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Maynard Smith revisited:
A multi-agent reinforcement learning approach to the
coevolution of signalling behaviour

Abstract

The coevolution of signalling is a complex problem within animal behaviour, and is also
central to communication between artificial agents. The Sir Philip Sidney game was
designed to model this dyadic interaction from an evolutionary biology perspective, and
was formulated to demonstrate the emergence of honest signalling. We use Multi-Agent
Reinforcement Learning (MARL) to show that in the majority of cases, the resulting
behaviour adopted by agents is not that shown in the original derivation of the model.
This paper demonstrates that MARL can be a powerful tool to study evolutionary
dynamics and understand the underlying mechanisms of learning over generations;
particularly advantageous is the interpretability of this type of approach, as well as that
fact that it allows us to study emergent behaviour without the need to constrain the
strategy space from the outset. Although it originally set out to exemplify honest
signalling, we show that the game provides no incentive for such behaviour. In the
majority of cases, the optimal outcome is one that does not require a signal for the
resource to be given. This type of interaction is observed within animal behaviour, and
is sometimes denoted proactive prosociality. High learning and low discount rates of the
reinforcement learning model are shown to be optimal in order to achieve the outcome
that maximises both agents’ reward, and proximity to the given threshold leads to
suboptimal learning.

Author summary

When is it too costly for animals to signal that they are in need? Signalling is a crucial
part of communication in animal behaviour, and it is also central other types of
interactions, such as those involving artificial agents. We study emergent dynamics in
the Sir Philip Sidney game, a game designed to show the mechanisms of honest
signalling amongst animals. Using multi-agent reinforcement learning (MARL), we
replicate generational learning and show that in the majority of scenarios, the optimal
outcome is one of proactive prosociality rather than honest signalling: this is an
outcome where a resource is given without the need for a costly signal. Such behaviour
is observed within animal behaviour, most notably among primates. Our results also
establish the usefulness of reinforcement learning as a tool to study emergent behaviour
and dynamics within animal behaviour, for instance as shown here to study behavioural
changes and learning over generations.

Introduction 1

Signalling is an important mechanism of information transfer between organisms [1], 2

and is also a central aspect of communication [2]. The study of signalling within dyadic 3

interactions, both involving conflicting or common interest, has given rise to a number 4

of theories surrounding the emergence of honest signalling [3, 4]. Much of the literature 5

has come from the field of animal behaviour, where signals are crucial to interactions 6

such as parent-offspring begging [5], food sharing [6, 7] or sexual selection [3, 8]. The 7
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latter formed the basis of Zahavi’s handicap principle [3, 9], which argues that signals 8

must be costly in order to be honest. The handicap principle has been shown both 9

theoretically [10], and experimentally [11]: using the example of blue jays, honesty 10

persisted with high signal costs, and disappeared with low costs. Robson’s secret 11

handshake [4] also studied the emergence of reliable signals within evolutionary games. 12

Perhaps the best known game used to study signalling behaviour within biology is the 13

Sir Philip Sidney game [12], which set out to formalise mechanisms of honest signalling 14

between animals. 15

Interactions involving signalling have also been modelled from a computational 16

perspective. Catteeuw and Manderick [13] used a reinforcement learning approach to 17

study equilibria in Lewis signalling games [14], where they showed how the use of this 18

method can lead to optimal equilibria. Focusing on prosocial human behaviour, others 19

have identified mechanisms like reputation to be central to indirect reciprocity and to 20

cooperation more widely [15]. Reputation creates an incentive to forego short-term 21

gains of not cooperating in order to benefit from a good reputation in the longer-term; 22

this argument has been demonstrated using reinforcement learning [16,17]. 23

Among artificial agents, communication via signals is essential in achieving 24

coordination. Existing mechanisms include the presence of a coordination protocol [18], 25

or the use of a common language [19]. Communication between agents is particularly 26

central in the field of Cooperative AI [20], where common ground is required to ensure 27

agents are able to interpret each other’s messages [21]. Under situations where there is 28

no pure common interest, the question of dishonest signals and the potential for 29

deception arises [20,22] - this mirrors the debate within the evolutionary biology 30

literature. Open questions remain regarding how to achieve prosociality among artificial 31

agents in social dilemma-type situations [23]. When it comes to scenarios where there is 32

pure conflict of interest, the incentive to communicate disappears [22]. Evolutionary 33

game theory in conjunction with computational approaches has proven fruitful in 34

studying emergent collective behaviour more widely, although there is still uncertainty 35

relating to the mechanisms leading to behaviour akin to altruism [24]. 36

Given that similar questions arise when it comes to signalling and communication 37

within both artificial agents and animal behaviour, insights derived using computational 38

methods such as reinforcement learning can effectively be applied to understand 39

mechanisms within evolutionary biology. Frankenhuis, Panchanathan and Barto [25] 40

highlight the valuable insights that can be drawn from applying reinforcement learning 41

methods to behavioural ecology, both across generations and within organisms, for 42

instance to study adaptive behaviour based on experience. Watson et al. [26] also 43

discuss the equivalence of evolutionary processes and simple learning processes, 44

highlighting the use of past experience to make decisions in both types of systems. The 45

value of interactions between the disciplines of evolutionary game theory and machine 46

learning to gain new insights about evolutionary dynamics of interacting agents has 47

previously been discussed [27], in particular with regards to multi-agent systems [28]. 48

