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Abstract—We present the first classifier based on a spiking neu-
ral network (SNN) that can decode individual finger movements
from electrocorticography (ECoG) signals. The SNN has only
six leaky integrate-and-fire neurons and uses carefully selected
features: the local motor potential and the high gamma band
power to analyse a publicly available ECoG dataset. Through the
investigation of the key aspects affecting SNN performance (epoch
length, lag time, number of concatenated epochs), the presented
decoder achieves a 72.4% average classification accuracy across
three subjects with an average training time of 3.55 s and a
latency of only 1 ms. This work demonstrates how a simple
SNN architecture can effectively decode complex motor intentions
from ECoG signals, potentially enabling more efficient brain-
computer interfaces.

Index Terms—brain-computer interface (BCI), spiking neural
network (SNN), motor decoding, electrocorticography (ECoG)

I. INTRODUCTION

Brain-computer interfaces (BCIs) can translate brain activity
into actionable commands, allowing individuals to interact
with their environments or control tailored devices, bypassing
the biological neural pathways [1]. One of the most promising
applications of BCIs lies in the development of motor neuro-
prostheses. These devices aim to restore motor functions in
people suffering from paralysis due to spinal cord injuries,
strokes, or neurodegenerative diseases [2].

Electroencephalography (EEG) is the most widely employed
method for neural signal recording involved in motor decod-
ing, due to its non-invasive nature. However, because EEG
records neural activity directly from the scalp, it tends to
perform poorly in decoding complex movement intentions.
Intracortical recording instead provides high-fidelity measure-
ments of local field potentials or single-unit/multi-unit activity,
at the cost of high invasiveness because of the use of penetrat-
ing electrodes. In contrast, electrocorticography (ECoG) offers
a balanced alternative by placing electrodes on the cortical
surface.

There is increasing research on new brain implants capable
of long-term ECoG recording and their application in motor
decoding tasks [3], such as predicting lower limb movement to
restore the ability of a patient with spinal cord injury to walk
[4], and controlling an exoskeleton to perform reach-and-touch
tasks and wrist rotations [5]. However, effective strategies for
achieving dexterous hand control—especially individual finger
movements—remain insufficiently explored. Achieving fast

and accurate individual finger movement decoding is crucial
for patients with corresponding mobility impairment to regain
the ability to perform daily tasks independently.

Different methods for individual finger movement decoding
based on ECoG signals have been employed with up to 77%
accuracy [6]. These methods range from traditional machine
learning techniques such as conditional random fields (CRF)
[7], support vector machines (SVM) and gradient boosting
machines (GBM) [6] [8], to artificial neural networks (ANN)
that consist of spatial and temporal convolutional layers [9].
However, the classification techniques demonstrated to date
usually require complex models that demand significant com-
putational resources, leading to high power consumption and
latency issues.

To address these limitations, alternative classification meth-
ods based on spiking neural networks (SNNs) and neuromor-
phic computing have been proposed in other BCI applications
[10] [11] [12]. SNNs more closely mimic biological neural
networks by encoding information with discrete spikes. This
approach contributes to reduced computational cost as SNNs
reduce the dot-product operation in conventional ANNs to
simple addition operation. Furthermore, the sparse nature of
spike-encoded information allows for event-driven processing,
reducing power consumption and data storage requirements
[13]. Brain signal decoding using SNNs on neuromorphic
hardware has been presented for successful classification of
arm-reaching directions and detecting high-frequency oscilla-
tions associated with epilepsy onset [10] [11]. Although the
superiority of SNNs for various BCI-related two-class and
four-class classification tasks has been demonstrated [12], its
use for more complex classification (six-class classification)
required for individual finger movements decoding based on
ECoG signals has not yet been investigated to the best of
our knowledge. In this work, we demonstrate the feasibility
of using a SNN to decode individual finger movements from
ECoG signals. We show that a simple SNN can achieve
comparable classification accuracy to that of the state-of-the-
art, with significantly shorter training time and inference time.

II. METHODS

A. Dataset and Labelling

A publicly available dataset from the BCI competition IV
was used in this study [14]. The dataset includes ECoG signals



recorded from three subjects while they performed self-paced
finger movements in response to randomly displaced cues.
The number of recording channels ranged from 48 to 64.
The ECoG signals were recorded and amplified at a sampling
frequency of 1000 Hz with instrumental bandpass filtering
between 0.3 and 200 Hz. At the same time, individual finger
trajectories were recorded at a sampling frequency of 25 Hz
using a data-glove sensor (see Fig. 1a).

In this work, the recorded finger trajectories were individu-
ally re-labelled as binary events (with ”0” representing the rest
state and ”1” representing finger movement) according to the
method used in [6], where each complete movement period
was considered a single movement state, without distinguish-
ing multiple flexions within the period. After the movement
state of each finger was determined, six classes were labelled
from ”0” to ”5”, with ”0” representing the rest state, and ”1” to
”5” representing the movement of the thumb to little fingers.

