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Abstract

I use a combination of magnetic field and particle data from the Solar Orbiter mis-
sion, as well as mathematical modelling tools, to study the role magnetic reconnec-
tion in the solar wind plays in the inner heliosphere.

Our current understanding of the structure of reconnection outflows in the so-
lar wind is based on the bifurcated reconnection current sheet model, where the
reconnection outflow region is bounded by a pair of current sheets. For the first part
of this thesis, I adapt existing current sheet stress balance models for reconnection
in the Earth’s magnetotail to develop a novel theoretical framework to describe the
structure of reconnection outflows in the solar wind. I apply my new stress balance
framework to a simple model of a symmetric bifurcated reconnection outflow, us-
ing it to interpret some of the key observed properties of counterstreaming proton
beams in solar wind reconnection outflows.

I then test my model on five examples of bifurcated reconnection outflows
observed by Solar Orbiter with properties that closely satisfy the symmetry as-
sumptions of our model. I determine the properties of the reconnection inflow and
outflow beams and reconstruct the distribution function that characterises the beam
population in both the inflow and outflow regions. I then validate my model by
comparing the reconstructed distribution functions with the observations.

Finally, I investigate the role reconnection plays in the erosion of magnetic
switchbacks. Using Solar Orbiter in-situ data, I identify three examples of recon-
necting switchbacks in the solar wind and perform a timing analysis to estimate the
timescales over which these structures are fully eroded by reconnection. My results
show that this process occurs over timescales ranging from a few minutes to a few
hours, suggesting that reconnection is a fast and efficient process mechanism for
eroding individual switchbacks.
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Plasmas are the most abundant form of matter in the observable universe. While
we often think of space as being a vacuum, the Solar System is in fact filled with a
tenuous plasma of solar origin, known as the solar wind. The solar wind provides
an ideal environment in which to study a wide range of plasma processes. In this
thesis, I focus specifically on magnetic reconnection, a fundamental plasma process
that converts magnetic energy into kinetic and thermal energy.

The overarching goal of my research is to understand how reconnection trans-
fers energy from the heliospheric magnetic field to the solar wind plasma. I de-
velop a new theoretical framework based on existing current sheet stress balance
models to describe the structure and proton population in solar wind reconnection
outflows. Using magnetic field and solar wind particle data from the European
Space Agency’s Solar Orbiter spacecraft, I then tested and validated my frame-
work against in-situ observations of reconnection in the solar wind. Additionally,
I also investigate the viability of magnetic reconnection as an erosion mechanism
for magnetic switchbacks in the solar wind. The results of this latter project were
published in the Astronomy & Astrophysics journal and were featured in a series of
literature review papers on magnetic switchbacks, to which I contributed a detailed
review of reconnection at switchback boundaries. My work directly addresses one
of the key science questions that the Solar Orbiter mission aims to answer – ‘what
mechanisms heat and accelerate the solar wind?’ – a question that remains one of
the outstanding challenges in heliophysics.

Besides its immediate application to the solar wind, my research also has im-
plications for other aspects of space physics, particularly in the context of space
weather. Magnetic reconnection plays a central role in driving space weather events
on Earth, both as a likely generation mechanism for solar flares and coronal mass
ejections, and as an important coupling mechanism that governs the solar wind-
magnetosphere interaction. These space weather events have the potential to inflict
significant damage to our space and ground-based infrastructure, including GPS
navigation, satellite communication, and the electrical grid, all of which underpin
the technology we rely on in our everyday lives. Understanding how magnetic re-
connection drives space weather is essential for enhancing our ability to forecast
space weather events and mitigate its effects.
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Finally, space plasma physics research offers valuable insights that are directly
applicable to laboratory plasma physics research. My research is part of a cross-
disciplinary project between the Royal Society and the National Research Council
of Italy to explore connections between space and laboratory plasma physics. As
part of this collaboration, I presented the work in this thesis to nuclear fusion re-
searchers working on the RFX experiment in Italy. Magnetic reconnection in nu-
clear fusion reactors is a major obstacle to achieving the sustained nuclear fusion
needed for clean energy production. Insights gained from studying reconnection in
space plasmas therefore provide pathways that will help overcome this challenge.
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Chapter 1

Introduction

1.1 Fundamentals of plasma physics
Although we do not encounter plasmas commonly in our everyday lives, they are in
fact the most common state of matter in the observable universe. On Earth, we often
think of plasmas as a man-made occurrence, typically associated with laboratory
experiments or nuclear fusion reactors. However, they can also occur in natural
phenomenon such as lightning and aurorae. In the astrophysical context, plasmas
are ubiquitous. For instance, stars — such as our Sun — are massive spheres of
plasma. The Sun also drives flows of plasmas in the form of the solar wind, which
permeates the whole of the Solar System.

In this section, I start by defining a plasma and the key parameters that charac-
terise it. I then discuss the various mathematical descriptions of plasmas, focusing
on single particle motion, kinetic theory, and magnetohydrodynamic (MHD) theory.
Finally, using these ideas, I explain ideal MHD and derive the frozen-in theorem,
both key concepts that underpin the large-scale behaviour of the solar wind.

1.1.1 What is a plasma?
A plasma is a state of matter in which the atoms have been ionised, but the plasma
remains quasi-neutral at large scales. It consists of negatively-charged electrons,
positively-charged ions, and some neutrals (e.g., Chen 2015). The charged particles
exhibit collective behaviour and interact with each other through long-range elec-
tromagnetic forces. Over large scales, quasi-neutrality is maintained in a plasma
because the overall number of positive and negative charges is equal. The thermal
motion of the particles induces local charge imbalances, which free electrons move
to screen on the scale of the Debye length:

λD =

√
ε0kBTe

nee2 (1.1)

where ε0 is the permittivity of free space, kB is the Boltzmann constant, Te is the
electron temperature, ne is the electron density, and e is the elementary charge. On
length scales L ≫ λD, the quasi-neutrality condition is therefore satisfied.
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The plasma parameter ND is defined as the number of electrons within a sphere
of radius λD, known as the Debye sphere:

ND =
4π

3
neλ

3
D (1.2)

When ND ≫ 1, the number of electrons within the sphere is large and Debye screen-
ing is effective in maintaining quasi-neutrality in the plasma. This condition also
implies the kinetic energy of the electrons is greater than the electrostatic potential
energy between them and the ions, preventing recombination and thus ensuring the
plasma remains well-ionised.

If a layer of electrons in a quasi-neutral plasma is displaced relative to the
ions, the resulting charge separation induces an electric field in the plasma. As the
ions are much heavier than the electrons, they remain stationary with respect to
the electrons, which undergo oscillatory motion due to the restoring force exerted
by the electric field. The characteristic frequency of this oscillation is the plasma
frequency ωp, defined as:

ωp =

√
nee2

meε0
(1.3)

where me is the electron mass. If ωpτcoll ≫ 1, where τcoll is the average time be-
tween electron-neutral collisions, then collective behaviour due to electromagnetic
forces dominate over collisional effects and the plasma can be considered collision-
less.

The Debye length λD, the plasma parameter ND, and the plasma frequency ωp,
thus combine to give a pair of conditions for an ideal plasma:

L ≫ λD ≫ n−1/3
e (1.4)

ωpτcoll ≫ 1 (1.5)

which state that an ideal plasma is defined as one that is quasi-neutral, well-ionised,
and collisionless.

1.1.2 Single particle motion and drift motion

In an ideal plasma, the most significant force acting on the particles is the Lorentz
force:

FL = m
dv
dt

= q(E+v×B) (1.6)

where m is the particle mass, q is the particle charge, v is the particle velocity, E is
the electric field, and B is the magnetic field. The single particle motion description
of plasmas characterises the trajectories of each individual charged particle in these
electromagnetic fields by solving their equations of motion.
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Gyromotion in a uniform magnetic field
In the simplest case of E = 0 and uniform B, the force exerted on the particle is
perpendicular to both v and B. This causes the particle to execute circular motion
(gyromotion) in the plane perpendicular to B about a guiding centre. The angular
frequency of the circular motion (gyrofrequency) is:

ωc =
qB
m

(1.7)

and the radius of the orbit (gyroradius) is:

rc =
v⊥
|ωc|

=
mv⊥
|q|B

(1.8)

where v⊥ is the component of the particle’s velocity perpendicular to the magnetic
field and B is the magnetic field strength. As the force exerted on the particle is per-
pendicular to its direction of motion, the magnetic field does no work on the particle
and its kinetic energy remains constant. Furthermore, the field-aligned component
of the particle velocity, v∥, does not change. If v∥ = 0 initially, the particle will
continue to execute gyromotion about a stationary guiding centre. Conversely, if
v∥ ̸= 0, the guiding centre moves along the magnetic field line with constant ve-
locity v∥, and the particle will follow a helical trajectory along the field line. The
direction of gyration depends on the charge of the particle: positively-charged ions
will gyrate in the opposite direction to negatively-charged electrons.

Drift motion in a uniform electric field
When a uniform E is introduced to the system, an additional electric field force FE =

qE acts on the particle. The component of this force parallel to the magnetic field
accelerates the particle (and its guiding centre) along the field line, but otherwise
does not alter the gyromotion. However, the perpendicular component of this force
causes the guiding centre to drift across field lines with velocity:

vE =
E×B

B2 (1.9)

in the direction perpendicular to E and B, as shown in Figure 1.1. This E×B drift
is independent of both the particle mass and charge. Therefore, ions and electrons
drift together with the same speed vE , preventing the generation of drift currents
and charge separation through this mechanism.

Drift motion due to external forces and non-uniform fields
Equation 1.9 can be generalised for any uniform and constant force F by substituting
in E = F/q:

vD =
F×B
qB2 (1.10)
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Figure 1.1: Direction of the drift velocity of a positively charged particle due to the a) E×B
drift and magnetic field gradient drift, and b) the curvature drift.

If F is charge-independent, vD becomes charge-dependent and will induce drift cur-
rents and charge separation within the plasma. For completeness, it is noted that
a non-uniform B can also induce drift motion associated with the curvature of the
magnetic field and gradients in the magnetic field strength. The curvature drift ve-
locity is given by:

vκ =−
mv2

∥

qR2
κ

Rκ ×B
B2 (1.11)

and the gradient drift velocity is given by:

v∇B =
1
2

mv2
⊥

qB3 (B×∇B) (1.12)
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where v∥ is the component of the particle’s velocity parallel to B, Rκ is the radius
of curvature, and ∇B is the magnetic field gradient. Unlike the E×B drift, both
the direction of vκ and v∇B are dependent on the sign of q. Figure 1.1 shows the
drift direction of an ion under the effects of the curvature and gradient drifts. In this
configuration, the curvature drift is directed into the plane, while the gradient drift
is directed out of the plane. For negatively charged particles, both drift directions
are reversed. As a result, positively charged and negatively charged particles drift
in opposite directions, which leads to charge separation and the generation of an
associated drift current.

Diamagnetic drift motion

Another important drift mechanism is the diamagnetic drift, which arises from pres-
sure gradients ∇P in the plasma, where P = nkBT (e.g., Chen 2015). Figure 1.2
shows an isothermal plasma with E = 0, uniform B, and a positive density gradi-
ent ∇n to the left. In the absence of an electric field, the positive ions gyrate in
the clockwise direction about their guiding centres without experiencing an E×B
drift. Within any fluid parcel, there are more downward-moving ions than there are
upward-moving ones due to the density gradient, resulting in a downward net flow
of ions with a diamagnetic drift velocity:

vDM =−∇P×B
qnB2 (1.13)

The charge dependence of vDM means electrons drift in the opposite direction to the
ions, thus generating a diamagnetic current:

JDM =−∇P×B
B2 (1.14)

This current, in turn, induces a magnetic field that opposes the external magnetic
field B and decreases the magnetic field strength in the plasma. Unlike the E×B
drift, the diamagnetic drift is not caused by the motion of the guiding centres of
the individual particles, but is instead a consequence of the macroscopic fluid-like
behaviour of the plasma.

Overall, the motion of individual particles within an external magnetic and
electric field can be treated as a superposition of gyromotion and drift motion. In
order to obtain a complete and self-consistent description of the plasma using the
single particle motion approach, the coupled set of equations of motion for each
particle in the plasma must be solved. However, an exact, analytical solution to
such a system is not possible for an arbitrary E and B. Instead, the state of a plasma
can be described using kinetic or magnetohydrodynamic (MHD) theory, which I
briefly describe in the following two sections.
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Figure 1.2: Diamagnetic current in an isothermal plasma. In this configuration, positive
ions gyrate in the clockwise direction. Due to the density gradient, there is a
net flow of ions downwards generating a diamagnetic current JDM (red arrow).
Figure adapted from Chen (2015).

1.1.3 Kinetic theory

Kinetic theory is a statistical description of the collective behaviour of particles
in plasmas (e.g., Boyd & Sanderson 2003; Chen 2015). At its heart are the particle
distribution functions fs(r,v, t), where s is the particle species label, r is the position
vector, v is the velocity vector, and t is time. The number of particles of species
s in a 6-D phase space volume element d3rd3v centred around the phase space
coordinates (r,v) at time t is δN(r,v, t) = fs(r,v, t)d3rd3v.

The evolution of fs(r,v, t) is governed by the Boltzmann equation:

∂ fs

∂ t
+v · ∂ fs

∂r
+a · ∂ fs

∂v
=

(
∂ fs

∂ t

)
coll

(1.15)

where a is the acceleration due to macroscopic forces and the term on the right-hand
side of this equation describes the change in fs(r,v, t) due to collisions. In many
space plasmas, which are often assumed to be collisionless, the collisional term is
neglected. Under this assumption, substituting Equation 1.6 for a in Equation 1.15
leads to:

∂ fs

∂ t
+v · ∂ fs

∂r
+

qs

ms
(E+v×B) · ∂ fs

∂v
= 0 (1.16)
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This special case of the Boltzmann equation is known as the Vlasov equation. To
obtain a complete and self-consistent description of the plasma, the evolution of
fs(r,v, t) must be linked to the macroscopic magnetic and electric fields through
Maxwell’s equations:

∇ ·E =
ρq

ε0
(1.17)

∇ ·B = 0 (1.18)

∇×E =−∂B
∂ t

(1.19)

∇×B = µ0

(
J+ ε0

∂E
∂ t

)
(1.20)

where ρq is the total charge density, µ0 is the permeability of free space, and J is the
total current density. If the plasma is non-relativistic and high frequency fluctuations
are neglected, as will be true for the cases discussed in this thesis, the displacement
current term ε0

∂E
∂ t term in Ampére’s Law (Equation 1.20) can be neglected.

Single particle motion (see Section 1.1.2) and kinetic theory are both micro-
scopic descriptions of plasmas, with the former focusing on the individual behaviour
and the latter on the collective behaviour of the constituent particles. In the next sec-
tion, I introduce MHD theory which is instead a macroscopic description of plasmas
that focuses on its fluid properties.

1.1.4 Magnetohydrodynamics
In MHD theory, plasmas are treated as a single, continuous fluid with no distinc-
tion made between the particle species (e.g., Boyd & Sanderson 2003; Chen 2015).
Their fluid bulk parameters are derived by taking the velocity moments of fs(r,v, t).
The zeroth order moment is associated with the number density ns:

ns =
∫

fs(r,v, t)d3v (1.21)

the first order moment is associated with the bulk velocity us:

us =
1
ns

∫
v fs(r,v, t)d3v (1.22)

and the second order moment is associated with the pressure tensor Ps:

Ps = ms

∫
(v−us)(v−us) fs(r,v, t)d3v (1.23)

Similarly, the MHD fluid equations are also derived by taking moments, this time
of the Vlasov equation (Equation 1.16). The zeroth and first moments lead to the
mass continuity equation:

∂ρ

∂ t
+∇ · (ρu) = 0, (1.24)
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and the momentum conservation equation, respectively:

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇ ·P+J×B, (1.25)

where ρ is the mass density. If the plasma pressure is isotropic, it can be treated
as a scalar quantity P and ∇ · P simplifies to ∇P. Additionally, an equation of
state describing the conservation of energy is needed to close out the MHD fluid
equations. For an adiabatic plasma, this is:

P
ργ

= const. (1.26)

where γ = 5/3 is the ratio of specific heats.

The plasma is treated as a quasi-neutral fluid where ni ≃ ne. Consequently,
Gauss’ Law (Equation 1.17) reduces to ∇ · E = 0 and hence, cannot be used to
calculate E. Instead, the electric field is calculated using the generalised Ohm’s
law, which is derived from the electron momentum equation:

E =−u×B+
1

ene
(J×B)+

1
ene

∇Pe +
me

e

(
∂J
∂ t

)
+

J
σ

(1.27)

where σ is the electrical conductivity. The first term on the right-hand side is the
convection electric field due to the bulk plasma flow, the second term is the Hall field
due to differential flow between ions and electrons, the third term is the ambipolar
electric field due to electron pressure gradients, the fourth term is the electron inertia
term, and the fifth term is the resistive term. Under steady-state conditions, and
on spatial and temporal scales larger than the ion gyroradius and gyroperiod, the
generalised Ohm’s law simplifies to:

E =−u×B+
J
σ

(1.28)

Equation 1.28 can be substituted into Faraday’s Law (Equation 1.19) to get:

∂B
∂ t

= ∇× (u×B)− 1
σ
(∇×J) (1.29)

Further substitution of Equation 1.20 into this equation yields the magnetic induc-
tion equation, which describes the time evolution of a magnetic field in a plasma:

∂B
∂ t

= ∇× (u×B)+η∇
2B (1.30)

where η = 1/µ0σ is the magnetic diffusivity. The ∇× (u×B) term represents the
convection of the magnetic field with the bulk plasma flow, while the η∇2B term
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represents the diffusion of the magnetic field through the plasma.
The behaviour of the plasma and the magnetic field depends on the relative

size of the convection and diffusion terms in Equation 1.30. Using simple scale
analysis arguments on variations over length scale L with characteristic velocity U ,
the convection and diffusion terms can be re-written as:

∇× (u×B)→ UB
L

(1.31)

η∇
2B → η

B
L2 (1.32)

The magnetic Reynolds number RM is defined as the ratio between Equations 1.31
and 1.32:

RM =
UL
η

= µ0σUL (1.33)

If RM ≫ 1, the convection term dominates, whereas if RM ≪ 1, the diffusion term
dominates. Another useful parameter used to characterise a plasma is the plasma β ,
defined as the ratio between the plasma thermal pressure P= nkBT and the magnetic
pressure Pmag = B2/2µ0:

β =
P

Pmag
=

2µ0nkBT
B2 (1.34)

This parameter determines whether the behaviour of the plasma and magnetic field
is dominated by plasma pressure or magnetic forces. If β ≫ 1, the plasma pressure
forces dominate and the magnetic field is convected by the plasma flow. If β ≪ 1,
the magnetic forces dominate and the plasma flow is controlled by the magnetic
field.

1.1.5 Ideal MHD and the frozen-in theorem
In plasmas where the conductivity, characteristic velocity, or length scale are large,
RM ≫ 1 and Equation 1.30 reduces to just the convection term:

∂B
∂ t

= ∇× (u×B) (1.35)

which is known as the ideal MHD limit. This limit applies for most space plas-
mas, including the solar wind, on length scales greater than the ion gyroradius and
timescales longer than the ion gyroperiod (e.g., Baumjohann & Treumann 2022).
One of the most important consequences of ideal MHD is the frozen-in theorem
(e.g., Boyd & Sanderson 2003).

In order to better understand its implications, consider a magnetic flux tube
with the geometry shown in Figure 1.3. A surface S1 in the plasma is bound by
the closed loop l1 at time t. As the plasma moves with bulk velocity u, the surface
elements making up S1 will move along with the plasma to form a new surface S2

bound by the loop l2, at time t +∆t. The line elements dl of both loops are oriented
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Figure 1.3: Magnetic flux tube formed by surfaces S1, S2, and ∆S. The latter surface is
parallel to the magnetic field B linking S1 and S2 at all points. In the ideal MHD
limit, the magnetic flux passing through this tube is time-invariant leading to
the frozen-in theorem.

such that they are not parallel to the magnetic field B linking these two surfaces at
any point, i.e., B×dl ̸= 0. The connecting surface ∆S between S1 and S2 is parallel
to B within the flux tube at all points.

The ∇ ·B = 0 condition states that the change in magnetic flux through the flux
tube is zero. Since ∆S is parallel to B everywhere, no magnetic flux passes through
the walls of the flux tube. As a result, the flux entering the flux tube through S1

must be equal to the flux exiting through S2. By applying the divergence theorem
and taking the time derivative of φ , it can be shown that:

dφ

dt
=

∫
S1

(
∂B(t)

∂ t
−∇× (u×B)

)
·dS1 = 0, (1.36)
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This equation shows that in the ideal MHD limit, the magnetic flux through a closed
loop co-moving with a perfectly conducting plasma is time-invariant. Consequently,
the flux through S1 and S2 remains constant as the flux tube evolves with the plasma.
Furthermore, to ensure ∇ ·B = 0 is always satisfied, the flux through the flux tube
walls must be zero at all times. Consequently, the magnetic field topology inside
the flux tube does not change, regardless of any variations in the plasma flow or flux
tube geometry.

This result is known as the frozen-in theorem, which states that in a perfectly
conducting plasma where RM → ∞ (if σ → ∞ or equivalently, η → 0), the magnetic
field lines are embedded into the bulk plasma flow. Since RM ≫ 1 in the solar
wind, both ideal MHD and the frozen-in theorem apply. A key implication of the
frozen-in theorem is that plasmas bound to different magnetic fields cannot mix and
are instead separated by a current sheet. However, if the current sheet thickness
becomes comparable to the ion gyroradius, the frozen-in theorem breaks down and
allows non-ideal MHD processes such as magnetic reconnection to occur.

1.2 Magnetic reconnection
Magnetic reconnection is a fundamental energy conversion process in plasmas, con-
verting magnetic energy into kinetic and thermal energy through a change in mag-
netic field topology across a thin current sheet. In the context of the heliosphere, it is
a key driver of solar wind heating and acceleration, and also plays an important role
in the formation of CMEs and solar flares. I begin this section by introducing the
physics behind magnetic reconnection with the Sweet-Parker model (Parker, 1957;
Sweet, 1958), before discussing the Petschek reconnection model (Petschek, 1964).

1.2.1 Sweet-Parker model
In the ideal MHD limit, RM ≫ 1 and the frozen-in theorem holds (see Section 1.1.5).
As a consequence of the frozen-in theorem, a current sheet forms at the boundary
between two regions of opposing magnetic flux, where ∇×B ̸= 0. When a plasma
inflow with bulk velocity ui is introduced that advects magnetic flux towards the cur-
rent sheet from both sides, the plasma and magnetic field in the immediate vicinity
of the current sheet is compressed. This leads to a reduction in the current sheet
thickness. When the current sheet thickness approaches the ion gyroradius, the
previously neglected terms in the generalised Ohm’s law (Equation 1.27) become
relevant and contribute to an increase in the magnetic diffusivity η (e.g., Boyd &
Sanderson 2003; Baumjohann & Treumann 2022). Given the small length scale L
of the current sheet and increase in η , Equation 1.33 suggests that RM is locally
small near the current sheet. In plasmas where RM ≪ 1, the diffusion term of the
magnetic induction equation (Equation 1.30) dominates. In this limit, a diffusion
region forms in the current sheet where ideal MHD and the frozen-in theorem break
down. Here, plasmas can decouple from the magnetic field and mix, thereby setting
up the prerequisite conditions for magnetic reconnection to occur.
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Figure 1.4: Sweet-Parker reconnection model. Black lines represent the separatrices sep-
arating the inflow and outflow regions, the blue box represents the diffusion
region, and ER is the reconnection electric field. The reconnection inflow ui
from each side carries opposing magnetic flux together, which are separated
by a current sheet. If RM is sufficiently small, a diffusion region is formed in-
side the current sheet and the magnetic field ’reconnects’ across it. Magnetic
tension in the reconnected field lines accelerates the reconnection outflow uo,
which re-freezes into the reconnected magnetic field and carries it out of the
diffusion region.

Inside the diffusion region, the magnetic field lines ’break’ and ’reconnect’
across the reconnection current sheet (RCS) to form the newly reconnected mag-
netic field. Although it is more intuitive to think of the field lines as ’breaking’ in
the diffusion region, this is not strictly true as it would violate the ∇ ·B= 0 condition
and imply the formation of magnetic monopoles. Material cannot flow indefinitely
into the diffusion region, and plasma is eventually ejected out along the RCS as
reconnection outflows. As the reconnected field and outflows emerge from the dif-
fusion region, ideal MHD conditions are restored and the magnetic field re-freezes
into the plasma. Magnetic tension in the highly kinked reconnected field lines then
accelerate the outflow jet and act to straighten the field line.

Figure 1.4 shows the configuration of a reconnecting current sheet (RCS) in the
Sweet-Parker model (Parker, 1957; Sweet, 1958). The diffusion region, represented
by the blue box, has length L and width l. The inflow and outflow regions are
separated by a pair of separatrices that intersect at the magnetic X-point. Assuming
the diffusion region is in steady-state, contains no sources or sinks of plasma, and
that the plasma flows are incompressible, the mass continuity condition (Equation
1.24) reduces to ∇ ·u = 0. From the divergence theorem, the volume integral over
a diffusion region with volume Vd and surface area Ad is:∫

Vd

(∇ ·u)dV =
∮

Ad

u ·dS = 0 (1.37)
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which leads to the following expression when the surface integral is expanded out:

uiL = uol (1.38)

where uo is the reconnection outflow speed. By the same reasoning, since ∇ ·B = 0,

Bil = BoL (1.39)

where Bi and Bo are the magnetic field strength in the inflow and outflow region,
respectively. In the Sweet-Parker model, the aspect ratio of the diffusion region is
assumed to be large such that L ≫ l. Hence, Equations 1.38 and 1.39 imply that
uo ≫ ui and Bo ≪ Bi. Since ideal MHD applies outside the diffusion region, the
conductivity of the plasma is large (σ → ∞), so the simplified Ohm’s Law (Equa-
tion 1.28) reduces to E =−u×B. Under steady-state conditions, the reconnection
electric field, ER, is assumed to be uniform (e.g., Hughes 1995; Priest & Forbes
2007):

|ER|= uiBi = uoBo (1.40)

The electromagnetic energy flux S, given by the Poynting vector, and the kinetic
energy flux K transported into the diffusion region are:

Si =
uiB2

i
µ0

(1.41)

Ki =
1
2

ρu3
i (1.42)

The equations for the outgoing energy fluxes have similar form, except with sub-
scripts o replacing i. By energy conservation, the total energy inflow Ei along L
must be equal to the total energy outflow Eo along l:

Ei = 2Ldui

(
B2

i
µ0

+
1
2

ρu2
i

)
(1.43)

E0 = 2lduo

(
B2

o
µ0

+
1
2

ρu2
o

)
(1.44)

where d is the diffusion region depth. Equating these two expressions results in the
following equation for uo:

uo =

√
2B2

i
ρµ0

=
√

2VA,i (1.45)

which states that the reconnection outflow speed is on the same order of magnitude
as the Alfvén speed in the inflow region VA,i.

If RM = 1 defines the scale length at which the plasma transition from the ideal
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MHD to diffusive regime, Equation 1.33 leads to this expression for the upper limit
of l:

l =
1

uiµ0σ
(1.46)

Substituting this equation and Equation 1.45 into Equation 1.38 yields:

ui = 2
1
4

√
VA,i

Lµ0σ
=

21/4
√

S
VA,i (1.47)

where S = µ0σVA,iL is the Lundquist number. The Sweet-Parker reconnection rate
rSP is given by normalising ui to VA,i:

rSP =
ui

VA,i
=

√√
2

S
=

21/4
√

S
(1.48)

For typical conditions in the solar corona: L∼ 104 km, ui ∼ 10−2 km s−1, and VA,i ∼
102 km s−1, the reconnection rate is rSP ∼ 10−4 and the characteristic reconnection
timescale τSP = L/ui is approximately 106 s, or about 11 days. This rate is too slow
to account for solar flare generation in the corona, which is observed to occur over
timescales of a few minutes.

1.2.2 Petschek model
Equations 1.47 and 1.48 show that the inflow speed — and hence the reconnection
rate — depends on the Lundquist number, which in turn depends on the geome-
try of the diffusion region. Since the Sweet-Parker model assumes a high aspect
ratio (L ≫ l) for the diffusion region, S is large resulting in a low inflow velocity
and reconnection rate. Additionally, this model requires that all plasma undergoing
reconnection pass through the diffusion region, further restricting the reconnection
rate.

Figure 1.5 shows the Petschek reconnection model, an extension of the Sweet-
Parker model that addresses the problem of slow reconnection rates (Petschek,
1964). In this model, L is much reduced and the diffusion region is smaller, which
enables an increased inflow speed and reconnection rate. The reconnection outflow
is bounded by a pair of standing slow mode shocks, SS1 and SS2, that heat and
accelerate the plasma inflow as it crosses into the outflow region. In contrast to the
Sweet-Parker model, the majority of the plasma energisation in the Petschek model
occurs at these shocks rather than the diffusion region (e.g., Priest & Forbes 2007).
As a result, Petschek reconnection can process a greater amount of plasma and
sustain higher reconnection rates than Sweet-Parker reconnection, despite having a
smaller diffusion region.

Heating of the plasma at the shocks increases the plasma pressure inside the
outflow region and sets up a pressure gradient across its boundary. This generates
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Figure 1.5: Petschek reconnection model. The thick black lines, labelled SS1 and SS2,
represent the standing slow mode shocks bounding the reconnection outflow.
Figure adapted from Petschek (1964).

a diamagnetic current (Equation 1.14), which induces a magnetic field that reduces
the magnetic field strength within the outflow region. This reduction in magnetic
pressure counteracts the increase in plasma pressure, ensuring the reconnection out-
flow structure remains in pressure balance. Since the component of the magnetic
field normal to the shock must remain constant to satisfy the ∇ ·B = 0 condition,
the tangential component of B has to decrease. Consequently, the RCS bifurcates
into a pair of current sheets that may be present alongside slow mode shocks in the
reconnection outflow region. Although reconnection outflows with bifurcated RCS
are frequently observed in the solar wind (Gosling et al., 2005a; Gosling & Szabo,
2008; Mistry et al., 2015), relatively few examples exhibit signatures of slow mode
shocks (Zhou et al., 2018; Duan et al., 2023).

1.3 The heliosphere
The heliosphere is the region of space influenced by the Sun and the solar wind,
which encompasses the entire solar system. It also contains a large-scale magnetic
field system that couples the Sun and the solar wind to the various bodies within the
solar system. In this section, I provide an overview of the key components of the
heliosphere, namely the Sun, solar wind, and heliospheric magnetic field (HMF).

1.3.1 The Sun
The Sun is the host star of the solar system and the main source of plasma and mag-
netic fields in the heliosphere. It is a main sequence star, approximately 4.6 billion
years old, with radius R⊙ = 7.0× 108 m and mass M⊙ = 2.0× 1030 kg. Figure
1.6 shows the structure of the solar interior, consisting of the core, radiative zone,
and convective zone; as well as the solar atmosphere, consisting of the photosphere,
chromosphere, and corona (e.g., Priest 1995).
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Figure 1.6: Structure of the solar interior and atmosphere. Figure reproduced from Priest
(1995).

The main energy generation mechanism in the Sun is the proton-proton chain,
a sequence of three nuclear fusion reactions that converts four protons into a sin-
gle helium nucleus (Bethe, 1939). This takes place in the core, which has a radius
of 0.25 R⊙. Surrounding the core is the radiative zone, where the energy released
by nuclear fusion is transmitted by photons out to a distance of 0.75 R⊙. Beyond
this region is the convective zone, located between 0.75–1.0 R⊙, where temperature
gradients drive convective instabilities that transfer energy out to the Sun’s pho-
tosphere (e.g., Priest 1995). These convective flows also drive the Sun’s internal
dynamo, which generates the solar magnetic field (e.g., Meyer-Vernet 2007).