Modelling the interaction between two or more agents allows us to study not only 49

behaviour but also emergent strategies, providing us a deeper understanding of 50

decision-making. When reinforcement learning is applied to scenarios involving two or 51

more interacting agents, it is referred to as Multi-Agent Reinforcement Learning 52

(MARL). This is the approach used in this paper, as we will show that it can be a 53

powerful tool for modelling interactions among learning agents. As opposed to other 54

methods, there is no need to hand-code the set of strategies that can be learned by the 55

agent, so we are able to observe the emergence of potentially unanticipated strategies. 56

Reinforcement learning involves a defined action space, which are the possible actions 57

that each agent may take, and a set of rewards that guide the learning process, but no 58

predefined set of strategies. Using this approach, we are able to observe the strategies 59
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that emerge through interactions. 60

An alternative approach is the use of replicator dynamics, a useful method for 61

studying the evolution of strategies within a population. There is considerable work in 62

this area; previous studies have precisely looked at signalling games using replicator 63

dynamics [1, 29], in particular at the Sir Philip Sidney game [30]. In their work, 64

Huttegger and Zollman [30] highlight limitations in the traditional evolutionarily stable 65

states (ESS) methodology, and point to the existence of a polymorphic equilibrium 66

involving mixed strategies which, under certain parameters, is more likely to occur than 67

the honest signalling equilibrium. In their work, they also discuss the exclusion in past 68

literature of the strategy ‘donate only if no signal’ (the emergent strategy we discuss in 69

this paper), and that they believe this to be a mistake. An important limitation is that 70

studying the evolution of behaviour using replicator dynamics requires the use of 71

predetermined strategies and does not allow for strategy innovation. As mutations are 72

not generally incorporated into the model, no new strategies can emerge. Some have 73

addressed this via the replicator–mutator equation [31–33], although this still involves 74

switching from one strategy to another within a predefined set, so the strategy space is 75

constrained and chosen from the outset. 76

Whereas replicator dynamics is generally concerned with infinite populations, some 77

analyses of the Sir Philip Sidney game on finite populations have also studied the 78

evolutionary stability of honest signalling [34,35]. Catteeuw, Manderick and Han [34] 79

find a lower prevalence of honest signalling in finite populations. They observe that 80

honest signalling is less evolutionarily stable in smaller populations. In a later analysis, 81

they discuss the role of punishment as a behaviour that can foment honest signalling [35]. 82

However, as with replicator dynamics, these approaches also study a set of strategies 83

that is defined and constrained from the outset. The goals of MARL approaches and 84

evolutionary computation models differ, and as such can be complementary. Methods 85

like replicator dynamics allows us to see the relative success and evolutionary stability of 86

given strategies at population level, whereas reinforcement learning looks at individual 87

agents and studies the optimal policy that they learn through repeated interactions. In 88

the latter, agents can dynamically update their strategy in response to the environment, 89

as animals are able to adapt to shifting conditions. Replicator dynamics is a useful 90

method to understand the behaviour of populations over time, whereas reinforcement 91

learning more closely mimics individual learning. Another distinction is that, whereas 92

replicator dynamics aims to study which strategies are selected form a fixed and 93

predefined set, reinforcement learning instead studies which strategies emerge from a 94

(much larger) strategy space delimited by the agent’s architectural constraints. 95

This is where reinforcement learning presents an advantage for studying behavioural 96

dynamics. In using MARL, there is no requirement to constrain the set of possible 97

strategies that agents may learn beyond architectural constraints imposed by the 98

agent’s design, primarily memory length. In this way, we can observe the emergence and 99

coevolution of new strategies in a population, rather than the dynamics of static 100

strategies. Some have even proven that replicator dynamics can emerge from 101

reinforcement learning algorithms [36–39]. Reinforcement learning has been discussed as 102

a useful tool to study animal behaviour and to model their learning through trial and 103

error [25, 40–42]. In the multi-agent setting, it has been used to study animal behaviour 104

in areas including predatory-prey dynamics [43,44] and collective/swarm 105

movement [45,46]. 106

We precisely set out to study the mechanisms of signalling in the Sir Philip Sidney 107

game through MARL; this approach allows us to observe the coevolution of behaviour, 108

identify emergent strategies, and explore how the outcomes change depending on the 109

variation of certain parameters. The use of reinforcement learning, more specifically 110

