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Abstract

A central-moment discrete Boltzmann method (CDBM) is proposed for
reactive flows, accommodating adjustable specific heat ratios and Prandtl
numbers. In the framework of CDBM, a unified set of kinetic equations
is used to delineate both macroscopic quantities and higher-order central
moments. Via these central moments, the nonequilibrium effects that are di-
rectly related to the thermal fluctuation beyond conventional hydrodynamic
governing equations can be quantified. Moreover, the discrete Boltzmann
equation of the CDBM is simpler than that of previous multiple-relaxation-
time DBMs, owing to the elimination of the additional term in the DBM.
Furthermore, this method is capable of modeling supersonic compressible
reactive flows characterized by high Mach numbers. The model is verified
through simulations encompassing sound waves, shock waves, thermal Cou-
ette flows, regular shock reflections, and supersonic reactive waves.
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1. Introduction

Reactive flows refer to fluid flows with chemical reactions which include
a broad range of phenomena, such as flames, detonations, chemical lasers
and the earth’s atmosphere. Applications can be found in the field of trans-
portation, energy generation and materials processing [l|. The research on
reactive flows is also a key issue to change the atmospheric pollution, climate
change and global warming which are directly relevant to harmful emissions
from reactive flows. However, reactive flows are known to be a challenge
for numerical simulations due to a large number of coupled physicochemi-
cal processes and scales both in time and space [, 2]. All of the processes,
such as the chemical reactions, subsequent heat release, and the fluid dy-
namics, must be considered simultaneously [l, 2]. In addition, the influence
of hydrodynamic and thermodynamic nonequilibrium effects are significant
around sharp physical gradients, which are common in violent reacting flows.
This increases the complexity of the problem and the difficulty of research,
because the nonequilibrium effects always change density, velocity, tempera-
ture, etc., in the evolution of fluid systems away from equilibrium, especially
in transient and/or extreme conditions [3, 4].

Serving as the cornerstone of kinetic theory, the Boltzmann equation pro-
vides the potential to effectively and accurately simulate intricate nonequilib-
rium flows across a broad spectrum of spatiotemporal scales. In 1997, Succi
et al. established the first lattice Boltzmann model (LBM) applied to reactive
flows and successfully simulated the methane/air diffusion flame problem in
the limit of fast chemistry [B]. Since then, and up until the late 2010s, there
are some progress of LBM in combustion research [6, 1, §, 9, 10, [11], but all
limited to a simplified case in the absence of a good compressible realization,
persistent issues with stability of solvers and the absence of multi-species
formulations [12]. As a promising kinetic method, remarkable progresses
have been made by using LBM in recent years. For example, in 2019, Hos-
seini et al. proposed a hybrid lattice Boltzmann-finite difference numerical
scheme for the simulation of reacting flows at low Mach number and simu-
lated three-dimensional counter-flow premixed flame [[13]. In 2022, Sawant
et al. proposed a LBM for compressible reacting multi-species flows recov-
ering the Stefan-Maxwell diffusion closure together with barodiffusion [14].
In 2023, a new finite-volume schemes based on the LBM for simulations of



gaseous detonations have been proposed by Gauthier et al. [15]. Despite
their progress, most LBMs for combustion are limited to low Mach num-
ber reactive flows and all ignore a variety of thermodynamic nonequilibrium
effects included in the Boltzmann equation.

In parallel with efforts to develop standard LBMs for reactive flows sim-
ulations, other attempts at developing Boltzmann-based models have also
made progress, such as discrete Boltzmann method (DBM). which has been
developed and successfully used in various complex systems [16, 17, 18, [19, 20,
21, 22]. In particular, the DBM introduces higher-order kinetic moments so
that hydrodynamic and thermodynamic fields are fully coupled, macroscopic
equations can be recovered accurately [23]. Furthermore, the DBM can bring
deeper insights into the hydrodynamic and thermodynamic nonequilibrium
effects beyond the Navier-Stokes (NS) equations[23]. In 2012, Xu et al. first
proposed the idea that the physical quantities and nonequilibrium informa-
tion of a system can be described and extracted with the help of kinetic
moments of distribution functions [24]. In 2013, Yan et al. were pioneers in
proposing a DBM for detonations, employing the Lee-Traver reaction model
[25]. In 2014, Lin et al. introduced a DBM in polar coordinate system to
probe the implosion and explosion processes, in which the Cochran rate func-
tion was invoked to describe the chemical process [26]. In 2015, Xu et al.
developed a two-dimensional multi-relaxation DBM that achieved the natu-
ral coupling of heat release from chemical reactions with fluid systems [27].
In 2016, through the Chapman—Enskog multiscale analysis, Zhang et al. de-
termined the physical meanings of the nonequilibrium quantities in the DBM
[28]. In 2021, Ji et al. developed a DBM to a three-dimensional supersonic
reaction flow system and successfully simulated the unstable detonation phe-
nomenon [29]. In 2023, Su et al. obtained and analyzed the characteristics of
unsteady detonation by using the DBM [22]. In 2024, Ji et al. proposed an
eulerian discrete kinetic framework in comoving reference frame to simulate
hypersonic compressible flows [30].