The photosphere is the visible ’surface’ of the Sun and has a temperature of
∼ 5800 K. Magnetic field loops rising through this layer give rise to one of its most
striking features in visible light: sunspots. These are dark regions on the photo-
sphere consisting of a central umbra ∼ 2.0×104 km in diameter with strong radial
magnetic fields, and a penumbra ∼ 4.0× 104 km in diameter with weaker trans-
verse fields (see review by Solanki 2003). Sunspots form in pairs, with opposing
magnetic polarities at the footpoints of the magnetic loops (Hale, 1908; Hale et al.,
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Figure 1.7: Structure of the Sun’s magnetic field during solar minimum (top) and maximum
(bottom). Figure reproduced from Meyer-Vernet (2007).

1919). They are cooler compared to the surrounding photosphere, with tempera-
tures of ∼ 3300 K. This is due to the suppression of convection in the solar interior
by the enhanced magnetic fields within the sunspots, which reduces energy trans-
port from the convection zone to the photosphere.

The Sun exhibits cyclical behaviour where the solar activity varies over an 11-
year period. Sunspot numbers are a useful indicator for solar activity (e.g., Priest
1995); there are fewer sunspots during periods of low solar activity (solar mini-
mum) and more sunspots during periods of high solar activity (solar maximum).
The structure of the Sun’s magnetic field is closely linked to solar activity, and its
evolution over the solar activity cycle is described by the Babcock model (Babcock,
1961; Leighton, 1969). Figure 1.7 illustrates the magnetic field structure during
solar minimum and solar maximum. During solar minimum, the Sun’s magnetic
field is approximately dipolar with the dipole axis aligned with the rotation axis
of the Sun. As solar activity increases, more magnetic field loops emerge from
the photosphere, perturbing the dipole field and forming new sunspot pairs (e.g.,
Meyer-Vernet 2007). The Sun exhibits latitude-dependent differential rotation with
a period of 26 days at the equator and 37 days near the polar regions (e.g., Priest
1995). Because the magnetic field lines are frozen into the solar plasma, this motion
causes the Sun’s magnetic field to become increasingly distorted. At solar maxi-
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mum, the Sun is in a magnetically disorganised state and the dipole component of
the field no longer dominates. When the Sun returns to solar minimum, the dipole
field configuration is restored but with reversed polarity. A full solar magnetic cycle
therefore takes 22 years to complete, twice as long as the solar activity cycle (see
review by Owens & Forsyth 2013).

The solar atmosphere is divided into the chromosphere, the layer directly above
the photosphere with a thickness of ∼ 2500 km, and the corona, which extends
several R⊙ away from the Sun. Separating these two layers is a thin transition region
a few hundred km thick, where the temperature increases sharply from 104 K in the
chromosphere to 106 K in the corona (e.g., Priest 1995). The coronal plasma is
rarefied and fully ionised, with β ≪ 1, indicating that its behaviour is magnetic
field-dominated. The mechanisms responsible for heating the corona are unknown,
and the coronal heating problem is one of the key unresolved questions in solar
physics. Based on energy budget considerations, the most likely energy source for
coronal heating is the Sun’s magnetic field (see reviews by Klimchuk 2006; Van
Doorsselaere et al. 2020). Various theories invoking wave dissipation and magnetic
reconnection (e.g., Parker 1988; Schrijver et al. 1998) have also been put forward
to explain coronal heating.

The corona is a highly dynamic environment that supports a variety of struc-
tures (e.g., Priest 1995). Coronal holes are regions of open magnetic flux containing
cooler, less dense plasma. By contrast, coronal loops are formed by closed magnetic
field lines and contain the hottest and densest material in the corona. They are asso-
ciated with active regions, which are areas of increased magnetic activity commonly
found over sunspots. Helmet streamers are formed by the network of closed mag-
netic loops linking the sunspots in active regions together. Much like the Sun’s
magnetic field, the global structure of the corona varies across the solar cycle. Dur-
ing solar minimum, coronal holes concentrate around the polar regions while the
helmet streamers form a continuous belt around the equator (see review by Cran-
mer 2009). Conversely, during solar maximum, helmet streamers and coronal holes
appear across the Sun at all latitudes and active regions become more common.

Coronal loops are pressure-balanced structures and can remain in stable equi-
librium for up to several days. However, the motion of their footpoints introduces
shear into the loop magnetic field, thus increasing the stored magnetic energy (see
review by Priest 1978). Eventually, the coronal loops become unstable and erupt,
rapidly releasing the stored energy through magnetic reconnection of the loop mag-
netic field (Mikic et al., 1988). This process often generates solar flares (Hagyard
et al., 1984; Somov et al., 2002), which are short-lived, energetic bursts of electro-
magnetic radiation, or coronal mass ejections (CMEs), which expel large quantities
of magnetised coronal plasma into interplanetary space (e.g. Antiochos et al. 1999;
Gopalswamy 2003). Both types of events occur more frequently during solar max-
imum, when the Sun’s magnetic activity is at its greatest.
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1.3.2 The solar wind

The solar wind is the continuous outflow of plasma from the Sun’s corona, primar-
ily composed of protons, electrons, and alpha particles, as well as trace amounts
of heavier ions. It forms because the thermal pressure exerted by the corona ex-
ceeds the solar gravitational force, causing the coronal plasma to expand into the
interplanetary medium (Parker, 1958, 1960).

The existence of the solar wind was already suspected by scientists as early as
the early twentieth century. Kristian Birkeland’s observations of quasi-permanent
auroral activity during this period pointed towards a constant flow of charged par-
ticles from the Sun impinging on the Earth’s magnetosphere (e.g., Meyer-Vernet
2007). This idea of the ’solar corpuscular radiation’ as it was called at the time was
further elaborated upon by Ludwig Biermann’s work on cometary tails (Biermann,
1952). It was known that the ion tail is always oriented radially away from the Sun,
but the observed acceleration of ions within the tail could not be fully accounted for
by solar radiation pressure alone. However, both of these properties could be readily
explained if interactions between cometary ions and the surrounding plasma streams
— later identified as the solar wind — were factored in (Biermann, 1952; Parker,
1959). Based on these observations of comets, the bulk speed of the plasma streams
were constrained to a few hundred km s−1. This culminated in the development of
the first theoretical model of the solar wind by Eugene Parker (Parker, 1958), which
was then observationally confirmed by the Mariner 2 spacecraft (Neugebauer &
Snyder, 1962).

In the Parker model, the expansion of the corona is assumed to be isothermal
and spherically symmetric, resulting in purely radial outflow. In such a system,
all variables are dependent only on the heliocentric distance r. Additionally it is
also assumed that the outflow is steady-state, and the effects of magnetic forces
are neglected. Under these assumptions, the MHD equations for mass continuity
(Equation 1.24) and momentum conservation (Equation 1.25) in spherical coordi-
nates are:

d
dr

(r2
ρ(r)u(r)) = 0 (1.49)

ρ(r)u(r)
du(r)

dr
=−dP(r)

dr
−ρ(r)

GM⊙
r2 (1.50)

where u(r) is the outflow speed and G is the gravitational constant. The last term in
Equation 1.50 replaces the J×B in Equation 1.25 and describes the Sun’s gravita-
tional force.

First, consider the case when the corona is static, i.e. u(r) = 0. Equation 1.49 is
trivially satisfied and Equation 1.50 reduces to the hydrostatic equilibrium equation:

dP(r)
dr

+ρ(r)
GM⊙

r2 = 0 (1.51)
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The coronal plasma can be treated as an ideal gas composed of protons and electrons
with number densities ni and ne, respectively, and uniform temperature T⊙. The
ideal gas law then states that P(r)= nikBT⊙+nekBT⊙= 2n(r)kBT⊙, where the quasi-
neutrality condition stipulates that ni = ne = n(r). Substituting this into Equation
1.51 yields the following differential equation:

1
P(r)

dP(r) =−GM⊙mi

2kBT⊙

1
r2 dr, (1.52)

with a solution as r → ∞:

P(r → ∞) = P⊙e−
GM⊙mi

2kBT⊙R⊙ , (1.53)

where P⊙ is the plasma pressure at r = 1 R⊙. For typical values of P⊙ and T⊙ in
the corona, P(r → ∞)∼ 10−7 Pa. Since this is approximately 106 times larger than
the pressure of the interstellar medium, the static corona solution is not valid as no
pressure balance exists at the heliopause.

Next, consider the case when the corona is expanding hydrodynamically with
u(r) ̸= 0. Equation 1.49 can be re-written as:

dn(r)
dr

=−n(r)
(

1
u(r)

du(r)
dr

+
2
r

)
. (1.54)

The derivative of the ideal gas law with respect to r can therefore be expressed as:

dP(r)
dr

= 2kBT⊙
dn(r)

dr
=−2n(r)kBT⊙

(
1

u(r)
du(r)

dr
+

2
r

)
, (1.55)

which, when substituted into Equation 1.50, gives an equation describing the hy-
drodynamic expansion of the corona:

1
u(r)

du(r)
dr

(
u(r)2 − 2kBT⊙

mi

)
=

4kBT⊙
mir

− GM⊙
r2 . (1.56)

The critical radius rc = GM⊙mi/4kBT⊙ is defined as the value of r at which the
right-hand side of this equation is equal to zero. This is true if:

du(r)
dr

∣∣∣∣
r=rc

= 0, (1.57)

or: (
u(r)2 − 2kBT⊙

mi

)∣∣∣∣
r=rc

= 0 (1.58)

Equation 1.57 suggests that there is a local maximum or minimum in u(r) at r = rc,
whereas Equation 1.58 suggests that u(r) =

√
2kBT⊙/mi at r = rc, which corre-
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Figure 1.8: Graph of the four solutions to Equation 1.56. Figure adapted from Parker
(1965).

sponds to the isothermal sound speed. In addition to these, the following boundary
conditions must also be satisfied: 1) u(r)→ 0 as r → 0, and 2) the corona must be
in pressure balance with the interstellar medium at the heliopause as r → ∞.

Figure 1.8 shows the four classes of solution to Equation 1.56, denoted as I,
II, III, and IV. The class II and IV solutions can be immediately ruled out as they
do not satisfy the r → 0 boundary condition by suggesting u(r) → ∞ as r → 0.
The class I solution is known as the ’solar breeze’ and satisfies the r → 0 boundary
condition. However, this solution approximates to the static corona solution when
r → ∞ which has been shown to be unphysical. This leaves the class III, or Parker
solar wind solution where u(r) increases monotonically, becomes supersonic when
r > rc, and asymptotically approaches a constant terminal value uSW beyond the
critical radius. Since the solar wind speed u(r) = uSW and the mass flux r2ρ(r)u(r)
are constant (Equation 1.49), the density of the solar wind follows the inverse square
law, ρ(r) ∝ r−2.

The observed solar wind can be broadly separated into two categories, slow
and fast (see review by Verscharen et al. 2019). The slow solar wind is more vari-
able than the fast solar wind, with speeds of 350–400 km s−1 and helium abun-
dance AHe = nHe/np ranging between 1% during solar minimum and 4% during
solar maximum (Aellig et al., 2001). The source of the slow solar wind is not
well-understood. It is commonly associated with helmet streamers, although recent
observations indicate pseudostreamers and small coronal holes may also be possible
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Figure 1.9: Variation in the solar wind speed with heliographic latitude during solar min-
imum (left) and solar maximum (right). The polar plots overlaid on top of
the images of the solar disk are solar wind speed measurements from the
Ulysses spacecraft. Regions with sunward and anti-sunward magnetic polar-
ity are coloured in blue and red, respectively. The bottom panel shows the
variation in sunspot number over the solar cycle. Figure adapted from McCo-
mas et al. (2003).

source regions (Bale et al., 2019; D’Amicis et al., 2021). Conversely, the fast solar
wind is quasi-steady and reaches speeds of up to ∼ 750 km s−1, with a constant
helium abundance AHe = nHe/np of 5% (Kasper et al., 2012). It originates from
coronal holes and is thus cooler and less dense than the slow solar wind. Figure
1.9 shows the variation in solar wind speed with heliographic latitude and the solar
cycle. It is immediately clear that the structure of the solar wind reflects the struc-
ture of the corona (McComas et al., 2003). During solar minimum, the solar wind
structure is bimodal — fast solar wind streams originate from coronal holes around
the Sun’s poles and slow solar wind streams originate from the equatorial streamer
belt. By contrast, this bimodal structure breaks down during solar maximum, with
fast and slow solar wind streams appearing at all latitudes.

1.3.3 The heliospheric magnetic field
The Sun’s magnetic field is frozen into the outflowing solar wind, which car-
ries it into interplanetary space to form the heliospheric magnetic field (HMF).
As the magnetic field lines remain anchored to the photosphere, the combination
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Figure 1.10: Diagram of the heliospheric magnetic field up to 1 AU in the ecliptic plane,
showing the Parker spiral and sector structure. The sector with positive, anti-
sunward magnetic polarity (red) is separated from the sector with negative,
sunward polarity (blue) by the heliospheric current sheet (dashed green line).
Figure reproduced from Owens & Forsyth (2013).

of the Sun’s rotation and the radial solar wind outflow warps the HMF into an
Archimedean spiral configuration known as the Parker spiral (Parker, 1959; Wilcox
& Ness, 1965). Neglecting the motion of the magnetic field footpoints and the
differential rotation of the Sun, the HMF spiral angle α is:

tanα =
Bφ

BR
=−rΩ⊙ sinθ

uSW
(1.59)

where BR is the radial component of the HMF, Bφ is the azimuthal component, Ω⊙
is the average angular frequency of the Sun’s rotation and θ is the co-latitude. For
typical solar wind conditions, α is approximately 45◦ at 1 AU in the ecliptic plane.

Figure 1.10 shows the configuration of the HMF, which is divided into sectors
with sunward (negative) or anti-sunward (positive) magnetic polarity separated by
the heliospheric current sheet (HCS). As the Sun’s rotation axis is not aligned with
its magnetic axis, the HCS is wavy rather than planar. An observer in the ecliptic
plane will therefore observe periodic flips in the HMF polarity corresponding to the
sector structure. The offset of the axes also means slow and fast solar wind streams
can originate from the same latitude, and due to the Sun’s rotation, successively
emerge into interplanetary space at the same longitude (see review by Owens &
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Forsyth 2013). Equation 1.59 shows that the spiral angle α is proportional to 1/uSW

at a given r and θ . Hence, the Parker spiral is less tightly wound for fast streams
compared to slow streams. Compression occurs where the fast solar wind catches
up with the slow solar wind ahead of it, forming co-rotating interaction regions,
while rarefaction occurs where the fast solar wind ’runs away’ from the slow solar
wind behind it (Gosling & Pizzo, 1999).

As a consequence of the ∇ ·B = 0 condition, the radial component of the mag-
netic field BR follows an inverse square law in r, similar to the solar wind density:

BR(r) = B0

(
r0

r

)2

(1.60)

where B0 is the magnetic field strength at a reference heliocentric distance r0. Com-
bining this with Equation 1.59, the magnetic field strength of the HMF is:

B(r) =
√

B2
R +B2

φ
= B0

(
r0

r

)2
√

1+
(

rΩ⊙ sinθ

uSW

)2

(1.61)

In the case of purely radial solar wind outflow, the polar component of the HMF
is Bθ = 0. At small r, the ( r0

r )
2 term dominates and B ∝ r−2, while at large r, the

square root term dominates and B ∝ r−1 for constant θ :

B(r)≃
B0r2

0Ω⊙
uSW

sinθ

r
(1.62)

From Equation 1.34, the variation in β with r depends on the relative scaling of
the plasma pressure and the magnetic pressure. Given the assumption of isothermal
solar wind, the plasma pressure is proportional to the density and hence decreases
as P ∝ r−2. Near the Sun, the magnetic pressure scales as Pmag ∝ r−4 due to its
dependence on B2. Therefore, in this region, β ∝ r2 and the effects of the magnetic
field on the solar wind flow diminishes rapidly with increasing heliocentric distance.
Further away from the Sun, where B ∝ r−1, the magnetic pressure instead scales as
Pmag ∝ r−2 and β becomes constant in r. This result justifies one of the starting
assumptions of the Parker model: that the effects of magnetic forces on the coronal
expansion can be neglected.

A useful indicator of the connectivity of the HMF to the Sun is provided by
the pitch angle distribution of the population of suprathermal electrons in the so-
lar wind. These electrons form a field-aligned beam, known as the strahl, which
streams away from the Sun along the HMF (see review by Owens & Forsyth 2013).
Figure 1.11 illustrates how the strahl pitch angle distribution varies depending on
the topology of the HMF. Regions A and C correspond to areas of open magnetic
flux with a single connection to the Sun. In these regions, a single strahl is ob-
served which is anti-parallel to the field when its polarity is sunward (A), or parallel
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Figure 1.11: Variation in the suprathermal electron strahl pitch angle distribution (right)
depending on the magnetic field topology (left). The black arrows show the
magnetic field lines and the red arrows show the direction of the strahl beam.
Region A contains sunward open magnetic flux, Region B contains closed
magnetic flux, Region C contains anti-sunward open magnetic flux, and Re-
gion D contains magnetic flux completely disconnected from the Sun. Figure
reproduced from Owens & Forsyth (2013).

when the polarity is anti-sunward (C). Region B corresponds to an area of closed
magnetic flux with two points of connection to the Sun. Here, a parallel and anti-
parallel strahl are observed simultaneously; this is known as a bi-directional strahl
signature. In Region D, the magnetic field is completely disconnected from the Sun
and no strahl is observed.

1.3.4 In-situ observations of reconnection in the solar wind
Direct observations of reconnection outflows in the Earth’s magnetosphere were
reported in the 1970s (Paschmann et al., 1979; Sonnerup et al., 1981), but simi-
lar observations in the solar wind were not identified as such until the mid-2000s
(Gosling et al., 2005a, 2006a; Gosling, 2012).

Figure 1.12 shows the Gosling reconnection model (Gosling et al., 2005a),
which is commonly used to interpret the spatial structure of observed reconnec-
tion outflows in the solar wind. The reconnected field line is kinked at the edge of
the outflow region, and these kinks propagate along the field line as Alfvén waves.
Outside the diffusion region, the magnetic field is frozen into the inflowing plasma
and is advected towards the outflow region by the E×B drift. Therefore, as the
field line recoils away from the neutral line, the net motion of the kinks is a su-
perposition of their field-aligned Alfvénic propagation and the E×B drift of the
surrounding plasma. The resulting trajectories are marked by the dashed arrows
CS1 and CS2. This sets up a pair of standing Alfvénic rotational discontinuities
(RDs) at the outflow region boundaries. When plasma from the inflow regions en-
counters the discontinuities, it is heated and accelerated away from the neutral line
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Figure 1.12: Gosling reconnection model. The dashed arrows CS1 and CS2 represent the
bifurcated current sheet bounding the outflow region. Figure adapted from
Gosling et al. (2005a).

Figure 1.13: 1D proton VDF measurements in the reconnection inflow region (top left and
bottom right) and outflow region (top right and bottom left). In this event, a
pair of counterstreaming beams are clearly resolvable in the outflow region.
Figure reproduced from Gosling et al. (2005a).

to form the reconnection outflow jet. Similar to the Petschek reconnection model
(Petschek 1964, see Section 1.2.2), the Gosling model also features a bifurcated
RCS. However, in this model, the outflow region is bound by a pair of rotational
discontinuities rather than slow mode shocks.
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A spacecraft traversing the reconnection outflow will observe a jet in the out-
flow region bound by a pair of step-like rotations in the magnetic field. On the side
of the outflow region where the kink propagates parallel to the magnetic field, the
fluctuations in u and B are anti-correlated. Conversely, on the side where the kink
propagates anti-parallel to the magnetic field, the fluctuations in u and B are corre-
lated. The inflow entering the outflow region along the reconnected field lines from
both sides produces a population of counterstreaming beams that may be resolvable
in proton VDF measurements, provided the beams are well-separated in velocity
space (Gosling et al., 2005a). Figure 1.13 shows an example of clearly resolved
counterstreaming beams within the reconnection outflow region.

Magnetic reconnection is commonly observed in the regular solar wind
(Gosling et al., 2007; Phan et al., 2020), around interplanetary coronal mass ejec-
tions (McComas et al., 1994; Gosling et al., 2005a), and at the HCS (Gosling et al.,
2005b, 2006b; Phan et al., 2021). Reconnection is also sometimes observed at
switchback boundaries (Froment et al., 2021; Suen et al., 2023), though less fre-
quently than in the regions previously listed. How the occurrence rate of recon-
nection varies with heliocentric distance differs across these locales. At the HCS,
reconnection is more frequent between 0.1–0.5 AU than at 1 AU (Phan et al., 2021).
By contrast, the occurrence rate of reconnection in the regular solar wind decreases
with heliocentric distance, especially in the slow Alfvénic wind where switchbacks
are prevalent (Phan et al., 2020). Finally, reconnection outflows in the solar wind
appear to cluster regardless of solar wind speed (Fargette et al., 2023).

1.4 Magnetic switchbacks
The Parker spiral model provides a good description of the HMF and its associated
sector structure over large scales. However, localised deviations from the Parker
spiral occur when the magnetic field polarity is reversed relative to the dominant
polarity of the sector. These structures, known as magnetic switchbacks, are present
throughout the heliosphere (Balogh et al., 1999; Owens et al., 2013) but recent ob-
servations from the Parker Solar Probe mission (Fox et al., 2016) show that they are
particularly prevalent in the near-Sun solar wind (Bale et al., 2019; Kasper et al.,
2019). In this section, I examine the key physical properties of magnetic switch-
backs and briefly discuss some of their proposed formation mechanisms.

1.4.1 General characteristics
Although the name ’switchback’ implies a full polarity reversal is required for a
structure to be classified as such, this type of switchback constitutes only a subset
of observed events. More generally, switchbacks are defined as local deflections
of the magnetic field away from the background HMF orientation. They exhibit a
continuum of deflection angles, and while switchbacks with larger deflections are
more common further from the Sun, most do not result in a full polarity reversal
(Dudok de Wit et al., 2020; Mozer et al., 2020). Those with small deflection angles
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Figure 1.14: Vector diagram showing the evolution of B in an Alfvénic structure and the
correlation between the magnetic field and velocity fluctuations, δu and δb,
respectively. θ0 is the angle between the radial direction, R̂, and the back-
ground magnetic field B0. θBR is the angle between R̂, and the deflected mag-
netic field B. Figure reproduced from Matteini et al. (2014).

are difficult to distinguish from random fluctuations in the HMF, making it chal-
lenging to define a threshold angle above which a magnetic field deflection can be
classified as a switchback. Additionally, these structures also preferentially deflect
in the azimuthal (±φ̂ ) direction within the plane of the Parker spiral, rather than
the polar (±θ̂ ) direction normal to this plane. Switchbacks cluster into patches that
last for several hours and were present 75% of the time during PSP’s first encounter
with the Sun (Bale et al., 2019; Dudok de Wit et al., 2020; Horbury et al., 2020b).
Within these patches, individual switchbacks tend to deflect in the same direction
(Fargette et al., 2022; Laker et al., 2022).

Switchbacks are highly Alfvénic, arc-polarised structures with correlated vari-
ations in u and B, while maintaining constant magnetic field strength B (Bale et al.,
2019; Kasper et al., 2019). Figure 1.14 shows that in such structures, the deflection
in B away from and back to the background field B0 traces the same arc on the
surface of a sphere with radius B (Matteini et al., 2014). The radial component of
the Alfvén wave polarisation equation is:

− δuR

±VA
=

δbR

B
(1.63)

where δbR is the change in the radial component of the magnetic field, δuR is the
change in the radial component of the velocity, and VA = B/

√
ρµ0 is the Alfvén

speed. Here, the Alfvén wave is propagating away from the Sun along a magnetic
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Figure 1.15: Simplified diagram of the magnetic field geometry of a switchback. Figure
reproduced from Kasper et al. (2019).

field line with anti-sunward (+R) polarity. As a result, the sign of VA is positive
and δuR and δbR are anti-correlated. If B deflects towards the radial direction,
δbR is positive and δuR is negative; conversely, if B deflects away from the radial
direction, δbR is negative and δuR is positive. However, if the same Alfvén wave is
now propagating along a magnetic field line with sunward (−R) polarity, the sign of
VA is negative and δuR and δbR becomes correlated. If B deflects towards the radial
direction, both δbR and δuR are negative. On the other hand, if B deflects away from
the radial direction, both δbR and δuR are positive. Regardless of the polarity of B0,
a deflection in B away from the radial direction — as expected in a switchback —
leads to positive δuR and an increase in the magnitude of u (Matteini et al., 2014).
This result explains the velocity spikes observed in switchbacks and why they are
always enhancements rather than reductions (Horbury et al., 2018, 2020b). While
most switchbacks are Alfvénic, some examples do exhibit simultaneous changes
in B and particle density, suggesting compressive behaviour (Krasnoselskikh et al.,
2020; Larosa et al., 2021).

Switchbacks may therefore be treated as folds in the HMF that propagate away
from the Sun along the magnetic field line as Alfvén waves (Balogh et al., 1999;
Kasper et al., 2019). Figure 1.15 shows the magnetic field geometry of an idealised
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Figure 1.16: Formation of magnetic switchbacks through interchange reconnection in the
corona. Figure reproduced from Fisk & Kasper (2020).

switchback with full polarity reversal. The electron strahl follows the field line as it
reverses, becoming sunward-directed inside the switchback. As a result, the strahl
pitch angle distribution inside and outside the switchback is the same. This prop-
erty distinguishes local polarity reversals due to switchbacks from global polarity
changes in the HMF due to HCS crossings, where the strahl pitch angle switches
direction (see Section 1.3.3, Kasper et al. 2019). The field-aligned proton-alpha par-
ticle relative streaming velocity vαp = vα −vp, defined in the solar wind rest frame,
is another useful diagnostic to check if a polarity reversal is due to local deflections
in the HMF. In the regular solar wind, the alpha particles stream away from the
Sun along the HMF faster than the protons so vαp > 0. However, vαp < 0 inside
switchbacks because |vp|> |vα | (Steinberg et al., 1996; Yamauchi et al., 2004).

1.4.2 Formation mechanisms
Various mechanisms have been proposed to explain how magnetic switchbacks are
formed, but their origins remain poorly understood. These mechanisms can be
grouped into two categories based on where switchbacks are formed: in the solar
corona or in-situ in the solar wind.

Theories of switchback formation in the corona invoke interchange reconnec-
tion between areas of open and closed magnetic flux, often at the interfaces sepa-
rating active regions and small coronal holes (Fisk & Kasper, 2020). Figure 1.16
shows the proposed mechanism behind this process. The corona and photosphere
rotate at different rates, with open magnetic flux in the corona moving to maintain
overall magnetic pressure balance while the magnetic footpoints remain anchored
in the photosphere. The movement of magnetic flux in the corona drags open mag-
netic field lines against coronal loops (A), which then reconnect with each other
(B) and release a propagating switchback along the newly opened field line (C). In
this model, the differential rotation of the corona favours magnetic field deflections
in the azimuthal direction of the Parker spiral. Repeated reconnection at the same
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location will also launch multiple switchbacks in quick succession, thus forming
the switchback patches observed in the solar wind (Laker et al., 2022). A key issue
with this model is that magnetic tension at the folds in the magnetic field line will
quickly act to unwind the switchback. Variations of this model suggest interchange
reconnection instead produces flux ropes (Drake et al., 2021; Agapitov et al., 2022),
which are more resistant to erosion and are therefore more likely to survive prop-
agation into the solar wind. These structures do exhibit some, but not all, of the
properties associated with switchbacks, namely the strong correlation between u
and B expected of Alfvénic structures (Kasper et al., 2019; Horbury et al., 2020b;
Drake et al., 2021).

Switchback formation in the solar wind is attributed to multiple in-situ pro-
cesses. Outward-propagating, small-amplitude Alfvén waves generated in the
corona may evolve into full magnetic reversals due to the radial expansion of the so-
lar wind. The Parker spiral enhances the growth of these waves compared to a purely
radial HMF and introduces preferential deflection of the magnetic field within the
plane of the Parker spiral (Squire et al., 2020, 2022). Magnetic field footpoint mo-
tion from regions of slow to fast solar wind flow may also introduce velocity shears
along the magnetic field line. The section of the magnetic field line frozen into the
fast stream overtakes the section embedded within the slow stream, creating folds
in the field line that are observed as switchbacks (Schwadron & McComas, 2021).

There is compelling evidence that points to the formation of switchbacks in
the corona, but does not rule out in-situ formation. The spatial scales of switch-
back patches are comparable to supergranulation structures on the solar surface
(Bale et al., 2021; Fargette et al., 2021), and coronagraph images from Solar Or-
biter show what appear to be nascent switchbacks in the corona, directly above
active region-coronal hole boundaries (Telloni et al., 2022). It is possible that
a combination of coronal and in-situ processes are responsible for the formation
of switchbacks. MHD simulations show that interchange reconnection releases
non-switchback Alfvénic fluctuations onto open field lines. These structures may
then evolve into fully-developed switchbacks through in-situ processes, such as the
aforementioned Alfvén wave growth mechanism (Wyper et al., 2022).

1.5 Current sheet stress balance models
RCS bifurcation in the Gosling reconnection models arises as a consequence of
maintaining pressure balance between the reconnection inflow and outflow regions.
In a similar vein, the forces acting on the reconnected field line and plasma at the
RCS must be balanced in order for the whole outflow structure to remain in equi-
librium. This balance of forces can be described by current sheet stress balance
models. In this section, I introduce these models in the simpler context for which
they were first developed — magnetic reconnection in the Earth’s magnetotail (see
Owen & Cowley 1987a,b, and references therein).
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Figure 1.17: Diagram of the a) magnetic and electric field configuration of a 1-D RCS, with
associated inflows and outflows in the b) field line rest frame, and c) neutral
line rest frame. Figure reproduced from Owen & Cowley (1987a).

1.5.1 Symmetric cold inflows
The magnetotail lobe is a low plasma β regime, so the plasma thermal pressure
may be neglected. The reconnection inflows and outflows can be treated as a cold
plasma, and so to maintain total pressure balance, the magnetic field strength on
both sides of the RCS must be equal. Variations in the plasma and magnetic field
along the RCS can be neglected, provided they occur on spatial scales greater than
the thickness of the RCS (Cowley & Southwood, 1980; Owen & Cowley, 1987a,b).

Figure 1.17 shows a symmetric 1-D steady-state reconnection configuration
with magnetic field and electric fields:

B = (Bx(z),0,Bz) (1.64)

E = (0,Ey,0) (1.65)

where Bz and Ey are constants. The Geocentric Solar Ecliptic coordinate system
is used in this figure, where x points along the Earth-Sun line, y points towards
dusk, and z points northward. The magnetic field varies only in z, the direction
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normal to the RCS, with Bx reversing sign across the RCS while |Bx| ≫ |Bz| in the
magnetotail lobes that form the reconnection inflow region. Under these conditions,
the current sheet stress balance conditions, as derived from the MHD momentum
equation (Equation 1.25), are given by (Owen & Cowley, 1987b):

M∥−P⊥ =
B2

µ0
(1.66)

P⊥+
B2

2µ0
=Const. (1.67)

where M∥ is the field-parallel momentum flux and P⊥ is the field-perpendicular
component of the pressure tensor in the plasma surrounding the RCS. The M∥ term
accounts for both the parallel plasma pressure and the field-aligned flow pressure
(Owen & Cowley, 1987b; Owen & Mist, 2001).

The reconnection inflow from the lobes on both sides of the RCS is symmetric
and directed tailward along −x̂ in the neutral line rest frame (NLRF) with velocity
vI . The field line rest frame (FLRF) moves away from the neutral line along the
±x̂-direction at the E×B drift speed at the RCS centreline:

vF =
Ey

Bz
(1.68)

In this frame, the electric field vanishes, so the particles entering and leaving the
RCS do not experience an E×B drift. Furthermore, with no forces due to the elec-
tric field, magnetic pressure, or plasma pressure doing work on them, the particles’
speed remains constant as they cross the RCS. The out-of-plane component of the
particle motion due to the magnetic field curvature and gradient drifts (see Section
1.1.2) is neglected throughout this analysis. For symmetric lobe inflows, the inflow
and outflow beams can therefore be treated as a pair of cold, field-aligned beams
with density n and speed v′.