Q-learning in this case, only requires a defined action space, environment, and a set of 111
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learning parameters. By not requiring the strategy space to be defined from the outset, 112

we can observe the strategies that emerge through repeated interactions. Agents 113

initially explore randomly between the set of actions available to them, and update the 114

expected reward of a given action. In this way, reinforcement learning allows the agents 115

to arrive at the optimal or near-optimal strategy. We thus show that MARL can be a 116

powerful tool to study evolutionary dynamics and understand the underlying 117

mechanisms of learning over generations. In contrast to other methods, reinforcement 118

learning does not require the strategy space to be constrained beyond the set of 119

learnable strategies defined by the agent’s architecture, so is a powerful tool to 120

understand the emergence and learning of decision-making strategies - in this case, with 121

the presence of signalling. This approach can be widely generalised to study the 122

inter-relationships between signalling and the emergence of strategies in a population. 123

In this paper, we use reinforcement learning to study the Sir Philip Sidney game, a 124

game in which Maynard Smith set out to demonstrate the dynamics of honest 125

signalling [12]. We show that when the parameters of the model are within a given 126

threshold, agents learn to arrive at the optimal equilibrium where the resource is given 127

without the need for a signal; this is akin to Huttegger and Zollman’s [30] 128

aforementioned ‘donate only if no signal’ strategy. In animal behaviour, this can be 129

assimilated to proactive prosociality, and is observed across species. Various 130

mechanisms may lead to this observed behaviour, including kin selection or social 131

learning. As the parameter values approach the threshold, the percentage of agents that 132

learn the optimal strategy significantly decreases, although it is still learned in the 133

majority of cases. High learning and low discount rates result in the agents learning the 134

optimal strategies in the highest proportion of runs. 135

Methods 136

The Sir Philip Sidney game 137

The Sir Philip Sidney game was developed by Maynard Smith as a way to model 138

signalling within animal behaviour [12] - in particular, the aim of the model was to 139

illustrate the mechanisms of honest signalling initially proposed by Zahavi [3, 9] and 140

subsequently developed by others [10,47]. This framework has been the subject of 141

several studies, particularly within the biological sciences [6, 48–50]. Whereas most 142

models assume infinite populations; it is worth noting that an analysis of the game in 143

finite populations found much lower prevalence of honest signalling [34]. The game 144

involves two agents/players: a signaller and a receiver. In the original formulation, the 145

players are referred to as the Beneficiary (B) and Donor (D) respectively. B represents 146

an agent who may or may not be in need of an indivisible resource, whereas D holds 147

this resource. Taking this resource to be water, B may be in one of two states: thirsty 148

(with probability p) or not thirsty (with probability 1− p). B knows the state they are 149

in, while D can observe B’s actions but not state. Each player has two possible actions: 150

B may signal or not signal that they are in need of the resource, and in response D may 151

give or keep said resource. The set of actions A for each player can therefore be 152

represented as AB = {S,N} and AD = {G,K}. If D keeps the resource, their chance of 153

survival is 1; this decreases to U if they give the resource, where 0 < U < 1. For B, the 154

chance of survival is as follows: 1 if they get water, regardless of their state, 0 if they 155

are in a thirsty state and do not get water, and V if they are in a not thirsty state and 156

do not get water, where 0 < V < 1. 157

As the game was designed to model animal behaviour, and therefore simulates 158

learning over generations, we consider inclusive fitness rather than individual payoff; the 159

use of inclusive fitness instead of individual reward is in line with Maynard Smith’s 160
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Fig 1. Extensive-Form Game Tree: Sir Philip Sidney Game.

original formulation [12] and subsequent studies [6, 30,34]. Given the relatedness 161

coefficient (r) between both players, the inclusive fitness (F ) of Player i is calculated as 162

the sum of a player’s individual payoff Pi and the opponent j’s payoff Pj multiplied by a 163

factor of r: Fi = Pi + rPj . The extensive-form game tree is presented in Fig 1, where a 164

dashed line represents an information set. Nodes within the same information set (filled 165

in the same colour for clarity) represent those where Player D does not know which of 166

the two they are at, as they do not observe B’s state. Since its application to animal 167

behaviour, the Sir Philip Sidney model has been used to study other dyadic interactions 168

that involve a signal between the two agents; the game has also been expanded beyond 169

the use of discrete parameters, to a continuous form [6]. In this article, we will also use 170

a continuous version of the game to illustrate threshold values for each outcome. 171

In the original formulation of the game, Maynard Smith derived a set of 172

evolutionarily stable strategies [12]. For the signaller, he argued it is evolutionarily 173

stable to signal honestly (only signal if they are indeed in need of the resource), and for 174

the receiver to give the resource only if the other player signals. A set of inequalities 175

were presented for the different parameters, stating that if these are met, the 176

aforementioned equilibrium will hold. However, it has been shown both 177

theoretically [48] and through simulation [49] that an outcome was overlooked: there 178

exists an equilibrium where one agent never signals, and the other always gives the 179

resource regardless. Hamblin and Hurd [49] refer to this equilibrium in their work as the 180

