

Affymetrix Array, (2) Illumina PsychArray, (3) GSA, Illumina Global Screening Array, (4) Song et al.’s samples using subjective/objective measures, and (5) Hou et al.’s 

EUR samples (ConLi+Gen) ; Weight, the overall Neff of the sample for the SNP; Mapped genes, top 4 genes mapped by positional mapping criterion with maximum 

distance 10 kb. In bold SNP passed genome-wide significant threshold. 
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3.4.4 SNP-heritability estimation & genetic correlations 1 

SNP heritability (h2) for good lithium response was 20.3% (SE 8.4%) for the 2 

UCL+SongSub+ConLi+Gen meta-analysis and 15.6% (SE 9.1%) for the 3 

UCL+SongOb+ConLi+Gen meta-analysis. We observed no genetic correlation between 4 

good lithium response and SCZ for the two sets of GWAS meta-analyses (subjective: 5 

Z=-0.625, p=0.532; objective: Z=-1.239, p=0.215). Nor did we observe any genetic 6 

correlation between good lithium response and MDD for the two sets of GWAS meta-7 

analyses (subjective: Z=-1.753, p=0.080; objective: Z=-1.336, p=0.182). However, we 8 

found weak evidence to suggest the genetic correlation between good lithium response 9 

and total testosterone levels for both sets (subjective: 0.231 (SE 0.112); Z=2.064, 10 

p=0.039; objective: 0.347 (SE 0.161), Z=2.158, p=0.031). Importantly, there was no 11 

genetic correlation between BD and total testosterone levels (Z=0.505, p=0.614) 12 

suggesting the association was more relevant to lithium response. 13 

 14 

3.4.5 PRS analyses results 15 

We attempted to replicate previous studies, which reported that lithium response 16 

could be predicted using PRS for SCZ and MDD. We found no evidence to suggest that 17 

SCZ PRS was predictive of lithium response in the UCL sample (OR 1.040, 95%CI: 18 

0.916 to 1.182, p=0.542). We also found no association between MDD PRS and lithium 19 

response (OR 0.985, 95%CI: 0.868 to 1.119, p=0.818).   20 
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3.5 Discussion 1 

Here we present the largest GWAS meta-analyses of lithium response on European 2 

samples to date. By including data from the UCL study, together with Song et al.’s 3 

subjective and objective measures and ConLi+Gen’s European samples, our GWAS 4 

meta-analyses included 6,300 and 4,781 participants respectively. We identified one 5 

SNP, rs116927879, that reached the genome-wide significance level. The genomic 6 

interval implicated by this finding included the ADCY1 (Adenylate Cyclase 1) gene and 7 

two pseudo-genes, GTF2IP13 and SEPT7P2. While the function of GTF2IP13 and 8 

SEPT7P2 remain poorly understood, ADCY1 plays roles in mediating responses to 9 

increased cellular Ca2+/calmodulin levels which is relevant to regulatory processes in 10 

the central nervous system, as well as memory and learning. 11 

Song et al. (Song, Bergen, et al., 2017; Song et al., 2016) also reported association 12 

between rs116927879 and subjective lithium response, but this finding did not achieve 13 

genome-wide significance in their original study (p=4.99×10−7). With additional 14 

samples from the current UCL study and from ConLi+Gen, rs116927879 became 15 

genome-wide significant with agreement for the direction of effect from all sources. 16 

Potential association with ADCY1 and SCZ has been reported previously(Goes et al., 17 

2015; Sundararajan et al., 2018) and it was also the only gene identified in a cross-trait 18 

GWAS meta-analysis of SCZ and lithium response (ConLi+Gen, 2018).  19 

ADCY1 plays essential roles in the regulatory processes in the central nervous 20 

system that are critical for neurodevelopment and neuroplasticity (J. Chen et al., 2022). 21 

It has been suggested that the circadian modulation of contrast sensitivity is associated 22 



Page 100 / 258 

with Dopamine D4 Receptors (D4Rs) primarily through the ADCY1 signalling pathway 1 

(Hwang et al., 2013). Sleep disturbances and circadian rhythm dysfunction have been 2 

commonly noted among patients with BD (Takaesu, 2018). In addition, the sQTL data 3 

suggested that rs116927879 genotypes may influence expression and splicing of 4 

ADCY1 across different brain regions.  5 

Three main isoforms of ADCY1 have been reported, these include the canonical 6 

longer isoform (ENST00000297323.12) and two shorter isoforms 7 

(ENST00000432715.5 and ENST00000621543.1). The sQTL data from GTEx 8 

suggests that SNP alleles associated with poor lithium led to increased splicing at 9 

junction 10 (chr7:45662214:45677869, hg38) that in turn is likely to result in the 10 

production of the shorter isoforms of ADCY1. The peptide encoded by the long isoform 11 

of ADCY1 contains two adenylate cyclase domains, twelve transmembrane domains 12 

and two calmodulin interaction domains. The shorter isoforms contain the first 13 

adenylate cyclase domain and is therefore likely to have reduced activity. Further 14 

research is needed to fully elucidate the specific functions of these isoform types and 15 

their associations with response to lithium. 16 

We estimated the SNP heritability (h2) for good lithium response to be 20.3% 17 

(subjective meta-analysis) and 15.6% (objective meta-analysis). Inverse correlations 18 

between lithium response and PRS for SCZ and MDD have been reported for the 19 

ConLi+Gen data (Amare et al., 2021; ConLi+Gen, 2018; Schubert et al., 2021). In our 20 

own subject level data, we were not able to replicate these findings. Additionally, we 21 

did not observe genetic correlation between lithium response and SCZ/MDD.  22 
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We found weak evidence to suggest a genetic correlation between lithium response 1 

and genetically predicted testosterone levels which was consistent with our finding of 2 

a sex difference in lithium response. Testosterone, together with other sex hormones 3 

have been suggested to influence the development of mood disorders (G. Lombardo et 4 

al., 2021). Lithium administration in rats has been reported to reduce male fertility 5 

parameters such as testosterone and gonadosomatic index (Abdelwahab et al., 2022). 6 

Data on the effect of sex on lithium response have been contradictory. Two large-scale 7 

meta-analytical studies did not observe sex differences in terms of lithium response 8 

(Hui et al., 2019; Rybakowski, 2014). However, a nationwide study conducted in 9 

Denmark (N=3762) found that females were more likely to be lithium non-responders 10 

(Kessing et al., 2011). Although we observed sex differences in the overall samples, the 11 

ratio differences were still quite small.  12 

The primary limitation to the study is that we used a cross-sectional study design 13 

to collect lithium response data for our own samples which may be hampered by recall 14 

bias. Another concern could be whether to treat lithium response as binary or 15 

continuous due to potential differences in results. In addition, the lithium response 16 

coding in our and Song et al.’s samples were essentially based on clinical impression 17 

whilst the ConLi+Gen group used criteria-based Alda scale. Even though we found no 18 

evidence for definition heterogeneity and a strong genetic correlation between GWAS 19 

summary statistics generated using these different approaches, differences in recording 20 

lithium response may have impacted the results. The findings from the current study 21 

suggest that sex may slightly influence lithium response and future analyses should 22 
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consider formally adjusting for it. Finally, we only included European samples in the 1 

analyses, and therefore the results presented may have limited transferability to people 2 

from different ancestries.  3 

Overall, our GWAS meta-analyses provided new insights for lithium response 4 

among BD patients. We identified one SNP rs116927879 (A/G) reaching genome-wide 5 

significance on chromosome 7 in a region that included the genes ADCY1, SEPT7P2, 6 

and GTF2IP13, which could further explain lithium’s bio-mechanisms. Furthermore, 7 

we first identified sex differences between lithium responders and non-responders on a 8 

genetic level. Future large-scale studies exploring lithium response among BD subjects 9 

that properly account for potential sex differences are encouraged.  10 
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4. Integrating Genome-wide and Epigenome-wide Associations for Antipsychotic 1 

Induced Extrapyramidal Side Effects 2 

A version of this paper has been submitted as a preprint at medRxiv.  3 

4.1 Abstract 4 

Background: Antipsychotic medications are the first-line treatment for schizophrenia. 5 

However, around 40% of people with schizophrenia who are treated with antipsychotics 6 

could develop extrapyramidal side-effects (EPSE) including: 1) Dyskinesias, 2) 7 

Parkinsonism, 3) Akathisia, and 4) Dystonia. This study aimed to identify genetic risk 8 

factors for EPSE presence following antipsychotic treatment. 9 

Method: We conducted Genome-wide association (GWAS) and Epigenome-wide 10 

association (EWAS) meta-analyses of EPSE, with subset analyses separating first and 11 

second generation antipsychotic (FGA/SGA) exposure. We integrated significant 12 

EWAS findings from a between-case design to a comparable GWAS for association 13 

enrichment. We investigated whether polygenic risk scores (PRS) for schizophrenia, 14 

Parkinson’s disease, and Lewy-body dementia could predict EPSE. 15 

Results: The primary GWAS top SNP rs2709733 (A/G) (p=5.755×10-07) mapped to a 16 

long intergenic non-protein coding RNA, LINC01162 with consistent effects across all 17 

cohorts. Subset analyses with distinct FGA exposure indicated suggestive genes such 18 

as NAV2, NRG3, LSAMP and SGA exposure indicated SHISA9 and CNBD1 which are 19 

relevant for schizophrenia, autism, and epilepsy. In our primary EWAS, the most 20 

significant differentially methylated position (DMP) was cg05599348 (3.181×10-07), 21 

located at chrX:103174718 (hg19) mapping to TMSB15B. Comparing EPSE cases to 22 



Page 104 / 258 

healthy controls, we identified nine DMPs associated with EPSE. The DMP 1 

cg12044923 (chr2:241453995, hg19), located within the STK32B gene, showed 2 

significant enrichment for EPSE association (permutation p=0.010). STK32B is relevant 3 

to both psychiatric and movement disorders, suggesting potential shared mechanisms. 4 

Conclusion: Our study sheds new light on the potential biological mechanisms 5 

underlying EPSE development in schizophrenia, highlighting the importance of 6 

exploring both methylation shifts and common SNP associations. Further research with 7 

larger samples sizes and a focus on the role of STK32B are encouraged. 8 

 9 

4.2 Introduction 10 

Antipsychotic medications are the first-line treatment for schizophrenia (Sabe et al., 11 

2022). Although many people benefit, around 70% may experience treatment failure 12 

such as psychiatric rehospitalization, suicide attempt, discontinuation or switch to other 13 

medication (Tiihonen et al., 2017). Extrapyramidal side-effects (EPSE) are common 14 

with antipsychotic treatment (Carbon et al., 2018; Huhn et al., 2019), with 15 

approximately 40% of patients treated with first-generation antipsychotics (FGA) 16 

experiencing EPSEs (Wubeshet et al., 2019). EPSEs still occur with second-generation 17 

antipsychotics (SGA), although at lower rates in comparison with FGA (Divac et al., 18 

2014). FGAs are primarily dopamine D2 receptor antagonists, which reduce 19 

dopaminergic activity to alleviate positive symptoms of psychosis. This, however, often 20 

leads to motor side effects such as EPSE (Kapur & Remington, 2001). Meanwhile, SGA 21 

targets both dopamine D2 and other receptors such as serotonin 5-HT2A receptors. 22 
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Serotonin modulation offsets some dopamine blockade effects thus reducing EPSE 1 

(Leucht et al., 2009; Zhang et al., 2013). EPSEs describe the movement abnormalities 2 

induced by antipsychotics including: 3 

1) Dyskinesia, hyperkinetic choreiform involuntary movements of the face, 4 

extremities, and the trunk (Lim et al., 2021a). When dyskinesia persists for more than 5 

one month it is termed tardive dyskinesia which can sometimes become chronic.  6 

2) Parkinsonism, symptoms of rigidity, tremor and impaired or slow movement 7 

(bradykinesia) (Keener & Bordelon, 2016). 8 

3) Akathisia, characterised by subjective inner restlessness and objective increase 9 

in motor activity such as pacing (Factor et al., 2008).  10 

4) Dystonia, characterised by sustained and abnormal contractions, that can result 11 

in abnormal movements and postures (van Harten & Kahn, 1999). 12 

These movement abnormalities can lead to severe impairment and reduction in the 13 

quality of life of individuals with schizophrenia (D’Souza & Hooten, 2023), by 14 

interfering with daily living activities and social functioning (Fujimaki et al., 2012; 15 

Schouten et al., 2012). In a meta-analysis, the prevalence of spontaneous dyskinesias 16 

and parkinsonism was found to be higher in antipsychotic-naive patients with 17 

schizophrenia and in first-degree relatives of patients with schizophrenia as compared 18 

to healthy controls, indicating a heritable, non-drug induced component to these 19 

abnormalities (Koning et al., 2010). 20 

Parkinsonism seen in EPSE can be clinically indistinguishable from the movement 21 

abnormalities seen in the neurological disorders like Parkinson’s disease (PD) and 22 
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Lewy Body Dementia (LBD). Previous studies have identified shared significant loci 1 

between schizophrenia and PD (Nalls et al., 2019; Smeland et al., 2021). For example, 2 

schizophrenia and PD are both associated with the 22q11.2 deletion syndrome (R. K. 3 

Jonas et al., 2014). A duplication of the SNCA gene, for which pathogenic variants are 4 

associated with autosomal dominant Parkinson’s and encodes α-synuclein, a major 5 

constituent of LBD, was reported in an individual diagnosed with schizophrenia nine 6 

years prior to the development of mild Parkinsonism (Takamura et al., 2016). A recent 7 

neuroimaging study on individuals with first episode psychosis found that higher iron 8 

loading in the basal ganglia correlated with greater motor abnormalities including EPSE 9 

(Cuesta et al., 2021). Similar associations were found with motor abnormalities in PD 10 

(Kim & Wessling-Resnick, 2014; R. J. Ward et al., 2014). In view of this, it is plausible 11 

that there are shared genetic features between these disorders which also contribute to 12 

the shared phenotypical features including movement abnormalities like EPSE in 13 

schizophrenia. 14 

Genome-wide Association Studies (GWAS) are a promising approach to identify 15 

potential genes associated with development of EPSE given the often-complex 16 

biological pathways implicated in psychiatric traits (Duncan et al., 2019). However, to 17 

our knowledge, only one past study investigated antipsychotic induced EPSE using 18 

GWAS comparing EPSE cases versus EPSE controls among European schizophrenia 19 

samples (Åberg et al., 2010). The genotype data in that study had somewhat limited 20 

genomic coverage compared to contemporary studies and furthermore there was no 21 

imputation of genotypes not captured on the genotyping array. Other studies have 22 
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examined EPSE presence by comparing EPSE cases with healthy controls (Levchenko 1 

et al., 2021) and by analysing mixed ancestry cohorts (Lim et al., 2021b). Epigenome-2 

wide Association Study (EWAS) allows for the examination of environmentally 3 

induced methylome variation which could directly result from chronic antipsychotic 4 

exposure (Murphy & Mill, 2014; Wagner et al., 2014). To date, there has been no EWAS 5 

on EPSE to examine the influence from antipsychotics. 6 

Our understanding of the molecular mechanisms underlying EPSE may be 7 

improved using an integrated functional genomics strategy. The overall aim of this 8 

study was to conduct an integrated GWAS and EWAS meta-analysis of EPSE data from 9 

existing schizophrenia studies. We also investigated whether Polygenic Risk Scores 10 

(PRS) for schizophrenia, PD and LBD could be used to predict the risk of the 11 

development of EPSEs. The findings could provide a better understanding of the 12 

genetic underpinnings of EPSE and pave the way for the identification of informative 13 

genetic biomarkers that could allow for specific tailoring of treatments in the future.  14 

 15 

4.3 Methods 16 

4.3.1 Participants selection and genotyping 17 

UCL Participants All UCL participants received an ICD10 diagnosis of schizophrenia 18 

from a UK National Health Service (NHS) psychiatrist. Details have been reported 19 

elsewhere (Trubetskoy et al., 2022; World Health Organization, 1992). The participants’ 20 

PPD diagnosis was assessed with OPCRIT item 11. Ancestrally matched healthy 21 

controls were recruited from the National Health Service (NHS) blood transfusion 22 

service and from study sites where case participants were also being recruited. The 23 
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healthy controls were screened for an absence of a lifetime history of the following 1 

disorders: schizophrenia and any other psychosis, major affective or schizoaffective 2 

disorders, eating disorders, alcohol/drug addiction, and obsessive-compulsive disorders. 3 

All participants read an approved information sheet and signed a physical informed 4 

consent form. The study was approved by the NHS Metropolitan Multi-centre Research 5 

Ethics Committee (MREC/03/11/090). Genome-wide single nucleotide polymorphism 6 

data were generated in three waves at the Broad Institute, Boston, MA, US, using the, 7 

Affymetrix Array, Illumina PsychArray, and Illumina Global Screening Array (GSA). 8 

The three waves of data underwent equivalent quality control and imputation methods 9 

which had been described in details elsewhere (Grigoroiu-Serbanescu et al., 2020).  10 

Aberdeen Participants The Aberdeen case–control sample has been described 11 

elsewhere.(Stone et al., 2008) Briefly, the cohort contains participants with 12 

schizophrenia and healthy controls who have self-identified as born in the British Isles 13 

(95% in Scotland). All participants with schizophrenia met the Diagnostic and 14 

Statistical Manual for Mental Disorders fourth edition (DSM-IV; American Psychiatric 15 

Association, 1994) and ICD-10 criteria for schizophrenia (World Health Organization, 16 

1992). Controls were volunteers recruited through general practices in Scotland. 17 

Volunteers who replied to a written invitation were interviewed using a short 18 

questionnaire to exclude major mental illness in the individual themselves and their 19 

first-degree relatives. The study was approved by both local and multiregional academic 20 

ethical committees and all cases and controls gave informed consent. The samples were 21 

genotyped at the Broad Institute, as described for the UCL participants.  22 
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Cardiff Participants Participants were recruited from community mental health 1 

teams in Wales and England on the basis of a clinical diagnosis of schizophrenia or 2 

schizoaffective disorder (depressed sub-type) as described previously (Carroll et al., 3 

2011). Diagnosis was confirmed following a SCAN interview (Wing et al., 1990) and 4 

review of case notes followed by consensus diagnosis according to DSM-IV criteria 5 

(American Psychiatric Association, 1994). The UK Multicentre Research Ethics 6 

Committee (MREC) approved the study and all participants provided informed consent. 7 