Under the cold plasma approximation, P⊥ = 0 and the only contribution to M∥
comes from the field-aligned flow pressure of the counterstreaming beams. Hence,
Equation 1.66 becomes:

2nmiv′2 =
B2

µ0
(1.69)

which states that magnetic tension in the reconnected field line is balanced by the
change in momentum of the beams as they reverse across the RCS. Re-arranging
this equation gives the field-aligned beam speed in the FLRF, v′:

v′ =
B√

2nmiµ0
=

V ′
A,in√

2
=V ′

A (1.70)

where V ′
A,in is the Alfvén speed in the inflow region and V ′

A is the Alfvén speed in
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the vicinity of the RCS. In the latter region, the total mass density ρ = 2nmi is the
sum of the inflow and outflow beam densities. Additionally, if P⊥ = 0, Equation
1.67 shows that the magnetic field strength B must be equal on both sides of the
RCS, as expected.

On the Earthward side of the neutral line, the reconnection inflow in the FLRF
is directed along −x, the outflow is directed along +x, and the reconnected field
line recoils in the +x direction. The velocity transformation from the NLRF to the
FLRF is v′ = v−vF, where primed and unprimed quantities denote velocities in the
FLRF and NLRF, respectively. Using this transformation, the field line recoil speed
and outflow speed vO in the NLRF are:

vFE =V ′
A − vI (1.71)

vOE = 2V ′
A − vI (1.72)

where the subscript E denotes quantities on the Earthward side of the neutral line.
On the tailward side of the neutral line, the reconnection inflow in the FLRF is
instead directed along +x and the outflow is directed along −x. Additionally, the
reconnected field line now recoils in the −x direction. Using the same approach,
the tailward field line recoil speed and outflow speed in the NLRF are:

vFT =V ′
A + vI (1.73)

vOT = 2V ′
A + vI (1.74)

where the subscript T denotes quantities on the tailward side of the neutral line.

Figure 1.18 shows the reconnected field wedge on the Earthward and tailward
sides of the neutral line. It is bound by a separatrix, defined as the field line that
directly connects back to the neutral line. At a point X along the RCS at distance
|X −XN | from the neutral line, the half-width of the wedge is W (X). By magnetic
flux conservation, the flux threading through the RCS between X and the neutral
line must equal to the flux convected into the wedge by the inflow. This leads to
the following equation for the half-width of the reconnected field wedge (Owen &
Cowley, 1987a):

W (X) =
Ey

B
|X −XN |

vF
(1.75)

If |Bx| ≫ |Bz|, W (X) scales linearly with |X −XN | and the opening angle of the
wedge is proportional to Ey. Particles within the reconnected field wedge occupy a
region bounded by the particle trajectory that maps back to the neutral line. The por-
tion of the wedge between this boundary and the separatrix contains the magnetic
flux reconnected in the time taken for a particle with speed vp to reach X . Using
similar flux conservation arguments, the half-width of the particle region S(X) is
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Figure 1.18: Structure of the reconnected field wedge earthward and tailward of the neutral
line at XN . The RCS is represented by the solid black line at the centre of
the figure and B is represented by the blue arrows. The red arrows represent
the tailward inflows from the magnetotail lobes with velocity vI in the neutral
line rest frame. The reconnection outflow region is shown by the red hatched
region and the region occupied by high-energy particles is shown by the green
hatched region. Figure adapted from Owen & Cowley (1987a).

(Owen & Cowley, 1987a):

S(X) =
Ey

B
|X −XN |

(
1

vF
− 1

vp

)
(1.76)

Substituting in Equations 1.71–1.74 for the field line recoil speed and outflow
speeds yields expressions for the outflow region half-width on both the earthward
and tailward sides of the neutral line:

SE =WE

(
V ′

A
2V ′

A − vI

)
(1.77)

ST =WT

(
V ′

A
2V ′

A + vI

)
(1.78)

If the reconnection inflow is downtail (vi > 0), Equations 1.71–1.74 show that
vFE < vFT and vOE < vOT . Given this, Equation 1.75 suggests that WE <WT . Ad-
ditionally, since Ey is constant for steady-state reconnection, Equation 1.68 implies
that |BzE | > |BzT |. This supports the assertion that the reconnected field wedge is
wider on the Earthward side of the neutral line than on the tailward side. From
Equations 1.77 and 1.78, the outflow region occupies more than half the width of
the wedge on the Earthward side and less than half the width on the tailward side.
High-energy particles with speeds vp > v0 travel further down the field line during
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Figure 1.19: Magnetic reconnection configuration with asymmetric inflows in the a) NLRF
and b) FLRF. The magnetic and electric field geometry is the same as in the
symmetric inflow case. Figure reproduced from Owen & Cowley (1987b).

time t, and thus occupy a greater portion of the reconnected field wedge than the
outflow ions (Equation 1.76). In the limit vp → ∞, the boundary of the high energy
particle layer approaches the separatrix. The reconnected field wedge thus consists
of a central outflow region containing field-aligned beams with speed vOE and vOT

on the Earthward and tailward side of the neutral line, respectively. This region is
surrounded by layers of energetic particles with speeds vp > vO that extend to the
separatrix (Owen & Cowley, 1987a; Owen et al., 2021).

1.5.2 Cold asymmetric inflows
Figure 1.19 shows a reconnecting current sheet with the same magnetic and electric
field configuration as in the symmetric inflow case. However, unlike the previous
scenario, the reconnection inflow is now assumed to be cold and asymmetric with
different densities n1 > n2 and speeds vI1 > vI2 in the NLRF. The subscripts 1 and 2
denote quantities above and below of the RCS, respectively. For brevity, I will only
discuss the stress balance for the tailward side of the neutral line here. The stress
balance analysis for the Earthward side follows similar reasoning and is detailed in
Owen & Cowley (1987b).

Assuming full transmission of the inflow through the RCS with no reflection or
scattering, the speed and density of the inflow beams remain constant as they cross
the RCS. By summing the inflow and outflow beam distributions on each side of the
RCS, Equation 1.66 yields the following current sheet stress balance condition on
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the tailward side of the neutral line (Owen & Cowley, 1987b):

mi(n1v′2IT 1 +n2v′2IT 2) =
B2

µ0
(1.79)

Setting n1 = n2 and v′1 = v′2 recovers the stress balance condition for the symmetric
inflow case (Equation 1.69). Recalling the relationship between velocities in the
NLRF and FLRF, the inflow beam speeds in the FLRF are:

v′IT 1 = vFT − vI1 (1.80)

v′IT 2 = vFT − vI2 (1.81)

Substituting Equations 1.80 and 1.81 into Equation 1.79 gives the following expres-
sion for the tailward field line recoil speed:

vFT = R+ vIM (1.82)

where vIM = (n1vI1 + n2vI2)/(n1 + n2) is the density-weighted mean of the inflow
speeds and R is:

R =

√
B2

µ0mi(n1 +n2)
− n1n2(vI1 − vI2)2

(n1 +n2)2 (1.83)

This equation shows that real solutions to the stress balance conditions only exist if

the inflow shear ∆vI = vI1 − vI2 satisfies the inequality |∆vI| <
√

V 2
A1 +V 2

A2, where
VA1 and VA2 are the Alfvén speeds in the inflow region north and south of the RCS,
respectively. If this condition is not met, no frame exists where the RCS stress
balance conditions are satisfied. Therefore, reconnection is suppressed if the inflow
shear across the RCS is sufficiently large (Owen & Cowley, 1987b).

Using similar reasoning to the symmetric inflow case, the outflow beam speeds
in the NLRF are:

vOT 1 = 2R+ vIM +
n1

n1 +n2
∆vI (1.84)

vOT 2 = 2R+ vIM − n2

n1 +n2
∆vI (1.85)

For the reconnection configuration specified in Figure 1.19 where n1 > n2 and ∆vI >

0, these equations show that vOT 1 > vOT 2. Therefore, the asymmetry in the outflow
speed on the tailward side of the neutral line has the same sense as the inflow speed
asymmetry. In the |Bx| ≫ |Bz| approximation, the angle φ between the RCS and the
outflow region boundary is given by (Owen & Cowley, 1987b):

φ =

(
1− vF

vO

)
θ (1.86)
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where θ = |Bz|/B is the opening angle of the reconnected field wedge. As expected,
φ increases with vO, ranging from a minimum of φ = 0 when vO = vF up to a
maximum of φ = θ as vO → ∞. As a result, outflow particles with greater field-
aligned speeds will occupy a larger portion of the wedge.

1.5.3 Potential effects of reconnection heating
In both the symmetric (Section 1.5.1) and asymmetric (Section 1.5.2) inflow cases,
the Owen & Cowley (1987a,b) current sheet stress balance models predict the exis-
tence of multi-layered reconnection outflow regions. Slower, less energetic particles
are confined to layers near the central RCS, while faster, more energetic particles
can extend to layers near the separatrix (see Figure 1.18). A key assumption in these
models is that the reconnection inflow and outflow plasmas are treated as cold, with
no heating as they cross the RCS.

However, this assumption breaks down if the inflow plasma is heated by recon-
nection as it crosses the RCS. When the outflow plasma is warm, density gradients
develop between the inflow and outflow plasmas. This can induce diamagnetic
current sheets at the boundary of the outflow region (Owen & Cowley, 1987a), con-
sistent with observations of bifurcated RCS in solar wind reconnection outflows
(Gosling et al., 2005a, 2006a; Gosling & Szabo, 2008). Additionally, similar den-
sity gradients between the particle layers inside the outflow region may also result
in more complex reconnection outflow structures containing multiple current sheets
(Owen et al., 2021).



Chapter 2

Instrumentation and Methods

2.1 Solar Orbiter
Solar Orbiter is an M-class mission under the European Space Agency’s (ESA)
Cosmic Vision programme jointly built and operated by ESA and NASA. It was
launched on 10 February 2020, and after a 21-month cruise and commissioning
phase, commenced full science operations on 26 November 2021 (Müller et al.,
2020). The nominal mission phase (NMP) is projected to last 5 years, ending on
24 December 2026. During this phase, Solar Orbiter performed a series of gravity
assist manoeuvers around Venus to gradually lower its perihelion to 0.284 AU and
raise its orbital inclination out of the ecliptic plane. Subject to approval in early
2026, the three-year extended mission phase (EMP) will begin immediately follow-
ing the end of the NMP and run until the end of mission, currently planned for July
2030 (Garcı́a Marirrodriga et al., 2021). Additional Venus gravity assist manoeu-
vers during this phase will further raise the spacecraft’s orbital inclination to 33◦,
allowing images of the Sun’s polar regions to be taken for the first time. Figure 2.1
shows the trajectory of Solar Orbiter over the full duration of the NMP and EMP.

Solar Orbiter carries a comprehensive suite of instruments that enable it to
make high-resolution remote sensing observations of the Sun and in-situ measure-
ments of the solar wind in the inner heliosphere, both within and outside the ecliptic
plane. Its scientific payload consists of six remote sensing instruments and four in-
situ instruments; their locations on the spacecraft are shown in Figure 2.2. The data
collected by these instruments are publicly available on the Solar Orbiter Archive
(SOAR, European Space Agency 2021). These combined observations are essential
for answering the four top-level scientific questions of this mission:

1. What drives the solar wind and where does the coronal magnetic field origi-
nate?

2. How do solar transients drive heliospheric variability?

3. How do solar eruptions produce energetic particle radiation that fills the he-
liosphere?
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Figure 2.1: Solar latitude (top) and heliocentric distance (bottom) of Solar Orbiter during
the NMP and EMP. The vertical blue lines mark times where Solar Orbiter
performs gravity assist manoeuvers at Venus and Earth. Figure reproduced
from Müller et al. (2020).

Figure 2.2: Location of instruments onboard Solar Orbiter. EPD, MAG, RPW, and SWA
are in-situ instruments. EUI, Metis, PHI, SoloHI, SPICE, and STIX are remote
sensing instruments. Reproduced from Müller et al. (2020).
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4. How does the solar dynamo work and drive connections between the Sun and
the heliosphere?

The work in this thesis on solar wind reconnection physics addresses a key sub-
objective of science question 1 – “What mechanisms heat and accelerate the solar
wind?” (Müller et al., 2013; Zouganelis et al., 2020).

My analysis of reconnection outflows in the solar wind require local magnetic
field and particle measurements. The discussion in Section 2.2 will briefly introduce
the operating principles and capabilities of the Magnetometer (MAG) instrument,
while Section 2.3 will cover the Electron Analyser System (EAS) and Proton Alpha
Sensor (PAS) of the Solar Wind Analyser (SWA) instrument suite.

2.2 Fluxgate magnetometers
A fluxgate sensor comprises two coils — the driving coil and the sensing coil —
wrapped around a ferromagnetic core (Ness, 1970). An alternating current is ap-
plied to the driving coil to induce a time-varying magnetic field B(t) in the sensor
core. Through magnetic hysteresis, a sufficiently strong current will saturate the
core at a constant B =±Bsat . In the absence of an external magnetic field, the core
will spend an equal amount of time in positive and negative saturation. However,
where there is an external field, the core will spend longer in saturation if the in-
duced field is aligned with the external field than when it is anti-aligned.

This time-varying field produces an alternating voltage in the sensing coil, de-
scribed by Faraday’s Law:

ε(t) = NsA
dB(t)

dt
(2.1)

where Ns is the number of turns in the sensing coil and A is the cross-sectional
area of the core. dB(t)

dt = 0 when the core is saturated, at which point ε(t) = 0.
The waveform of ε(t) thus depends on how much time the core spends in positive
or negative saturation. Its second harmonic is a direct measure of the external field
strength and can be isolated through use of a bandpass filter to attenuate higher order
harmonics (Ness, 1970). A single fluxgate sensor can only measure one component
of the magnetic field: the component aligned with the core axis. To measure all
three, fluxgate magnetometers typically contain three orthogonally arranged sensors
to provide 3-D magnetic field measurements.

Fluxgate magnetometers are ideal for space exploration as they have large mea-
surements ranges, low power requirements, good reliability, and are well-suited
for continuous operation during long missions (Acuña, 2002). For these reasons,
they are the most common type of magnetometer used on spacecraft. This type
of magnetometer is optimised for measuring background magnetic fields and low-
frequency field fluctuations; the upper limit is set by the frequency of the driving
coil. For measuring high-frequency field fluctuations, search coil magnetometer are
preferred. Solar Orbiter is equipped with a pair of 3-axis fluxgate magnetometers
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Table 2.1: Measurement ranges of the Solar Orbiter MAG instrument. Table reproduced
from Horbury et al. (2020a).

Mode Range (nT) Nominal resolution (pT)
3 ±128 4
2 ±512 16
1 ±2048 64
0 ±58000 1800

as part of its Magnetometer (MAG) instrument (Horbury et al., 2020a), and a single
search coil magnetometer as part of its Radio and Plasma Waves (RPW) instrument
suite (Maksimovic et al., 2020).

2.2.1 Magnetometer (MAG)
The Solar Orbiter magnetometer measures the local vector magnetic field at the
spacecraft (Horbury et al., 2020a). The instrument consists of a pair of fluxgate
magnetometers mounted on the instrument boom (see Figure 2.2): the outboard sen-
sor (MAG-OBS) is located 3 m away from the spacecraft bus, and the inboard sen-
sor (MAG-IBS) is located 1 m away. This configuration provides redundancy and
enables in-flight measurement of the spacecraft’s intrinsic magnetic field through
gradiometry. By default, MAG-OBS is the primary sensor and operates at a higher
cadence and resolution than MAG-IBS.

MAG has four measurement ranges, listed in Table 2.1, that it can switch be-
tween autonomously or on command. For typical conditions in the solar wind,
MAG functions in the ±128 nT range with a nominal resolution of 4 pT. Continu-
ous measurements of the magnetic field are available at a cadence of 8 vectors/s in
normal mode, and at a higher cadence of 64 or 128 vectors/s in burst mode.

2.3 Electrostatic analysers
The electrostatic analysers (EA) employed on Solar Orbiter are made up of three
components: the entrance deflection system (EDS), the electrostatic analyser itself,
and a detector array. Figure 2.3 shows a cross-section of the EA design used for the
Proton Alpha Sensor (PAS) onboard Solar Orbiter (Owen et al., 2020). Incoming
solar wind particles are guided into the entrance of the EA by the EDS. This consists
of a pair of deflector plates above and below the entrance aperture; the potential
difference between them can be adjusted to direct incident particles from a particular
elevation angle into the EA.

The particles enter the EA, which has a ’top-hat’ design, consisting of two
concentrically nested hemispherical shells separated by a narrow channel (Carlson
et al., 1982). A potential difference is applied across them, generating an electric
field that determines the trajectory of the incident particles through the EA. For a
given potential difference, only particles with a specific range of energy-to-charge
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Figure 2.3: Cross-sectional diagram of the PAS EA. The blue line shows the trajectory of
a particle through the instrument: 1) The EDS steers particles into the entrance
of the EA. 2) The EA filters the incident particles based on their energy per
charge. 3) Those with the correct range of energies per charge, determined by
the potential difference applied to the EA, can pass through and strike the CEMs
in the detector array. Top right: Arrangement of the CEMs in the detector array
and their corresponding azimuthal range. Figure reproduced from Owen et al.
(2020).

ratios can pass through the EA to reach the detector array at the bottom of the
hemispheres, while those that do not strike the walls of the EA. Varying the potential
difference allows particles with different energies to pass through. The energy per
charge resolution is determined by the geometry of the hemisphere and width of the
channel between them.

The EA also serves to focus the incident particles onto the detector array. On
Solar Orbiter, this array is comprised of a series of channeltron electron multipliers
(CEMs), divided into sectors covering the azimuthal range of the instrument. The
azimuthal direction of the particles is determined by the azimuthal sector where the
focal point is located, and the azimuthal resolution depends on the width of each
individual sector. At each CEM, the count rate is a function of the incident particle
flux for a given azimuth φ , elevation θ , and energy E. The relationship between the
total number of counts C in time ∆t with the distribution function f at a point (φ , θ ,
E) in phase space is:

C(φ ,θ ,E)≃ 2E2

m2 G f (φ ,θ ,E) (2.2)

where G is the geometric factor:

G = A0∆t∆φ∆θ
∆E
E

(2.3)
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This parameter is an inherent property of the EA, determined by its geometry and
detection efficiency. Here, A0 is the collecting area of the detector, ∆φ is the az-
imuthal resolution, ∆θ is the elevation resolution, and ∆E is the energy resolution.
Although EAs are designed to keep G roughly constant, in practice it varies with
(φ , θ , E) as well as time, due to degradation of the CEMs (Nicolaou et al., 2020).
Therefore, the raw counts data from the instrument must be carefully calibrated on
the ground in order to obtain valid distribution functions that describe the plasma.

2.3.1 Solar Wind Analyser (SWA)
The Solar Orbiter Solar Wind Analyser instrument suite measures various prop-
erties of the in-situ solar wind plasma population, including the 3-D VDFs of the
protons, electrons, and alpha populations, as well as the VDFs and composition of
the heavy ion population (Owen et al., 2020). It consists of three subsystems: EAS,
PAS, and the Heavy Ion Sensor (HIS), along with a Data Processing Unit (DPU).
As I do not use HIS data in this thesis, this section will only cover the details of
EAS and PAS.

Electron Analyser System (EAS)
EAS measures 3-D VDFs of the electron population in the solar wind. It consists
of a pair of identical, orthogonally arranged EA sensor heads mounted at the end
of the instrument boom (see Figure 2.2). Each head has a field of view covering
an azimuthal range of 360◦, split into 32 equally sized bins; an elevation range
−45◦ ≤ θ ≤ +45◦, split into 16 bins; and an energy range from 1 eV to 5 keV,
split into 64 logarithmic bins. Together, the two sensor heads provide EAS with a
full-sky field of view.

A single 3-D electron VDF measurement combines the 32×16×64 sampling
space in azimuth, elevation, and energy of each sensor head. EAS measures the
incident particle counts across all azimuthal bins simultaneously, whereas measure-
ments across the elevation and energy bins are performed sequentially — for each
elevation bin, EAS sweeps across all energy bins before proceeding to the next ele-
vation bin. The entire sampling process takes 1 s to complete.

Due to telemetry restriction, full 3-D electron VDFs can not be transmitted to
the ground at 1 s cadence. Instead, they are stored by the DPU in a 5 minute rolling
buffer, with the cadence and type of the data transmitted to the ground dependent
on the operational mode of EAS. In normal mode, EAS delivers 1 full 3-D electron
VDF every 10 or 100 seconds and partial moments every 4 seconds. In burst mode,
EAS measures 8 2-D pitch angle distributions (PAD) per second. Finally, if trigger
mode is enacted, EAS delivers all 3-D electron VDFs stored in the buffer at a ca-
dence of 1 second covering a period of 5 minutes. EAS operates in normal mode by
default, while the higher cadence modes are activated by command or in the case of
trigger mode, upon the detection of a shock by the RPW Data Processing Unit.
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Proton Alpha Sensor (PAS)
PAS measures 3-D VDFs of the proton and alpha populations in the solar wind. It
consists of a single Sun-facing EA mounted behind a cutout in the spacecraft heat
shield (see Figure 2.2). The instrument has a field of view covering an azimuthal
range −24◦ ≤ φ ≤ +42◦, split into 11 bins; an elevation range −22.5◦ ≤ θ ≤
+22.5◦, split into 9 bins; and an energy-per-charge range from 200 eV to 20 keV,
split into 96 logarithmic bins.

A single 3-D ion VDF measurement may cover the full 11× 9× 96 sampling
space in azimuth, elevation, and energy. As with EAS, PAS measures the incident
particle counts across all azimuthal bins simultaneously, and across the elevation
and energy bins sequentially. Unlike EAS, however, PAS instead sweeps across
all elevation bins for each energy bin before proceeding to the next. The entire
sampling process takes 1 s to complete. PAS has known sensitivity problems at
the lower end of its energy range, leading to undercounting in the low energy bins.
While these lost counts are often recoverable through careful calibration of the in-
strument, at energies below 300 eV, there are too few counts in these bins for them
to be recovered by statistical methods. Consequently, when the solar wind velocity
is less than ∼ 300 km s−1, the VDFs and all PAS data products derived from them
are unreliable (Fedorov, 2022; Lewis et al., 2023).

In normal mode, the cadence of PAS is 1 full 3-D VDF every 4 seconds with
3 seconds of downtime between measurements. These VDFs are then processed on
the ground to produce a set of moments data at the same cadence, describing the
bulk properties of the solar wind protons: density, bulk velocity, and pressure tensor.
The size of the sampling space can be reduced to decrease the sampling time and
increase the measurement cadence. To achieve this without losing information, PAS
automatically centres the reduced sampling space about the peak of the ion VDF. In
burst mode, PAS measures 4 reduced VDFs per second. This high-cadence mode
is activated either by command or during pre-programmed ‘snapshot’ windows that
occur once every 5 minutes.

2.4 Coordinate systems and frame transformation
techniques

MAG and SWA data from the Solar Orbiter Archive are provided in the RTN co-
ordinate system. This is a spacecraft-centred coordinate system commonly used
in heliophysics where R is the Sun-spacecraft radial vector, T is the cross product
between the Sun’s rotation axis and R, and N completes the triad. However, recon-
nection current sheets and outflows usually do not align with the basis vectors of this
coordinate system. Additionally, these structures are convected past the spacecraft
by the solar wind flow at speeds of several 102 km s−1. To facilitate the analysis of
solar wind reconnection, an RCS-aligned coordinate system and a reference frame
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that is co-moving with the entire reconnection outflow structure must therefore be
defined.

2.4.1 Current sheet-aligned coordinate system
The current sheet-aligned coordinate system, or lmn coordinate system, is deter-
mined using the minimum variance analysis (MVAB) method (Sonnerup & Cahill,
1967) on measurements of the magnetic field vector B. To understand how MVAB
works, an idealised planar current sheet is first considered. If this current sheet is
infinitely thin, the normal component Bn of B across it must be constant, in order
to satisfy the ∇ ·B = 0 condition for magnetic fields. For current sheets of finite
thickness, this is also approximately true provided that its radius of curvature and
length scale for lateral changes are much greater than its thickness. Therefore:

BU · n̂ = BI · n̂ = BD · n̂, (2.4)

where n̂ is the unit vector normal to the current sheet, and BU , BI , BD are the mag-
netic field vectors upstream, within, and downstream of the current sheet, respec-
tively. As a direct consequence of Equation 2.4, the vectors BU −BD and BU −BI

must be both co-planar and tangential to the current sheet. Hence, n̂ can be defined
as:

n̂ =
(BU −BD)× (BU −BI)

|(BU −BD)× (BU −BI)|
. (2.5)

Only three magnetic field measurements upstream, within, and downstream of the
current sheet are needed to determine n̂, provided that they are either simultaneous
or taken over a time period that is shorter than the timescales over which the current
sheet evolves.

In practice, it is easier to choose n̂ such that the variance σ2 of Bi·n̂ about a
mean ⟨B⟩ · n̂ is minimised for N measurements:

σ
2 =

1
N

N

∑
i=1

(Bi · n̂−⟨B⟩ · n̂)2 (2.6)

where the subscript i denotes an individual measurement of B and ⟨⟩ denotes the
average of any given quantity over N measurements. The minimisation of Equation
2.6 is the equivalent of finding the smallest eigenvalue λ3 of the co-variant matrix
M:

M =

⟨BRBR⟩−⟨BR⟩⟨BR⟩ ⟨BRBT ⟩−⟨BR⟩⟨BT ⟩ ⟨BRBN⟩−⟨BR⟩⟨BN⟩
⟨BRBT ⟩−⟨BR⟩⟨BT ⟩ ⟨BT BT ⟩−⟨BT ⟩⟨BT ⟩ ⟨BT BN⟩−⟨BT ⟩⟨BN⟩
⟨BRBN⟩−⟨BR⟩⟨BN⟩ ⟨BT BN⟩−⟨BT ⟩⟨BN⟩ ⟨BNBN⟩−⟨BN⟩⟨BN⟩

 (2.7)

The eigenvector corresponding to λ3 is therefore the minimum variance direction
of B. Similarly, the eigenvectors corresponding to the intermediate eigenvalue λ2
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and the largest eigenvalue λ1 point in the intermediate and maximum variance di-
rections, respectively. It is commonly assumed that if the eigenvalue ratios λ1/λ2

and λ2/λ3 are greater than ∼ 10 (Sonnerup & Scheible, 1998; Knetter et al., 2004),
these eigenvectors are well-defined and well-separated. In this case, the maximum,
intermediate, and minimum variance directions can be used to define the lmn coor-
dinate system basis vectors l̂, m̂, n̂, respectively.

The MVAB method thus works on the basis of finding the direction in which
Bn varies the least, in order to approximately satisfy Equation 2.4. If this equation
is exactly satisfied, the smallest eigenvalue of M is zero and the MVAB method
produces the same results as Equation 2.5. It should be noted that Equation 2.5
breaks down if (BU −BD) and (BU −BI) are parallel to each other, corresponding
to the case where M has degenerate eigenvalues. This results in a situation where
neither method can be used to determine n̂. Similarly, if any of the eigenvalues of
B are degenerate, the basis vectors l̂, m̂, n̂ derived using the MVAB method are not
well-defined. Furthermore, the dependence of Equation 2.6 and M on ⟨B⟩ means
that MVAB estimate of n̂ is sensitive to the choice of start and end times of the
averaging window used to calculate ⟨B⟩.

In this thesis, I employ a modified version of the minimum variance analysis
method known as hybrid MVAB (Gosling & Phan, 2013). The majority of RCS
in the solar wind are characterised by magnetic shear angles < 60◦ (Gosling et al.,
2007; Phan et al., 2010; Gosling & Phan, 2013), for which MVAB estimates of
n̂ are inaccurate (Knetter et al., 2004). Compared to traditional MVAB, hybrid
MVAB produces more reliable estimates of n̂ for RCS with modest shear angles
below 60◦, while producing similar estimates to traditional MVAB at larger shear
angles (Wang et al., 2024). Using this method, n̂ is defined as the cross product
between the magnetic field vector B1 and B2 at the leading and trailing edges of the
current sheet, respectively:

n̂ =
B1 ×B2
|B1 ×B2|

(2.8)

and m̂ = l̂′× n̂, where l̂′ is the maximum variance direction determined from tradi-
tional MVAB. For most reconnection events, l̂′ has the largest eigenvalue ratio λ1/λ2

and hence, is the most well-defined direction (Denton et al., 2018). To complete the
triad, l̂ = m̂× n̂. For an idealised planar RCS, l̂, m̂, and n̂ are approximately aligned
with the reconnection outflow, neutral line, and RCS normal, respectively (Gosling
& Phan, 2013; Phan et al., 2020, 2024).

2.4.2 deHoffmann-Teller analysis
In the ideal MHD limit, Ohm’s Law implies that the convection electric field
E =−u×B is perpendicular to both the magnetic field and bulk flow (i.e., E∥ = 0),
where u is the bulk velocity in the frame of the observing spacecraft. Charged par-
ticles in these fields will execute helical gyromotion along the magnetic field with
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parallel velocity u∥ and experience an E×B drift across the magnetic field lines
(Section 1.1.2). Substituting E into Equation 1.9 shows that the E×B drift velocity
vE = u⊥, the perpendicular component of the bulk velocity.

A new reference frame, where u′
⊥ = 0, can then be defined, using the trans-

formation u′ = u−VHT . In this frame, the perpendicular component of the electric
field E′

⊥ = 0. If E∥ = 0, as is the case in ideal MHD, then the total electric field E′

in the transformed frame is zero:

E′ = E+VHT ×B = 0 (2.9)

This frame, known as the deHoffmann-Teller (HT) frame (de Hoffmann & Teller,
1950), moves with velocity VHT relative to the spacecraft frame. If a structure in
the magnetic field is time stationary and frozen into the bulk flow, then u is equal
across the structure. In this case, a single HT frame can be defined where E′ = 0
everywhere; this HT frame thus corresponds to the rest frame of the structure. It
is important to note that while a transformation into the HT frame removes the
perpendicular component of the bulk flow (i.e., u′

⊥ = 0), it does not necessarily
remove the u∥ component of the bulk flow. Therefore, the flow on both sides of the
structure is field-aligned in the absence of the E×B drift. Furthermore, if E′ = 0 in
the HT frame, Faraday’s Law:

∇×E′ =−
(

∂B′

∂ t

)
= 0 (2.10)

implies that the magnetic field structure is time-stationary in this frame.
In the real solar wind, non-ideal MHD effects may introduce a non-zero E∥

component into the electric field that can not be transformed away. As a result,
the deHoffmann-Teller analysis method is used to determine VHT for a set of ob-
servations by minimising E′ in Equation 2.9, which is done by solving the follow-
ing linear matrix equation (Khrabrov & Sonnerup, 1998; Paschmann & Sonnerup,
2008):⟨B2

T +B2
N⟩ ⟨−BRBT ⟩ ⟨−BRBN⟩

⟨−BRBT ⟩ ⟨B2
R +B2

N⟩ ⟨−BT BN⟩
⟨−BRBN⟩ ⟨−BT BN⟩ ⟨B2

R +B2
T ⟩

VHT,R

VHT,T

VHT,N

=

⟨ET BN −ENBT ⟩
⟨ENBR −ERBN⟩
⟨ERBT −ET BR⟩

 (2.11)

As the solar wind can be approximated in the ideal MHD regime over large scales,
the spacecraft frame electric field is calculated using E =−u×B. I chose to do this
instead of using direct measurements from RPW (Maksimovic et al., 2020), which
can only measure two components of E. It has been shown that estimates of VHT

derived using measurements of E from RPW do not differ significantly from those
obtained using E calculated from Ohm’s Law (Steinvall et al., 2021).

In a single RCS configuration (i.e., magnetotail reconnection; see Section 1.5),
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the current sheet stress balance conditions are evaluated in the FLRF, which corre-
sponds to a single HT frame with a frame speed equal to the E×B drift speed at
the RCS centreline (Owen & Cowley, 1987a,b). However, in a bifurcated RCS con-
figuration (i.e., solar wind reconnection; see Section 1.3.4), the system is no longer
characterised by a single global HT frame. Although a FLRF can still be defined,
the magnetic field discontinuities across each current sheet are not stationary in this
frame. Instead, they move apart as the bifurcated RCS diverges with increasing dis-
tance from the neutral line (see Figure 1.11). The stress balance conditions at each
current sheet must therefore be evaluated in the corresponding discontinuity rest
frame (DRF), which is determined by performing the HT analysis locally at each
discontinuity (Gosling et al., 2005a).