‘non-communicating, always-give’ set, reached by Huttegger and Zollman’s [30] 181

aforementioned ‘donate only if no signal’ strategy. This outcome would be reached if 182

both players try to maximise their inclusive fitness - payoffs in this equilibrium are 183

higher than if pursuing a strategy of dishonest signalling [49]. A full mathematical 184

derivation of this solution is included in S1 Appendix. As Huttegger and Zollman [30] 185

point out, this equilibrium has been intentionally excluded from previous 186

literature [48,51], but doing so fails to consider emerging dynamics under certain 187

parameters. 188

In some cases, it may be valid to exclude the possibility of the donor giving the 189

resource without the beneficiary signalling that they are in need, and so excluding the 190

equilibrium discussed in this paper. These are cases where the resource being given is 191

conditional on a signal, examples of which can be found in animal behaviour. In this 192

case, we have chosen not to assume conditionality, as there are also examples in animal 193

behaviour of a resource being given without the need for a signal. One example of such 194

a strategy combination is found in Rodŕıguez-Gironés et al.’s [52] model of begging 195

between offspring and parents: they find an equilibrium where chicks do not beg for 196

food, and parents still provide optimally. This type of interaction is sometimes referred 197
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to in the literature as proactive prosociality, and is also observed among primates in the 198

form of allomaternal care, as well as in the behaviour of other animal groups [53,54]. By 199

not assuming conditionality on the beneficiary’s signal, we are also including the 200

possible action combination of {Not Signal, Give} that has been excluded in previous 201

literature. This is not to say that the donor’s action is no longer conditional on the 202

beneficiary’s. The game remains sequential, and the donor still observes the 203

beneficiary’s action before taking their own. The only difference is that, whereas 204

following previous literature the donor would not have been able to give the resource in 205

the absence of the signal, we do not impose this condition. 206

This paper sets out to show that the expected evolutionarily stable strategies of the 207

Sir Philip Sidney game would be those where the resource is given without the need for 208

a signal; these results have previously been discussed theoretically by Bergstrom and 209

Lachmann [48]. The methodology will be using reinforcement learning agents playing 210

the game against each other, and observing the resulting strategies. We will show that 211

learning agents playing the Sir Philip Sidney game do not learn the strategies deemed 212

evolutionarily stable by Maynard Smith; instead, as we expected, they learn to either 213

not signal and give regardless, or not signal and keep the resource (depending on the 214

parameter values). Hamblin and Hurd [49] show a similar result through the use of a 215

genetic algorithm. As with replicator dynamics, their approach requires a set of 216

predetermined strategies. By using reinforcement learning, we do not constrain the 217

strategy space and can instead observe the strategies that emerge from the agents’ own 218

learning of optimal actions. Constraints on possible learned strategies are only imposed 219

by the agent’s architecture, such as memory length. 220

The motivation behind the use of reinforcement learning is in the explanatory value 221

of this type of approach, as well as the fact that this approach does not require the use 222

of predetermined or hand-coded strategies. Referring to the Philip Sidney game, 223

Johnstone and Grafen stated that “signal and response behaviour therefore co-evolve, 224

and the outcome of this coevolution is difficult to predict” [6, p.215]. With the use of 225

reinforcement learning, we can observe this coevolution and explore how the outcomes 226

change depending on the variation of certain parameters, allowing us to precisely study 227

this behaviour that the authors refer to as difficult to predict. In this way, the learning 228

agents simulate learning over generations and evolution: by applying reinforcement 229

learning to animal behaviour, we can analyse the behaviour of generations of animals 230

that are related to each other, and look at how much the ensuing behaviours are 231

affected by and dependent on the behaviour of others. 232

To ensure that the findings are robust to varying parameters, for each set of values 233

we show both the case where p = 0 and p = 1, representing the agent in need of the 234

resource with probability 0 and 1 respectively. The value of p does not affect the results 235

- this was demonstrated by Maynard Smith in the original formulation of the model [12], 236

and we find that this holds for reinforcement learning agents. 237

Revised equilibria of the Philip Sidney game 238

As we have seen, the Philip Sidney game was originally intended to demonstrate honest 239

signalling; provided the parameter values met certain conditions, it was argued that the 240

evolutionarily stable strategies were for the Beneficiary to signal when they are in need 241

(honest signalling), and for the Donor to give the resource when the Beneficiary signals. 242

However, the original derivation overlooked a crucial outcome. For a majority of 243

possible parameter values, the evolutionarily stable strategies would be for the 244

Beneficiary not to signal, and the Donor to share the resource regardless [48]. When 245

both players are choosing the actions that would maximise the inclusive fitness, this is 246

the resulting combination of strategies. Within animal behaviour, this can be equated 247

to proactive prosociality, often observed during allomaternal care in primates [53,55]. 248
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This observed behaviour may be caused by differing underlying mechanisms, such as kin 249

selection or social learning. 250

The alternative set of evolutionarily stable strategies can be derived from the 251

inclusive fitness matrices for each of the two possible states. As mentioned, B may be in 252

one of two states: thirsty with probability p (Table 1), or not thirsty with probability 253

(1− p) (Table 2). 254

Table 1. Matrix of inclusive fitness given p = 1. B is the row player and D is the
column player.

Keep Give

Signal r, 1 1− c+ rU , U + r(1− c)

Not signal r, 1 1 + rU , U + r

Table 2. Matrix of inclusive fitness given p = 0. B is the row player and D is the
column player.