The samples were genotyped at the Broad Institute, as described for the UCL 8 

participants.   9 

UK Biobank (UKB) Participants UKB is a biomedical database and research 10 

resource of approximately 500,000 individuals from across the UK aged 40 to 69 years 11 

at recruitment between 2006 and 2010 (Sudlow et al., 2015). Potential participants in 12 

UKB were selected using diagnosis of schizophrenia from ICD10, including codes from 13 

F20.0 to F20.9 and excluding participants with any primary Parkinson disorder with 14 

G20.  15 

 16 

4.3.2 Coding of EPSE data 17 

Participant EPSE status was derived from the data described above following: (1) 18 

prescription of antipsychotic medications (FGA or SGA); (2) recorded clinical features 19 

of EPSE side-effects; and/or recorded medications prescribed to alleviate EPSE side-20 

effects. Medication dose information was unavailable for most participants thus, not 21 

analysed. We used key terms to classify participants with schizophrenia as cases 22 
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(having life-time EPSE) or controls (not having life-time EPSE) from all available data 1 

sources including interviews, medication, and health records. These key words covered 2 

two main areas: behavioural and pharmacological:  3 

1) Behavioural features of the four types of EPSE, (dystonia, akathisia, 4 

parkinsonism, and dyskinesia). To compile a list of keywords for each of these EPSE 5 

types, we consulted  several rating scales that are frequently employed to measure 6 

EPSE including: The Abnormal Involuntary Movement Scale (AIMS; Munetz & 7 

Benjamin, 1988) the Extrapyramidal Symptom Rating Scale (ESRS; Chouinard & 8 

Margolese, 2005), The Simpson Angus Scale (Hawley et al., 2003) and the Barnes 9 

Akathisia Rating Scale (BARS; Barnes, 1989). In addition, we searched reliable sources 10 

of clinical information for each of these abnormalities including the National Institute 11 

for Health and Care Excellence (NICE) guidelines (NICE, 2014b) and the BMJ Best 12 

Practice (BMJ Best Practice, 2021). 13 

2) Pharmacological treatments for EPSE. To generate key words for 14 

pharmacological treatments for EPSE, we searched The NICE guidelines(NICE, 2014b) 15 

and The Maudsley Prescribing Guidelines in Psychiatry(Taylor et al., 2021) for the most 16 

recent recommendations on managing EPSE to identify a list of medications.  17 

The UCL and Aberdeen participants’ EPSE status was derived using the same list 18 

of key words described in Appendices 4.1 and 4.2. The Cardiff participants’ EPSE 19 

status coding had a few minor adaptions. The keywords “dribbling” was added as it 20 

better captured other saliva-related key-words; ‘shakes’ was removed as it was 21 

described in the context of anxiety; “still” was removed as it referred to still doing 22 
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something not being physically still; “tap” was removed as it was in the context of 1 

‘tapered’; “march” was removed as it referenced the month of March; “irritable” was 2 

removed as it was in the context of IBS/irritable bowel syndrome; “parkin” was 3 

removed as it referred to Parkinson’s disease not parkinsonism; ‘tropin’ was excluded 4 

as it captured atropine as opposed to benzatropine. The UKB participants were retained 5 

if they received any first or second generation of antipsychotics (See medication codes 6 

in Appendices 4.3 and 4.4), then stratified by whether participants received any 7 

medication to treat EPSE (See EPSE medication codes in Appendix 4.5); diagnosis of 8 

other drug-induced secondary Parkinsonism in G21.1; Drug-induced dystonia in G24.0 9 

or Drug-induced tremor in G25.1 were selected as cases.  10 

 11 

4.3.3 GWAS meta-analyses & follow-up analyses 12 

For the main analysis, we took a within case design comparing participants with 13 

exposure to FGA or SGA with EPSE vs not having EPSE. We also conducted subset 14 

analyses separating participants who had any exposure to FGA (including those also 15 

exposed to a SGA) and participants only exposed to SGA. The Cardiff samples were 16 

only included in the SGA subset given most participants only had SGA exposure. We 17 

stratified the antipsychotic exposure into separate groups to compare their differential 18 

effects, given FGAs' higher EPSE prevalence and distinct mechanistic profiles.  19 

We applied logistic regressions taking the participants’ EPSE status to evaluate the 20 

association between imputed SNP dosages. For UCL participants, we performed 21 

separate GWAS for data from each wave using PLINK v2.00a2LM (Purcell et al., 2007). 22 
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We conducted the same sets of analyses for Aberdeen, Cardiff, and UKB samples 1 

separately. The participants’ age, sex and the first ten principal components of 2 

population structure were included as covariates to control for population stratification. 3 

We conducted fixed-effect meta-analysis taking each GWAS’s effective sample 4 

sizes (Neff) as weights using METAL (See calculation of Neff in Supplementary Table 5 

6) (Willer et al., 2010). The genome-wide significance threshold was set at P<5×10−08. 6 

The output results were uploaded to FUMA for interpretation (Watanabe et al., 2017). 7 

We also conducted a binomial sign test to evaluate the SNP associations between the 8 

FGA and SGA subsets at 10-03 level. If there were no SNPs associations between the 9 

FGA and SGA subsets, the expectation is that 50% of the Z scores from the meta-10 

analyses would be in the same direction.  11 

 12 

4.3.4 EWAS methylation data 13 

Methylation data was only available for a proportion of the UCL and Aberdeen 14 

samples. The EZ-96 DNA Methylation kit (Zymo Research, CA, USA) was used to 15 

treat 500ng of DNA from each sample with sodium bisulfite in duplicate. DNA 16 

methylation was quantified using the Illumina Infinium HumanMethylation450 17 

BeadChip (Illumina Inc.) run on an Illumina iScan System (Illumina) using the 18 

manufacturers’ standard protocol. Detailed data collection and imputation process has 19 

been described elsewhere (Hannon et al., 2016). As smoking status information was not 20 

present for all samples, we estimated a proxy based on the DNA methylation profile at 21 

sites known to be associated with smoking status following a previously described 22 
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approach (Elliott et al., 2014). Cell composition data were not available for these DNA 1 

samples, therefore these were estimated Houseman algorithm (Houseman et al., 2012; 2 

Koestler et al., 2013) for seven variables recommended in the documentation. We also 3 

estimated the participants’ methylation age using the Epigenetic Clock software 4 

(Horvath, 2013).  5 

 6 

4.3.5 EWAS analysis and meta-analyses 7 

We employed the same design as in the GWAS to analyse the association of EPSE 8 

status on DNA methylation profiles. This included comparisons of EPSE presence 9 

among participants with any FGA/SGA exposure (111 EPSE cases, 203 EPSE controls), 10 

any FGA exposure (87 EPSE cases, 87 EPSE controls), and only SGA exposure (17 11 

EPSE cases, 106 EPSE controls). DNA methylation values for each probe were 12 

regressed with covariates for methylation age, gender, seven cell composition scores, 13 

and smoking score. Then the results from UCL and Aberdeen were combined with 14 

fixed-effect meta- analyses. 15 

These within-case analyses may be limited by sample size constraints, potentially 16 

reducing statistical power to detect subtle methylation changes. We also performed 17 

EPSE case with any antipsychotic exposure vs healthy control analyses to boost 18 

statistical power (111 EPSE cases, 748 healthy controls). To eliminate the influence of 19 

schizophrenia from the case control study design we included participants 20 

schizophrenia PRS as an additional covariate. Thus, the EPSE case control design may 21 

help reveal EPSE-associated methylation changes attributable to long-term 22 
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antipsychotic exposure after accounting for potential schizophrenia risks. The EWAS 1 

meta-analysis significance threshold was set at 1x10-07. 2 

 3 

4.3.6 EWAS findings integration and permutation test  4 

We performed separate GWAS on the same participants used in the between-case 5 

design EWAS following the same procedure described. The results were combined 6 

using METAL and clumped to represent LD independent loci in lead using the 1000 7 

genome European samples as a reference (1000 Genomes Project Consortium et al., 8 

2015). Any significant CpG sites from the EWAS were mapped to within 250 kb of 9 

each in the associated GWAS results to identify an enrichment in the region. To quantify 10 

significance, 5000 random permutations were generated. Empirical P values for each 11 

region were calculated by counting how many of the permutations had more significant 12 

P values than the mapped P value from GWAS and dividing by the total number of 13 

permutations performed. The CpG sites’ locations were also mapped to clumped 14 

schizophrenia GWAS results within 250 kb for comparisons (Trubetskoy et al., 2022). 15 

Regional plots were produced using GWASLab (He et al., 2023). 16 

 17 

4.3.7 PRS calculation and analyses 18 

We calculated the participants’ PRSs for schizophrenia, Lewy body dementia and 19 

Parkinson’s disease using the PRS-CS method with the latest available reference 20 

GWAS (Ge et al., 2019). We chose the European samples from the 1000 Genomes 21 

Project Consortium as our LD reference panel given all samples included were of 22 
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European Ancestry (1000 Genomes Project Consortium et al., 2015). Once weights 1 

were produced, individual PRSs were calculated using PLINK v2.00a2LM.(Chang et 2 

al., 2015) We then used the mean and standard deviation of the healthy controls’ PRSs 3 

from each sample to standardize their cases’ PRSs. The SCZ GWAS came from 4 

Trubetskoy et al. (PGC wave 3), which were derived exclusively from European 5 

samples (Trubetskoy et al., 2022). The GWAS statistics for Parkinson’s disease came 6 

from European samples of Nalls et al. excluding 23andMe data (Nalls et al., 2019). The 7 

GWAS statistics for Lewybody dementia came from Chia et al., only including 8 

European samples (Chia et al., 2021). We adapted the schizophrenia GWAS to exclude 9 

each sample’s participants used in the current study to avoid sample overlap. The new 10 

GWAS generation followed the same procedures as previously described (Trubetskoy 11 

et al., 2022). 12 

We performed multiple logistic regression analyses to assess how these various 13 

PRSs predict the presence of EPSE in each sample. Then the results were meta-analysed 14 

using a fixed effect model. The assumptions for logistic regressions were pre-checked 15 

and found to be satisfactory for each regression. The significant threshold was kept as 16 

0.0167 (i.e. 0.05/3), for multiple testing correction.  17 

 18 

4.4 Results 19 

4.4.1 GWAS sample demographics  20 

Overall, the GWAS meta-analysis included 2471 participants with schizophrenia, 21 

of whom 1178 (48%) had EPSE. The participants had a mean age of 46.57 (SD 12.22) 22 
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years old and were mostly males (70%; Table 1) as is typical of genomic studies of 1 

schizophrenia. All participants had antipsychotic exposure and most of the participants 2 

had taken at least one type of SGA (78%). The participants with and without EPSE did 3 

not differ in terms of age at assessment (46.53 vs 46.62, p=0.855) nor sex (males 71% 4 

vs 69%, p=0.213). EPSE was more prevalent in those who had taken FGA or were on 5 

both (FGA 51%, SGA 41%, both 61%; p<0.001). The participants’ characteristics 6 

differed between sample sets (see Table 4.2). The participants who developed EPSE 7 

were at an older age at assessment than those who did not in the UCL (46.33 vs 42.72, 8 

p<0.001) and UKB samples (56.06 vs 53.94, p=0.020; Table 4.2). In the Cardiff sample, 9 

participants who developed EPSE had an earlier age of schizophrenia onset (24.30 vs 10 

27.50, p=0.006). The pattern of EPSE being more prevalent in those who have taken 11 

the first generation of antipsychotics were consistent across most cohorts (UCL 60% vs 12 

40% p<0.001; Aberdeen 64% vs 39% p<0.001; UKB 69% vs 30% p<0.001) except for 13 

the Cardiff samples where most participants only had exposure to SGA (first 18% vs 14 

second 82%). From the UCL sample, there was no evidence to suggest any association 15 

between PPD and EPSE (p=0.999) nor association between EPSE and prescriptions of 16 

any antidepressants (p=0.276). 17 
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Table 4.1 GWAS Meta-analysis Participants’ Demographics and Clinical 

Characteristics concerning EPSE Presence 

 N  Overall  EPSE Presence EPSE Absence p-values  

Meta-Analyses 2471  n = 1178 (48%)  n = 1293 (52%)   

Age at assessment 2471 46.57 (12.22) 46.53 (11.82) 46.62 (12.59) 0.855a 

Sex   2471     

  Male   1727 (70%) 838 (71%) 889 (69%) 0.213b 

  Female   744 (30%) 340 (29%) 404 (31%)  

Antipsychotics 2425     

  First Generation  488 (20%) 249 (22%) 239 (19%) <0.001b 

  Second Generation  1436 (59%) 595 (52%) 841 (66%)  

  Both Generations  501 (21%) 305 (26%) 196 (15%)  

Notes. EPSE, extrapyramidal side effects; SD, standard deviation 
a Two Simple t-test; mean (SD)   
b Pearson's Chi-squared test of independence; n (%)  

In bold p passed significance threshold 
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Table 4.2 GWAS Participants’ Demographics concerning EPSE Presence 

 
 

N  Overall  EPSE Presence EPSE Absence Neff p-values  

UCL  1017  n = 587 (58%)  n = 430 (42%)  983  

 Age at assessment 1017 44.80 (12.24) 46.33 (12.10) 42.72 (12.14)  <0.001a 

 Age of onset 761 23.34 (8.18) 23.28 (8.07) 23.44 (8.34)  0.795a 

 Sex   1017     0.145b 

   Male   735 (72%) 435 (74%) 300 (70%)   

   Female   282 (28%) 152 (26%) 130 (30%)   

 Antipsychotics 973     <0.001b 

   First generation  102 (10%) 77 (14%) 25 (6%)   

   Second generation  452 (47%) 208 (37%) 244 (59%)   

 Both generations  419 (43%) 274 (49%) 145 (35%)   

 Antidepressants 1020 45 (4%) 22 (2%) 23 (2%)  0.276b 

 PPD diagnosis 742 105 (14%) 60 (8%) 45 (6%)  0.999b 

Aberdeen 414  n = 90 (22%)  n = 324 (78%)  282  

 Age at assessment 414 44.40 (13.20) 45.70 (13.12) 44.03 (13.21)  0.292a 

 Age of onset 401 24.08 (8.05) 23.27 (7.76) 24.29 (8.13)  0.293a 

 Sex   414     0.426b 

   Male   311 (75%) 71 (79%) 240 (74%)   

   Female   103 (25%) 19 (21%) 84 (26%)   

 Antipsychotics 414     <0.001b 

   First generation  135 (33%) 42 (47%) 93 (29%)   

   Second generation  231 (56%) 32 (35%) 199 (61%)   

 Both generations  48 (11%) 16 (18%) 32 (10%)   

UKB  507  n = 90 (18%)  n = 417 (82%)  296  

 Age at assessment 507 54.32 (8.08) 56.06 (7.61) 53.94 (8.14)  0.020a 

 Sex   507     0.322b 

   Male   335 (66%) 64 (71%) 271 (65%)   

   Female   172 (34%) 26 (29%) 146 (35%)    

 Antipsychotics 507     <0.001b 

   First generation  158 (31%) 52 (58%) 106 (25%)   

   Second generation  320 (63%) 28 (31%) 292 (70%)   

 Both generations  29 (6%) 10 (11%) 19 (5%)   

Cardiff 533  n = 411 (77%)  n = 122 (12%)  376  

 Age at assessment 533 44.30 (11.70) 44.90 (10.90) 42.20 (14.10)  0.057a 

 Age of onset  508 25.00 (8.80) 24.30 (7.60) 27.50 (11.60)  0.006a 

 Sex   533     0.900b 

   Male   346 (65%) 268 (65%) 78 (64%)   

   Female   187 (35%) 143 (35%) 44 (36%)   

 Antipsychotics 531     0.100b 

   First generation  93 (17%) 78 (19%) 15 (12%)   

   Second generation  433 (82%) 327 (80%) 106 (88%)   

 Both generations  5 (1%) 5 (1%) 0 (0%)   

Notes. EPSE, extrapyramidal side effects; PPD, premorbid personality disorder; SD, standard deviation. 