In this paper, we develop a robust and accurate central-moment discrete
Boltzmann method (CDBM) for reactive flows with flexible specific heat ra-
tios and Prandtl numbers. The “central-moment-based” was firstly proposed
in LBM for a cascaded operator, conducting collisions in the central-moment
space [31, B2, B3]. Then Zhang et al. employed a central-moment-based mul-
tiple relaxation time collision operator in discrete unified gas kinetic scheme
for incompressible two-phase flows [34].Inspired by existing works, we employ
central moments based on peculiar velocity to compute discrete equilibrium



distribution functions, collision terms, and reaction terms, whereas all pre-
ceding DBMs are formulated in raw-moment space. During the recovery
of traditional Navier-Stokes (NS) equations through the Chapman-Enskog
expansion, it is discovered that the collision term of all DBMs necessitates
modification with an additional term to restore the lost relationship in the
process of coarse-grained modeling. However, the additional term can be
eliminated in the CDBM, which is naturally consistent with the NS equations
in the hydrodynamic limit. Furthermore, nonequilibrium effects captured by
DBMs are rooted in raw moments, implying their correlation with the cou-
pled behaviors of flow and thermal. In contrast, the CDBM possesses the
capability to directly quantify the nonequilibrium effects of reactive flows as-
sociated with thermal fluctuations. This aids in examining the mechanisms
and characterizations of reactive flows with regard to thermal fluctuations.

The rest of the paper is organized as follows. The CDBM are described
in Sec. 2. In Sec. Ef)the model is validated by typical benchmarks, i.e.,
the sound wave, the shock wave, the thermal Couette flow, the regular shock
reflection, and the supersonic reactive flow. Finally, conclusions are presented
in Sec.

2. Central-moment-based discrete Boltzmann model

In formulating the CDBM, a unified set of equations is employed to con-
currently describe macroscopic quantities (e.g., density, velocity, and tem-
perature) and higher-order central moments,

Afi
ot

where t is the time, v; the i —th discrete velocity, f; the discrete distribution
function, and V the Hamilton operator.

It should be noted that the discretization refers to the discretization of
the particle velocity distribution function in the velocity space, and the dis-
cretization format is flexible. In this paper, we utilize a two-dimensional
sixteen-velocity (D2V16) model, depicted in Fig. m The discrete velocities
and associated parameters are structured as follows,

cyc v, (£1,0), 1<i<A4,
cyc: vy (£1,£1), 5<i <8,
cye : v, (£1,0), 9<i1<12,
cyc:vg (£1,£1), 13 <i <16,
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Figure 1: Sketch of discrete velocities.

Na, 1 <10 <4,
o Mo, 5§Z§87
=Y o, 9<i<12, (3)

ne, 13 <i <16,

where v,, vy, v, and v, are tunable parameters controlling the value of discrete
velocities, 1., My, n. and 7, are the corresponding parameters for degrees of
freedom, and cyc denotes the cyclic permutation.