Keep Give

Signal r + V (1− c), 1 + rV (1− c) 1− c+ rU , U + r(1− c)

Not signal r + V , 1 + rV 1 + rU , U + r

From Tables 1 and 2 we can compare B’s payoffs if they choose to Signal or Not 255

signal when keeping D’s actions constant (so comparing B’s payoffs in the top and 256

bottom rows of each matrix). It is clear that there is no situation where B would prefer 257

to signal, provided that c ≤ 0 and V ≤ 0, which must be satisfied: for instance, for 258

p = 1 (Table 1), it must always be true that 1 + rU > 1− c+ rU . Given that B never 259

signals, D would choose to Give if the following condition is met (see S1 Appendix): 260

r >
1− U

1− V + pV
(1)

In order to analyse the emergent behaviour when the above threshold is met or not, 261

we use various combinations of parameters in our experiments. The values were chosen 262

to exemplify three different cases: the first where Eq 1 is not satisfied, so we do not 263

expect a cooperative outcome as other strategies of D will invade, and the second and 264

third show two cases where the inequalities are satisfied. However, the third case 265

(U = 0.95, V = 0.75, r = 0.9) exemplifies a scenario where the values lie close to the 266

limits. We included this to explore how proximity to the threshold affects the learned 267

strategies of Player D in particular - as the parameter values lie close to the limit, we 268

expect to see the optimal strategy being learned a lower proportion of the time. This is 269

because the difference in inclusive fitness from playing G or K will be smaller in 270

absolute terms, therefore there will be less difference between the learned Q-values. It is 271

worth emphasising that throughout this analysis we are considering inclusive fitness; 272

were we to look at individual payoff, there would be no scenario where it is 273

evolutionarily stable for D to give the resource. 274

Table 3 illustrates the parameter values that we will use in our simulation, whether 275

or not they satisfy inequality Eq 1, and the strategies that we expect the reinforcement 276

learning agents to learn (assuming each player is maximising their inclusive fitness). For 277

the example where U = 0.9, V = 0.1 and p = 0.5, Fig 2 shows the parameter values in 278

relation to the threshold inequality presented above. From the graph, we can see that 279

r = 0.8 lies within the shaded area with both low and high signal costs, whereas for 280

high signal costs (c = 0.75), lower values of r would no longer satisfy this condition. 281

As shown above, there are no set of values that would result in Signal being the 282

preferred strategy for the Beneficiary. Even as we vary signal costs, as long as c > 0 is 283
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r V U Eq 1 satisfied Expectation
0.5 0.2 0.2 No {N,K}
0.8 0.1 0.9 Yes {N,G}
0.9 0.75 0.95 Yes {N,G}

Table 3. Alternative categorisation of example parameter values that satisfy each set
of inequalities. For expectation, {N,K} means the Beneficiary does not signal, and the
Donor keeps the resource. Valid for any value of p.

𝑐 = 0.75

𝑟 = 0.2 𝑟 = 0.8

𝑐 = 0.25

Si
gn

al
 C

os
t (
c)

Fig 2. Visual representation of threshold values where the evolutionarily stable
strategies presented in this article would hold (p = 0.5, U = 0.9, V = 0.1). The
intersection of r = 0.8 with both c = 0.25 and c = 0.75 is within the shaded area of the
two inequalities, therefore both thresholds are satisfied and we would expect the
resulting strategy combination to be {N,G}. However, for r = 0.2, the evolutionarily
stable strategies of Not signal and Keep only hold for low signal costs as the intersection
with c = 0.75 is outside the shaded area.

satisfied, the beneficiary would still choose not to signal that they are in need. 284

Therefore, it is only the behaviour of the Donor that we expect to see changes in, 285

illustrated in Table 3. Depending on the parameter values, it may be evolutionarily 286

stable or not for the Donor to give the resource - there are cases, particularly where r is 287

high enough, that inclusive fitness is maximised by giving the resource (even though 288

individual payoff is not). 289

Coevolution of reinforcement learning strategies 290

We will use MARL to demonstrate that the above equilibria are reached by learning 291

agents. In order to more closely approximate the model to a continuous signalling 292

game [6], and to ensure that results found are robust to increased signal strengths, we 293

include two possible signal costs. This means that the Beneficiary can either send a 294

strong or weak signal. The Beneficiary player class therefore has three possible actions: 295

Not signal, Weak signal, Strong signal, corresponding to the different signal costs 296
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detailed above (c = 0.25 for a weak signal and c = 0.75 for a strong signal). The reason 297

for including weak and strong signals is to closer approximate the model to a continuous 298

signalling game [6], and to ensure that results found are robust to increased signal 299

strengths. The Donor player class, as in Maynard Smith’s original model, has two 300

possible actions: Give, Keep. 301

In the simulation, the agents update their expected value of an action through the 302

use of the Q-learning algorithm [56]. At time t, each player has an action a and state s - 303

this state is made up of both players’ actions in the previous round. Rt(s, a) represents 304

the reward for a given state-action combination - in our case, this is the inclusive fitness. 305