In bold p passed significance threshold 
a Two Simple t-test; mean (SD); b Pearson's Chi-squared test of independence; n (%)  

Neff, effective sample sizes, calculated as 4/(1/n_cases + n_controls) 
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4.4.2 GWAS results  1 

For the main meta-analysis including all participants, we did not observe any SNP 2 

passing the genome-wide significance threshold at 5x10-08 (Table 4.3 and Appendix 3 

4.6). We found no evidence for population inflation across the samples given the 4 

lambda value of 1, suggesting the test statistics are not inflated by population 5 

stratification or cryptic relatedness (see Appendix 4.7). We observed no evidence for 6 

excessive heterogeneity across the samples. The top index SNP rs2709733 (A/G; 7 

Z=4.999; p=5.755×10-07) mapped to a long intergenic non-protein coding RNA, 8 

LINC01162 and its effect was consistent across all cohorts (Table 4.3). The other 9 

affiliated protein-coding genes from the suggestive SNP rs11077391 (p=3.765×10-06) 10 

included USP36 and CYTH1.  11 

 For the subset analyses separating FGA and SGA exposures, we did not observe 12 

any SNP passing the genome-wide significance threshold (Table 4.3; Appendices 4.8 13 

& 4.10). There was also no evidence for population inflation for these two subsets with 14 

lambda values of 1.030 and 0.992 (Appendices 4.9 & 4.11). The top suggestive SNPs 15 

from both subsets showed no excessive heterogeneity. The top affiliated genes from the 16 

FGA subset such as NAV2, NRG3, and LSAMP have been associated with autism and 17 

schizophrenia disorders (Kao et al., 2010; Must et al., 2008; Pretzsch & Ecker, 2023). 18 

In addition, one of the top affiliated protein coding genes, SHISA9 from the SGA subset 19 

has shown associations with epilepsy and autism disorder (Pfisterer et al., 2020; Woolf 20 

et al., 2023).  21 
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Among overlapping SNPs at the 10-03 level, 1,463 (53%) SNPs in the SGA subset 1 

showed concordant effect directions with the FGA subset’s (p=0.004), whereas 1,345 2 

(48%) SNPs in the FGA subset aligned with the SGA subset’s SNPs (p=0.995). The 3 

stronger directional agreement from SGA to FGA may reflect the broader 4 

pharmacological coverage of the FGA subset (which included mixed exposures). In 5 

contrast, the weaker concordance from FGA to SGA subset may suggest that top-6 

associated SNP effects within the SGA subset may be more distinct given this subset 7 

included only exposure to SGA. 8 
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Table 4.3 Regions of the Genome showing the Strongest Association Signals with EPSE Presence 

 

Index SNP Chr Position A1/A2 EAF Z Score P-values P-values 

Het 

Match Weight 

(Neff) 

Mapped Genes 

EPSEs with exposure to any antipsychotic 

rs2709733  7 20878995-20955370 A/G 0.452 4.999 5.755×10-07 0.268 ++++++ 1937 LINC01162 

rs12662039 6 99546454-99598593  C/G 0.057 4.948 7.492×10-07 0.461 +++++? 1561  

rs11077391 17 76661207-76789754 A/G 0.311 4.624 3.765×10-06 0.952 +++++? 1561 USP36, CYTH1 

rs62530097 9 7590958-7667847 T/G 0.090 4.494 6.978×10-06 0.560 ++++++ 1937  

EPSEs with exposure to any type of FGA* 

rs2028609 11 19918741-19933123 T/C 0.494 -5.144 2.693×10-07 0.955 --?-- 660 NAV2 

rs1416851 10 84329093-84380431 T/C 0.233 -4.927 8.365×10-07 0.290 ----- 780 NRG3 

rs17723244 3 117509984-117822025 A/G 0.721 -4.751 2.022×10-06 0.595 ----- 780 LSAMP, LINC03051 

rs2840001 3 168714097-168862366 A/G 0.275 4.725 2.306×10-06 0.563 +++++ 780  

EPSEs with exposure to SGA only 

rs72800384 10 54799931-54839608 T/C 0.244 4.567 4.937×10-06 0.179 -+++++ 1063  

rs117545352 8 87786629-87894786 A/G 0.933 -4.522 6.117×10-06 0.272 ----+- 1063 CNBD1 

rs4781355 16 13021889-13101555 A/G 0.637 4.509 6.524×10-06 0.776 ++++++ 1063 SHISA9 

Notes. Index SNP, the single-nucleotide polymorphism with the strongest association in the genomic region and each is independent at r2<0.1; Chr, chromosome; Position, the start and 

end position (UCSC hg19) of the SNP locus where near-by SNPs were clumped to with nominal associations (p<0.05) and LD (r2<0.1) within 250-kb windows taking the 1000 genomes 

project phase 3 EUR as LD reference; A1/A2, effect and alternate allele; EAF, the effect allele frequency based on 1000 genomes EUR; Z-score, the meta-analysis output reference score 

for the SNP; P-values, the corresponding p-values to the candidate SNP; P-values Het, corresponding p-values to the degree of variability in effect sizes from METAL analysis; Match, 

the agreement across the six datasets, + means individuals who carry the A1 allele have positive EPSE association, - means negative, ? means missing, the orders are: three sets of GWAS 

from UCL samples (1) Affymetrix Array, (2) Illumina PsychArray, (3) GSA, Illumina Global Screening Array, (4) Aberdeen samples, (5) UKB samples, and (6) Cardiff samples; Weight, 

the overall Neff of the sample for the SNP; Mapped genes, the top genes mapped by positional mapping criterion with maximum distance 10kb to the locus position. No SNP passed 

genome-wide significant threshold. * Includes participants who had also been exposed to SGAs. 
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4.4.3 EWAS sample demographics  1 

The UCL participants who developed EPSE were younger than the healthy controls 2 

in terms of age at assessment (36.90 vs 44.48, p<0.001; see Appendix 4.12) and 3 

methylation age (39.54 vs 44.08, p=0.008). The UCL EPSE cases also had higher ratios 4 

of males (81% vs 44%, p<0.001). The Aberdeen participants’ methylation age (54.29 5 

vs 53.04, p=0.473), and males’ ratio (70% vs 74%, p=0.737) were balanced between 6 

the EPSE and the control group.  7 

 8 

4.4.4 EWAS meta-analysis results and permutation testing 9 

In our primary within-case analysis including all EPSE samples, the most 10 

significant methylated position (DMP) associated with EPSE presence was cg05599348 11 

(3.181×10-07), mapping to TMSB15B on chromosome X (hg19 position 103174718). 12 

This DMP was also one of the top identified DMPs in the FGA exposure subset (Table 13 

4.4). However, this DMP was only present in the UCL samples while all other top 14 

identified DMPs were present in both samples. Thus, its overall signal may have been 15 

influenced by the relatively small sample size of the UCL samples. From the FGA/SGA 16 

exposure EWAS subsets, we also did not identify any DMP passing the threshold at 17 

1x10-07 (Table 4.4). 18 

Comparing EPSE cases with healthy controls, we identified 9 DMPs associated 19 

with EPSE presence after controlling for schizophrenia PRS in addition (Table 4.4). 20 

Five of these identified DMPs have been implicated by past schizophrenia EWAS meta-21 

analysis, cg12524168, p=7.61×10-20; cg05419385, p=3.08×10-18; cg22583147, 22 
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p=5.66×10-22; cg12044923, p=1.32×10-19; and cg20730966, p=4.90×10-24 (Hannon et 1 

al., 2016). The other four DMPs cg14531564, cg20647656, cg12004641, cg22845912, 2 

and their affiliated genes SDF4, ANKMY1, TNS1, SLA were not identified in past 3 

schizophrenia or smoking EWAS (Elliott et al., 2014; Zeilinger et al., 2013).   4 

We next examined whether the locations of theses 9 DMPs could map to the 5 

corresponding GWAS of the same samples or to previously published schizophrenia 6 

GWAS. The GWAS summary statistics were first clumped so that multiple non-7 

independent associations were collapsed into single associated loci. None of the 8 

identified DMPs were found to be associated with any genome-wide significant loci 9 

from past schizophrenia GWAS according to our regional mapping (Appendix 4.13) 10 

(Trubetskoy et al., 2022). The SNP rs7622757 within a 250kb window with 11 

cg22583147 was closest to genome-wide significance at p=4.44×10-07 (Appendix 13).  12 

Our mapping of the DMPs to the GWAS of associated samples found that 13 

cg12044923 was significantly associated (permutation p=0.010) with index SNP 14 

rs13108591 which had a GWAS p value of 7.482×10-05. cg20647656 was associated 15 

(permutation p=0.030) with index SNP rs75037293 which had a GWAS p value of 16 

2.73×10-04. According to the past schizophrenia GWAS (Trubetskoy et al., 2022), the 17 

SNPs rs13108591 (T/C) had p value of 0.761 and rs75037293 (G/C) had p value of 18 

0.117 indicating minor relevance to schizophrenia (Trubetskoy et al., 2022). The SNP 19 

rs13108591 is located on chr4:5162317 (hg19), mapping to the intron of STK32B. SNP 20 

rs75037293 is located on chr2:241453995 (hg19) mapping to the intron of ANKMY1. 21 

 22 
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Table 4.4 EPSE-associated differentially Methylated Positions 

Probe ID CHR Position Methylation 

difference (%) 

SE (%) P Value Gene 

Annotation 

EPSEs with exposure to any antipsychotic 

cg05599348 X 103174718 -5.439 0.980 3.181×10-07 TMSB15B 

cg07679219 12 77417738 6.742 1.462 3.998×10-06 E2F7 

cg06484572 6 41605494 1.686 0.369 4.769×10-06 MDFI 

cg25194055 17 8125180 0.527 0.116 5.690×10-06  

cg00145438 13 113105097 -0.991 0.220 6.620×10-06  

cg26912312 20 61274254 -0.452 0.101 6.971×10-06 SLCO4A1 

EPSEs with exposure to any type of FGA*  

cg00500167 6 100841663 0.464 0.098 2.093×10-06 SIM1 

cg19185544 8 22595422 -1.748 0.371 2.418×10-06 PEBP4  

cg05599348 X 103174718 -5.340 1.156 3.854×10-06 TMSB15B 

cg05450477 6 20426845 1.654 0.369 7.293×10-06 E2F3 

cg26875877 2 133346858 -0.040 0.886 7.742×10-06 GPR39 

cg25030888 1 67156909 -3.013 0.692 1.327×10-05 SGIP1 

EPSEs with exposure to SGA only 

cg11411904 1 153935719 1.051 0.215 3.341×10-06 SLC39A1 

cg02388709 3 4910253 0.959 0.196 3.563×10-06  

cg21130374 21 42734266 -1.636 0.344 5.928×10-06 MX2 

cg15977096 8 34857831 -4.410 0.965 1.268×10-05  

cg09583379 16 19133877 -6.745 1.479 1.316×10-05  

cg23814365 13 36429936 1.979 0.436 1.419×10-05 DCLK1 

EPSEs with exposure to any antipsychotic compared to healthy controls 

cg14531564 1 1154853 2.949 0.423 3.073×10-12 SDF4 

cg20647656 2 241439612 -1.413 0.236 2.098×10-09 ANKMY1 

cg12524168 5 76028910 1.931 0.326 3.207×10-09 F2R 

cg12004641 2 218750749 1.784 0.320 2.377×10-08 TNS1 

cg05419385 12 27352945 1.565 0.281 2.549×10-08  

cg22583147 3 44331824 2.055 0.374 3.828×10-08 TOPAZ1 

cg22845912 8 134059874 1.861 0.341 4.858×10-08 SLA 

cg20730966 3 33095886 1.736 0.323 7.442×10-08 GLB1 

cg12044923 4 5207312 1.695 0.316 8.414×10-08 STK32B 

Notes. Listed are all differentially methylated positions (DMPs) associated with different sets of EPSE samples. Sample 

sizes were: (1) 314 (UCL 64 EPSE cases, 33 EPSE controls; Aberdeen 47 EPSE cases, 170 EPSE controls); (2) 174 

(UCL EPSE 57 cases, 23 EPSE controls; Aberdeen EPSE 30 cases, 64 controls); (3) 123 (UCL only 17 samples in 

total thus excluded; Aberdeen 17 EPSE cases, 106 EPSE controls); and (4) 859 (UCL 64 EPSE cases, 315 healthy 

controls; Aberdeen 47 cases, 433 healthy controls). Results came from fixed model meta-analysis adjusted for 

participants’ methylation age, sex, and cell compositions. The comparison between EPSE cases and healthy controls 

adjusted for schizophrenia polygenic risk scores in addition to alleviate schizophrenia genetic risks. Positions are in 

hg19. Genes in bold had p meeting threshold at 1x10-07. * Includes participants who had also been exposed to SGAs. 
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4.4.5 PRS results 1 

We found no evidence to suggest any of the selected PRS could predict the 2 

development of EPSE (Table 4.5). According to the fixed model meta-analysis, the 3 

participants’ genetic predisposition to Schizophrenia (p=0.566), Parkinson’s disease 4 

(p=0.492), and Lewy-body dementia (p=0.765) were not associated with the presence 5 

of EPSE. 6 
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Table 4.5 Results of Multiple Regression Analyses 

 

Variables Estimated 

Coefficient 

Standard 

Error 

Confidence 

Intervals (95%) 

Reference 

Values 

p 

Schizophrenia PRS      

  UCL 0.013 0.017 -0.020, 0.047 0.780 0.436 

  Aberdeen 0.006 0.020 -0.033, 0.046 0.321 0.749 

  UKB 0.032 0.017 -0.036, 0.032 1.941 0.053 

  Fixed-effect model 0.019 0.010 -0.001, 0.039 1.828 0.566 

Parkinson’s disease PRS      

  UCL 0.015 0.017 -0.018, 0.049 0.892 0.373 

  Aberdeen 0.025 0.022 -0.017, 0.068 1.162 0.246 

  UKB -0.010 0.016 -0.042, 0.022 -0.637 0.525 

  Fixed-effect model 0.007 0.010 -0.013, 0.027 0.687 0.492 

Lewy-body dementia PRS      

  UCL -0.022 0.016 -0.053, 0.009 -1.390 0.165 

  Aberdeen 0.017 0.023 -0.029, 0.062 0.718 0.473 

  UKB 0.026 0.017 -0.008, 0.060 1.481 0.139 

Fixed-effect model 0.003 0.011 -0.017, 0.024 0.299 0.765 

Notes. PRS, polygenic risk scores  

All results were adjusted for participants’ age, sex, genotyping chip-type, and the first three 

principal components from GWAS population stratification. UKB results were adjusted for 3 

additional principal components. Reference values were t values for individual models and z values 

for the fixed effect model. 
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4.5 Discussion 1 

In the present study, we report the largest GWAS meta-analysis of EPSE and the 2 

first EWAS meta-analysis of EPSE in European populations to date with exploration on 3 

the effects of FGA and SGA exposure. The prevalence of any type of EPSE was found 4 

to be 48% among participants who have taken either FGA or SGA. EPSEs were found 5 

to be more prevalent among those who had taken FGA or both. No SNP passed the 6 

genome-wide threshold of significance. The top index SNP rs2709733 from the GWAS 7 

of all antipsychotic exposure mapped to a long intergenic non-protein coding RNA, 8 

LINC01162 with consistent effect across all cohorts. SNPs associated with EPSEs from 9 

exposure to FGAs at the suggestive level mapped to NAV2, NRG3, and LSAMP. SNPs 10 

associated with EPSEs from exposure to SGA mapped to SHISA9 and CNBD1. The 11 

primary EWAS meta-analysis indicated suggestive gene TMSB15B, located on 12 

chromosome X. In addition, we identified multiple DMPs associated with EPSE 13 

passing the significance threshold comparing EPSE cases to healthy controls. The 14 

STK32B gene which was implicated by methylation probe cg12044923 has been 15 

associated with psychiatric and movement disorders. We found no evidence that PRSs 16 

for schizophrenia, Parkinson’s, and Lewy-body dementia predict EPSE development.  17 

The GWAS meta-analysis results may represent a false negative due to the limited 18 

sample size and power. Other factors may also be relevant. For example, our sign tests 19 

revealed weak SNP effect alignment between the FGA and the SGA GWAS results, 20 

suggesting that there may be differences in the genetic architecture of these traits. Thus, 21 

combining participants who have taken either FGA or SGA may have impacted our 22 
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ability to identify drug-specific genetic risks. Conversely, stratifying the sample by 1 

antipsychotic exposure (FGA vs SGA) substantially reduced sample sizes, 2 

compromising statistical power. However, several of the implicated genes (NAV2, 3 

NRG3, LSAMP and SHISA9) from the subset analyses were previously reported to be 4 

associated with psychiatric disorders and were and with neuronal function. Thus, these 5 

findings warrant cautious interpretation due to the suggestive nature of the associations. 6 

The results produced here are the result of a concerted effort to increase sample size as 7 

a starting point for future studies. 8 

The limited GWAS and PRS findings lead us to speculate that EPSE may be more 9 

strongly driven by epigenetic modifications over time. Studies have suggested that 10 

methylation changes in dopaminergic or serotonergic pathway genes may impact motor 11 

control pathways more dynamically than SNP-based variations (Loke et al., 2015). This 12 

dynamic epigenetic regulation aligns with how EPSE can vary significantly among 13 

patients and change with continued antipsychotic use, whereas GWAS-derived SNPs 14 

only offer a static view of genetic risk. Therefore, integrating EWAS may provide 15 

insights into the gene-environment interactions involved in EPSE development.  16 

Our primary EWAS analysis of EPSE status may have been again limited by 17 

modest sample size, potentially reducing statistical power to detect robust epigenetic 18 

associations. However, permutation testing in our expanded EWAS comparing EPSE 19 

cases with healthy controls identified two genes, ANKMY1 and STK32B, showing 20 

significant relevance to the presence of EPSE. ANKMY1 encodes the protein Ankyrin 21 

Repeat and MYND Domain Containing 1, which has a role for protein-protein 22 
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interactions and cellular signalling. This could indirectly influence pathways relevant 1 

to neurodevelopment or dopamine signalling. However, we have found little additional 2 

corroborating evidence directly linking ANKMY1 to schizophrenia or EPSE. The other 3 

implicated gene STK32B encodes for a member of the human N-myristoylated proteins, 4 

which are involved in various cellular signalling and transduction pathways, although 5 

its exact biological function remains insufficiently defined (Takamitsu et al., 2015). A 6 

520-kb homozygous deletion encompassing STK32B has been described in Ellis-Van-7 

Creveld syndrome, which is a rare genetic disorder that primarily affects the skeletal 8 

system and other tissues (Temtamy et al., 2008).  9 

Notably, changes in the methylation of the STK32B promoter region have been 10 

previously linked to both schizophrenia and anxiety disorders. This protein may play a 11 

role in executive functions such as working memory and selective attention (Ciuculete 12 

et al., 2018; Hannon et al., 2016). Moreover, STK32B was implicated in a GWAS of 13 

essential tremor (Müller et al., 2016), and patients with essential tremor showed 14 

increased expression of STK32B in the cerebellar cortex, highlighting a potential 15 

relevance to movement abnormalities.  16 

The current study has several limitations. First, the study’s EPSE classification was 17 

based on cross-sectional data from existing studies. Individuals classified as not having 18 

EPSE at the time of assessment may develop EPSE later in life with increasing exposure 19 

to antipsychotics, introducing potential pseudo-negatives. In addition, we could not 20 

differentiate between acute and chronic EPSE. Medication dose information was 21 

unavailable for most participants thus, not analysed. We used a mixed definition of 22 
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EPSE and mixed antipsychotic medications and EPSE medications, each of which may 1 

have distinct profiles of EPSE risk. Other dynamic factors such as aging, comorbid 2 

conditions and drug-drug interactions may influence the recognition of EPSE as well. 3 

Differences in sample ascertainment may have contributed to variability in EPSE 4 

detection sensitivity and the predominance of male participants could be another source 5 

of bias. These variability and potential miss-classification could impact the consistency 6 

of our findings and warrant careful consideration in future studies to clarify the effects 7 

of specific antipsychotic medications on EPSE with increased sample size to do so. 8 

Finaly, although we have implemented strategies to control for collider bias related to 9 

schizophrenia, our results may still be influenced by genetic risk to schizophrenia.   10 

Overall, our study provides new insights into the biological mechanisms underlying 11 

EPSE development in patients with schizophrenia. Notably, our approach integrated 12 

findings from EWAS with GWAS results, allowing us to explore EPSE-associated 13 

methylation shifts using accessible SNP data. The findings of this study indicate that 14 

further investigation of the epigenetics of EPSE and the role of STK32B in EPSE is 15 

likely to enhance our understanding and inform future research and treatment directions. 16 
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5. Polygenic Risk and Cardiovascular Treatment Effects in Severe Mental Illness 1 