Chapter 3

Development of bifurcated current
sheet stress balance models for
reconnection in the solar wind

3.1 Introduction
In Section 1.5, I introduced the current sheet stress balance models in the context
of magnetic reconnection in the Earth’s magnetotail (Owen & Cowley, 1987a,b).
As plasma β is small in this regime, the plasma pressure can be neglected and the
magnetic pressure on both sides of the reconnection current sheet (RCS) must be
equal to maintain overall pressure balance. The reconnection inflows and outflows
are treated as cold plasmas that do not experience heating as they cross the single
central RCS. Under these conditions, magnetic tension in the reconnected field lines
is balanced by the change in momentum of the plasma as it flows across the RCS.
In this chapter, I extend the mathematical framework of these existing current sheet
stress balance models to describe reconnection outflows in the solar wind.

There are some key differences between the magnetotail and the solar wind that
must be accounted for. Firstly, plasma β is comparable to 1 in the solar wind, so the
plasma pressure can no longer be neglected. Secondly, RCS in the solar wind are
bifurcated (Gosling et al., 2005a, 2006a; Gosling & Szabo, 2008), with the reversal
in the magnetic field occurring across two current sheets rather than just one. If
reconnection heats the outflow plasma, a plasma pressure gradient will exist across
the RCS that must be balanced in steady state by a change in the magnetic pressure
and hence, magnetic field strength. It is postulated (Owen et al., 2021) that this
mechanism may be responsible for the bifurcation of the RCS in the Gosling recon-
nection model (Gosling et al. 2005a, see Section 1.3.4), and means the magnetic
field strength on either side of the bifurcated RCS are not equal.

Since the outflow from one current sheet contributes to the stress balance at
the other current sheet in this configuration, the bifurcated current sheet pair form
a coupled system and the solutions to the stress balance conditions at both must be
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self-consistent. In the magnetotail stress balance models, it is assumed that |Bx| ≫
|Bz| on both sides of the current sheet (Owen & Cowley, 1987a,b), where Bx is
the component of the magnetic field tangential to the current sheet and Bz is the
component normal to it. In a bifurcated RCS, the decrease in the magnetic field
strength in the outflow region leads to a decrease in |Bx| while |Bz| remains constant.
As a result, the |Bx| ≫ |Bz| assumption does not necessarily apply on the side of the
current sheet containing the outflow region.

In Section 3.2, I re-work the stress balance conditions for a single current sheet,
taking into account the differences between conditions in the Earth’s magnetotail
and the solar wind. In Section 3.3, I extend the modified single current sheet stress
balance conditions to a bifurcated RCS configuration, typical of those found in the
solar wind. In Section 3.4, I test the bifurcated RCS stress balance conditions using
a simple model of a reconnection outflow in the solar wind. Using these condi-
tions, I make predictions of the reconnection geometry and the nature of the beam
population within the outflow region. Finally, I discuss the results of my model and
compare its predictions with the observed properties of reconnection outflows in the
solar wind in Section 3.5.

3.2 Stress balance for a single current sheet
I first consider the stress balance for a single, thin, 1-D current sheet in steady-state,
with isothermal proton inflow beams incident upon it from Region A above (Beam
1) and Region B below (Beam 2). Throughout this work, I use the convention that
the subscripts 1 and 2 refer to properties pertaining to Beams 1 and 2, respectively.
Similarly, the subscripts A and B denote the properties of the beams and magnetic
field in Regions A and B, respectively. In the field line rest frame (FLRF), Beam 1
has velocity u′

1A, density n1A, and temperature T1A in Region A, while Beam 2 has
velocity u′

2B, density n2B, and temperature T2B in Region B.

Figure 3.1 shows the current sheet configuration in the FLRF using the lmn co-
ordinate system, where n̂ is the current sheet normal vector, and the l̂ and m̂ vectors
lie in the plane of the current sheet. The FLRF corresponds to its deHoffmann-Teller
(HT) frame (Section 2.4.2), which means the electric field in this frame is trans-
formed away (Khrabrov & Sonnerup, 1998; Paschmann & Sonnerup, 2008). In the
absence of the E×B drift, the beams passing through the current sheet propagate
along the field-aligned direction on both sides. The proton population in Regions A
and B consists of a pair of counterstreaming beams. In Region A, the inflow Beam 1
is co-located with Beam 2 after the latter has passed through the current sheet. Here,
Beam 2 has velocity u′

2A, density n2A, and temperature T2A. Likewise, in Region B,
the inflow Beam 2 is co-located with Beam 1 after the latter has passed through the
current sheet. Here, Beam 1 has velocity u′

1B, density n1B, and temperature T1B.
Therefore, the total distribution function describing the proton population in both
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Figure 3.1: Left: Inflow and outflow beam configuration for a single 1-D current sheet in
steady state in the FLRF. The dotted black line represents the current sheet and
the blue arrows represent the magnetic field. The red arrows show the inflow
beam u′

1A before and after it passes through the current sheet to become beam
u′

1B. Similarly, the green arrows show the inflow beam u′
2B before and after it

passes through the current sheet to become beam u′
2A. Top right: Proton dis-

tribution function in Region A, consisting of the isothermal counterstreaming
beams u′

1A (red) and u′
2A (green). The black cross represents the net proton

bulk velocity and the dashed blue line denote the l and n-components of the
beam velocities that result in field-aligned propagation. Bottom right: Proton
distribution function in Region B, consisting of the isothermal counterstream-
ing beams u′

1B (red) and u′
2B (green).

regions is the sum of the distribution of the individual counterstreaming beams:

fA = f1A + f2A (3.1)

fB = f1B + f2B (3.2)

Furthermore, since |u′
1A| ̸= |u′

2A| and |u′
1B| ̸= |u′

2B|, there is a non-zero bulk flow u′
A

and u′
B in Regions A and B, respectively.

As a net field-aligned bulk flow exists across the current sheet (Owen & Cow-
ley 1987b, see Section 1.5.2), the steady-state MHD momentum conservation equa-
tion (Equation 1.25) for this system is:

ρ(u′ ·∇)u′ =−∇ ·P−∇

(
B2

2µ0

)
+

1
µ0

(B ·∇)B (3.3)

where ρ = nmi is the mass density. Here, I have expanded the J×B term into
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a magnetic pressure gradient and magnetic tension component, corresponding to
the second and third terms on the right-hand side, respectively. In a 1-D system,
quantities vary only in the n̂-direction so ∂/∂ l = ∂/∂m = 0. Thus, Equation 3.3
simplifies to:

ρu′n
∂

∂n
u′ =−∇ ·P− ∂

∂n

(
B2

2µ0

)
n̂+

1
µ0

Bn
∂

∂n
B (3.4)

Additionally, the steady-state mass continuity condition ∇ · (ρu′) = 0 (Equation
1.24) and divergence-free magnetic field condition ∇ ·B = 0 for a 1-D system imply
that ρu′n and Bn are both constants. I then expand ∇ ·P term in Equation 3.4 that
describes the divergence of the pressure tensor:

∇ ·P =
∂Pnl

dn
l̂+

∂Pnm

dn
m̂+

∂Pnn

dn
n̂ (3.5)

Substituting this into Equation 3.4, the MHD momentum equation can be decom-
posed into its l̂, m̂, and n̂ components:

ρu′nu′l +Pnl −
BnBl

µ0
=C1. (3.6)

ρu′nu′m +Pnm − BnBm

µ0
=C2. (3.7)

ρu
′2
n +Pnn +

B2

2µ0
=C3. (3.8)

where C1, C2, and C3 are constants.

In the next step, I derive equations for the Pnl , Pnm, and Pnn terms of Equations
3.6–3.8 in Regions A and B. For brevity, only the derivation of these terms for
Region A is shown here, as the derivation for Region B is identical. Starting with
the pressure tensor (Equation 1.23) in Region A:

PA,i j = m
(∫

(vi −u′A,i)(v j −u′A, j) f1Ad3v+
∫
(vi −u′A,i)(v j −u′A, j) f2Ad3v

)
(3.9)

By expanding both integrals on the right-hand side of this equation, I obtain:

PA,i j = n1AkBT1A,i j +ρ1A(u′1A,i −u′A,i)(u
′
1A, j −u′A, j)

+n2AkBT2A,i j +ρ2A(u′2A,i −u′A,i)(u
′
2A, j −u′A, j) (3.10)

Since the inflow and outflow beams are assumed isotropic, Ti j = 0 if i ̸= j and
Ti j = T if i = j, therefore:

PA,nl = ρ1A(u′1A,l −u′A,l)(u
′
1A,n −u′A,n)+ρ2A(u′2A,l −u′A,l)(u

′
2A,n −u′A,n) (3.11)
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PA,nm = ρ1A(u′1A,m −u′A,m)(u
′
1A,n −u′A,n)+ρ2A(u′2A,m −u′A,m)(u

′
2A,n −u′A,n) (3.12)

PA,nn = P1A +P2A +ρ1A(u′1A,n −u′A,n)
2 +ρ2A(u′2A,n −u′A,n)

2 (3.13)

where P1A = n1AkBT1A and P2A = n2AkBT2A. Substituting these expressions for PA,nl ,
PA,nm, and PA,nn into Equations 3.6–3.8 yields:

ρAu′A,nu′A,l +PA,nl −
BnBA,l

µ0
= ρ1Au′1A,lu

′
1A,n +ρ2Au′2A,lu

′
2A,n −

BnBA,l

µ0
(3.14)

ρAu′A,nu′A,m +PA,nm −
BnBA,m

µ0
= ρ1Au′1A,mu′1A,n +ρ2Au′2A,mu′2A,n −

BnBA,m

µ0
(3.15)

ρAu
′2
A,n +PA,nn +

B2
A

2µ0
= P1A +P2A +ρ1Au

′2
1A,n +ρ2Au

′2
2A,n +

B2
A

2µ0
(3.16)

Applying the same procedure for Region B, the corresponding equations in this
region are:

ρBuB,nu′B,l +PB,nl −
BnBB,l

µ0
= ρ1Bu′1B,lu

′
1B,n +ρ2Bu′2B,lu

′
2B,n −

BnBB,l

µ0
(3.17)

ρBu′B,nu′B,m +PB,nm −
BnBB,m

µ0
= ρ1Bu′1B,mu′1B,n +ρ2Bu′2B,mu′2B,n −

BnBB,m

µ0
(3.18)

ρBu
′2
B,n +PB,nn +

B2
B

2µ0
= P1B +P2B +ρ1Bu

′2
1B,n +ρ2Bu

′2
2B,n +

B2
B

2µ0
(3.19)

Equating Equations 3.14, 3.15, and 3.16 with Equations 3.17, 3.18, and 3.19,
respectively yields the stress balance conditions for a single current sheet in the
FLRF in the l̂, m̂, and n̂ directions:

ρ1Bu′1B,lu
′
1B,n +ρ2Bu′2B,lu

′
2B,n −ρ1Au′1A,lu

′
1A,n −ρ2Au′2A,lu

′
2A,n =

Bn

µ0
(BB,l −BA,l)

(3.20)

ρ1Bu′1B,mu′1B,n +ρ2Bu′2B,mu′2B,n −ρ1Au′1A,mu′1A,n −ρ2Au′2A,mu′2A,n =
Bn

µ0
(BB,m −BA,m)

(3.21)

P1A +P2A −P1B −P2B +ρ1Au
′2
1A,n +ρ2Au

′2
2A,n −ρ1Bu

′2
1B,n −ρ2Bu

′2
2B,n =

1
2µ0

(B2
B −B2

A)

(3.22)
Equations 3.20 and 3.21 shows that the magnetic tension force in the l̂ and m̂ di-
rections, respectively, is balanced by the combined change in momentum of the
beams in the corresponding directions as they cross the current sheet. This result
is in agreement with the stress balance conditions derived for current sheets in the
Earth’s magnetotail (Owen & Cowley, 1987a,b).

Equation 3.22 shows that in the n̂ direction, the change in magnetic pressure is
balanced by the change in the plasma thermal pressure of the individual beams and
their flow pressure across the current sheet. This differs from the magnetotail case,
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where the beams are assumed to be cold (i.e., P = 0), and there is no change in the
magnetic pressure across the current sheet (Owen & Cowley, 1987b).

Focusing on the flow pressure terms ρu′2 on the left-hand side of Equation
3.22, the mass continuity condition requires ρ1Au′1A,n = ρ1Bu′1B,n and ρ2Au′2A,n =

ρ2Bu′2B,n. One of the underlying assumptions of the magnetotail stress balance con-
ditions is that the beam densities do not vary across the current sheet, i.e., ρ1A = ρ1B

and ρ2A = ρ2B (Owen & Cowley 1987b, see Section 1.5.2). Hence, from the mass
continuity condition, it follows that u′1A,n = u′1B,n and u′2A,n = u′2B,n, so the sum of
the flow pressure terms becomes:

ρ1Au
′2
1A,n +ρ2Au

′2
2A,n −ρ1Bu

′2
1B,n −ρ2Bu

′2
2B,n = 0 (3.23)

Equation 3.22 thus simplifies to:

P1A +P2A +
B2

A
2µ0

= P1B +P2B +
B2

B
2µ0

(3.24)

which is identical to the magnetotail stress balance condition described by Equa-
tion 1.67. Under this assumption, Equations 3.23 and 3.24 suggest that there is no
change in the normal momentum flux, and the normal pressure balance is solely
due to the magnetic and plasma pressure. Additionally, under the further assump-
tion that P = 0 for a cold plasma, BA = BB and the magnetic pressure on both sides
of the current sheet is equal. Therefore, by applying the same set of assumptions
used to characterise the magnetotail plasma regime on Equation 3.22, I recover the
stress balance conditions for a 1-D current sheet in the magnetotail (Owen & Cow-
ley, 1987b) from those for a 1-D current sheet in the solar wind.

3.3 Stress balance for a bifurcated reconnection cur-
rent sheet

Having modified the stress balance conditions for a single 1-D current sheet to ac-
count for fundamental differences between the properties of the magnetotail and
solar wind plasma, I now apply them to a bifurcated RCS structure typical of recon-
nection in the solar wind (Gosling et al., 2005a, 2006a; Gosling & Szabo, 2008).

Figure 3.2a shows a model of a symmetric reconnection outflow region in
steady-state with opening angle γ , bound by a bifurcated pair of thin current sheets
IT and IB, with the neutral line located at the origin. Observations of bifurcated
RCS outflow structures in the solar wind suggest that γ is usually small, typically
around ∼ 10◦ (Mistry et al., 2015; Lavraud et al., 2021). It is therefore assumed that
current sheets IT and IB are quasi-parallel and can be characterised using a common
lmn-coordinate system, denoted by the large axes. Regions A and C correspond to
the inflow regions, and Region B corresponds to the outflow region.

In Figure 3.2b, I present this reconnection configuration in velocity space,
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Figure 3.2: Reconnection geometry for a symmetric outflow region bound by a bifurcated
reconnection current sheet in a) real space and b) velocity space, based on the
Gosling reconnection model (Gosling et al., 2005a).

where the large, primed axes v′l and v′n represent the neutral line rest frame (NLRF).
In this frame, the reconnected field line recoils away from the neutral line with
speed V ′

F in the l̂-direction. Unlike the single current sheet case, the individual
magnetic field discontinuities at at IT and IB are not stationary in the FLRF. In-
stead, they move apart from each other with speed V ′

S in the ±n̂-direction as the
bifurcated RCS diverges. Each discontinuity has a locally defined rest frame, which
is referred to as the discontinuity rest frame (DRF), that is characterised by the HT
velocities V′

HT,IT at IT and V′
HT,IB at IB in the NLRF (Gosling et al. 2005a, see

Section 2.4.2). These HT velocities can be decomposed into the two components:
V ′

F , directed in the l̂-direction, and V ′
S, directed in the ±n̂-direction.

Similar to the analysis for the single current sheet case, I now consider a pair
of isothermal proton inflow beams entering the outflow region from Regions A and
C, labelled Beam 1 and Beam 2, respectively. The two inflow beams are assumed to
be identical, with equal density n1A = n2C, temperature T1A = T2C, and field-aligned
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Figure 3.3: a) Overview of the assumed inflow and outflow beam configuration in velocity
space for the reconnection geometry shown in Figure 3.2. b) Velocity of the
inflow Beam 1 before (uIT

1A) and after (uIT
1B) passing through current sheet IT,

shown in the rest frame of the magnetic field discontinuity at this current sheet.
c) Velocity of the inflow Beam 2 before (uIB

2C) and after (uIB
2B) passing through

current sheet IB, shown in the rest frame of the magnetic field discontinuity at
this current sheet.

speed |uIT
1A| = |uIB

2C|. Throughout this thesis, I use the convention that quantities
defined in the DRF of IT and IB are denoted by the superscript IT and IB, re-
spectively. Figure 3.3 shows the assumed beam configuration for the symmetric
bifurcated RCS described above. In the DRF at current sheets IT and IB, the inflow
and outflow beams are field-aligned (Figure 3.3b, c). Beam 1 enters IT with veloc-
ity uIT

1A, then follows the reconnected field line across the current sheet to enter the
outflow region with velocity uIT

1B. Likewise, Beam 2 enters IB with velocity uIB
2C and

exits into the outflow region with velocity uIB
2B. Therefore, I expect to observe single

inflow beams in Regions A and C, and a pair of counterstreaming outflow beams in
Region B.

In order for there to be a bifurcated RCS, I make the assumption that the out-
flow beam from IT (IB) will have sufficient speed to catch up with IB (IT), but not
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to overtake and pass through it. This condition implies that uIT
1B,n = uIB

2B,n = 2V ′
S,

which leads to the following equation linking the n̂-component of the outflow beam
velocity with the opening angle γ of the outflow region:

sin
γ

2
=

|V ′
S|

|V′
HT|

=
|uIT

1B,n|
2|V′

HT|
=

|uIB
2B.n|

2|V′
HT|

(3.25)

Here, I highlight an important difference between the stress balance analysis for
reconnection with a single RCS and reconnection with a bifurcated RCS. In a bi-
furcated RCS, the outgoing beam from one current sheet contributes to the stress
balance at the other. As a result, the current sheets IT and IB form a coupled system
and their stress balance conditions must be evaluated simultaneously. Hence, the
solutions to these conditions at one current sheet must also satisfy the conditions at
the other.

Starting with Equations 3.20–3.22, I evaluate the stress balance conditions at
IT to derive a set of equations for the velocity uIT

1B of the outflow beam from IT in
Region B. Based on the properties of the hypothesised reconnection configuration
outlined above, a few simplifying assumptions are made. Since the outflow beam
from IB is assumed to catch up with the magnetic field discontinuity at IT but not
pass through it, I set uIT

2B = 0 in the DRF of IT (see Figure 3.3c). Additionally,
ρ2A = 0 and P2A = 0 because this beam does not enter Region A. In this frame, the
l̂-component stress balance condition (Equation 3.20) thus simplifies to:

ρ1BuIT
1B,lu

IT
1B,n −ρ1AuIT

1A,lu
IT
1A,n =

Bn

µ0
(BB,l −BA,l) (3.26)

This shows that in the l̂-component, only Beam 1 contributes to the stress balance
at IT. Using the mass continuity condition ρ1AuIT

1A,n = ρ1BuIT
1B,n, this equation can be

re-arranged to give:

uIT
1B,l = uIT

1A,l +
V 2

A,A

uIT
1A,n

Bn∆BIT
l

B2
A

(3.27)

where VA,A is the Alfvén speed in Region A and ∆BIT
l = BB,l −BA,l is the difference

in the l̂-component of the magnetic field across IT. The m̂-component stress balance
condition (Equation 3.21) has the same form as Equation 3.20 so:

uIT
1B,m = uIT

1A,m +
V 2

A,A

uIT
1A,n

Bn∆BIT
m

B2
A

(3.28)

where ∆BIT
m = BB,m −BA,m. The n̂-component stress balance condition (Equation

3.22) simplifies to:

P1A − (P1B +P2B)+ρ1AuIT
1A,n(u

IT
1A,n −uIB

1A,n) =
1

2µ0
(B2

B −B2
A) (3.29)
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which re-arranges to give:

uIT
1B,n = uIT

1A,n −
1

ρ1AuIT
1A,n

(∆PIT
th +∆PIT

mag) (3.30)

where ∆PIT
th = (P1B+P2B)−P1A is the difference between the sum of the individual

beam plasma pressures in Region A and Region B, and ∆PIT
mag = (B2

B −B2
A)/2µ0

is the change in magnetic pressure across IT. Under the assumptions made, these
equations imply that P2B, the plasma pressure of Beam 2, contributes to the overall
stress balance at IT, whereas the change in its momentum flux across IT does not.
Writing out the plasma pressure terms of each beam in Equation 3.30 in full as
P = nkBT and by symmetry, assuming n1B = n2B and T1B = T2B, the ∆PIT

th term can
be re-written as:

∆PIT
th = 2

uIT
1A,n

uIT
1B,n

n1AkBT1B −n1AkBT1A (3.31)

Substituting this equation into Equation 3.30 yields a quadratic equation in uIT
1B,n:

uIT 2

1B,n −
(

uIT
1A,n −

1
ρ1AuIT

1A,n
(∆PIT

mag −n1AkBT1A)

)
uIT

1B,n +
2kB

mi
T1B = 0 (3.32)

Repeating the same procedure for the stress balance conditions at current sheet IB,
the corresponding equations for the velocity of the outflow beam from IB uIB

2B in
Region B are:

uIB
2B,l = uIB

2C,l −
V 2

A,C

uIB
2C,n

Bn∆BIB
l

B2
C

(3.33)

uIB
2B,m = uIB

2C,m +
V 2

A,C

uIB
2C,n

Bn∆BIB
m

B2
C

(3.34)

uIB2

2B,n −
(

uIB
2C,n +

1
ρ2CuIB

2C,n
(∆PIB

mag +n2CkBT2C)

)
uIB

2B,n +
2kB

mi
T2B = 0 (3.35)

where VA,C is the Alfvén speed in Region C; ∆BIB
l = BC,l −BB,l and ∆BIB

m = BC,m −
BB,m is the difference in the l̂ and m̂-components of the magnetic field across IB,
respectively; ∆PIB

mag = (B2
C −B2

B)/2µ0 is the change in magnetic pressure across IB,
and ∆PIB

th = P2C − (P1B +P2B) is the difference between the sum of the individual
beam plasma pressures in Region B and Region C.

For a specified reconnected magnetic field geometry in Regions A, B, and C,
as well as a given set of inflow beam conditions, I use this set of stress balance
conditions for a bifurcated RCS to predict the velocity, density, and temperature
of the outflow beams in Region B. Using these predictions, I can then estimate
the opening angle γ of the outflow region, and reconstruct the distribution function
describing the beam population within it.
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3.3.1 Speed of the inflow and outflow beams

In the current sheet stress balance models of magnetotail reconnection (Section 1.5),
it is assumed that the speed of the inflow and outflow beams is constant in the FLRF
as there is no electric field or pressure forces doing work on the beam particles as
they cross the current sheet (Owen & Cowley, 1987a,b). Using the stress balance
conditions derived in the previous section, I check whether this assumption also
holds true in the solar wind where forces due to magnetic and plasma pressure gra-
dients must be accounted for, even in the DRF where the electric field is transformed
away.

Taking Beam 1 as it crosses current sheet IT as an example, if the speed of the
inflow and outflow beams are equal, then:

|uIT
1A|= |uIT

1B|=
√

uIT 2

1B,l +uIT 2
1B,m +uIT 2

1B,n (3.36)

For simplicity, I neglect the m̂-component in this analysis and set uIT
1B,m = 0. Sub-

stituting in Equations 3.27 and 3.30 gives:

V 2
A,A

uIT
1A,n

Bn

B2
A

∆BIT
l

(
2uIT

1A,l +
V 2

A,A

uIT
1A,n

Bn∆BIT
l

B2
A

)
=

∆PIT
mag +∆PIT

th

ρ1A

(
2−

∆PIT
mag +∆PIT

th

ρ1AuIT 2

1A,n

)
(3.37)

For the the |uIT
1A| = |uIT

1B| assumption to hold, the plasma pressure difference ∆PIT
th

and magnetic pressure difference ∆PIT
mag across the current sheet must satisfy this

equation. As this is generally not true in the solar wind, it cannot always be assumed
that |uIT

1A| = |uIT
1B| when considering the current sheet stress balance in the solar

wind, unlike in the magnetotail.

However, specific cases can be derived from the stress balance conditions
where |uIT

1A|= |uIT
1B|. If the change in magnetic pressure exactly balances the change

in plasma pressure across the current sheet (i.e., ∆PIT
mag +∆PIT

th = 0), the right-hand
side of Equation 3.37 is zero, which leads to the following solutions:

V 2
A,A

uIT
1A,n

Bn

B2
A

∆BIT
l = 0 (3.38)

2uIT
1A,l +

V 2
A,A

uIT
1A,n

Bn∆BIT
l

B2
A

= 0 (3.39)

The solution to Equation 3.38 is trivial: ∆BIT
l = 0 as the other terms must be non-

zero. This implies that BA,l = BB,l , in which case there is no change in the magnetic
field (since Bn is constant), and hence, no current sheet. Equation 3.39 can be re-
written as:

−2ρ1AuIT
1A,lu

IT
1A,n =

Bn

µ0
(BB,l −BA,l) (3.40)
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which, when equated to Equation 3.26, gives ρ1BuIT
1B,lu

IT
1B,n = −ρ1AuIT

1A,lu
IT
1A,n. By

once again applying the mass continuity condition, this equation reduces to uIT
1B,l =

−uIT
1A,l . Additionally, Equation 3.30 implies that uIT

1B,n = uIT
1A,n if ∆PIT

mag +∆PIT
th = 0.

This result suggests that the speed of the inflow and outflow beams is constant, but
only if the l̂-component of the inflow beam velocity reverses as it crosses IT. In
the DRF, this reversal is also associated with a similar reversal in the l̂-component
of the magnetic field as the beams are assumed to be field-aligned. This magnetic
field configuration is inconsistent with the symmetric bifurcated RCS configura-
tion shown in Figure 3.2, further reinforcing the earlier point that the |uIT

1A|= |uIT
1B|

assumption does not always hold in the solar wind. Another situation where
∆PIT

mag+∆PIT
th = 0 is if ∆PIT

th = 0 and ∆PIT
mag = 0, which is assumed for cold plasmas

in the magnetotail. In this case, the reversal of the beam direction and magnetic field
is consistent with the expected behaviour described in current sheet stress balance
models for magnetotail reconnection (Owen & Cowley 1987a,b, see Section 1.5).

3.4 Application to a simple bifurcated reconnection
current sheet model

I test the stress balance conditions derived in Section 3.3 by applying them to a
simple model of a reconnection outflow with a bifurcated RCS. The model is set
up on the basis of the reconnection geometry shown in Figures 3.2 and 3.3, with a
symmetric outflow region in steady-state and identical inflow beams from Regions
A and C. For simplicity, this reconnection structure is assumed to be 2-D and the
magnetic field and flow components in the m̂-direction are neglected. I define the
reconnected magnetic field and inflow conditions based on typical values from ob-
served reconnection events in the solar wind. In lmn-coordinates, the reconnected
magnetic field in Regions A, B, and C is:

BA = (−5.0,0.0,−0.5) nT (3.41)

BB = (0.0,0.0,−0.5) nT (3.42)

BC = (5.0,0.0,−0.5) nT (3.43)

The inflow plasma in Regions A and C has equal bulk density nA = nC = 7.5 cm−3

and temperature TA = TC = 7.0 eV, and is assumed to be at rest in the NLRF such
that u′

A = u′
C = 0 km s−1. Using the stress balance conditions, the set of unknowns

in this model that I solve for are the velocity, density, and temperature of the outflow
beams in Region B, the bulk velocity of the reconnection outflow, and the outflow
region opening angle γ .

I start the analysis of this model by evaluating the stress balance conditions
in the l̂-direction to determine the bulk outflow velocity. Recall that in the DRF,
the inflow and outflow beams of the current sheet must be field-aligned (Owen &
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Cowley, 1987a,b). If this is the case, then the assumed magnetic field geometry
of the model requires that uIT

1B,l = 0 and uIB
2B,l = 0 (Figure 3.3b,c). Additionally, if

the inflow beams are field-aligned, then the properties uIT
1A,n/uIT

1A,l = Bn/BA,l and
uIB

2C,n/uIB
2C,l = Bn/BC,l can be used to re-write Equations 3.27 and 3.33 as:

uIT
1A,l =

√
V 2

A,A
BA,l

B2
A
(BA,l −BB,l) (3.44)

uIB
2C,l =

√
V 2

A,C
BC,l

B2
C
(BC,l −BB,l) (3.45)

The solutions to these equations have positive and negative roots, but it can be
deduced from the model geometry that uIT

1A,l and uIT
2C,l must be negative. Given

the specified magnetic field and densities in Regions A and C, VA,A = VA,C =

40.1 km s−1. Using these values, I determine that uIT
1A,l = uIB

2C,l =−39.9 km s−1.

Because the inflow plasma in Regions A and C is static in the NLRF, the inflow
of plasma into the outflow region is solely due to the motion of the reconnected field
lines as they recoil away from the neutral line. Velocities in the NLRF are linked to
velocities in the DRF by the transformations:

uIT = u′−V′
HT,IT (3.46)

uIB = u′−V′
HT,IB (3.47)

at IT and IB, respectively. Substituting in the predicted values of uIT
1A,l and uIB

2C,l

gives a field line recoil speed V ′
F = 39.9 km s−1 in the +l̂-direction. Since the

reconnected magnetic field is frozen into the reconnection outflow, V ′
F also corre-

sponds to the l̂-component of the bulk outflow velocity in Region B. Moreover, the
outflow beams have equal and opposite velocity components in the n̂-direction so
there is no net bulk flow in this direction. Therefore, the bulk outflow velocity in
the NLRF is u′

B = (39.9,0.0,0.0) km s−1.

Having obtained the bulk velocities in Regions A, B, and C, I use HT anal-
ysis (Khrabrov & Sonnerup, 1998; Paschmann & Sonnerup, 2008) to determine
V′

HT,IT = (39.9,0.0,4.0) km s−1 and V′
HT,IB = (39.9,0.0,−4.0) km s−1. As the

inflow beam from Region A is at rest in the NLRF, i.e. u′
1A = 0, Equation 3.46

implies that uIT
1A = (−39.9,0.0,−4.0) km s−1. Similarly, Equation 3.47 implies

the velocity of the inflow beam in Region C is uIB
2C = (−39.9,0.0,4.0) km s−1 in

the DRF at IB. The speed |uIT
1A| and |uIB

2C| of both inflow beams is equal to the
Alfvén speed in the inflow region. In Region B, the assumption for current sheet
bifurcation implies |uIT

1B,n| = |uIB
2B,n| = 2|V ′

S|. From the HT velocities, I deduce that
V ′

S = 4.0 km s−1 which leads to uIT
1B,n =−8.0 km s−1 and uIB

2B,n = 8.0 km s−1. Since
it has already been stated that uIT

1B,l = uIB
2B,l = 0, the velocities of Beam 1 in Region
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Figure 3.4: Graph of the normal component of the outflow beam velocity uIT
1B,n (black) and

uIB
2B,n (blue) against temperature. The dotted, horizontal purple lines denote

the expected value of uIT
1B,n and uIB

2B,n. The dashed, vertical line denotes the
corresponding beam temperature.

B (given in the DRF at IT) and Beam 2 in Region B (given in the DRF at IB) are
uIT

1B = (0.0,0.0,−8.0) km s−1. and uIB
2B = (0.0,0.0,8.0) km s−1, respectively. Fur-

thermore, substituting V ′
S into Equation 3.25 gives an outflow region opening angle

of γ = 10.4◦.
As the proton beam population in Regions A and C each consists of a single in-

flow beam, the inflow beam density is equal to the bulk density in these regions, so
n1A = n2A = 7.5 cm−3. Applying the mass continuity conditions n1AuIT

1A,n = n1BuIT
1B,n

and n2CuIB
2C,n = n2BuIB

2B,n gives the density of the outflow beams n1B = n2B =

3.75 cm−3. If the total density in Region B is the sum of the densities of the in-
dividual outflow beams, then nB = n1B + n2B = 7.5 cm−3. Given this, the Alfvén
speed in Region B is VA,B = 4.0 km s−1, which shows that the outflow beam speed
|uIT

1B|= |uIB
2B|= 8.0 km s−1 is twice that of VA,B.