α is the learning rate and γ is the discount rate, both of which lie between 0 and 1; the 306

choice of values for both of these parameters will be discussed below. To assess the 307

action to be taken at each stage, the following Q-learning formula is used: 308

Qt(s, a) = Qt−1(s, a) + α(Rt(s, a) + γmax
a′

Q(s′, a′)−Qt−1(s, a)) (2)

where s′ and a′ represent the new state and action at time t+ 1. Each action-state 309

combination is therefore assigned a value (Qt(s, a), referred to as a Q-value); these 310

Q-values are then used to make decisions about which action should be taken next. The 311

agent updates the Q-value Qt for the action they just played once they know the reward 312

they received, meaning that they know the action just played by the opponent and so 313

the state they will be in when taking the next action. The term that is multiplied by 314

the discount factor γ represents the value of the action with maximum expected reward 315

given the state they will be in when taking this next action. 316

Before each interaction, both agents’ Q-value tables are initialised at 0. Each dyad 317

plays 500 rounds of the game, as this allows for the Q-values to converge, so we can 318

clearly show what the learned strategies are. The first 50 rounds of each interaction 319

between two agents are exploratory (ε = 1), meaning that both learning agents are 320

playing randomly while updating their Q-value tables. After these 50 rounds, the rate 321

of exploration decays at a rate of ε = 2
N , where N is the number of rounds played. For 322

each parameter set, we run 1000 iterations, and calculate the average values over all 323

iterations. The Philip Sidney game was designed to model the coevolution of 324

signaller-receiver behaviour over generations within animal behaviour. Using a 325

reinforcement learning approach, each round of the game can be understood as a 326

generation in the animal species; however, reinforcement learning is also used to model 327

individual animal behaviour, so the simulation could also be understood in this way. 328

We also explore the effects of varying the learning and discount rates on the 329

resulting behaviour of the agents. We used three values for the learning rate: 0.1, 0.5 330

and 0.9, and each of these was run with two different discount rates: 0.1 and 0.9. (for a 331

greater range of values for both learning and discount rates, see S2 Appendix). A higher 332

learning rate accelerates the speed of learning, as Q-values are updated at a faster rate, 333

but may result in convergence at a suboptimal value. On the other hand, a high 334

discount factor gives more weight to longer-term rewards, therefore we expect that the 335

Q-values of agents with a low discount rate will converge faster. 336

Results 337

Learned strategies of RL agents 338

For each set of parameter values, the strategy most often learned by the reinforcement 339

learning agents under optimal learning and discount rates is precisely the strategy that 340

we expected through the derivation of evolutionarily stable strategies (see Table 4). 341

When inequality (1) is not met, the resulting behaviour displayed by the agents is 342
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{N,K}: the Beneficiary does not signal, and the Donor keeps the resource. We have 343

seen that the behaviour of the Beneficiary is never expected to deviate from N (Not 344

signal), as there is no incentive to do so; it is only the behaviour of the Donor that 345

changes. In contrast, when (1) is satisfied, the resulting strategy set is {N,G}: the 346

Beneficiary again does not signal, but the Donor does give the resource regardless of the 347

lack of signal received. These results are robust irrespective of the state of the 348

Beneficiary, i.e. whether they are in a thirsty or not thirsty state, showing that the 349

value of p does not affect the results, as expected by Maynard Smith [12]. 350

Although we show here the case where both agents are reinforcement learning agents 351

with equal parameters, we also wanted to explore the emergent behaviour of a learning 352

agent when interacting with an agent that is following a predefined strategy. As this is 353

not the direct aim of this paper, we have included examples in the Appendix where one 354

of the agents follows a static strategy (see S3 Appendix). In particular, no matter the 355

choice of parameters, when using two reinforcement learning agents we always have a 356

case where Player B most often chooses to Not Signal. Therefore, by implementing 357

predetermined strategies, we can see what is learned by Player D when their opponent 358

either chooses to Weak Signal or Strong Signal a majority of the time. Additionally, we 359

show how the resulting strategies for both players vary with longer memory of past 360

actions (see S4 Appendix); in this case, we see a greater variation of strategies learned, 361

where the agent alternates or cycles through a pattern of actions. 362

r V U (1) satisfied Expectation B D
0.5 0.2 0.2 No {N,K} N = 83.3% K = 97.1%
0.8 0.1 0.9 Yes {N,G} N = 46.1% G = 94.6%
0.9 0.75 0.95 Yes {N,G} N = 82.4% G = 48.2%

Table 4. Resulting strategies of learning agents, showing the top strategy learned and
the proportion of runs this was the resulting strategy for the parameters LR=0.9,
DR=0.1. For expectation, {N,K} means the Beneficiary does not signal, and the
Donor keeps the resource. Valid for any value of p.