 2 

5.1 Abstract 3 

Background: Patients with severe mental illness (SMI) face increased cardiovascular 4 

risks, leading to reduced life expectancy. Polygenic risk scores (PRS) prediction is a 5 

promising method to assess cardiovascular risks in SMI. However, the PRS utility and 6 

the impact from interventions on these predictions were underexplored. 7 

Methods: Using samples from the PRIMROSE, which involved longitudinal 8 

cardiovascular interventions within primary-care, we calculated 7 cardiovascular and 2 9 

psychiatric PRS (bipolar/schizophrenia) to predict 7 corresponding cardiovascular 10 

measures (total cholesterol/HDL/LDL/triglyceride/systolic blood pressure/diastolic 11 

blood pressure/BMI) assessed at baseline and 12-month follow-up. We applied multiple 12 

linear regression models and explored the interactions between cardiovascular and 13 

psychiatric PRS on treatment outcomes. 14 

Results: At baseline, most PRS were predictive of corresponding measures, indicating 15 

strong genetic associations. However, these associations could attenuate if the treatment 16 

effectively altered the measures, particularly for total cholesterol and systolic blood 17 

pressure. LDL measures became negatively associated with bipolar PRS after treatment, 18 

though no significant interaction effects were found. Participants in the highest bipolar 19 

PRS quartile showed 0.58 mmol/L reduction in LDL measurement on average after 20 

treatments suggesting a potential protective effect from higher bipolar genetic risks. 21 

These results were robust to potential power reduction, participants’ age, sex, 22 



Page 132 / 258 

medication use, smoking habits, alcohol consumption, and physical activity levels.  1 

Conclusions: Our findings underscored the dynamic interplay between genetic risks 2 

and treatment effects and warrant careful PRS assessment timing. While the clinical 3 

application of PRS has not yet been fully realized, further research with precise BD 4 

subtype measurements is needed to clarify how BD genetic risks interact with 5 

interventions. 6 

 7 

5.2 Introduction 8 

Patients diagnosed with bipolar disorder (BD), schizophrenia (SCZ), or psychosis 9 

are often jointly referred to as patients with severe mental illness (SMI). Patients with 10 

SMI have a higher mortality rate leading to a 15–20 years reduction in life expectancy 11 

in comparison to the general population (Nordentoft et al., 2013). Cardiovascular 12 

disease (CVD) contributes 17.4% and 22.0% of life years lost in males and females 13 

with SMI, respectively (Jayatilleke et al., 2017; Nielsen et al., 2021). CVD was 14 

recorded as the cause of death for approximately 24% of patients with SCZ and 38% of 15 

patients with BD (Nielsen et al., 2013; Westman et al., 2013). The life expectancy gap 16 

between the general population and patients with SMI appears to be widening due to 17 

the lack of effective interventions (Hayes et al., 2017). 18 

Multiple factors underlie the increased risks of cardiovascular events among 19 

patients with SMI (Nielsen et al., 2021). Patients with SMI are more likely to have an 20 

unhealthy lifestyle, increased sedentary time, lack of exercise, poor diet, and increased 21 

rates of smoking and heavy alcohol use (Hartz et al., 2014; Vancampfort et al., 2015, 22 
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2016, 2017). Treatments with antipsychotic drugs can lead to weight gain and higher 1 

cardiovascular mortality (Rotella et al., 2020). In addition, antidepressants and mood 2 

stabilizers can cause adverse metabolic effects (Correll et al., 2015; Pérez-Piñar et al., 3 

2016).  4 

People with SMI may also have a higher genetic predisposition to CVD compared 5 

with the general population (O’Sullivan et al., 2022). A meta-analysis of GWAS and 6 

candidate gene studies identified 24 potential pleiotropic genes that are likely to be 7 

shared between mood disorders and cardiometabolic disease risk (Amare et al., 2017). 8 

So et al. (2019) calculated PRS for SCZ and BD in patients with SMI, summarizing 9 

their genetic predispositions to these two disorders. These psychiatric PRS were 10 

compared with 28 additional cardiometabolic traits. The results showed that SCZ was 11 

genetically associated with several cardiometabolic abnormalities including glucose 12 

metabolism abnormalities and adverse adipokine profiles independent of medication 13 

use. In contrast, BD showed polygenic associations with an overall more favourable 14 

cardiometabolic profile, suggesting potential protective metabolic traits linked to BD 15 

genetic risks thus, cardiometabolic abnormalities in BD are more likely to be secondary. 16 

In addition, Strawbridge et al. (2021) applied multidimensional scaling to shared 17 

genetic variants between both psychiatric and cardiometabolic disorders. They found 18 

that schizophrenia patients had distinct metabolic profiles. 19 

Various behavioural interventions have been developed to control cardiovascular 20 

risks for patients with SMI (Goldfarb et al., 2022). Most of these developed 21 

interventions were found to be effective in controlling cardiovascular risks among 22 
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people with SMI (Aschbrenner et al., 2022; Jakobsen et al., 2017). The added value 1 

from incorporating cardiovascular PRS in risk predictions is increasingly recognized 2 

(Samani et al., 2024; Sun et al., 2021). Individuals with higher cardiovascular genetic 3 

risks were found to benefit more from satin and alirocumab treatment suggesting 4 

different response profiles (Damask et al., 2020; Natarajan et al., 2017). However, 5 

genomic and clinical risk factor predictions for CVD may vary over the life course 6 

(Urbut et al., 2025). In addition, no previous studies have specifically examined how 7 

interventions or treatments can influence PRS-based predictions of cardiovascular risks 8 

in patients with SMI over time. Additionally, the impact of genetic risk for psychiatric 9 

disorders on cardiovascular treatment effectiveness remains unclear.  10 

The PRIMROSE group developed a pragmatic intervention aimed at reducing 11 

cardiovascular disease risk factors among people with SMI in primary care in England 12 

(Burton et al., 2015). The PRIMROSE intervention had a similar effect on total 13 

cholesterol concentration reduction at 12 months as treatment-as-usual groups with 14 

decreased costs through decreased psychiatric relapses and readmissions (Osborn et al., 15 

2018). A subset of participants provided consent for genetic data analysis to determine 16 

whether their genetic profiles can predict variations in treatment response. We used the 17 

data to explore longitudinal changes in PRS-based risk predictions. 18 

The overall aim of this study was to use 7 cardiovascular (total 19 

cholesterol/HDL/LDL/triglyceride/systolic blood pressure/diastolic blood 20 

pressure/BMI) and 2 psychiatric (bipolar/schizophrenia) PRS to understand how 21 

genetic risks influence cardiovascular treatment effectiveness. Specifically, we wanted 22 
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to explore if these PRS predictions would change after treatments and how psychiatric 1 

genetic risks modify these predictions. We hypothesized that the cardiovascular PRS 2 

would interact with psychiatric PRSs (BD/SCZ) in predicting treatment effectiveness. 3 

People with higher genetic risks for both cardiovascular risks and psychiatric disorders 4 

were expected to have reduced treatment response given this group of patients’ potential 5 

adverse metabolic profiles. 6 

 7 

5.3 Methods 8 

5.3.1 Participants Selection and Genotyping 9 

Participants were recruited from GP practices across both rural and urban areas of 10 

England (see details for participant specification in Osborn et al., 2018). Participants 11 

were defined as having increased cardiovascular risk if they were aged 30–75 years, 12 

listed on the Quality and Outcomes Framework register for severe mental illness 13 

(schizophrenia, bipolar disorder, or other non-organic psychosis), with elevated 14 

cholesterol (total ≥5·0 mmol/L or total-to-HDL ratio ≥4·0) and at least one additional 15 

risk factor (hypertension, diabetes, elevated HbA1c, obesity, or smoking). Ethics 16 

approval was obtained from the City Road and Hampstead Research Ethics Committee 17 

(Reference No: 12/LO/1934, approval granted 10 January 2013). Local NHS approvals 18 

were obtained before the start of each recruitment wave. At baseline, the recruited 19 

participants were randomized into a PRIMROSE intervention group or treatment as 20 

usual group for improving cardiovascular risks. Each treatment lasted for 12 months 21 

and there were no major difference found in terms of the participants’ treatment 22 

response between the two groups (see details in Osborn et al., 2018). A subset of the 23 



Page 136 / 258 

participants (N=194/326) consented to provide a saliva sample for genotyping and the 1 

conduct of genetic research. These participants were included in the present study. 2 

 3 

5.3.2 Study Measures 4 

The participants’ total cholesterol concentrations, high-density lipoprotein 5 

cholesterol (HDL) and low-density lipoprotein cholesterol (LDL), lipid concentration 6 

(triglyceride), two blood pressures (systolic and diastolic), and BMI were included for 7 

analyses. These measures were collected at baseline using usual GP practice equipment 8 

and procedures and repeatedly taken at 12-month follow-up following the same 9 

procedure. Other health and lifestyle measures included medication use in the past 12-10 

month (antipsychotic/antidepressant/mood stabilizer/antihypertensive/other 11 

medications); smoking habits (number of cigarettes per day); alcohol drinking habit 12 

from Alcohol Use Disorders Identification Test Score (AUDIT-C); and physical activity 13 

measures from International Physical Activity Questionnaire (IPAQ). These data were 14 

collected either directly from participant interviews, clinical measures or from the GP 15 

practice medical records (see details for all measures in Osborn et al., 2018).  16 

 17 

5.3.3 Genetic Data Imputation and Quality Control 18 

194 participants from the PRIMROSE gave consent for genetic analyses and 19 

provided saliva sample for genotyping. The participants’ genetic data were genotyped 20 

by UCL Genomics on the Global Screening Array then received stringent quality 21 

control (QC; Anderson et al., 2010). The process focused on excluding samples with 22 
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discordant sex, missing genotype data above 10%, excessive heterozygosity (more than 1 

3 standard deviations above the mean) and evidence of relatedness (PIHAT of > 0.2). 2 

SNPs which deviated substantially from the Hardy-Weinberg equilibrium (P<10-6) or 3 

had a minor allele frequency < 0.5% were also excluded. All of these described quality 4 

control steps were performed using PLINK 1.9 (Chang et al., 2015).  5 

Imputation was performed using the Sanger Imputation server. Prior to the upload, 6 

the data genotypes were prepared as instructed and checks were performed using the 7 

HRC-1000G-check-bim tool Version 4.2.3 (Rayner, W., 2015). SNPs with an 8 

MAF>0.01 were uploaded for imputation, applying the Haplotype Reference 9 

Consortium reference panel (release 1.1; McCarthy et al., 2016). Pre-phasing was done 10 

with EAGLE v.2.3.3 and imputation was done with PBWT (Durbin, 2014). Post-11 

imputation QC repeated the prior QC procedure and further excluded all SNPs with 12 

info<0.9. A total of 188 participants’ genetic data survived quality control and had 13 

complete datasets. 14 

 15 

5.3.4 PRS Calculations 16 

Patients’ cardiovascular and psychiatric PRS were computed from the imputed 17 

genetic data with the PRS-CS-auto method which employs the Bayesian theorem to 18 

provide a single score for each sample (Ge et al., 2019). The PRS-CS-auto method was 19 

chosen over other methods since it outperformed other existing methods according to 20 

the simulation studies (Ge et al., 2019; Pain et al., 2021).  21 

The application of the PRS-CS method required a LD reference panel and reference 22 
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GWAS summary statistic, which are used to infer the posterior effect sizes of SNPs. We 1 

chose the European sample from The 1000 Genomes Project Consortium (2010) as our 2 

LD reference panel. We used GWAS summary statistics on European samples from the 3 

Global Lipids Genetics Consortium (GLGC) for cholesterol and triglyceride PRS 4 

calculations (Graham et al., 2021). These included total cholesterol, HDL cholesterol, 5 

LDL cholesterol, and triglycerides. The summary statistics for blood pressure 6 

(diastolic/systolic) came from Keaton et al. (2024). BMI European GWAS summary 7 

statistics came from Yengo et al. (2018). The GWAS summary statistics for BD came 8 

from European samples of O’Connell et al. (2025). The summary statistics for 9 

schizophrenia came from Trubetskoy et al. (2022). The calculated PRS were 10 

standardized with healthy controls before analyses.  11 

 12 

5.3.5 Statistical analysis  13 

The participants’ demographic and summary statistics were first presented in 14 

respect to their treatment group for all variables. We conducted t and chi-square tests 15 

based on the variable type for both baseline and 12-month follow-up measures to test 16 

for group differences. Given we found little evidence for group differences in these 17 

measures, we then combined the two groups for the following analyses where the group 18 

allocation was included as an additional covariate. Before conducting the analyses, we 19 

systematically removed outliers using a 3 SD approach on the raw clinical values of the 20 

7 selected measures at baseline and 12-month follow-up to minimize the impact of 21 

extreme values. 22 
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We conducted multiple linear regressions taking the 7 cardiovascular measures at 1 

baseline as outcome measures and their associated PRS as predictor for associations 2 

prior to any treatment. We conducted the same set of analyses on cardiovascular 3 

measures at 12-month follow-up to explore how treatments can influence PRS 4 

predictions. To address potential power reduction from participant dropout at follow-5 

up, we calculated and compared the power of each baseline and 12-month follow-up 6 

regression model using Cohen’s f2 method at 0.05 significance level as a sensitivity 7 

check (Cohen, 2013). We then explored the interactions between cardiovascular and 8 

psychiatric PRS on the 12-month follow-up measures to test how psychiatric genetic 9 

risks can interfere with cardiovascular treatment effectiveness. In addition, we split the 10 

BD PRS into 4 quartiles for further analyses and conducted subgroup analyses for the 11 

two treatment groups as sensitivity analyses.  12 

Covariates in all analyses included the participants’ age, sex, treatment allocation, 13 

diagnosis, smoking habits, alcohol consumption, and physical activity measures. Each 14 

model was also adjusted for the corresponding medication presence recorded at baseline 15 

or 12-month assessment including antipsychotic, antidepressant, antihypertensive, 16 

mood stabilizers and other medications in binary format. Some of the 12-month 17 

analyses also included the corresponding baseline measure as an additional covariate to 18 

assess the independence of the genetic prediction. Hypotheses and assumptions for each 19 

regression were pre-checked and found to be satisfactory. We conducted sensitivity 20 

analyses including only European participants given the PRS were calculated based on 21 

GWAS of European ancestry. No significant difference in results were observed given 22 
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95% of the participants had the same ethnicity.  1 

For multiple testing correction, we used the FDR correction methods (Benjamini & 2 

Hochberg, 1995). The FDR method was chosen over the others as it gives a good 3 

illustration of results and has been applied in previous studies involving PRS 4 

(Grigoroiu-Serbanescu et al., 2020; Yao et al., 2023). The p value threshold was set at 5 

0.05 for adjusted p values. All reported analyses were conducted using Rstudio with R 6 

4.3.2 (R Core Team, 2021). 7 

 8 

5.4 Results 9 

5.4.1 Sample demographics 10 

Overall, 188 participants’ genetic data passed quality control at baseline and had 11 

complete datasets. 92 (49%) of them received the PRIMROSE intervention while the 12 

rest received treatment as usual which was taken as the control group (See Table 5.1). 13 

The whole sample was reasonably balanced in sex (47% males) while the control group 14 

had slightly higher ratios of males (53% vs 40%), however, there was no evidence to 15 

suggest the imbalance (p=0.104). The overall sample contained mostly European (95%) 16 

participants and about half of them had diagnoses of bipolar disorder (52%) and were 17 

non/ex-smokers (53%). The overall mean AUDIT-C score of 3.52 (SD 3.47) suggested 18 

that the participants were generally at a low risk for hazardous drinking or alcohol use 19 

disorder. The overall IPAQ total score at 2133 suggested that the participants on average 20 

meet recommended activity levels for health. However, the high SD (2249) indicated 21 

that the physical activity time varied largely between individuals. The two groups of 22 

participants did not differ in ethnicity, diagnoses, smoking/drinking habits, physical 23 
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activity time or medication uses (see details in Table 5.1). The PRIMROSE intervention 1 

group’s systolic blood pressure was slightly lower than the control group at the baseline 2 

(125.32 vs 130.81, p=0.027). The two groups of participants did not differ in other 3 

clinical measures including total cholesterol, HDL, LDL, triglycerides, diastolic blood 4 

pressure, and BMI.  5 

At the 12-month follow-up, only 158 participants had complete dataset for analyses 6 

and 77 (49%) of them had the PRIMROSE intervention. We did not observe any 7 

significant difference in any of these selected measures between these two groups (See 8 

results in Table 5.2). Overall, the interventions were effective in reducing total 9 

cholesterol measures (t=2.277, p=0.024). Such results were consistent with the original 10 

PRIMROSE study suggesting that the PRIMROSE intervention had the same level of 11 

effect as the treatment as usual. Comparing these measures at the two time points, the 12 

participants’ overall AUDIT-C score dropped from 3.52 to 3.04 and their IPAQ total 13 

score increased from 2133 to 3711. These indicated that the participants had positive 14 

changes in some of the life habits in general. The participants’ overall systolic blood 15 

pressure dropped from 128.12 (SD 17.17) mmHg to 124.36 (SD 13.95) mmHg and their 16 

diastolic blood pressure also dropped from 81.68 (SD 10.34) mmHg to 79.68 (9.90) 17 

mmHg (see details in Table 5.1 & 5.2). These reductions were statistically significant 18 

for systolic blood pressure (t=2.243, p=0.026) and close for diastolic blood pressure 19 

(t=1.828, p=0.068). These changes further indicated the benefits from both 20 

interventions. However, changes in all the other measures were small overall 21 

considering both interventions. 22 
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Table 5.1 Participant Demographics and Clinical Characteristics by Treatment 

Groups at Baseline Assessment 

  N  Overall  PRIMROSE Control p-values  

Overall Samples 188  n = 92 (49%)  n = 96 (51%)   

 Age at assessment 188 50.21 (10.22) 50.18 (10.31) 50.23 (10.19) 0.976a 

 Sex   188    0.104b 

   Male   88 (47%) 37 (40%) 51 (53%)  

   Female   100 (53%) 55 (60%) 45 (47%)  

 Ethnicity 188    0.693b 

   European (white)  178 (95%) 86 (93%) 92 (96%)  

   Other  10 (5%) 6 (7%) 4 (4%)  