Figure 3.4 shows the relationship between uIT
1B,n and T1B, and uIB

2B,n and T2B,
derived from Equations 3.32 and 3.35, respectively. For the predicted values of
uIT

1B,n and uIB
2B,n, the temperature of the individual outflow beams required for normal

pressure balance is T1B = T2B = 15.1 eV. I have therefore demonstrated using the
stress balance conditions, that the bulk outflow velocity, the opening angle of the
outflow region, and the properties of the outflow beams for a bifurcated RCS can
be determined. Table 3.1 provides a summary of the properties of the inflow and
outflow beams in each region of the reconnection outflow structure.

With these results, I then reconstruct the distribution function describing the
proton beam population in each region. As the inflow and outflow beams are as-
sumed to be isothermal, they are treated as Maxwellians:

fM = n
(

mi

2πkBT

)3/2

e−
mi

2kBT

(
(v′∥−u′∥)

2+(v′⊥−u′⊥)
2
)

(3.48)
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Figure 3.5: Distribution function of the proton beam population in Regions A (top left), B
(middle), and C (top right) shown in the field-aligned NLRF. The teal square
denotes the velocity of Beam 1, u′

1A in Region A and u′
1B in Region B. The grey

circle denotes the velocity of Beam 2, u′
2C in Region C and u′

2B in Region B.

Figure 3.6: 1-D cut through the distribution function of the beam population in Region B
along the v∥ axis at v⊥ = |u′

B|. The teal curve is the distribution function of
Beam 1 f1B, the grey curve is the distribution function of Beam 2 f2B, and the
black curve is the total distribution function fB = f1B+ f2B. The vertical, dotted
purple lines show the field-aligned speed of the individual outflow beams, u′1B,∥
and u′2B,∥.
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where v′∥ and u′∥ are the velocity components parallel to the magnetic field, and v′⊥
and u′⊥ are the perpendicular components, both in the NLRF. Figure 3.5 shows the
distribution functions in Regions A, B, and C in the field-aligned NLRF. In Regions
A and C, the plasma is static so the distribution function of the inflow beam in both is
centred about the origin. For the symmetric reconnection configuration considered
in this model, the bulk outflow is perpendicular to the magnetic field in Region B.
As a result, the distribution in this region is offset in the v⊥ direction by the outflow
speed |u′

B|= 39.9 km s−1. Additionally, the outflow beams have equal and opposite
field-aligned speeds so there is no bulk flow in the v∥ direction. Figure 3.6 shows
the 1-D cut through the peak of the distribution function in Region B along the v∥
axis at v⊥ = |u′

B|. There is significant overlap between the individual distribution
functions f1B and f2B of the outflow beams. Consequently, a well-separated pair
of counterstreaming proton beams in the total distribution function in Region B,
fB = f1B + f2B is not observed.

3.5 Discussion
The bulk outflow speed of |u′

B| = 39.9 km s−1 is equal to the Alfvén speed in the
inflow regions, VA,A and VA,C. This is consistent with observations of reconnection
outflows reported in the solar wind, which typically have outflow speeds of a few
tens of km s−1, comparable to the Alfvén speed in the surrounding solar wind (Enžl
et al., 2014; Phan et al., 2020). The predicted opening angle of γ = 10.4◦ is also
in line with previous results (Mistry et al., 2015). These results show that at least
in the symmetric, steady-state case, my current sheet stress balance model can suc-
cessfully reproduce some of the observed properties of reconnection outflows with
bifurcated RCS in the solar wind.

The stress balance conditions Equation 3.44 and 3.45 determine the l̂-
component of the inflow beam velocity in the DRF. uIT

1A,l and uIB
2C,l are both fixed by

their respective densities n1A and n2C, as well as the geometry of the reconnected
magnetic field. If a symmetric non-zero bulk inflow velocity in Regions A and C is
introduced, while keeping all other parameters of the model unchanged, Equations
3.46 and 3.47 suggest that V′

HT must change in order to keep uIT
1A,l and uIB

2C,l the
same in the DRF and thus, satisfy the stress balance conditions at the bifurcated
current sheet. As a result, the field line recoil speed V ′

F and discontinuity separation
speed V ′

S will also change in response.
To better illustrate this point, consider the case where the bulk inflow in Re-

gions A and C is now directed away from the neutral line in the +l̂-direction, such
that u′

A = u′
C = (20,0,0) km s−1. The stress balance conditions at IT and IB do not

change, so uIT
1A,l and uIB

2C,l remain the same. Therefore, in order to compensate for
the increase in u′A,l and u′C,l , the l̂-component of V′

HT,IT and V′
HT,IB must increase by

the same amount. This gives a faster field line recoil speed (and bulk outflow speed)
of V ′

F = 59.9 km s−1. Repeating the HT analysis for this new value of V ′
F , I find
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that V′
HT,IT = (59.9,0.0,4.0) km s−1 and V′

HT,IB = (59.9,0.0,−4.0) km s−1. Here,
V ′

S has not changed as a result of this non-zero inflow and still has the same value
as the static inflow case. As a result, the outflow region is now elongated in l̂ and
Equation 3.25 implies that the outflow region opening angle decreases to γ = 7.6◦.
Conversely, introducing a bulk inflow in the −l̂-direction towards the neutral line
decreases V ′

F , leading to the contraction of outflow region in l̂ and an increase in γ .
This is analogous to the situation described in Section 1.5.1 for stress balance mod-
els of magnetotail reconnection (Owen & Cowley, 1987a) who show for a tailward
inflow, the opening angle of the tailward reconnected field wedge is less than the
Earthward reconnected field wedge (Figure 1.17).

I show that for the initial conditions of the model, which reflect conditions in
the regular solar wind, it is difficult to clearly resolve the pair of counterstream-
ing proton beams in the outflow region. The difficulty arises because the rela-
tive field-aligned speed |u′

1B − u′
2B| of the two beams is small compared to their

thermal speeds. In the case presented here, |u′
1B − u′

2B| = 8.0 km s−1 which
is equal to 2VA,B. By comparison, the thermal speed of the outflow beams is
vth =

√
2kBT/mi = 53.8 km s−1 for T = 15.1 eV. Similar difficulties in resolving

multiple beam populations in reconnection outflows have been encountered in pre-
vious studies (Lavraud et al., 2021).

Most reports of counterstreaming reconnection outflow beams in the solar wind
are from reconnection events associated with interplanetary coronal mass ejections
(ICMEs) (Gosling et al., 2005a). These are structures in the solar wind associ-
ated with strong magnetic fields and cooler plasma (Gosling, 1990; Neugebauer &
Goldstein, 1997). The speed of the inflow and outflow beams are dependent on
the Alfvén speed. When B is large, the Alfvén speed increases and as a result,
the outflow beam speed and the relative field-aligned speed will also increase. For
reconnection outflow observed at ICMEs, VA is typically ∼ 100 km s−1 (Gosling
et al., 2005a). The combination of greater relative field-aligned speed and cooler
temperatures thus produces conditions that are conducive to the observation of well-
separated counterstreaming beams in the reconnection outflow regions.

In previous analyses (Owen & Cowley, 1987a,b), the inflow and outflow beams
are assumed to have equal field-aligned speed in the DRF, provided the inflow
beams are not heated as they enter the outflow region (Gosling et al., 2005a; Lavraud
et al., 2021). Using my stress balance model, I demonstrate that the constant beam
speed assumption is not generally true in the solar wind (see Section 3.3.1). Under
this assumption, if the speed of the inflow beam in the DRF is equal to the inflow re-
gion Alfvén speed, the expected relative beam speed is the sum of the Alfvén speed
in Regions A and C, VA,A +VA,C = 80.2 km s−1. This is much larger than the actual
relative beam speed of 8.0 km s−1 obtained from the model. A similar deficit in
the relative beam speed is also seen in observed examples of reconnection outflows
with counterstreaming outflow beams (Gosling et al., 2005a; Lavraud et al., 2021).
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This was explained as a consequence of the electromagnetic ion beam instability,
which places a maximum limit on the relative beam speed of ∼ 1.5VA,A (Goldstein
et al., 2000).

In this model, the inflow beams are strongly decelerated as they enter the out-
flow region, with their speed decreasing from 40.1 km s−1 to 8.0 km s−1. At the
same time, they are also heated, with their temperature increasing from 7.0 eV to
15.1 eV. This suggests that the discrepancy between the expected and actual relative
field-aligned speed is a natural consequence of stress balance at the bifurcated RCS.
As the inflow beams pass through the RCS, their kinetic energy is converted into
thermal energy and they slow down as they enter the outflow region. The heating
of the outflow beams is required to maintain normal pressure balance and satisfy
the stress balance conditions, although the model does not identify a specific mech-
anism responsible for the beam heating. For simplicity, I have assumed isotropic
heating of the outflow beams in my analysis, although this is not expected to be
representative of real conditions in the solar wind. There are several potential heat-
ing mechanisms that could explain this behaviour, including the aforementioned ion
beam instability (Goldstein et al., 2000). Additionally, strong perpendicular heating
of the outflow beams may lead to a reduction in their flow speeds (Cowley & Shull,
1983; Owen & Mist, 2001), consistent with my results.

One caveat of this stress balance model for solar wind reconnection is noted in
relation to the outflow region opening angle. A key assumption is that if γ is small,
the bifurcated RCS can be treated as a pair of quasi-parallel current sheets and char-
acterised by the same lmn-coordinate system. This assumption is usually satisfied
in observed reconnection events in the solar wind, where γ ≤ 10◦ (Mistry et al.,
2015). However, if γ were instead a few tens of degrees, then the quasi-parallel
current sheet assumption breaks down. In this case, the stress balance conditions
at IT and IB would have to be evaluated in their respective lmn-coordinate system,
and the angular difference between the current sheets accounted for when coupling
the stress balance conditions at IT and IB.

Another important aspect of the model is the assumption regarding current
sheet bifurcation, in which the outflow beam exiting IT (IB) catches up with IB (IT)
without passing through it, leading to the condition uIT

1B,n = uIB
2B,n = 2V ′

S (see Sec-
tion 3.3). This assumption is justified by empirical evidence, as real observations of
reconnection outflows show a single beam in the inflow region and a counterstream-
ing beam pair in the outflow region. However, if the outflow beam exits IT (IB) with
speed 2V ′

S, it would never catch up with IB (IT). Therefore, the beams must exit the
current sheet with a speed greater than 2V ′

S, implying that some mechanism must
slow them down during propagation across the outflow region. Consequently, the
value 2|V′

S|= 8.0 km s−1 underestimates the true speeds of |uIT
1B| and |uIB

2B|. This in
turn implies the estimate of T1B = T2B = 15.1 eV derived from these speeds using
Equations 3.32 and 3.35 is also an underestimate (see Figure 3.4). Conversely, be-
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Figure 3.7: Illustration of how the current sheet bifurcation assumptions in the stress bal-
ance model can produce an unphysical build-up of plasma at the current sheets
IT and IB. Circles a, b, c represent parcels of beam 1 (red) and beam 2 (green).
As each parcel enters the outflow region, it catches up with the opposing cur-
rent sheet without passing through, leading to a build-up of material.

cause V ′
S has been directly derived from the HT analysis independent of |uIT

1B| and
|uIB

2B|, the estimate for the outflow region opening angle should be robust.
Finally, if the outflow beams were to ’stop’ at IT or IB, a pile-up of plasma

would occur at both current sheets, as shown in Figure 3.7. The circles labelled a,
b, c represent plasma parcels belonging to beams 1 (red) and 2 (green). At time t0,
all parcels are in the inflow region and have not yet entered the outflow region. At
time t1, parcel a for both beams enters the outflow region, with beam 1 reaching
IB and beam 2 reaching IT. Consistent with the model assumptions, these parcels
move along the current sheets as the reconnected field lines recoil, without passing
through. Subsequently, parcels b and c enter the outflow region and catch up to the
opposing current sheet at times t2 and t3, respectively. This leads to an unphysical
scenario in which material infinitely accumulates at the current sheets. The present
stress balance model presented here does not provide an explanation as to how this
material is dissipated; identifying the mechanism responsible is left to future work.

3.6 Conclusions
In this chapter, I develop a new model describing current sheet stress balance for
magnetic reconnection in the solar wind, based on previous work done in the con-
text of magnetotail reconnection (Owen & Cowley, 1987a,b). I begin by deriving
the stress balance conditions for a single current sheet, before adapting them to a
bifurcated current sheet structure of the type commonly associated with magnetic
reconnection in the solar wind (Gosling et al., 2005a, 2006b; Gosling & Szabo,
2008).

I show that there are several key differences between stress balance models in
the magnetotail and the solar wind. In contrast to the magnetotail, where forces due
to magnetic and plasma pressure gradients across the current sheet are neglected,
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these forces contribute to the stress balance in the solar wind and must be accounted
for in the analysis. As a result, the assumption that the speed of the inflow and
outflow beams remains unchanged as they cross the current sheet no longer holds,
even in the frame where the electric field is transformed away.

I then set up a model of a symmetric, 2-D, steady-state reconnection outflow
bound by a bifurcated RCS and use the stress balance conditions to determine the
bulk outflow speed, the outflow region opening angle, and the properties of the in-
flow and outflow beams. My model yields a bulk outflow speed of 39.9 km s−1 and
an opening angle of 10◦, both of which are consistent with the observed properties
of reconnection outflows in the solar wind (Enžl et al., 2014; Mistry et al., 2015;
Phan et al., 2020). The beam population in the reconnection inflow regions consists
of a single inflow beam in each region, which cross the bifurcated RCS to form
a pair of counterstreaming beams in the outflow region. Compared to the inflow
beams, which have a speed of 40 km s−1 and a temperature of 7 eV, the outflow
beams are slower and hotter, with a speed of 8 km s−1 and a temperature of 15.1
eV.

Using the model-derived properties of the inflow and outflow beams, I recon-
struct the distribution function of the proton beam population in the reconnection
inflow and outflow regions. I show that for typical conditions in the solar wind, it
is difficult to clearly resolve counterstreaming beams in the outflow region. This
is because the thermal speed of the individual outflow beams is greater than their
relative speed. The speed of the inflow and outflow beams, and hence the relative
speed of the counterstreaming beams, is related to the local Alfvén speed. There-
fore, counterstreaming beams are more likely to be clearly resolved if the Alfvén
speed in the surrounding plasma is large, and if the outflow beams are cool. This
may explain why reconnection outflows with well-defined counterstreaming beams
are typically associated with ICMEs (Gosling et al., 2005a), which have stronger
magnetic fields and cooler temperatures than the regular solar wind (Gosling, 1990;
Neugebauer & Goldstein, 1997).

In previous studies, the estimates of the expected relative speed of the counter-
streaming beams were consistently greater than the observed values (Gosling et al.,
2005a; Lavraud et al., 2021). This discrepancy was attributed to the electromag-
netic ion beam instability, which limits the relative speed to ∼ 1.5VA (Goldstein
et al., 2000). It is noted that these studies assume the speed of the inflow and out-
flow beams remains unchanged as they cross the RCS, an assumption shown here
to be false in the solar wind. My analysis instead shows that the inflow beams slow
down and heat up as they enter the outflow region, trading kinetic energy for ther-
mal energy. This suggests that the discrepancy between the expected and observed
relative speed of the counterstreaming outflow beams is a natural consequence of
current sheet stress balance. Although my stress balance model shows that beam
heating in the outflow region is required to maintain normal pressure balance, it
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does not explain how the beams are heated. It is suggested that heating mechanisms
such as the aforementioned ion beam instability and anisotropic heating of the out-
flow beams (Cowley & Shull, 1983; Owen & Mist, 2001) may play a role in this
process.



Chapter 4

Application of bifurcated current
stress balance models on Solar
Orbiter observations of reconnection
outflows in the solar wind

4.1 Introduction
In Chapter 3, I develop a current sheet stress balance model for magnetic reconnec-
tion in the solar wind. As a test case, I then apply it to a simulated example of a
reconnection outflow region bound by a bifurcated RCS which is assumed to be 2-
D, symmetric, and in steady-state, using typical solar wind values. With this model,
I obtain values for the bulk outflow speed and outflow region opening angle that are
in general agreement with the observed properties of reconnection outflows in the
solar wind (Enžl et al., 2014; Mistry et al., 2015; Phan et al., 2020). Additionally,
the model provides an explanation for some of the known characteristics of counter-
streaming proton beams in the outflow region (Gosling et al., 2005a; Lavraud et al.,
2021).

The work in this chapter builds upon the results from the simple test case pre-
sented in the previous chapter. I apply my stress balance model to real examples of
reconnection outflows in the solar wind observed by Solar Orbiter and use it to cal-
culate the outflow region opening angle, as well as the properties of the reconnection
inflow and outflow beams. I then use these results to reconstruct the velocity dis-
tribution function (VDF) describing the proton beam population in the inflow and
outflow regions and compare them with the Solar Orbiter VDF measurements to
validate my model. In Section 4.2, I describe the data products and analysis meth-
ods used in this study, as well as detail how I identify reconnection outflows in the
solar wind. In Section 4.3, I introduce the set of five reconnection outflows to which
the stress balance analysis is applied and showcase two representative examples. In
Section 4.4, I present the results of my stress balance analysis and then compare the
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reconstructed and observed VDFs in Section 4.5, before discussing the implications
of my findings in Section 4.6.

4.2 Data and methods
In this study, I use in-situ magnetic field and solar wind proton data from Solar Or-
biter. Magnetic field measurements are provided by MAG (Horbury et al. 2020a,
see Section 2.2.1) at a cadence of 8 vectors/s, while proton VDF measurements are
provided by SWA-PAS (Owen et al. 2020, see Section 2.3.1) once every 4 seconds
when both instruments are operating in normal mode. The VDF data undergo fur-
ther processing on the ground to derive the proton moments data, which describes
the bulk properties of the solar wind protons including density, velocity, tempera-
ture, and pressure. I search for reconnection events in the solar wind throughout
the entire year of 2023, during which Solar Orbiter was at a heliocentric distance
between 0.29–0.95 AU from the Sun.

4.2.1 Reconnection outflow identification algorithm
The identification of reconnection outflows in the solar wind is typically performed
by visual inspection of the magnetic field and proton moments time series data. I
look for the following signatures consistent with the Gosling model (Gosling et al.
2005a, see Section 1.3.4) of reconnection outflow structures in the solar wind: (1)
an increase in the proton bulk speed, signifying an outflow jet, (2) bound by a bi-
furcated RCS marked by a pair of Alfvénic rotational discontinuities (RDs) in the
magnetic field at the edges of the outflow region; and (3) changes in B and v that
are correlated on one side of the outflow region and anti-correlated on the other.
This process is often time-consuming, especially when looking for events in large
datasets, as has been done in this study. Various methods have been employed
in recent statistical studies (Enžl et al., 2014; Tilquin et al., 2020; Eriksson et al.,
2022) to automate the identification of reconnection events in the solar wind. In this
section, I briefly summarise the operating principles of the identification algorithm
developed by Fargette et al. (2023) used in this study.

The first identification criterion for this algorithm is a check on whether there
is a change in the B–v correlation, consistent with paired Alfvénic RDs at the out-
flow region boundaries. A sampling window centred on time t0 is set up, containing
N measurements each separated by a constant time dt. The vector change in ve-
locity between t0 and a time ti within the window is ∆v(ti) = v(ti)− v(t0). For
an Alfvénic RD, ∆v across the discontinuity is expected to be given by the Walén
relation (Hudson, 1970):

∆v =±∆VA (4.1)

VA =
B

√
µ0ρ

√
1− µ0

B2 (P∥−P⊥) (4.2)

where VA is the local Alfvén velocity, P∥ is the pressure parallel to the magnetic
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Figure 4.1: Diagram showing idealised magnetic field (blue) and bulk velocity (red) time
series measurements for each permutation of model θ . a) θ1, correlation be-
tween B and v on both sides of the window. b) θ2, anti-correlation between
B and v on both sides of the window. c) θ3, correlation when t ≤ t0 and anti-
correlation when t > t0. d) θ4, anti-correlation when t ≤ t0 and correlation when
t > t0.

field, and P⊥ is the pressure perpendicular to the magnetic field. To evaluate the
correlation, ∆v is compared against a modelled change in velocity ∆VM(ti,θ) de-
fined on the basis of the Walén relation:

∆VM(ti,θ) =

{
θa∆VA(ti), if ti ≤ t0
θb∆VA(ti), if ti > t0

(4.3)
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where ∆VA(ti) = VA(ti)−VA(t0) is the vector change in VA between t0 and ti.
θ = [θa,θb] is a two-component parameter describing the sense of the correlation
between ∆v and ∆VA, where each component θa and θb can take values of ±1. For
Alfvénic solar wind, Figure 4.1 shows the four permutations of θ each correspond-
ing to a model for ∆VM(t,θ):

1. θ1 = [+1,+1], correlation on both sides of the window.

2. θ2 = [−1,−1], anti-correlation on both sides of the window.

3. θ3 = [+1,−1], correlation when t ≤ t0 and anti-correlation when t > t0.

4. θ4 = [−1,+1], anti-correlation when t ≤ t0 and correlation when t > t0.

Models θ3 and θ4 describe reconnection outflows, where a change in correlation is
expected to be observed; models θ1 and θ2 describe the regular Alfvénic solar wind,
where no such change is expected.

Bayesian inference (e.g., Barlow 1989) is used to calculate the relative prob-
ability of observing a reconnection outflow to observing the regular solar wind,
within a sampling window centred on t0 (Fargette et al., 2023):

Q(t0)≃ p(θJ)
1/N ∑k=3,4 p(∆v | θk)

1/N

∑k=1,2 p(∆v | θk)1/N
(4.4)

where p(θJ) is the prior probability of observing a reconnection outflow and
p(∆v | θk) is the probability of observing ∆v given model θk. If Q(t0) > 1, the
probability of a data point at t0 being part of a reconnection outflow is greater than
the probability of being part of the regular solar wind. The centre of the sampling
window is then shifted through each successive point in time and Q is calculated at
each point. If Q > 1 for more than two consecutive points, the interval containing
these points is flagged as a potential reconnection outflow.

The second identification criterion for the algorithm is a check on whether the
following features are observed in the flagged intervals: (1) a reversal in the Bl

component of the magnetic field in the lmn-coordinate system; (2) the presence of
an outflow jet; and (3) an electric current density J greater than 0.04 nA m−2 in the
interval (Fargette et al., 2023), where:

J =
∆Bl

µ0vn∆t
(4.5)

Here, ∆Bl is the difference in Bl across the interval, vn is the normal component
of the bulk velocity, and ∆t is the interval length. An outflow jet is defined as a
change in vl , measured between the centre of the interval and both of its edges, that
is greater than 30% of the maximum change in vl and also exceeds the maximum
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Figure 4.2: Location of SWA-PAS on Solar Orbiter and its field of view. The axis in black,
green, and blue represent the RTN, PAS, and spacecraft (SC) coordinate sys-
tems, respectively. In the RTN coordinate system, XRT N corresponds to the
R-direction, YRT N corresponds to the T -direction, and ZRT NA corresponds to
the N-direction (see Section 2.3). Figure reproduced from Fedorov (2020).

changes in vm and vn. This requirement biases the algorithm by excluding asymmet-
ric reconnection outflows (Fargette et al., 2023); however, this is not a problem as
the aim is to identify reconnection outflows with a symmetric structure compatible
with the stress balance model.

4.2.2 VDF resampling program
When comparing the VDFs reconstructed from my stress balance model with the
observed VDFs, it is convenient to visualise 2-D slices of the 3-D VDF by taking
cuts of the distribution function through planes of constant velocity components,
rather than visualising the full VDF. I first define a 2-D grid of points in velocity
space across the desired cut plane in the coordinate system under consideration.
This grid is then transformed into the PAS coordinate system, Figure 4.2 shows
how the RTN, PAS, and spacecraft (SC) coordinate systems are oriented relative to
each other. The azimuth φ , elevation θ , and energy E values at each grid point are
(Lewis et al., 2023):

Ei =
1
2

miv2
i , (4.6)

θ = sin−1(v̂z), (4.7)

φ = sin−1
(
±

v̂y

cosθ

)
, (4.8)
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Figure 4.3: Selection of the nearest neighbouring sampling points for a grid point X at
position (φX ,θX ,EX) in the sampling space. Each neighbour 1–8 is assigned a
weighting coefficient based on its distance to X in the (φ ,θ ,E) sampling space
as a fraction of the total distance between neighbours.

where vi is the proton bulk speed, and v̂y and v̂z are the y and z-components of the
proton bulk velocity unit vectors in the PAS coordinate system respectively. Each
point is then checked to see if they lie within the sensor field of view; those that are
not are discarded.

PAS 3-D VDF measurements are arranged in an array with dimensions 11×
9× 96, corresponding to the (φ ,θ ,E) bins of the instrument (see Section 2.3.1).
The distribution function f (φ ,θ ,E) is defined at each point in this sampling space.
For a point X in the 2-D grid, characterised by its azimuth, elevation, and energy
values (φX ,θX ,EX), the volume element bounding it is formed by the eight nearest
neighbouring points in the 3-D sampling space. These are defined by the points
labelled 1–8 in Figure 4.3, with (φ ,θ ,E) values that are immediately above and
below (φX ,θX ,EX). The 3-D VDF is then resampled onto the 2-D grid by assigning
to X the weighted average of f (φ ,θ ,E) measured at the nearest neighbours:

⟨log( f (φX ,θX ,EX))⟩=
∑

8
n=1WCn log( fn(φn,θn,En))

∑
8
n=1WCn

, (4.9)

where WCn is the weighting coefficient, n= 1,2, ...,8 denotes the nearest neighbour,
and fn is the distribution function at n.

Each nearest neighbouring point n is assigned a weighting coefficient WCn,
based on the product of the normalised distance between X and the point diagonally
opposite to n along the φ , θ , and E axes:

WC1 =

(
|φ+−φX |
φ+−φ−

)(
|θ+−θX |
θ+−θ−

)(
|E+−EX |
E+−E−

)
(4.10)
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WC2 =

(
|φ+−φX |
φ+−φ−

)(
|θ+−θX |
θ+−θ−

)(
|E−−EX |
E+−E−

)
(4.11)

WC3 =

(
|φ−−φX |
φ+−φ−

)(
|θ+−θX |
θ+−θ−

)(
|E+−EX |
E+−E−

)
(4.12)

WC4 =

(
|φ−−φX |
φ+−φ−

)(
|θ+−θX |
θ+−θ−

)(
|E+−EX |
E−−E−

)
(4.13)

WC5 =

(
|φ+−φX |
φ+−φ−

)(
|θ−−θX |
θ+−θ−

)(
|E+−EX |
E−−E−

)
(4.14)

WC6 =

(
|φ+−φX |
φ+−φ−

)(
|θ−−θX |
θ+−θ−

)(
|E−−EX |
E−−E−

)
(4.15)

WC7 =

(
|φ−−φX |
φ+−φ−

)(
|θ−−θX |
θ+−θ−

)(
|E+−EX |
E−−E−

)
(4.16)

WC8 =

(
|φ−−φX |
φ+−φ−

)(
|θ−−θX |
θ+−θ−

)(
|E−−EX |
E−−E−

)
(4.17)

This approach ensures that the nearest neighbours closest to X are assigned the
largest weights. By contrast, a simpler approach based on the distance between
X and each neighbour would have assigned the smallest weights to the neighbours
closest to X . Inverse distance weighting is also unsuitable because if X is co-located
exactly with a neighbour n, the corresponding weighting coefficient WCn becomes
infinite, thus producing an unphysical value for ⟨ f (φX ,θX ,EX)⟩. The diagonally-
opposite distance weighting method employed here avoids both of these issues.

The logarithm of the distribution function is used in Equation 4.9 to mitigate
the effects of sharp gradients in the VDF on the resampling process. In cases where
fn(φn,θn,En) varies by several orders of magnitude between nearest neighbours,
directly evaluating Equation 4.9 with fn introduces discontinuities in the resam-
pled VDF because the weighted average ⟨ f (φX ,θX ,EX)⟩ becomes dominated by
the neighbours with the largest values of fn. Taking the logarithm of fn dampens
the magnitude differences in the VDF and gives the weighting coefficients more in-
fluence. However, this process requires all measurements where fn = 0 be replaced
by an arbitrary minimum value that must be small enough to not influence the cal-
culation of ⟨log( f (φX ,θX ,EX)). For PAS data, this minimum is set at the one-count
level of f (φ ,θ ,E), which represents the theoretical minimum f that the instrument
can measure. From Equation 2.2, this value is defined as:

fmin =
2

Gv4
i
. (4.18)

where G = 5×10−6 cm2 sr eV eV−1 is the geometrical factor of PAS (Owen et al.,
2020). After computing Equation 4.9 for ⟨log( f )⟩, the exponent is taken to recover
⟨ f ⟩ with zeros reinserted into the resampled VDF where ⟨ f ⟩ < fmin. Finally, the
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Figure 4.4: Comparison of an artificial dataset consisting of a pair of Maxwellian distri-
bution functions, M1 and M2 (left), and the same distribution functions as ob-
served by PAS after application of the VDF resampling program (right) in the
RT (top) and RN-planes (bottom) through vN = 0 km s−1 and vT = 0 km s−1,
respectively.

resampled VDFs are visualised in velocity using colour density plots with a loga-
rithmic colour scale.

To test the performance of the VDF resampling program, I set up an artifi-
cial dataset consisting of a pair of Maxwellian distributions, M1 and M2, in RTN
velocity space:

fDM = n1

(
mi

2πkbT1

) 3
2

e−
(

mi(v−v1)
2

2kbT1

)
+n2

(
mi

2πkbT2

) 3
2

e−
(

mi(v−v2)
2

2kbT2

)
, (4.19)

where the first and second terms correspond to the individual distribution func-
tion of M1 and M2, respectively. M1 is centred at v1 = (400,0,0) km s−1, with
number density n1 = 6 cm−3 and temperature T1 = 6 eV, while M2 is centred
at v2 = (1200,0,0) km s−1, with number density n2 = 12 cm−3 and temperature
T = 12 eV. Values of fDM less than 10−31 s3 m−6 are omitted and replaced with
zeros. I then apply the VDF resampling program to a simulated PAS observation of
this artificial data, producing the VDFs shown in Figure 4.4. At all vR ranges, the
distributions M1 and M2 in the artificial data are very well-replicated in the resam-
pled VDF. As expected, the circularly symmetric cross-section of the Maxwellian
distribution is clearly visible in all four plots. The truncation of M1 in the resampled
VDF is due to the removal of data points that fall outside the field of view of PAS.
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4.3 Results
4.3.1 Event selection
I apply the automated algorithm (Fargette et al., 2023) described in Section 4.2.1 to
normal mode magnetic field and proton moments data for the entire year of 2023
to identify potential reconnection outflows in the solar wind. Using this algorithm,
I identify a total of 3163 potential reconnection events in the 2023 data and began
the process of downselecting candidate reconnection outflows to study. Table 4.1
shows a breakdown of the number of events detected, sorted by their duration. Since
a sufficient number of PAS VDF measurements inside the outflow region is required
to properly resolve the outflow beam population, I first remove all events with du-
rations < 1 minute from further consideration. At the PAS normal mode cadence of
4 seconds, this ensures that all remaining candidate events contain at least 15 VDF
measurements in the outflow region. The lack of higher cadence PAS burst mode
data in 2023 precludes the inclusion of shorter duration events in this study. Out of
the full set of 3163 potential events, a total of 1800 satisfy this duration criterion.

To remove any false detections by the algorithm, I then performed a visual
inspection of the remaining candidate events to confirm the presence of signatures
consistent with a bifurcated RCS, as described in Section 1.3.4. In total, I find
517 confirmed examples of reconnection outflows with bifurcated RCS in the 2023
data. The false detection rate of 71% obtained in this study is higher than the 51%
rate reported by Fargette et al. (2023), primarily because I remove all reconnection
events with durations shorter than 1 minute, regardless of whether they were real
events or false detections. These short-duration outflows account for the majority
of events identified in that study.