Optimal RL parameters 363

Figs 3 and 4 show the resulting strategies learned by the RL agents under the 364

parameters S = 0.2, V = 0.2, r = 0.5 (Case 1) for Players B and D respectively; Tables 365

5 and 6 describe the corresponding strategies. The strategies presented in these tables 366

are those most often learned by the reinforcement learning agents that appear in the 367

corresponding graphs. This is not the full set of possible strategies, as through MARL, 368

any action combination can be learned. For both agents, a learning rate of 0.9 and 369

discount rate of 0.1 appear to be the optimal combination, as it is with this choice of 370

parameters that the expected strategy is learned most often. From Fig 3, we can see 371

that B very rarely learns a strategy involving strong signalling (S); this is in line with 372

our previous derivation, as the action S reduces B’s expected inclusive fitness the most. 373

For Player D, the difference in learned strategies shows less variation with different 374

learning and discount rates (Fig 4). For the values of S, V and r shown, the optimal 375

strategy is to always keep the resource, which is what we observed at least 80.9% of 376

iterations. The combination of parameters resulting in this lowest value (80.9%) is a 377

learning rate of 0.1 and a discount rate of 0.9. For each value of learning rate, a lower 378

discount rate leads to the optimal strategy being learned a higher proportion of the time. 379

For Player B, there is more variation due to there being three possible actions and 380

less difference in the absolute value of the rewards. Nevertheless, we observe the same 381

result: for the same learning rate, a discount rate of 0.1 always outperforms a discount 382

rate of 0.9. As the Philip Sidney game was formulated to model interactions within 383
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Fig 3. Beneficiary Resulting Strategies. Percentage of runs that the Beneficiary learns
each strategy. Not thirsty state, r = 0.5, U = 0.2, V = 0.2. Strategies described in Table
5.

animal behaviour, we can interpret this result with respect to the original application. 384

A lower discount rate can be assimilated to maximising the importance given to 385

immediate survival rather than potential long-term gains. As in this case we are playing 386

repeated instances of the same game, maximising short-term survival will ultimately 387

also maximise long-term payoffs, therefore agents with a lower discount rate learn the 388

optimal strategies a higher proportion of the time. 389

Table 5. Strategies most often learned by the Beneficiary with parameters
S = 0.2, V = 0.2, r = 0.5 (Case 1), see Fig 3.

Acronym Strategy

NN Never signal

NW Alternate between Not signal and Weak signal

WW Always signal weakly

NS Alternate between Not signal and Strong signal

WS Alternate between Weak signal and Strong signal

NWS Cycle through Not signal, Weak signal and Strong signal

NSW Cycle through Not signal, Strong signal and Weak signal

SS Always signal strongly

Case comparison 390

D learns the strategy Always Give in Case 2 almost twice as often as in Case 3. The 391

reason for this is clear when looking at the graphs of Q-values over the rounds. The 392

shape of the graph with a convergence around round 50 is due to the fact that agents 393

play exploratory actions for the first 50 rounds, after which they play according to the 394

learned Q-values. Figs 5A and 6A illustrate the average Q-values for each action across 395

the rounds for B, as well as the average for each state; Figs 5B and 6B show the same 396
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Fig 4. Donor Resulting Strategies. Percentage of runs that the Donor learns each
strategy. Not thirsty state, r = 0.5, U = 0.2, V = 0.2. Strategies described in Table 6.

Table 6. Strategies most often learned by the Donor with parameters
S = 0.2, V = 0.2, r = 0.5 (Case 1), see Fig 4.

Acronym Strategy

KK Always keep

GK Alternate between Give and Keep

GG Always give

KKG Cycle through Keep, Keep, Give

for D. Whereas for Case 2, the Q-values of D associated with the action G quickly 397

become distinctly higher than for K, Case 3 portrays a different scenario. While overall 398

the agent does learn that G will result in a higher payoff than K, the difference is much 399

smaller. Not only is the difference between the averages much less marked (0.410 for 400

Case 2 and 0.139 for Case 3), we can also see that the average Q-value for K for one 401

state (NG) is higher than that for G in two out of the six states (WG and SG). As 402

mentioned above, this is to be expected as the parameters for Case 3 are much closer to 403

the threshold and parameter limits, therefore the difference in inclusive fitness is smaller 404

than for Case 2. Nevertheless, the most learned strategy is still to Always Give, and the 405

next most learned is to alternate between G and K, which is learned in 38.5% of 406

iterations. 407

A similar outcome is observed for Player B, where in Case 2 the optimal strategy is 408

only learned in 46.1% of iterations. Again, this is clear in Fig 5A, where the state with 409

the highest average Q-values for W (state NG) is very close to the lowest for N (state 410

SK). In particular, the state with the highest Q-values for W , NG, is observed often by 411

B as for this set of parameters Player D learns to Always Give 94.6% of the time. 412

Therefore, Player B will choose action W more often than is optimal. 413

Discussion 414

The results presented above are in line with the theoretical derivation of evolutionarily 415

stable strategies (see [48] and S1 Appendix). Sets of parameters that satisfy Eq 1 will 416
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Fig 5. Q-values Case 2, darker line is average across all, faint lines are average for each
state.