 Diagnosis 188    0.263b 

   Bipolar  97 (52%) 46 (50%) 51 (53%)  

   Schizophrenia  44 (23%) 26 (28%) 18 (19%)  

   Other diagnoses  47 (25%) 20 (22%) 27 (28%)  

 Smoking 188    0.361b 

   Heavy (≥20 a day)  42 (22%) 24 (26%) 18 (19%)  

   Moderate (10-19 a day)  28 (15%) 10 (11%) 18 (19%)  

   Light (≤9 a day)  19 (10%) 10 (11%) 9 (9%)  

   Non/Ex-smoker  99 (53%) 48 (52%) 51 (53%)  

 AUDIT-C Score 188 3.52 (3.47) 3.52 (3.41) 3.51 (3.55) 0.982a 

 IPAQ Total Score 188 2133 (2249) 2059 (2273) 2203 (2236) 0.663a 

 Medications 188     

   Antipsychotic   117 (62%) 54 (59%) 63 (66%) 0.407b 

   Antidepressant  90 (48%) 45 (49%) 45 (47%) 0.894b 

   Mood stabiliser  55 (29%) 25 (27%) 30 (31%) 0.650b 

   Antihypertensive  40 (21%) 17 (18%) 23 (24%) 0.460b 

   Other Medications  162 (86%) 77 (84%) 85 (89%) 0.453b 

 Clinical & Blood Tests      

   Total cholesterol 187 5.71 (0.85) 5.73 (0.85) 5.68 (0.86) 0.685a 

   HDL 185 1.28 (0.40) 1.30 (0.38) 1.25 (0.41) 0.405a 

   LDL 120 3.43 (0.81) 3.49 (0.84) 3.37 (0.77) 0.417a 

   Triglycerides 127 2.21 (1.22) 2.27 (1.21) 2.14 (1.23) 0.537a 

   Systolic blood pressure 188 128.12 (17.16) 125.32 (14.74) 130.81 (18.88) 0.027a 

   Diastolic blood pressure 186 81.68 (10.34) 81.20 (10.26) 81.68 (10.34) 0.531a 

   Body mass index (BMI) 185 31.60 (5.35) 31.86 (5.86) 31.34 (4.82) 0.510a 

Notes. AUDIT-C, Alcohol Use Disorders Identification Test Score; IPAQ, International Physical 

Activity Questionnaire; HDL, high-density lipoprotein; LDL, low-density lipoprotein. In bold p met 

significance threshold at 0.05 

Other diagnoses included schizoaffective disorder, psychosis, and persistent delusional disorder. 
a Two Simple t-test; mean (SD); b Pearson's Chi-squared test of independence; n (%)  
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Table 5.2 Participant Demographics and Clinical Characteristics by Treatment 

Groups at 12 Month Follow-up 

 N  Overall  PRIMROSE Control p-values  

Overall Samples 158  n = 77 (49%)  n = 81 (51%)   

Age at assessment 158 51.30 (9.97) 51.21 (10.05) 51.40 (9.95) 0.907a 

Sex   158    0.321b 

  Male   71 (45%) 31 (40%) 40 (49%)  

  Female   87 (55%) 46 (60%) 41 (51%)  

Ethnicity 158    0.999b 

  White  150 (95%) 73 (95%) 77 (95%)  

  Other  8 (5%) 4 (5%) 4 (5%)  

Diagnosis 158    0.435b 

  Bipolar  85 (54%) 41 (53%) 44 (54%)  

  Schizophrenia  35 (22%) 20 (26%) 15 (19%)  

  Other diagnoses  38 (24%) 16 (21%) 22 (27%)  

Smoking 158    0.688b 

  Heavy (≥20 a day)  28 (18%) 16 (21%) 12 (15%)  

  Moderate (10-19 a day)  25 (16%) 11 (14%) 14 (17%)  

  Light (≤9 a day)  15 (9%) 6 (8%) 9 (11%)  

  Non/Ex-smoker  90 (57%) 44 (57%) 46 (55%)  

AUDIT-C Score 158 3.08 (3.34) 2.82 (3.28) 3.33 (3.39) 0.333a 

IPAQ Total Score 158 3694 (5218) 3620 (4515) 3764 (5836) 0.863a 

Medications 158     

  Antipsychotic   94 (59%) 47 (61%) 47 (58%) 0.823b 

  Antidepressant  81 (51%) 40 (52%) 41 (51%) 0.994b 

  Mood stabiliser  40 (25%) 17 (22%) 23 (28%) 0.466b 

  Antihypertensive  48 (30%) 21 (27%) 27 (33%) 0.513b 

  Other  144 (91%) 67 (87%) 77 (95%) 0.134b 

Clinical & Blood Tests      

  Total cholesterol 158 5.46 (1.11) 5.47 (1.11) 5.45 (1.13) 0.888a 

  HDL 156 1.28 (0.42) 1.28 (0.42) 1.29 (0.42) 0.919a 

  LDL 94 3.27 (0.98) 3.25 (0.91) 3.29 (1.05) 0.840a 

  Triglycerides 102 2.20 (1.26) 2.11 (1.38) 2.28 (1.14) 0.502a 

  Systolic blood pressure 156 124.36 (13.95) 122.78 (13.52) 125.86 (14.28) 0.168a 

  Diastolic blood pressure 157 79.68 (9.90) 80.01 (9.42) 79.36 (10.39) 0.679a 

  Body mass index (BMI) 156 31.77 (5.77) 31.94 (6.26) 31.60 (5.30) 0.709a 

Notes. AUDIT-C, Alcohol Use Disorders Identification Test Score; IPAQ, International Physical 

Activity Questionnaire; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 

Other diagnoses included schizoaffective disorder, psychosis, and persistent delusional disorder. 
a Two Simple t-test; mean (SD); b Pearson's Chi-squared test of independence; n (%) 
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5.4.2 Cardiovascular PRS Associations Results 1 

The PRIMROSE and control groups were combined for the following analyses 2 

with the group allocation as an additional covariate given that we did not find evidence 3 

for significant differences in measures. According to our baseline models, most 4 

cardiovascular PRSs were predictive of the actual cardiovascular measures among 5 

participants with SMI prior to any treatments except for LDL (Table 5.3). Most of the 6 

associations remained robust after interventions with only small attenuations in 7 

association coefficients (Table 5.3). After adjustment of the corresponding baseline 8 

measures, only HDL PRS remained predictive of the actual HDL measures regardless 9 

of the treatment. This might suggest that the interventions had little impact on HDL 10 

and/or HDL is more genetically modified among patients with SMI.  11 

The interventions were most effective in reducing total cholesterol (t=2.277, 12 

p=0.024) and systolic blood pressure (t=2.243, p=0.026) measures. The longitudinal 13 

comparison revealed a clear attenuation of genetic associations after effective treatment, 14 

with the predictive effects of total cholesterol and systolic blood pressure PRS 15 

weakening towards the null at the 12-month follow-up. This trend was visually evident 16 

in Figure 5.1 (Panels A & E), where the fitted regression lines became notably flatter 17 

compared to the baseline. In contrast, measures with minimal changes maintained stable 18 

associations, as demonstrated by overlapping or near-parallel fitted lines in Figure 5.1 19 

(Panels B, C, D, F, & G). 20 

The association coefficients for total cholesterol PRS dropped from 0.196 at 21 

baseline to 0.155 at 12-month follow-up and the association coefficients for systolic 22 
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blood pressure PRS dropped from 4.269 at baseline to 2.093 at 12-month follow-up 1 

(Table 5.3). Formal comparison of the coefficients between the two time points using 2 

Z-score tests revealed no statistically significant differences for total cholesterol 3 

(Δ=0.041, SE=0.113, Z=0.362, p=0.717) or systolic blood pressure (Δ=2.176, 4 

SE=1.788, Z=1.217, p=0.224). However, even these modest attenuations were 5 

sufficient to substantially weaken PRS predictive accuracy following effective 6 

treatment interventions (Table 5.3). 7 

Our sensitivity analyses comparing the baseline and 12-month regression models 8 

revealed no significant difference in model power. Therefore, the observed attenuations 9 

were more likely due to changes in participants' actual measures. In addition, our 10 

sensitivity analyses separating the PRIMROSE intervention and control group did not 11 

produce any major change in the result patterns. 12 

 13 

5.4.3 BD & SCZ PRS Interaction Results 14 

 We conducted multiple linear regressions taking interactions between the two 15 

psychiatric PRS (bipolar/schizophrenia) and each cardiovascular PRS on the 16 

corresponding 12-month follow-up measures to explore the impact from psychiatric 17 

genetic risk. We first examined potential collinearity between the two psychiatric PRS 18 

and each cardiovascular PRS. We only found weak associations between schizophrenia 19 

PRS and BMI PRS (coefficient=-0.171; t=-2.247, p=0.026). However, the model’s 20 

variables only had the highest Variance Inflation Factor (VIF) number of 2.414 21 

suggesting no exceptional collinearity. 22 
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From the models, we did not find any evidence to suggest that there was any 1 

significant interaction effect between BD or SCZ PRS and the corresponding 2 

cardiovascular PRS on these clinical measures (See Table 5.4). At 12-month follow-up, 3 

total cholesterol PRS was no longer predictive of the actual total cholesterol measure 4 

(p.adj=0.166; Table 5.3). However, for each unit increase in BD PRS, there was a 5 

decrease in total cholesterol of 0.276 mmol/L (p.adj=0.043). In addition, LDL PRS was 6 

not predictive of the actual LDL levels at both time points. However, for each unit 7 

increase in BD PRS, LDL decreased by 0.331 mmol/L (p.adj=0.043) at the 12-month 8 

follow-up, suggesting a potential protective effect from higher BD genetic risks.  9 

To further explore BD PRS’s associations with different cholesterol levels, we split 10 

BD PRS into 4 quartiles and compared its influence between baseline and 12-month 11 

follow-up where the 12-month follow-up models included the corresponding baseline 12 

measure as an additional covariate. At baseline, we found no association between BD 13 

PRS and any of these cholesterol levels (Figure 5.2 A). However, at 12-month follow-14 

up, the associations became obvious even if controlled for the baseline measure’s 15 

impact (Figure 5.2 B). If the participants were in the top BD PRS quartile group, they 16 

had 0.58 mmol/L fewer LDL measures on average (t=-0.860; 95% CI: -1.516, -0.204; 17 

p.adj=0.039). The overall model including all covariates could explain 28% of total 18 

variance in LDL measures at 12-month follow-up while BD PRS accounted for 7% of 19 

these variations. These findings further indicated BD genetic risk’s potential impact on 20 

LDL treatment responses. And the relationship between LDL and BD PRS was likely 21 

to account for the association of total cholesterol levels and BD PRS.22 
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Figure 5.1 By-group Scatter Plots comparing Baseline and 12-Month Follow-up Cnical Values against Ascciated PRS  

 

 

Notes. SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index. 

Fitted lines came from corresponding linear regressions. 
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Table 5.3 Results of Multiple Regression Analyses with corresponding 

Cardiovascular PRS 

 

Variables Coefficient SE t-statistics  CI (95%) p p.adj 

Total Cholesterol       

  Baseline 0.196 0.063 3.116 0.072, 0.319 0.002 0.008 

  12 Month 0.155 0.094 1.643 -0.032, 0.342 0.103 0.166 

12 Month BA 0.001 0.091 0.011 -0.179, 0.181 0.991 0.991 

HDL       

  Baseline 0.166 0.024 6.822 0.118, 0.214 <0.001 <0.001 

  12 Month 0.198 0.030 6.604 0.139, 0.257 <0.001 <0.001 

12 Month BA 0.056 0.025 2.257 0.007, 0.105 0.026 0.049 

LDL       

  Baseline 0.084 0.077 1.083 -0.07, 0.237 0.281 0.367 

  12 Month 0.119 0.117 1.022 -0.114, 0.352 0.311 0.367 

12 Month BA 0.037 0.118 0.314 -0.199, 0.273 0.754 0.792 

Triglycerides       

Baseline 0.440 0.139 3.171 0.165, 0.715 0.002 0.008 

12 Month 0.434 0.163 2.657 0.109, 0.759 0.010 0.025 

12 Month BA 0.253 0.175 1.443 -0.098, 0.604 0.154 0.216 

Systolic blood pressure       

  Baseline 4.269 1.339 3.187 1.624, 6.914 0.002 0.008 

  12 Month 2.093 1.185 1.765 -0.252, 4.438 0.080 0.140 

  12 Month BA 1.099 1.089 1.009 -1.055, 3.253 0.315 0.367 

Diastolic blood pressure       

  Baseline 1.924 0.811 2.373 0.322, 3.525 0.019 0.044 

  12 Month 1.890 0.829 2.280 0.25, 3.53 0.024 0.049 

  12 Month BA 1.126 0.745 1.513 -0.347, 2.599 0.133 0.199 

Body Mass Index       

  Baseline 1.451 0.416 3.486 0.629, 2.273 0.001 0.004 

  12 Month 1.376 0.500 2.752 0.387, 2.365 0.007 0.020 

12 Month BA 0.092 0.243 0.379 -0.389, 0.573 0.705 0.780 

Notes. SE, standard errors; CI, confidence interval. 

Presented results are outputs from linear regressions with corresponding cardiovascular polygenic risk 

score regressed on each measure. Participants’ sex, age, treatment allocation, diagnosis, smoking 

scores, alcohol scores, IPAQ scores and the first ten principal components from population 

stratification were added as covariates to all models. Each model was also adjusted for the 

corresponding medication recorded at baseline or 12-month assessment including antipsychotic, 

antidepressant, antihypertensive, mood stabilizers and other medications. 12 Week BA (baseline 

adjusted) models were further adjusted for the corresponding baseline measure.  

P.adj are p values corrected using FDR method. P values in bold are smaller than the threshold at 0.05. 
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Table 5.4 Adjusted Results of Cardiovascular and Psychiatric PRS Interactions 

Variables Coefficient SE t-statistics  CI (95%) p p.adj 

Total Cholesterol       

  BD PRS -0.276 0.091 -3.016 -0.457, -0.095 0.003 0.043 

  BD PRS Interaction 0.138 0.097 1.422 -0.054, 0.331 0.157 0.670 

  SCZ PRS -0.210 0.099 -2.117 -0.407, -0.014 0.036 0.254 

SCZ PRS Interaction 0.068 0.098 0.693 -0.126, 0.262 0.490 0.940 

HDL       

  BD PRS 0.004 0.030 0.139 -0.055, 0.063 0.889 0.940 

  BD PRS Interaction 0.012 0.035 -0.352 -0.082, 0.057 0.726 0.940 

SCZ PRS -0.033 0.032 -1.028 -0.096, 0.03 0.306 0.804 

SCZ PRS Interaction -0.003 0.036 -0.075 -0.074, 0.069 0.940 0.940 

LDL       

  BD PRS -0.331 0.104 -3.195 -0.539, -0.124 0.002 0.043 

  BD PRS Interaction 0.106 0.105 1.011 -0.103, 0.315 0.316 0.804 

  SCZ PRS -0.212 0.122 -1.738 -0.456, 0.032 0.087 0.487 

SCZ PRS Interaction 0.038 0.114 0.335 -0.189, 0.266 0.739 0.940 

Triglycerides       

  BD PRS -0.190 0.136 -1.395 -0.461, 0.081 0.167 0.670 

  BD PRS Interaction -0.093 0.156 -0.597 -0.405, 0.218 0.553 0.940 

  SCZ PRS -0.161 0.149 -1.082 -0.457, 0.135 0.283 0.804 

SCZ PRS Interaction 0.032 0.161 0.199 -0.29, 0.354 0.842 0.940 

Systolic blood pressure       

  BD PRS 1.189 1.086 1.094 -0.961, 3.338 0.276 0.804 

  BD PRS Interaction -2.306 1.065 -2.165 -4.414, -0.198 0.032 0.254 

  SCZ PRS -0.536 1.263 -0.424 -3.035, 1.963 0.672 0.940 

  SCZ PRS Interaction 0.164 0.979 0.168 -1.772, 2.101 0.867 0.940 

Diastolic blood pressure       

  BD PRS -0.327 0.830 -0.394 -1.969, 1.314 0.694 0.940 

  BD PRS Interaction -0.496 0.818 -0.607 -2.114, 1.122 0.545 0.940 

  SCZ PRS -0.603 0.925 -0.651 -2.433, 1.228 0.516 0.940 

  SCZ PRS Interaction -0.194 0.811 -0.239 -1.799, 1.411 0.812 0.940 

Body Mass Index       

  BD PRS 0.319 0.466 0.684 -0.603, 1.241 0.495 0.940 

  BD PRS Interaction -0.049 0.505 -0.097 -1.048, 0.95 0.923 0.940 

  SCZ PRS -0.063 0.520 -0.121 -1.091, 0.965 0.904 0.940 

SCZ PRS Interaction -0.057 0.460 -0.124 -0.968, 0.853 0.901 0.940 

Notes. SE, standard errors; CI, confidence interval; SCZ, schizophrenia; BD, bipolar disorder 

Presented results are outputs from linear regressions with corresponding cardiovascular polygenic risk 

scores (PRS) and their interactions with BD or SCZ PRS regressed on each measure.  

Adjustments are the same as regressions in Table 3.  

P.adj are p values corrected using FDR method. P values in bold are smaller than threshold at 0.05. 
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Figure 5.2 Comparison of Baseline and 12-Month Follow-up Cholesterol Levels Across BD PRS Quartiles 

 

Notes. A. cholesterol measures at baseline; B. cholesterol measures at 12-month Follow-up.  

TC=total cholesterol; BD=bipolar; PRS=polygenic risk scores. 

The plotted values represent the estimated changes relative to the lowest bipolar PRS quartile group with 95% confidence intervals. The 12-month 

follow-up models were adjusted for the corresponding baseline measure in addition to all previously described covariates.  