B. Sample Construction and Feature Selection

The recorded ECoG signals of each channel were re-
referenced to the common average of all channels to reduce
common noise. Local motor potential (LMP, running average
of the raw signal [14]) and power in different frequency bands
were then computed for each channel and normalized to fit
within 0 to 1. The band powers were calculated across five
spectral bands: alpha band (8 to 13 Hz), beta band (13 to 30
Hz), low gamma band (30 to 55 Hz), and high gamma band
(HGB) from both 65 to 115 Hz and 125 to 175 Hz (referred
to as HG1 and HG2 from now on). The three gamma bands
were divided in this manner to avoid the use of notch filters to
eliminate power-line interference at 60 Hz and its harmonics.
Both LMP and the five band powers were calculated based on
the running average over a specified epoch length, with a fixed
step size of 40 ms to align with the sampling frequency of the
finger trajectories (Fig. 1b). Furthermore, historical data were
concatenated by introducing an additional dimension when
constructing the samples before passing the data into the SNN
model (Fig. 1c).

To identify the most informative features among the afore-
mentioned six feature types, squared Pearson’s correlation
coefficient (r2) was calculated between each feature and the
preprocessed finger trajectories (with baseline drift reduction
and resting noise removal). The five finger trajectories were
also combined as one to form a new category for r2 evaluation,
aiming to determine which features could exhibit the highest
correlation with finger movements in general, regardless of
which specific finger was moving.

C. Temporal Dynamics Analysis

The execution of finger movements is known to be corre-
lated with ECoG signals recorded several hundred millisec-
onds ago [15]. To study the impact on the performance of
the classifier by extracting the temporal features differently,
the following aspects were investigated: the epoch length of
the selected features, the lag time between the samples and
the labels, and the number of concatenated epochs. The epoch

Fig. 1. a. Examples of the raw ECoG signal and individual finger trajectories
provided in the BCI competition IV dataset. b. The features computed based
on the specified epoch length and step size, containing LMP and power of
different frequency bands (only LMP and high gamma band power (HGB)
from 65 to 115 Hz are shown here as an example). c. Each sample that was
to be passed into the neural network contained n selected features, with m
concatenated epochs. d. These samples were fed to the output layers through
a linear layer. The output layer consisted of 6 LIF neurons that corresponded
to the 6 classes to be predicted. The predicted class was determined by the
neuron that spiked the most. In this example, the predicted class is the class
that corresponds to the rest state.

length was varied from 200 to 2000 ms, while lag times from
0 to 400 ms were applied. The impact of using different
numbers of concatenated epochs on the model performance
was examined from the number of 1 (no concatenation) to
26 (concatenation with the previous 25 epochs) for different
epoch lengths.

D. Spiking Neural Network Model and Training

We employed a simple SNN as the classifier where the input
features were directly connected to six output spiking neurons,
corresponding to the rest class and the five movement classes,
through a fully connected linear layer as shown in Fig. 1.d. The
spiking neuron model used was the leaky integrate-and-fire
(LIF) model without a refractory period as described in [16].
This simplified LIF model involved only two hyperparameters:
the membrane potential decay constant and the threshold
potential, both of which were uniformly applied to the six
spiking neurons.

The SNN model was trained using surrogate gradient de-
scent that replaces the non-differentiable step function describ-
ing the spiking behaviour with the arctangent function [17].
As each sample contained input from multiple time steps,
backpropagation through time (BPTT) was used for training
based on the sum of the loss from each time step as proposed
in [18]. The class corresponding to the output neuron with the
maximum spike count over the time steps was considered the
predicted class (Fig. 1d).

To achieve the optimal model performance, the epoch
length, the lag time, the number of concatenated epochs,



Fig. 2. a. The average correlation coefficients of the highest value achieved among all channels between each feature type and each finger movement category
for the three subjects. A uniform epoch length of 200 ms and a zero lag time were used in this plot. b. Classification accuracy of the trained models using
features computed from different epoch lengths and lag times (with 6 concatenated epochs). c. Classification accuracy obtained using different epoch lengths
and numbers of epochs concatenated to construct the samples (with a zero lag time). Both b and c are from the results of subject 2, where the upper ones
used LMP alone as input features and the lower ones used HGB (HG1 for subject 2).

and the number of included features were optimized for
each subject. In particular, the epoch lengths were applied
differently for different types of features selected. And they
were treated as the hyperparameters together with the lag
time. With the feature types to be used determined during
feature selection, instead of using all channels, the optimal
number of features that minimize the model’s complexity
while maintaining high performance was to be determined.
This was done by adding the features one by one in the
order of their correlation coefficients (highest correlation first)
with the specific finger trajectories to check the performance
of the trained SNN until no significant improvement in the
classification accuracy observed. The SNN model was trained
and run on an NVIDIA GeForce RTX 4080 GPU. And during
the training process, five-fold cross-validation was employed
for hyperparameter tuning and model performance evaluation.

III. RESULTS AND DISCUSSION

A. Feature Selection

The highest correlation achieved between each feature type
and the finger movement category is plotted in Fig. 2a, where
each bar represents the average of three correlation coefficients
obtained from the three subjects. It can be observed that the
LMP primarily correlates with combined finger trajectories.
And spectral features, particularly the HGB powers (both
HG1 and HG2) provide more insights into individual finger
movements. As HG1 and HG2 highly correlate with each
other (with an average correlation coefficient of 0.378 across
all channels and subjects), only the one with the highest
correlation was selected for each subject. That was HG1 for
subjects 2 and 3, and HG2 for subject 1.