Finally, I select events with symmetric inflow conditions, in order to satisfy the
set of assumptions in the current sheet stress balance model (see Chapter 3). The
percentage change ∆A in a parameter A across the outflow region is defined relative
to the average of the mean values of A in the one-hour periods before (Abe f ore) and
after (Aa f ter) the outflow crossing interval:

∆A =
2(Aa f ter −Abe f ore)

Aa f ter +Abe f ore
×100 (4.20)

The selected events must satisfy ∆A < 10% for the following inflow parameters:
magnetic field strength |B|, proton density n, proton temperature T , and proton bulk
speed |u′

p|. To account for the convection of the neutral line past the spacecraft by
the solar wind, the spacecraft frame bulk proton velocity, up, is transformed into the
neutral line rest frame (NLRF) by u′

p = up−vSW . Here, vSW is the mean background
solar wind velocity, defined as the mean of up in a two-hour window centred on the
outflow region. Following the convention established in Chapter 3, velocities in the
spacecraft frame are unprimed, while those in the NLRF are primed.
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Figure 4.5: Combined magnetic field and ground-calculated proton moments for Event 4 in
the lmn coordinate system. a) Magnetic field strength with the magnetic field
strength in black. b) Proton bulk velocity in the NLRF, with the proton bulk
speed in black. In both panels, the l̂-component is red, the m̂ is in green, and
the n̂-component is in blue. c) Proton bulk density. d) Proton bulk temperature.
e) Magnetic pressure Pmag, plasma pressure Pth, and their sum, the total pres-
sure Ptot . The reconnection outflow region is shaded in purple, and the vertical
dashed purple lines mark the location of the bifurcated RCS pair, IT and IB.

After this shortlisting process, 5 events are identified that satisfy all of the
selection criteria. In producing this final shortlist, I also discard events with vSW <

300 km s−1 due to the unreliability of PAS measurements in this low energy range
(Fedorov 2022; Lewis et al. 2023, see Section 2.3.1). Table 4.2 summarises the key
properties of the shortlisted reconnection events. In this section, I describe two of
these events which are representative of the complete dataset.

4.3.2 Event 4 — 9 July 2023 06:46:31 – 06:48:27 UT
Event 4 occurred on 9 July 2023 between 06:46:31 – 06:48:27 UT and has a du-
ration of 116 seconds. During this period, Solar Orbiter was at a heliocentric dis-
tance of 0.95 AU from the Sun and the background solar wind velocity in RTN
coordinates was vSW = (367,−17,−20)RT N km s−1, which corresponds to a speed
|vSW | = 368 km s−1. Figure 4.5 shows the combined magnetic field vector and
ground-calculated proton moments time series data for this event. Panel a) shows
the magnetic field B and panel b) shows the proton bulk velocity u′

p in the NLRF.
The data in both panels are transformed into the lmn coordinate system, where
the red line shows the l-component, the green line shows the m-component, and
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Table 4.3: Summary of the average magnetic field and solar wind proton bulk properties
for Event 4. B: magnetic field in lmn coordinates, |B|: magnetic field strength,
u′

p: proton bulk velocity in lmn coordinates, |u′
p|: proton bulk speed, np: proton

density, Tp: proton temperature.

Region A Region B Region C
B (nT) (4.74, 4.34, 0.01) (1.89, 5.64, -0.49) (-5.62, 3.28, -0.43)
|B| (nT) 6.42 6.27 6.52

u′
p (km s−1) (22.1, 2.7, 1.3) (40.9, 5.8, 3.7) (-23.1, 0.4, 4.4)

|u′
p| (km s−1) 22.3 41.5 23.5
np (cm−3) 6.6 6.7 6.6

Tp (eV) 7.1 7.9 7.1

blue line shows the n-component. The black line in panels a) and b) represent
the magnetic field strength |B| and proton bulk speed |u′

p| in the NLRF, respec-
tively. Panel c) shows the proton bulk number density np, and panel d) shows the
proton bulk temperature Tp. Panel e) shows the magnetic pressure Pmag in light
blue, plasma pressure Pth in orange, and the total pressure Ptot in black. This
interval is divided into three regions: A, B, and C, with Region B (06:46:31 –
06:48:27 UT) marked by the purple box. To determine the lmn coordinate sys-
tem associated with this event, I perform hybrid MVAB analysis (Gosling & Phan
2013, see Section 2.4.1) over Region B. This analysis yields eigenvalues λ1 = 3.23,
λ2 = 0.29, and λ3 = 0.04, with the corresponding lmn basis vectors in RTN coordi-
nates given by l̂ = (0.32,−0.91,−0.26)RT N , m̂ = (−0.69,−0.03,−0.73)RT N , and
n̂ = (0.65,0.41,−0.63)RT N .

In Region A (06:41:31 – 06:46:31 UT), the average magnetic field is BA =

(4.74,4.34,0.01) nT, with a corresponding average field strength of |BA|= 6.42 nT.
The average proton bulk speed is 22.3 km s−1, with a density of 6.6 cm−3

and temperature of 7.1 eV. In Region C (06:48:27 – 06:53:27 UT), the aver-
age density and temperature is the same as in Region A but the average pro-
ton bulk speed of 23.5 km s−1 is slightly higher. The average magnetic field is
BC = (−5.62,3.28,−0.43) nT and is marginally stronger than in Region A, with a
field strength of |BC|= 6.52 nT.

Bl reverses sign across Region B, going from positive in Region A to neg-
ative in Region C. This reversal occurs in two steps at the boundaries of this re-
gion, which I interpret as a pair of current sheets and label IT and IB. Across IT,
Bl decreases from +4.7 nT to +1.9 nT and then reverses sign across IB, decreas-
ing further from +1.6 nT to −6.5 nT. The total magnetic shear angle Γ across
Region B, defined as the angle between BA and BC, is 107◦. In between these
two current sheets, the magnetic field is roughly constant, dwelling at an aver-
age of BB = (1.89,5.64,−0.49) nT. The magnetic field strength in Region B of
|BB| = 5.97 nT is approximately the same as in Regions A and C. IT and IB also
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Figure 4.6: Combined magnetic field and ground-calculated proton moments for Event 1
in the lmn coordinate system. The figure layout is the same as in Figure 4.5.

bound an increase in the proton bulk speed, which increases from ∼ 23 km s−1

in Regions A and C to 42 km s−1 in Region B. The average density in Region
B is nB = 6.7 cm−3, although a decrease below this value to a minimum of 5.3
cm−3 is observed towards the end of Region B. This coincides with an increase in
the temperature which reaches a maximum of 10.0 eV, above the average value of
TB = 7.9 eV in this region. Table 4.3 summarises the average magnetic field and
solar wind proton bulk properties in Regions A, B, and C of Event 4.

4.3.3 Event 1 — 9 January 2023 18:34:20 – 18:38:40 UT
Event 1 occurred on 9 January 2023 between 18:34:20 – 18:38:40 UT and has a
duration of 260 seconds. During this period, Solar Orbiter was at a heliocentric
distance of 0.95 AU from the Sun and the background solar wind velocity in RTN
coordinates was vSW = (377,−9,−17)RT N km s−1, which corresponds to a speed
|vSW | = 377 km s−1. Figure 4.6 shows the observations for this event and follows
the same layout as Figure 4.5. I again divide the interval shown in Figure 4.6 into
Regions A, B, and C, then apply hybrid MVAB analysis over Region B to determine
the basis vectors of the lmn coordinate system describing this event. This analysis
yields eigenvalues λ1 = 6.71, λ2 = 3.47, and λ3 = 0.15, with the corresponding
lmn basis vectors l̂ = (−0.36,0.75,0.56)RT N , m̂ = (−0.80,0.06,−0.60)RT N and
n̂ = (−0.48,−0.66,0.58)RT N .

In Region A (18:29:56 – 18:34:20 UT), the Bl component of the magnetic field
is positive. The average magnetic field in this region is BA = (5.36,7.59,0.65) nT
with a corresponding average field strength |BA| of 9.31 nT. The average u′l compo-
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Table 4.4: Summary of the average magnetic field and solar wind proton bulk properties
for Event 1. Table layout is the same as in Table 4.3.

Region A Region B Region C
B (nT) (5.36, 7.59, 0.65) (2.76, 5.63, 0.05) (-6.63, 2.76, -0.31)
|B| (nT) 9.31 6.27 7.19

u′
p (km s−1) (1.5, 2.9, 5.4) (27.4, 14.8, 5.4) (-10.5, -1.5, 3.6)

|u′
p| (km s−1) 6.4 31.6 11.2
np (cm−3) 17.1 22.0 18.3

Tp (eV) 14.8 15.6 15.1

nent of the proton bulk velocity is +1.5 km s−1 and the average proton bulk speed
is 6.4 km s−1. Additionally, a density of 17.1 cm−3 and a temperature of 14.8 eV
is measured. Throughout Region A, the magnetic field, bulk velocity, density, and
temperature are fairly constant and do not exhibit large fluctuations.

Conversely, in Region C (18:38:40 – 18:43:40 UT), Bl is negative. The average
magnetic field in this region is BC = (−6.63,2.76,−0.31) nT and is slightly weaker
than in Region A, with |BC| = 7.19 nT. Here, the average u′l is −10.5 km s−1 and
the average proton bulk speed of 11.2 km s−1 is faster than in Region A. The solar
wind plasma in Region C is denser and hotter than in Region A, with a density of
18.3 cm−3 and a temperature of 15.1 eV. In contrast to Region A, the magnetic field
and plasma conditions show more variability in Region C. Although Bl and vl are
predominantly negative in this region, there is a brief interval around 18:40 where
they both reverse sign and become positive, before their sign reverts to negative
shortly afterwards.

In Region B (18:34:20 – 18:38:40 UT), the average magnetic field is BB =

(2.76,5.63,0.05) nT and the magnetic field strength |BB|= 6.27 nT is weaker than
in both Regions A and C. Across IT, Bl decreases from +6.5 nT to +1.3 nT and then
reverses sign across IB, decreasing further from +4.6 nT to −8.1 nT. In between
these current sheets, Bl is approximately constant, although there is a small jump
from +1.3 nT to +4.0 nT near the midpoint of Region B. Similar trends are not
observed in the other components of the magnetic field across Region B; Bm grad-
ually decreases from +6.1 nT to +1.3 nT, while Bn is approximately constant at
+0.1 nT. The magnetic shear angle across Region B is 103◦. Compared to Regions
A and C, there is a large increase in the u′l component of the proton bulk velocity
to +27 km s−1, accompanied by an increase in |u′

p| to 32 km s−1. As is the case in
Event 4, the changes in B and u′

p are anti-correlated at IT and correlated at IB. The
average density in this region of nB = 22.0 cm−3 is much larger than in Regions A
and C, while the average temperature of TB = 15.6 eV is similar. Table 4.4 sum-
marises the average magnetic field and solar wind proton bulk properties in Regions
A, B, and C of Event 1.
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4.4 Stress balance analysis
The two events presented in Section 4.3 exhibit features that are consistent with
the Gosling model (Gosling et al., 2005a) of reconnection in the solar wind. This
supports the interpretation that Region B corresponds to the reconnection outflow
region, with the current sheets IT and IB forming a bifurcated RCS pair. In this
framework, Regions A and C are the inflow regions immediately surrounding the
reconnection outflow. Although not shown here, the remaining three events also
display similar signatures of RCS bifurcation.

Having established that the five events in the dataset are indeed examples of
reconnection outflow with bifurcated RCS structures, I apply my stress balance
model on them. In this section, I use Event 4 as an example to demonstrate the
procedure and results of the stress balance analysis. Tables 4.5 and 4.6 summarise
the results of my analysis for all five events. I follow the labelling convention in-
troduced in Chapter 3 to describe the relevant quantities associated with the stress
balance. The inflow beam from Region A is Beam 1, while the inflow beam from
Region C is Beam 2. Subscripts 1 and 2 indicate properties of Beams 1 and 2, while
the subscripts A, B, and C refer to properties of the beams and magnetic field in
the respective regions. The superscripts IT and IB denote velocities defined in the
magnetic field discontinuity rest frame (DRF) at current sheets IT and IB.

4.4.1 Outflow region opening angle
I begin by calculating the opening angle of the reconnection outflow region. Since
the stress balance model describes symmetric reconnection outflow regions, I make
the following assumptions in the stress balance analysis. First, the beam population
in both inflow regions is assumed to consist of a single proton beam in each region.
Hence, the inflow beam velocity, density, and temperature are assumed to be the
average of their bulk values in the corresponding inflow region. Second, the pair
of beams in the outflow region are assumed to have equal density. If the total bulk
density in the outflow region nB is the sum of the density of the individual beams,
then n1B = n2B = nB/2. Third, RCS bifurcation requires the inflow beam passing
through the current sheet on one side of the outflow region be fast enough to catch
up with the current sheet on the opposing side (see Figure 3.3). The validity and
limitations of this assumption are discussed in more detail in Section 3.5.

I evaluate the stress balance conditions in the DRF at IT and IB. The ve-
locity at which this frame moves away from the neutral line is given by the
deHoffmann-Teller (HT) velocity, which I derive by performing HT analysis
(Khrabrov & Sonnerup 1998; Paschmann & Sonnerup 2008, see Section 2.4.2)
at IT and IB. For Event 4, the HT velocity in lmn coordinates is V′

HT,IT =

(46.7,28.2,2.6) km s−1 at IT and V′
HT,IB = (28.4,−29.6,7.4) km s−1 at IB. Using

the velocity transformations from the NLRF to the DRF given by Equations 3.46
and 3.47, the inflow beam velocities are uIT

1A = (−24.6,−25.6,−1.3) km s−1 and
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Table 4.5: Estimates for the outflow region opening angle γ , outflow region width W , and
distance D of Solar Orbiter from the neutral line.

Event 1 Event 2 Event 3 Event 4 Event 5
γ1 (◦) 2.9 2.6 3.0 3.4 1.6
γ2 (◦) 7.5 10.8 5.4 8.2 0.6

W (di) 985 1002 311 324 60
D1 (di) 19300 22900 6090 5305 2020
D2 (di) 7500 5300 3290 2270 5570

uIB
2C = (−51.5,30.0,−3.0) km s−1. Given the observed proton densities in Regions

A, B, and C (see Table 4.3), the density of the inflow beams are n1A = n2C = 6.6
cm−3, while the density of the outflow beams are n1B = n2B = 3.4 cm−3. With
these density and velocity values, I apply the mass continuity condition across cur-
rent sheets IT and IB to determine the n̂-component of the outflow beam velocities.
This yields uIT

1B,n =−2.5 km s−1 and uIB
2B,n =−5.9 km s−1.

Using Equation 3.25, I calculate two values for the outflow region opening
angle: γ1 = 3.4◦, based on the values of uIT

1B,n and V′
HT,IT ; and γ2 = 8.2◦, based

on the values of uIB
2B,n and V′

HT,IB. From these predictions of γ , I then estimate the
distance D between Solar Orbiter and the neutral line. Assuming the spacecraft
is stationary during the time taken for the solar wind to convect the reconnection
outflow structure past it, the width of the outflow region is given by W = vSW,n∆t,
where vSW,n = vSW · n̂ is the n̂-component of the background solar wind velocity
and ∆t is the duration of the outflow region crossing. This leads to the following
equation for D:

D =
W

2tan(γ/2)
(4.21)

W and D are expressed in units of ion inertial length di = c/ωp, where ωp =√
npe2/miε0 is the ion plasma frequency. From Equation 4.21, the estimate of D

derived from γ1 is D1 = 5305 di (or 4.7×105 km), while the estimate of D derived
from γ2 is D2 = 2270 di (or 2.0× 105 km). I repeat this analysis on the other four
events in the dataset and summarise the results in Table 4.5.

4.4.2 Outflow beam temperature and velocity
Equations 3.32 and 3.35 relate uIT

1B,n and uIB
2B,n with the outflow beam temperatures

T1B and T2B, respectively, taking the observed magnetic field and inflow beam prop-
erties in Regions A and C as inputs. Figure 4.7 shows these relationships for Event
4. For the values of uIT

1B,n and uIB
2B,n derived in the previous section, the correspond-

ing outflow beam temperatures are T1B = 9.0 eV and T2B = 9.3 eV. This suggests
that Beam 1 is heated as it crosses the current sheet IT, with its temperature in-
creasing from 7.1 eV in Region A to 9.0 eV in Region B. Similarly, Beam 2 is also
heated as it crosses the current sheet IB, with its temperature increasing from 7.0 eV



4.4. Stress balance analysis 110

Figure 4.7: Graph of uIT
1B,n (black) and uIB

2B,n (blue) as a function of temperature T for Event
4. The dashed purple line denotes the value of uIT

1B,n, derived in Section 4.4.1,
and its corresponding temperature T1B. The dotted purple line denotes the value
of uIB

2B,n, also derived in Section 4.4.1, and its corresponding temperature T2B.

in Region C to 9.3 eV in Region B.

I then derive the l̂ and m̂-components of the velocity of Beam 1 in Region
B. From the observed magnetic field strength and density in Region A, the Alfvén
speed in this region is VA,A = 54.4 km s−1. Substituting this into Equations 3.27 and
3.28 yields uIT

1B,l =−24.0 km s−1 and uIT
1B,m =−25.9 km s−1. Therefore, the veloc-

ity of Beam 1 in Region B is uIT
1B = (−24.0,−25.9,−2.5) km s−1 with a speed of

|uIT
1B|= 35.4 km s−1. This is similar to its speed in Region A of |uIT

1A|= 35.5 km s−1.
As explained in the previous chapters, the inflow and outflow beams are expected
to be field-aligned in the DRF. To check if this property is observed, I calculate the
pitch angle of Beam 1, defined as the angle between its velocity and the magnetic
field. The pitch angle of this beam is α1A = 176◦ in Region A and α1B = 26◦ in
Region B.

Following a similar procedure, I determine the l̂ and m̂-components of the
velocity of Beam 2 in Region B using Equations 3.33 and 3.34, respectively. Given
the Alfvén speed in Region C of VA,C = 55.4 km s−1, I obtain uIB

2B,l = 25.8 km s−1

and uIB
2B,m = 54.3 km s−1. Therefore, the velocity of Beam 2 in Region B is uIB

2B =

(25.8,54.3,−5.9) km s−1 and its speed is |uIB
2B|= 60.4 km s−1. This is similar to its

speed in Region C of |uIB
2C|= 59.7 km s−1. The pitch angle of Beam 2 is α2C = 0◦

in Region C and α2B = 7◦ in Region B.

I repeat the analysis described in this section for the remaining four reconnec-
tion events in the dataset. Table 4.6 summarises the properties of Beams 1 and 2
derived from the stress balance analysis for these events.
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4.5 Comparison of VDFs
Using the values for the velocities, densities, and temperatures of Beams 1 and 2
derived from the stress balance analysis in Section 4.4, I reconstruct the distribution
function describing the reconnection inflow and outflow beam population in Re-
gions A, B, and C. The proton distribution function in the solar wind can often be
divided into two components: a core population and a field-aligned beam popula-
tion of faster protons (Feldman et al., 1973; Marsch et al., 1982b). In this analysis,
the distinction between the proton core and fast beam populations is neglected, and
the reconnection inflow and outflow beams are treated as Maxwellians.

4.5.1 Event 4
Figure 4.8 shows the ion VDFs measured by PAS at various times during Event
4; these times are indicated by the vertical dashed black lines in Figure 4.5. The
VDFs are presented in the NLRF using the field-aligned coordinate system. In this
coordinate system, the basis vectors are defined as follows: v̂∥ points in the direction
of the magnetic field; v̂⊥1 = (B̂× ûp)× B̂; and v̂⊥2 = −(ûp × B̂), where B̂ and ûp

are the unit vectors of the magnetic field and proton bulk velocity, respectively. For
each VDF, I take three 2-D cuts through the peak of the distribution in the v∥–v⊥1

plane (left), v∥–v⊥2 plane (middle), and the v⊥1–v⊥2 plane (right). The predicted
velocity of the beams in each region is overlaid on the VDFs: the teal box marks
the predicted velocity of Beam 1, while the gray circle marks the predicted velocity
of Beam 2.

Distribution I shows the VDF measured at 06:45:52 UT in Region A. In the v∥–
v⊥1 and v∥–v⊥2 planes, a strong core population with larger f (v) is observed near
the origin, as well as a weaker shoulder with smaller f (v) at v∥ < 0, corresponding
to the fast field-aligned beam protons. In the v⊥1–v⊥2 plane, both the observed
VDF and the predicted velocity of Beam 1 are centred on the origin, suggesting that
the proton distribution and Beam 1 are gyrotropic. The predicted velocity of Beam
1 matches the location of the proton core population in velocity space. Distribution
IV, the VDF measured in Region C at 06:49:48 UT, has very similar properties
to distribution I apart from a more pronounced difference in the strength of the
proton core and fast proton beam populations. The tail of the distributions, found
in the upper left quadrant of the v∥–v⊥1 plane VDFs, correspond to the solar wind
alpha particle population (Marsch et al., 1982a; Lavraud et al., 2021; Duan et al.,
2023). As the contribution of the alpha particles to the current sheet stress balance
is not considered, the discussion in this section will focus on the solar wind proton
population.

Distributions II and III show the VDFs measured in Region B at 06:47:00
and 06:48:00, respectively. The distributions are comprised of two proton beams
of similar strength along the field-aligned direction, rather than the core and fast
beam-type distribution seen in Regions A and C. The predicted velocities of Beams
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Figure 4.8: Selected PAS ion VDF measurements at different times during Event 4, pre-
sented in the NLRF using the field-aligned coordinate system. Distribution I
is the VDF observed in Region A at 06:45:52 UT. Distributions II and III are
the VDFs observed in Region B at 06:47:00 and 06:48:00, respectively. Distri-
bution IV is the VDF observed in Region C at 06:49:48 UT. The left column
shows the 2-D cut of the VDF in the v∥–v⊥1 plane, the middle column shows
the 2-D cut of the VDF in the v∥–v⊥2 plane, and the right column shows the
2-D cut of the VDF in the v⊥1–v⊥2 plane.

1 and 2 are consistent with the observed VDFs, with Beam 1 having a field-aligned
velocity component of u1B,∥ = 9 km s−1 and Beam 2 having a field-aligned velocity
component of of u2B,∥ = 40 km s−1. In the v⊥1–v⊥2 plane, the observed VDF
appears to be gyrotropic, although both it and the predicted velocities of Beams 1
and 2 are slightly offset from the origin.

In Region B, the relative field-aligned speed of Beams 1 and 2 is 31 km s−1,
which is comparable to their thermal velocity, both approximately ∼ 30 km s−1.
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Figure 4.9: 1-D cuts through the reconstructed and observed VDFs shown in Figure 4.8.
The solid black curves represent the observed VDF, while the dotted curves
represent the reconstructed VDFs describing the reconnection inflow and out-
flow beam population. The vertical dashed purple lines mark the predicted
field-aligned speed of the beams.

Consequently, the counterstreaming beams in the outflow region are not well-
separated in velocity space (see Section 3.4), making them difficult to resolve in
the observed VDFs, especially with the colour scale used in Figure 4.8. To better
visualise the reconnection inflow and outflow beams in each region, I take identical
cuts through the observed and reconstructed VDFs along the field-aligned direction.
Figure 4.9 shows the comparison between the reduced VDFs, with the solid curve
representing the observed VDF and the dotted curve representing the reconstructed
VDF.

In distribution I, there is a distinct shoulder in the observed VDF to the left
of the proton core population, which I interpret as a fast proton beam population
propagating anti-parallel to the magnetic field line. The presence of this population
of protons explains why the peak of the reconstructed VDF for Beam 1, f1A, is
displaced to the left of the peak of the observed VDF.

Distribution II and III show the proton distribution in Region B. Based on the
framework of the model, a pair of counterstreaming reconnection outflow beams is
expected to be observed in this region. Here, the reconstructed VDF is the sum of
the individual distribution functions of Beams 1 and 2, fB = f1B+ f2B. The observed
proton distribution in Region B is broader than in Region A and exhibits a double-
peaked structure. I interpret this as the counterstreaming beam pair formed by the
entry of Beams 1 and 2 into Region B from Regions A and C, respectively. This
structure is more prominent in distribution III, which is the VDF measured towards
the end of Region B, compared to distribution II, which is the VDF measured near
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the beginning of Region B. In both distributions, the peaks of the observed VDF
align closely with the predicted field-aligned speed of Beams 1 and 2 in Region
B. The counterstreaming beams are resolved more clearly in the observed VDFs
than the reconstructed VDFs, with the peaks of the reconstructed VDFs also being
somewhat smaller than the peak of the observed VDFs. Finally, in distribution IV,
the Maxwellian distribution f2C used to model Beam 2 in Region 2 is a very good
match to the observed VDF.

4.5.2 Event 1
Figure 4.10 shows the ion VDFs measured by PAS at various times during Event
1; these times are indicated by the vertical dashed black lines in Figure 4.6. The
layout and symbols are identical to those in Figure 4.8. In general, the distribution
functions observed in this event are broader than those of Event 4 as the plasma is
warmer (see Table 4.6). Distribution I shows the VDF measured at 18:30:28 UT,
when Solar Orbiter was in Region A. Here, the proton distribution is gyrotropic
and consists of a broad proton core distribution around the origin with no clear
signatures of a field-aligned proton beam population. The predicted velocity of
Beam 1 is closely aligned with the proton core population.

As the spacecraft enters Region B, distribution II (18:35:56 UT) and III
(18:37:44 UT) show an enhancement in the distribution function compared to Re-
gion A. Beam 1 has a predicted field-aligned velocity component of u1B,∥ = 87 km
s−1, while u2B,∥ = 33 km s−1 for Beam 2. Both beams have negligible velocity
components in the v̂⊥1-direction, but have components in v̂⊥2-direction of approx-
imately −43 km s−1 for Beam 1 and −28 km s−1 for Beam 2. In the v⊥1–v⊥2

plane, this non-zero perpendicular velocity component introduces an offset in the
predicted velocities of Beam 1 and 2 along the v̂⊥2-direction, even though the ob-
served VDF is centred around the origin. The relative field-aligned speed of Beams
1 and 2 in Region B is 55 km s−1. This is comparable to their thermal speeds of
∼ 40 km s−1, which again results in poorly-resolved counterstreaming beams in the
outflow region.

Distribution IV (18:38:48 UT) and V (18:41:44 UT) show the VDFs measured
after Solar Orbiter exits the outflow region and moves into Region C. Similar to
Distribution I, the predicted velocity of Beam 2 falls within a broad, gyrotropic pro-
ton core population. However, unlike Distribution I, a shoulder in the distribution is
observed along the field-aligned direction, which is consistent with a population of
fast beam protons. Additionally, the tail of the observed distribution is now aligned
in the v̂⊥1-direction, rather than the v̂∥-direction.

Figure 4.11 shows the comparison between the 1-D cuts through the observed
and reconstructed VDFs along the field-aligned direction. Distribution I shows that
the Maxwellian distribution used to model Beam 1 in Region A, f1A, is a good
match to the observed VDF. Moreover, a separate population of fast, field-aligned
proton beams is not distinguishable in the observed VDF.
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Figure 4.10: Selected PAS ion VDF measurements at different times during Event 1. The
figure layout is identical to Figure 4.8. Distribution I is the VDF observed in
Region A at 18:30:28 UT. Distributions II and III are the VDFs observed in
Region B at 18:35:56 UT and 18:37:44 UT, respectively. Distribution IV and
V are observed in Region C at 18:38:48 UT and 18:41:44 UT, respectively.

In distribution II, measured in the first half of Region B, a pair of counter-
streaming beams in the outflow region is expected in both the observed and recon-
structed VDF. However, the observed VDF is single-peaked and closely resembles
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Figure 4.11: 1-D cuts through the reconstructed and observed VDFs shown in Figure 4.10.
The figure layout is identical to Figure 4.9.

the observed VDF in Region A. Although the observed VDF is similar in width
to the reconstructed VDF, it has a larger peak that is displaced to the left of the
predicted values for u1B,∥ and u2B,∥.

In distribution III, measured in the second half of Region B, there is a signifi-
cant change in the observed VDF. Compared to distributions I and II, the observed
VDF becomes broader and develops a double-peaked structure consistent with a
pair of counterstreaming beams. The position of the distribution peaks is displaced
slightly to the left of the predicted values for u1B,∥ and u2B,∥, but the peak separa-
tion is comparable to the predicted relative field-aligned speed. Additionally, the
observed VDF is similar in width to the reconstructed VDF. As is the case with
Event 4, the counterstreaming beam signature is clearer in the observed VDF than
the reconstructed VDF, and the peak of the observed VDF is also larger than the
reconstructed VDF. The transition point between the regimes described by distribu-
tion II and III roughly coincides with the small jump in Bl at the midpoint of Region
B (see Figure 4.6).

Contrary to the model assumptions, the presence of counterstreaming beams
persists into Region C, as shown in distribution IV. Compared to distribution III, the
height difference between the two peaks and the peak separation are both greater.
This double-peaked structure is observed until around 18:40 UT, after which a
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single-peaked VDF is observed in distribution V. Here, the Maxwellian distribution
f2C describing Beam 2 is a good approximation to the observed VDF. In addition
to the core proton population, there is a small bump in the observed VDF around
v∥ ∼−50 km s−1, which indicates the presence of a population of fast beam protons
propagating anti-parallel to the magnetic field in this region. This accounts for the
slight offset of the peak of f2C to the left of the observed VDF.

4.6 Discussion
In the stress balance analysis, I determine two values, γ1 and γ2, for the opening
angle of the reconnection outflow region of all five events in the dataset, which
range from 0.6◦ to 10.8◦. I also estimate the width of the outflow region: Event 5
is the narrowest, with a width of 60 di, while Event 2 is the thickest, with a width
of 1002 di (see Table 4.5). These values for the outflow region opening angle and
width are consistent with the observed properties of reconnection outflows in the
solar wind (Gosling & Szabo, 2008; Mistry et al., 2015). The small opening angles
justify the assumption that the bifurcated RCS pair IT and IB can be characterised
by a common lmn-coordinate system.

Using these estimates for γ1, γ2, and the outflow region width, I then calculate
the distance D between Solar Orbiter and the neutral line. For Events 3, 4, and 5,
the estimates for D derived from γ1 are of the same order of magnitude as those
derived from γ2, ranging from 2020 di to 6090 di. However, D1 is much larger than
D2 in Events 1 and 2. For both events, the difference between D1 and D2 is similar:
in Event 1, D1 = 19300 di and D2 = 5700 di, while in Event 2, D1 = 22900 di and
D2 = 5300 di. The pronounced discrepancy between D1 and D2 for Events 1 and 2
is likely due to the larger difference between γ1 and γ2 compared to the other three
events. Furthermore, the estimate for D (Equation 4.21) is very sensitive to changes
in γ . Since γ is small for reconnection outflows, minor errors of a few degrees in its
estimation can lead to large variations in D. Barring the two outlier values of D in
Events 1 and 2 where D ∼ 20000 di, the other estimates for the spacecraft distance
to the neutral line are consistent with previous results (Mistry et al., 2015).

In the symmetric current sheet stress balance model, the proton beam popula-
tion in Regions A and C is assumed to consist of a single isothermal inflow beam,
while the beam population in Region B consists of a pair of isothermal counter-
streaming beams. Although the observed proton distribution in the solar wind is
characterised by the combination of a core population and a field-aligned fast beam
population (Feldman et al., 1973; Marsch et al., 1982b), the proton population in
Regions A and C is generally well-approximated by a single Maxwellian distribu-
tion defined by the proton bulk velocity, temperature, and density in these regions.

Out of the five reconnection events in the dataset, Event 4 is the one whose
properties most closely match the predictions of the symmetric stress balance
model. Throughout the entire duration where Solar Orbiter was in Region B, clear
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signatures of counterstreaming outflow beams with similar intensity in the distribu-
tion function measurements are observed. The predicted velocities of the counter-
streaming beams, as derived from the stress balance model, are in agreement with
the observed velocity of the beams. The pitch angles of the reconnection inflow and
outflow beams are also consistent with the reconnection geometry of the model (see
Figure 3.2 and 3.3). Beam 1, the inflow beam from Region A, has a pitch angle of
α1A = 176◦ in Region A and a pitch angle of α1B = 154◦ in Region B. This suggests
that this beam is propagating roughly in the anti-parallel direction along the recon-
nected magnetic field line. Conversely, Beam 2, the inflow beam from Region C,
has a pitch angle of α2C = 0◦ in Region C and a pitch angle of α2B = 7◦ in Region
B. This suggests that Beam 2 propagates parallel to the field line in the opposite
direction to Beam 1.