* in the current plot, p value survived FDR multiple testing correction
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5.5 Discussion 1 

In summary, we used multiple cardiovascular and psychiatric PRS to investigate 2 

how different genetic risks can impact cardiovascular behavioural treatment responses 3 

in patients with SMI within primary care. Prior to treatment, most of these selected 4 

PRSs were predictive of the actual cardiovascular measures. However, if the 5 

interventions were effective in reducing the measures, significant attenuations in the 6 

associations would be expected. For example, the total cholesterol and systolic blood 7 

pressure PRS became non-predictive at the 12-month follow-up. The interventions had 8 

little effect on HDL measures, suggesting that the HDL PRS may be independent of the 9 

baseline measures. The LDL measures were not associated with LDL PRS at both time 10 

points but became negatively associated with BD PRS after treatments even though we 11 

found no significant interaction effects. These findings collectively suggest that PRS 12 

predictions could be influenced by environmental interventions, such as treatment, 13 

particularly if the treatment was effective. 14 

The findings of the study may provide valuable insights into the potential 15 

heterogeneity within PRS predictions when applied to variable health measures. Our 16 

sensitivity analyses comparing baseline and 12-month regression models revealed no 17 

significant difference in model power. This suggested that the attenuations in 18 

associations were more likely driven by changes in participants' actual measures rather 19 

than limitations due to sample drop at follow-up. Most of our selected cardiovascular 20 

PRS showed significant association with the corresponding measures prior to the 21 

treatments. The observed attenuations in these associations indicated that intervention 22 
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could play a substantial role in influencing outcomes over time. While individuals’ 1 

genetic risks always stay stable, the changes in their prediction coefficients could reflect 2 

the treatment effects as coefficients represent the strength of associations between 3 

predictors and outcomes. For PRS coefficients which mostly remained stable or even 4 

increased after treatment such as HDL, this may suggest that the overall treatment likely 5 

had little impact. These findings underscored the importance of carefully considering 6 

the timing of PRS assessments for accurate risk predictions. Such findings also 7 

highlighted the need for more nuanced models that integrate both genetic and 8 

environmental factors to better predict individual treatment responses for patients with 9 

SMI.  10 

For the participants’ psychiatric genetic impact on the treatment outcomes, we 11 

initially hypothesized that the participants with higher both genetic risks might exhibit 12 

reduced treatment effectiveness. However, the results at the 12-month follow-up were 13 

in the opposite direction for BD PRS. While it is well-documented that patients with 14 

BD can have altered lipid profiles, previous findings have been inconsistent (Hiller et 15 

al., 2023). Notably, studies that did find associations often reported a directional trend: 16 

depressive episodes tended to correlate with increased lipid levels, whereas manic 17 

episodes were more frequently associated with decreased lipid levels (Fusar-Poli et al., 18 

2021; Hiller et al., 2023). Using total cholesterol, triglycerides, LDL, and HDL as 19 

biomarkers is inherently complex due to numerous potential confounders, including 20 

dietary intake, comorbid somatic conditions, and medication use (Katcher et al., 2009). 21 

In this study, no prior association was observed between BD PRS and LDL levels at 22 
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baseline; however, a negative association with BD PRS emerged after treatment. Again, 1 

such findings highlighted the instability of PRS predictions. 2 

Notably, BD does not seem to share any genetic correlation with LDL according to 3 

the most recent and largest BD GWAS to date (O’Connell et al., 2025). However, a 4 

recent comprehensive MR study covering 179 lipid species and 5 psychiatric 5 

disorders  provided evidence of a potential causal relationship specifically between 6 

genetic susceptibility in the plasma lipidome and BD (Yu et al., 2025). The authors 7 

identified a protective effect in BD patients, characterized by higher levels of two sterol 8 

esters and eight phosphatidylcholines (PCs). These lipids may contribute to regulating 9 

neuroinflammation and maintaining neuronal cell membrane stability, potentially 10 

explaining their protective role (van der Veen et al., 2017). However, the role of their 11 

PCs also appeared dualistic: while some PCs exhibit protective effects, others acted as 12 

risk factors to promote the development of BD. Our findings also highlighted the 13 

complex relationship between BD and LDL levels. The observed increase in association 14 

at follow-up could be partially explained by reductions in other confounding variables, 15 

as the participants indeed showed positive changes in some lifestyle and health 16 

measures. However, environmental risk factors continue to play a role, and future 17 

studies with increased sample size and specific split on BD subtypes may provide 18 

further clarity. 19 

The study’s strengths were evident as we firstly used longitudinal behavioural 20 

treatment data to indicate how cardiovascular PRS predictions within patients with SMI 21 

could change over time. We employed robust methodologies and utilized the latest 22 
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GWAS for PRS calculations. The results presented here remained consistent and robust 1 

after accounting for the participants’ age, sex, group allocation, diagnoses, medication 2 

use, smoking habits, alcohol consumption, and physical activity levels. Additionally, 3 

we conducted comprehensive sensitivity analyses to validate the results, further 4 

reinforcing the credibility and generalizability of our findings. The findings we present 5 

here may provide a solid foundation for future studies. 6 

The study also had limitations which should be acknowledged. For instance, some 7 

of our health measures such as medication use were purely extracted from clinical 8 

records which may have been incomplete or inconsistent. The participants in the study 9 

had mixed diagnoses and lacked specific symptom measurements thus could not allow 10 

us for more in-depth investigations. It is also important to recognize that participants’ 11 

cardiovascular risk profiles may evolve over time due to a range of external life factors 12 

that are independent of the intervention itself. In addition, our samples were 13 

predominantly of European ancestry which may have limited generalizability and 14 

transferability.  15 

In summary, our findings highlighted the instability of PRS for cardiovascular risk 16 

predictions within patients with SMI. Researchers should carefully consider the 17 

measurement time points as these could produce diverse results. Future studies with 18 

increased sample size and more precise symptom measurements on BD subtypes may 19 

clarify the complex associations between BD and cardiovascular traits.20 
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6. General discussion 1 

6.1 PhD summary 2 

Overall, this thesis applied different genomic methods to identify potential genomic 3 

biomarkers that could guide future mental illness treatments.  4 

The first project (Chapter 2) investigated the interactions between environmental 5 

risk factors, ACE and psychiatric genetic risk factors predicted by multiple PRS for 6 

different BD phenotype developments. Although we could not find any significant 7 

interaction effects, ACE numbers and the PRS were associated with different 8 

phenotypes. Participants with ACEs had an earlier age of BD onset and higher odds of 9 

having rapid cycling. Higher ADHD PRS correlated with increased ACEs and could 10 

increase the likelihood of rapid cycling. Meanwhile, BD PRS was linked to psychotic 11 

symptoms and higher ADHD PRS. Thus, the results provided evidence for potential 12 

monitoring indexes which may improve phenotype management and guide treatment 13 

decisions.  14 

In Chapter 3, I have taken a GWAS meta-analysis approach to identify SNP 15 

associated with a positive lithium response among BD patients. The SNP, rs116927879 16 

reached the genome-wide significance level and had a consistent direction of effect 17 

from all studies. rs116927879 is located on chromosome 7 and maps to two pseudo-18 

genes GTF2IP13, SEPT7P2, and the protein coding gene ADCY1. By integrating the 19 

results with expression data, we found that ADCY1 plays a role in the regulatory 20 

processes in the central nervous system, memory, and learning. The alternative splicing 21 

of ADCY1 could impact different brain regions. We also managed to estimate the SNP 22 
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heritability (h2) for subjective lithium response as 20.3% for the first time using 1 

genomic data. Thus, the results provided evidence for a potential monitoring gene, 2 

ADCY1 which may guide personalized medication allocation.  3 

In Chapter 4, I integrated an EWAS meta-analysis with associated GWAS results to 4 

uncover biomarkers linked to EPSE in individuals with long-term exposure to 5 

antipsychotic medications. This chapter provided insights into the influence of both 6 

genetic and epigenetic factors resulting from environmental treatment factors. Among 7 

the 9 identified DMPs associated with EPSE, four of them cg14531564, cg20647656, 8 

cg12004641, cg22845912, and their affiliated genes (SDF4, ANKMY1, TNS1, SLA) 9 

were associated with the risk of developing EPSE and not with schizophrenia or 10 

smoking risk. One DMP (cg12044923) which maps to the STK32B gene, showed 11 

significant enrichment for association with the risk of EPSE and plays a role in tremor 12 

development. The results highlighted the importance of exploring both methylation 13 

shifts and common SNP associations for medication-induced side-effects.  14 

In Chapter 5, I explored how cardiovascular and psychiatric PRS predictions can 15 

reflect treatment response using samples from the PRIMROSE trial which included 16 

participants with SMI receiving longitudinal cardiovascular treatments. At baseline, 17 

most cardiovascular PRS were predictive of corresponding measures. At 12-month 18 

follow-up, participants’ total cholesterol and systolic blood pressure measures 19 

improved; however, the PRS associations weakened. LDL measures became negatively 20 

associated with BD PRS after treatment, though no significant interaction effects were 21 

found. Participants in the highest BD PRS quartile had 0.58 mmol/L lower LDL on 22 
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average after treatments suggesting a potential protective effect from higher BD genetic 1 

risks. The results showcased the insatiability of PRS predictions, underscored the 2 

dynamic interplay between genetic risks and treatment effects, and warrant careful PRS 3 

assessment timing for predictions in the future.  4 

This thesis concludes in this chapter where I discuss potential limitations inherent 5 

in the datasets and used methods, which may impact the accuracy and generalizability 6 

of the results. 7 

 8 

6.2 General limitations 9 

6.2.1 Limitations in measurements 10 

In the first three projects, the main measures were collected retrospectively through 11 

self-reports and clinician interviews. In the reporting of ACE, it has been found that the 12 

participants’ current mood can impact recall (Hosang et al., 2023). Specifically, 13 

participants who reported abuse had higher depression and mania scores compared to 14 

those without such reports. The report of ACE may also relate to how individuals 15 

process and integrate adverse experiences across development (Baldwin et al., 2019). 16 

For medication responses, patients may struggle to accurately remember past treatment 17 

courses when doing the assessments. Patients with SCZ and BD can experience 18 

episodic or fluctuating symptoms (Perlis et al., 2010). The participants’ subjective 19 

perception of benefit or side effects may be distorted by current mood state or long-20 

term cognitive biases. For example, it has been shown that patients can possess a 21 

“resilience”-like period before realizing the improvements from antidepressants 22 

(Stassen et al., 2007). Thus, using retrospective recall for measurements is prone to 23 



Page 158 / 258 

recall biases and may introduce inaccuracies.  1 

In addition, the way in which the measures were recorded may also introduce 2 

inconsistencies. For instance, ACEs can be recorded in a binary format for simplicity. 3 

However, past studies have found a graded, dose-response relationship between the 4 

number of ACEs and risk for adverse mental and physical outcomes (Felitti et al., 1998). 5 

This suggests ACEs should be measured in a total number which assumes equal 6 

weighting of all adversities while neglect severity, chronicity, and timing. In contrast, 7 

more recent studies showed that individuals with at least four ACEs were at increased 8 

risks for all health outcomes compared to those with none, suggesting potential 9 

categorical measurement methods (Hughes et al., 2017). Across past studies, 10 

considerable heterogeneity (I2 of >75%) has been observed in past ACE studies, 11 

particularly due to differences in how ACEs were defined and measured. Nowadays, 12 

how to best define and measure ACEs is still under debate. Further research is needed 13 

to quantify how each ACE should be weighted and how they cluster together (Lacey & 14 

Minnis, 2020). 15 

Similar heterogeneity exists in the measurement of medication response. Response 16 

to medication can be treated as a binary variable for simplicity, yet it can be difficult to 17 

determine the threshold at which a person is consider as a good responder. In contrast, 18 

response can be measured as a continuous or categorical variable, ranging from 19 

excellent responders, to medium responders and non-responders. Take lithium as an 20 

example, the Alda scale is widely regarded as the gold standard for retrospective 21 

assessment of lithium response in BD (Grof et al., 2002). It is a two-part scale for 22 



Page 159 / 258 

continuous response measurements. Part A (0–10) quantifies the degree of clinical 1 

improvement during lithium treatment, and part B (0–10) adjusts for confounders (e.g., 2 

adherence, duration of treatment, use of concomitant medications, number of episodes 3 

prior to lithium). Researchers have found divergent results when using a binary 4 

calcification (a total score ≥ 7 as “responders”) versus taking the Alda scale as a 5 

measure (Hou et al., 2016). Such measurement differences can undermine the 6 

consistency of study findings, as other past studies defined response in binary formats 7 

and did not explore their continuous forms. However, no measure is without limitations, 8 

especially for complex traits such as medication response. Another study on Alda scale 9 

showed that the part B is vulnerable to error measurement, with some items contributing 10 

little yet may impact the overall total score (Scott et al., 2020). Thus, further research 11 

is needed to clarify how differences in measurement can impact findings. 12 

 13 

6.2.2 Limitations in study design 14 

The first three studies used cross-sectional collection methods, which can only 15 

provide a partial view compared to cohort designs. Cross-sectional retrospective self-16 

report carries both advantages and limitations. Such measures are relatively 17 

inexpensive, scalable, and allow data collection from large samples across the life 18 

course (Teicher et al., 2016). However, this design assumes that retrospective reports 19 

and prospective measures identify the same, or at least similar, groups of individuals. 20 

In reality, taking ACE measurement as an example, the agreement between prospective 21 

and retrospective measures of CM is generally low (k≈0.19), suggesting that these 22 
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methods often capture different individuals. While prospective measures may capture 1 

exposure more objectively, retrospective recall may index subjective appraisal and 2 

perceived impact, both of which are relevant, but distinct dimensions of mental health 3 

outcomes (Baldwin et al., 2019). 4 

Using cross-sectional study designs to assess medication response also be more 5 

problematic. Patients with mental illnesses often experience mood transitions from 6 

depression to manic or mixed states, many of which are not specific to treatment effects 7 

(Perlis et al., 2010). In addition, polypharmacy is common in psychiatric care (Wolff et 8 

al., 2021). Patients may frequently switch between antipsychotics or undergo dose 9 

titrations due to side effects, partial response, or non-adherence, increasing the risk for 10 

adverse effects and drug–drug interactions (Möller et al., 2014; Wolff et al., 2021). 11 

Dose effects also accumulate with increasing exposure. Longer cumulative exposure 12 

and higher lifetime dose of antipsychotics are associated with increased risk of tardive 13 

dyskinesia and parkinsonism (Correll et al., 2017). Furthermore, the pharmacokinetic 14 

and pharmacodynamic processes can change with age. Pharmacokinetic changes 15 

include reduced renal and hepatic clearance and an increased volume of distribution of 16 

lipid soluble drugs, leading to prolonged elimination half-life. Pharmacodynamic 17 

changes typically involve increased sensitivity to several drugs classes such as 18 

anticoagulants, cardiovascular and psychotropic drugs (Mangoni & Jackson, 2004). For 19 

these reasons, many drugs are considered unsuitable for the elderly (Hefner et al., 2021; 20 

Motter et al., 2018).  21 

Given these complexities, cross-sectional designs may not be optimal. Time-22 
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varying models can capture dynamic treatment patterns more accurately than static 1 

measures (Leucht et al., 2013). Nonetheless, cross-sectional and retrospective designs 2 

continue to dominate large-scale psychiatric genetic research due to feasibility but, 3 

findings must still be interpreted with caution. 4 

 5 

6.2.3 Limitations in sample size 6 

The power of GWAS to detect significant associations depends on multiple 7 

parameters, including the minor allele frequency (MAF) of SNPs, the prevalence of the 8 

trait, the effect size of genetic variants, and the sample size available (Visscher et al., 9 

2017a). Common variants with higher allele frequencies are generally easier to detect 10 

than rare variants of similar effect size. Likewise, traits with higher prevalence provide 11 

greater statistical power, as more cases are available for comparison, whereas rare 12 

disorders often require very large sample sizes to achieve sufficient power. The increase 13 

in sample size has been the foundation for continued and increased discoveries from 14 

past GWAS as other factors are largely fixed (Abdellaoui et al., 2023). The conventional 15 

GWAS significance threshold at 5x10-8 was based on a minimum sample of roughly 16 

5,000 cases and 5,000 controls, with SNPs having MAF of at least 5% in European 17 

population (Hoggart et al., 2008). Now, take MDD as am example, if MDD has a 18 

heritability of 0.3 with 3,000 independent significant SNPs, the sample size required to 19 

detect at least 95% of them is estimated to be a minimum of 7.56 × 107 sample (Wu et 20 

al., 2022). Comparing these numbers to our sample size of only a few thousands, it is 21 

evident that the reported samples are only the starting point for future more powered 22 
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and robust findings on the traits.  1 

The limitations in sample also apply to PRS-based predictions. Typically, PRS 2 

studies test the associations between PRS and different traits in the target data and 3 

evaluate its potential effect. The association can be quantified using standard 4 

association or goodness-of-fit metrics such as the proportion of phenotypic variance 5 

explained (R2). For BD, the latest PRS calculated from PRS-CS was estimated to 6 

explain a median of approximately 7.4% variance pooling from all European cohorts 7 

(O’Connell et al., 2025). For SCZ, the authors conducted leave-one-sample out PRS 8 

analyses using different p thresholds for PRS constructions (Trubetskoy et al., 2022). 9 

At a 0.05 threshold, which maximises out-of-sample prediction, the median variance in 10 

PRS liability explained was found to be 7.3%. If both testing and prediction are 11 

conducted within a single sample, allocating approximately 2000 cases and 2000 12 

controls to the replication set is recommended to achieve reliable predictive accuracy 13 

(Dudbridge, 2013). Our PRS analyses did not achieve these sample sizes, limiting 14 

predictive performance and the ability to fully capture the PRS’s potential. Moreover, 15 

even if sufficient sample sizes were reached, the variance explained would remain 16 

relatively low, particularly given that recent psychiatric GWAS with hundreds of 17 

thousands of participants report modest R² estimates. 18 

 19 

6.3 Genomic method limitations 20 

6.3.1 GWAS limitations 21 

GWAS is a powerful method in extend to family-based linkage studies which can 22 

provide valuable genetic insights into complex psychiatric disorders. Findings from 23 
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past psychiatric GWAS have advanced our understanding of the aetiology of many 1 

different disorders and these findings continue to guide future research and medication 2 

developments (O’Connell et al., 2025). However, due to the polygenic nature of 3 

psychiatric disorders, GWAS often identify variants with small effect sizes. These 4 

identified loci may only explain a tiny fraction of the heritability and a small minority 5 

of the inferred genetic variance (Manolio et al., 2009). This is known as the "missing 6 

heritability" problem. For instance, BD is commonly estimated to have a 60% to 80% 7 

heritability from twin studies (Johansson et al., 2019; McGuffin et al., 2003). However, 8 

the most recent PGC BD multi-ancestry GWAS (excluding self-reported data), which 9 

explained the most genetic variance, could still only explain 9% of total genetic 10 

variance while other meta-analyses only explain even less variance (O’Connell et al., 11 