B. Epoch Length and Lag Time

Fig. 2b shows the accuracy of the models trained by using
different epoch lengths for LMP and HGB (HG1 for subject
2), with different lag times for subject 2. It can be observed
that using LMP alone with no additional delay (beyond the
inherent recording lag, 37 ± 3 ms according to [14]), the
maximum accuracy of 42.2% is obtained at an epoch length
of 2000 ms. While a 200 ms epoch length, as adopted in [6],
can only achieve an accuracy of 24.8% at a zero lag time.
This suggests that the optimal lag time correlates with the
specific epoch length used. A similar pattern is observed for
HGB, where using relatively longer epoch lengths coupled
with shorter lag times leads to higher classification accuracy.

C. Epoch Length and Concatenation

As shown in Fig. 2c, compared with applying no concate-
nation, using only six concatenated epochs can effectively
improve the classification accuracy for subject 2. And this
improved the accuracy by 3.9% for LMP and 10.2% for
HGB across different epoch lengths and subjects on average.
Using shorter epoch lengths, typically requires concatenating
more epochs to enhance accuracy. However, there is a trade-
off between the selection of epoch length and concatena-
tion number—longer epoch lengths increase preprocessing
demands, while a larger number of concatenated epochs means
passing through the SNN more times, which increases the
computational load and introduces additional latency.

D. Model Optimization

To simplify the training process, uniform lag time and
number of concatenated epochs were applied to both LMP
and HGB (HG1 or HG2 depending on the subject) features.
Though using more concatenated epochs to construct the
samples can sometimes contribute to higher classification



Fig. 3. a. Accuracy loss of the classification models from the 3 subjects with different numbers of features used for training. b. Confusion matrix showing
the detailed classification accuracy achieved for subject 3. A segment of the test labels from BCI competition IV dataset and the predictions made by the
SNN model are shown on the right.

TABLE I
OPTIMIZED HYPERPARAMETERS AND THE FINAL CLASSIFICATION

ACCURACY FOR THE THREE SUBJECTS

Epoch Length Lag No. of No. of ACC
Subject LMP HGB Time Epochs Features (%)

1 1400 1200 120 6 40 65.73
2 400 1000 200 6 40 74.35
3 1400 600 80 6 38 77.01

Epoch length and lag time are in milliseconds.

accuracy, considering hardware limitations as described in
III-C, the number of concatenated epochs was fixed at six.
After determining the optimal epoch lengths of LMP and
HGB, and the lag time for the three subjects, the accuracy loss
by including different numbers of features is shown in Fig. 3a.
Notably, limiting the number of features to an optimal amount
can lead to a higher accuracy than including all available
features (LMP and HGB from all channels). Specifically, with
computational cost considered, subject 1 achieved the optimal
performance with a classification accuracy of 66% with 40
features (27 LMP and 13 HGB features); subject 2 reached
74% accuracy with 40 features as well (25 LMP and 15
HGB features); and subject 3 obtained 77% accuracy with 38
features (23 LMP and 15 HGB features) as shown in Fig. 3b. A
summary of the optimized hyperparameters is listed in Table I.

The average training time and inference time of the opti-
mized SNN model were found to be 3.55 s and 1.0 ms respec-
tively. Further improvement in inference time is anticipated
when implementing the model on dedicated neuromorphic
hardware. A comparison with previous classification methods
based on the same dataset shows that the average classification
accuracy of 72.4% achieved in this work outperforms the
prior works based on the CRF model and the ANN model
(Table II). Although higher accuracy has been achieved using
the modified SVM and GBM methods [6], both the training
time and the inference time of these methods are substantially
longer than what we achieved in this work.

TABLE II
CLASSIFICATION ACCURACY FROM PREVIOUS WORK AND THE

PROPOSED SNN MODEL

Training Inference ACC
Reference Model Time (s) Time (s) (%)

Jaime’16 [7] CRF – – 65.3
Guillaume’19 [9] ANN – – 64.2

Lin’22 [6] SVM-rbf 26.1 14.7 76.0
Lin’22 [6] lightGBM 17.2 0.02 77.0
This work SNN 3.55 0.001 72.4

IV. CONCLUSION

A simple SNN with six LIF neurons is presented to decode
individual finger movements from ECoG signals. Based on
the correlation coefficients between different types of features
and the finger trajectories, LMP and HGB were identified as
the most informative feature types and selected as the input
features for the SNN model. It was observed that employing
longer epoch lengths allowed for the use of fewer successive
epochs concatenated to achieve a higher classification accu-
racy. And using a subset of features that exhibited higher
correlation was also found to have a better performance than
including the entire feature set. Overall, the proposed model
achieved real-time inference with an average classification
accuracy of 72.4% across three subjects. The achieved accu-
racy is comparable to that of the state-of-the-art approach [6],
while with an order of magnitude shorter in training time and
inference time.
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