In earlier studies of the counterstreaming beam population in reconnection out-
flows, the relative field-aligned speed of the beams is expected to be the sum of the
Alfvén speed, VA, in the inflow regions. However, these studies consistently mea-
sure relative beam speeds that are smaller than this expected value (Gosling et al.,
2005a; Lavraud et al., 2021). Similar behaviour is observed in Event 4; the relative
field-aligned speed of the counterstreaming beams is 31 km s−1, which is less than
the sum of the Alfvén speed in Regions A and C, VA,A +VA,C = 110 km s−1. This
discrepancy was previously attributed to electromagnetic ion beam instability lim-
iting the relative beam speed to ∼ 1.5VA (Goldstein et al., 2000). As discussed in
Chapter 3, my results suggest that this discrepancy may instead be a natural con-
sequence of stress balance at the bifurcated RCS. Additionally, the relative beam
speed measured in this event is similar to the thermal velocity of the counterstream-
ing beams of ∼ 30 km s−1. Consequently, the beams are not well-separated from
each other in velocity space, a property I also observe in the model test case (see
Section 3.5).

While the results for Event 4 demonstrate the symmetric current sheet stress
balance model can explain some of the observed features of reconnection outflows
in the solar wind, my other results suggest that the underlying assumption of a sym-
metric reconnection configuration does not always hold well. If the outflow region
were symmetric, γ1 = γ2 would be expected. However, as noted above, I obtain
different values for γ1 and γ2 for all five events (see Table 4.5). This difference in γ

suggests that structure of the outflow region is asymmetric. I also observe asymme-
tries in the properties of the counterstreaming beams in Region B, particularly in the
beam speed, which are not expected in the symmetric case. Based on the symmetry
of the model, the counterstreaming beams are initially assumed to have equal densi-
ties. These results therefore call into question the validity of this assumption. Since
the density enters the mass continuity condition to determine uIT

1B,n and uIB
2B,n, which

are then used to calculate the outflow region opening angle and beam temperature,
this assumption has consequential effects on my predictions for these parameters.
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Furthermore, the model predictions for the beam density and temperature affect the
shape of the distribution function describing the counterstreaming beam population
in Region B. This may explain the differences seen in Events 1 and 4 between the
observed VDF and the VDF reconstructed from the results of the stress balance
model.

Elaborating on the asymmetry between the counterstreaming beams in the out-
flow region, I now examine the 1-D VDFs for Event 1 in more detail (see Figure
4.9). Recall from Section 3.3, the assumption for symmetric current sheet bifurca-
tion. Beam 1 (Beam 2) is required to catch up with the current sheet IB (IT) on the
opposite side of Region B, but not pass through it and enter Region C (A). The key
consequence of this assumption is that in the symmetric model, the counterstream-
ing beam population is expected to be present everywhere in Region B only. Al-
though I observe this behaviour in Event 4, this is not the case for Event 1. In Event
1, the proton distributions in the first half of Region B are single-peaked and resem-
ble the distribution functions for the inflow beam in Region A. A double-peaked
distribution, consistent with a pair of counterstreaming beams, only develops in the
second half of Region B and persists into Region C.

This has two implications on the behaviour of the beams in Region B. First,
it suggests that Beam 1 is faster than expected and has sufficient speed to pass
through the current sheet IB and enter Region C. In contrast, Beam 2 is slower than
expected and has insufficient speed to catch up with current sheet IT. This is one
interpretation of my results that is consistent with the observed evolution of the
VDFs in Region B. Contrary to the expectations of the model, the results for Event
1 raise the possibility that the reconnection outflow region may be subdivided into
two layers, each containing a distinct population of proton beams: one with a sin-
gle beam and the other with a pair of counterstreaming beams. These layers may
be separated by an additional current sheet, potentially corresponding to the small
magnetic field discontinuity observed near the middle of Region B. This interpre-
tation of the reconnection outflow region structure is consistent with a framework
for multi-layer outflow structures proposed by Owen et al. (2021), as well as results
showing reconnection can locally produce multiple proton beam populations in the
solar wind (Lavraud et al., 2021; Phan et al., 2022; Duan et al., 2023). In order to
properly describe the structure of these multi-layered reconnection outflows, I will
need to adapt the stress balance models to account for reconnection configurations
with multiple inflow or outflow beam populations.

The violation of the current sheet bifurcation condition implies Equation 3.25
no longer correctly defines the outflow region opening angle, which may be an ad-
ditional contributing factor to the asymmetry in γ1 and γ2. Moreover, this violation
also invalidates the set of simplifying assumptions I use to derive the velocities
of Beam 1 (Equations 3.27, 3.28, and 3.30) and Beam 2 (Equations 3.33–3.35) in
Region B. As a result, the velocities of the counterstreaming beam, uIT

1B and uIB
2B,
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obtained from the symmetric stress balance model may no longer be accurate. This
could explain why, with the exception of Event 4, the pitch angles of the counter-
streaming beams for the other four events suggests oblique or quasi-perpendicular
(Event 5) propagation relative to the magnetic field, rather than the expected field-
aligned propagation. An alternative explanation for these unusual pitch angles is
that the HT analysis (Khrabrov & Sonnerup, 1998; Paschmann & Sonnerup, 2008)
has failed to properly identify the DRF at IT and IB. In an improperly defined DRF,
the convection electric field is not fully transformed away (see Section 2.4.2), mean-
ing the beam protons will still experience an E×B drift perpendicular to the mag-
netic field. The stress balance analysis would then have to be modified to factor
in the effects of the residual electric field on the motion of the reconnection in-
flow and outflow beams. Further investigation is required to properly understand
how changes to the HT analysis and the identification of the DRF affect the overall
results of the stress balance analysis.

Finally, in the stress balance model (see Section 3.4), a 2-D reconnection struc-
ture is assumed where the Bm component of the magnetic field is neglected. For a
symmetric magnetic field configuration, the Bl-component of the magnetic field is
also assumed to reverse across the reconnection outflow region, with Bl = 0 inside
it. However, my observations suggest that these assumptions do not hold in the
solar wind, where the reconnection magnetic field typically has a strong Bm compo-
nent. For all five reconnection events in the dataset, I find that Bm is of comparable
magnitude to Bl and Bl ̸= 0 in the outflow region. They have magnetic shear angles
of ∼ 100◦, which are smaller than what is assumed in the model. Notably, Event
5 has an even smaller shear angle of just 35◦. Previous studies show that mag-
netic reconnection tends to occur across RCS with small to moderate shear angles
< 90◦, similar to observations in the dataset (Gosling et al., 2007; Phan et al., 2010;
Gosling & Phan, 2013). In future work, I will need to generalise the symmetric
current sheet stress balance model to account for the effects of strong guide fields in
the reconnection magnetic field, as well as asymmetries in the inflow and outflow
beam population.

4.7 Conclusions
In this chapter, I apply my symmetric bifurcated current sheet stress balance model
developed in Chapter 3 to observed cases of magnetic reconnection in the solar
wind. Using in-situ magnetic field and solar wind proton data from Solar Orbiter,
I identify 3163 potential reconnection outflows over a period spanning the entirety
of 2023. Out of these events, I shortlist 5 events with symmetric magnetic field and
inflow conditions that appear to closely satisfy the underlying assumptions of the
model for further analysis.

I apply the stress balance model on the reconnection events in the dataset to
first determine the opening angles of their outflow regions and the distance between
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Solar Orbiter and the neutral line. I obtain opening angles ranging from 0.2◦ to
10.8◦ and distances ranging from 2270 di to 6090 di. My results for these two
parameters are consistent with previous observations of reconnection outflows in
the solar wind (Mistry et al., 2015). However, they also suggest that the outflow
region is asymmetric, contrary to the model assumptions. I also calculate the ve-
locity, density, and temperature of the reconnection inflow and outflow beams for
all five events. I then perform a more detailed analysis of the 9 January 2023 and
9 July 2023 events, and use these parameters to reconstruct the VDF describing the
beam population in the inflow and outflow regions. These reconstructed VDFs are
compared with the observed proton VDFs from Solar Orbiter.

For the 9 July event, I observe a double-peaked structure in the observed proton
distribution throughout the outflow region (Region B), consistent with a pair of
counterstreaming proton beams (Gosling et al., 2005a; Lavraud et al., 2021). The
velocities of the observed beams align very closely with the predicted velocities of
the beams derived from the stress balance model. As the relative field-aligned speed
of the beams are comparable to their thermal velocities, they are not well-separated
in the VDFs and overlap with each other. The counterstreaming beam signature is
more evident in the observed VDFs than the reconstructed VDFs. I observe similar
overlap between the counterstreaming beam pair in the 9 January event.

The 9 January event is substantially more complex that the 9 July event and ex-
hibits properties that are markedly different from the symmetric model. Instead of
an outflow region characterised by a single population of counterstreaming proton
beams, I observe an outflow region divided into two distinct halves. Counterstream-
ing beams are only visible in the proton distribution in the trailing half of Region
B and persists into the trailing inflow region (Region C). In the leading half, the
distribution is single-peaked and closely matches the VDFs measured in the lead-
ing inflow region (Region A). This suggests that the outflow region for this event is
highly asymmetric and may not be adequately described by the symmetric current
sheet stress balance model. The division of the outflow region into multiple layers,
each containing a distinct population of proton beams, has been reported in previ-
ous studies using Solar Orbiter and Parker Solar Probe data (Lavraud et al., 2021;
Phan et al., 2022; Duan et al., 2023). These observations are consistent with the
theoretical framework for multi-layered reconnection outflow structures developed
by Owen et al. (2021).

I conclude that as a proof-of-concept, the symmetric current sheet stress bal-
ance model can successfully reproduce some of the known properties of reconnec-
tion outflows in the solar wind, including current sheet bifurcation and counter-
streaming outflow beams. However, the vast majority of reconnection outflows in
the solar wind are asymmetric, as evidenced by the 9 January event. Further work
needs to be done to generalise the symmetric stress balance model to account for
asymmetries in the reconnection magnetic field and beam population.



Chapter 5

Magnetic reconnection as an erosion
mechanism for magnetic switchbacks

5.1 Introduction
In Section 1.4, I present a general overview of the characteristics of magnetic
switchbacks in the solar wind. Magnetic switchbacks are localised Alfvénic de-
flections of the heliospheric magnetic field (HMF) away from the Parker spiral,
sometimes resulting in a full polarity reversal. They have previously been observed
by Helios (Horbury et al., 2018), Ulysses (Balogh et al., 1999), and ACE (Owens
et al., 2013) at heliocentric distances between 0.3 – 2.4 AU, both near the eclip-
tic plane and at high heliolatitudes. Recent observations from Parker Solar Probe
(PSP) show that switchbacks are a prevalent feature of the near-Sun solar wind
(Bale et al., 2019; Kasper et al., 2019), which are present for roughly 75% of the
time during PSP Encounter 1 (Horbury et al., 2020b). They are convected over the
observing spacecraft on timescales ranging from a few minutes to a few hours (Du-
dok de Wit et al., 2020) and have transverse scales comparable to solar granulation
and supergranulation (Fargette et al., 2021).

At heliocentric distances of 1 AU and beyond, switchbacks are less frequently
seen than in the inner heliosphere, suggesting that these structures evolve and even-
tually erode as they propagate away from the Sun (Tenerani et al., 2020, 2021).
Magnetic reconnection is one possible mechanism that can enhance erosion of a
switchback by removing magnetic flux from the polarity-reversed section of the
magnetic field. Observations from Helios (Gosling et al., 2006a) and PSP (Froment
et al., 2021) show that reconnection may occur at switchback boundaries.

I present examples of switchback boundary reconnection events observed by
Solar Orbiter and use them to evaluate the effectiveness of magnetic reconnection
as an erosion mechanism for switchbacks. In Section 5.2, I describe my data and
analysis methods. In Section 5.3, I show observations of three instances of switch-
back reconnection. In Section 5.4, I present my interpretation of the switchback
and reconnection geometry based on the observations, and estimate the remaining



5.2. Data and methods 124

lifetime of the switchbacks. In Section 5.5, I summarise my findings and discuss
their implications for the global properties of switchbacks in the solar wind.

5.2 Data and methods
5.2.1 Instrumentation and event selection
I use publicly available magnetic field and ground-calculated proton moments (den-
sity, bulk velocity, and temperature) data from the MAG (Horbury et al., 2020a) and
SWA-PAS (Owen et al., 2020) instruments onboard Solar Orbiter (Müller et al.,
2020). In normal mode operation, MAG provides measurements at a cadence of 8
vectors/s (see Section 2.2.1), while SWA-PAS delivers proton moments data once
every 4 seconds (see Section 2.3.1). In addition, I also use electron strahl pitch
angle distribution (PAD) data at energies > 70 eV from SWA-EAS (Owen et al.,
2020), when available, at a cadence of one measurement per 10 seconds.

For this case study, I sample a time interval during August 2021 for magnetic
reconnection outflows in the solar wind, when the spacecraft was at a heliocentric
distance of 0.6 – 0.7 AU. I exclude outflows with crossing durations less than 20
seconds to ensure that there are at least five proton measurements inside the outflow
region. Out of the ten events that satisfy the selection criteria, three are associated
with potential magnetic switchbacks.

5.2.2 Testing for rotational discontinuities
In the Gosling reconnection model (Gosling et al. 2005a, see Section 1.3.4), the
reconnection current sheet (RCS) bifurcates and the outflow region is bound by a
pair of standing Alfvénic rotational discontinuities (RDs). To test for RDs across
the RCS, I use magnetic hodographs in conjunction with the Walén relation.

The MAG and SWA-PAS data are first transformed from the RTN coordinate
system into the lmn coordinate system using the hybrid minimum variance analysis
(MVAB) method (Gosling & Phan 2013, see Section 2.4.1). Magnetic hodographs
illustrate the spatial and temporal evolution of B in 3D. They are plotted in pairs
for the lm and ln-planes of the lmn-frame (Sonnerup & Scheible, 1998). For an RD
across a current sheet, the temporal variation of B traces a semi-circular arc in the
lm-plane hodograph and a vertical line at Bn ̸= 0 in the ln-plane hodograph.

The Walén relation tests for the Alfvénicity of the RDs (Khrabrov & Sonnerup,
1998):

vp −VHT =±vA =± B
√

µ0ρ
, (5.1)

where VHT is the deHoffmann-Teller (HT) frame velocity of the RD (de Hoffmann
& Teller, 1950). In this chapter, I derive VHT using the standard HT analysis pro-
cedure outlined in Section 2.4.2. However, the adaptive HT frame analysis method
(Comişel et al., 2015; Marghitu et al., 2017; Schwartz et al., 2021) may be better
suited for propagating structures and could provide better results. The sign in Equa-
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Figure 5.1: Combined magnetic field, proton, and electron strahl PAD time series data for
Event 1 in the hybrid MVAB lmn-frame. a) Magnetic field vector with the
magnetic field strength in black. b) Proton bulk velocity with the proton bulk
speed in black. The average proton bulk velocity ⟨vp⟩ over this interval has
been removed. In both panels, the l-component is in red, the m-component is
in green, and the n-component is in blue. c) Proton temperature (left scale,
purple) and number density (right scale, gold). d) Alfvén speed. e) 1D proton
energy spectrogram. f) Electron strahl PAD for energies > 70 eV. The dashed
lines mark the region boundaries identified in the text and numbered at the top
of the figure.

tion 5.1 indicates whether the Alfvénic fluctuations in vp−VHT and B are correlated
(positive) or anti-correlated (negative). I analyse component-by-component scatter
plots of vp −VHT against vA, known as Walén plots, and use the least-squares lin-
ear regression method to determine the line of best fit. The gradient of this line
provides a means to quantify the strength of the Walén relation. From Equation 5.1,
a gradient of ±1 in the Walén plot is an indicator of an ideal Alfvénic RD. How-
ever, previous works suggest that gradients with magnitudes between 0.5 – 1 are
sufficient to demonstrate the existence of an RD across a current sheet (Paschmann
et al., 2005; Dong et al., 2017).

5.3 Results
5.3.1 Event 1 – 10 August 2021 07:45:50 - 07:48:45 UT
Figure 5.1 provides a general overview of the magnetic field and solar wind condi-
tions observed between 07:40:00 and 07:55:00 UT on 10 August 2021, recorded at
a heliocentric distance of 0.72 au. Panel a) shows the magnetic field B and b) shows
the proton bulk velocity v′p in the lmn-frame. In both panels, the l-component is in
red, the m-component is in green, and the n-component is in blue. Panel c) shows
the proton temperature Tp in purple and proton number density np in gold, d) shows
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the Alfvén speed vA, e) shows the 1D proton energy spectrogram, and f) shows the
electron strahl PAD for energies > 70 eV. I remove the average proton bulk velocity
⟨vp⟩ across this interval from the data, such that v′p = vp −⟨vp⟩.

Table 5.1: Event 1 lmn-frame basis vectors for CS0 and CS1 + CS2 expressed in RTN
coordinates.

Current sheet lmn-frame basis vectors (R, T, N)

l̂ = (0.660,−0.216,0.719)
CS0 m̂ = (0.016,−0.954,−0.300)

n̂ = (0.751,0.210,−0.626)

l̂ = (0.677,−0.343,0.651)
CS1 + CS2 m̂ = (0.086,0.916,0.393)

n̂ = (−0.731,−0.210,0.649)

In RTN coordinates, ⟨vp⟩ = (322.2,−5.6,−5.6)RT N km s−1 across this time
interval and the predominant HMF polarity is in the anti-sunward (+R) direction.
I divide this interval into several regions marked by the vertical dashed lines. Re-
gions 1 (07:40:00 – 07:45:50 UT) and 4 (07:48:45 – 07:55:00 UT) correspond to
the period of quiet HMF and steady, slow solar wind surrounding this event. The
regions shaded in purple are centered around sharp discontinuities in the magnetic
field that I identify as current sheets.

I derive the lmn-frames for the current sheets at the leading (CS0) and trailing
edges (CS1, CS2) of this event using the hybrid MVAB method. As the trailing
edge current sheets are bifurcated, I perform the MVAB analysis from the start of
CS1 to the end of CS2. Table 1 shows the lmn-frame basis vectors for these current
sheets. The angular differences between the corresponding basis vector pairs of
both frames are small, ranging from 1.7◦ to 8.3◦. Thus, the lmn-frames for the
leading and trailing edges of this event are roughly aligned. As I am interested in
the properties of the reconnection outflow, its properties are visualised in the lmn-
frame of the trailing edge current sheet in Figs. 5.1a and 5.1b. I do the same for the
overview plots of the other two events.

Across CS0 (07:45:50 – 07:46:20 UT), the polarity of the radial component of
the HMF, BR, flips from the anti-sunward direction to the sunward direction. In the
lmn-frame of this event, this corresponds to a reversal in the Bl component of the
magnetic field from +7 nT to -4 nT. Due to the relatively strong Bm component, the
maximum magnetic shear angle across this current sheet is 77.2◦. There is a 20%
decrease in the average magnetic field strength |B|, from 10 nT in Region 1 to 8 nT
in CS0. vl , the l-component of v′p, increases from 0 km s−1 to +10 km s−1, and the
average proton bulk speed |v′p| increases from 4 km s−1 to 13 km s−1. Here, Tp and
np both reach a maximum of 13 eV and 14 cm−3, respectively.

Region 2 (07:46:20 – 07:46:35 UT) encompasses the polarity-reversed section
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Figure 5.2: Magnetic hodographs and Walén plots for CS0 (07:45:50 – 07:46:20 UT), CS1
(07:46:35 – 07:46:43 UT), and CS2 (07:48:15 – 07:48:45 UT) in Event 1. Time
progression in the hodographs is represented by the colour of the dots, with
earlier times in blue and later times in red. The red, green, and blue dots in the
Walén plots represent the R, T , and N-components of the Alfvén velocity vA
and the HT frame bulk plasma velocity vp −vHT. a) lm-plane hodograph for
CS0. b) ln-plane hodograph for CS0. c) lm-plane hodograph for CS1 and CS2.
d) ln-plane hodograph for CS1 and CS2. e) Walén plot for CS0. f) Walén plot
for CS1. g) Walén plot for CS2.

of this event. Here, Bl decreases to -6 nT, vl increases further to +24 km s−1 and |v′p|
increases to +27 km s−1. This is roughly 68% of the local vA of 40 km s−1. There is
minimal change seen in |B|, Tp, and np in this region compared to CS0. The electron
strahl PAD peaks in the field-aligned direction (0◦) both in the background HMF
and in the regions containing polarity-reversed magnetic flux (CS0 and Region 2).

Across CS1 (07:46:35 – 07:46:43 UT) and CS2 (07:48:15 – 07:48:45 UT), the
HMF polarity reverts back towards the anti-sunward direction observed in Region
1. Bl increases from -6 nT to +3 nT across CS1 and then increases again from
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+3 nT to +9 nT across CS2. In Region 3 (07:46:43 – 07:48:15 UT), Bl remains
roughly constant at +4 nT; this is intermediate between its value in Region 2 and
the background HMF in Regions 1 and 4. The total magnetic shear angle across
CS1, CS2, and Region 3 is 117◦. There is a slight decrease in |v′p| from 25 km
s−1 to an average of 15 km s−1. vl sharply decreases across CS1 and is negative
in Region 3, with an average value of -10k̇m s−1. There are also gradual decreases
in Tp from 12.5 eV to 9 eV, and in np from 14 cm−3 to 12 cm−3. Moreover, a brief
strahl dropout across CS1 and the latter part of Region 2 is observed, accompanied
by a sustained broadening of the strahl PAD in CS1 and Region 3. As both features
are also present in the raw electron counts data, they are unlikely to be aliasing
effects caused by the rapid rotation of the magnetic field.

Using the methods described in Section 5.2.2, Figure 5.2 shows the mag-
netic hodographs and Walén plots for CS0, CS1, and CS2. Panels a) and b) show
the hodographs for CS0 in its associated lmn-frame, panels c) and d) show the
hodographs for CS1 and CS2 combined in their associated lmn-frame, and panels
e) – g) show the Walén plots for CS0, CS1, and CS2. For the Walén plots, B is
re-sampled onto vp as MAG has higher time resolution than PAS. I also include all
data points 15 seconds before and after the current sheet crossing in the analysis.
This ensures that a representative number of data points are included in the Walén
plots, even for short-duration current sheets containing only a single proton mea-
surement inside the current sheet. The choice of 15 seconds is deliberate, to prevent
data points from CS1 contaminating the analysis for CS0 and vice-versa. For con-
sistency, I apply the same method and the same timeframe of 15 seconds to all three
events.

In the lm-plane hodographs (Figures 5.2a, 5.2c), B across all three current
sheets traces an arc consistent with the measured magnetic shear angle. In the ln-
plane hodograph for CS0 (Figure 5.2b), Bn ≃ 0 nT at the start and end of the interval,
but deflects out to Bn ≃+2 nT in the middle. For CS1 and CS2 (Figure 5.2d), B has
a small Bn component of −1.0 nT and traces a quasi-vertical line in the ln-plane.
In Figures 5.2c and 5.2d, the rotation of B is split into two arcs that individually
correspond to CS1 and CS2. They are separated by an interval where the orientation
of B does not change significantly, corresponding to Region 3. The magnitudes of
the gradient of the line of best fit of the Walén plots for CS0 (-0.254), CS1 (-0.497),
and CS2 (+0.309) fall below the range 0.5 – 1 expected for an Alfvénic structure.

5.3.2 Event 2 - 30 August 2021 10:19:05 - 10:21:28 UT
Figure 5.3 shows Event 2 observed between 10:15:00 and 10:25:00 UT on 30 Au-
gust 2021 at a heliocentric distance of 0.61 au. The figure layout is the same as
in Figure 5.1, except for the absence of electron strahl PAD data. In lieu of the
strahl PAD, panel f) instead shows the signed magnitude of the alpha-proton veloc-
ity difference vector vα p = |vα −vp|·sgn(vα,R − vp,R), which I use as an alternative
method of checking for folded field configurations (see Section 1.4.1, Fedorov et al.
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Figure 5.3: Combined magnetic field and proton time series data for Event 2 in the hybrid
MVAB lmn-frame. The figure layout is the same as in Figure 5.1 except for
the absence of electron strahl PAD data, which are unavailable for this interval.
Panel f) instead shows the signed magnitude of the alpha-proton velocity dif-
ference vector, vα p.

Table 5.2: Event 2 lmn-frame basis vectors for CS0 and CS1 + CS2 expressed in RTN
coordinates.

Current sheet lmn-frame basis vectors (R, T, N)

l̂ = (0.971,−0.220,−0.093)
CS0 m̂ = (−0.185,−0.939,0.287)

n̂ = (−0.151,−0.261,−0.953)

l̂ = (−0.835,0.550,−0.020)
CS1 + CS2 m̂ = (−0.452,−0.665,0.594)

n̂ = (0.313,0.505,0.804)

2021). This data is obtained using the techniques described in De Marco et al.
(2023). For this interval, ⟨vp⟩ = (438.8,−14.6,−2.3)RT N km s−1 and the predom-
inant HMF polarity before (Region 1, 10:15:00 – 10:19:05 UT) and after (Region
4, 10:21:28 – 10:25:00 UT) this event is in the sunward direction. I again iden-
tify three regions of strong magnetic gradients and label them CS0, CS1, and CS2.
Table 5.2 shows the lmn-frame basis vectors for these current sheets. The angular
differences between the basis vectors of the lmn-frames for CS0 and CS1 + CS2 are
21.6◦ for l̂, 28.4◦ for m̂, and 18.9◦ for n̂.

BR flips from its sunward orientation in Region 1 to an anti-sunward orientation
in Region 2 (10:19:11 – 10:20:30 UT) across CS0 (10:19:05 – 10:19:11 UT). In the
lmn-frame, this is visible as a reversal in Bl from +10 nT to -9 nT; the maximum
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magnetic shear angle across this current sheet is 113◦. There are no major changes
in |B|, vl , |v′p|, and np in this region from their values in the background HMF in
Region 1, although Tp decreases from 19 eV to 14 eV.

Region 2 corresponds to the polarity-reversed section of this event. Both Bl

and |B| remain approximately constant at -10 nT and 12 nT, respectively. Here, vl

decreases gradually over Region 2 from 0 km s−1 to -14 km s−1, while there is a
very slight increase in |v′p| from 7 km s−1 to 14 km s−1. This is around 30% of the
average local vA ∼ 45 km s−1. Tp remains roughly constant at an average of 14 eV,
while np fluctuates about an average value of 25 cm−3.

Across CS1 (10:20:30 – 10:21:07 UT) and CS2 (10:21:24 – 10:21:28 UT),
Bl reverses from -10 nT to +10 nT in two steps, dwelling at +5 nT in Region 3
(10:21:07 – 10:21:24 UT). The total magnetic shear across CS1 and CS2 is 134◦

and |B| decreases from 12.5 nT to 10 nT. Across CS1, vl continues decreasing at a
faster rate than in Region 2, reaching a minimum value of -45 km s−1 in Region 3.
|v′p| peaks at 50 km s−1, a value ∼ 43% greater than the local vA ∼ 35 km s−1. Tp

increases from 14 eV to 25 eV, while np also increases from 25 cm−3 to 30 cm−3.

Table 5.3: Event 3 lmn-frame basis vectors for CS0 and CS1 + CS2 expressed in RTN
coordinates.

Current sheet lmn-frame basis vectors (R, T, N)

l̂ = (−0.970,−0.240,0.037)
CS0 m̂ = (−0.235,0.889,−0.394)

n̂ = (0.061,−0.391,−0.918)

l̂ = (−0.977,0.177,0.120)
CS1 + CS2 m̂ = (−0.115,−0.908,0.403)

n̂ = (0.180,0.308,0.907)

Figure 5.4 shows the hodographs and Walén plots for Event 2, the format of
this figure is the same as in Fig. 5.2. The arc traced by B in the lmn-frame for
CS0, CS1, and CS2 is consistent with the measured magnetic shear. Across the
trailing edge current sheets, the largest rotation in B occurs over CS1. In the ln-
plane, B traces an approximately vertical line and has a Bn component of +0.5 nT.
Around 10:21:00, there are fluctuations in Bn of ±2.5 nT inside CS1. The Walén
plot gradients of +0.077 for CS0 and -0.437 for CS1 are below the range expected
for an Alfvénic RD. Conversely, the Walén plot gradient of +0.973 for CS2 indicates
that the discontinuity in B across this structure is Alfvénic.

5.3.3 Event 3 - 30 August 2021 10:03:46 - 10:12:15 UT
Event 3 (see Figure 5.5) is observed between 10:00:00 UT to 10:15:00 UT on 30
August when Solar Orbiter was at a heliocentric distance of 0.61 au. This event
has a duration of around eight minutes, four times greater than that of Events 1
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Figure 5.4: Magnetic hodographs and Walén plots for CS0 (10:19:05 – 10:19:11 UT), CS1
(10:20:50 – 10:21:07 UT), and CS2 (10:21:24 – 10:21:28 UT) in Event 2. The
figure layout is the same as in Figure 5.2.

and 2. Event 3 occurs in close temporal proximity to Event 2, thus ⟨vp⟩ and the
background HMF polarity for both events are similar. Table 5.3 shows the lmn-
frame basis vectors for CS0 and CS1 + CS2. The angular differences between the
basis vectors of these lmn-frames are 24.6◦ for l̂, 20.2◦ for m̂, and 13.9◦ for n̂.

In Region 2, BR (10:03:46 – 10:11:05 UT) is in the anti-sunward direction, op-
posite to the polarity of the background HMF in Regions 1 (10:00:00 – 10:03:35
UT) and 4 (10:12:15 – 10:15:00 UT). This polarity reversal occurs across CS0
(10:03:35 – 10:03:46 UT), where Bl reverses from +8 nT to -4 nT with a magnetic
shear angle of 61◦. Here, |B|, vl , and |v′p| do not deviate noticeably from their values
in Region 1. Tp decreases from 17 eV to 14 eV, while there is a slight increase in np

from 23.5 cm−3 to 25.5 cm−3.
From 10:03:46 – 10:05:20, Bl remains roughly constant at -5 nT and decreases

further to -10 nT from 10:05:55 UT onwards. |B| is roughly constant at 12 nT
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Figure 5.5: Combined magnetic field and proton time series data for Event 3 in the hybrid
MVAB lmn-frame. The figure layout is the same as Figure 5.3.

throughout most of Region 2 and is similar in magnitude to |B| in the background
HMF. There is an increase in |B| between 10:05:20 and 10:05:55 UT that coincides
with near-zero Bl and a large deflection in Bn, suggesting that this event contains
some internal substructure that is not evident in the other two events. There is no
significant change in vl or |v′p| in Region 2. The value of Tp for the full duration of
Region 2 is roughly constant at 13 eV, while np increases gradually from 25.5 cm−3

to 30 cm−3.

Across CS1 (10:11:05 – 10:11:10 UT), Bl increases from -10 nT to -2 nT and
then reverses from -1 nT to +9 nT across CS2 (10:11:41 – 10:12:15 UT). In contrast
to Events 1 and 2, the magnetic field does not linger at a constant orientation in
Region 3 (10:11:10 – 10:11:41 UT), but instead, it shows large fluctuations. The
total magnetic shear across these two current sheets is 95◦. vl increases from -
15 km s−1 to +20 km s−1, accompanied by a smaller increase in |v′p| from 10 km s−1

to 24 km s−1. The peak |v′p| of 35 km s−1 is observed in Region 3 and is roughly
75% of the average local vA ∼ 46 km s−1 in this region. There is a small increase
in Tp from 14 eV to 17 eV, whereas np decreases from a maximum of 30 cm−3 to
24 cm−3.

Figure 5.6 shows the hodographs and Walén plots for Event 3. Although it is
not as distinct as Event 1, there is still an arc in the lm-plane hodographs and a quasi-
vertical line in the ln-plane hodographs for all three current sheets. Across CS1 and
CS2, the rotation in B is no longer clearly separated by a period during which the
field orientation remains roughly constant. This is caused by the magnetic field
fluctuations in Region 3 causing B to ‘double back’ on itself in both hodographs.
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Figure 5.6: Magnetic hodographs and Walén plots for CS0 (10:03:35 – 10:03:46 UT), CS1
(10:11:05 – 10:11:10 UT), and CS2 (10:11:41 – 10:12:15 UT) in Event 3. The
figure layout is the same as in Figure 5.2.