Fig 6. Q-values Case 3, darker line is average across all, faint lines are average for each
state.

result in the strategies {N,G} in a majority of cases, whereas those that do not satisfy 417

this inequality result in strategies {N,K}. This is in accordance with our expectations, 418

as B never has an incentive to deviate from the strategy Never Signal ; it is therefore 419

only D’s strategy that varies according to the inequality threshold. 420

The use of reinforcement learning allows us to observe the coevolution of behaviours 421

and strategies between the two learning agents, which simulates learning over 422

generations and evolution within animal behaviour. Through a theoretical analysis of 423

the Sir Philip Sidney game, we can derive the evolutionarily stable strategies, and 424

predict what the dominant behaviours will be. However, the use of reinforcement 425

learning provides additional complexity as we can also study what other strategies 426

emerge, and under what conditions we are more likely to observe a greater proportion of 427

the population learning suboptimal behaviours. As opposed to replicator dynamics, by 428

using MARL we do not need to hand-code the learnable set of strategies and can 429

observe the emergent behaviour of the learning agents. The only constraints are 430

imposed by the agent’s architecture, primarily memory length. 431

With regards to the optimal combination of learning and discount rates, we show 432

that a lower discount rate always results in the highest inclusive fitness being achieved 433

by the RL agent. The optimal combination for our formulation of the model is a 434

September 12, 2025 14/19



learning rate of 0.9 and discount rate of 0.1. In some cases, the expected strategy is not 435

learned as often as we would expect (although it is always learned more often than any 436

other). We observe this phenomenon in Case 2 for B and Case 3 for D: this happens 437

more markedly as the parameter values approach the limit given by Eq 1. One 438

contributing factor to this result may be the length of the exploration period. Having 439

either an initial exploration period longer than 50 rounds or slower decay of ε can allow 440

for a greater distance to be learned between Q-values, and therefore the optimal 441

strategy to be learned a greater proportion of the time. We show examples of outcomes 442

with varying length of initial exploration period and varying ε decay in S5 Appendix. 443

Conclusion 444

The approach presented in this paper illustrates how MARL can be used to study the 445

coevolution of strategies and behaviours, and, in particular, animal behaviour. Whereas 446

Maynard Smith initially formulated the Sir Philip Sidney game as a way to exemplify 447

honest signalling [12], we show that in a majority of cases there is an alternative 448

outcome. This result has previously been discussed in the literature [48,49,52], and 449

relaxes the assumption of conditionality: the equilibrium shown in this paper is reached 450

when we remove the condition that the resource cannot be given in the absence of a 451

signal. The game remains sequential, with D only acting after observing B’s action. 452

The resulting strategy combination where B never signals but D always gives the 453

resource regardless can be assimilated to proactive prosociality. We observe this 454

phenomenon both in the animal realm [53,54], and within human behaviour [55], and 455

this behaviour may be caused by a number of mechanisms. 456

In all cases, the learning agents arrive at the optimal strategy a majority of the time; 457

regardless of the chosen parameters, the Beneficiary predominantly learns a 458

non-signalling strategy. For the Donor, depending on whether or not the threshold 459

values are exceeded, it will either learn to give the resource without a signal or to keep 460

the resource. The former case is also studied by Hamblin and Hurd [49], who refer to 461

this as the ‘non-communicating, always-give’ set, and by Huttegger and Zollman [30], as 462

the ‘donate only if no signal’ strategy. As parameter values approach the limit given, 463

the proportion of runs where the optimal strategy is learned decreases - this is as we 464

would expect, as the difference in resulting inclusive fitness between strategies becomes 465

smaller. High learning and low discount rates result in the highest proportion of agents 466

learning the expected strategies. 467

Therefore, we show that MARL can be a powerful tool to study evolutionary 468

dynamics and understand the underlying mechanisms of learning over generations 469

without the need to choose the strategy space from the outset (beyond the set of 470

learnable strategies). Methods such as the one presented in this paper simulate learning 471

over generations by incrementally updating the beliefs of artificial agents, and allow us 472

to explore how outcomes change depending on the variation of certain parameters. The 473

application of this type of approach can be an effective way to explore the emergent 474

behaviours within animal populations, in particular looking at how behaviours coevolve. 475

The model parameters vary in how literally they can be interpreted when applied to 476

animal behaviour: whereas learning and discount rates require more interpretation, the 477

relatedness coefficient and signal costs can be directly understood in terms of 478

evolutionary biology, 479

The above study was intended to derive the equilibrium for the Sir Philip Sidney 480

game through the use of reinforcement learning, and therefore focuses on dyadic 481

interactions. However, this focus leaves a series of open questions. Further extensions to 482

this research could explore population dynamics, perhaps including partner selection 483

(see for example [57]). Another interesting area of research could further explore 484
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dynamics of learning over generations, where agents are initialised with the learned 485

values of a ‘parent’ agent. 486

Supporting information 487

S1 Appendix. Derivation of evolutionarily stable strategies. 488

S2 Appendix. Results with varying learning and discount rates. 489

S3 Appendix. Results with static agents. 490

S4 Appendix. Results with varying memory. 491

S5 Appendix. Results with varying exploration. 492
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