On the right side of Eq. [ll, €2; represents the collision term which accounts
for the change rate of distribution function due to molecular collisions and
takes the form

Q = —Cy" S (fe = £1) (4)
where C’;l is the element of the transition matrix C~* = (C{' C3' --- Cl_ﬁl)T
containing the blocks C;* = (C;;' Ci' -+ Cjg). In fact, the transition ma-

trix serves as the bridge for transformation of velocity distribution function
between central moment space and discrete velocity space. The parameter
Sji, is the element of the matrix S= diag (S1 Sz -+ Sie), which controls the
relaxation speed of fi approaching f;?. In addition, f and f;? represent dis-
crete distribution function and its equilibrium counterpart in central moment
space, respectively. The subscript k£ is used to mark the central moment.
Correspondingly, the Prandtl number is adjustable and reads Pr = S,./S,,
under the conditions S5 = S5 = S7 = 5, and Sy = S9 = S,,. For the pur-
pose of recovering NS equations in the hydrodynamic limit, the equilibrium



discrete distribution function should satisfy the following central moment

relationships:
[ [ rovavin =, v (5)

with U = 1, v*, v*-v*+n?, v*v* (V' v + 0?) v, vivive (v v+ ) v

correspondingly, ¥, = 1, VZ, vievi g vievE (Vvievi+n?) v, VZ*V;‘V:‘,
(vi-vi+n?)vivi. Here vi = v —u and v = v; — u, with u the flow
velocity, n and n; are used to describe the corresponding vibrational and/or
rotational energies. Besides, the equilibrium distribution function f¢¢ takes

the form [35]

feq:n< m )D/2< m )1/2exp [_m|v—u[2 _mp?

2nT 2rIT 2T 2IT (6)

where n is the particle number density, m = 1 the particle mass, and p = nm
the mass density. Besides, T represents the temperature, D denotes the
dimension, I stands for extra degrees of freedom due to vibration and/or
rotation, and v = (D + 1+ 2)/(D + I) represents the specific heat ratio.
The previous central moment relationships can be ertten into fk, = Cly fZ ,
with f{? = p, =0, =0, fi! = pT(I+ D), f* = pT, f&*

[ =T, f 0, fs"=0,fid =0, fit =0, fis =0, ff§=pT2(D+I+2>,
fii =0, fii =0, and fi§ = pT? (D +1+2). Therefore, the equilibrium
discrete distribution function can be calculted by fi? = C;;' 4.

In addition, the reaction term R; is the change rate of the discrete distri-
bution function due to the chemical reaction. The original expression reads
4l 2

2
—(1+D)IT+I|v—ul"+n fea, (7)

21T?

where T" = 2QMN' /(D + I) is the varying rate of temperature, and the su-
perscript ’ denotes the changing rate due to chemical reaction. Besides, )
and A indicate the chemical heat release per unit mass of fuel and the mass
fraction of chemical product, respectively. Similarly, the reaction term also
satisfies the corresponding central moment relationships:

/ / RUdvdny = Zi RV, (8)

where the elements of ¥ and U; are identical to those in Eq. _(H) There-
fore, the reaction term can be calculated by R; = CﬁlRl, and R; is the ele-

R:

ment of matrix R= (Rl Ry --- RN)T. The detailed expressions are Ry = 0,



Ry =0, R3 = 0, R3 = 0, Ry = 2pNQ, Ry = 2pNQ/(D+1I), Rg =
O, R7 = 2p>\/Q/ (D+[), Rg = O, Rg = 0, ng = 0, Rll = 0, ng =
0, ng = 0, E14 = 2)\/QpT<D+[—|—2>/(D+[), R15 = 0, and é16 =
2XQpT (D+1+2)/(D+1).

It is worth mentioning that the governing equation Eq. m is simpler than
those of all preceding DBMs, owing to the absence of an additional term.
This stems from the fact that traditional NS equations can be directly derived
from CDBM through the Chapman-Enskog expansion. Besides, the CDBM
contains more detailed nonequilibrium effects than a traditional NS model, as
it enables simultaneous determination of density, velocity, temperature, and
higher-order kinetic moments. Specifically, adhering to conservation laws,
f£% can be replaced by f; in the first three central moment relationships in
Eq. B, from which the density p, hydrodynamic velocity u, the energy F,
and temperature 7' can be obtained,

pu= ZZ fivi, (10)
1

1 1
Ezépu~u+m Tzizifi(Vi'Vi+7]2)~ (11)

Nonetheless, substituting f;? with f; introduces a discrepancy between the
left and right sides of the last four central moment relationships in Eq.
These disparities in higher-order moments of the distribution function from
their equilibrium counterparts reflect the deviation of physical system from
its equilibrium state. In other words, the CDBM can be employed to quantify
the following nonequilibrium manifestations,

A; =" (i [ vivi, (12)

A5y =D (fi= f) (vivi+nl)vi, (13)
A5 =" (fi= fvivivi, (14)

Njp = (fi= [ (vi-vi+nf)vivi. (15)

The second order tensor Aj corresponds to the viscous stress tensor and
the nonorganized energy. The vector A3, corresponds to the heat flux and



is related to the nonorganized energy flux. A3 and A}, are higher-order
nonequilibrium quantities beyond traditional NS models. It is worth noting
that comparing with the previous DBMs constructed in raw-moment space,
the CDBM can provide the nonequilibrium effects related to the thermal
fluctuation directly.