2025). Such statistic is already coming from the largest study to date with 158,036 12 

bipolar disorder cases and 2.8 million controls. Comparing these numbers with our 13 

current lithium response and EPSE GWAS meta-analysis sample sizes, we could 14 

already expect potential false positives, lack of power, and limited transferability (M. I. 15 

McCarthy et al., 2008). Thus, applying GWAS to study psychiatric medication response 16 

is still in its early stages. The data we produced here could only act as a starting point 17 

for future studies to increase the sample size for more meaningful and insightful 18 

findings. 19 

Part of the reason why GWAS findings often had modest effect sizes was because 20 

GWAS intends to primarily focus on common genetic variants (with minor allele 21 

frequency>5%). Rare variants, which may have larger effects, are often missing or 22 
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intentionally removed (Gibson, 2012). In the two included GWAS meta-analyses, we 1 

also removed rare variants during the genetic data quality control steps leaving effects 2 

from these variants as unknown. In addition, our analyses also did not include the sex 3 

chromosomes due to complexities (e.g., dosage compensation, and hemizygosity in 4 

males, Lee et al., 2019). Although we observed potential sexual differences in lithium 5 

response which may yield findings from these sex chromosomes, we could not 6 

investigate these further. 7 

The interpretations of GWAS findings could be another challenge. For instance, the 8 

identified loci could fall outside protein coding regions. Meanwhile, the identified loci 9 

may not provide direct information about the biological mechanisms underlying these 10 

associations. Follow-up functional studies are required (Visscher et al., 2017b). 11 

Because of LD between SNPs, identifying the most plausible causal SNP can be another 12 

challenge. Fine-mapping is required to pinpoint causal variants (Schork et al., 2013). 13 

However, as shown in our lithium response GWAS meta-analysis, even with one of the 14 

most cutting-edge fine-mapping methods Polyfun+SuSiE, pinpointing the exact causal 15 

SNP failed due to limited sample size and power (Weissbrod et al., 2020). Building on 16 

the LD problem, different ancestry groups may also have ancestry-specific patterns 17 

however, all samples reported in this thesis are of European ancestry with limited 18 

generalizability to other populations (Price et al., 2006). This is also the scenario for 19 

most reported GWAS to date (Martin et al., 2019; Sirugo et al., 2019).20 
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6.3.2 PRS limitations 1 

 In the past decade, the numbers of PRS studies increased substantially due to the 2 

increasing number of available GWAS on different traits and diseases (Visscher et al., 3 

2017b). PRS which provides a summary of an individual’s genetic predisposition, is a 4 

promising tool for risk predictions and have been found to be associated with many 5 

heritable traits. Notably, all studies we presented here involved PRS predictions 6 

including phenotype development and treatment responses predictions. However, as we 7 

have also shown in the last project (Chapter 5), PRS predictions can be unstable.  8 

 In addition, the generation of PRS relies on the reference GWAS. As a result, the 9 

power of PRS is largely influenced by the reference GWAS quality, sample size and 10 

population structure (Choi et al., 2020). Most GWAS only focused on common variants, 11 

excluding rare variants, and used imputed data which did not capture the dosage from 12 

all SNPs for cost-effectiveness reasons. If genetic effects from GWAS could be 13 

estimated without error, and these effects were accurately aggregated by PRS, the 14 

variance in phenotype explained by PRS would be expected to equal to the SNP 15 

heritability (h2) of the trait. However, this is often not the case is reality. With these 16 

limitations in data, PRS often only account for only a small fraction of the heritability 17 

of complex traits or diseases (Wray et al., 2013).  18 

Although many PRS calculation methods now use Bayesian approaches to infer 19 

genetic architecture, they still do not account for non-linear interactions between genes. 20 

This limitation makes it challenging for PRS to explain more complex traits effectively 21 

(Boyle et al., 2017; Ge et al., 2019). PRS also do not account for gene-environment 22 
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interactions, which can significantly influence disease risk. For example, lifestyle 1 

factors like diet or smoking may modify the effect of genetic risk. Additionally, PRS 2 

are highly dependent on the ancestry of the training dataset. Scores derived from one 3 

population (e.g., European ancestry) often perform poorly in other populations (e.g., 4 

African or Asian ancestry), exacerbating health disparities (Martin et al., 2019). Most 5 

GWAS have been conducted in populations of European ancestry, the findings have 6 

limited generalizability to other ethnic groups, which further widen health disparities 7 

(Martin et al., 2019; Sirugo et al., 2019).  8 

 9 

6.3.3 EWAS and integration limitations 10 

 Given the limitation that GWAS typically do not account for gene-environment 11 

interactions, EWAS is a powerful approach to identify traits’ or diseases’ epigenetic 12 

modifications which change over time in response to environmental exposures (Rakyan 13 

et al., 2011). In our case, we were interested in side effects from antipsychotic 14 

medication use which can accumulate epigenic changes over time. However, EWAS 15 

has similar limitation profiles like GWAS as the associations identified may not directly 16 

determine mechanisms and establish causality (Relton & Davey Smith, 2012). EWAS 17 

results do not provide direct insights into the functional consequences of epigenetic 18 

changes. Differences in ancestry or population structure can also confound EWAS 19 

results, as epigenetic patterns vary between ethnic groups. The epigenome can also vary 20 

across study populations. If any of these differences are linked to the disease of interest, 21 

confounding may be introduced (Michels, 2010). Adequately large sample sizes are 22 
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crucial for ensuring both the validity and reliability of study results. The EWAS we 1 

reported here had participants of European ancestry only and may had limited samples 2 

size and power (Michels et al., 2013). Meanwhile, the EWAS was cross-sectional which 3 

may not capture dynamic changes over time (Jones et al., 2015). 4 

In addition to these, EWAS also suffer from its unique limitations. GWAS can use 5 

DNA from most tissue types to identify germline genetic variation, typically extracted 6 

from blood or blood-cell-derived cell lines. However, epigenetic changes can be tissue-7 

specific, meaning that findings in one tissue (e.g., blood) may not reflect changes in 8 

other tissues (e.g., brain). As most EWAS are conducted with living individuals, DNA 9 

is generaly limited to easily accessible sources such as blood or saliva. Given our 10 

samples’ data only came from blood, this may limit the generalizability of our EWAS 11 

results to understand mechanisms happening in the brain (Smith et al., 2015).  12 

EWAS involve sensitive genetic and epigenetic data, which can also raise concerns 13 

about privacy, data security, and potential misuse of information (Heyn & Esteller, 14 

2012). Combinations of hypermethylated DNA biomarkers have indicated high 15 

sensitivity in detecting cancer cells and predicting tumour progression (Heyn & Esteller, 16 

2012). The key to success lies in combinatorial approaches. By integrating GWAS and 17 

EWAS, researchers can uncover the functional mechanisms underlying genetic 18 

associations and improve the translational potential of the findings. However, for 19 

biomarkers to be clinically useful, their detection sensitivity and specificity in 20 

biological fluids must be improved in the future.  21 

 22 
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6.4 Clinical implications 1 

Personalized medicine represents one of the most promising frontiers in 2 

contemporary medicine, aiming to tailor therapies to individual patients by integrating 3 

clinical, genetic, and other molecular predictions. A patient’s DNA only needs to be 4 

collected once, but it can be reanalysed over time to identify newly discovered risk 5 

genes and to calculate updated polygenic risk scores (PRS), making it a valuable and 6 

enduring resource in precision care. 7 

GWAS findings have multiple clinical implications to strengthen future treatments. 8 

For instance, the genetic variants identified through medication response studies can 9 

help guide personalized prescriptions (Giacomini et al., 2017). Treatments could be 10 

prioritized for patients with high expression of genes associated with favourable 11 

response and reconsidered for those at high risk of adverse effects. The findings may 12 

also contribute to the development of risk prediction algorithms, enabling earlier 13 

identification of individuals at heightened risk for poor treatment response or adverse 14 

effects to facilitate more personalized intervention strategies in a timely manner. In 15 

addition, insights into the underlying medication biological pathways for good response 16 

can support the development of targeted medications to maximize treatment while 17 

minimize potential side-effects. Drugs with supporting genetic evidence are more likely 18 

to succeed in the development pipeline (M. R. Nelson et al., 2015). 19 

PRS predictions also have multiple important clinical implications, especially for 20 

risk predictions. They may be most useful in cohorts with a higher prior probability of 21 

disease, where they can assist diagnosis or to inform treatment choices (C. M. Lewis & 22 



Page 169 / 258 

Vassos, 2020). Our findings from the last study further suggest that the timing of PRS 1 

assessment is critical as predications may be more informative at specific stages of 2 

disease progression. Determining the optimal time to collect or apply this genetic 3 

information remains an important area for future research. Nevertheless, incorporating 4 

PRS into clinical workflows could enhance early intervention strategies, support 5 

personalized treatment planning, and ultimately improve patient outcomes. 6 

 7 

6.5 Future directions 8 

There are many ways future studies can improve on the current psychiatric 9 

treatment response GWAS. One option is to promote global collaboration to increase 10 

sample sizes and cover muti-ancestry groups. Psychiatric genetics benefited hugely 11 

through global collaborations as also discussed in Chapter 1 (O’Connell et al., 2025). 12 

Another option could be conducting a multi-trait analysis of GWAS (MTAG) which 13 

combines GWAS summary statistics of related traits using multi-trait analysis tools. By 14 

analysing schizophrenia and lithium response GWAS summary statistics together as a 15 

cross-trait meta-GWAS, ConLi+Gen (2018) identified 15 genetic loci that may have 16 

overlapping effects on lithium treatment response and susceptibility to SCZ. In addition, 17 

future research could also update genotyping arrays to include rare and structural 18 

variants and employ whole-genome/exome sequencing data for more comprehensive 19 

analyses. Large samples can be linked with electronic health records to capture more 20 

comprehensive treatment histories than using cross-sectional collection methods alone.  21 

PRS predictions are not yet widely implemented in clinical settings due to several 22 
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challenges, including risk prediction instability, limited actionable intervention plans, 1 

and ethical concerns such as information privacy, discrimination, and stigmatization (A. 2 

C. F. Lewis & Green, 2021; Torkamani et al., 2018). Looking ahead, as GWAS sample 3 

sizes continue to grow and genotyping methods continue to advance, PRS are expected 4 

to play an increasingly central role in biomedical research and personalized medicine. 5 

However, their successful translation into clinical practice will depend on 6 

advancements in methodological development, accurate analysis, appropriate 7 

interpretation, and a thorough understanding of their strengths and limitations (Massi 8 

et al., 2023). 9 

Even if all risk DNA variants were identified with perfect accuracy, imperfect 10 

predictions from genetics are expected. This is because genetic factors are not the only 11 

risk factors for disorders (Wray et al., 2021). Predictions can only be improved if 12 

combined with other clinical risk factors, such as sex, age, and medical histories 13 

(Hippisley-Cox et al., 2017). While no single factor is a strong predictor on its own, 14 

their combination can meaningfully guide clinical decision-making. Future progress 15 

will require developing new approaches to conceptualising and quantifying 16 

environmental risks, such as ACE, to enable more comprehensive models of risk 17 

prediction. In addition, future studies should investigate the extent to which 18 

environmental or cultural differences between populations influence specific traits 19 

(Abdellaoui et al., 2023).  20 
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6.6 Summary and conclusions 1 

An individual’s response to treatment is diverse and influenced by multiple factors. 2 

By incorporating various genomic research methods combined with environmental risk 3 

factors, projects included in this thesis tried to identify potential biomarkers that 4 

differentiate mental illness treatment responses. These findings highlight the need for 5 

further investigations to validate and expand upon the results obtained. Future research 6 

should involve larger sample sizes, meta-analyses with diverse ancestral groups, and 7 

the integration of advanced methods and technologies. These efforts will help the field 8 

move towards a more comprehensive understanding of the genetic underpinnings of 9 

mental illness treatment response and pave the way for the development of more 10 

effective prevention and more personalized treatment strategies. 11 
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Appendices 

2.1 OPCRIT Items 54 to 77 

54. Persecutory delusions  

Includes all delusions with persecutory ideation. (0, 1)  

55. Well organised delusions  

Illness is characterised by a series of well organised or well systematised delusions. 

(0, 1)  

56. Increased self esteem  

Patient believes that he is an exceptional person with special powers, plans, talents or 

abilities. Rate positively here if overvalued idea but if delusional in quality also score 

item 57 (grandiose delusions). Score '1' if duration one week and '2' if lasts two 

weeks. (0, 1, 2)  

57. Grandiose delusions  

Patient has grossly exaggerated sense of own importance, has exceptional abilities or 

believes that he is rich or famous, titled or related to Royalty. Also included are 

delusions of identification with God, angels, the Messiah etc. (See also item 56). Any 

duration score '1', if symptom lasts at least 2 weeks score '2'. (0, 1, 2)  

58. Delusions of influence  

Events, objects or other people in patient's immediate surroundings have a special 

significance, often of a persecutory nature. Include ideas of reference from the TV or 

radio, or newspapers, where patient believes that these are providing instructions or 

prescribing certain behaviour. (0, 1)  
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59. Bizarre delusions  

Strange, absurd or fantastic delusions whose content may have a mystical, magical or 

'science fiction' quality.(0, 1)  

60. Widespread delusions  

Delusions which intrude into most aspects of the patient's life and/or preoccupy the 

patient for most of his time. (0, 1)  

61. Delusions of passivity  

Include all 'made' sensations, emotions or actions. Score '1' for all experiences of 

influence where patient knows that his own feelings, impulses, volitional acts or 

somatic sensations are controlled or imposed by an external agency. (0, 1).  

62. Primary delusional perception  

Score '1' where the patient perceives something in the outside world which triggers a 

special, significant relatively non understandable belief of which he is certain and 

which is in some way loosely linked to the triggering perception (0, 1).  

63. Other primary delusions  

Includes delusional mood and delusional ideas. Delusional mood is a strange mood in 

which the environment appears changed in a threatening way but the significance of 

the change cannot be understood by the patient who is usually tense, anxious or 

bewildered. Can lead to a delusional belief. A delusional idea appears abruptly in the 

patient's mind fully developed and unheralded by any related thoughts. (0, 1)  
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64. Delusions & hallucinations last for one week  

Any type of delusion accompanied by hallucinations of any type lasting one week. (0, 

1)  

65. Persecutory/jealous delusions & hallucinations  

This is self explanatory But note that abnormal beliefs are of delusional intensity and 

quality and are accompanied by true hallucinations. (0, 1)  

66. Thought insertion  

Score '1' when patient recognises that thoughts are being put into his head which are 

not his own and which have probably or definitely been inserted by some external 

agency. (0, 1)  

67. Thought withdrawal  

Score '1' when patient experiences thoughts ceasing in his head and may experience 

'thought block' which is interpreted as thoughts being removed (or 'stolen') by some 

external agency. (0, 1)  

68. Thought broadcast  

Score '1' when patient experiences thoughts diffusing out of his head so that they may 

be shared by others or even heard by others. (0, 1)  

69.  Delusions of guilt  

Firm belief held by subject that they have committed some sin, crime or have caused 

harm to others despite absence of any evidence to support this. (0, 1)  
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70. Delusions of poverty  

Firm belief held by subject that they have lost all or much of their money or property 

impoverished despite absence of any evidence to support this. (0, 1)  

71. Nihilistic delusions  

Firmly held belief that some part of patient's body has disappeared or is rotting away 

or is affected by some devastating or malignant disorder despite a lack of any 

objective supporting evidence. (0, 1)  

72. Thought echo  

Score '1' if patient experiences thoughts repeated or echoed in his or her head or by a 

voice outside the head. (0, 1)  

73. Third person auditory hallucinations  

Two or more voices discussing the patient in the third person. Score '1' if either 'true' 

or 'pseudo' hallucinations, i.e. differentiation of the source of the voices is 

unimportant. (0, 1)  

74. Running commentary voices  

Patient hears voice(s) describing his actions, sensations or emotions as they occur. 

Score '1' whether these are possible 'pseudo' hallucinations or definite ('true') 

hallucinations (0, 1)  

75. Abusive/ accusatory/ persecutory voices  

Voices talking to the patient in an accusatory, abusive or persecutory manner. (0, 1)  
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76. Other (non affective) auditory hallucinations  

Any other kind of auditory hallucination. Includes pleasant or neutral voices and non 

verbal hallucinations. (0, 1)  

77. Non-affective hallucination in any modality  

Hallucinations in which the content has no apparent relationship to elation or 

depression. Score '1' if present throughout the day for several days or intermittently 

for One week. (0, 1)  
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2.2 CLEQ QUESTIONNAIRE 

Date of Completion: _______________ Completed by: Self Interviewer 

Did you experience as a child (up to age 16 years) any of the following life events? 

 

  Please circle If yes, how old were 

you? 

1 Death of parent  Yes No  

2 Death of a brother/sister Yes No  

3 Death of a close friend Yes No  

4 Divorce of parents Yes No  

5 Marital separation of parents Yes No  

6 Marriage of parent to step parent Yes No  

7 Serious illness needing hospitalisation Yes No  

8 Hospitalisation of a parent Yes No  

9 Acquiring a visible deformity Yes No   

10 Prison sentence of a parent for a year or more Yes No  

11 Teenage pregnancy/fatherhood Yes No  

12 Suspension from school Yes No  

13 Are there any other significant life events you experienced as a child that 

 

 are not mentioned above Yes No  

 Please provide brief details    
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2.3 Supplementary Table 1 Results of Multiple Regression Analyses with 

Adjustments based on ACE (total score) and BD/ADHD PRS 

  

Variables Estimated 

Coefficient 

Standard 

Error 

Confidence 

Intervals (95%) 

Reference 

Values 

p FDR_p 

Age at onset†       

  BD PRS -0.351 0.480 -1.294, 0.592 -0.731 0.465 0.709 

  BD Interaction -0.370 0.356 -1.070, 0.330 -1.037 0.300 0.706 

  ADHD PRS -0.328 0.506 -1.322, 0.665 -0.649 0.516 0.718 

  ADHD Interaction -0.295 0.356 -0.993, 0.404 -0.828 0.408 0.706 

Presence of psychotic symptoms‡  

  BD PRS 0.254 0.090 0.079, 0.430 2.833 0.005 0.074 

  BD Interaction -0.089 0.068 -0.223, 0.045 -1.300 0.194 0.706 

  ADHD PRS -0.080 0.093 -0.264, 0.102 -0.863 0.388 0.706 

  ADHD Interaction 0.033 0.068 -0.100, 0.168 0.481 0.631 0.807 

Presence of suicide ideation‡       

  BD PRS -0.029 0.096 -0.218, 0.157 -0.306 0.760 0.884 

  BD Interaction -0.097 0.078 -0.250, 0.055 -1.246 0.213 0.706 

  ADHD PRS 0.077 0.100 -0.119, 0.275 0.770 0.441 0.706 

  ADHD Interaction -0.022 0.079 -0.175, 0.135 -0.276 0.782 0.884 

Presence of rapid cycling‡       

  BD PRS -0.148 0.106 -0.357, 0.058 -1.406 0.160 0.706 

  BD Interaction -0.014 0.088 -0.187. 0.158 -0.157 0.875 0.884 

  ADHD PRS 0.471 0.124 0.232, 0.721 3.780 <0.001 0.005 

  ADHD Interaction 0.125 0.094 -0.056, 0.314 1.334 0.182 0.706 

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; BD, bipolar disorder; ADHD, attention deficit 

hyperactivity disorder. 