According to the ln-plane hodograph, B has a smaller Bn-component of −0.1 nT
than Events 1 and 2. The Walén plot gradient of -0.297 for CS0 is below the range
expected for an Alfvénic RD, whereas the gradients of +0.867 for CS1 and -0.697
for CS2 indicates that Alfvénic RDs are present across these two current sheets.

5.4 Discussion
5.4.1 Evidence for reconnection at switchback boundaries
My overall findings suggest that the three observed events are magnetic switchbacks
undergoing magnetic reconnection at their trailing edge boundaries. Based on the
magnetic field observed in all three events, there is a polarity reversal in BR, first
at CS0 in each case and returning across CS1 and CS2 combined, consistent with
magnetic switchbacks. For Event 1, the electron strahl PAD data supports this in-
terpretation. As expected, the strahl pitch angle remains constant at 0◦ both in the
background HMF and in Region 2, the polarity-reversed section of the switchback.
For Events 2 and 3, I used vα p to confirm if these events are magnetic switchbacks
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(Fedorov et al., 2021) as the electron strahl PAD data are unavailable. vα p is posi-
tive in Regions 1, 3, and 4, where there are no polarity reversals in BR. Conversely,
vα p is negative in Region 2 for both events; vα p ∼ −10 km s−1 for Event 2 and
vα p ∼ −20 km s−1 for Event 3. This is in line with the expectation that vα p > 0 in
the background solar wind and vα p < 0 inside the reversed section of a folded field
configuration (Marsch et al. 1982a; Reisenfeld et al. 2001, see Section 1.4.1).

An anti-correlation between the fluctuations in B and v′p in CS0 and Region
2 of Event 1 is consistent with an Alfvénic structure. However, the |v′p| enhance-
ment of 27 km s−1 inside Region 2 is 68% of the local Alfvén speed of 40 km s−1.
This is less than the enhancements observed at switchbacks in the near-Sun so-
lar wind, which are often roughly equivalent to the Alfvén speed (Horbury et al.,
2018; Kasper et al., 2019; Horbury et al., 2020b). Combined with the decrease in
|B|, accompanying increase in np, and the Walén plot for CS0 (Figure 5.2e), these
properties suggest that this event also has a non-Alfvénic component (Kasper et al.,
2019; Krasnoselskikh et al., 2020). Conversely, neither Event 2 nor Event 3 show
similar correlations or any obvious change in v′p. These velocity enhancements
(if they do indeed exist) are considerably less than the local Alfvén speed. This
property is also noted in reference to previously observed examples of reconnecting
switchbacks (Froment et al., 2021).

The trailing edge boundary of all three switchbacks exhibit large increases in
|v′p|. The regions of accelerated flow at the trailing edge of the switchbacks are
bound by a pair of current sheets CS1 and CS2 in each case, across which the fluc-
tuations in B and v′p are anti-correlated on one side and correlated on the other. This
bifurcation of the RCS at the trailing edge of the switchbacks and the presence of an
accelerated outflow jet are consistent with the Gosling reconnection model (Gosling
et al., 2005a). By contrast, the leading edge boundary of all three switchbacks show
no signatures of current sheet bifurcation and, instead, they are comprised of a sin-
gle current sheet CS0. Furthermore, with the exception of Event 1, no accelerated
flows are observed across CS0 for the three events. This suggests that in each case,
reconnection occurs only at the trailing edge boundary of the switchbacks, while
the leading edge boundary of the switchback is non-reconnecting.

In the case of Event 1 (Figure 5.1), the v′p enhancement in the polarity-reversed
section of the switchback (Region 2) is oriented in the +l̂ direction, whereas the v′p
enhancement in the trailing edge boundary reconnection outflow region (Region 3)
is oriented in the −l̂ direction, suggesting that these two features are distinct from
each other. The cause of the strahl dropout and broadening of the strahl PAD across
CS1 is unknown but is not an instrumental effect, as a drop in the raw electron
counts was also clearly detected by SWA-EAS at this time.

The hodographs show that five out of the six RCS have clear signatures asso-
ciated with RDs, but the magnitudes of the line of best fit gradients for half of the
Walén plots fall below the 0.5–1 range that is typically expected for an Alfvénic
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Figure 5.7: Feather plot of the B (blue/light green) and v′p vectors measured in Event 1
in the ln-plane with the spacecraft trajectory marked by the dark green arrow.
The Bm component of B is represented by the colour bar on the right. Over-
laid on top is a possible interpretation of the magnetic field configuration of
the switchback, shown here by the black arrows. The purple lines mark the
assumed configuration of the current sheets CS0, CS1, and CS2. The purple
stars show the locations where Solar Orbiter crosses the current sheets.

structure. This suggests that the reconnection outflow is sub-Alfvénic – a result that
is not uncommon for reconnection in astrophysical plasmas (Haggerty et al., 2018).
Any modification of the Walén relation (Equation 5.1) by factoring in a pressure
anisotropy term (Paschmann & Sonnerup, 2008) makes no appreciable difference
to the results of this analysis. Other reconnection models (Petschek, 1964) and ob-
servational studies (He et al., 2018; Phan et al., 2020) suggest that the reconnection
outflow region boundaries can be composed of a combination of Alfvénic RDs and
slow mode shocks. Shocks are not accounted for in the Walén relation and may
reduce the outflow velocity to sub-Alfvénic speeds (Teh et al., 2009; Feng et al.,
2017). These may reduce the observed v′p to 34–64% of the predicted vA (Phan
et al., 2013, 2020), which is more consistent with the Walén plots. However, a de-
tailed analysis of different reconnection models lies beyond the scope of this work.

5.4.2 Switchback and reconnection geometry
Figure 5.7 shows a feather plot of the magnetic field and proton velocity measure-
ments recorded during Event 1. The measured B is shown by the blue-and-light
green arrows and the measured v′p is shown by the solid red arrows. The colours
of the B arrows represent the strength of the Bm component of the magnetic field.
I overlay a possible and consistent interpretation of the magnetic field configura-
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tion of the switchback on top, shown by the solid black arrows. As measurements
are limited to those along the trajectory of Solar Orbiter through this structure, the
configuration shown here is one of many possible configurations that are consid-
ered to be consistent with the observations. On large scales, the switchback is as-
sumed to be rigidly frozen into the bulk solar wind flow as it is convected across the
spacecraft with a constant velocity of ⟨vp⟩ = (322.2,−5.6,−5.6)RT N km s−1. Un-
der this assumption, I map the measurement time stamps, t, to spatial coordinates
r = −(t − t0)⟨vp⟩, where t0 is an arbitrary reference time, defined here at 07:40:00
UT.

The dark green arrow represents the trajectory of Solar Orbiter through Event
1, from the bottom right to the top left of the figure. The locations where Solar
Orbiter crosses CS0, CS1, and CS2 are marked with purple stars. In this assumed
configuration, the spacecraft starts in the region of quiet anti-sunward (+R) HMF
immediately preceding the switchback. As the spacecraft crosses the leading edge
boundary of the switchback (CS0), the polarity of the HMF reverses towards a sun-
ward orientation and |B| decreases relative to the ambient HMF. As for v′p, its value
gradually increases and is directed in the +l̂ direction.

The trailing edge boundary of the switchback, formed by the current sheets
CS1 and CS2, together form a Gosling-type bifurcated RCS (Gosling et al., 2005a)
that bounds the reconnection outflow region. In order for the reconnection geome-
try to be consistent with the observed outflow, the RCS must extend back along the
solid purple lines towards a reconnection site located off-page, in the +l̂ direction
of the spacecraft trajectory. Inside the outflow region, B is roughly parallel with the
spacecraft trajectory. Unlike at the leading edge of the switchback, v′p is directed in
the −l direction in this region. After crossing CS2, Solar Orbiter exits the switch-
back and re-enters the surrounding solar wind, where conditions are similar to those
observed immediately before the switchback encounter.

In the proposed scenario, magnetic reconnection occurs between oppositely
directed field lines at the trailing edge boundary of the switchback. Within the
overall geometry of the switchback, this topology may produce a magnetic flux
rope on one side of the reconnection site and newly reconnected open field lines on
the other, as illustrated in Figure 5.8. This scenario has many similarities to that
proposed by Fedorov et al. (2021) to explain the formation of magnetic flux ropes
at switchback-like structures observed near 1 AU.

Flux rope crossings present distinct signatures in time series measurements
of the magnetic field vector and strahl PAD. Upon entry into the flux rope, the
magnitude of the component of the magnetic field aligned with its central axis, and
hence the total magnetic field strength, increases relative to the background solar
wind. This enhancement is greatest near the centre of the flux rope. Additionally,
one or both components of the magnetic field perpendicular to the flux rope axis
may exhibit smooth, bipolar variation with a sign change (Eastwood et al., 2021;
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Figure 5.8: Diagram showing possible mechanism by which switchback boundary recon-
nection can generate a flux rope embedded within a switchback. For visuali-
sation purposes, the figure is not to scale and has been compressed along the
l̂-axis to show the switchback structure on both sides of the reconnection site.
Arrow colours are defined as in Figure 5.7.

Choi et al., 2025). In flux ropes formed by switchback boundary reconnection,
a transition from a uni-directional to bi-directional strahl may also be observed,
indicating a closed magnetic field topology (Fedorov et al., 2021).

However, no signatures associated with flux rope crossings are observed in
any of the three events presented here. For Event 1, the strahl PAD in the outflow
region is uni-directional and parallel to the magnetic field, suggesting that Solar Or-
biter sampled magnetic flux associated with the open, newly reconnected field lines
rather than a flux rope. These field lines are highly kinked and magnetic tension
causes them to recoil away from the reconnection site and straighten out, unwinding
the switchback in the process. In general, observation of a flux rope is contingent
on the spacecraft trajectory passing through the correct region of the switchback,
which likely does not occur in these cases. By contrast, Fedorov et al. (2021) report
a fortuitous encounter in which Solar Orbiter passed through both sides of a switch-
back reconnection site, allowing observations of both a flux rope and reconnection
outflow.

5.4.3 Estimating the timescales for switchback erosion
I estimate the remaining lifetime, τ , of the three switchbacks discussed in this paper
as they are being eroded by magnetic reconnection, assuming reconnection is the
sole erosion mechanism and proceeds uniformly at the observed rate. This param-
eter depends on the magnetic flux φSB remaining in the polarity-reversed portion of
the switchback, which is yet to be reconnected, as well as the total rate of magnetic
flux transport, 2φ̇in, into the reconnection site from both sides of the reconnection
region. As illustrated in Figure 5.7, the proposed switchback geometry suggests that
direct measurements of the magnetic field and plasma in the outflow region are only
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Figure 5.9: Simplified diagram of the switchback and reconnection geometry in Event 1,
with quantities relevant to the calculation of τ .

available on one side of the reconnection site. These measurements allow the rate of
magnetic flux transport, φ̇out , to be quantified on that side. Under the conservation
of magnetic flux, 2φ̇in = 2φ̇out , this leads to:

τ =
φSB

φ̇in
=

φSB

φ̇out
. (5.2)

Figure 5.9 shows a simplified diagram of the assumed switchback and recon-
nection geometry depicted in Figure 5.7. I first consider the amount of magnetic flux
φout transported by the reconnection outflow vout in time dt. The general expression
for magnetic flux through a surface composed of infinitesimal surface elements dS
is given by φ =

∫
B ·dS. In this 2D configuration, a surface element dSout = hLn̂ is

defined, where h = vl,outdt is the distance the reconnected field lines are convected
by the outflow in time t, and L is the out-of-plane extent of the switchback. Hence,

φout =
∫

Bout ·dSout ≈ Bn,outvl,outLdt, (5.3)

where Bn,out is the average Bn-component of the magnetic field in the outflow re-
gion. This is equivalent to

φ̇out ≈ Bn,outvl,outL. (5.4)

The distance w travelled by Solar Orbiter in the polarity-reversed section of the
switchback (Region 2) is trajectory-dependent and hence, is an unreliable measure
for the switchback width. I instead use Λ = ⟨vp⟩ndtSB, the perpendicular distance
between CS0 and CS1, to estimate the width of the polarity-reversed section of
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the switchback. Here, dtSB is the crossing duration of Region 2. Applying similar
reasoning to the derivation of φout above, φSB is given by:

φSB =
∫

BSB ·dSSB ≈ Bl,SBΛL. (5.5)

Here, the surface element dSSB = ΛLl̂ is oriented along the l-direction, as Bl,SB is
the component of BSB that reconnects. Finally, I substitute Eqs. 5.4 and 5.5 into
Eq. 5.2 to obtain the time remaining until complete erosion of the switchback:

τ =
Bl,SBΛ

Bn,outvl,out
. (5.6)

Additionally, I estimate the remaining convection distance D until the complete
erosion of the switchback as D ≃ |⟨vp⟩|τ .

Table 5.4 shows the estimated τ and D for the three events discussed in this
paper. From Eq. 5.6, the value of τ depends linearly on switchback width Λ, which
determines the amount of magnetic flux remaining in the polarity-reversed section
of the switchback; it is also inversely proportional to vl,out , which indicates the rate
at which reconnected flux is transported away from the reconnection site. Since
Event 1 has the smallest width of Λ = 3570 km and the largest absolute Bn,out of
1.0 nT, it has the shortest τ of 40 minutes despite having the slowest absolute vl,out

of 7.2 km s−1. Given the small Λ and short τ compared to the other two events, this
suggests that Event 1 may be a switchback that has almost been completely eroded
by reconnection. Conversely, Event 3 is the widest with Λ = 31700 km and the
smallest Bn,out of 0.1 nT, a factor of ten smaller than Bn,out for Event 1. As a result,
it has the longest τ = 2005 minutes out of the three events. Event 2 is roughly three
times wider than Event 1 with Λ = 10100 km and has Bl,SB = 9.7 nT twice as large
as Event 1, but has the greatest vl,out = 28.3 km s−1. Its τ = 126 minutes is thrice
as long as for Event 1. The range for D values travelled by these three switchbacks
before they fully erode goes from 0.005 au (Event 1) to 0.4 au (Event 3).

5.4.4 Implications on switchback formation and evolution in the
heliosphere

A key assumption made in the calculations for τ and D (detailed in Section 5.4.3) is
that reconnection proceeds uniformly at the observed rate. Because no information
is available about the time history of these switchbacks as they evolve from their
place of origin to their place of detection, it is not known when or where the onset
of reconnection occurs. Therefore, neither τ nor D should be taken as the actual time
or distance between reconnection onset and complete erosion of the switchback.

However, τ and D are both small compared to the characteristic timescales
and distances of the solar wind expansion, which suggests that reconnection is a
fast and efficient mechanism through which switchbacks can be eroded. To high-
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light this point, let us assume that the onset of reconnection occurs at heliocentric
distances similar to PSP perihelion 1 (∼ 0.2 au), during which PSP made its obser-
vations of prominent switchbacks and switchback patches (Bale et al., 2019; Kasper
et al., 2019; Horbury et al., 2020b). If the reconnection rate remains constant during
transport in the solar wind, Λ for the observed switchbacks at these distances would
be 0.1 – 0.5 solar radii. This is significantly larger than what was observed by PSP
and has two possible implications.

The first is that the switchbacks are formed near the Sun and propagate sta-
bly into interplanetary space, before encountering conditions enabling the onset of
reconnection and thus the rapid erosion of the switchback. This scenario would
explain the rarity of observations of reconnection at switchback boundaries, as the
observing spacecraft would need to serendipitously encounter the switchback at al-
most the same time as reconnection onset. It would also explain why fewer switch-
backs are observed at 0.6 – 0.7 au by Solar Orbiter compared to PSP at heliocentric
distances < 0.2 au. Furthermore, Tenerani et al. (2020) have demonstrated that large
switchbacks formed in the corona can only survive out to ∼ 0.2 au if the background
solar wind conditions are sufficiently calm, before the parametric decay instability
causes them to decay.

The second plausible explanation is that the switchbacks are formed in situ
in the solar wind at a time much closer to the moment of their detection. This is
supported by new results from Macneil et al. (2020) and Pecora et al. (2022) that
suggest the occurrence rate of magnetic switchbacks increases with heliocentric
distance. There is the possibility that two (or more) populations of switchbacks
exist: those that form in the Sun’s corona and those that form in the solar wind
(Tenerani et al., 2021).

5.5 Conclusions
Using Solar Orbiter data from 10 August and 30 August 2021, I identified three
magnetic switchbacks at heliocentric distances between 0.6 – 0.7 au. The trailing
edge boundaries of all three events show signatures of jetting and current sheet
bifurcation that are consistent with the Gosling reconnection model (Gosling et al.,
2005a).

I propose a possible configuration of the switchback observed on 10 August
and reconnection geometry based on measurements of the switchback. In this sce-
nario, reconnection at the trailing edge boundary of the switchback results in the
formation of a magnetic flux rope on one side of the reconnection site and kinked
field lines on the other. Magnetic tension causes the reconnected field lines to recoil
away from the reconnection site, resulting in the unwinding of the switchback. In
this chapter, I only find cases in which magnetic reconnection occurs at the trailing
edge boundary of switchbacks. However, in principle, this process may also oc-
cur at the leading edge boundary of switchbacks or at the leading and trailing edge
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boundaries simultaneously. Although magnetic tension acts naturally to straighten
field line kinks in non-reconnecting switchbacks as well, my observation-driven
scenario suggests that reconnection can increase the rate at which these structures
unwind.

My estimates of the remaining lifetime of the switchbacks suggest that they
erode within a few minutes to a few hours after being observed by Solar Orbiter.
During this time, the switchbacks are carried a further 0.005 – 0.4 au by the sur-
rounding solar wind flow. If typical, these results could explain why switchbacks
are rarely seen at 1 au and has implications on how these structures form and evolve
in the heliosphere. The short τ and small D relative to the characteristic timescales
and distances of the solar wind expansion show that reconnection is an efficient
process for switchback erosion. This suggests that the onset of reconnection must
occur during transport in the solar wind in these examples and supports theories of
in-situ switchback formation in the solar wind.

There are some caveats to my results and interpretation. The use of single-
spacecraft measurements limits knowledge of the magnetic field and solar wind con-
ditions inside the switchback to what is observed along the spacecraft’s trajectory.
Furthermore, no information is available about the time history of the switchbacks.
Consequently, it is not known when the onset of reconnection occurs at the switch-
back boundaries, nor whether this process creates a flux rope embedded within the
switchback. Therefore, the interpretation presented here must be understood as one
possible scenario that is considered in the context of the measured knowledge of the
field and plasma geometry.

In order to further develop the ideas presented here, multi-spacecraft observa-
tions will be needed. Radial line-up opportunities between Solar Orbiter and other
spacecraft such as PSP will allow us to track the temporal evolution of individ-
ual switchbacks with heliocentric distance and to identify the conditions required
for reconnection to occur at their boundaries. Repeating my analysis on PSP events
(Froment et al., 2021) and comparing the results with the ones discussed here would
also be an interesting idea to explore in future studies.

My model predicts that reconnection will convert a portion of the switchback
into a magnetic flux rope disconnected from the Sun. Such a structure will appear
as a reversal in the HMF polarity but can be distinguished from a switchback in the
strahl PAD data. Simultaneous multi-point measurements of the switchback, recon-
nection outflow region, and flux rope by constellation-type missions such as Cluster
(Escoubet et al., 1997), MMS (Burch et al., 2016), and the upcoming HelioSwarm
(Klein et al., 2019; Broeren et al., 2021; Matthaeus et al., 2022) will allow verifi-
cation of the validity of the model. These types of measurements can also better
constrain the 3D geometry of these structures and isolate spatial variations from
temporal variations.



Chapter 6

Conclusions and future work

In this thesis, I use a combination of mathematical modelling methods and in-situ
observations from the Solar Orbiter mission to study the properties of magnetic re-
connection in the solar wind, focusing on three important aspects of reconnection.
First, I examine the structure of reconnection outflows in the solar wind, placing
particular emphasis on the bifurcated reconnection current sheet. Second, I analyse
the proton populations observed in the reconnection outflow region and how it re-
lates to the outflow region structure. Third, I investigate the role reconnection plays
in the erosion of magnetic switchbacks, which are structures that are ubiquitous in
the near-Sun solar wind.

In Chapter 3, I extend existing current sheet stress balance models describing
reconnection in the Earth’s magnetotail (Owen & Cowley, 1987a,b) to develop a
novel mathematical framework to describe the structure of reconnection outflows
in the solar wind. I show that unlike in the magnetotail, the forces due to mag-
netic and thermal pressure gradients contribute to the stress balance and must be
accounted for in the analysis. I then set up a simple model of a 2-D, steady-state,
symmetric reconnection outflow bound by a bifurcated RCS, with a pair of iden-
tical inflow proton beams incident upon it from opposite sides. As the two inflow
beams pass through the bifurcated RCS into the outflow region, they form a pair
of counterstreaming proton beams within the outflow region. This reconnection
configuration is characteristic of those observed in the solar wind (Gosling et al.,
2005a). Using the current sheet stress balance conditions, I derive a set of equations
for various parameters describing this reconnection configuration, such as the open-
ing angle of the outflow region, as well as the velocity, density, and temperature of
the counterstreaming beam pair in the outflow region. After initialising the model
with typical magnetic field and plasma conditions in the solar wind, I obtain values
for the outflow region opening angle and bulk outflow speed that are consistent with
observations of reconnection outflows in the solar wind (Enžl et al., 2014; Mistry
et al., 2015). By reconstructing the velocity distribution function in the outflow re-
gion, I show that counterstreaming beams are difficult to clearly resolve in the solar
wind because their relative speeds are comparable their thermal speeds. Previous
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studies (Gosling et al., 2005a; Lavraud et al., 2021) of this phenomenon found that
the observed relative speeds were consistently smaller than expected and attributed
this to the electromagnetic ion beam instability (Goldstein et al., 2000). My results
suggest that this discrepancy may more likely be a natural consequence of stress
balance at the current sheet, as the inflow beams slow down and heat up as they
enter the outflow region.

In Chapter 4, I apply my symmetric current sheet stress balance models to So-
lar Orbiter observations of reconnection outflows in the solar wind. Out of 3163 po-
tential reconnection outflows identified in 2023, I shortlist five events with symmet-
ric magnetic field and inflow conditions most compatible with the model assump-
tions for further analysis. For these events, I find outflow region opening angles
ranging from 0.2◦ to 10.8◦, consistent with results from earlier studies (Mistry et al.,
2015). I then reconstruct the VDF of the proton beam population in the reconnec-
tion inflow and outflow regions, and compare them with the observed VDFs from
the PAS instrument onboard Solar Orbiter. Here, I highlight the results from two
events: one on 9 January 2023 and the other on 9 July 2023. For the 9 July event,
the symmetric stress balance model successfully describes the structure and beam
population of the reconnection outflow region. A clear counterstreaming beam sig-
nature is observed throughout the outflow region, and the observed beam velocities
are a good match to the predicted velocities derived from the model. By contrast,
the structure of the 9 January event is more complex and deviates significantly from
that predicted by the symmetric stress balance model. The outflow region is divided
into two halves, each characterised by a different beam population. In the leading
half, the proton population is characterised by a a single outflow beam with prop-
erties similar to the inflow beam from the leading inflow region. However, in the
trailing half, the proton population is characterised by a pair of counterstreaming
beams which persists into the trailing inflow region. This suggests that this event
has an outflow region with an asymmetric, multi-layered structure, consistent with
the framework described by Owen et al. (2021). In this picture, the outflow region is
divided into multiple layers, each containing a distinct population of proton beams
that may be separated by additional current sheets. Several examples of this type of
multi-layered reconnection outflow have been reported in other studies using Solar
Orbiter and Parker Solar Probe data (Lavraud et al., 2021; Phan et al., 2022; Duan
et al., 2023).

My analysis of the symmetric current sheet stress balance model in Chapter 3
is limited to ensuring consistency with previous results and observations of recon-
nection outflows in the solar wind. The first step in generalising this model would be
to introduce asymmetric inflow conditions and magnetic field geometries, while re-
taining the bifurcated RCS structure. Since the majority of reconnection outflows in
the solar wind are characterised by a bifurcated RCS (Gosling et al., 2006a; Gosling
& Szabo, 2008; Mistry et al., 2015; Phan et al., 2020), an asymmetric current sheet
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stress balance model provides the framework for describing the structure and proton
beam population for a wider range of reconnection events in the solar wind. An-
other useful experiment would be to determine the range of inflow conditions for
which a solution to the stress balance model exists for a given magnetic field geom-
etry. Reconnection can occur in the range where a solution exists, but is suppressed
in the range where no solution exists (Owen & Cowley, 1987b). The results of this
analysis could then be compared with existing studies which use the magnetic shear
angle and plasma β difference across the RCS as indicators of whether reconnection
is allowed or suppressed (Swisdak et al., 2003, 2010; Phan et al., 2010).

Going beyond the bifurcated RCS case, I can also further extend the current
sheet stress balance models to describe multi-layered reconnection outflows. This
will require relaxing the requirement that the reconnection inflow beam just catch
up with current sheet on the opposite side of the outflow region and not exit the
outflow region (see Section 3.3). Taking the 9 January event discussed in Section
4.5.2 as an example, the interpretation of this event suggests that one of the in-
flow beams has sufficient speed to pass through the outflow region entirely, while
the other is too slow to reach the opposite side of the outflow region. Based on
the VDF measurements, this reconnection outflow can be divided into five layers,
potentially separated by up to four current sheets (Owen et al., 2021). The stress
balance model for this multi-layered reconnection configuration would be signifi-
cantly more complicated than the bifurcated RCS case, as it requires evaluating the
stress balance conditions for a coupled system of four or more current sheets while
ensuring self-consistency in the results. This would build upon previous work by
Heyn et al. (1985); Owen & Cowley (1987b); Owen et al. (2021) that sets up the
theoretical framework for describing the structure of reconnection outflows with
multiple layers or inflow beams.

Most existing observations of counterstreaming proton beams in reconnection
outflows are associated with reconnection at ICMEs (Gosling et al., 2005a). This
is because ICMEs are characterised by stronger magnetic fields and cooler plasma,
leading to a higher Alfvén speed and lower proton beam thermal speed compared
to elsewhere in the solar wind. Since the relative speed of the counterstreaming
beams is related to the Alfvén speed, these conditions make it easier to observe well-
separated counterstreaming beams in ICMEs. A follow-up study focusing mainly
on the properties of the counterstreaming beam population could involve searching
specifically for reconnection events associated with ICMEs. This would involve go-
ing through my catalogue of 3163 potential reconnection events in 2023, but instead
employing selection criteria aimed at looking for reconnection outflows embedded
within solar wind flows with properties associated with ICMEs. These properties
may include strong magnetic fields, cool plasma, and bi-directional electron strahl
(Gosling, 1990; Neugebauer & Goldstein, 1997). Using the automated reconnection
identification algorithm developed by Fargette et al. (2023), I could also expand my
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search to other periods where Solar Orbiter data is available.
Finally, in Chapter 5, I evaluate the viability of magnetic reconnection as an

erosion mechanism for magnetic switchbacks in the solar wind. I identify three
examples of magnetic switchbacks in the solar wind with magnetic field and plasma
data from Solar Orbiter between 10 August 2021 and 30 August 2021. During this
interval, the spacecraft was at a heliocentric distance of 0.6–0.7 AU from the Sun.
Using hodographs and Walén analysis methods, I test for rotational discontinuities
and reconnection outflows at the switchback boundaries. For all three switchbacks, I
find evidence of magnetic reconnection at their trailing edge boundaries. I postulate
that reconnection can accelerate the erosion of switchbacks through the removal of
polarity-reversed magnetic flux from the switchback interior. The timing analysis
of this process show that complete erosion of the switchback occurs over timescales
ranging from a few minutes to a few hours, suggesting that reconnection is a fast
and efficient mechanism for eroding individual switchbacks. During this time, the
switchbacks are convected a further 0.005–0.4 AU from their point of detection
by the background solar wind flow, implying complete erosion occurs before they
reach 1 AU. This could explain the relative lack of switchback observations near
Earth compared to near the Sun.

Although I have demonstrated that reconnection can rapidly remove individual
switchbacks, questions still remain about the overall importance of magnetic recon-
nection to the evolution and erosion of switchbacks in the inner heliosphere. Includ-
ing the three events discussed in this thesis, there have only been eight examples of
switchback boundary reconnection reported thus far: five using Solar Orbiter data
(Fedorov et al., 2021; Lavraud et al., 2021; Suen et al., 2023), and three using PSP
data (Froment et al., 2021). A logical follow-up to the case study presented here
would be to conduct a large-scale survey of reconnecting switchbacks in the solar
wind, using Solar Orbiter or PSP data from the past few years.

Automated methods of identifying switchback based on identifiers such as the
deflection angle of the magnetic field (Dudok de Wit et al., 2020) and velocity en-
hancements (Horbury et al., 2020b) already exist, and could be used to create a
catalogue of switchbacks analogous to the one for reconnection outflows created in
Chapter 4. By comparing the two catalogues, I could determine the proportion of
reconnection events that occur at switchback boundaries, as well as the occurrence
rate of switchback boundary reconnection and how this rate varies with heliocentric
distance. Combining the estimates of the occurrence rate of switchback boundary
reconnection and the timing analysis for switchback erosion could then allow infer-
ence of how reconnection governs the overall evolution and decay of switchbacks.
As switchbacks carry energy from the Sun’s corona into the heliosphere (Rivera
et al., 2024), understanding how they decay and thus, transfer their stored energy
into their surroundings, has implications for the solar wind heating and acceleration
problem.
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Khrabrov, A. V., & Sonnerup, B. U. Ö. 1998, ISSI Scientific Reports Series, 1, 221

Klein, K. G., Alexandrova, O., Bookbinder, J., et al. 2019, arXiv e-prints,
arXiv:1903.05740

Klimchuk, J. A. 2006, Solar Physics, 234, 41, doi: 10.1007/

s11207-006-0055-z

Knetter, T., Neubauer, F. M., Horbury, T., & Balogh, A. 2004, Journal of Geophys-
ical Research (Space Physics), 109, A06102, doi: 10.1029/2003JA010099

Krasnoselskikh, V., Larosa, A., Agapitov, O., et al. 2020, Astrophysical Journal,
893, 93, doi: 10.3847/1538-4357/ab7f2d

Laker, R., Horbury, T. S., Matteini, L., et al. 2022, Monthly Notices of the Royal
Astronomical Society, 517, 1001, doi: 10.1093/mnras/stac2477

http://doi.org/10.1086/141602
http://doi.org/10.1086/142452
http://doi.org/10.3847/1538-4357/aab3cd
http://doi.org/10.3847/1538-4357/aab3cd
http://doi.org/10.1029/JA090iA02p01781
http://doi.org/10.1093/mnras/sty953
http://doi.org/10.1051/0004-6361/201937257
http://doi.org/10.3847/1538-4365/ab5b15
http://doi.org/10.1016/0032-0633(70)90036-X
http://doi.org/10.1016/0032-0633(70)90036-X
http://doi.org/10.1088/0004-637X/745/2/162
http://doi.org/10.1038/s41586-019-1813-z
http://doi.org/10.1038/s41586-019-1813-z
http://doi.org/10.1007/s11207-006-0055-z
http://doi.org/10.1007/s11207-006-0055-z
http://doi.org/10.1029/2003JA010099
http://doi.org/10.3847/1538-4357/ab7f2d
http://doi.org/10.1093/mnras/stac2477


REFERENCES 152

Larosa, A., Krasnoselskikh, V., Dudok de Wit, T., et al. 2021, Astronomy & Astro-
physics, 650, A3, doi: 10.1051/0004-6361/202039442

Lavraud, B., Kieokaew, R., Fargette, N., et al. 2021, Astronomy & Astrophysics,
656, A37, doi: 10.1051/0004-6361/202141149

Leighton, R. B. 1969, The Astrophysical Journal, 156, 1, doi: 10.1086/149943

Lewis, G., Anekallu, C., Raines, J., & Fedorov, A. 2023, SWA Data Product Defini-
tion Document Version J, Tech. rep., University College London – Mullard Space
Science Laboratory

Macneil, A. R., Owens, M. J., Wicks, R. T., et al. 2020, Monthly Notices of the
Royal Astronomical Society, 494, 3642, doi: 10.1093/mnras/staa951

Maksimovic, M., Bale, S. D., Chust, T., et al. 2020, Astronomy & Astrophysics,
642, A12, doi: 10.1051/0004-6361/201936214
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