3. Verification and validation

In this section, we conduct several benchmark cases to verify the effec-
tiveness and accuracy of the proposed CDBM for compressible flows. (1) The
sound wave is simulated to verify that the CDBM is suitable for compressible
flows. (2) The shock wave is carried out to demonstrate the CDBM has the
capability of measuring supersonic flows and the corresponding nonequilib-
rium manifestations. (3) To verify the CDBM for adjustable specific heat
ratios and Prandtl numbers, we simulate Couette flow. (4) Then, a typi-
cal two-dimensional benchmark, shock reflection, is simulated successfully.
(5) Finally, a reacting wave is simulated in order to verify the suitability of
CDBM for supersonic reactive flows. It should be noted that the second-
order Runge-Kutta scheme is adopted for the time derivative in Eq. m, and
the second-order nonoscillatory and nonfree-parameter dissipation difference
scheme is employed for the space derivatives [37].

3.1. Sound wave

Firstly, let us demonstrate that the CDBM is capable of capturing the
sound wave. The initial condition is in a two-dimensional field with (p, u,, u,, T') =
(1,0,0,1). For the computational domain, the grid mesh is N, x N, =
801 x 801, and the spatial step is Az = Ay = 5 x 10~%. The temporal step is
At =1 x 107°. A small perturbation p = 1.0 + 0.01sin (¢ x 27/0.05) is im-
posed at the center. The perturbation spreads around at the speed of sound.
Therefore, the length of the wave can be used to verify the accuracy of our
model. The inflow and outflow boundary conditions are adopted. Figure
exhibits the pressure profile of the sound wave at time t=0.125. The theo-
retical value of the wave length is [ = 0.148, while the simulation result is [
= 0.147. It is evident that the relative error between the simulation result
and the exact solution is 0.68%, which is satisfactory.

3.2. Shock wave

Now we consider a shock wave propagating from left to right. At the
beginning, the shock front is located at = 0.01 with a Mach number Ma =
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Figure 2: Propagation of the two-dimensional sound waves at time ¢t = 0.125.
2. The initial state is set by the Hugoniot relation,

{ (p, g, uy, T), = (2.667,1.479,0,1.688) , (16)

(/0, Uy Uy, T)R = (1: 0,0, 1) )

where the subscripts L and R denote 0 < z < 0.01 and 0.01 < =z < 1, respec-
tively. In addition, inflow and outflow boundary conditions are employed
in the x direction, and the periodic boundary condition is adopted in the y
direction.

Grid convergence analysis is an important issue for numerical models,
hence we carry out simulations of the shock wave with various spatial steps to
verify the numerical accuracy. Figure H (a) plots density profiles of the shock
wave at a time instant t = 0.2, the dash-dot-doted, dash-dotted, dotted, and
dashed lines represent numerical results under spatial steps Az, = 2 x 1074,
Azy =1.414 x 1074, Az =1 x 107, and Azy = 7.071 x 107°, respectively.
The solid lines display the exact solution. The relative difference of the
maximum value of A3~ around the shock wave is chosen as the numerical
error. Figure E (b) illustrates the numerical error versus space step. The
squares stand for the CDBM results and the line for the fitting function
In(error) = kln(Axz) + 14.79. The slope is k = 2 which is equal to the
exact value k = 2, since the space derivative is solved at the second order
level. Besides, it is proved that the CDBM can capture the nonequilibrium
effects effectively and precisely.
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Figure 3: Grid convergence analysis: (a) profiles of density at a time instant ¢=0.2, (b)
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6 32 6
= Simulation = Simulation = Simulation
>
Exact 241 Exact = Exact
4+ o 4t
<
)
2z 5 16 2
2 2 = 2
a F g E
(a) 8 S (c)
0 g Of
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Mach number Mach number Mach number

Figure 4: Profiles of density (a), pressure (b),and horizontal velocity (c) with various Mach
numbers. Symbols represent CDBM results, and solid lines stand for exact solutions.