† Multiple linear regression analyses, reference value t. 

‡ Multiple logistic regression analyses, reference value z. 

FDR_P = false discovery rate corrected p values for multiple testing. 

In bold p values survived multiple testing correction in main analyses. 

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was adjusted). 

PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population 

stratification in addition to sex and age of onset. 
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2.4 Supplementary Table 2 Results of Multiple Regression Analyses with 

Adjustments based on ACE (total score) and MDD/SCZ PRS 

 

  

Variables Estimated 

Coefficient 

Standard 

Error 

Confidence 

Intervals (95%) 

Reference 

Values 

p FDR_p 

Age at onset†       

  MDD PRS -1.197 0.487 -2.154, -0.241 -2.458 0.014 0.153 

  MDD Interaction -0.052 0.355 -0.750, 0.646 -0.145 0.884 0.884 

  SCZ PRS -0.442 0.489 -1.403, 0.518 -0.905 0.366 0.706 

  SCZ Interaction -0.356 0.350 -1.043, 0.333  -1.015 0.311 0.706 

Presence of psychotic symptoms‡      

  MDD PRS 0.063 0.091 -0.115, 0.241 0.691 0.489 0.712 

  MDD Interaction -0.056 0.068 -0.191, 0.077 -0.830 0.406 0.706 

  SCZ PRS 0.185 0.090 0.009, 0.362 2.060 0.039 0.315 

  SCZ Interaction -0.072 0.068 -0.206, 0.061 -1.054 0.292 0.706 

Presence of suicide ideation‡       

  MDD PRS 0.079 0.098 -0.114, 0.272 0.802 0.422 0.706 

  MDD Interaction -0.021 0.080 -0.179, 0.137 -0.260 0.795 0.884 

  SCZ PRS -0.061 0.100 -0.260, 0.133 -0.610 0.542 0.722 

  SCZ Interaction -0.012 0.082 -0.174, 0.148 -0.149 0.881 0.884 

Presence of rapid cycling‡       

  MDD PRS 0.116 0.112 -0.102, 0.337 1.039 0.299 0.706 

  MDD Interaction 0.114 0.091 -0.064, 0.292 1.231 0.218 0.706 

  SCZ PRS -0.023 0.112 -0.242, 0.197 -0.203 0.839 0.884 

  SCZ Interaction 0.067 0.082 -0.094, 0.230 0.811 0.417 0.706 

Notes. ACE, adverse childhood experience; PRS, polygenic risk score; MDD, major depressive disorder; SCZ, 

schizophrenia disorder. 

† Multiple linear regression analysis, reference value t. 

‡ Multiple logistic regression analysis, reference value z. 

FDR_p = false discovery rate corrected p values for multiple testing. 

All results were adjusted for participants’ BD age of onset and sex (except for age of onset where only sex was adjusted). 

PRS & interaction results were adjusted for chip type and the first three principal components from GWAS population 

stratification in addition to sex and age of onset. 
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3.1 Supplementary Table 1 UCL Samples’ Lithium Response Assessment 

 

Response to Lithium 

 Investigators Opinion  Participants Opinion 

 Very good - no episodes on lithium during long-term treatment  Very good 

 

Good - almost complete elimination of episodes, maintained well on 

lithium alone, episodes are due to confounding factors e.g.non-

compliance 
 

Good 

 

Medium - a significant reduction in episode frequency or severity 

and/or frequent use of additional psychotropic medication  
Medium 

 

Poor - little clinical improvement, often in the presence of therapeutic 

lithium levels  
Poor 

 
Very poor increase in number of episodes  

Very poor 

 
Unknown/Unclassifiable  

Unknown/Unclassifiable 
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3.2 Supplementary Table 2 UCL samples’ demographics and clinical 

characteristics concerning lithium response 

 

Variables N Overall 

N = 1259 

Lithium Responders 

N = 440 (35%) 

Lithium Non-responders 

N = 819 (65%) 

p-values 

Age at interview  1153 50.39 (12.84) 50.34 (13.62) 50.42 (12.40) 0.921a 

Age of BD onset  1198 24.66 (10.62) 24.33 (10.68) 24.82 (10.60) 0.453a 

Sex  1259    0.039 b 

  Male  499 (40%) 192 (44%) 307 (37%)  

  Female  760 (60%) 248 (56%) 512 (63%)  

BD type 1259 

   

0.189b 

BD type 1  827 (66%) 297 (68%) 530 (65%)  

BD type 2  169 (13%) 63 (14%) 106 (13%)  

SABP  96 (8%) 34 (8%) 62 (7%)  

No information  167 (13%) 46 (10%) 121 (15%)  

PPD diagnosis 1181 41 (3%) 7 (1%) 34 (3%) 0.027b 

BD, bipolar disorder; SABP, schizoaffective bipolar disorder; PPD, premorbid personality disorder; SD, standard 

deviation 
a Two Sample t-test; mean (SD)  
b Pearson's Chi-squared test of independence; n (%) 

In bold, p passed significance at 0.05. 
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3.3 Supplementary Figure 1 The QQ plot for the UCL+SongSub+ConLi+Gen 

GWAS meta-analysis  
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3.4 Supplementary Figure 2 The QQ plot for the UCL+SongOb+ConLi+Gen GWAS 

meta-analysis 
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3.5 Supplementary Figure 3 Regional association plot on chromosome 7 in which 

the Genome-wide significant SNP is located 
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4.1 Supplementary Table 1 Behavioural Key Words used to Identify EPSE Cases 

 

Symptoms Keywords 

General terms for EPSE  Extrapyramidal; extra pyramidal; epse; EPSE; movement disorder 

Parkinsonism (tremor) Tremor; tremble; shake; quiver 

Parkinsonism (rigidity) Rigid; hypertonic; stiff; inflexible; tight; tense; muscle pain 

Parkinsonism (Sialorrhea) Salivation; sialorrhea; drool 

Parkinsonism (bradykinesia and 

hypokinesia) 

Hypokinesia; bradykinesia; freeze; froze; slow; motor block; stride; 

reduced arm swing; blink; hypophonia; soft voice; voice volume; 

slurred; micrographia; handwriting 

Parkinsonism (mask face) Mask; hypomimia; expressionless 

Parkinsonism (stooped posture) Stoop; hunch; posture 

Parkinsonism (parkinsonian gait) Shuffle; festinate; parkinsonian 

Parkinsonism (parkinsonian gait) Imbalance; fall 

Dystonia (general) Dystonia; jerk; twist; twitch; spasm; lock 

Dystonia (opisthotonos) Opisthotonos; arch back; bend back; arch spine; bend spine 

Dystonia (torticollis) Torticollis; cervical dystonia; head deviation; head posturing; neck pain 

Dystonia (oculogyric crisis) Oculogyric; fix stare; fix eye; deviate eye 

Dystonia (trismus) Trismus; lock jaw; lockjaw; jawlock; jaw deviation; jaw retraction; 

clench; grind; mouth pain; restrict mouth; limit mouth 

Dystonia (tortipelvic crisis) Tortipelivic; bend trunk; twist trunk 

Dystonia (buccolingual crisis) Buccolingual; dysphagia; difficult swallow; grimace; protrude; 

protrusion; risus sardonicus; dysarthria; difficult speak; difficult speech; 

pseudomacroglossia; swollen tounge; tounge swell 

Dystonia (laryngeal dystonia) Laryngeal; stridor; strangled voice; breathy voice; quiet voice; whispery 

voice; hoarse; shaky voice; aphonia; interrupt speech; lose voice; voice 

loss 

Tardive Dyskinesia (general) tardive dyskinesia; dyskinesia; TD 

Tardive Dyskinesia (orofacial 

dyskinesia) 

Involuntary; tongue twist; tongue protrusion; chew; biting; bite; suck; 

clench; lateral jaw movement; sideway jaw movement; smack lip; lip 

purse; pucker; puff cheek; frown; blink; grimace; blink 

Tardive Dyskinesia (limb truncal 

dyskinesia) 

Choreiform; athetoid; choreoathetoid; purposeless; rock; twist; squirm; 

gyrate; thrust; knee move; tap; heel drop; writhing; rotate; nod; 

inversion; eversion 

Akathisia Akathisia; akathisia; restless; pace; fidget; irritable; leg cross; leg swing; 

foot shift; shuffle; tramp; still; march; shift weight; rock 
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4.2 Supplementary Table 2 Pharmacological Keywords used to Identify EPSE 

Cases 

 

 

  

Medication Keywords 

Trihexyphenidyl Trihex; benzh; artane; agitane; parkin 

Benzatropine Benza;tropin; cogentin 

Procyclidine Procy; lidin; kemad 

Orphenadrine Orphan; drine 

Biperiden Biper; akineton 

Hyoscine Hyos; kwell 

Tetrabenazine Tetrab; ranb; nitom; xenaz 
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4.3 Supplementary Table 3 FGA Codes used to Select Participants 

 

Medication Name Medication Type Medication Code 

Benperidol anquil 250micrograms tablet; benperidol 1140867080; 1140867078 

Chlorpromazine chlorpromazine; cpz - chlorpromazine; 

largactil 10mg tablet; chloractil 25mg tablet 

1140879658; 1140910358; 

1140863416; 1140863410 

Flupentixol flupentixol; depixol 3mg tablet; fluanxol 

500micrograms tablet; flupenthixol; 

flupentixol 

1140909800; 1140867152; 

1140867952; 1140867150; 

1140909800 

Fluphenazine decazate 25mg/1ml oily injection; 

fluphenazine; fluphenazine decanoate; 

modecate 12.5mg/0.5ml oily injection; 

moditen 1mg tablet; moditen enanthate 

25mg/ml injection 

1140867474; 1140882098; 

1140867398; 1140867456; 

1140867156; 1140856004 

Haloperidol haldol 5mg tablet; haloperidol; serenace 

500micrograms capsule 

1140867184; 1140867168; 

1140867092 

Levomepromazine levomepromazine; nozinan 25mg tablet 1140909802; 1140867122 

Loxapine loxapine; loxapac 10mg capsule 1140867406; 1140867414 

Pericyazine neulactil 2.5mg tablet; pericyazine 1140867136; 1140867134 

Perphenazine fentazin 2mg tablet; perphenazine 1140867210; 1140867208 

Pimozide orap 2mg tablet; pimozide 1140867272; 1140867218 

Pipotiazine piportil depot 50mg/1ml oily injection; 

pipotiazine 

1140867572; 1140909804 

Prochlorperazine prochlorperazine; stemetil 5mg tablet 1140868170; 1140868172 

Promazine promazine 1140879746 

Sulpiride dolmatil 200mg tablet; sulparex 200mg tablet; 

sulpiride; sulpitil 200mg tablet; sulpor 

200mg/5ml oral solution 

1140867306; 1140917366; 

1140867304; 1140882376; 

1141185130 

Thioridazine thioridazine; melleril 10mg tablet 1140879750; 1140867312 

Trifluoperazine stelazine 1mg tablet; 

tranylcypromine+trifluoperazine 10mg/1mg 

tablet; trifluoperazine 

1140867244; 1140867944; 

1140868120 

Zuclopenthixol clopixol 2mg tablet; zuclopenthixol 1140867342; 1140882100 
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4.4 Supplementary Table 4. SGA Codes used to Select Participants 

 

Medication Name Medication Type Medication Code 

Amisulpride amisulpride; solian 100mg/ml s/f oral solution 1141153490; 1141184742 

Aripiprazole abilify 5mg tablet; aripiprazole 1141202024; 1141195974 

Clozapine 

clozapine; clozaril 25mg tablet; denzapine 

25mg tablet 

1140867420; 1140882320; 

1141200458 

Olanzapine olanzapine; zyprexa 2.5mg tablet 1140928916; 1141167976 

Oxypertine oxypertine; integrin 10mg capsule 1140879754; 140855978 

Quetiapine quetiapine; seroquel 25mg tablet 1141152848; 1141152860 

Remoxipride remoxipride; roxiam 150mg m/r capsule 1140879704; 1140867432 

Risperidone 

dozic 1mg/ml oral liquid; risperdal 0.5mg 

tablet; risperidone 

1140867180; 1141177762; 

1140867444 

Sertindole serdolect 4mg tablet; sertindole 1140927970; 1140927956 
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4.5 Supplementary Table 5 EPSE Medications Codes used to Select Cases 

 
Medication Name Medication Type Medication Code 

Akineton akineton 1140872522 

Artane artane 1140872378 

Benzatropine benzatropine 1140909818 

Benzhexol benzhexol 1140883510 

Biperiden biperiden 1140872520 

Cogentin cogentin 1140872460 

Kemadrin kemadrin 1140872542 

Orphenadrine orphenadrine 1140883560 

Procyclidine procyclidine 1140883476 

Tetrabenazine tetrabenazine 1140872556 

Tetrabenazine Product tetrabenazine_product 1141157336 

Trihexyphenidyl trihexyphenidyl 1140909816 

Xenazine xenazine 1141171726 
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4.6 Supplementary Figure 1 The Manhattan Plot of EPSE GWAS Meta-analysis 
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4.7 Supplementary Figure 2 The QQ Plot of EPSE GWAS Meta-analysis for FGA 

and SGA Combined 

 

Notes. X-axis (Expected -log10(p-values)): Represents the theoretical quantiles under the null 

hypothesis, where p-values are uniformly distributed on a logarithmic scale; Y-axis (Observed -

log10(p-values)): Shows the observed -log10(p-values) from the GWAS. 
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4.8 Supplementary Figure 3 The Manhattan Plot of EPSE GWAS Meta-analysis for any Exposure to FGA  
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4.9 Supplementary Figure 4 The QQ Plot of EPSE GWAS Meta-analysis for any 

Exposure to FGA  

 

Notes. X-axis (Expected -log10(p-values)): Represents the theoretical quantiles under the null hypothesis, 

where p-values are uniformly distributed on a logarithmic scale; Y-axis (Observed -log10(p-values)): 

Shows the observed -log10(p-values) from the GWAS.  
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4.10 Supplementary Figure 5. The Manhattan Plot of EPSE GWAS Meta-analysis for only Exposure to SGA 
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4.11 Supplementary Figure 6 The QQ Plot of EPSE GWAS Meta-analysis for only 

Exposure to SGA 

 

Notes. X-axis (Expected -log10(p-values)): Represents the theoretical quantiles under the null hypothesis, 

where p-values are uniformly distributed on a logarithmic scale; Y-axis (Observed -log10(p-values)): 

Shows the observed -log10(p-values) from the GWAS.  
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4.12 Supplementary Table 6 EWAS Participants’ Demographics and Clinical 

Characteristics concerning EPSE Presence 

 

 

  N  Overall  EPSE Presence Controls p-values  

UCL  379  n = 64 (17%)  n = 315 (83%)   

 Age at assessment 362 38.24 (14.81) 36.90 (14.74) 44.48 (13.58) <0.001a 

 mAge (Horvath)  379 40.31 (12.46) 39.54 (12.41) 44.08 (12.13) 0.008a 

 Sex       <0.001b 

   Male   192 (51%) 52 (81%) 140 (44%)  

   Female   187 (49%) 12 (19%) 175 (56%)  

 Antipsychotics 64     

   First generation   57 (89%) /  

   Second generation   50 (78%) /  

Aberdeen 480  n = 47 (10%)  n = 433 (90%)   

 mAge (Horvath)  480 53.16 (9.88) 54.29 (11.48) 53.04 (9.70) 0.473a 

 Sex   480     

   Male   352 (73%) 33 (70%) 319 (74%) 0.737b 

   Female   128 (27%) 14 (30%) 114 (36%)   

 Antipsychotics 47     

   First generation   30 (64%) /  

   Second generation   23 (49%) /  

Notes. EPSE, extrapyramidal side effects; SD, standard deviation 
a Two Simple t-test; mean (SD)   
b Pearson's Chi-squared test of independence; n (%)  

In bold p passed significance threshold 
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4.13 Supplementary Figures 7–15 The Mapping of CpG to the Schizophrenia 

GWAS Region 

The figures illustrate the mapping of significant CpG sites to Schizophrenia GWAS 

within a 250kb window. Black line in the central mark the SNP closest to the CpG. Red 

dotted line marked the SNP in lead within the region and other nearby SNPs in linkage 

disequilibrium.   

 

 

Supplementary Figure 7. The Mapping of CpG cg14531564 to the Schizophrenia 

GWAS Region 
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Supplementary Figure 8. The Mapping of CpG cg20647656 to the Schizophrenia 

GWAS Region 

 

 

 

 

Supplementary Figure 9. The Mapping of CpG cg12524168 to the Schizophrenia 

GWAS Region 
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Supplementary Figure 10. The Mapping of CpG cg12004641 to the Schizophrenia 

GWAS Region 

 

 

Supplementary Figure 11. The Mapping of CpG cg05419385 to the Schizophrenia 

GWAS Region 
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Supplementary Figure 12. The Mapping of CpG cg22583147 to the Schizophrenia 

GWAS Region 

 

 

Supplementary Figure 13. The Mapping of CpG cg22845912 to the Schizophrenia 

GWAS Region 
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Supplementary Figure 14. The Mapping of CpG cg20730966 to the Schizophrenia 

GWAS Region 

 

 

 

Supplementary Figure 15. The Mapping of CpG cg12044923to the Schizophrenia 

GWAS Region 

 

 