Then, we simulate a shock wave with various Mach numbers. The spatial
step is Az = Ay = 1 x 107%, and the temporal step At = 2.5 x 1076, Figure
@ display the profiles of (a) density, (b)pressure, and (c) horizontal velocity
versus Mach number, respectively. The symbols show the simulation results
and the solid lines indicate the exact solution,

_ (y+1)Mapo

p= vy—1)Ma2+2"
_ 2ypo 2 _ a1

b= ,y_gl Ma* — A/_,_llpOa (17)
_ 2c _ 1

up = 2% (Ma = 517) + uo.

It is evident that the simulation results coincide well with the theoretical val-
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Figure 5: Distribution of horizontal velocity along y direction in the evolution of Couette
flow at various time instants. The symbols indicate CDBM results and the lines denote
exact solutions.

ues. Consequently, the CDBM is suitable for high Mach number supersonic
compressible flows.

3.3. Thermal Couette flow

In this subsection, the simulation of Couette flow is carried out to demon-
strate that the CDBM is applicable to thermal flow with flexible specific
heat ratios and Prandtl numbers. The initial state of the fluid is py = 1.0,
Ty = 1.0, and ug = 0. Below the flow is a wall keeping still with a fixed tem-
perature 77 = 1.0, above the flow is a plate moving rightwards with constant
speed uy = 0.1 and temperature 75 = 1.0. The viscous shear stress transmits
momentum into the fluid and changes the flow velocity distribution. The
height between the walls is H = 0.3. The temporal step is At = 107, and
the spatial step is Ax = Ay = 1073, Periodic boundary conditions are ap-
plied to the left and right boundaries, and the nonequilibrium extrapolation
method is employed for the bottom and top boundaries.

Figure f indicates the horizontal velocity versus y at times t=1, 10, and
60, respectively. The symbols represent the simulation results, and the lines
for the analytical solutions,

2 = [(=1)" t\ . (nm
u = %uo%—;uog l( n) exp(—n%ﬁ#) sin (%)] . (18)

Figure B (a) illustrates the temperature profiles when the Couette flow
reaches equilibrium with various specific heat ratios v = 1.5, 1.28, and 1.18,
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Figure 6: Temperature distribution along the y direction with various specific heat ratios
(a). Temperature distribution along the y direction with various Prandtl numbers (b) The
symbols indicate CDBM results and the lines denote exact solutions.

respectively. Similarly, the symbols denote CDBM results, and the lines
stand for the exact solutions. Theoretically, the distribution of temperature
in the y direction follows

2, (19)

o
T=T, + (T, —T 2L
1+ (T 1) +2HUOH 7

Y
H
where 77 = 1.0 and T3 = 1.0 are temperatures of the lower and upper walls,
respectively. Here p and k are the dynamic viscosity and thermal conductiv-
ity, respectively. Moreover, the dynamic viscosity and thermal conductivity
take the form, p = p/S, and k = (D +1+2)p/(2S,) , under the condi-
tions S5 = S¢ = S7 = S, and Sg = S9 = S;. Obviously, the simulation
results agree well with the analytical solutions. Hence, the CDBM has the
capability of capturing the flow field with various specific heat ratios in the
dynamic process of the Couette Flow. Similarly, Fig fi (b) demonstrates
the distribution of temperature along y direction in the evolution of Couette
flow at various Prandtl numbers. The collision parameters are S, = 103,
with S, =2 x 10%, 10%, and 5 x 10? for Pr = 0.5, 1.0, and 2.0, respectively.
It is clear that our simulation results agree well with the analytical solutions
for various Prandtl numbers.

For the purpose of demonstrating that the CDBM has the capability of
capturing the nonequilibrium effects in the iterative process dynamically, we
examine the nonequilibrium quantities A3, and A3,  in the case with v =

2,xy
1.5. Figure B plots the CDBM results (symbols) at time instants ¢t = 1.0, 10.0,
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Figure 7: Vertical distribution of A3, and Aj; , at time instants ¢ = 1.0, 10.0, and 60.0,
respectively. Symbols denote the CDBM results, lines denote the corresponding theoretical
solutions.

and 60.0, respectively. And the lines are corresponding analytic solutions,

. Ou, — Ouy
22y — H ( ay + 81’ ) ) (20)
. oT
A3717y — _K;a_y. (21)

It can be found that the CDBM results are in good agreement with the ana-
lytical values. That is to say, the CDBM could describe the nonequilibrium
behaviours accurately.

3.4. Shock reflection

For the purpose of verifying the model for two-dimensional systems, we
use a typical benchmark: regular shock reflection. The computational do-
main is a rectangle. The reflecting surface is imposed on the bottom, the
supersonic outflow is adopted for the right boundary, and the Dirichlet con-
ditions are utilized on the top and left boundaries, i.e.,

(pa Ugy Uy T)(),y,t = (17 2,0, 05) )
(p, Uz, uy, T) = (1.25,1.9,—-0.173,0.56) ,

z,0.1,t

(22)

The parameters are N, x N, = 300 x 100, Az = Ay =1 x 107%, and At =
5 x 1075, Figure B exhibits the density contour of the steady regular shock
reflection. Theoretically, the angle between the incident shock wave and the
wall is @ = 7/6, while the CDBM gives the angle o = ArcTan(0.1/0.175).
The relative difference between them is only 0.8%, which is satisfying.
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Figure 8: Density contour of steady regular shock reflection on a wall.

3.5. Supersonic reacting wave

Finally, for the sake of verifying its suitability for supersonic reactive
flows, the model is used to simulate a reacting wave. Here, the two-step
reaction scheme is employed to control the chemical reaction process [3§].
The initial field is divided into two parts, with the reacting wave travels
from left to right. The initial configuration satisfies the following Rankine-
Hugoniot conditions

{ (9, Uy, T, = (1.3884,0.5774, 0, 1.5786) ,

23
(p7umyuy;T)R: (1,070,1), ( )

where the subscript L and R indicate 0 < z < 0.05 and 0.1 < x < 0.5,
respectively. The Mach number is 1.74. The other parameters are Az =
Ay =1x 107", and At = 2 x 107% to ensure a high resolution. In addition,
inflow and outflow boundary conditions are employed in the x direction, and
the periodic boundary condition is adopted in the y direction.

Figure E displays the wave profiles (a) density, (b) temperature, (c) hor-
izontal velocity and (d)pressure. The symbols stand for the CDBM results,
and the solid lines stand for the solutions of the Zel’dovich-Neumann-Déring
(ZND) theory [@] Clearly the results of the current model agree well with
the ZND solutions. Compared with the ZND solutions (p, uy,u,, T, P) =
(1.3884,0.5774,0,1.5786,2.1916) behind the detonation wave, the simulation
results behind the wave are (p, u,, u,, T, P) = (1.3883,0.5778, 0, 1.5785,2.1914).
The relative errors are 0.007%, 0.06%, 0%, 0.006% and 0.009% respectively,
which demonstrates that the CDBM is able to simulate the supersonic reac-
tive flows accurately.

14
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4. Conclusions and Discussions

In this paper, we present the development of a CDBM capable of accu-
rately simulating compressible reactive flows. The governing equations are
a unified set of kinetic equations discretized in velocity space with reaction
source terms describing the influence of the chemical reaction. In the frame-
work of the CDBM, the central kinetic moments are adopted to calculate the
discrete equilibrium distribution functions, collision terms and reaction terms
with utilization of a matrix inversion method. Via the Chapman-Enskog ex-
pansion, the macroscopic quantities and noneuilibrium effects beyond the
conventional hydrodynamic governing equations are described by central
moment relationships which are based on the peculiar motion. Notably,
unlike all previous DBMs, the CDBM no longer necessitates an additional
term, rendering it consistent with NS equations in the hydrodynamic limit
during the coarse-grained modeling process. Moreover, the CDBM can di-
rectly quantify the nonequilibrium effects related to the thermal fluctuation,
which is different from previous DBMs constructed in raw-moment space.
To validate the performance of the present model, the accuracy in capturing
compressible waves is initially assessed by simulating a sound wave. Subse-
quently, the model’s capability to simulate supersonic flows is demonstrated
through shock wave benchmarks, with concurrent verification of grid conver-
gence analysis. Besides, the thermal couette flows are employed to demon-
strated that the specific heat ratio and Prandtl number are adjustable in
CDBM. Moreover, successful simulation of a typical two-dimensional bench-
mark, shock reflection, is accomplished. Lastly, a supersonic reactive wave
is employed to demonstrate that the influence of chemical reactions can be
characterized by CDBM.
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